CHEMICAL BATH DEPOSITION OF MOLYBDENUM DISULFIDE AND COPPER SULFIDE THIN FILMS

by

Jenny Kleinert Orbeck

APPROVED BY SUPERVISORY COMMITTEE:

Dr. Amy V. Walker, Chair

Dr. Julia Chan

Dr. Jeremiah J. Gassensmith

Dr. Ronald A. Smaldone

Copyright 2019

Jenny Kleinert Orbeck

All Rights Reserved

I dedicate this dissertation to the memory of my Grandpa, Dr. Harry Jean Hedlund.

CHEMICAL BATH DEPOSITION OF MOLYBDENUM DISULFIDE AND

COPPER SULFIDE THIN FILMS

by

JENNY KLEINERT ORBECK, BS

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

CHEMISTRY

THE UNIVERSITY OF TEXAS AT DALLAS

May 2019

ACKNOWLEDGMENTS

There are several people I would like to acknowledge for making this PhD work possible. First, I would like to thank my advisor, Dr. Amy Walker, for her mentorship, support and guidance throughout my PhD studies. Her vast knowledge and passion for science continues to impress and inspire me. I personally admire her dedication to the success of everyone she works with including graduate and undergraduate students in her research group, students in her classroom, scientist and non-scientist collaborators and many others in academia and professional organizations. I am one of the many people that her hard work and mentorship has greatly impacted, and for that I thank her.

I would like to thank my committee members from the Department of Chemistry & Biochemistry Dr. Julia Chan, Dr. Jeremiah Gassensmith, and Dr. Ronald Smaldone. I greatly appreciate the useful conversations, and feedback that encouraged me to think critically, and improve this work. I also appreciate their continued commitment to the success of every graduate student in the Department.

I want to thank all the graduate students that I had the pleasure of knowing and working with in the Walker group during my time as a graduate student. This includes former group members Zhiwei Shi, Ashley Ellsworth, Paul Arevalo, Caroline Liu, Jing Yang, Amanda Huseby, Samantha Bystrom and Daniel Saavedra. I also want to thank current group members Bryan Salazar, Tania Estrada, and Jevalyne Vienes for their support, encouragement and laughs while working on and finishing my dissertation. I am so thankful to everyone in the group for their willingness to learn from each other, collaborate and solve problems. I wish you all the very best. I had the pleasure of working with and mentoring several undergraduate students in the lab over the past four years including Rohan Joshi, Hannah Ramsaywak, Gregorio Salmeron, Cheyenne Beaver, Kasey Berger, and William Mandt. Thank you for your hard work, curiosity, and thoughtful questions which often made me think outside the box. You each made me a better professional and scientist through working together.

I also want to thank several others from UT-Dallas including Dr. Jean-Francois (Jeff) Veyan for teaching and training me on several tools in the lab. I am also thankful to the cleanroom staff, especially John Goodnight, Roger Robbins, Audrey Hammack, and Zane Borg for their help and support in using the facilities and tools. Additionally, I want to thank Dr. Lev Gelb for attending (almost) all my conference presentations and often being the first person to raise his hand to ask a question.

Lastly, I would like to thank my friends and family who are a constant support from near and far away. These individuals include my good friends Caitlin Killion, Meg Hickey, Rachel Schmidt, Caitlin Forrester, Marissa Higgins, Ashley Weiland, Josh Davidson, and Kelsey Davidson. I would like to thank my parents and brothers: Kristin, Nevin, Kyle and Neil Hedlund for their encouragement in all that I do, including graduate school. They are and always have been my biggest fans and cheerleaders. I would also like to thank my in-laws Chris and Lisa Dawson, Andy and Donna Orbeck, and my brother- and sister-in-law Andrew and Sara Orbeck for supporting me like their own daughter and sister. Finally, I am especially grateful for the support, love, patience and encouragement from my husband, Jonathon Orbeck. He is my greatest supporter in all of life's endeavors.

December 2018

CHEMICAL BATH DEPOSITION OF MOLYBDENUM DISULFIDE AND COPPER SULFIDE THIN FILMS

Jenny Kleinert Orbeck, PhD The University of Texas at Dallas, 2019

Supervising Professor: Dr. Amy V. Walker

The integration of new technologies into everyday devices requires the development of reliable low-cost methods to deposit semiconductor thin-films. In this work chemical bath deposition (CBD), a solution-based technique, is investigated for the deposition of molybdenum disulfide and copper sulfide thin films on organic substrates, specifically alkanethiolate self-assembled monolayers (SAMs). SAMs serve as useful model organic layers because they are uniform organic layers on the surface and are synthetically flexible.

Using Raman spectroscopy and x-ray photoelectron spectroscopy, we demonstrate that by using CBD the deposited MoS_2 polytype can be changed from semiconducting 2H MoS_2 on hydrophobic –CH₃ and –CO₂C₆F₅ terminated self-assembled monolayers (SAMs) to semi-metallic 1T MoS_2 on hydrophilic –OH and –COOH terminated SAMs. The deposition of the different polytypes is controlled by the surface energies of the substrate; high surface energy, hydrophilic substrates stabilize 1T MoS_2 films while 2H MoS_2 , which is the thermodynamically stable polytype, is deposited on lower surface energy substrates. Further, the studies show that the deposition occurs via the reaction of ammonium molybdate with hydrogen sulfide produced by the reaction of

hydrazine with thioacetamide. The hydrazine then reduces the thiomolybdate ions to molybdenum disulfide.

The CBD deposition of copper sulfide is strongly dependent on the bath pH and the terminal group of the SAM. Using thiourea as a sulfur source, it is shown for the first time that the copper sulfide deposit can be changed from covellite, CuS, to chalcocite, Cu₂S. In contrast using thioacetamide as a sulfur source the deposited film is always CuS. The selectivity of the deposition is dependent on the SAM terminal group. At pH 9 or less, CuS is preferentially deposited on –CH₃ terminated SAMs. Above pH 9, CuS is preferentially deposited on –COOH terminated SAMs. This is due to three competing processes: the decomposition of the thioacetamide to form sulfide ions, the interaction of the sulfide ions with the SAM terminal groups and the formation of Cu-terminal group complexes.

TABLE OF CONTENTS

ACKNOWLEDGMENTS	v
ABSTRACT	vii
LIST OF FIGURES	xiv
LIST OF TABLES AND SCHEMES	xviii
LIST OF ABBREVIATIONS	xix
CHAPTER 1 INTRODUCTION	1
1.1 Semiconductor Contacts to Organic Substrates	1
1.2 Chemical Bath Deposition (CBD)	2
1.3 Self-Assembled Monolayers	3
1.4 Molybdenum Disulfide	4
1.5 Copper Sulfide	4
1.6 Research Objectives	5
1.7 References	6
CHAPTER 2 CHARACTERIZATION TECHNIQUES	12
2.1 TOF SIMS	12
2.1.1 Introduction	12
2.1.2 Time-of-flight secondary ion mass spectrometry (TOF SIMS)	14
2.1.3 Vacuum System	14
2.1.4 Liquid Metal Ion Gun (LMIG)	14
2.1.5 Time of Flight Analyzer	15
2.2 XPS	16
2.2.1 Introduction	16
2.2.2 Principles of XPS	16
2.2.3 Photoelectron Spectra	17
2.2.4 Valence Band XPS	19
2.2.5 X-ray Photoelectron Instrument	19
2.2.6 Vacuum System	20

	20
2.3.1 Introduction	20
2.3.2 Principles of Raman Spectroscopy	21
2.3.3 Raman Spectroscopy Instrumentation	22
2.4 Attenuated total internal reflection infrared (ATR-IR) spectroscopy	22
2.4.1 Introduction	22
2.4.2 Principles of ATR-IR	22
2.4.3 ATR-IR Instrumentation	23
2.5 Scanning electron microscopy (SEM)	24
2.5.1 Introduction	24
2.5.2 SEM Instrumentation	24
2.5.3 Electron-Sample Interactions and Signal Detection	25
2.6 Atomic Force Microscopy	26
2.6.1 AFM Instrumentation	26
2.6.2 Operational Modes in AFM	27
2.7 References	28
CHAPTER 3 POLYTYPE CONTROL OF MOLYBDENUM DISULFIDE USING CHEMICAL BATH DEPOSITION	32
3.1 Abstract	32
3.2 Introduction	32
3.3 Results and Discussion	36
3.4 Conclusions	49
3.5 Kesuits and Discussion3.4 Conclusions3.5 Methods	49 49
 3.3 Results and Discussion 3.4 Conclusions	49 49 49
 3.3 Results and Discussion 3.4 Conclusions	49 49 49 50
 3.4 Conclusions	49 49 49 50 51
 3.4 Conclusions	49 49 50 51 52
 3.5 Results and Discussion 3.4 Conclusions	49 49 50 51 52 52
 3.4 Conclusions	49 49 50 51 52 52 52
 3.4 Conclusions	49 49 50 51 52 52 52 52
 3.4 Conclusions	49 49 50 51 52 52 52 52 52

CHAPTER 4 FACILE ONE-POT SYNTHESIS OF MOLYBDENUM DISULFIDE: ROOT	M
1 Abstract	01
4.1 Adstract	01
4.2 Introduction	61
4.3 Experimental	64
4.3.1 Materials	64
4.3.2 Chemical Bath Deposition	64
4.3.3 Attenuated Total Reflectance Infrared Spectroscopy (ATR IR)	65
4.3.4 Optical Microscopy, Atomic Force Microscopy and Scanning Electron Microscopy	65
4.3.5 Raman Spectroscopy	66
4.3.6 X-ray Photoelectron Spectroscopy	66
4.3.7 Time-of-Flight Secondary Ion Mass Spectrometry	67
4.4 Results and Discussion	67
4.4.1 Film Formation and Reaction Mechanism	69
4.5 Conclusions	76
4.6 References	76
CHAPTER 5 CHEMICAL BATH DEPOSITION OF MOLYBDENUM DISULFIDE ON MICROPATTERNED SELF-ASSEMBLED MONOLAYERS: AREA SELECTIVE DEPOSITION	82
5.1 Introduction	82
5.2 Experimental	83
5.2.1 Sample Preparation	83
5.2.2 Preparation of Self-Assembled Monolayers and UV-Photopatterning	84
5.2.3 Chemical Bath Deposition of MoS ₂	84
5.2.4 Raman Spectroscopy and Mapping	85
5.2.5 X-ray Photoelectron Spectroscopy	85
5.3 Results and Discussion	86
5.3.1 Raman Spectroscopy and X-ray Photoelectron Spectroscopy of MoS ₂	86
5.3.2 Raman Mapping of MoS ₂ deposited on Micropatterned SAMs	89
5.4 Conclusions	93
5.5 References	94

CHAPTER 6 COMPOSITIONAL CHANGES IN COPPER SULFIDE THIN FILMS GR BY CHEMICAL BATH DEPOSITION ON FUNCTIONALIZED SELF-ASSEMBLED	OWN
MONOLAYERS	97
6.1 Introduction	97
6.2 Experimental	98
6.2.1 Materials	98
6.2.2 Self-Assembled Monolayer Preparation	99
6.2.3 Chemical Bath Deposition of Copper Sulfide	99
6.2.4 X-ray Photoelectron Spectroscopy	100
6.2.5 Time-of-Flight Secondary Ion Mass Spectrometry	100
6.3 Results and Discussion	101
6.3.1 Deposition of Cu _x S Films	101
6.3.2 Reaction Pathways of CuxS CBD on Functionalized SAMs	108
6.4 Conclusions	112
6.5 References	112
CHAPTER 7 COPPER SULFIDE THIN FILMS GROWN BY CHEMICAL BATH	
DEPOSITION ON FUNCTIONALIZED SELF-ASSEMBLED MONOLAYERS: SELEC DEPOSITION	ГIVE 119
DEPOSITION ON FUNCTIONALIZED SELF-ASSEMBLED MONOLAYERS: SELEC DEPOSITION	ГIVE 119 119
DEPOSITION ON FUNCTIONALIZED SELF-ASSEMBLED MONOLAYERS: SELEC DEPOSITION	FIVE 119 119 120
DEPOSITION ON FUNCTIONALIZED SELF-ASSEMBLED MONOLAYERS: SELEC DEPOSITION 7.1 Introduction 7.2 Methods 7.2.1 Materials	FIVE 119 119 120 120
DEPOSITION ON FUNCTIONALIZED SELF-ASSEMBLED MONOLAYERS: SELEC DEPOSITION 7.1 Introduction 7.2 Methods 7.2.1 Materials 7.2.2 Preparation of Self-Assembled Monolayers on Gold Substrates	FIVE 119 120 120 121
DEPOSITION ON FUNCTIONALIZED SELF-ASSEMBLED MONOLAYERS: SELEC DEPOSITION 7.1 Introduction 7.2 Methods 7.2.1 Materials 7.2.2 Preparation of Self-Assembled Monolayers on Gold Substrates 7.2.3 Chemical Bath Deposition of Copper Sulfide	FIVE 119 120 120 121 121
DEPOSITION ON FUNCTIONALIZED SELF-ASSEMBLED MONOLAYERS: SELEC DEPOSITION 7.1 Introduction 7.2 Methods 7.2.1 Materials 7.2.2 Preparation of Self-Assembled Monolayers on Gold Substrates 7.2.3 Chemical Bath Deposition of Copper Sulfide 7.2.4 X-ray Photoelectron Spectroscopy	FIVE 119 120 120 121 121 122
 DEPOSITION ON FUNCTIONALIZED SELF-ASSEMBLED MONOLAYERS: SELEC DEPOSITION 7.1 Introduction 7.2 Methods 7.2.1 Materials 7.2.2 Preparation of Self-Assembled Monolayers on Gold Substrates 7.2.3 Chemical Bath Deposition of Copper Sulfide 7.2.4 X-ray Photoelectron Spectroscopy 7.2.5 TOF SIMS 	FIVE 119 120 120 121 121 122 122
DEPOSITION ON FUNCTIONALIZED SELF-ASSEMBLED MONOLAYERS: SELEC DEPOSITION	FIVE 119 120 120 120 121 121 122 122 123
DEPOSITION ON FUNCTIONALIZED SELF-ASSEMBLED MONOLAYERS: SELEC DEPOSITION	FIVE 119 120 120 120 121 121 122 122 123 129
 DEPOSITION ON FUNCTIONALIZED SELF-ASSEMBLED MONOLAYERS: SELEC DEPOSITION 7.1 Introduction 7.2 Methods 7.2.1 Materials 7.2.2 Preparation of Self-Assembled Monolayers on Gold Substrates 7.2.3 Chemical Bath Deposition of Copper Sulfide 7.2.4 X-ray Photoelectron Spectroscopy 7.2.5 TOF SIMS 7.3 Results and Discussion 7.3.1 Reaction Pathways 7.4 Conclusions 	FIVE 119 120 120 120 121 121 122 122 123 129 133
DEPOSITION ON FUNCTIONALIZED SELF-ASSEMBLED MONOLAYERS: SELEC DEPOSITION	FIVE 119 120 120 120 121 121 122 122 123 129 133 134
DEPOSITION ON FUNCTIONALIZED SELF-ASSEMBLED MONOLAYERS: SELEC DEPOSITION	FIVE 119 120 120 120 121 121 122 122 123 129 133 134 140

8.2 Future Works	142
APPENDIX	144
BIOGRAPHICAL SKETCH	148
CURRICULUM VITAE	149

LIST OF FIGURES

Figure	1.1 Schematic illustrating the components of an alkanethiol SAM on gold. Reprinted with permission from <i>Chemical Reviews</i> 2005 , <i>105</i> , 1103-1169. Copyright 2005 American Chemical Society. ²³
Figure	2.1 Schematic representing SIMS ion bombardment on a self-assembled monolayer on gold. Reprinted by permission from Springer Nature Customer Service Centre GmbH: Nature ¹² , Copyright 2003
Figure	2.2 Schematic diagram of a) the X-ray photoelectron and b) the Auger photoelectron17
Figure	2.3 XPS spectrum of the Sb 3d region in $Pr_2Fe_{4-x}Co_xSb_5$ (1 < x < 2.5). Adapted with permission from <i>Inorganic Chemistry</i> , 55 (4), 1946-1951. Copyright 2016 American Chemical Society. ¹⁵
Figure	2.4 Schematic diagram showing the main components of an X-ray photoelectron spectrometer. Figure used with permission from <i>Surface Analysis - The Principle Techniques</i> , Second Ed., Copyright 2009 John Wiley & Sons. ¹
Figure	2.5 Diagram showing Raman scattering processes
Figure	2.6 Components of an ATR-IR sampling accessory. Reprinted from <i>Advances in Colloid and Interface Science</i> , Vol. 93, Hind, A.R.; Bhargava, S.K.; Mckinnon, A., At the solid/liquid interface: FITR/ATR – the tool of choice, 91-114, Copyright 2001, with permission from Elsevier. ²¹
Figure	2.7 Interaction of primary electrons with a sample surface in SEM. Figure used with permission from <i>Materials Characterization: Introduction to Microscopic and Spectroscopic Methods</i> . Copyright 2008 John Wiley & Sons. ²⁴
Figure	2.8 Diagram showing the main components of an atomic force microscope. ³⁰ 27
Figure	3.1 Bright field optical images of the bare gold substrate, and after MoS_2 is deposited on MHA, MHL, MHA-PFP and HDT substrates. Deposition time: 24 h
Figure	3.2 AFM images of the deposited MoS ₂ film on MHA, MHL, MHA-PFP and HDT substrates. Deposition time: 24 h
Figure	3.3 Mo 3d and S 2s photoelectron spectra of mechanically exfoliated MoS ₂ films deposited on MHA, MHL, HDT and MHA-PFP SAMs. Deposition time: 24 h40
Figure	3.4 Raman spectra of mechanically exfoliated MoS2 films which were deposited on MHA, MHL, HDT and MHA-PFP SAMs. Deposition time: 24 h

Figure 3.5 Raman spectra of mechanically exfoliated MoS2 file PTFE tape, and Si-H; and b) soda lime glass, and silicon of film was not exfoliated from the PTFE tape, and so exhi ~300 cm-1 due to the presence of PTFE. Deposition time:	ms which were deposited on a) dioxide (SiO2). Note: The MoS2 ibits a Raman scattering peak at : 24 h47
Figure 4.1 a) Mo 3d and S 2s photoelectron spectra and b) Raman deposition on HOPG for 27 h at room temperature	n spectrum of MoS ₂ after 68
Figure 4.2 SEM image of MoS2 after deposition on HOPG for 27	7 h at room temperature69
Figure 4.3 Optical image of the deposition bath after reaction for	2h69
Figure 4.4 Optical images of the reaction of hydrazine with this and different reaction times: a) 3.5 min; b) 1 h; c) 3 h; d)	bacetamide at room temperature 18h; e) 25 h; and f) 42 h70
Figure 4.5 ATR IR spectra of the deposition bath and solutions 1 b) 1250 – 1800 cm ⁻¹ . The "deposition solution" contains approximately 24 hours after the solution was prepared. molybdate, hydrazine and ammonium hydroxide. Solution hydrazine and ammonium hydroxide. The spectra of solu- were obtained ~24 h reaction time. The spectrum of solution ~48h reaction time.	1-3 from a) $500 - 1800 \text{ cm}^{-1}$ and s all reagents and was measured Solution 1 contains ammonium as 2 and 3 contain thioacetamide, utions 1 and 2, which is yellow, on 3, which is pink, was obtained
Figure 4.6 Raman spectrum of the dark red/black precipitate ob after reaction for 48 h at room temperature.	tained from the deposition bath
Figure 4.7 a) Negative ion spectra centered at m/z 313 and b) per 120 of the dark red/black precipitate obtained from the d 48 h at room temperature. In (a), the predicted isotope d and $(MoO_4)_2^-$ are also shown for reference. In (b) M is 4-a m/z 84.04.	ositive ion spectra from m/z 2 – leposition bath after reaction for istributions of $(MoS_2)_2^-$, $Mo_2O_7^-$ mino-4H-1,2,4-triazole, $C_2H_4N_4$
Figure 5.1 Raman spectra of MoS_2 films which were deposited on Highlighted areas represent expected peak position of E^{1_2} Deposition time: 24 h.	n MHA, MHL and HDT SAMs. g and A_{1g} MoS ₂ Raman modes.
Figure 5.2 Mo 3d and S 2s photoelectron spectra of MoS2 films with MHL and HDT SAMs. Deposition time: 24 h	which were deposited on MHA,
Figure 5.3 Schematic representing a) a micropatterned SAM si square areas and –OH SAMs in the bar areas. After UV-p either –OH or –COOH terminated. b) shows a Raman micr on an –OH/–CH3 patterned SAM after 24 hours deposition	urface with $-CH_3$ SAMs in the photopatterning the bar areas are coscope image of MoS_2 deposited on time

Figure 5.4 Images after MoS ₂ deposition for 24 h on -COOH/-CH ₃ micropatterned	SAMs. The -
COOH terminated SAM is in the inverted "L" area while the -CH ₃ terminated	ed SAM is in
the bottom left square area. a) Optical image of the mapped area (shown by	the red box);
and Raman maps centered at b) 425 cm-1; c) 326 cm-1; and d) 184 cm-1. R	aman maps
shown using a heat scale	

- Figure 5.7 Representative Raman spectra collected in the –OH and –CH3 terminated SAM areas after deposition of MoS2 for 24 h on micropatterned –OH/–CH3 terminated SAMs......92

- Figure 6.4 Cu LMM peak measured for deposition on all three SAMs at pH 9, 11 and 12. Deposition time = 24 hours......107

- Figure 7.5 High resolution positive ion spectra centered at m/z 163 after deposition of CuS for 24 h at pH 6, pH and pH 12 on –COOH terminated SAMs......132

LIST OF TABLES AND SCHEMES

Table 3.1 RMS roughness of the samples before and after MoS ₂ CBD	38
Table 3.2 Frequencies observed for E_{2g}^1 , and A_{1g} modes, and the difference in frequency betwee E_{2g}^1 and A_{1g} modes (Δ).	een 42
Scheme 4.1 Cyclization and dehydration reaction of N'aminoethanimidamide to form N'- aminotriazole	75
Table 6.1 The values of the binding energies of the Cu2p _{3/2} peak, kinetic energies of the Cu LMM XAES peak and calculated Auger parameter, α', after Cu _x S CBD for 24 h on – CH ₃ , –OH and –COOH terminated SAMs.	108
Table 7.1 The values of the binding energies of the Cu2p _{3/2} peak, kinetic energies of the Cu LMM XAES peak and calculated Auger parameter, α', after Cu _x S CBD for 24 h on – CH ₃ , –OH and –COOH terminated SAMs.	128

LIST OF ABBREVIATIONS

2D: 2-Dimensional
AFM: Atomic Force Microscopy
ALD: Atomic Layer Deposition
CBD: Chemical Bath Deposition
CVD: Chemical Vapor Deposition
ESCA: Electron Spectroscopy for Chemical Analysis
HDT: Hexadecanethiol
HOPG: Highly Oriented Pyrolytic Graphite
IMFP: Inelastic Mean Free Path
MHA: Mercaptohexadecanoic Acid
MHA-PFP: Mercaptohexadecanoic Acid – Pentafluorophenol
MHL: Mercaptohexadecanol
PTFE: Polytetrafluoroethylene
PVD: Physical Vapor Deposition
SAMs: Self-Assembled Monolayers
SEM: Scanning Electron Microscopy
SIMS: Secondary Ion Mass Spectrometry
TMDs: Transition Metal Dichalcogenides
TOF SIMS: Time-of-Flight Secondary-Ion-Mass Spectrometry
UHV: Ultra-High Vacuum
UV: Ultra-Violet (referring to electromagnetic spectrum or light)

VBM: Valence Band Maximum

XPS: X-ray Photoelectron Spectroscopy

CHAPTER 1

INTRODUCTION

1.1 Semiconductor Contacts to Organic Substrates

This dissertation explores the synthesis of semiconducting thin films on organic substrates. Semiconductor contacts to organic substrates are important for the development of organic/molecular electronics,¹⁻⁹ photovoltaics,¹⁰⁻¹³ and sensing.⁴ Historically, many of these applications have used silicon as a semiconductor. However, there are many alternative semiconducting materials such as metal oxides,¹⁴ sulfides and selenides,^{15, 16} which offer improved physical and mechanical properties.

