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It is shown that the normal-superfluid transition in bilayer graphene predicted to occur at a high

temperature is strongly affected not only by the dielectric constants of the substrate, interlayer, and

gate insulators but also by the proximity of ideal metal gates. Even assuming optimistically a

completely unscreened interlayer Coulomb interaction—thus bypassing the controversial problems

regarding the proper way to screen the interlayer Coulomb interactions—it is shown that employing a

gate-insulator thickness smaller than about 2-to-5 nm of equivalent SiO2-thickness pushes the

transition temperature significantly below 300 K to the 1 K–1 mK range, depending on the dielectric

constant of the gate insulator and on the dielectric mismatch of the insulators employed.

These results imply that thicker and low-dielectric-constant gate insulators should be employed

to observe the phase transition, but exploiting the superfluid state of gated graphene-bilayers in

room-temperature device applications may be challenging. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4873637]

I. INTRODUCTION

The theoretical prediction that a phase transition from a

normal to a superfluid state in bilayer graphene (BLG) should

occur at high temperatures1–3 has triggered interest motivated

not only by the scientific importance of such a transition but

also by its promise of new technological applications. The

possibility of designing high performance, low-power elec-

tronic devices that could exploit the properties of the super-

fluid state is illustrated by the bilayer pseudospin field-effect

transistors (BiSFETs) proposed by Banerjee and coworkers4

(Here “pseudospin” refers to the “which layer” degree of free-

dom that plays a role analogous to spin in the Bardeen-

Cooper-Schrieffer (BCS) theory of superconductivity.).

Unfortunately, some confusion remains about the role

that dielectric screening—dynamic or static, in the normal or

superfluid state—plays in determining the transition

temperature.5–9 The situation has been summarized by

Abergel et al.:10 Given the difficulty of accounting for the

dielectric response of free carriers or excitons in such a bro-

ken symmetry gapped system, they conclude that the “truth”

lies somewhere between the results obtained using static

screening—predicting a normal-superfluid transition temper-

ature Tc smaller than �10�7 EF/kB,5,7 where EF is the Fermi

energy and kB is the Boltzmann constant—and those

obtained using the dynamically excitonic-state-screened

interaction, kBTc � 0:1 EF,9 in agreement with the original

predictions.1–3 An additional upper bound to the transition

temperature is set by the Berezinski-Kosterlitz-Thouless

temperature, TBKT, above which thermally generated topo-

logical defects (mainly vortices) destroy the coherence. In

Ref. 2, this is estimated to be kBTBKT � EF=8 whereas the

obvious upper bound Tc < TBKT is found in Ref. 7. Since

here interest will be focused on even lower values for Tc, this

issue will not be discussed further.

The difficulty of realizing an exciton condensation at

room-temperature has been argued to originate from the ba-

sic fact that the linear dispersion in graphene renders the sys-

tem weakly interacting.11 Additional arguments supporting

the lack of this experimental evidence in real systems have

been presented by Abergel et al.:10,12 Employing interactions

statically screened in the normal state, they have shown that

the effect of density fluctuations and charge unbalance in the

two layers,10 together with disorder,12 may be responsible

for an additional reduction of the transition temperature. The

possible negative effect of misalignment of the two layers

has also been considered by Register et al.13,14 These consid-

erations may explain why Coulomb-drag experiments per-

formed so far,15,16 while uncovering interesting phenomena

at low temperatures (less than about 50 K), have failed to

show the sharp increase of the drag expected from the occur-

rence of a normal-superfluid phase transition.

The discussion outlined above has been based mostly on

the idealized situation of a BLG embedded in a homogene-

ous dielectric medium described by a macroscopic dielectric

constant �. In practice, though, both in experiments aimed at

observing the elusive phase transition, as well in the realiza-

tion of the BiSFETs, a bias must be applied to least one of

the two graphene single-layers (SLGs) in order to induce the

charges required to form excitons. Moreover, despite

attempts to use low-dielectric constant intercalants17 and

even air gaps18 between the layers and also between the

BLG and the substrate, most likely, different dielectrics will

be required to support the BLG and keep the two layers sepa-

rated. Most important, gates sufficiently close to provide the

required high capacitance will have to be employed. The

effect of an inhomogeneous dielectric environment (possibly

with high-j dielectrics) has been considered by Register,a)Electronic mail: max.fischetti@utdallas.edu
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Reddy et al.13,14 who showed that a large dielectric mis-

match may pose additional challenges to the realization of

devices based on the superfluid state and that new device

designs employing lower-j and thicker dielectrics may be

required. The effect of an inhomogeneous dielectric environ-

ment has been considered also in Refs. 19–22. In particular,

Badalyan and Peeters19,20 have shown that dynamic screen-

ing effects in such inhomogeneous situations can enhance

the interlayer interaction beyond what could be expected

from estimates made assuming an average dielectric con-

stant. However, the effect of the proximity of metallic (or

highly conductive) gates has never been considered in detail.

The purpose of this paper is to quantify and extend the

qualitative results of Refs. 13 and 14, and show that, indeed,

the proximity of such gates and the presence of insulators

with different dielectric constants (here referred to as

“dielectric mismatch”) suppresses dramatically the normal-

superfluid transition temperature because of the screening

effect of the polarization charges of the metal and at the

interfaces even under the optimistic scenario of completely

unscreened Coulomb interactions. In particular, it is shown

that in single-gate structures gate dielectrics thinner than

about 2-to-5 nm of equivalent SiO2 thickness23 (here denoted

by teq and defined as ð�SiO2
=�insÞ t, where t and �ins are the

physical thickness and static dielectric constant of the insula-

tor, respectively, and �SiO2
is the static dielectric constant of

SiO2) suppress the superfluid gap to values smaller than

1 meV, corresponding to transition temperatures of a few K.