Creating precise contacts to organic substrates poses many practical challenges. The optimization of device performance is dependent on defect-free interaction at the interface of semiconductor/substrate.¹⁷⁻¹⁹ At the nanoscale, manipulation of mono- or few-layered semiconductor materials can require extensive cleaning, lithographic, and post-processing steps.^{15,20} The systematic study of the deposition of semiconducting contacts to organic substrates can be very challenging. For example, the physical and chemical properties of polymeric thin films are difficult to control or modify reliably.²¹ In this work we address this by using self-assembled monolayers (SAMs). SAMs serve as useful organic model systems to study interactions of the semiconductor/organic interface because they have a known structure and are synthetically flexible.^{22, 23}

There are several techniques that can be used to deposit metals and semiconductors including gas phase methods such as chemical vapor deposition (CVD),²⁴ atomic layer deposition (ALD),²⁵ and physical vapor deposition (PVD).²⁶ However, these techniques require vacuum

conditions, high temperatures, and the breakdown of complex precursors. There are also a number of solution-based deposition methods such as electrochemical/electroless deposition (ELD),²⁷ and chemical bath deposition (CBD)^{28, 29} which can be employed to deposit semiconductors. These methods are low-cost techniques and can be employed at low temperatures which are suitable for organic thin films. Chemical bath deposition has additional advantages over electrochemical and electroless deposition because it can be used to deposit a larger number of materials and does not require a conductive substrate.^{29, 30}

1.2 Chemical Bath Deposition (CBD)

Chemical bath deposition (CBD) is a solution phase deposition technique that can be used to deposit semiconductor materials including oxides, hydroxides, chalcogenides and halides.²⁹ Typically CBD processes are controlled ion-exchange reactions between a cationic metal and anionic species, such as a chalcogenide, to deposit thin films or nanostructures onto a substrate.²⁹ An alternate reaction pathway for CBD is via a single precursor in which a metal-complex decomposes leading to the deposition of a film.³¹

In general, uniform films are produced through a slow and controlled reaction of one of the precursor so that the deposits formed are strongly adhered to the substrate surface (ion-by-ion growth).²⁹ Deposition can also occur from the aggregation of particles in solution which do not adhere well to the sample (cluster-by-cluster deposition).²⁹ These reaction pathways – and the deposit morphologies – are controlled by adjusting precursor concentrations, bath temperature and bath pH and other experimental variables, such as the stirring of the deposition bath.³²⁻³⁴

1.3 Self-Assembled Monolayers Adsorbed on Au

Self-assembled monolayers (SAMs) are model organic systems which are often used to study molecular interactions with metals and semiconductors.^{2, 22} SAMs are highly-ordered arrays of molecular species including alkanethiols, silanes, phosphonic acids, and alkylsiloxanes.^{22, 23} SAM formation occurs onto a solid substrate through spontaneous chemisorption in either solution or vapor phase. Once adsorbed the molecules undergo a spontaneous slow assembly and organization process to form a semicrystalline structure.

Figure 1.1 Schematic illustrating the components of an alkanethiol SAM on gold. Reprinted with permission from *Chemical Reviews* **2005**, *105*, 1103-1169. Copyright 2005 American Chemical Society.²³

In these studies, alkanethiolate SAMs adsorbed on Au are employed. Alkanethiolate SAMs are comprised of three main components; a head group, a hydrocarbon chain, and a terminal functional group. SAM formation is primarily driven by the stability of the Au-S bond and the lateral interactions between the methylene chains. At the beginning of alkanethiol SAM formation, the thiol head-group chemisorbs onto the substrate surface leading to the formation of a Au-S bond. The methylene chain, or backbone, of the SAM molecule rearranges to maximize lateral

interactions and are further stabilized by van der Waals interactions. As a result, ordered alkanethiol SAMs are tilted $\sim 30^{\circ}$ from the surface normal.²²

1.4 Molybdenum Disulfide

Molybdenum disulfide (MoS₂) is a transition metal dichalcogenide (TMD). TMDs have a unique set of properties that can be varied from metallic, semiconducting to insulating and even superconducting based on selection of transition metal and chalcogenide.^{16, 19, 35} TMDs have a layered, sandwich structure X-M-X where X is the chalcogenide and M is the transition metal.¹⁶ MoS₂ is an attractive material to study due to its tunable bandgap and flexible mechanical properties.^{16, 36} MoS₂ is known to exist in two polytype forms, thesemi-metallic 1T (octahedral coordination geometry) and semiconducting 2H (trigonal prismatic coordination geometry) form.^{16, 37} One of the challenges of incorporating MoS₂ materials into device design is the ability to precisely place MoS₂ in the desired polytype into a device.

1.5 Copper Sulfide

Copper sulfide is a material used in several important applications including biology,³⁸ photovoltaics,³⁹ and sensors.⁴⁰ Copper sulfide is a particularly attractive material due to its earth abundance⁴¹ and non-toxic properties^{42, 43} making it a safe low-cost material. One of the reasons that copper sulfide has many applications is that its stoichiometry can easily be varied from $1 \le Cu/S \le 2$ which allows the electrical and other material properties to be controlled. Copper sulfides are generally semiconductors but can act as a metallic conductor.⁴⁴ Covellite (CuS) and chalcocite (Cu₂S) are the two stoichiometric forms of copper sulfide but many other non-stoichiometric copper sulfides are naturally occurring, including digenite (Cu_{1.8}S) and geerite (Cu_{1.6}S).⁴⁵

1.6 Research Objectives

In this dissertation, chemical bath deposition of semiconducting thin films on organic substrates are investigated. The reaction pathways and material properties are characterized in detail. Deposition of large-area thin films and area-selective deposition of films are demonstrated.

The chapters of this dissertation are organized as follows. Chapter 2 introduces the characterization techniques employed in this work. Techniques include time-of-flight secondary ion mass spectrometry (TOF SIMS), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and attenuated total reflection infrared (ATR-IR) spectroscopy. The basic principles, instrumentation, and applications are described.

Chapter 3 describes the CBD of molybdenum disulfide thin films on surfaces with differing surface energies and how the surface energy leads to the deposition of different MoS₂ polytypes. Deposition is carried out on SAMs with four different chemical functional groups. The chemistries of these functional groups also have different known surface energies. On low surface energy surfaces, 2H MoS₂ is deposited while on high energy surfaces 1T MoS₂ is deposited. To demonstrate that this effect is general, deposition was also carried out on other substrates which are known to have different surface energies. The MoS₂ polytype is determined by Raman spectroscopy and XPS measurements, and the thin films are further characterized by AFM, valence band XPS, and optical microscopy.

Chapter 4 explores the reaction pathways of the MoS_2 CBD which is investigated using XPS, Raman spectroscopy, ATR-IR, SEM, optical microscopy and TOF SIMS. A reaction pathway is proposed consistent with the identified intermediates, by-products and products.

Chapter 5 demonstrates the area selective of MoS_2 deposition on micropatterned SAMs as well as the interaction of the deposited film with the gold substrate. Using Raman mapping measurements, the identified polytype across a micro-patterned surface is shown.

Chapter 6 describes a CBD method by which to deposit copper sulfide thin films and its dependence on the deposition bath pH using thiourea as a sulfur source. The deposition is carried out on $-CH_3$, -COOH, and -OH terminated SAMs. Using XPS analysis, the stoichiometry of the Cu_xS film is demonstrated to be dependent on both the bath pH and the chemical identity of the SAM terminal group. Further characterization of the film deposit using TOF SIMS shows changes in the surface coverage with changing bath pH.

Chapter 7 demonstrates a comparison of the deposition of CuS with a different thiol precursor, thioacetamide. CuS deposition is done on $-CH_3$, -OH, and -COOH terminated SAMs at pH 6, 9, and 12. We show that the deposition selectivity is dependent on the interaction of the bath components with the SAM terminal group.

Chapter 8 provides a summary and conclusion of the work described in this dissertation and discusses future research directions.

1.7 References

1. Coll, M.; Miller, L. H.; Richter, L. J.; Hines, D. R.; Jurchescu, O. D.; Gergel-Hackett, N.; Richter, C. A.; Hacker, C. A., Formation of Silicon-Based Molecular Electronic Structures Using Flip-Chip Lamination. *Journal of The American Chemical Society* **2009**, *131*, 12451-12457.

2. Çakir, D.; Sevik, C.; Peeters, F. M., Engineering electronic properties of metal-MoSe₂ interfaces using self-assembled monolayers. *Journal of Materials Chemistry C* **2014**, *2*, 9842-9849.

3. Vilan, A.; Aswal, D.; Cahen, D., Large-Area, Ensemble Molecular Electronics: Motivation and Challenges. *Chemical Reviews* **2017**, *117*, 4248-4286.

4. Lin, P.; Yan, F., Organic Thin-Film Transistors for Chemical and Biological Sensing. *Advanced Materials* **2012**, *24*, 34-51.

5. Wang, B.; Huang, W.; Chi, L.; Al-Hashimi, M.; Marks, T. J.; Facchetti, A., High-*k* Gate Dielectrics for Emerging Flexible and Stretchable Electronics. *Chemical Reviews* **2018**, *118*, 5690-5754.

6. Kagan, C. R.; Mitzi, D. B.; Dimitrakopoulos, C. D., Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors. **1999**, *286*, 945-947.

7. Song, W. G.; Kwon, H.-J.; Park, J.; Yeo, J.; Kim, M.; Park, S.; Yun, S.; Kyung, K.-U.; Grigoropoulos, C. P.; Kim, S.; Hong, Y. K., High-Performance Flexible Multilayer MoS₂ Transistors on Solution-Based Polyimide Substrates. *Advanced Functional Materials* **2016**, *26*, 2426-2434.

8. Liu, Y.; Pharr, M.; Salvatore, G. A., Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring. *ACS Nano* **2017**, *11*, 9614-9635.

9. Kuo, Y.; Coan, M.; Liu, G., Reliability of a-Si:H TFTs and Copper Interconnect Lines for Flexible Electronics. *ECS Transactions* **2008**, *16* (9), 345-351.

10. Atwater, H. A.; Polman, A., Plasmonics for improved photovoltaic devices. *Nature Materials* **2010**, *9*, 205-213.

11. El Chaar, L.; Iamont, L. A.; El Zein, N., Review of photovoltaic technologies. *Renewable and Sustainable Energy Reviews* **2011**, *15* (5), 2165-2175.

12. Wright, M.; Uddin, A., Organic-inorganic hybrid solar cells: A comparative review. *Solar Energy Materials & Solar Cells* **2012**, *107*, 87-111.

13. Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells. *Nano Letters* **2013**, *13*, 1764-1769.

14. Liu, J.-F.; Nistorica, C.; Gory, I.; Skidmore, G.; Mantiziba, F. M.; Gnade, B. E., Layer-bylayer deposition of zirconium oxide films from aqueous solutions for friction reduction in siliconbased microelectromechanical system devices. *Thin Solid Films* **2005**, *492* (1), 6-12.

15. Duan, X.; Wang, C.; Pan, A.; Yu, R.; Duan, X., Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. *Chemical Society Reviews* **2015**, *44*, 8859-8876.

16. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H., The chemistry of twodimensional layered transition metal dichalcogenide nanosheets. *Nature Chemistry* **2013**, *5*, 263-275.

17. Jena, D.; Banerjee, K.; Xing, G. H., 2D Crystal Semiconductors: Intimate contacts. *Nature Materials* **2014**, *13*.

18. Jariwala, D.; Marks, T. J.; Hersam, M. C., Mixed-dimensional van der Waals heterostructures. *Nature Materials* **2016**, *16*, 170-181.

19. McDonnell, S.; Addou, R.; Buie, C.; Wallace, R. M.; Hinkle, C. L., Defect-Dominated Doping and Contact Resistance in MoS₂. *ACS Nano* **2014**, *8* (3), 2880-2888.

20. Rosenberger, M. R.; Chuang, H.-J.; McCreary, K. M.; Hanbicki, A. T.; Sivaram, S. V.; Jonker, B. T., Nano-"Squeegee" for the Creation of Clean 2D Material Interfaces. *ACS Applied Materials & Interfaces* **2018**, *10*, 10379-10387.

21. Zardetto, V.; Brown, T. M.; Reale, A.; Di Carlo, A., Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. *Journal of Polymer Science, Part B: Polymer Physics* **2011**, *49* (9), 638-648.

22. Ulman, A., Formation and Structure of Self-Assembled Monolayers. *Chemical Reviews* **1996**, *96*, 1533-1554.

23. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M., Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. *Chemical Reviews* **2005**, *105*, 1103-1169.

24. Lu, F.; Karmakar, A.; Shahi, S.; Einarsson, E., Selective and confined growth of transition metal dichalcogenides on transferred graphene. *RSC Advances* **2017**, *7*, 37310-37314.

25. Sneh, O.; Clark-Phelps, R. B.; Londergan, A. R.; Winkler, J.; Seidel, T. E., Thin film atomic layer deposition equipment for semiconductor processing. *Thin Solid Films* **2002**, *402*, 248-261.

26. Fisher, G. L.; Hooper, A. E.; Opila, R. L.; Allara, D. L.; Winograd, N., The Interaction of Vapor-Deposited Al Atoms with CO₂H Groups at the Surface of a Self-Assembled Alkanethiolate Monolayer on Gold. *Journal of Physical Chemistry B* **2000**, *104*, 3267-3273.

27. Djokic, S. S.; Cavallotti, P. L., Electroless Deposition: Theory and Applications. In *Modern Aspects of Electrochemistry, No. 48: Electrodeposition Theory and Practice*, Djokic, S. S., Ed. Springer: New York, 2010; pp 251-289.

28. Hodes, G., Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition. *Physical Chemistry Chemical Physics* **2007**, *9*, 2181-2196.

29. Hodes, G., *Chemical solution deposition of semiconductor films*. Marcel Dekker: New York, 2003.

30. Schlesinger, M.; Paunovic, M., Modern Electroplating. 5th ed.; John Wiley & Sons: 2011.

31. Roy, P.; Srivastava, K., Chemical bath deposition of MoS_2 thin film using ammonium tetrathiomolybdate as a single source for molybdenum and sulphur. *Thin Solid Films* **2006**, *496*, 293-298.

32. Shi, Z.; Walker, A. V., Chemical Bath Deposition of ZnO on Functionalized Self-Assembled Monolayers: Selective Deposition and Control of Deposit Morphology. *Langmuir* **2015**, *31*, 1421-1428.

33. Lu, P.; Walker, A. V., Selective Formation of Monodisperse CdSe Nanoparticles on Functionalized Self-Assembled Monolayers Using Chemical Bath Deposition. *Electrochimica Acta* **2010**, *55*, 8126-8134.

34. Lu, P.; Walker, A. V., Making Nanoflowerbeds: Reaction Pathways Involved in the Selective Chemical Bath Deposition of ZnS on Functionalized Alkanethiolate Self-Assembled Monolayers. *ACS Nano* **2009**, *3*, 370-378.

35. Choi, W.; Choudhary, N.; Han, G. H.; Park, J.; Akinwande, D.; Lee, Y. H., Recent development of two-dimensional transition metal dichalcogenides and their applications. *Materials Today* **2017**, *20* (3), 116-130.

36. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A., 2D transition metal dichalcogenides. *Nature Reviews Materials* **2017**, *2*, 17033.

37. Duerloo, K.-A. N.; Li, Y.; Reed, E. J., Structural phase transitions in two-dimensional Moand W-dichalcogenide monolayers. *Nature Communications* **2014**, *5*, 1-9.

38. Bai, J.; Jiang, X., A Facile One-Pot Synthesis of Copper Sulfide-Decorated Reduced Graphene Oxide Composites for Enhanced Detecting of H₂O₂ in Biological Environments. *Analytical Chemistry* **2013**, *85*, 8095-8101.

39. Lee, H.; Yoon, S. W.; Kim, E. J.; Park, J., In-Situ Growth of Copper Sulfide Nanocrystals on Multiwalled Carbon Nanotubes and Their Application as Novel Solar Cell and Amperometric Glucose Sensor Materials. *Nano Letters* **2007**, *7* (3), 778-784.

40. Goel, S.; Chen, F.; Cai, W., Synthesis and Biomedical Applications of Copper Sulfide Nanoparticles: From Sensors to Theranostics. *Small* **2014**, *10* (4), 631-645.

41. Haxel, G. B.; Boore, S.; Mayfield, S. Rare Earth Elements-Critical Resources for High Technology. <u>https://pubs.usgs.gov/fs/2002/fs087-02</u> (accessed November 23).

42. Shah, A.; Torres, P.; Tscharner, R.; Wyrsch, N.; Keppner, H., Photovoltaic Technology: The Case for Thin-Film Solar Cells. *Science* **1999**, *285*, 692-698.

43. Polman, A.; Knight, M.; Garnett, E. C.; Ehrler, B.; Sinke, W. C., Photovoltaic materials: Present efficienies and future challenges. *Science* **2016**, *352* (6283), aad4424.

44. Sakamoto, T.; Sunamura, H.; Kawaura, H.; Hasegawa, T.; Nakayama, T.; Aono, M., Nanometer-scale switches using copper sulfide. *Applied Physics Letters* **2003**, *82* (18), 3032-3034.

45. Wang, Y.; Liu, F.; Ji, Y.; Yang, M.; Liu, W.; Wang, W.; Sun, Q.; Zhang, Z.; Zhao, X.; Liu, X., Controllable synthesis of various kinds of copper sulfides (CuS, Cu₇S₄, Cu₉S₅) for high-performance supercapacitors. *Dalton Transactions* **2015**, *44*, 10431-10437.

CHAPTER 2

CHARACTERIZATION TECHNIQUES

In this work a variety of analytical techniques were employed including time-of-flight secondary ion mass spectrometry (TOF SIMS), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM) and attenuated total reflection infrared (ATR-IR) spectroscopy. The following sections give descriptions of these techniques.

2.1 TOF SIMS

2.1.1 Introduction

Secondary ion mass spectrometry (SIMS) is a surface sensitive technique which is used to characterize samples with ppb sensitivity ~100 nm lateral resolution and ~0.5 nm depth resolution.¹ SIMS is employed in a wide variety of fields including in the analysis of organic thin films, ^{2,3} semiconductors,^{4,5} polymers,^{6,7} and biochemistry.⁸⁻¹⁰ In a SIMS measurement the sample surface is bombarded by a highly energetic beam of primary ions.^{1, 11} This causes a collision cascade leading to the desorption of secondary species, which are positive ions, negative ions, neutrals and electrons (Figure 2.1). Only 1 to 5 % of the desorbed species are ions which can be positively or negatively charged, while the rest are neutrals (95-99%).¹

Figure 2.1 Schematic representing SIMS ion bombardment on a self-assembled monolayer on gold. Reprinted by permission from Springer Nature Customer Service Centre GmbH: Nature¹², Copyright 2003.

The secondary ion current produced is given by:

$$I_m^{\pm} = I_p \times Y_m \times \eta^{\pm} \times \alpha^{\pm} \times \theta_m \tag{2.1}$$

where I_m is the intensity of the secondary ion of a species m, I_p is the primary ion beam current, Y_m is the sputtering yield, η is the ion transmission efficiency for a positive or negative ion, α is the ionization probability of the sputtered species, and θ_m is the surface concentration, or coverage, of species m in the analyzed area. After bombardment the secondary ions are measured using a mass analyzer.

The primary ion dose determines if the SIMS measurement is static or dynamic. Static SIMS employs an ion dose of $<1x10^{13}$ ions/cm² and offers several advantages including minimal surface damage, and high surface sensitivity (ppb).¹¹ Dynamic SIMS uses a higher primary ion dose leading to the erosion of the sample surface. Dynamic SIMS is generally employed for obtaining mass spectra as a function of depth ("depth profiling") and the analysis of bulk materials.¹¹

2.1.2 Time-of-flight secondary ion mass spectrometry (TOF SIMS)

Time-of-flight mass (TOF) analyzers provide several advantages over magnetic sector and quadrupole mass analyzers. These advantages include the collection of all mass-to-charge (m/z) ratios simultaneously and a high secondary ion transmission efficiency.

All TOF SIMS data collected in this work were obtained using an ION TOF IV instrument (ION TOF Inc., Chestnut Hill, NY) equipped with a Bi_m^{n+} (m = 1-7, n = 1-2) liquid metal ion gun (LMIG). An overview of the main components of the ION TOF IV instrument are described in the next sections.

2.1.3 Vacuum System

An ultra-high vacuum (uhv) system is required for TOF SIMS data collection to ensure ejected secondary ions can travel to the detector without interacting with any other gaseous species. Furthermore, low pressure environments significantly reduce the adsorption of gas phase species onto a sample. The ION TOF vacuum system is comprised of three chambers: the airlock (or the loadlock), the preparation chamber, and the analysis chamber each separated by gate valves. Samples are first introduced into the system in the airlock chamber which is pumped down from atmosphere. After the loadlock has reached a vacuum pressure, typically $\leq 10^{-6}$ mbar, the sample is transferred to the preparation chamber to provide further outgassing so that the sample can be introduced into the uhv analysis chamber. After a short time, the samples are transferred to the main chamber. The pressure of the main chamber is $<5 \times 10^{-9}$ mbar.

2.1.4 Liquid metal ion gun (LMIG)

The primary ion beam used in these experiments is 20 keV Bi⁺ which is produced using a liquid metal ion gun (LMIG). The LMIG produces a high energy ion beam that is focused to a small spot

size for sample bombardment. In a LMIG a reservoir containing bismuth is heated and a large electric field is applied to the tip of the LMIG emitter, causing a liquid droplet to form. If a sufficiently large electric field is applied, the droplet becomes elongated, forming a Taylor cone and the primary ion beam

The ion beam is then focused by lenses and apertures onto the sample. To provide a start time for the mass analyzer, the ion beam is pulsed using a combination of a beam blanker, which makes ion packets of \sim 20 ns duration, and a buncher. The "buncher" further shortens the ion packets to make make ion pulses of \sim 600 ps in length.

2.1.5 Time of flight analyzer

Secondary ions produced by the LMIG are measured using a time-of-flight analyzer which measures the mass-to-charge ratio (m/z) of the secondary ions produced. After a primary ion pulse bombards the surface, secondary ions are extracted and accelerated by an electric field. All secondary ions have unique mass-to-charge ratios and therefore different velocities as described by the following equation:

$$zeV = \frac{1}{2}mv^2$$

where z is the charge, m is mass, v is velocity, and V is the electric field used to accelerate the ions through the analyzer. The secondary ions then travel through a field-free region of length, L, and arrive at the detector at different travel times (t). The travel time through the analyzer is expressed as:

$$t = \frac{L}{v} = L \left(\frac{m}{2eVz}\right)^{\frac{1}{2}}$$
 2.3

However, when secondary ions are ejected from the sample surface there is a small distribution in their kinetic energies which is due uncertainties in the time and position of each created ion. Therefore, ions with the same m/z may arrive at the detector at different times. To compensate for this small kinetic energy spread, a reflectron is employed.¹³

2.2 XPS

2.2.1 Introduction

X-ray photoelectron spectroscopy (XPS), also known as electron spectroscopy for chemical analysis (ESCA), is a popular surface analysis technique that provides elemental information as well as information about chemical environments in the top 1-12 nm of materials.¹⁴ This technique can provide both qualitative and quantitative information. XPS is used to investigate materials including rare-earth compounds,¹⁵ metal oxides,¹⁶ polymers,^{17, 18} and semiconductors.¹⁹

2.2.2 Principles of XPS

In XPS, x-rays irradiate a sample surface which results in the ejection of photoelectrons generated from a core energy level (Figure 2.2a). After emission of the photoelectron secondary processes can occur. The excited atom can either relax via the emission of an x-ray (x-ray fluorescence) or the emission of an eltron (Auger electron) (Figure 2.2b).

Figure 2.2 Schematic diagram of a) the X-ray photoelectron and b) the Auger photoelectron.

In general, XPS measures the kinetic energy of a generated photoelectron which is dependent on the binding energy (BE) of the electron in the atom, the X-ray energy used and the material's work function as described in Equation 2.4:

$$E_{KE} = hv - BE - \varphi \tag{2.4}$$

where E_{KE} is the kinetic energy of the photoelectron, *h* is Planck's constant, *v* is the frequency of the X-ray and φ is the work function of the material.

2.2.3 Photoelectron Spectra

Typical XPS spectra are generally shown as intensity in counts per second (cps) versus binding energy with units of eV. A spectrum is typically dominated by the photoelectron peaks but Auger electron peaks can also be detected.

Figure 2.3 XPS spectrum of the Sb 3d region in $Pr_2Fe_{4-x}Co_xSb_5$ (1 < x < 2.5). Adapted with permission from *Inorganic Chemistry*, 55 (4), 1946-1951. Copyright 2016 American Chemical Society.¹⁵

The binding energy is used to identify elements present in the sample while the chemical shifts (ΔE_B) ascertain their chemical environment. For example, Figure 2.3 shows the Sb 3d photoelectron spectra of a Pr₂Fe_{4-x}Co_xSb₅ (x ~1 and x ~2) crystals.¹⁵ In this example there are two distinct Sb 3d peaks due to different bonding environments. Note that the 3d peaks are further split by spin orbit coupling into $3d_{5/2}$ and $3d_{3/2}$ binding energies. The Sb $3d_{5/2}$ peaks are at ~ 530.5 eV and 528 eV and assigned to Sb³⁺ and Sb⁰, respectively. The corresponding Sb $3d_{3/2}$ peaks appear at ~ 540 eV and 537.5 eV. At lower concentrations of cobalt (x ~ 1) Sb is primarily present in the 3+ oxidation state. When the crystal is rich in cobalt (x ~ 2) there is a mix of Sb in the Sb⁰ and Sb³⁺ as indicated by the increase in the intensity of the photoelectron peaks at ~530.5 eV.

2.2.4 Valence Band XPS

Using XPS the valence band (BE \leq 20 eV), or highest occupied molecular orbitals, of materials can also be analyzed. Such data provides information about the Fermi level density of states, and the work function of the material.

2.2.5 X-ray Photoelectron Instrument

In this work a PHI VersaProbe II (Physical Electronics Inc.) equipped with an Al K α source was used for all *ex-situ* XPS measurements. The main components of an XPS instrument are the X-ray source, the concentric hemispherical analyzer, and detector (Fig. 2.4).

Figure 2.4 Schematic diagram showing the main components of an X-ray photoelectron spectrometer. Figure used with permission from *Surface Analysis - The Principle Techniques*, Second Ed., Copyright 2009 John Wiley & Sons.¹

The most common sources are Al K α or Mg K α which have energies of 1486.6 eV and 1253.6 eV, respectively. The X-rays are diffracted and focused onto the sample using a crystal x-ray monochromator (typically graphite). Photoelectrons generated from the surface travel through an electron lens and concentric hemispherical analyzer (CHA) before being detected by a multi-channel detector.

2.2.6 Vacuum System

Similar to TOF SIMS, XPS requires collection under ultra-high vacuum (UHV) conditions. UHV minimizes elastic and inelastic scattering of photoelectrons with gas molecules present at high pressures. Scattering of photoelectrons produced after X-ray irradiation results in loss in intensity and energy resulting in noisy spectra. Samples are introduced into the UHV system through a preparation chamber that can be pumped down from atmosphere and then transferred to the main analysis chamber through a gate valve. The pressure was $\leq 5 \times 10^{-10}$ mbar in the main analysis chamber for collection of all spectra in this work.

2.3 Raman spectroscopy

2.3.1 Introduction

Raman spectroscopy was first discovered by scientist C.V. Raman in 1928 when he discovered that visible wavelengths of light will cause some molecules to inelastically scatter light as opposed to absorbing it (as in IR) or elastically scattering.²⁰ Raman is a fast and easy method to measure solids, liquids, and gases and can provide information about the crystallinity and bonding environments in a sample.

2.3.2 Principles of Raman Spectroscopy

Upon irradiation with a quantum of light, hv_{ex} , one of three scattering outcomes is possible: elastic (Rayleigh) scattering, Stokes scattering, and anti-Stokes scattering. Figure 2.5 shows the energy level diagram for these processes.

Figure 2.5 Diagram showing Raman scattering processes.

In Rayleigh scattering, the light elastically scatters from the molecule or substrate:

$$E_{in} = E_{out} = h\nu 2.5$$

where *h* is Planck's constant, v is the frequency of the light source and *E* is the energy of the light source. The subscripts in and out refer to the light incident on the sample and the light emitted by the sample, respectively.

In Stokes scattering, upon absorption of light, the molecule, or material, will exhibit a transition from the ground state to a "virtual" state. Upon de-excitation, the molecule becomes vibrationally excited and a photon is emitted with lower energy than the excitation radiation:

$$E_{out} = h\nu - h\nu_m \tag{2.6}$$

where v_m is the frequency of the vibration or phonon mode that is excited. In Anti-Stokes scattering, the opposite effect occurs. A vibrationally excited molecule, or material, absorbs the radiation and upon de-excitation, it returns to its ground state leading to the ejection of photons with higher energy:

$$E_{out} = h\nu + h\nu_m \tag{2.7}$$

2.3.3 Raman Spectroscopy Instrumentation

Typically, lasers of short wavelength of light are selected for Raman analysis because the scattering intensity is larger at such wavelengths. In this work a Thermo Scientific DXR Raman microscope with a 532 nm laser and a $50 \times$ objective lens was employed. The laser is focused on the sample using an objective lens with a high numerical aperture. The scattered light from the sample is recollected by the lens and is detected at a 90° angle (in order to minimize interference from Rayleigh scattering) and also filtered through a laser-blocking filter before reaching the spectrometer.

2.4 Attenuated total internal reflection infrared (ATR-IR) spectroscopy

2.4.1 Introduction

Attenuated total internal reflection infrared (ATR-IR) spectroscopy is a method by which to study solids and liquids under ambient atmospheric conditions.²¹ Its main advantage is that no sample preparation is required and so the characteristics of the sample are unchanged prior to investigation.

2.4.2 Principles of ATR-IR

When radiation passes from a high-density medium to a low-density medium reflection occurs. The amount of reflection will increase as the angle of incidence becomes larger and beyond a certain critical angle reflection is achieved. This reflection process has been shown to penetrate a small distance into the less dense medium before reflection occurs. The radiation which penetrates into the sample is called an evanescent wave, which decays exponentially with distance from the reflecting surface. The radiation's depth of penetration (d_p) is given by:²⁰

$$d_p = \frac{\lambda_c}{2\pi [\sin^2\theta - (n_s/n_c)^2]^{\frac{1}{2}}}$$
 2.8

where λ_c is the wavelength in the crystal, n_s and n_c are the refractive indices of the sample and crystal, and θ is the angle of incidence.

IR spectroscopy measures absorption of radiation by a sample with frequency (usually, wavenumber cm⁻¹) and is reported as either transmittance or absorbance. For ATR-IR the data is measured as absorbance versus wavenumber, cm⁻¹. Absorbance is defined by the Beer-Lambert Law:

$$A = -\log\left(\frac{l_0}{l}\right) = \mathcal{E} \cdot l \cdot c \tag{2.9}$$

where *A* is absorbance I_0 is the intensity of light incident on the sample *I* is the intensity of the transmitted (collected) light, ε is absorptivity, *l* is path length and *c* is concentration.

2.4.3 ATR-IR Instrumentation

In this work a Thermo Scientific Nicolet iS50 FT-IR was used. This instrument employs an ATR with a horizontal sampling accessory geometry (Fig. 2.6).

Figure 2.6 Components of an ATR-IR sampling accessory. Reprinted from *Advances in Colloid and Interface Science*, Vol. 93, Hind, A.R.; Bhargava, S.K.; Mckinnon, A., At the solid/liquid interface: FITR/ATR – the tool of choice, 91-114, Copyright 2001, with permission from Elsevier.²¹

The sample is placed in close contact with an internal reflection element (IRE), typically a crystal made of silver chloride, germanium, diamond, silicon or thallium bromoiodide. In these studies, a diamond crystal was employed. The incident radiation (*I*) passes through the IRE at angle θ . In the case of solid samples an additional attachment is sometimes used to apply a measured amount of force to place the sample in close contact with the crystal. Reflected radiation (*R*) is measured by a detector.

2.5 Scanning electron microscopy (SEM)

2.5.1 Introduction

Scanning electron microscopy (SEM) employs electrons to form images and is widely used to characterize pure and mixed organic, inorganic, and semiconducting materials.²² Lateral resolution of ~1nm can be achieved using SEM, but more typically the lateral resolution is 2-5 nm. SEM images in this work were collected using a Supra-40 Scanning Electron Microscope (Zeiss), equipped with a field emission electron gun.

2.5.2 SEM Instrumentation

SEM instruments consist of an electron gun, a series of focusing optics including lenses and apertures and a detector.

2.5.3 Electron-Sample Interactions and Signal Detection

Figure 2.7 illustrates the various interactions and penetration volumes of a primary electron beam with a sample surface.²³ When high energy electrons interact with a surface, the electrons can either elastically or inelastically scatter. Secondary electrons are produced via inelastic scattering of the electrons with the substrate; the primary electrons to transfer kinetic energy to the substrate which leads to the ejection of secondary electrons.

Figure 2.7 Interaction of primary electrons with a sample surface in SEM. Figure used with permission from *Materials Characterization: Introduction to Microscopic and Spectroscopic Methods*. Copyright 2008 John Wiley & Sons.²⁴

Secondary electrons produced in the outermost 5-50 nm will escape from the sample surface, and so topographic images are obtained. The primary electrons can also undergo elastic scattering in the top 50-300nm of a sample surface which leads to the ejection of backscattered electrons.

Backscattered electrons are employed for compositional imaging and the images have a reduced lateral resolution.

2.6 Atomic force microscopy

Atomic force microscopy (AFM)uses the interactions between a sharp tip and a sample surface to produce atomic scale resolution images.²⁵ AFM is widely used to characterize sample topography under a variety of sample conditions including ambient air, vacuum, low temperature and in liquid media. ²⁶⁻²⁸ Generally, a vertical resolution of 0.01 nm can be easily achieved but the lateral resolution is much larger, 3 nm or above.²⁹

2.6.1 AFM Instrumentation

In this work two AFM instruments were employed. For data collected on the highly oriented pyrolytic graphite (HOPG), a Nanoscope Dimension 3100 microscope (Veeco Instruments) was used. For other analyses, a Veeco Dimension 5000 SPM was employed (Veeco Instruments).

An AFM instrument is equipped with a sharp tip connected to a flexible cantilever, a detection system, a positioning system and a data system. The tip is typically made of silicon nitride.

Figure 2.8 Diagram showing the main components of an atomic force microscope.³⁰

A laser photodiode is focused on the back of the cantilever. The reflected light from the cantilever is detected by a position sensitive split photodiode detector. The weak interactions of the AFM tip with the sample surface causes small shifts in the cantilever position and/or frequency which is recorded by the position-sensitive photodetector. The shifts are converted into an analog signal and a topographic image is recorded.

2.6.2 Operational Modes in AFM

Contact Mode

Contact mode is often selected for the analysis of hard materials. In this mode the tip scans in contact with the surface and is dragged across the sample surface with a constant force. However, this can lead to sample damage. Additionally, image artifacts are observed due to the presence of gas molecules on the substrate and electrostatic forces between the tip and sample.²³

Non-Contact Mode

To minimize sample damage non-contact mode may be used. The tip is positioned 50-150 Å above the sample surface and is oscillated at a constant resonant frequency while rastering across the surface. The tip-to-sample distance is then measured, and a surface topographical image is created. Non-contact mode is usually selected for analysis of soft materials such as organic materials or biological samples, where the sample surface can easily be damaged.²³ However, artifacts are often detected due to adsorption of fluid or gas species on the surface.

Tapping mode

Tapping mode was used to collect all AFM images in this work. This mode combines the advantages of contact and non-contact modes.²³ In tapping mode, the tip is oscillated at a resonant frequency. However, unlike non-contact mode the Z motion is controlled by the vibration of the cantilever. The Z scanner in tapping mode keeps the tip amplitude constant when the tip is displaced. The tip is moved toward the surface and taps it lightly. As the tip comes into contact with surface the oscillation is dampened. The amplitude of the oscillation is typically > 20 nm in order to overcome capillary and other attractive forces.

2.7 References

1. Vickerman, J. C.; Gilmore, I. S., *Surface Analysis - The Principle Techniques*. Second ed.; John Wiley & Sons Ltd.: 2009.

2. Hagenhoff, B.; Benninghoven, A.; Spinke, J.; Liley, M.; Knoll, W., Time-of-flight secondary ion mass spectrometry investigations of self-assembled monolayers of organic thiols, sulfides, and disulfides on gold surfaces. *Langmuir* **1993**, *9* (7), 1622-1624.

3. Wolf, K. V.; Cole, D. A.; Bernasek, S. L., High-Resolution TOF-SIMS Study of Varying Chain Length Self-Assembled Monolayer Surfaces. *Analytical Chemistry* **2002**, *74* (19), 5009-5016.

4. Aubriet, F.; Poleunis, C.; Bertrand, P., Capabilities of static TOF-SIMS in the differentiation of first-row transition metal oxides. *Journal of Mass Spectrometry* **2001**, *36* (6), 641-651.

5. Ghumman, C. A. A.; Moutinho, A. M. C.; Santos, A.; Teodoro, O. M. N. D.; Tolstogouzov, A., An upgraded TOF-SIMS VG Ionex IX23LS: Study on the negative secondary ion emission of III–V compound semiconductors with prior neutral cesium deposition. *Applied Surface Science* **2012**, *258* (7), 2490-2497.

6. Leeson, A. M.; Alexander, M. R.; Short, R. D.; Briggs, D.; Hearn, M. J., Secondary Ion Mass Spectrometry of Polymers: a ToF SIMS Study of Monodispersed PMMA Standards. *Surface and Interface Analysis* **1997**, *25* (4), 261-274.

7. Fisher, G. L.; Szakal, C.; Wetteland, C. J.; Winograd, N., Role of low-level impurities and intercalated molecular gases in the particle radiolysis of polytetrafluoroethylene examined by static time-of-flight secondary-ion-mass spectrometery. *Journal of Vacuum Science & Technology A* **2006**, *24*, 1166-1171.

8. Colliver, T. L.; Brummel, C. L.; Pacholski, M. L.; Swanek, F. D.; Ewing, A. G.; Winograd, N., Atomic and Molecular Imaging at the Single-Cell Level with TOF-SIMS. *Analytical Chemistry* **1997**, *69* (13), 2225-2231.

9. Fletcher, J. S.; Lockyer, N. P.; Vaidyanathan, S.; Vickerman, J. C., TOF-SIMS 3D Biomolecular Imaging of Xenopus laevis Oocytes Using Buckminsterfullerene (C60) Primary Ions. *Analytical Chemistry* **2007**, *79* (6), 2199-2206.

10. Qin, Z.; Caruso, J. A.; Lai, B.; Matusch, A.; Becker, J. S., Trace metal imaging with high spatial resolution: applications in biomedicine. *Metallomics* **2011**, *3*, 28-37.

11. Vickerman, J. C.; Brown, A. A.; Reed, N. M., Secondary ion mass spectrometry: principles and applications. Clarendon Press: 1989.