Therefore, air gaps and remote gates are required in order to

observe the normal-superfluid transition, but the possibility

of fabricating devices with the high gate capacitance

required by the present scaling rules seems to be in serious

doubt. These considerations are likely to apply also to hybrid

double BLGs or SLG/BLG systems24,25 as well as

transition-metal dichalcogenides, since they are independent

of the particular two-dimensional systems employed, at least

when considering an unscreened interaction.

The paper is organized as follows: Section II reviews

briefly the basic theory of the normal-superfluid transition

and the gap equations that have to be solved to estimate the

transition temperature. While these are well-known expres-

sions, it is convenient to review them here explicitly in order

to discuss their numerical solution. The Green’s function of

Poisson equation for a double-gated gated BLG is derived in

Sec. III, also in its screened form (Sec. III B). Results are

presented in Sec. IV, mainly for single-gated geometries

(Sec. IV A), but also discussing briefly the effect of a double

gate (Sec. IV B). Section IV C briefly discusses the effect of

dynamic “un-gapped” screening also accounting for the

dielectric response of the dielectrics and, finally, conclusions

are drawn in Sec. V.

II. THE NORMAL-SUPERFLUID GAP IN BLG

A. Gap equation

The main quantity of interest here is the superfluid

energy gap, D(k), that can be obtained form the Hamiltonian

of BLG following the standard mean-field BCS approach.

Assuming equal and opposite Fermi energies—so equal

carrier densities—in the two SLGs, at zero temperature, the

gap is given by the integral equation,

DðkÞ ¼
ð

dk0

ð2pÞ2
eVðk � k0Þ 1þ cos /

2

Dðk0Þ
2Eðk0Þ : (1)

In this equation EðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðkÞ2 þ DðkÞ2

q
is the energy of the

quasi-particles, tF � 108 cm=s is the Fermi velocity in gra-

phene, nðkÞ ¼ �htFðk � kFÞ is the kinetic energy of the free

particles measured from the Fermi energy. As usual, k indi-

cates the magnitude of the electrons and holes wave vectors

measured from the Dirac point, kF is the Fermi wave vector,

and the factor ð1þ cos /Þ=2 (where / is the angle between k

and k0) is the overlap factor between the initial and final elec-

tronic states arising from the chirality of the electron and

hole wavefunctions in SLG. Finally, �eVðqÞ is the attractive

Coulomb interlayer (exchange) interaction. In deriving this

expression for the gap intervalley interlayer interactions are

ignored, and the effect of intralayer Coulomb interactions

can be absorbed into a small renormalization of the free ki-

netic energy nðkÞ via a slightly different Fermi velocity,26–28

effect that is also ignored. Finally, interlayer tunneling is

neglected, so, usually a sufficiently large interlayer separa-

tion, d¼ 1 nm or more, must be considered and results occa-

sionally given for smaller interlayer separations should be

regarded as “optimistic.” Thanks to the isotropy of the elec-

tronic dispersion in graphene around the Dirac point, all

quantities in the expression above depend only on the magni-

tude k of k, and, in the following, the notation will be simpli-

fied accordingly.

The original predictions of a high transition

temperature1–3 were obtained using an unscreened interlayer

interaction potential eV. In the ideal case of two SLGs sepa-

rated by a distance d and embedded in a uniform dielectric

medium with dielectric constant �, the potential is simply

eVðqÞ ¼ e2=ð2�qÞe�qd. Kharitonov and Efetov5 have shown

that it possible to account for the screening effects due to the

polarization of the free carriers in each graphene layer by treat-

ing the polarizability in an random-phase-approximation

(RPA)-like approximation whose validity stems from the

many “flavors” (spin, valley, and which-layer degeneracy) of

the screening carriers.5,7 Sodemann et al.9 have later accounted

for dynamic effects along the complex axis ix (see Sec. IV C

below), and have expressed the dynamically screened gap as a

self-energy in the form of a Dyson equation,9

Dðk; ixÞ

¼
ð

dk0

ð2pÞ2
1þ cos /

2

�
ð1

0

dð�hx0Þ
p

Dðk0; ix0Þ eVðRPAÞ½jk � k0j; iðx� x0Þ�
�h2x02 þ Dðk0; ix0Þ2 þ �h2t2

Fðk0 � kFÞ2
:

(2)

In Ref. 9, dynamic screening effects have been considered

in the excitonic state accounting for the fact that electron

and holes bound as condensed excitons cannot screen as

efficiently as free carriers (they can do so only by
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polarization at wavelengths smaller than their size), so that

the dynamic polarizability PDðq; ixÞ calculated self-

consistently in the superfluid state should be employed to

obtain an interaction potential eV
ðRPAÞ
D ðq; ixÞ in Eq. (2).

Given the critique of Ref. 10, in the following, attention

will be paid mainly to the unscreened potential.

Nevertheless, comparison with results obtained using static

and dynamic screening in the normal state will be made

occasionally in order to emphasize the fact that the

“unscreened” results presented here constitute a very gener-

ous upper bound to the gap.