12. Castner, D. G., View from the edge. *Nature* 2003, 422, 129-130.

13. van der Heide, P., Secondary Ion Mass Spectrometry: An Introduction to Principles and Practices. John Wiley & Sons, Inc.: 2014.

14. Hüfner, S., *Photoelectron Spectroscopy: Principles and Applications*. Springer Berlin Heidelberg: 2013.

15. Watkins-Curry, P.; Pujol, K. J.; Benavides, K. A.; Burnett, J. V.; Hedlund, J. K.; Bykova, J.; McCandless, G. T.; Walker, A. V.; Chan, J. Y., Emergence of Magnetic States in $Pr_2Fe_{4-x}Co_xSb_5$ (1 < x < 2.5). *Inorganic Chemistry* **2016**, *55* (4), 1946-1951.

16. Biesinger, M. C.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. *Applied Surface Science* **2010**, *257*, 887-898.

17. Pfluger, P.; Street, G. B., Chemical, electronic, and structural properties of conducting heterocyclic polymers: A view by XPS. *The Journal of Chemical Physics* **1984**, *80* (1), 544-553.

18. Kassis, C. M.; Steehler, J. K.; Betts, D. E.; Guan, Z.; Romack, T. J.; DeSimone, J. M.; Linton, R. W., XPS Studies of Fluorinated Acrylate Polymers and Block Copolymers with Polystyrene. *Macromolecules* **1996**, *29* (9), 3247-3254.

19. Haider, M. B., XPS Depth Profile Analysis of Zn_3N_2 Thin Films Grown at Different N₂/Ar Gas Flow Rates by RF Magnetron Sputtering. *Nanoscale Research Letters* **2017**, *12* (5), 1-8.

20. Skoog, D. A.; Holler, F. J.; Crouch, S. R., *Principles of Instrumental Analysis*. Sixth ed.; Brooks/Cole, 2007.

21. Hind, A. R.; Bhargava, S. K.; McKinnon, A., At the solid/liquid interface: FTIR/ATR - the tool of choice. *Advances in Colloid and Interface Science* **2001**, *93*, 91-114.

22. Zhou, W.; Apkarian, R. P.; Lin Wang, Z.; Joy, D., Fundamentals of Scanning Electron Microscopy (SEM). In *Scanning Microscopy for Nanotechnology: Techniques and Applications*, Zhou, W.; Lin Wang, Z., Eds. Springer New York: New York, NY, 2006; pp 1-39.

23. Leng, Y., Materials Characterization : Introduction to Microscopic and Spectroscopic Methods. 1 ed.; Wiley: Hoboken, 2009. <u>http://utd.eblib.com/patron/FullRecord.aspx?p=427775</u>.

24. Leng, Y., Materials Characterization: Introduction to Microscopic and Spectroscopic Methods. Wiley: 2008.

25. Binnig, G.; Quate, C. F.; Gerber, C., Atomic Force Microscope. *Physical Review Letters* **1986**, *56* (9), 930-933.

26. Nie, H.-Y.; Motomatsu, M.; Mizutani, W.; Tokumoto, H., Local elasticity measurement on polymers using atomic force microscopy. *Thin Solid Films* **1996**, *273*, 143-148.

27. Wu, B.; Heidelberg, A.; Boland, J. J., Mechanical properties of ultrahigh-strength gold nanowires. *Nature Materials* **2005**, *4*, 525-529.

28. Carpick, R. W.; Salmeron, M., Scratching the Surface: Fundamental Investigations of Tribology with Atomic Force Microscopy. *Chemical Reviews* **1997**, *97*, 1163-1194.

29. Haugstad, G., Overview of AFM. In *Atomic Force Microscopy*, John Wiley & Sons, Inc.: 2012; pp 1-32.

30. File:AFMsetup.jpg. <u>https://simple.wikipedia.org/wiki/File:AFMsetup.jpg</u> (accessed December 4th, 2018).

CHAPTER 3

POLYTYPE CONTROL OF MOLYBDENUM DISULFIDE USING CHEMICAL BATH DEPOSITION

A version of the chapter has been submitted to The Journal of Chemical Physics,

American Institute of Physics, 2019

3.1 Abstract

Molybdenum disulfide (MoS₂) has a wide range of applications from electronics to catalysis. While the properties of single- and multi- layer MoS₂ films are well understood, controlling the deposited MoS₂ polytype remains a significant challenge. In this work we employ chemical bath deposition (CBD), an aqueous deposition technique, to deposit large area MoS₂ thin films. Using Raman spectroscopy and x-ray photoelectron spectroscopy we demonstrate that the deposited MoS₂ polytype can be changed from semiconducting 2H MoS₂ on hydrophobic –CH₃ and –CO₂C₆F₅ terminated self-assembled monolayers (SAMs) to semi-metallic 1T MoS₂ on hydrophilic –OH and –COOH terminated SAMs. The deposition of the different polytypes is controlled by the surface energies of the substrate; high surface energy, hydrophilic substrates stabilize 1T MoS₂ films while 2H MoS₂, which is the thermodynamically stable polytype, is deposited on lower surface energy substrates. This effect appears to be general enabling the controlled deposition of MoS₂ polytypes further broadens the applications of MoS₂ in catalysis, electronics, sensing, energy storage and optoelectronics.

3.2 Introduction

Transition metal dichalcogenides (TMDs) have varied and unusual physical, electronic and chemical properties¹⁻⁶ and consequently have applications in energy,^{2, 3, 7} sensors,^{3, 8} catalysis, ^{2,3,6}

biomedicine,³ optoelectronics^{6, 8} and nanoelectronics.^{1, 9-11} The large number of potential applications can be attributed to the chemical identity of the chalcogenide (S, Se, Te), and the d-electron count and co-ordination of the transition metal.^{2, 4, 12, 13} TMDs are X-M-X sandwich structures where M is the transition metal and X is the chalcogenide.^{2, 12, 13} The metal atom either has octahedral co-ordination (ABC stacking) leading to tetragonal symmetry (1T) or trigonal co-ordination (ABA stacking) with either hexagonal (2H, 4H_c) or rhombohedral symmetries (3R). Mixed co-ordination structures (4H_b, 6R) are also possible.

Molybdenum disulfide is one of the most widely studied TMDs^{6, 8, 14-25} and has applications from lubrication^{15, 18, 19} to catalysis.^{14, 15, 20} Most recently there has been increasing interest in the use of MoS₂ in electronics^{14, 16, 17, 21, 26, 27} and as photodetectors.^{6, 8} Single-layer MoS₂ transistors with high on-off ratios (~10⁸) and negligible off current have been demonstrated.¹⁴ Photoresponsitivities reaching 880 A W⁻¹ at 561 nm have been reported for single-layer MoS₂ devices suggesting that MoS₂ also has applications in optoelectronics and biomedical imaging.⁸ These applications rely on the direct bandgap of ~1.8 eV of single-layer 2H MoS₂, which is the thermodynamically stable polytype.^{14, 28} However the bandgap of semiconducting 2H MoS₂ varies with the number of layers in the material; for bulk 2H MoS₂ the bandgap is indirect and is ~1.2 eV.¹⁵ Molybdenum disulfide can also be synthesized as a metastable octahedral phase (1T) which is semi-metallic.²⁹ The unique indirect to direct bandgap transition of 2H MoS₂ and semi-metallic nature of 1T MoS₂ enables the tuning of the material properties, and so further broadens the applications of MoS₂.

While the variation in polytype properties is advantageous for potential technological applications such as self-aligned gate structures, it is a large problem for the controlled synthesis

and precise *in situ* placement of these materials. In current methods, such as chemical vapor deposition (CVD),^{2, 3, 14, 17, 23, 25} atomic layer deposition (ALD),^{24, 30} hydrothermal synthesis,^{6, 20, 31} electrodeposition³² and micromechanical^{14, 33} and chemical^{14, 34, 35} exfoliation there is little, or no, control of the deposited MoS₂ polytype. The transition temperature of metastable 1T MoS₂ to 2H MoS₂ is relatively low, 95.7 °C,^{29, 33} and so high temperature deposition of 2H MoS₂. Upon chemical exfoliation using lithium compounds (Li intercalation),^{14, 15, 34, 35} 2H MoS₂ undergoes a transition to 1T MoS₂.^{34, 35} However, the transition to 1T MoS₂ film to single polytype films of 2H MoS₂.^{34, 36} Additionally, the high temperatures used in the synthesis and annealing of MoS₂ are generally incompatible with organic thin films which are used in flexible electronics.³⁷

Given these observations, a low temperature deposition technique is required to control the deposition of 1T and 2H MoS₂. Chemical bath deposition (CBD) is a solution-based method which employs a controlled ion-exchange precipitation reaction to deposit thin films,³⁸ and can be performed at low temperatures (≤ 50 °C). It is attractive for large area synthesis because it is inexpensive since no vacuum equipment is required. Lead sulfide was the first material to be deposited by CBD in the late 1800s,³⁸ and today it is employed to deposit a wide range of semiconductors including sulfides (e.g. PbS, CuS), selenides (e.g. CdSe, NiS), tellurides (e.g. CdTe), halides (e.g. AgBr) and oxides (e.g. ZnO).^{38, 39} Generally, the CBD reaction is controlled by both the concentration of the cation and the anion.³⁸ To control the concentration of the "free" metal ions in solution, metal ions are complexed with species such as nitriloacetate.⁴⁰ The anion concentration (e.g. S²⁻) is controlled via the slow decomposition of a precursor such as thiourea or

thioacetamide.^{38, 40-42} While most CBD films are reported for group 7 to 10 transition metals, ^{38, 39} there have been several studies of CBD films using group 4 to 6 transition metals, e.g. Mo,^{38, 39, 43} W,⁴⁴ Hf,⁴⁵ Ti³⁹ and Zr.⁴⁶

The second requirement for the controlled deposition of 1T and 2H MoS₂ is a means by which to preferentially stabilize 1T MoS₂. The energy difference between few layer-1T and 2H films of MoS₂ is likely to be very small for two reasons. First, the transition temperature of metastable 1T MoS₂ to 2H MoS₂ is relatively low, 95.7 °C.^{29, 33} Using the differential scanning calorimetry data of Yu and coworkers,³³ we estimate that the energy difference between the 1T and 2H polytypes of MoS₂ is ~21.5 kJ mol⁻¹. Second 2H MoS₂ undergoes a transition to 1T MoS₂ upon the intercalation of small ions, such as Li, which can easily be reversed either by heating or aging.^{15, 35, 47, 48} On metals, such as Pt, it is well known that the energy difference between two structural phases of the surface (often called the "reconstructed" and "unreconstructed" surface) is very small,⁴⁹ and substrates can undergo reconstruction upon adsorption of small molecules.^{49, 50} For example, Pt $\{100\}$ has two surface structures: a metastable, unreconstructed (1×1) phase and a thermodynamically stable hexagonal phase. Upon adsorption of CO the hexagonal Pt {100} surface converts to the (1×1) phase while the (1×1) metastable phase does not reconstruct. King and co-workers⁴⁹ determined the energy difference between these two Pt $\{100\}$ phases to be 12 ± 2 kJ Pt_s·mol⁻¹ where Pt_s is the number density of surface Pt atoms.⁴⁹ Thus one possible route to the synthesis 1T MoS₂ films is to exploit the surface energy of the substrate in a similar way to small adsorbate molecules "lifting' the surface reconstructions of Pt and other substrates.⁵⁰

Initially MoS₂ CBD was investigated on functionalized alkanethiolate self-assembled monolayer (SAM) substrates. Functionalized SAMs were chosen because they are ideal model systems; they are synthetically flexible, are well-ordered, have a known number of terminal functional groups and so their surface energy can be controlled.⁵¹ In this paper, we employ –OH and –COOH terminated SAMs which are hydrophilic and have high surface energy. We also use methyl- (–CH₃) and pentafluorophenol ester- (–CO₂C₆H₅) terminated SAMs which are hydrophobic and have a low surface energy. Our results show that 2H MoS₂ is deposited on the low energy SAM surfaces while 1T MoS₂ is stable on the higher energy SAM surfaces. This effect appears to be quite general: 1T MoS₂ deposits on hydrophilic surfaces, such as soda lime glass, while 2H MoS₂ deposits on lower energy, hydrophobic surfaces such as polytetrafluoroethylene (PTFE) tape.

3.3 Results and Discussion

Figure 3.1 Bright field optical images of the bare gold substrate, and after MoS₂ is deposited on MHA, MHL, MHA-PFP and HDT substrates. Deposition time: 24 h.

After MoS₂ CBD for 24 hours, all four SAM substrates show a color change from gold (yellow) to green indicating that a film has deposited (Figure 3.1). The color change is consistent with the deposition of MoS₂ multilayers, which are blue deposits, atop the gold (yellow) substrate.^{16, 31} Atomic force microscopy (AFM) (Figure 3.2) and scanning electron microscopy (SEM) (data not shown) images indicate that the deposited layers have different morphologies which are dependent on the SAM terminal group chemistry. The data show that for –COOH (MHA) and –CH₃ (HDT) terminated SAMs, the deposited films are relatively smooth, polycrystalline films with a grain size of ~100 nm. We note that similar grain sizes have been observed for multilayer MoS₂ films grown by CVD.²⁸ The films also appear to be conformal to the underlying substrate; the RMS roughness of the deposited films is very similar to the underlying –COOH and –CH₃ SAM substrates (Table 3.1).

Figure 3.2 AFM images of the deposited MoS₂ film on MHA, MHL, MHA-PFP and HDT substrates. Deposition time: 24 h.

In contrast, MoS₂ films deposited on $-CO_2C_6F_5$ terminated SAM (MHA-PFP) substrates exhibit a different morphology than on MHA and HDT substrates. The film appears to be incomplete; there are a number of "holes" in the film and the grain size is difficult to determine (Figure 3.2), which is likely due to the interaction of the aqueous deposition solution with the very hydrophobic MHA-PFP SAM substrate. The RMS roughness of the MoS₂ film is similar to the underlying $-CO_2C_6F_5$ terminated SAM substrate within the deposited layer areas, but the overall roughness of the film is larger than the MHA-PFP SAM substrate (Table 3.1). At first glance, on -OH terminated SAMs (MHL) the morphology of the deposited MoS₂ film appears to be similar to those deposited on MHA and HDT substrates; the films are polycrystalline with a grain size of ~100 nm (Figure 3.2). However, the films are very rough; the rms roughness of the deposit is ~10× that of the underlying MHL SAM (Table 3.1).

SAM terminal group	RMS roughness (nm)	
	Before Deposition	After MoS ₂ Deposition
$-CO_2C_6F_5$	2.53	2.05 within deposited area;
		4.42 overall
CH3	1.33	1.58
-OH	1.30	11.62
-СООН	1.44	1.69

Table 3.1 RMS roughness of the samples before and after MoS₂ CBD.

The above data indicate that the morphology of the MoS_2 film is dependent on the terminal group chemistry of the SAM substrate. A possible reason for these observations is that different

MoS₂ polytypes are deposited. Due to the differences in their symmetry, 2H and 1T MoS₂ films can be distinguished in both x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Since it is well known that the presence of a gold layer or nanoparticles affects the Raman shifts and XPS photoelectron binding energies,^{21, 28} the MoS₂ films were mechanically exfoliated from the SAM substrates for analysis. Figure 3.3 displays the Mo 3d and S 2s photoelectron spectra of the deposited MoS₂ films. Between 224 eV and 236 eV, three peaks are observed. For MoS₂ films deposited on HDT and MHA-PFP SAMs the peak binding energies are at 229.8 eV, 232.7 eV and 226.6 eV which correspond to the Mo 3d_{5/2}, Mo 3d_{3/2} and S 2s peaks of 2H MoS₂.³⁴ In contrast, for MoS₂ films deposited on MHA and MHL SAMs these peaks shift to lower binding energies by ~0.9 eV indicating that 1T MoS₂ has deposited.³⁴ Further, the photoelectron peaks can be fit to a single Gaussian-Lorentzian peak indicating that for each MoS₂ film there is only one polytype present. Consistent with the Mo 3d and S 2s peaks, the S 2p_{3/2} binding energy decreases from 161.9 eV to ~161 eV for films deposited on HDT and MHA-PFP, and MHL and MHA SAMs respectively (Appendix figure A3.1).

Figure 3.3 Mo 3d and S 2s photoelectron spectra of mechanically exfoliated MoS₂ films deposited on MHA, MHL, HDT and MHA-PFP SAMs. Deposition time: 24 h.

Since 2H- and 1T- MoS₂ are semiconducting and semi-metallic, respectively, the valence band (VB) XPS data can also be employed to distinguish between MoS₂ polytypes (Appendix A3.2). For MoS₂ deposited on –COOH terminated SAMs (MHA), there is photoelectron intensity from the Mo 4d band (VB) even at a binding energy of 0 eV which is the Fermi level of the system (E_F). These observations indicate that the MoS₂ layer is metallic and is consistent with deposition of 1T MoS₂. On –OH terminated SAMs (MHL) a small bandgap of 0.8 eV is observed which is also consistent with the deposition of semi-metallic 1T MoS₂.⁵² In contrast, for MoS₂ deposited on –CO₂C₆F₅ (MHA-PFP) terminated SAMs, the valence band maximum (VBM) is at higher binding energies than 0 eV indicating the deposit is semiconducting, ie. 2H MoS₂. For MoS₂ deposited on HDT the VBM is at 1.30 eV which is consistent with the bandgap typically observed for multilayer 2H MoS₂.²⁸ On MHA-PFP SAMs the measured VBM, 1.0 eV, is lower than expected for semiconducting 2H MoS₂ (Appendix figure A3.2). However, we note that for this sample, photoelectron peaks due to Au exfoliated with the sample were also observed, and the

measured VBM is likely lower due to the presence of Au under the MoS_2 film. For HDT, MHL and MHA-PFP, we note that the VB spectra also show that there is a small tail in front of the valence band edge (Appendix figure A3.1) which likely arise from defect-induced gap states.²⁸

Raman spectroscopic studies of the exfoliated MoS₂ films are consistent with the XPS data (Figure 3.4). There are two prominent first-order Raman active modes which correspond to the E_{2g}^1 and A_{1g} modes.^{19, 53} The in-plane E_{2g}^1 mode is due to the vibration of the Mo and S atoms in opposite directions while the out-of-plane A_{1g} mode results from the symmetric vibration of S atoms along the c-axis. Additionally, in the spectra of the MoS₂ deposited on –COOH (MHA) and –OH (MHL) SAM substrates, there are additional weak modes in the lower frequency range suggesting the presence of 1T MoS₂. These additional broad peaks centered at ~160 cm⁻¹, ~225 cm⁻¹ and ~338 cm⁻¹ correspond to the J₁, J₂ and J₃ modes which are active in 1T MoS₂ and not in 2H MoS₂.^{6, 53} We note that as the deposition time increases the J₁, J₂ and J₃ modes become stronger in intensity (Appendix figure A3.3).

Figure 3.4 Raman spectra of mechanically exfoliated MoS₂ films which were deposited on MHA, MHL, HDT and MHA-PFP SAMs. Deposition time: 24 h.

Additionally, for the –OH terminated SAMs we observe that there are some areas which are more characteristic of 2H MoS_2 (data not shown). In testing sixteen areas on four different samples, which were synthesized on different days, four spots appeared to have Raman spectra characteristic of 2H MoS_2 while the other areas were composed of 1T MoS_2 (ie. 25% were 2H MoS_2).

SAM terminal	E_{2g}^1	A_{1g}	Δ (cm ⁻¹)
group	(cm ⁻¹)	(cm ⁻¹)	
-CO ₂ C ₆ F ₅	381	405	24
-CH ₃	380	405	25
-OH	381	405	24
-СООН	381	405	24

Table 3.2 Frequencies observed for E_{2g}^1 , and A_{1g} modes, and the difference in frequency between E_{2g}^1 and A_{1g} modes (Δ).

The frequencies observed for the E_{2g}^1 and A_{1g} modes are lower than those generally reported for bulk 2H MoS₂ ($E_{2g}^1 \sim 383$ cm⁻¹and $A_{1g} \sim 408$ cm⁻¹) (Table 3.2). There are often slight differences in the frequencies of Raman lines due to differences in temperature, pressure, crystal size, polytype, and the number of layers in the sample.^{19, 53-55} In agreement with the AFM data, the observed Raman shifts suggest that the films are composed of small crystallites or platelets.⁵⁵ We also note that the full-width-half-maximum (FWHM) of the Raman peaks are relatively broad, 8-9 cm⁻¹, compared to other mechanically exfoliated samples.³⁴ This is also consistent with a film composed of small crystallites or platelets. The frequencies of the E_{2g}^1 and A_{1g} modes can be additionally employed to estimate the thickness of the MoS₂ deposit. Li *et al*⁵⁴ reported that for mechanically exfoliated MoS₂ that the A_{1g} peak frequency increases from 403 cm⁻¹ for a monolayer to 407 cm⁻¹ for bulk material while the E_{2g}^1 peak frequency decreases from 384 cm⁻¹ to 382 cm⁻¹. This effect was attributed to changes in the MoS₂ interlayer coupling. For the deposited MoS₂ films the difference in the E_{2g}^1 and A_{1g} peak frequencies is ~24 cm⁻¹ (Table 3.2) suggesting that the deposit is approximately 5 layers thick (~3.25 nm).^{14, 54} In the XPS spectra for the unexfoliated MoS₂ samples clear signals are observed from the Au substrate, and so we can determine the maximum thickness of the MoS₂ films in the following way. According to the uniform overlayer model:

$$I_{Au}^{x} = I_{Au}^{0} exp\left(-\frac{x}{\cos\theta \times L_{Au}}\right)$$
3.1

where I_{Au}^0 and I_{Au}^x are the Au 4f_{7/2} peak intensities (peak areas) before and after MoS₂ deposition, respectively; *x* is the thickness of MoS₂ film; θ is the photoelectron take-off angle with respect to the sample surface normal; and L_{Au} is the average practical effective attenuation length of Au 4f_{7/2} photoelectrons in the MoS₂ overlayer. The value of L_{Au} was calculated using the TPP-2M predictive inelastic mean free path (IMFP) equation in the NIST Standard Reference Database 82⁵⁶ to be between 2.557 nm (bulk MoS₂ E_g = 1.23 eV) and 2.565 nm (monolayer MoS₂ E_g = 1.80 eV). The following values were used during calculation: electron kinetic energy = 1402.6 eV, asymmetry parameter (β) = 1.04, number of valence electrons per molecule (N_v) = 18,⁵⁷ and density = 5.06 g/cm³. After MoS₂ deposition, for unexfoliated samples the intensity of the Au 4f_{7/2} photoelectron peak is ~10 % of the bare SAM samples. Assuming that the deposited MoS₂ forms a complete overlayer, we calculate that the films are ~4.0 nm thick (~6 layers¹⁴) which is consistent with the Raman spectroscopic data.

The data clearly show that the deposited MoS_2 polytype is dependent on the chemistry of the SAM terminal group. There are two possible reasons for this behavior. First, the interaction of the precursors with the SAM terminal groups leads to the nucleation and growth of different MoS_2 polytypes. Pramanik and Bhattacharya⁴³ proposed that MoS_2 CBD occurs via the following reaction pathway:

$$MoO_4^{2-} + NH_2NH_2 + S^{2-} \rightarrow MoS_2 + H_2O + N_2$$

$$3.2$$

In this deposition, S²⁻ ions are formed by the slow decomposition of thioacetamide:³⁸

$$C_2H_5NS + OH^- \rightarrow CH_3COO^- + NH_3 + HS^-$$
3.3

$$HS^- + OH^- \rightarrow S^{2-} + H_2O \tag{3.4}$$

The above reaction suggests that molybdate ions, MOQ_4^{2-} , are reduced by hydrazine to Mo^{4+} which then react to form MoS_2 . In deposition of PbS,⁴¹ CdSe,⁴⁰ ZnO⁵⁸ and ZnS,⁴² Walker and co-workers showed that the CBD reaction pathways were dependent on the terminal functional group chemistry of SAMs. On –OH and –CH₃ terminated SAMs deposition occurs via a cluster-by-cluster mechanism. In contrast on –COOH terminated SAMs the film growth occurs via an ion-by-ion reaction. At the typical deposition bath pHs (pH~11) the –COOH terminal functional groups are almost fully deprotonated and so the deposits nucleate at metal ion-carboxylate surface complexes.^{40-42, 58} However, the formation of metal ion-terminal group complexes cannot explain the observed differences in the MoS₂ film growth. On –OH and –COOH terminated SAMs, the metastable 1T MoS₂ polytype deposits. While the –COOH terminal groups can deprotonate at the bath pH employed (pH~11), the –OH terminal groups do not deprotonate. The pK_a of hexadecanol

is 16.2,⁵⁹ and surface $pK_{\frac{1}{2}}$ values are typically 2-5 units higher than the bulk pK_a value.⁶⁰ Thus, the –OH terminal groups do not deprotonate and there are no metal ion-terminal group complexes present to act as the nucleation sites for deposition. Further, on MHA-PFP and HDT substrates, which also do not deprotonate and form metal-terminal group complexes, the thermodynamically stable 2H MoS₂ is deposited. It is therefore unlikely that the interaction of metal ions with the SAM surface leads to the deposition selectivity of the MoS₂ polytype.

A second reason for the observed behavior is that the surface energy of the SAMs stabilizes the metastable 1T MoS₂. Small differences in surface energies are well known to drive surface reconstructions and change surface properties of metallic and semiconducting surfaces.⁵⁰ These changes are often caused by the adsorption, or reaction with, the surface. For MoS₂, it has been shown that lithium intercalation of 2H MoS₂ films leads to the formation of 1T MoS₂. The mechanism is believed to involve charge transfer between the Li and MoS₂ substrate. Voiry *et al*³⁶ demonstrated that covalent functionalization of 1T MoS₂ by groups such as $-CH_3$ and $-CH_2ONH_2$ altered its properties such that the MoS₂ film changed from metallic to semiconducting and exhibited photoluminescence. More recently Tang and Jiang⁵² predicted that 1T MoS₂ is more stable than 2H MoS₂ after functionalizing the surface with ~25 % of a monolayer of small functional groups, such as H, CH₃, CF₃, OCH₃ and NH₂ groups. Further the bandgap of the 1T MoS₂ layer could be adjusted from 0 eV to 1 eV depending on the functional group chemistry.

Acid-terminated and hydroxyl-terminated alkanethiol SAMs have low water contact angles, $\sim 0^{\circ 61}$ and $\sim 20^{\circ 61-63}$ respectively, indicating that they are hydrophilic and have a relatively high surface energy. In contrast, $-CH_3$ and $-CO_2C_6H_5$ terminated SAMs have a large water contact angle, $\sim 120^{\circ}$, $^{61-63}$ and so are hydrophobic and have a lower surface energy. Our data indicates that

the more thermodynamically stable 2H MoS_2 polytype is deposited on the surfaces with lower energy, ie. $-CH_3$ and $-CO_2C_6H_5$ terminated SAMs, while 1T MoS_2 is deposited on the higher surface energy -COOH and -OH terminated SAMs suggesting that the extra surface energy stabilizes the metastable 1T MoS_2 film.

To test the hypothesis that the surface energy of the substrate is critical in determining the MoS₂ formed using CBD at room temperature, the following test was performed. Using room temperature CBD, MoS₂ was synthesized on a variety of substrates. The hydrophobic (low surface energy) substrates employed were PTFE (polytetrafluoroethylene) tape, which is commonly used to seal pipe threads, and hydrogen functionalized Si (H-Si). The hydrophilic (high surface energy) substrates used were soda-lime glass slides, and a native oxide covered silicon wafer (SiO₂). On the low surface energy substrates Raman spectra show that 2H MoS₂ is deposited (Figure 3.5a), while the high surface energy substrates Raman spectra show that 1T MoS₂ is synthesized (Figure 3.5b). Thus, our hypothesis that the surface energy of the substrate is critical in determining the growth of the MoS₂ using room temperature CBD is confirmed. Further, the effect is a general one and does not require a surface with a well-ordered and known density of functional groups.

Using the surface energy of functionalized SAMs we can estimate the difference in surface energy required to stabilize the 1T MoS₂ films. While there are many reported measurements of the contact angles for functionalized SAMs, there are few studies that have quantified the surface energies of SAM surfaces. Takenga *et al*⁶⁴ observed that the surface energies of $CH_3(CF_2)_n(CH_2)_{12-n}SH$ SAMs decreased substantially from 19 mJ/m² for tridecanethiol ($CH_3(CH_2)_{12}SH$) to ~9mJ/m² for partially fluorinated SAMs. The surface energy was observed to remain approximately constant as the number of fluorinated carbons increased from n = 4 to

n = 10. Lamprou *et al*⁶⁵ measured the variation of the SAM surface energies as a function of the terminal group chemistry.

Figure 3.5 Raman spectra of mechanically exfoliated MoS_2 films which were deposited on a) PTFE tape, and Si-H; and b) soda lime glass, and silicon dioxide (SiO₂). Note: The MoS_2 film was not exfoliated from the PTFE tape, and so exhibits a Raman scattering peak at ~300 cm⁻¹ due to the presence of PTFE. Deposition time: 24 h.

They observed that the surface energy was consistent with the nature of the ω -functional group: $-OH > -COOH > -CH_3 >> -CF_3$. For well-ordered -OH and -COOH terminated SAMs, the surface energy was ~30 to ~35 mJ/m² suggesting that this is the surface energy range required

to stabilize the 1T MoS₂ film. We note that the MHA SAM substrates employed in this study are likely to have a higher energy than the surface energy reported by Lamprou *et al.*⁶⁵ For MHA, the surface $pK_{\frac{1}{2}}$ is ~8.0, which is the pH of the solution at which a surface is 50 % ionized.⁶⁰ Thus at the bath pH employed (pH ~11) the –COOH terminal groups is almost fully deprotonated, i.e. the terminal functional groups are carboxylates (COO⁻), leading to an increased surface energy.^{27, 60}

It is interesting to note that the RMS roughness of the deposited MoS_2 films on -OH terminated SAM substrates is approximately $10\times$ higher than the underlying SAM and is significantly higher than the other deposited MoS_2 films (Table 3.1). In the Raman spectra the majority of the samples exhibit 1T MoS_2 features while 25% exhibit spectra characteristic of 2H MoS_2 . These observations suggest that the high film roughness for MoS_2 deposited on -OH terminated SAMs is due to the formation of a mixed MoS_2 polytype surface; the layer is mostly 1T MoS_2 but has some areas of 2H MoS_2 . Since a mixed MoS_2 layer is deposited on MHL substrates, the data also suggest that the surface energy of the -OH terminated SAM, ~30 mJ/m²,⁶⁵ is very close to the energy required to stabilize 1T MoS_2 . Thus, for surfaces with energies less than 30 mJ/m², thermodynamically stable 2H MoS_2 is deposited.

3.4 Conclusions

We have investigated the room temperature chemical bath deposition of MoS_2 on a variety of substrates. Our results indicate that the substrate surface energy is critical in the deposition process and controls the polytype of the MoS_2 deposited. On hydrophilic surfaces, which have a high surface energy, metastable 1T MoS_2 is deposited. In contrast, on low energy surfaces (hydrophobic surfaces) the thermodynamically most stable polytype 2H MoS_2 is deposited. Further, this process synergistically integrates the ease of solution-based synthesis with the scalability of

lithographically defined films, and thus enables the formation of new self-aligned structures with many technological applications in sensing, optoelectronics and nanoelectronics.

3.5 Methods

3.5.1 Materials

All materials were used as received without any further purification. Ammonium molybdate (99.98%), hexadecanethiol (HDT) (99+%), 16-mercaptohexadecanoic acid (MHA) (90%), and 16-hydroxy-1-hexadecanethiol (MHL) (99+%), dichloromethane (\geq 99.5%), sulfuric acid (95 – 98%) and acetone (\geq 99.5%) were purchased from Sigma-Aldrich (St. Louis, MO). 14.8 M ACS-grade ammonium hydroxide was obtained from Ward's Science+ (Rochester, NY). Hydrazine monohydrate (98+%), thioacetamide (99% ACS grade), 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) (98+%), and pentafluorophenol (99%) were acquired from Alfa Aesar, Inc. (Ward Hill, MA). Ethanol (200 proof, undenatured) was purchased from Spectrum Chemical MFG Corp (New Brunswick, NJ). Hydrofluoric acid (49%), ammonium fluoride (40%), hydrogen peroxide (30%) were acquired from J.T. Baker (Avantor, Center Valley, PA). Acetone (\geq 99.5%; histological grade) and isopropyl alcohol (99.5%) were obtained from Fisher Chemical (Thermo Fisher Scientific Inc., Waltham, MA) and BDH Chemicals (VWR International LLC, Radnor, PA) respectively.

PTFE thread seal tape (MIL SPEC. T -27730A; $\frac{1}{2}$ ") was purchased from Home Depot. VistaVisionTM soda lime glass microscope slides (75 × 25 × 1 mm³) and methanol (≥ 99.8%) were obtained from VWR International, LLC (Radnor, PA). Prior to use microscope slides were cut using a diamond scribe, rinsed in deionized water and then isopropyl alcohol, and dried using nitrogen gas. Additional methanol (99.8 %) was purchased from Macron Chemicals (Avantor, Center Valley, PA).

The gold substrates used in these studies were prepared in the Cleanroom Research Laboratory, University of Texas at Dallas. Briefly, silicon wafers ($\langle 111 \rangle$ orientation) were acquired from Addison Engineering Inc. (San Jose, CA), and ~200 Å of chromium followed by ~1000 Å of gold were thermally deposited onto these substrates.

Native silicon oxide samples were prepared using silicon wafers ($\langle 111 \rangle$ orientation; Addison Engineering Inc.). The wafer samples were sonicated for 10 min in acetone, and then thoroughly rinsed using methanol and followed by deionized water. The substrates were then dried using N₂ gas.

Hydrogen terminated silicon was prepared by using previously described methods.⁶⁶ Briefly, n-type silicon wafers (phosphorus-doped, resistivity 20-60 Ω cm; float zone; (111) orientation; Silicon Valley Microelectronics Inc. , Santa Clara, CA) were cut into ~(1.5 × 3.8) cm² pieces. The samples were then sonicated in dichloromethane, acetone and methanol for 10 min each, and then left in deionized water overnight. Afterwards, the silicon samples were cleaned at 80 °C in a Piranha etch bath (3:1 H₂SO₄: H₂O₂) for 30 minutes. Finally, Si was dipped in 49% hydrofluoric acid for 30 s and then ammonium fluoride for 2.5 min at room temperature. To ensure that the SiO₂ layer was fully reacted to Si-H, IR spectra of the silicon wafers was obtained before and after the HF/ammonium fluoride treatment.

3.5.2 Preparation of Self-Assembled Monolayers

The preparation of alkanethiolate self-assembled monolayers (SAMs) on Au has been previously described in detail.^{67, 68} Briefly, a well-ordered SAM is prepared by immersing a gold substrate

into a 1 mM solution of desired alkanethiol (MHL, MHA or HDT) in ethanol for 24 hours at room temperature. The samples were then rinsed with ethanol and dried with nitrogen gas.

Preparation of perfluorinated MHA SAMs (MHA-PFP) on Au has previously been described in detail.⁶⁹ First, a MHA SAM on Au is prepared. The sample is then immersed in an isopropanol solution containing 0.1 M EDC and 0.2 M PFP. After 5 hours the substrate is removed from the reaction solution, thoroughly rinsed with deionized water and ethanol, and then dried with nitrogen gas.

After preparation, the SAM substrates were characterized using methods including single wavelength ellipsometry, time-of-flight secondary ion mass spectrometry and x-ray photoelectron spectroscopy.

3.5.3 Chemical Bath Deposition of Molybdenum Disulfide

The CBD of the MoS₂ films was adapted from the method reported by Pramanik and Bhattacharya.⁴³ First an aqueous solution containing 5% ammonium molybdate in 10 mL of water was prepared and stirred continuously while the other reagents were prepared. Next, 15 mL of 14.8 M ammonium hydroxide followed by 10 mL of 80% hydrazine hydrate were added to the solution. Finally, 15 mL of 1M thioacetamide was added. The deposition bath was then stirred for 2 minutes before immersing the substrate into solution. The sample was placed facing upwards in the deposition bath for the desired deposition time, usually ~24 hours. After deposition the samples were removed and washed with deionized water and dried with nitrogen gas prior to further characterization. All depositions were carried out at room temperature, 21 ± 2 °C.

3.5.4 Optical Microscopy

Optical microscopy was performed using a Keyence VHX-2000 digital microscope. Bright-field images were obtained from representative samples with 2500× magnification. The images shown are representative of the data obtained.

3.5.5 Atomic Force Microscopy

Atomic force microscope (AFM) measurements were collected using tapping mode of a Nanoscope Dimension 3100 microscope (Veeco Instruments, Inc., Plainview, NY). The images were processed using Gwyddion 2.50. The RMS roughness was obtained over $(1 \times 1) \mu m^2$ from at least 3 different areas, and the data reported is the average of those measurements.

3.5.6 X-ray photoelectron Spectroscopy

Ex-situ X-ray photoelectron spectroscopy (XPS) were measured using a PHI VersaProbe II Scanning XPS Microbrobe (Physical Electronics Inc., Chanhassen, MN) equipped with a monochromatic Al K α X-ray source (E_p = 1486.7 eV). During measurement, the pressure was lower than 6.7 × 10⁻¹⁰ mbar. High resolution spectra were collected with pass energy of 23.5 eV, energy step of 0.2 eV, and analysis angle of 45°. All spectra were collected using a charge compensation system with both electron and ion beams incident on the surface. The binding energies were calibrated using the C 1s binding energy (284.8 eV).⁷⁰ Spectra were analyzed using CasaXPS 2.3.17 (RBD Instruments, Inc., Bend, OR) and AA Analyzer 1.07.

3.5.6 Raman Spectroscopy

Raman spectra were collected using a Thermo Scientific DXR Raman microscope equipped with a 532 nm diode laser and a $50 \times$ objective lens. Measurements were collected with a laser power 0.3 mW through a 25 µm slit aperture, and the estimated laser spot size is 0.7 µm. The Raman
shifts were calibrated using the peak shift frequency of Si, 521 cm⁻¹.⁷¹ To reduce fluorescence,

"fluorescence correction" was employed.

3.6 References

1. Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutierrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J.; Ismach, A. F.; Johnston-Halperin, E.; Kuno, M.; PLashnitsa, V. V.; Robinson, R. D.; Ruoff, R. S.; Salahuddin, S.; Shan, J.; Shi, L.; SPencer, M. G.; Terrones, M.; Windl, W.; Goldberger, J. E., Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. *ACS Nano* **2013**, *7* (4), 2898-2926.

2. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H., The chemistry of twodimensional layered transition metal dichalcogenide nanosheets. *Nat. Chem.* **2013**, *5*, 263-275.

3. Tan, C.; Zhang, H., Two-dimensional transition metal dichalcogenide nanosheet-based composites. *Chem. Soc. Rev.* **2015**, *44* (9), 2713-2731.

4. Yuan, H.; Wang, H.; Cui, Y., Two-Dimensional Layered Chalcogenides: From Rational Synthesis to Property Control via Orbital Occupation and Electron Filling. *Acc. Chem. Res.* **2015**, *48* (1), 81-90.

5. Heine, T., Transition Metal Chalcogenides: Ultrathin Inorganic Materials with Tunable Electronic Properties. *Acc. Chem. Res.* **2015**, *48* (1), 65-72.

6. Lv, R.; Robinson, J. A.; Schaak, R. E.; Sun, D.; Sun, Y.; Mallouk, T. E.; Terrones, M., Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Singleand Few-Layer Nanosheets. *Acc. Chem. Res.* **2015**, *48*, 56-64.

7. Chang, K.; Chen, W., l-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries. *ACS Nano* **2011**, *5* (6), 4720-4728.

8. Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A., Ultrasensitive photodetectors based on monolayer MoS₂. *Nature Nanotech.* **2013**, *8*, 497.

9. Song, W. G.; Kwon, H.-J.; Park, J.; Yeo, J.; Kim, M.; Park, S.; Yun, S.; Kyung, K.-U.; Grigoropoulos, C. P.; Kim, S.; Hong, Y. K., High-Performance Flexible Multilayer MoS₂ Transistors on Solution-Based Polyimide Substrates. *Adv. Funct. Mater.* **2016**, *26*, 2426-2434.

10. Xi, Y.; Serna, M. I.; Cheng, L.; Gao, Y.; Baniasadi, M.; Rodriguez-Davila, R.; Kim, J.; Quevedo-Lopez, M. A.; Minary-Jolandan, M., Fabrication of MoS₂ thin film transistors via selective-area solution deposition methods. *J. Mater. Chem. C* **2015**, *3*, 3842-3847.

11. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A., Single-layer MoS₂ transistors. *Nature Nanotech.* **2011**, *6*, 147-150.

12. Wilson, J. A.; Yoffe, A. D., The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. *Adv. Phys.* **1969**, *18* (73), 193-335.

13. Mattheiss, L. F., Band Structures of Transition-Metal Dichalcogenide Layer Compounds. *Phys. Rev. B* 1973, 8 (8), 3719-3740.

14. Li, X.; Zhu, H., Two-dimensional MoS₂: Properties, preparation, and applications. *J. Materiomics* **2015**, *1* (1), 33-44.

15. Benavente, E.; Santa Ana, M. A.; Mendizábal, F.; González, G., Intercalation chemistry of molybdenum disulfide. *Coord. Chem. Rev.* **2002**, *224* (1), 87-109.

16. Choudhary, N.; Patel, M. D.; Park, J.; Sirota, B.; Choi, W., Synthesis of large scale MoS₂ for electronics and energy applications. *J. Mater. Res.* **2016**, *31* (7), 824-831.

17. Xu, E. Z.; Liu, H. M.; Park, K.; Li, Z.; Losovyj, Y.; Starr, M.; Werbianskyj, M.; Fertig, H. A.; Zhang, S. X., p-Type transition-metal doping of large-area MoS₂ thin films grown by chemical vapor deposition. *Nanoscale* **2017**, *9* (10), 3576-3584.