B. Weak-coupling limit

Well-known estimates for the gap can be obtained in the

weak coupling limit:3,7,29 When DðkFÞ � EF, the integrand

of Eq. (1) is strongly peaked at k � kF, so it is possible to use

solve Eq. (1) in its linearized form obtaining:

DðkFÞ � 2dcEFexp � 1

�eVeff

� �
; (3)

where � ¼ EF=ð2p�h2t2
FÞ is the density of states at the Fermi

surface and

Veff ¼
ðp

0

d/
p

1þ cos /
2

VðRPAÞ 2kFcos
/
2
; 0

� �
: (4)

In the same limit, the critical temperature can be obtained in

a standard way by going back to the finite-temperature

expression for the gap:7,12,29

kBTc �
ec

p
2dcEF exp � 1

�eVeff

� �
� 0:567 DðkFÞ ; (5)

where c � 0:577 is Euler’s constant. In Eq. (3), dc is a cutoff

of the order of unity discussed in Ref. 29 in general and in

Ref. 3 in the specific case of interest here. Kharitonov and

Efetov7 have provided estimates for the effect of static

screening on the gap: In the absence of any gate and with the

bilayer surrounded by a homogeneous dielectric, indicating

with gv ¼ gs ¼ 2 the valley and spin degeneracy, VRPAðqÞ
� e=½2�ðqþ 2jÞ� < e=ð4�jÞ with j ¼ e2P=ð2�Þ ¼ e2�gvgs=
ð2�Þ (see Eq. (10)), where P is the long-wavelength limit of

the static polarizability of a graphene single-layer (see Eq.

(11) below). Therefore �eVeff � 1=ð2gvgsÞ, and, accounting

for a factor of 2 resulting from the integration of the chiral fac-

tor ð1þcos/Þ=2 over /;DðkFÞ�2dcEFe�4gvgs�2dcEFe�16

�10�72dcEF. These estimates show how dramatically static

screening can affect the superfluid gap, especially considering

that they constitute strict and optimistic upper bounds obtained

assuming a vanishing interlayer separation and ignoring the q
dependence of the potential.

C. Some simple examples

Typical results for the gap D(k) are shown in Figs. 1 and

2: The first figure shows the gap for various values of the

Fermi energy (assuming perfect charge balance in the BLG)

using the bare interlayer potential e2ð2�qÞe�qd (a) assuming

air gaps ð�=�0 ¼ j ¼ 1Þ or the potential derived in Sec. III

below for a very remote gate ((b), gate insulator thickness of

100 nm) and j¼ 3.9 throughout. As predicted originally,1–3

gaps of the order of EF are observed at a sufficiently high

carrier density. On the contrary, the RPA-like-screened

potential (using the polarizability of SLG from Refs. 30 and

31) yields a gap orders of magnitude smaller (Fig. 2 to be

compared to Fig. 1(b)), consistent with the estimates pro-

vided by Eq. (3) above. The dependence of D(k) on EF is

shown in Fig. 3 ((a) unscreened potential; (b) screened

potential). Note how in the unscreened case the gap increases

monotonically with Fermi energy while screening suppresses

the interaction at sufficiently high densities, as already

remarked by Abergel et al.10,12

III. POTENTIAL FOR GATED BILAYERS

In this section, the ideal geometry of a BLG suspended

in a homogeneous dielectric is replaced by the more realistic

geometry of a gated BLG in a heterogeneous medium. The

geometry considered here consists of graphene bilayers on

the (x,y) plane with the two SLGs at z¼ 0 and z¼ d, an ideal

metal filling the half-space z < �t0, an ideal metal filling the

half-space z> d þ t, a substrate dielectric with dielectric

constant �s filling the bottom gate-insulator region

�t0 � z < 0, a dielectric with dielectric constant �i in

0 � z < d, and a gate dielectric with dielectric constant �g in

the region d � z < d þ t. The bottom and top metals are

FIG. 1. (a) Calculated dependence of

the superfluid gap D on wave vector k
for a BLG in air with layers separated

by a distance d¼ 1 nm and using the

bare interlayer potential with Fourier

components e2=ð2�0qÞexpð�qdÞ. The

curves are labeled by the value of the

Fermi energy EF¼ 500, 400, 300, 250,

200, 150, 100, 75, 50, and 25 meV. (b)

As in (a), but assuming the BLG em-

bedded in a dielectric medium with

dielectric constant �¼ 3.9 �0 and

assuming a metallic gate with a gate

insulator thickness t of 100 nm, suffi-

ciently remote to have any significant

effect.
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assumed to be “ideal” in the sense that at the wavelengths

and frequencies considered here (smaller than the screening

wave vector ½e2mkF=ðp2�h2�0Þ�1=2
(�10–30/nm for a carrier

density n � 1022 � 1023 cm�3 and a free electron mass m)

and than the plasma frequency xP ¼ ½e2n=ð�0mÞ�1=2 � 6

�1015 � 1016=s � 10 eV, respectively) it is appropriate to

assume an infinite (negative) dielectric constant and so a

vanishing potential in the regions z < �t0 and z > d þ t. The

frequency dependence of the dielectrics is also ignored for

now but will be briefly considered in Sec. IV C 2 below. The

relative dielectric constants �=�0, where �0 is the vacuum per-

mittivity, are denoted by j. The physical and dielectric thick-

ness of the insulators and their dielectric constants

considered here span a wide range of values in order to study

the problem “in principle.” The realistic range of values,

especially those pertinent to the BiSFET design, is consid-

ered in Refs. 13 and 14 and will be implicit in the discussion

of the results presented below.