18. Tedstone, A. A.; Lewis, D. J.; Hao, R.; Mao, S.-M.; Bellon, P.; Averback, R. S.; Warrens, C. P.; West, K. R.; Howard, P.; Gaemers, S.; Dillon, S. J.; O'Brien, P., Mechanical Properties of Molybdenum Disulfide and the Effect of Doping: An in Situ TEM Study. *ACS Appl. Mater. Interfaces* **2015**, *7* (37), 20829-20834.

19.Windom, B. C.; Sawyer, W. G.; Hahn, D. W., A Raman Spectroscopic Study of MoS₂ and MoO₃: Applications to Tribological Systems. *Tribol. Lett.* **2011**, *42* (3), 301-310.

20. Li, M.; Wang, D.; Li, J.; Pan, Z.; Ma, H.; Jiang, Y.; Tian, Z., Facile hydrothermal synthesis of MoS_2 nano-sheets with controllable structures and enhanced catalytic performance for anthracene hydrogenation. *RSC Adv.* **2016**, *6* (75), 71534-71542.

21. Gong, C.; Huang, C.; Miller, J.; Cheng, L.; Hao, Y.; Cobden, D.; Kim, J.; Ruoff, R. S.; Wallace, R. M.; Cho, K.; Xu, X.; Chabal, Y. J., Metal Contacts on Physical Vapor Deposited Monolayer MoS₂. *ACS Nano* **2013**, *7* (12), 11350-11357.

22. Leng, K.; Chen, Z.; Zhao, X.; Tang, W.; Tian, B.; Nai, C. T.; Zhou, W.; Loh, K. P., Phase Restructuring in Transition Metal Dichalcogenides for Highly Stable Energy Storage. *ACS Nano* **2016**, *10* (10), 9208-9215.

23. Amani, M.; Burke, R. A.; Ji, X.; Zhao, P.; Lien, D.-H.; Taheri, P.; Ahn, G. H.; Kirya, D.; Ager, J. W.; Yablonovitch, E.; Kong, J.; Dubey, M.; Javey, A., High Luminescence Efficiency in MoS₂ Grown by Chemical Vapor Deposition. *ACS Nano* **2016**, *10* (7), 6535-6541.

24. Kim, Y.; Song, J.-G.; Park, Y. J.; Ryu, G. H.; Lee, S. J.; Kim, J. S.; Jeon, P. J.; Lee, C. W.; Woo, W. J.; Choi, T.; Jung, H.; Lee, H.-B.-R.; Myoung, J.-M.; Im, S.; Lee, Z.; Ahn, J.-H.; Park, J.; Kim, H., Self-Limiting Layer Synthesis of Transition Metal Dichalcogenides. *Sci. Rep.* **2016**, *6*, 18754.

25. Shi, Y.; Li, H.; Li, L.-J., Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. *Chem. Soc. Rev.* **2015**, *44* (9), 2744-2756.

26. Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C.; Wong, H. S. P.; Javey, A., MoS₂ transistors with 1-nanometer gate lengths. *Science* **2016**, *354* (6308), 99-102.

27. Song, J.; Kim, M. W., Excess Charge Density and its Relationship with Surface Tension Increment at the Air–Electrolyte Solution Interface. *J. Phys. Chem. B* **2011**, *115* (8), 1856-1862.

28. Lin, Y.-K.; Chen, R.-S.; Chou, T.-C.; Lee, Y.-H.; Chen, Y.-F.; Chen, K.-H.; Chen, L.-C., Thickness-Dependent Binding Energy Shift in Few-Layer MoS₂ Grown by Chemical Vapor Deposition. *ACS Appl. Mater. Interfaces* **2016**, *8* (34), 22637-22646.

29. Wypych, F.; Schöllhorn, R., 1T-MoS2, a new metallic modification of molybdenum disulfide. *J. Chem. Soc., Chem. Commun.* **1992**, (19), 1386-1388.

30. Lee, K.; Kim, D. H.; Parsons, G. N., Free-Floating Synthetic Nanosheets by Atomic Layer Deposition. *ACS Appl. Mater. Interfaces* **2014**, *6*, 10981-10985.

31. Yang, H.; Giri, A.; Moon, S.; Shin, S.; Myoung, J.-M.; Jeong, U., Highly Scalable Synthesis of MoS2 Thin Films with Precise Thickness Control via Polymer-Assisted Deposition. *Chem. Mater.* **2017**, *29* (14), 5772-5776.

32. Ponomarev, E. A.; Neumann-Spallart, M.; Hodes, G.; Lévy-Clément, C., Electrochemical deposition of MoS_2 thin films by reduction of tetrathiomolybdate. *Thin Solid Films* **1996**, *280* (1), 86-89.

33. Yu, Y.; Nam, G.-H.; He, Q.; Wu, X.-J.; Zhang, K.; Yang, Z.; Chen, J.; Ma, Q.; Zhao, M.; Liu, Z.; Ran, F.-R.; Wang, X.; Li, H.; Huang, X.; Li, B.; Xiong, Q.; Zhang, Q.; Liu, Z.; Gu, L.; Du, Y.; Huang, W.; Zhang, H., High phase-purity 1T'-MoS₂- and 1T'-MoSe₂-layered crystals. *Nat. Chem.* **2018**, *10* (6), 638-643.

34. Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M., Photoluminescence from Chemically Exfoliated MoS₂. *Nano Letts.* **2011**, *11* (12), 5111-5116.

35. Fan, X.; Xu, P.; Zhou, D.; Sun, Y.; Li, Y. C.; Nguyen, M. A. T.; Terrones, M.; Mallouk, T. E., Fast and Efficient Preparation of Exfoliated 2H MoS₂ Nanosheets by Sonication-Assisted Lithium Intercalation and Infrared Laser-Induced 1T to 2H Phase Reversion. *Nano Letts.* **2015**, *15*, 5956-5960.

36. Voiry, D.; Goswami, A.; Kappera, R.; Silva, C. d. C. C. e.; Kaplan, D.; Fujita, T.; Chen, M.; Asefa, T.; Chhowalla, M., Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. *Nat. Chem.* **2014**, *7*, 45.

37. Zardetto, V.; Brown, T. M.; Reale, A.; Di Carlo, A., Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. *J. Polym. Sci., Part B: Polym. Phys.* **2011**, *49* (9), 638-648.

38. Hodes, G., *Chemical solution deposition of semiconductor films* Marcel Dekker: New York, 2003.

39. Pawar, S. M.; Pawar, B. S.; Kim, J. H.; Joo, O.-S.; Lokhande, C. D., Recent status of chemical bath deposited metal chalcogenide and metal oxide thin films. *Curr. Appl, Phys.* **2011**, *11* (2), 117-161.

40. Lu, P.; Walker, A. V., Selective Formation of Monodisperse CdSe Nanoparticles on Functionalized Self-Assembled Monolayers Using Chemical Bath Deposition. *Electrochim. Acta* **2010**, *55*, 8126-8134.

41. Yang, J.; Walker, A. V., Morphological Control of PbS Grown on Functionalized Self-Assembled Monolayers by Chemical Bath Deposition. *Langmuir* **2014**, *30*, 6954-6962.

42. Lu, P.; Walker, A. V., Making Nanoflowerbeds: Reaction Pathways Involved in the Selective Chemical Bath Deposition of ZnS on Functionalized Alkanethiolate Self-Assembled Monolayers. *ACS Nano* **2009**, *3*, 370-378.

43. Pramanik, P.; Bhattacharya, S., Preparation and Characterization of thin films of molybdenum sulphide and selenide by a chemical deposition technique. *J. Mater. Sci. Lett.* **1989**, *8*, 781-782.

44. Chate, P. A.; Sathe, D. J.; Hankare, P. P., Electrical, optical and morphological properties of chemically deposited nanostructured tungsten disulfide thin films. *Appl. Nanosci.* **2013**, *3* (1), 19-23.

45. Kariper, I. A., Production of HfO₂ Thin Films Using Different Methods: Chemical Bath Deposition, SILAR and Sol-Gel Processes. *Int. J. Miner. Metall. Mater.* **2014**, *21*, 832-838.

46. Liu, J.-F.; Nistorica, C.; Gory, I.; Skidmore, G.; Mantiziba, F. M.; Gnade, B. E., Layer-bylayer deposition of zirconium oxide films from aqueous solutions for friction reduction in siliconbased microelectromechanical system devices. *Thin Solid Films* **2005**, *492* (1), 6-12.

47. Py, M. A.; Haering, R. R., Structural destabilization induced by lithium intercalation in MoS₂ and related compounds. *Can. J. Phys.* **1983**, *61* (1), 76-84.

48. Guo, Y.; Sun, D.; Ouyang, B.; Raja, A.; Song, J.; Heinz, T. F.; Brus, L. E., Probing the Dynamics of the Metallic-to-Semiconducting Structural Phase Transformation in MoS2 Crystals. *Nano Letts.* **2015**, *15* (8), 5081-5088.

49. Brown, W. A.; Kose, R.; King, D. A., Femtomole Adsorption Calorimetry on Single-Crystal Surfaces. *Chem. Rev.* **1998**, *98* (2), 797-832.

50. Somorjai, G. A., *Introduction to Surface Chemistry and Catalysis*. John Wiley & Sons: New York, 1994.

51. Ulman, A., Formation and Structure of Self-Assembled Monolayers. *Chem. Rev.* 1996, 96, 1533-1554.

52. Tang, Q.; Jiang, D.-e., Stabilization and Band-Gap Tuning of the 1T-MoS₂ Monolayer by Covalent Functionalization. *Chem. Mater.* **2015**, *27* (10), 3743-3748.

53. Jiménez Sandoval, S.; Yang, D.; Frindt, R. F.; Irwin, J. C., Raman study and lattice dynamics of single molecular layers of MoS₂. *Phys. Rev. B* **1991**, *44* (8), 3955-3962.

54. Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D., From Bulk to Monolayer MoS₂: Evolution of Raman Scattering. *Adv. Funct. Mater.* **2012**, *22*, 1385-1390.

55. Frey, G. L.; Tenne, R.; Matthews, M. J.; Dresselhaus, M. S.; Dresselhaus, G., Raman and resonance Raman investigation of MoS₂ nanoparticles. *Phys. Rev. B* **1999**, *60* (4), 2883-2892.

56. Powell, C. J.; Jablonski, A., *NIST Electron Effective-Attenuation-Length Database - Version 1.3.* National Institute of Standards and Technology: Gaithersburg, MD, 2011.

57. Tanuma, S.; Powell, C. J.; Penn, D. R., Calculation of Electron Inelastic Mean Free Paths (IMFPs) VII. Reliability of the TPP-2M IMFP Predictive Equation. *Surface and Interface Analysis* **2003**, *35*, 268-275.

58. Shi, Z.; Walker, A. V., Chemical Bath Deposition of ZnO on Functionalized Self-Assembled Monolayers: Selective Deposition and Control of Deposit Morphology. *Langmuir* **2015**, *31* (4), 1421-1428.

59. PubChem Compound Database CID=2682. <u>https://pubchem.ncbi.nlm.nih.gov/compound/2682</u> (accessed November 6, 2018).

60. Chechik, V.; Crooks, R. M.; Stirling, C. J. M., Reactions and Reactivity in Self-Assembled Monolayers. *Adv. Mater.* **2000**, *12*, 1161-1171.

61. Bain, C. D.; Troughton, E. B.; Tao, Y.; Evall, J.; Whitesides, G. M.; Nuzzo, R. G., Formation of Monolayer Films by the Spontaneous Assembly of Organic Thiols from Solution onto Gold *J. Am. Chem. Soc.* **1989**, *111*, 321–335.

62. Folkers, J. P.; Laibinis, P. E.; Whitesides, G. M., Self-Assembled Monolayers of Alkanethiols on Gold: Comparisons of Monolayers Containing Mixtures of Short- and Long-Chain Constituents with CH₃ and CH₂OH Terminal Groups. *Langmuir* **1992**, *8*, 1330-1341.

63. Berron, B.; Jennings, G. K., Loosely Packed Hydroxyl-Terminated SAMs on Gold. *Langmuir* **2006**, *22* (17), 7235-7240.

64. Takenaga, M.; Jo, S.; Graupe, M.; Lee, T. R., Effective van der Waals surface energy of selfassembled monolayer films having systematically varying degrees of molecular fluorination. *J. Colloid Interface Sci.* **2008**, *320* (1), 264-267.

65. Lamprou, D. A.; Smith, J. R.; Nevell, T. G.; Barbu, E.; Willis, C. R.; Tsibouklis, J., Self-assembled structures of alkanethiols on gold-coated cantilever tips and substrates for atomic force microscopy: Molecular organisation and conditions for reproducible deposition. *Appl. Surf. Sci.* **2010**, *256* (6), 1961-1968.

66. Dai, M.; Wang, Y.; Kwon, J.; Halls, M. D.; Chabal, Y. J., Nitrogen interaction with hydrogenterminated silicon surfaces at the atomic scale. *Nature Mater.* **2009**, *8*, 825.

67. Fisher, G. L.; Walker, A. V.; Hooper, A. E.; Tighe, T. B.; Bahnck, K. B.; Skriba, H. T.; Reinard, M. D.; Haynie, B. C.; Opila, R. L.; Winograd, N.; Allara, D. L., Bond Insertion, Complexation and Penetration Pathways of Vapor-Deposited Aluminum Atoms with HO- and CH₃O- Terminated Organic Monolayers. *J. Am. Chem. Soc.* **2002**, *124*, 5528-5541.

68. Fisher, G. L.; Hooper, A. E.; Opila, R. L.; Allara, D. L.; Winograd, N., The Interaction of Vapor-Deposited Al Atoms with CO₂H Groups at the Surface of a Self-Assembled Alkanethiolate Monolayer on Gold. *J. Phys. Chem. B* **2000**, *104*, 3267-3273.

69. Zhou, C.; Walker, A. V., Formation of Multilayer Ultrathin Assemblies Using Chemical Lithography. *Langmuir* **2010**, *26* (11), 8441-8449.

70. Tery, L. B.; Sudipta, S., Nature of the use of adventitious carbon as a binding energy standard. *J. Vac. Sci. Technol. A* **1995**, *13* (3), 1239-1246.

71. McCreary, K. M.; Hanbicki, A. T.; Singh, S.; Kawakami, R. K.; Jernigan, G. G.; Ishigami, M.; Ng, A.; Brintlinger, T. H.; Stroud, R. M.; Jonker, B. T., The Effect of Preparation Conditions on Raman and Photoluminescence of Monolayer WS₂. *Sci. Rep.* **2016**, *6*, 35154.

CHAPTER 4

FACILE ONE-POT SYNTHESIS OF MOLYBDENUM DISULFIDE: ROOM TEMPERATURE CHEMICAL BATH DEPOSITION

A version of this chapter has been submitted to Chemistry of Materials,

American Chemical Society, 2019

4.1 Abstract

We have developed a facile, one-pot synthesis method for the chemical bath deposition of molybdenum disulfide at room temperature. We employ ammonium molybdate, thioacetamide and hydrazine under basic conditions. On highly oriented pyrolytic graphite (HOPG) substrates, the deposited molybdenum disulfide flakes are very large, ~100 μ m in width, and are 2H MoS₂. We have investigated the reaction pathways involved using infrared spectroscopy, Raman spectroscopy, optical microscopy and time-of-flight secondary ion mass spectrometry. Our data indicates that hydrazine plays two critical roles in the MoS₂ deposition reaction. First, it reacts with thioacetamide to form hydrogen sulfide. The generated hydrogen sulfide reacts with the molybdate ions present in the solution leading to the formation of thiomolybdate. Second, hydrazine reduces the Mo(VI) species in the thiomolybdate ions to Mo(IV) in molybdenum sulfide.

4.2 Introduction

Molybdenum disulfide, MoS₂, has applications in diverse fields from lubrication^{1, 2} to catalysis³⁻⁶ to electronics.^{5, 7} This is due to the layered structure of 2H MoS₂, which is the thermodynamically most stable form. Each layer is composed of S-Mo-S stacks, and within a layer the Mo atoms are surrounded by six sulfur atoms. The layers are connected by weak van der Waals interactions which enables the intercalation of hetero-atoms, such as Li, which enables its ability

to act as the cathode for solid state lithium ion batteries.³ Molybdenum disulfide is also an efficient catalyst for both hydrogenation,⁶ hydrogenolysis⁸ and hydrodesulfurization.⁸⁻¹⁰ The catalytic activity of MoS₂ has been demonstrated to be dependent on the particle size i.e. the number of Mo edge atoms where sulfur vacancies can form, and on the number of MoS₂ layers.^{6, 8-10} For electronic devices 2H MoS₂ possesses many advantages. It is a semiconductor which is dependent on the number of layers in the materials. Single-layer MoS₂ has a direct bandgap of ~1.8 eV^{5, 11} while the bulk bandgap is indirect and is ~1.2 eV.¹² This enables the further tuning of materials properties and enables the use of MoS₂ in electronics as well as optoelectronics.¹³

Chemical vapor deposition (CVD) methods are often employed to deposit MoS₂ on a wafer scale but these methods require vacuum equipment, are limited by the wafer size and often require high temperatures.^{5, 7, 14} Alternatively, methods such as micromechanical and chemical exfoliation of MoS₂ are employed but it can be difficult to produce large area films with precise placement.¹⁵ Solution-based deposition methods are attractive because they are low cost, and can be used to deposit films over large areas with precise placement.^{7, 16, 17} Further, such methods are compatible with thermally sensitive substrates such as organic thin films used in flexible electronics.¹⁸

For catalytic and energy applications, free-standing nanoflakes are often synthesized using the thermal decomposition of ammonium tetrathiomolybdate at 300 - 400 °C:^{10, 15, 19}

$$(NH_4)_2MoS_4 + H_2 \rightarrow MoS_3 + H_2S + 2NH_4$$

$$4.1$$

$$MoS_3 + H_2 \rightarrow MoS_2 + H_2S$$
 4.2

Similarly, in aqueous solutions amorphous MoS_3 can be produced by reaction of ammonium thiomolybdate with H^+ :⁸

$$MoS_4 + 2H^+ \rightarrow MoS_3 + H_2S \tag{4.3}$$

The resulting MoS₃ is then subsequently annealed at ~623 K – 673 K to produce MoS₂. To lower the reaction temperature, Afanasiev and co-workers⁸ demonstrated that ammonium thiomolybdate was reduced by hydrazine under reflux conditions for 6h to produce MoS₂. In later experiments, Li *et al*⁶ used a hydrothermal process by which to synthesize MoS₂ by forming ammonium molybdate *in situ* via the reaction of ammonium heptamolybdate with H₂S.

On surfaces, chemical bath deposition (CBD) is often used to deposit inorganic chalcogenides, oxides and other materials.⁶ It is generally described as an ion exchange reaction in which the deposition rate is controlled by the concentration of the "free" metal ion. There have been several methods developed to deposit MoS₂ thin films using CBD. Generally two approaches are taken. First, ammonium thiomolybdate is employed as a single source precursor, and hydrazine is employed to reduce the Mo(VI) species in (NH)₄MoS₄ to Mo(IV) in MoS₂.^{3,7} Second, ammonium paramolybdate is as the molybdenum precursor, and reduced to form MoS₂ using either H₂S, formed by the decomposition of Na₂S,⁷ or HS⁻, formed by reaction of thioacetamide with hydrazine.²⁰ However, these methods have a number of disadvantages. Ammonium thiomolybdate is unstable and must be stored in an inert atmosphere.²¹ Second many of these CBD methods require relatively high temperatures.^{7, 20}

In this work, we report a facile, one-pot CBD method by which to deposit large-area MoS_2 at room temperature. The resulting MoS_2 flakes deposited on highly oriented pyrolytic graphite (HOPG) surfaces are 2H MoS₂ and are very large (~100 µm in width). We employ ammonium molybdate as the molybdenum source and thioacetamide as the sulfur source. Under basic conditions, we demonstrate that thioacetamide can be reduced to form H₂S which subsequently reacts with ammonium molybdate to form ammonium thiomolybdate *in situ*. Subsequently,

hydrazine reduces the ammonium molybdate to molybdenum disulfide. Our results suggest that other metal sulfides and chalcogenides can be deposited by CBD at room temperature, which have not previously been synthesized, using similar approaches.

4.3 Experimental

4.3.1 Materials

All chemicals were used as received without further purification. Hydrazine monohydrate (98+%), thioacetamide (99% ACS grade), and highly oriented pyrolytic graphite (HOPG) (10x10x1 mm) were acquired from Alfa Aesar, Inc. (Ward Hill, MA). Ammonium hydroxide (14.8 M ACS) was purchased from Ward's Science+ (Rochester, NY). Ammonium molybdate 99.98% was acquired from Sigma Aldrich (St. Louis, MO).

4.3.2 Chemical Bath Deposition

The CBD of the MoS₂ films was based on the method reported by Pramanik and Bhattacharya.²⁰ First an aqueous solution containing 5% ammonium molybdate in 10 mL of water was prepared and stirred continuously while the other reagents were prepared. Next, 15 mL of 14.8 M ammonium hydroxide followed by 10 mL of 80% hydrazine hydrate were added to the solution. Finally, 15 mL of 1M thioacetamide was added. The deposition bath was then stirred for 2 minutes before immersing the substrate into solution. The sample was placed facing upwards in the deposition bath for the desired deposition time, usually ~24 hours. After deposition the samples were removed and washed with deionized water and dried with nitrogen gas prior to further characterization. All depositions were carried out at room temperature, 21 ± 2 °C.