A. Poisson Green’s function

For this geometry, the Green’s function gðq; z; z0Þ for

z0 2 ð0; dÞ has the form

gðq; z; z0Þ ¼

0 ðz < �t0Þ
a0ðqÞeqz þ a1ðqÞe�qz ð�t0 � z < 0Þ
a2ðqÞeqz þ a3ðqÞe�qz ð0 � z < z0Þ
a4ðqÞeqz þ a5ðqÞe�qz ðz0 � z < dÞ
a6ðqÞeqz þ a7ðqÞe�qz ðd � z < tþ dÞ
0 ðtþ d � zÞ

;

8>>>>>>>>><
>>>>>>>>>:

(6)

with coefficients ai(q), (i¼ 0, 7) given by

a0ðqÞ ¼
2�i

�scþðqÞ � �ic�ðqÞEðqÞ

� FðqÞeqz0

qf1þ FðqÞ � e2qz0 ½1� FðqÞ�g
a1ðqÞ ¼�a0ðqÞe�2qt0

a2ðqÞ ¼
a0ðqÞc�ðqÞq½1� FðqÞ� þ FðqÞeqz0

qf1þ FðqÞ � e2qz0 ½1� FðqÞ�g

a3ðqÞ ¼� eqz0 a0ðqÞc�ðqÞqeqz½1� FðqÞ� þ FðqÞ
qf1þ FðqÞ � e2qz0 ½1� FðqÞ�g

a4ðqÞ ¼
a2ðqÞ � a3ðqÞe�2qz0 � e�qz=q

1þ e2qðd�z0ÞHðqÞ
a5ðqÞ ¼�a4ðqÞe2qdHðqÞ

a6ðqÞ ¼
�i

�g

a4ðqÞ � a5ðqÞe�2qd

1þ e2qt

a7ðqÞ ¼�a6ðqÞe2qðdþtÞ;

(7)

where c6ðqÞ ¼ 16e�2qt0 and

HðqÞ ¼ �dð1þ e2qtÞ � �ið1� e2qtÞ
�dð1þ e2qtÞ þ �ið1� e2qtÞ

FðqÞ ¼ 1� e2qðd�z0ÞHðqÞ
1þ e2qðd�z0ÞHðqÞ

EðqÞ ¼ 1þ FðqÞ þ e2qz0 ½1� FðqÞ�
1þ FðqÞ � e2qz0 ½1� FðqÞ�

: (8)

In terms of these Fourier components of the Green’s func-

tion, the in-plane Fourier components of the electrostatic

potential due to a charge e at r0 ¼ ðR0; z0Þ will be

Vðq; z; z0Þ ¼ ðe=�iÞgðq; z; z0Þ. The limit t0 ! 1 corresponds

FIG. 2. As in Fig. 1(b), but using now the statically screened interlayer

potential. Note the dramatic reduction of the gap, consistent with the esti-

mate given by Eq. (3). The values of the gap for EF larger than 100 meV are

too small to be shown, as seen in Fig. 3(b).

FIG. 3. Dependence of the superfluid

gap at the Fermi surface, DðkFÞ, on

Fermi energy for a BLG embedded in

air (solid line) or a medium with rela-

tive dielectric constant j¼ 3.9 (dashed

line) calculated assuming the

unscreened (a) or screened (b) inter-

layer potential. The distance between

the SLGs is assumed to be 1 nm and

the metallic gate is assumed to be too

far (t¼ 100 nm) to matter. The results

shown here are obtained from Eq. (3)

with dc ¼ 1.
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to the case of a single gate at a distance t from the top SLG,

and this limit is employed in the following with the excep-

tion of the final discussion in Sec. IV C.

Figure 4(a) shows the total potential ðe=�iXÞ
P

q

gðq; z; z0Þeiq	R calculated at ðR; zÞ with R¼ 0.001 nm for a

charge e at ðR0 ¼ 0; z0 ¼ 0þÞ for the various dielectric com-

binations indicated in the legend of that figure and for a

gate/top SLG distance of t¼ 2 nm. Frame (b) of the same fig-

ure shows the dependence of the interaction potential (nor-

malized to the potential obtained in the absence of a gate for

a BLG in air) on the distance to the gate expressed in terms

of the equivalent SiO2 thickness, teq when varying jg for a

fixed physical gate-oxide thickness t (¼2 nm). Note the

strong effect of the gate in depressing the interaction poten-

tial at z¼ d. Since in the weak-coupling limit the superfluid

gap depends exponentially on this potential via Eq. (3), it is

easy to understand why an ideal-metal gate can have such a

strong effect on the gap itself, as shown below.

B. Dielectric screening

The screened (in the normal state) potentials

VðRPAÞðq; ix; 0Þ and VðRPAÞðq; ix; dÞ at z¼ 0 and z¼ d,

respectively, due to a charge at z0 ¼ 0þ can be obtained

using the RPA-like approximation following the arguments

given by Kharitonov and Efetov,7 obtaining

VðRPAÞðq; ix; dÞ
¼ Vðq; dÞf½1� ðe2=�iÞgðq; d; dÞPdðq; ixÞ�
� ½1� ðe2=�iÞgðq; 0; 0ÞP0ðq; ixÞ�
�ðe2=�iÞ2gðq; 0; dÞ2 P0ðq; ixÞPdðq; ixÞg�1; (9)

where P0ðq; ixÞ and Pdðq; ixÞ are the dynamic polarizabil-

ities of the SLG at z¼ 0 and z¼ d, respectively,

polarizabilities that may differ in principle. In deriving this

expression, it should be noted that Vðq; 0Þ ¼ ðe=�iÞgðq; 0; 0Þ;
Vðq; dÞ ¼ ðe=�iÞgðq; d; 0Þ, and that gqðz; z0Þ ¼ gqðz0; zÞ. Note

that in absence of any gate, assuming that the bilayer is sur-

rounded by a homogeneous dielectric medium of dielectric

constant �, and considering the static limit and the optimal

case of equal densities in the two layers so that

P0ðq; ix ¼ 0Þ ¼ Pdðq; ix ¼ 0Þ ¼ PðqÞ, this expression

reduces to the well-known form

VðRPAÞðq; 0; dÞ ¼ e

2�

e�qd

q� 2jþ j2ð1� e�2qdÞ=q
; (10)

having set vðqÞ ¼ Vðq; 0Þ ¼ e=ð2�qÞ and j ¼ eqvðqÞPðqÞ,
following Ref. 7. Figure 5(a) illustrates the dependence of

the statically screened interaction potential on charge density

for the same combinations of dielectrics employed in Fig. 4.