4.3.3 Attenuated Total Reflectance Infrared Spectroscopy (ATR IR)

ATR IR spectra were collected using a Nicolet iS50 FTIR spectrometer (Thermo Scientific, Madison WI) equipped with a horizontal ATR sampling accessory. For each measurement, a 10µL droplet of the prepared solution was pipetted onto the ATR crystal. The resulting spectra were analyzed using OMNIC (Thermo Scientific, Madison WI). To remove the water and hydrazine absorbances, the spectra reported are referenced to the IR spectrum of an aqueous hydrazine hydrate solution.

The solutions for the ATR IR studies were prepared at the reactant concentrations used in the deposition. The "deposition solution" contains all reagents, was prepared as described in section 2.2, and measured approximately 24 hours after the solution was prepared. Solution 1 was prepared in a similar manner but the thioacetamide was omitted. Solutions 2 and 3 also were prepared using the method described in section 2.2 but in this case the ammonium molybdate was omitted. Solution 1 and the yellow solution 2 were analyzed ~24 hours after preparation. Solution 3, which was pink, was prepared 48 hours in advance of the spectrum acquisition.

4.3.4 Optical Microscopy, Atomic Force Microscopy and Scanning Electron Microscopy

Optical images of the deposition solution and solutions 1-3 were obtained using a cellular telephone camera (iPhone model SE).

Atomic force microscopy (AFM) measurements were collected using tapping mode of a Nanoscope Dimension 3100 microscope (Veeco Instruments, Inc., Plainview, NY). The images were processed and analyzed using WSxM 5.0.²² The RMS roughness was obtained over (10 × 10) μ m² from at least 3 different areas, and the data reported is the average of those measurements.

Scanning electron microscopy (SEM) images measurements were obtained using a Supra-40 SEM (Carl Zeiss SMT Inc., Peabody MA). To prevent sample charging, prior to analysis the sample was sputter coated with a thin layer of gold (~60Å) using a Hummer VI plasma sputter system (Anatech USA, Hayward CA) to prevent sample charging. The resulting images were analyzed using ImageJ 1.50i (National Institutes of Health, USA).²³

4.3.5 Raman Spectroscopy

Raman spectra were collected using a Thermo Scientific DXR Raman microscope equipped with a 532 nm diode laser and a 50× objective lens. Measurements were collected with a laser power 1.0 mW through a 25 μ m slit aperture, and the estimated laser spot size is 0.7 μ m. The Raman shifts were calibrated using the peak shift frequency of Si, 521 cm⁻¹.²⁴ To reduce fluorescence, "fluorescence correction" was employed.

4.3.6 X-ray Photoelectron Spectroscopy

X-ray photoelectron spectra (XPS) was collected using a PHI VersaProbe II (Physical Electronics, Inc., Chanhassen, Minnesota) equipped with a monochromatic Al K α source (E = 1486.8 eV). During data collection, the chamber pressure was maintained below 6.7 x 10⁻¹⁰ mbar. High resolution spectra were collected with a pass energy of 23.5 eV, an energy step of 0.2 eV, analysis area (100 × 100) μ m², and an analysis angle of 45°. Several samples were sputtered using 1 keV Ar⁺ in a (1 x 1) mm² area before analysis. All spectra were collected using a charge compensation system with both electron and ion beams incident on the surface. Peak fitting and analysis were done using CasaXPS Version 2.3.17PR1.1 (Casa Software Ltd, (RBD Instruments, Inc., Bend, Oregon)). The binding energies were calibrated using the C 1s binding energy (284.7 eV).²⁵

4.3.7 Time-of-Flight Secondary Ion Mass Spectrometry

Time-of-flight secondary ion mass spectrometry (TOF SIMS) data were collected using an ION TOF IV instrument (ION TOF Inc., Chestnut Hill NY) equipped with a Bi_n^{m+} (n = 1-7, m = 1,2) liquid metal ion gun. There are three chambers: a load lock, preparation chamber and analysis chamber. During data collection, the pressure of the analysis chamber was $\leq 5 \times 10^{-9}$ mbar. The Bi⁺ primary ions has a kinetic energy of 25 keV, and were contained in a ~100 nm probe beam. The analysis area was (100 × 100)µm². The data were acquired in the static SIMS regime, and three spectra were collected from three separate areas to ensure the spectra were representative of the sample.

4.4 Results and Discussion

After 27 h deposition at room temperature, x-ray photoelectron and Raman spectra indicate that MoS_2 has deposited on HOPG. In the photoelectron spectra between 224 eV and 235 eV, we observe three peaks at 226.4 eV, 229.8eV and 232.9 eV which correspond to S 2s, Mo $3d_{5/2}$ and Mo $3d_{3/2}$ of 2H MoS₂ (Figure 4.1a).²⁶ Further the intensities of the Mo 3d and S 2s photoelectron peaks indicate that the film is composed of MoS₂ within experimental error. In the Raman spectra we observe two peaks at 382 cm⁻¹ and 406 cm⁻¹ which are assigned to the E_{2g}^1 and A_{1g} modes of 2H MoS₂ (Figure 4.1b).²⁶⁻³⁰

Figure 4.1 a) Mo 3d and S 2s photoelectron spectra and b) Raman spectrum of MoS_2 after deposition on HOPG for 27 h at room temperature.

Scanning electron microscopy (SEM) images show that the deposited MoS₂ film is composed of large flakes (Figure 4.2). The flakes are approximately 100 μ m in width and have an average area of 750 μ m² (N = 274). AFM analyses show that the rms roughness of the deposited film is ~4.2 nm (~6 MoS₂ layers⁵) (see Appendix Figure A4.1). We note that the flake size is likely constrained by strain induced by the lattice mismatch between HOPG and MoS₂ as well as the presence of grain boundaries.^{31, 32}

Figure 4.2 SEM image of MoS₂ after deposition on HOPG for 27 h at room temperature.

4.4.1 Film Formation and Reaction Mechanism

Upon addition of thioacetamide to a bath containing ammonium molybdate and hydrazine, the solution changes from colorless to yellow in the first two minutes. After 1h the solution is orange, and after 2h the deposition bath is dark red/black and opaque. The formation of gas bubbles is also observed. The color changes in the bath suggest that during the deposition there is formation of the red thiomolybdate anion, $MoS_4^{2,3}$ and the formation of insoluble products such as MoS_2 .

Figure 4.3 Optical image of the deposition bath after reaction for 2h.

To further investigate the MoS_2 deposition mechanism, the role of hydrazine was investigated in the reduction of Mo(VI) (in $(NH_4)_2MoO_4$) to Mo(IV) (in MoS_2). Pramanik and Bhattacharya²⁰ suggested that hydrazine reduces MoO_4^{2-} to Mo^{4+} via:

$$(NH_4)_2MoO_4 + N_2H_4 + 4H_2O \rightarrow 2Mo^{4+} + N_2 + 12 OH^{-}$$
 4.4

We prepared a solution containing ammonium molybdate and hydrazine at pH 11 (ie. the deposition bath without thioacetamide) (solution 1). No color changes nor gas bubbles were observed indicating that a reaction did not occur. Further, upon lowering or increasing the pH of the solution, no reaction was observed.

Next the reaction of hydrazine with thioacetamide was investigated at pH 11 (ie. the deposition bath without ammonium molybdate) (Figure 4.4). Initially, the solution was colorless but over 3h changed to yellow (solution 2). Gas bubbles were also observed to form. After 18h, the solution color changed from yellow to orange and after 25 h again changed from orange to red. The red solution (solution 3) was stable at room temperature for 2 weeks indicating that the reaction product is stable. These observations suggest that a critical step in the deposition mechanism is the reaction of thioacetamide with hydrazine, and that there is a by-product formed which has a red color.

Figure 4.4 Optical images of the reaction of hydrazine with thioacetamide at room temperature and different reaction times: a) 3.5 min; b) 1 h; c) 3 h; d) 18h; e) 25 h; and f) 42 h.

To identify the species present in the deposition bath, we employed ATR-IR spectroscopy of the solutions 1-3 and the deposition bath, and Raman spectroscopy and mass spectrometry of the precipitates formed. Figure 4.5 displays the ATR-IR spectra of the deposition bath and solutions 1-3. In all spectra (Figure 4.5a) we observe a peak at ~1114 cm⁻¹ which is a characteristic vibration of NH₄⁺ from ammonium hydroxide.³³ In the deposition bath and solution 1 there is a relatively broad peak at ~828 cm⁻¹ which we assign to the Mo-O stretch modes of (v_s (M-O) 833 cm⁻¹ and v_{as} (M-O) 798 cm⁻¹) of MoO₄²⁻¹⁰ We note that the intensity of the peak is much larger in solution 1 than in the deposition bath suggesting that the molybdate ion is reacting to form thiomolybdate ions and MoS₂. The modes associated with the Mo-S vibrations are too low in frequency to be detected in the ATR IR instrument.^{9, 10} In the deposition bath, and solutions 2 and 3 vibrational modes characteristic of thioacetamide are observed including at 996 cm⁻¹ and 659 cm⁻¹ which are assigned to v(C-C)+r(CH₃)+v(C-S), and w(NH₂) and t(NH₂).^{34, 35}

At higher frequencies, further information about the reactants and products are obtained (Figure 4.5b). For all solutions, there are broad peaks at ~1455 cm⁻¹ and 1610 cm⁻¹ which are assigned to a deformation mode of NH_4^+ and an N-H bending mode, respectively.³³ These peaks are expected because there is both ammonium hydroxide and ammonium molybdate in the solutions. In most CBD reactions under basic conditions, thioacetamide decomposes to form acetate and bisulfide ions:¹⁶

$$C_2H_5NS + 2OH^- \rightarrow CH_3COO^- + NH_3 + HS^-$$

$$4.5$$

However, this reaction does not appear to be occurring because there is no strong absorbance observed at ~1578 cm⁻¹, which is characteristic of the acetate ion,³⁶ or H-S str. (2600 - 2550 cm⁻¹; weak) (data not shown) present in the spectra.³⁷ Rather we observe peaks at ~1394 cm⁻¹,

1548 cm⁻¹ and 1630 cm⁻¹ in the deposition bath, and solutions 2 and 3. We assign these to a C-H deformation mode, a N=C-N ring mode, and δ (NH₂) combination mode respectively.^{38, 39}

Figure 4.5 ATR IR spectra of the deposition bath and solutions 1-3 from a) $500 - 1800 \text{ cm}^{-1}$ and b) $1250 - 1800 \text{ cm}^{-1}$. The "deposition solution" contains all reagents and was measured approximately 24 hours after the solution was prepared. Solution 1 contains ammonium molybdate, hydrazine and ammonium hydroxide. Solutions 2 and 3 contain thioacetamide, hydrazine and ammonium hydroxide. The spectra of solutions 1 and 2, which is yellow, were obtained ~24 h reaction time. The spectrum of solution 3, which is pink, was obtained ~48h reaction time.

These observations suggest that a cyclic nitrogen-containing product is formed, and that the reaction between thioacetamide and hydrazine is critical in the MoS_2 deposition process. Further, the data suggest that a triazole is produced.^{38, 39}

After MoS₂ deposition, the excess precipitate (black/dark red color) was filtered from the deposition bath and dried in air. Subsequently the chemistry of the precipitate was investigated using Raman spectroscopy and TOF SIMS. The Raman spectra show characteristic features of molybdenum oxides and triazoles (Figure 4.6). We assign the mode at ~663 cm⁻¹ to the out-of-plane ring torsion mode of triazoles,^{38, 40-42} while the peaks at 987 cm⁻¹ and 996 cm⁻¹ are characteristic of the in-plane ring deformation modes of triazoles.^{38, 43, 44} The broad modes centered at ~815 cm⁻¹ (802 – 836 cm⁻¹) and at ~375 cm⁻¹ are consistent with the presence of molybdenum oxides are likely to form part of the ark red/black precipitate for two reasons. First, there may be some unreacted ammonium molybdate in the deposition bath. Second, it is likely that any MoS₂ present in the precipitate oxidized to molybdenum oxide during the air drying process.

Figure 4.6. Raman spectrum of the dark red/black precipitate obtained from the deposition bath after reaction for 48 h at room temperature.

The TOF SIMS spectra confirm the presence of molybdenum oxides in the precipitate. In the negative ion spectra, we observe ions of the form $Mo_xO_y^-$ and $Mo_xS_y^-$ indicating that molybdenum oxides and sulfides are present (Figure 4.7a). Additionally, in the positive ion spectra we observe ions which are characteristic of triazole species (Figure 4.7b).

Figure 4.7 a) Negative ion spectra centered at m/z 313 and b) positive ion spectra from m/z 2 – 120 of the dark red/black precipitate obtained from the deposition bath after reaction for 48 h at room temperature. In (a), the predicted isotope distributions of $(MoS_2)_2^-$, $Mo_2O_7^-$ and $(MoO_4)_2^-$ are also shown for reference. In (b) M is 4-amino-4*H*-1,2,4-triazole, C₂H₄N₄ m/z 84.04.

We note that after reaction of hydrazine with thioacetamide at 50 °C for several days, King and Anson⁴⁶ observed the formation of a red precipitate which they identified as 4-amino-3,5-

dimethyl-1,2,4-triazole (N'-aminotriazole). The formation of N'-aminotriazole is consistent with both the Raman and SIMS spectra of the dark red/black precipitate formed in this reaction.

Taken together the data suggest that the following reaction mechanism is occurring. Under basic conditions, thioacetamide reacts with hydrazine to form N'-aminoethanimidamide and hydrogen sulfide. The N'-aminoethanimidamide undergoes a cyclization reaction followed by dehydration to yield the red by-product, N'-aminotriazole (scheme 4.1). We note that the formation of N'-aminotriazole is also consistent with the XPS analyses of the deposited film which show that there is a N-containing species deposited on the HOPG surface as well as MoS_2 . This product can easily be removed by Ar^+ sputtering (see Appendix Figure A4.2).

Scheme 4.1. Cyclization and dehydration reaction of N'aminoethanimidamide to form N'-aminotriazole.

The generated H₂S reacts with ammonium molybdate to form ammonium thiomolybdate:

$$(NH_4)_2MoO_4 + 4H_2S \rightarrow (NH_4)_2MoS_4 + 4H_2O$$

$$4.6$$

The reaction of molybdate (MoO_4^{2-}) or paramolybdate ($Mo_7O_{24}^{6-}$) ions with gaseous H₂S to form thiomolybdate ions (MoS_4^{2-}) is well known.^{2, 3, 6, 47} Thiomolybdate ions are also red, and this may explain the observation that the deposition bath turns red faster than a solution containing thioacetamide and hydrazine alone. Once ammonium molybdate has formed, it is reduced by hydrazine to form MoS_2 :^{7, 8}

$$(NH_4)_2MoS_4 + \frac{1}{2}N_2H_4 \rightarrow MoS_2 + \frac{1}{2}N_2 + (NH_4)_2S + H_2S$$
4.7

The gaseous H_2S can further react with ammonium molybdate to form ammonium thiomolybdate and MoS_2 . Consistent with the experimental observations and chemical characterization, overall the reaction yields a MoS_2 deposit, a red by-product N'-aminotriazole as well as the gaseous products H_2S and N_2 , and aqueous (NH_4)₂S.

4.5 Conclusions

We have demonstrated a simple one-pot, room temperature method by which to grow large-area 2H MoS₂ flakes on HOPG. The data indicate that ammonium molybdate is reduced to MoS₂ by first reacting with H_2S to form ammonium thiomolybdate. The H_2S is generated *in situ* by the reaction of thioacetamide and hydrazine under basic conditions. The intermediate species, ammonium thiomolybdate, is then reduced to MoS₂ by hydrazine. These results suggest that other metal sulfides and chalcogenides can by synthesized at room temperature using similar approaches.

4.6 References

1. Wang, L.; Xu, Z.; Wang, W.; Bai, X., Atomic Mechanism of Dynamic Electrochemical Lithiation Processes of MoS₂ Nanosheets. *J. Am. Chem. Soc.* **2014**, *136* (18), 6693-6697.

2. Chiñas-Castillo, F.; Lara-Romero, J.; Alonso-Núñez, G.; Barceinas-Sánchez, J. d. D. O.; Jiménez-Sandoval, S., MoS₂ Films Formed by *In-contact* Decomposition of Water-soluble Tetraalkylammonium Thiomolybdates. *Tribol. Lett.* **2008**, *29*, 155-161.

3. Roy, P.; Srivastava, K., Chemical bath deposition of MoS_2 thin film using ammonium tetrathiomolybdate as a single source for molybdenum and sulphur. *Thin Solid Films* **2006**, *496*, 293-298.

4. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H., The chemistry of twodimensional layered transition metal dichalcogenide nanosheets. *Nat. Chem.* **2013**, *5*, 263-275.

5. Li, X.; Zhu, H., Two-dimensional MoS_2 : Properties, preparation, and applications. *J. Materiomics* **2015**, *1* (1), 33-44.

6. Li, M.; Wang, D.; Li, J.; Pan, Z.; Ma, H.; Jiang, Y.; Tian, Z., Facile hydrothermal synthesis of MoS_2 nano-sheets with controllable structures and enhanced catalytic performance for anthracene hydrogenation. *RSC Adv.* **2016**, *6* (75), 71534-71542.

7. Xi, Y.; Serna, M. I.; Cheng, L.; Gao, Y.; Baniasadi, M.; Rodriguez-Davila, R.; Kim, J.; Quevedo-Lopez, M. A.; Minary-Jolandan, M., Fabrication of MoS₂ thin film transistors via selective-area solution deposition methods. *J. Mater. Chem. C* **2015**, *3*, 3842-3847.

8. Afanasiev, P.; Xia, G.-F.; Berhault, G.; Jouguet, B.; Lacroix, M., Surfactant-Assisted Synthesis of Highly Dispersed Molybdenum Sulfide. *Chem. Mater.* **1999**, *11*, 3216-3219.

9. Whelan, J.; Banu, I.; Luckachan, G. E.; Banu, N. D.; Stephen, S.; Tharalekshmy, A.; Al Hashimi, S.; Vladea, R. V.; Katsiotis, M. S.; Alhassan, S. M., Influence of decomposition time and H_2 pressure on properties of unsupported ammonium tetrathiomolybdate-derived MoS_2 catalysts. *J. Anal. Sci. Technol.* **2015**, *6* (1), 8.

10. Weber, T.; Muijsers, J. C.; Wolput, v., J.H.M.C.; Verhagen, C. P. J.; Niemantsverdriet, J. W., Basic reaction steps in the sulfidation of crystalline MoO₃ to MoS₂, as studied by X-ray photoelectron and infrared emission spectroscopy. *J. Phys. Chem.* **1996**, *100*, 14144-14150.

11. Lin, Y.-K.; Chen, R.-S.; Chou, T.-C.; Lee, Y.-H.; Chen, Y.-F.; Chen, K.-H.; Chen, L.-C., Thickness-Dependent Binding Energy Shift in Few-Layer MoS₂ Grown by Chemical Vapor Deposition. *ACS Appl. Mater. Interfaces* **2016**, *8* (34), 22637-22646.

12. Benavente, E.; Santa Ana, M. A.; Mendizábal, F.; González, G., Intercalation chemistry of molybdenum disulfide. *Coord. Chem. Rev.* 2002, 224 (1), 87-109.

13. Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A., Ultrasensitive photodetectors based on monolayer MoS₂. *Nature Nanotech.* **2013**, *8*, 497.

14. Choudhary, N.; Patel, M. D.; Park, J.; Sirota, B.; Choi, W., Synthesis of large scale MoS₂ for electronics and energy applications. *J. Mater. Res.* **2016**, *31* (7), 824-831.

15. Wypych, F.; Schöllhorn, R., 1T-MoS2, a new metallic modification of molybdenum disulfide. *J. Chem. Soc., Chem. Commun.* **1992**, (19), 1386-1388.

16. Hodes, G., *Chemical solution deposition of semiconductor films* Marcel Dekker: New York, 2003.

17. Shi, Z.; Walker, A. V., Chemical Bath Deposition of ZnO on Functionalized Self-Assembled Monolayers: Selective Deposition and Control of Deposit Morphology. *Langmuir* **2015**, *31* (4), 1421-1428.

18. Zardetto, V.; Brown, T. M.; Reale, A.; Di Carlo, A., Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. *J. Polym. Sci., Part B: Polym. Phys.* **2011**, *49* (9), 638-648.

19. Worsley, M. A.; Shin, S. J.; Merrill, M. D.; Lenhardt, J.; Nelson, A. J.; Woo, L. Y.; Gash, A. E.; Baumann, T. F.; Orme, C. A., Ultralow Density, Monolithic WS₂, MoS₂, and MoS₂/Graphene Aerogels. *ACS Nano* **2015**, *9* (5), 4698-4705.

20. Pramanik, P.; Bhattacharya, S., Preparation and Characterization of thin films of molybdenum sulphide and selenide by a chemical deposition technique. *J. Mater. Sci. Lett.* **1989**, *8*, 781-782.

21.

https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en &productNumber=323446&brand=ALDRICH&PageToGoToURL=https%3A%2F%2Fwww.sig maaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2F323446%3Flang%3Den (accessed December 1st 2018).