Frame (b) of the figure shows the dependence of the screened

potential on teq, as in Fig. 4(b).

IV. RESULTS AND DISCUSSION

A. Single-gate geometry

In order to assess how the proximity of a metallic gate

affects the magnitude of the gap, Eq. (1) is solved by itera-

tion starting from a Lorentzian initial guess of height

0.025 eV and half-width 0.01 kF and using either the

unscreened potential given by Eq. (6) with the coefficients

given by Eq. (7) or the statically screened potential, Eq. (9).

The integration over the angle / is performed employing

180 intervals in ð0; pÞ while the integration over the magni-

tude of k is performed employing a non-uniform mesh con-

sisting of three intervals: A first interval ½0; ð1� dÞkF�
divided uniformly into 100 elements, an interval ½ð1� dÞkF;
ð1þ dÞkF� in which the integration can be performed

FIG. 4. (a) Total electrostatic potential in BLG with interlayer distance d¼ 1 nm due to a charge e located at z¼ 0þ. In order to avoid the singularity, the poten-

tial is plotted at the very small in-plane distance of 0.001 nm away from the charge. Four different dielectric geometries are illustrated: 1. A “benchmark” ge-

ometry of a BLG suspended in air with a gate 100 nm above the top SLG (solid line); 2. The same, but now with a reduced gate-insulator thickness (t¼ 2 nm),

a high-j (24, as for HfO2) gate dielectric and a low-j (j¼ 1.5) interlayer dielectric (dashed line); 3. As in the previous case, but with a higher-j interlayer

dielectric (15, as for Al2O3); 4. As in the previous case, but now replacing the air substrate with a dielectric with j¼ 3.9 (as for SiO2 or hBN). Note that as

soon as a nearby gate is introduced, the magnitude of the electrostatic potential at z¼ d is dramatically reduced. (b) Calculated electrostatic potential at z¼ d
as a function of equivalent oxide thickness for the 4 dielectric geometries used in (a) and a physical gate-insulator thickness of 2 nm. The potential is normal-

ized to the “un-gated” value e2=ð4p�0dÞ. In comparing cases 2 ðji ¼ 1:5Þ and 3 ðji ¼ 15Þ, notice how a higher-j interlayer dielectric actually results in a stron-

ger interaction when an even higher-j gate insulator is present, since a larger dielectric discontinuity results in stronger screening via interface polarization

charges.
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analytically as done to obtain Eq. (3), and a third interval

½ð1þ dÞkF; kmax� uniformly divided into �1000 elements.

The cutoff parameter d is set to 0.05–0.1 after some numeri-

cal experiments aimed at avoiding numerical artifacts due to

this choice. The short-wavelength cutoff kmax is set to

10-to-50 kF. Convergence—established when both the root-

mean-square and the maximum relative error are smaller

than 10�4—is usually reached in 10–50 iterations, depending

on the final magnitude of DðkFÞ, smaller magnitudes requir-

ing a larger number of iterations. In some cases, such as for

screened interactions with large dielectric constants and

dielectric mismatches in the system, the iteration is halted

before convergence is reached since the magnitude of DðkFÞ
reaches excessively small values with little or no physical

meaning. In the strong-coupling limit (unscreened potential,

low j, large t), only the full solution of the integral Eq. (1)

can provide a quantitatively correct the maximum value of

the gap, usually close to (but not exactly at) kF. In the

weak-coupling limit (screened interaction, high-j dielectrics,

small t), the value of the gap DðkFÞ obtained using Eq. (3)

(with dc¼ 1) is quantitatively close to the “exact” value

obtained using Eq. (1) but not identical, because of depend-

ence on the parameter dc. Therefore the results shown in

Figs. 1–9, obtained using Eq. (1), are quantitatively correct

within the approximations employed. On the contrary, the

results shown in Figs. 3–10, obtained using Eq. (3), are quan-

titatively correct only up to a factor of the order of unity. As

a comparison of the results shown in Figs. 6 and 3 illustrates,

the proximity of a metallic gate strongly depresses the value

of the gap, dramatically so when using the statically screened

potential but also in the unscreened case. This is even more

evident in Figs. 7 and 8 that constitute the main result of this

work: Figure 7 illustrates the fact even in the unscreened

case the gap is suppressed substantially as soon as a gate

realistically close (teq¼ 2 nm (a) or 1 nm (b)) is present.

Figure 8 quantifies this conclusion: For BLGs with substrate

and interlayer dielectrics with js ¼ ji ¼ 1 (frame (a), as for

air gaps) and 3.9 (frame (b), as for SiO2 or hBN), an equiva-

lent oxide thickness of 2 nm or less, as required in realistic

low-power device applications, reduces the superfluid gap to

values of 10 meV (for js ¼ ji ¼ 1) or 1 meV (for

js ¼ ji ¼ 3:9), and so to Tc � 100 K or 10 K even when

using an air gap as gap insulator (that implies t � 0.25 nm

and so unacceptable gate tunneling). Even the presence of

gate insulators with a relatively low j (such as �4 for hBN)

depresses the gap even more to 1 meV or less. In particular,

for teq � 1 nm, DðkFÞ � 0:1 meV, or Tc � 1 K even assum-
ing an air gap as gate insulator, a single top or bottom gate,
and a completely unscreened interlayer Coulomb interac-
tion. This is the motivation behind the new device design

mentioned above.13,14

Another interesting observation already made in connec-

tion with Figs. 4(b) and 5(b) is shown in Fig. 9: This figure

shows the k-dependent gap D(k) calculated assuming fixed

substrate and gate dielectrics with js ¼ 4 and jg ¼ 24,

respectively, and varying the dielectric constant of the

FIG. 5. Calculated value of the inter-

layer potential as in Fig. 4(a) but now

statically screened and plotted as a

function of charge density in the layers

(a) and equivalent oxide thickness (b).

The potential is normalized to the

value in the un-gated, unscreened case

with BLG in air. Note in the (b) how a

small dielectric mismatch is preferable

in the presence of a high-j gate

insulator.

FIG. 6. As in Fig. 3 but for a nearby

metallic gate, t¼ 1 nm instead of

100 nm. Note the significant reduction

of the gap. As in Fig. 3, the results

shown here are obtained from Eq. (3)

with dc ¼ 1.
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interlayer insulator. The largest value of DðkFÞ is obtained

not for the smallest value of ji but for a value of �12 inter-

mediate between 1 and jg ¼ 24. A small value of ji induces

a large dielectric mismatch that screens the attractive inter-

layer interaction while a larger value depresses it directly.

This is consistent with Badalyan’s and Peeters’ results show-

ing that approximating the effect of an inhomogeneous

dielectric environment with an “average” dielectric constant

may underestimate the strength of the inter-layer interac-

tion.19,20 Finally, Fig. 10 illustrates the dependence of the

unscreened gap on physical insulator thickness (a) and inter-

layer separation (b). Clearly, at small interlayer separations

(d smaller than about 1 nm), interlayer tunneling would

dominate.

B. Double-gate geometry

A last important observation can be made about the

effect of the proximity a second gate in double-gate (DG)

configurations considered in device applications13,14 and

employed in Coulomb-drag experiments.16 Figure 11 illus-

trates the dramatic reduction of the superfluid gap in DG

structures as the dielectric constants of the gate insulators are

increased for the two cases of an air (a) or SiO2 (or hBN)

interlayer dielectric (b). Comparing this figure to Fig. 8 (and

keeping in mind the lower values of EF adopted there), the

much faster reduction of the gap with increasing jg ¼ js

should be noted, especially in the case ji ¼ 1 that is affected

by a larger dielectric mismatch. Low-j ðj � 2Þ and thick

ðteq 
 7:5-to-10 nmÞ gate insulators are required to obtain

a room-temperature transition ðDðkFÞ � 10�2 eVÞ and,

indeed, these design constrains have been being accounted

for in Refs. 16 (teq 
 20 nm and hBN insulators, j � 4), 13,

and 14 (teq 
 10 nm and low-j, j � 2, gate insulators).

C. Dynamic screening in the normal state

It has been already mentioned that accounting correctly

for the effects of dynamic dielectric screening in BLG is

extremely difficult.10 For this reason, so far, no attempts

have been made in this article to provide definite estimates

of its effect on the superfluid gap. However, at this point, it

may be useful to estimate at least qualitatively the effects of

dynamic screening, albeit only in the normal state, in order

to show explicitly how the values of DðkFÞ obtained here

assuming an unscreened interaction constitute extremely

optimistic (perhaps excessively so) upper bounds to the elu-

sive “truth.” In order to gain some qualitative insight on the

possible effect of dynamic screening, it is convenient to

look first at the dynamically screened potential. The

dynamic SLG polarizability for real frequencies, Pðq;xÞ,
has been calculated in Refs. 30 and 31. Its continuation to

complex frequencies, Pðq; ixÞ, can be obtained from the

expressions given in these references and can be recast in

the form32

FIG. 7. Calculated superfluid gap as a

function of wave vector employing the

unscreened interlayer interaction and

assuming the dielectric geometries

shown in the legend assuming an

equivalent oxide thickness of 2 nm (a)

and 1 nm (b) and a Fermi energy of

200 meV.

FIG. 8. Dependence of the calculated

gap at the Fermi surface as in Fig. 7 on

the dielectric constant jg of the gate

insulator assuming js ¼ ji ¼ 1 (a) or

3.9 (b). The curves are parametrized

by the value of the equivalent oxide

thickness of the gate insulator:

teq¼ 0.5, 1, 2, 3, 5, 7.5, 10, and 20 nm.

As in the previous figure, the calcula-

tions have been performed assuming a

Fermi energy of 200 meV and, as in

Fig. 3, the results shown here are

obtained from Eq. (3) with dc ¼ 1.
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Pðq; ixÞ ¼ � gvgsq
2

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2x2 þ �h2t2

Fq2

q � gvgsEF

2p�h2t2
F

þ gvgsq
2

8p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2x2 þ �h2t2

Fq2

q Re asinðyÞ þ y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

ph i
;

(11)

with y ¼ ð2EF þ i�hxÞ=ð�htFqÞ. Figure 12 illustrates the de-

pendence of the screened potential V(RPA) (q, z), on complex

frequency (frame (a), z ¼ ix) and real frequency (frame (b),

z ¼ x) plotted as a function of the variable � ¼ ð�hjxj=EFÞ=
½1þ ð�hjxj=EFÞ�, as done in Ref. 9. Note in (a) that the poten-

tial (normalized to the unscreened potential for an un-gated

BLG in vacuum) remains essentially statically screened up

to frequencies comparable to the Fermi energy. More inter-

esting, in (b), the interaction potential becomes repulsive for

x� < x < xþ when both plasmon singularities, x6ðqÞ, are

present on the real axis. This occurs as long as the polariz-

ability of SLG, Pðq;xÞ, is real, that is, for q=kF < �hx=EF

< 2� q=kF. The dispersion of the plasmons, that exhibit

even modes (for free carries in the layers oscillating in

phase) and odd modes (out-of-phase oscillations), is given

implicitly by P½q;x6ðqÞ� ¼ ð�i=e2Þ=½g0ðqÞ6gdðqÞ�, that is,

by the roots of the denominator of Eq. (9) (see also Ref. 33

and Eq. (3) of Refs. 19 and 20),

1� 2ðe2=�iÞg0ðqÞPðq;xÞ þ ðe2=�iÞ2

� ½g0ðqÞ2 � gdðqÞ2�Pðq;xÞ2 ¼ 0; (12)

having set g(q; 0, 0)¼ g(q; d, d)¼ g0(q), g(q; 0, d)¼ g(q; d, 0)

¼ gd(q), and P0ðq;xÞ ¼ Pdðq;xÞ ¼ Pðq;xÞ. So, while at

large frequencies, the interaction potential approaches the

unscreened value, at lower frequencies, dynamic effects are

either not significant or even counter-productive when the

response of BLG plasmons lags so much as to change the

sign of the interaction. At the highest frequencies at which

dynamic screening could be beneficial, the denominator of

Eq. (2), or Eq. (13) below, becomes increasingly larger, so

the effects of dynamic screening per se, important in the

small-frequency range �hx � DðkFÞ, are indeed expected to

increase the magnitude of the gap above its statically

screened value, but not all the way to its unscreened strength,

as remarked already by Abergel et al.10 The role played by

dynamic dielectric screening at a finite temperature in

enhancing the strength of the inter-layer interaction has been

considered also by Badalyan and Peeters who have looked at

this interaction as a plasmon-mediated process in the context

of the Coulomb-drag resistance.19,20

An expression for the gap assuming a dynamically

screened interaction can be formulated in terms of the tem-

perature (Matsubara) Green’s functions as34

DðkÞ ¼ kBT
X1

n¼�1

ð
dk0

ð2pÞ2
1þ cos /

2

� Dðk0; xnÞ eVðRPAÞðjk � k0j; ixnÞ
�h2x2

n þ Dðk0Þ2 þ �h2t2
Fðk0 � kFÞ2

; (13)

where �hxn ¼ pkBTð2nþ 1Þ are the fermionic Matsubara fre-

quencies and the frequency dependence of the gap has been

neglected by taking its static value, as justified in Ref. 9. For

FIG. 9. Calculated gap D as a function of wave vector k assuming an

unscreened interaction, a Fermi energy of 200 meV, an interlayer separation

of 1 nm, an oxide-equivalent gate thickness teq¼ 2 nm, and substrate and

gate relative dielectric constants js ¼ 4 and jg ¼ 24, respectively. The four

curves are labeled by the relative dielectric constants of the interlayer dielec-

tric, ji ¼ 1 (dotted line), 3.9 (dash-dotted line), 12 (solid line), and 24

(dashed line). Note that in the presence of a high-j gate insulator, a low-j
interlayer dielectric may actually be counterproductive, as already noted in

Refs. 13 and 14. An optimum ji is seen at �12, since a larger value sup-

presses the direct attractive interlayer interaction, whereas a lower value

induces a large interface polarization charge that screens the interaction.

FIG. 10. Dependence of the calculated

superfluid gap at the Fermi surface on

physical gate-insulator thickness t (a)

and interlayer separation d (b) assum-

ing the dielectric geometries indicated,

a Fermi energy of 200 meV, and an

unscreened interlayer interaction.

Since interlayer tunneling is ignored,

small values of d represent an unrealis-

tically idealized situation. As in Fig. 3

the results shown here are obtained

from Eq. (3) with dc¼ 1.
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a statically screened interaction, this equation reduces to the

usual equation for the gap at a finite temperature since,

kBT
X1

n¼�1

1

�h2x2
n þ x2

¼ 1

2x
tanh

x

2kBT

� �
: (14)

In the limit T ! 0, the sum over the Matsubara frequencies

can be converted into an integral, and the equation for the

zero-T gap becomes

DðkÞ ¼
ð1

0

dð�hxÞ
p

ð
dk0

ð2pÞ2
1þ cos /

2

� Dðk0Þ eVðRPAÞðjk � k0j; ixÞ
�h2x2 þ Dðk0Þ2 þ �h2t2

Fðk0 � kFÞ2
(15)

which is Eq. (14) of Ref. 9 with the dependence of D on k
retained in the denominator.

1. Static response of the insulators

This equation is solved iteratively using the initial guess

and discretization of the integrals over / and k0 described

at the beginning of Sec. IV A, about 200 intervals up to

�hx ¼ 10 EF for the integration over x and with d � 0:1.

Care must be taken since the contribution to the integral over

k0 arising from integration in the k0-interval IF ¼ ½ð1� dÞkF;
ð1þ dÞkF� centered around the Fermi energy can be numeri-

cally troublesome around kF in the weak-coupling and

small-x limits. Thus, for small DðkFÞ, an analytic integration

is performed in the spirit of the approach followed to reach

Eq. (3).

The resulting dynamically screened (in the normal state)

value of the gap DðkFÞ as a function of Fermi energy is shown in

Fig. 13 for the case of a double-gated BLG with an interlayer air

gap and top and bottom gate insulators with static dielectric con-

stants j¼ 2 and physical thickness t¼ 5 nm. Note that, while

boosting the magnitude gap from its statically screened value,

dynamic screening fails to recover the “unscreened” value.

2. Dynamic response of the insulators

A final observation can be made about the dielectric

response of the insulators. In Ref. 13, it was tentatively sug-

gested that the high-frequency dielectric constant should be

employed. This may be the case if the frequency associated to

the energy exchanged in the interlayer electron-hole interac-

tion, �DðkFÞ=�h, was larger than the frequency of the insula-

tor(s) optical phonons, xTO. However, the results presented so

far show that as soon as high-j dielectrics (with low �hxTO in

FIG. 12. Fourier components of the interaction potential calculated using the dynamic polarizability of SLG for complex (a) and real frequencies (b) for the

four different dielectric geometries considered in previous figures assuming q¼ kF /4 and a density n2D¼ 1012 cm�2. In both cases, the potential is shown nor-

malized to the un-gated, bare potential for BLG in vacuum. An interlayer distance d¼ 1 nm is assumed. Note that frame (b) shows the absolute value of the

real part of the potential. The plasmon singularities x6 are present only when q=kF < �hx < 2� q=kF). When both plasmons are undamped, the potential

becomes purely real and negative (repulsive) for x� < x < xþ, so that dynamic screening may actually depress the gap.

FIG. 11. Dependence of the calculated

superfluid gap at the Fermi surface on

the relative dielectric constant jg ¼ js

of the top- and bottom-gate dielectrics

for a fully symmetric double-gate ge-

ometry. An interlayer dielectric with

dielectric constant ji ¼ 1 (a) and 3.9

(b) is assumed. The curves are parame-

trized by the equivalent oxide thick-

ness over the range teq¼ 20, 10, 7.5, 5,

and 3 nm. A Fermi energy of 250 meV

and an unscreened interlayer interac-

tion is also assumed. As in Fig. 3, the

results shown here are obtained from

Eq. (3) with dc¼ 1.
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the range of 10 meV) are introduced, DðkFÞ is reduced to

much smaller values. Therefore, the use of the static dielectric

constant seems more appropriate. In order to quantify this ex-

pectation, the dynamically screened gap has been evaluated

by solving Eq. (15) with the dynamically screened interaction

potential eVðRPAÞðq; ixÞ, Eq. (9) now calculated using the

dynamic Poisson Green’s function, gðq; ix; z; z0Þ, given by

Eqs. (6) and (7) with �s; �i, and �g replaced by their long-

wavelength frequency dependent expressions reflecting the

ionic response of the dielectrics. The specific case has been

considered of a double-gate BLG with interlayer separation

d¼ 1 nm, bottom and top gates t¼ 5 nm thick, and SiO2, hex-

agonal BN (hBN), and HfO2 as bottom-gate, interlayer, and

top-gate insulators, respectively. The insulator dielectric func-

tions �s;i;gðixÞ have been calculated using the expression and

parameters given in Ref. 35 for SiO2 and HfO2, obviously

rotated to the imaginary-x axis. For hBN, a single optical

phonon with �hxTO ¼ 168 meV and high- and low-frequency

dielectric constants j1 ¼ 4:10 and j0 ¼ 4:95 (along the

c-axis of the hexagonal lattice) have been employed.36 HfO2

as top gate insulator has been chosen because its low-energy

TO phonons may maximize dynamic screening effects. Yet,

as expected, the value of the gap is largely insensitive to the

dielectric response of the insulators. This is illustrated in Fig.

14 showing that the gap at the Fermi energy calculated using

the full dynamically screened interlayer interaction including

the dielectric response of the dielectrics ðDðkFÞ ¼ 47:8 leVÞ
is no more than a factor of 2 larger than the gap calculated

employing the interaction screened dynamically only by the

graphene free-carries and using the low-frequency (static)

dielectric constants of the insulators ðDðkFÞ ¼ 36:1 leVÞ.

V. CONCLUSIONS

The main conclusion to be drawn from the discussion pre-

sented above is that in BLG the proximity of an ideal-metal gate

affects the magnitude of the interlayer Coulomb interaction and

so the superfluid gap and the normal-superfluid transition tem-

perature. Even assuming an unscreened interaction potential, a

gate-insulator equivalent-oxide thickness of 1 nm, as needed in

device applications, implies a transition temperature of 1 K even

under the most optimistic conditions. Indeed, modified designs

of the BiSFET13,14 have been proposed employing the thicker

ðteq � 10 nmÞ low-j (�2) gate insulators required to form and

maintain the superfluid state at room temperature. This is partic-

ularly important in double-gate structures. Moreover, as already

hinted in Refs. 13 and 14, a strong dielectric mismatch has an

even stronger negative effect. Assuming very optimistically that

static screening results in a severe underestimation of the transi-

tion temperature, a homogeneous low-j dielectric environment

(ideally, air gaps), gate-insulator(s) thickness larger than about

10 nm, and gate contacts with a non ideal-metal behavior (such

as not excessively heavily doped semiconductors) may be

required to observe the normal-superfluid transition. But the

required proximity of the gate renders vary challenging the use

of the superfluid state in high-performance, low-power devices.
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