22. Horcas, I.; Fernández, R.; Gómez-Rodríguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M., WSXM: A software for scanning probe microscopy and a tool for nanotechnology. *Rev. Sci. Instrum.* **2007**, *78* (1), 013705.

23. Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W., NIH Image to Image J: 25 years of image analysis. *Nature Methods* **2012**, *9* (7), 671-675.

24. McCreary, K. M.; Hanbicki, A. T.; Singh, S.; Kawakami, R. K.; Jernigan, G. G.; Ishigami, M.; Ng, A.; Brintlinger, T. H.; Stroud, R. M.; Jonker, B. T., The Effect of Preparation Conditions on Raman and Photoluminescence of Monolayer WS2. *Sci. Rep.* **2016**, *6*, 35154.

25. Schmieg, S. J.; Belton, D. N., Highly Oriented Pyrolytic Graphite by XPS. *Surface Science Spectra* **1992**, *1* (4), 333-336.

26. Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M., Photoluminescence from Chemically Exfoliated MoS₂. *Nano Letts*. **2011**, *11* (12), 5111-5116.

27. Windom, B. C.; Sawyer, W. G.; Hahn, D. W., A Raman Spectroscopic Study of MoS2 and MoO3: Applications to Tribological Systems. *Tribol. Lett.* **2011**, *42* (3), 301-310.

28. Jiménez Sandoval, S.; Yang, D.; Frindt, R. F.; Irwin, J. C., Raman study and lattice dynamics of single molecular layers of MoS₂. *Phys. Rev. B* **1991**, *44* (8), 3955-3962.

29. Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D., From Bulk to Monolayer MoS₂: Evolution of Raman Scattering. *Adv. Funct. Mater.* **2012**, *22*, 1385-1390.

30. Frey, G. L.; Tenne, R.; Matthews, M. J.; Dresselhaus, M. S.; Dresselhaus, G., Raman and resonance Raman investigation of MoS₂ nanoparticles. *Phys. Rev. B* **1999**, *60* (4), 2883-2892.

31. Jiang, J.-W.; Park, H. S., Mechanical properties of MoS₂/graphene heterostructures. *Applied Physics Letters* **2014**, *105*, 033108.

32. Ago, H.; Fukamachi, S.; Endo, H.; Solis-Fernandez, P.; Yunus, R. M.; Uchida, Y.; Panchal, V.; Kazakova, O.; Tsuji, M., Visualization of Grain Structure and Boundaries of Polycrystalline Graphene and Two-Dimensional Materials by Epitaxial Growth of Transition Metal Dichalcogenides. *ACS Nano* **2016**, *10*, 3233-3240.

33. Sethna, P. P.; Downing, H. D.; Pinkley, L. W.; Williams, D., Infrared band intensities in ammonium hydroxide and ammonium salts. *J. Opt. Soc. Am.* **1978**, *68* (4), 429-431.

34. Suzuki, I., Infrared Spectra and Normal Vibrations of Thioamides. II. Thioacetamide. *Bull. Chem. Soc. Jpn.* **1962**, *35* (9), 1449-1456.

35. Anthoni, U.; Nielsen, P. H.; Christensen, D. H. ø. j., Assignment of the infrared spectrum of thioacetamide single crystals from low-temperature polarization measurements combined with ¹³C and ¹⁵N isotopic shifts. *Spectrochim. Acta* **1985**, *41A* (11), 1327-1334.

36. Ito, K.; Bernstein, H. J., The Vibrational Spectra of the Formate, Acetate, and Oxalate Ions. *Can. J. Chem.* **1956**, *34* (2), 170-178.

37. Socrates, G., *Infrared and Raman Characteristic Group Frequencies - Tables and Charts: Third edition.* John Wiley & Sons, Ltd.: Chichester, UK, 2001.

38. Bougeard, D.; Calvé, N. L.; Roch, B. S.; Novak, A., 1,2,4-Triazole: Vibrational spectra, normal coordinate calculations, and hydrogen bonding. *J. Chem. Phys.* **1976**, *64* (12), 5152-5164.

39. Kavlakova, M.; Bakalova, A.; Momekov, G.; Ivanov, D., Pt(II) complexes of 4-amino-4H-1,2,4-triazole. *J. Coord. Chem.* **2010**, *63* (20), 3531-3540.

40. Loo, B. H.; Tse, Y.; Parsons, K.; Adelman, C.; El-Hage, A.; Lee, Y. G., Surface-enhanced Raman spectroscopy of imidazole adsorbed on electrode and colloidal surfaces of Cu, Ag, and Au⁺. *J. Raman Spectrosc.* **2006**, *37*, 299-304.

41. Xue, G.; Dai, Q.; Jiang, S., Chemical Reactions of Imidazole with Metallic Silver Studied by the Use of SERS and XPS Techniques. *J. Am. Chem. Soc.* **1988**, *110* (8), 2393-2395.

42. Törnkvist, C.; Bergman, J.; Liedberg, B., Correlated ab Initio Geometries and Vibrations of 1H- and 2H-1,2,3-Triazole. *J. Phys. Chem.* **1991**, *95*, 3123-3128.

43. Markham, L. M.; Mayne, L. C.; Hudson, B. S.; Zgierski, M. Z., Resonance Raman Studies of Imidazole, Imidazolium, and Their Derivatives: The Effect of Deuterium Substitution. *J. Phys. Chem.* **1993**, *97* (40), 10319-10325.

44. Yoo, B. K.; Joo, S.-W., In situ Raman monitoring triazole formation from self-assembled monolayers of 1,4-diethynylbenzene on Ag and Au surfaces via "click" cyclization. *J. Colloid Interface Sci.* **2007**, *311*, 491-496.

45. Dieterle, M.; Mestl, G., Raman spectroscopy of molybdenum oxides. *Phys. Chem. Chem. Phys.* **2002**, *4*, 822-826.

46. King, D. M.; Anson, F. C., Use of Hydrazine to Accelerate the Rate of Hydrogen Sulfide Evolution from Thioacetamide Solutions. *Anal. Chem.* **1961**, *33* (4), 572-575.

47. Ponomarev, E. A.; Neumann-Spallart, M.; Hodes, G.; Lévy-Clément, C., Electrochemical deposition of MoS_2 thin films by reduction of tetrathiomolybdate. *Thin Solid Films* **1996**, *280* (1), 86-89.

CHAPTER 5

CHEMICAL BATH DEPOSITION OF MOLYBDENUM DISULFIDE ON MICROPATTERNED SELF-ASSEMBLED MONOLAYERS: AREA SELECTIVE DEPOSITION

5.1 Introduction

Facile area-selective deposition to produce precisely deposited thin films and nanostructures are attractive fabrication routes to create self-aligned gate structures,¹⁻² memory devices,³ and flexible electronics.⁴ Solution based methods such as chemical bath deposition (CBD) and electroless deposition have previously been reported to selectively deposit materials to create useful semiconductor and metal contacts onto organic substrates.⁵⁻⁹ These solution-based techniques are attractive because they are low-cost methods because they are performed under ambient conditions without the need for vacuum equipment.

In chapter 3 we demonstrated that polytype selective deposition is achieved by choosing low surface energy or high surface energy substrates to yield 2H or 1T MoS₂. In this chapter we show that by using CBD the 2H and 1T MoS₂ can be spatially selectively deposited on micropatterned alkanethiolate self-assembled monolayers (SAMs). Patterned SAMs can be prepared by a variety of methods, and serve as useful substrates to investigate area-selective deposition.¹⁰

In this chapter, MoS₂ CBD is investigated on patterned –COOH/–CH₃ or –OH/–CH₃ SAM surfaces using Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). Both the Raman and XPS spectra indicate that there are strong interactions between the Au substrate and the deposited MoS₂ film. These are known for Au nanoparticle and film deposition on MoS₂ films.¹¹⁻

behavior and that the interaction of 1T MoS₂ with Au may be stronger than for 2H MoS₂. Such interactions are likely to have important effects on the development of devices using MoS₂. For example, modifying the in-plane lattice parameter of MoS₂ by as few as 1% alters the band gap by 0.1 eV.¹⁶ Similarly, applying tensile strain of up to ~5% reduces the band gap by nearly 1 eV.¹⁶

Further, we also demonstrate for the first time that CBD can be employed to areaselectively deposit 1T MoS₂ and 2H MoS₂ on patterned substrates. Using Raman mapping in the –COOH and –OH terminated SAM areas we observe the deposition of 1T MoS₂ while on –CH₃ terminated SAMs we observe the deposition of 2H MoS₂. The results suggest that CBD can be employed to create self-aligned transition metal dichalcogenide structures.

5.2 Experimental

5.2.1 Sample Preparation

Ammonium molybdate (99.98%), hexadecanethiol (HDT) (99+%), 16-mercaptohexadecanoic acid (MHA) (90+%), and 16-hydroxy-1-hexadecanethiol (MHL) (99+%) were purchased from Sigma-Aldrich (St. Louis, MO). 14.8 M ammonium hydroxide was acquired from Ward's Science+ (Rochester, NY). Thioacetamide (99% ACS grade), hydrazine hydrate (98+%), were acquired from Alfa Aesar, Inc. (Ward Hill, MA). Undenatured USP 200 proof dehydrated alcohol (ethanol) was acquired from Spectrum Chemical MFG CORP.

The gold substrates used in these studies were prepared in the Cleanroom Research Laboratory, University of Texas at Dallas. Briefly, silicon wafers ($\langle 111 \rangle$ orientation) were acquired from Addison Engineering Inc. (San Jose, CA), and ~200 Å of chromium followed by ~1000 Å of gold were thermally deposited onto these substrates.

5.2.2 Preparation of Self-Assembled Monolayers and UV-Photopatterning

The preparation of alkanethiolate self-assembled monolayers (SAMs) on Au has been previously described in detail.¹⁷⁻¹⁸ Briefly, a well-ordered SAM is prepared by immersing a gold substrate into a 1 mM solution of desired alkanethiol (MHL, MHA or HDT) in ethanol for 24 hours at room temperature. The samples were then rinsed with ethanol and dried with nitrogen gas.

The MHL and MHA SAMs were then photopatterned using the procedures described by Zhou and Walker.¹⁷ A mask (copper TEM grid of the appropriate pattern; Electron Microscopy Inc., Hatfield, PA) was placed on top of the MHL or MHA SAM. The sample was then placed approximately 50 mm from a 500 W Hg arc lamp equipped with a narrow band-pass UV filter (280 to 400 nm) and a dichroic mirror (Thermal Oriel, Spectra Physics Inc., Stratford, CT). To ensure that photooxidation was complete the MHL or MHA SAM was then exposed to the UV light for 2 hours. After photopatterning the SAM was rinsed with ethanol and then placed in a 1 mM ethanolic solution of HDT for 24 hours at room temperature. In the areas exposed to UV light the photooxidized MHL or MHA was displaced by a HDT creating a patterned –OH/–CH₃ or – OH/–CH₃ SAM surface. The samples were then washed with ethanol, dried with N₂ gas, and used immediately for deposition.

5.2.3 Chemical Bath Deposition of MoS₂

Chemical bath deposition (CBD) of MoS_2 was carried out using the method described in chapters 2 and 3. An aqueous solution containing 5% ammonium molybdate in 10 mL of water was prepared and stirred continuously while the other reagents were prepared. Next, 15 mL of 14.8 M ammonium hydroxide followed by 10 mL of 80% hydrazine hydrate were added to the solution. Finally, 15 mL of 1M thioacetamide was added. The deposition bath was then stirred for 2 minutes

before immersing the substrate into solution. The sample was placed facing upwards in the deposition bath for the desired deposition time, usually ~24 hours. After deposition the samples were removed and washed with deionized water and dried with nitrogen gas prior to further characterization. All depositions were carried out at room temperature, 21 ± 2 °C

5.2.4 Raman Spectroscopy and Mapping

Raman maps and spectra were collected using a Thermo Scientific DXR Raman microscope (Thermo Scientific, Madison WI) equipped with a 532 nm laser source and a 50× objective lens. Raman spectra and maps were collected with laser powers of 1.0 mW and 0.3 mW, respectively, through a 25 μ m slit aperture. The maps were generated by collecting spectra at 10 μ m interval distances over the edge of a patterned sample area. In order to reduce fluorescence and photobleaching effects from the sample, fluorescence correct was turned on during collection and photobleaching was employed for 0.5 minutes prior to spectral collection. Additionally, optical images of the patterned samples a were also obtained using the microscope. a

5.2.5 X-ray Photoelectron Spectroscopy

Ex-situ X-ray photoelectron spectroscopy (XPS) were measured using a PHI VersaProbe II Scanning XPS Microbrobe (Physical Electronics Inc., Chanhassen, MN) equipped with a monochromatic Al K α X-ray source (E_p = 1486.7 eV). During measurement, the pressure was lower than 6.7 × 10⁻¹⁰ mbar. High resolution spectra were collected with pass energy of 23.5 eV, energy step of 0.2 eV, and analysis angle of 45°. All spectra were collected using a charge compensation system with both electron and ion beams incident on the surface. The binding energies were calibrated to the Au 4f_{7/2} binding energy (84.0 eV). Spectra were analyzed using CasaXPS 2.3.17 (RBD Instruments, Inc., Bend, OR) and AA Analyzer 1.07.

5.3 Results and Discussion

5.3.1 Raman Spectroscopy and X-ray photoelectron spectroscopy of MoS₂

Figure 5.1 Raman spectra of MoS₂ films which were deposited on MHA, MHL and HDT SAMs. Highlighted areas represent expected peak position of E^{1}_{2g} and A_{1g} MoS₂ Raman modes. Deposition time: 24 h.

The Raman spectra (Figure 5.1) clearly show that the gold substrate affects the spectra of the deposited MoS₂ in a similar manner to that observed for thin film gold film or nanoparticles deposited on MoS₂.^{11, 14} For MoS₂ there are two prominent first-order Raman active modes which correspond to the E_{2g}^1 (~383 cm⁻¹) and A_{1g} (~408 cm⁻¹) modes.¹⁹⁻²⁰ In figure 5.1 it can be seen that there is a blue shift of the A_{1g} mode and a red shift of the E_{2g}^1 mode, and that the modes are broadened. The in-plane E_{2g}^1 mode is due to the vibration of the Mo and S atoms in opposite directions. The red shift of this mode can be interpreted in the following way:¹⁴ Au has a large dielectric constant²¹ which increases the screening of electron-electron interactions in the material. Thus, the planar interionic interactions are weakened leading to the red shift of the in-plane phonon mode. The out-of-plane A_{1g} mode results from the symmetric vibration of S atoms along the caxis. The mode is stiffened due to the interaction between the Au and MoS₂ leading to the blue shift of this phonon mode.¹⁴ It is noted that there is a weaker mode also centered at ~155 cm⁻¹ for 2H MoS₂ deposited on the –CH₃ terminated SAM which is likely due to strain induced in the deposited MoS₂ leading to the broadening of the $(A_{1g} - LA(M))$ mode.^{14, 19}

In chapter 3, it was demonstrated that 2H MoS₂ deposits atop $-CH_3$ terminated SAMs (HDT) while 1T MoS₂ is deposited on -OH (MHL) and -COOH terminated SAMs. For exfoliated 1T MoS₂ films deposited on MHL and MHA, three additional modes are observed at ~160 cm⁻¹, ~225 cm⁻¹ and ~338 cm⁻¹ which correspond to the J₁, J₂ and J₃ modes.^{20, 22} In Figure 2.1 these modes are considerably broadened and are observed as one broad peak at ~150 cm⁻¹. We also note that the E_{2q}^1 mode may also be convolved with the J₃ mode.

In addition to Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) can be used to determine MoS₂ polytype.²³ For 2H MoS₂ the Mo $3d_{5/2}$, Mo $3d_{3/2}$ and S 2s binding energies are at 229.8 eV, 232.7 eV and 226.6 eV, respectively while for 1T MoS₂ these binding energies are lower by ~0.9 eV (see chapter 3, Figure 3.3). In Figure 5.2 high-resolution photoelectron spectra of the Mo 3d and S 2s region are shown for MoS₂ deposited on the SAM substrates.

Figure 5.2 Mo 3d and S 2s photoelectron spectra of MoS₂ films which were deposited on MHA, MHL and HDT SAMs. Deposition time: 24 h.

For $-CH_3$ terminated SAMs, the peak binding energies are at 229.4 eV, 232.6 eV and 226.5 eV which correspond to the Mo $3d_{5/2}$, Mo $3d_{3/2}$ and S 2s peaks, respectively, of 2H MoS₂.²³ A small decrease in binding energies is also observed by Lin *et al*¹⁵ for Au deposition on chemical vapor deposited (CVD) grown MoS₂ films. For -OH and -COOH terminated SAMs, the peak binding energies are at 229.6 eV, 232.7 eV and 226.6 eV which correspond to the Mo $3d_{5/2}$, Mo $3d_{3/2}$ and S 2s peaks, respectively. On these SAMs 1T MoS₂ is deposited (see chapter 3) indicating that the interaction of the MoS₂ with the Au substrate leads to an increase in binding energy of ~1.1 eV.

The Raman spectra and XPS data together clearly indicate that the gold substrate interacts strongly with the deposited MoS_2 film. The broadening of the Raman modes suggests that there may be strain in the MoS_2 film.¹⁴ Further, the XPS data suggest that the interaction of the metallic 1T MoS_2 layers with the underlying Au substrate is larger than for the semiconducting 2H MoS_2
layers; there is a large binding energy shift observed for the Mo 3d and S 2s photoelectron peaks for 1T MoS₂ while only a small differences in binding energies are observed for 2H MoS₂.

5.3.2 Raman Mapping of MoS₂ deposited on Micropatterned SAMs

Figure 5.3 Schematic representing a) a micropatterned SAM surface with $-CH_3$ SAMs in the square areas (red) and -OH SAMs in the bar areas (blue). After UV-photopatterning the bar areas are either -OH or -COOH terminated. b) shows a Raman microscope image of MoS₂ deposited on an $-OH/-CH_3$ patterned SAM after 24 hours deposition time.

Figure 5.3a shows a schematic representation of a prepared micropatterned –OH/–CH₃ SAM. In this chapter, micropatterned SAMs are either prepared as patterned –OH/–CH₃ patterned or –COOH/–CH₃ patterned. In both patterned surfaces the substrate maintains –CH₃ in the square areas of the pattern. In this example (Figure 5.3), the hydrophilic –OH terminated SAMs is in the bar areas and the –CH₃ terminated SAMs is in the square areas. Figure 5.3b shows a Raman microscope image of MoS2 deposited on a –OH/–CH₃ micropatterned SAM after 24 hours.

Figure 5.4 shows an optical image and Raman maps centered at 435 cm⁻¹, 326 cm⁻¹ and 184 cm⁻¹ after MoS₂ CBD for 24 h at room temperature. It can be seen in Figure 5.4a that the MoS₂ deposit appears to be thicker in the –CH₃ terminated SAM area compared to the –COOH terminated SAM area. This is confirmed by examination of the individual Raman spectra in the –COOH and –CH₃ terminated SAM areas; the intensity of the A_{1g} and E^{1}_{2g} modes are stronger for the –CH₃ terminated SAM (Figure 5.5).

Figure 5.4 Images after MoS₂ deposition for 24 h on –COOH/–CH3 micropatterned SAMs. The –COOH terminated SAM is in the inverted "L" area while the –CH3 terminated SAM is in the bottom left square area. a) Optical image of the mapped area (shown by the red box); and Raman maps centered at b) 425 cm-1; c) 326 cm-1; and d) 184 cm-1. Raman maps shown using a heat scale.

However, the 1T modes centered at ~155 cm⁻¹ are more intense on the –COOH terminated SAM. It is noted that there is a weaker mode also centered at ~155 cm⁻¹ on the –CH₃ terminated SAM which is likely due to strain induced in the deposited MoS₂ leading to the broadening of the $(A_{1q} - LA(M))$ mode. ^{14, 19}

Figure 5.5 Representative Raman spectra collected in the –COOH and –CH₃ terminated SAM areas after deposition of MoS₂ for 24 h on micropatterned –COOH/–CH₃ terminated SAMs.

In the Raman maps (Figures 5.4 b-d), as expected the E_{2g}^1 (326 cm⁻¹) and A_{1g} (425 cm⁻¹) modes have similar intensity across the whole area. For the map centered at (184 cm⁻¹), there is higher intensity in the –COOH terminated SAM area which is consistent with the presence of the 1T MoS₂ J modes. Taken together the Raman maps clearly indicate that 1T MoS₂ has been deposited in the –COOH terminated SAM areas while on the –CH₃ terminated SAM areas 2H MoS₂ has been deposited.

Figure 5.6 Images after MoS_2 deposition for 24 h on $-OH/-CH_3$ micropatterned SAMs. The -OH terminated SAM is in the inverted "L" area (top right) while the $-CH_3$ terminated SAM is in the bottom left square area. a) Optical image of the mapped area (shown by the red box); and Raman maps centered at b) 425 cm⁻¹; c) 326 cm⁻¹; and d) 184 cm⁻¹. Raman maps shown using a heat scale.

The data is more complicated for MoS_2 deposition on patterned $-OH/-CH_3$ terminated SAMs (Figure 5.6). Similar to the $-COOH/-CH_3$ patterned SAM, it can be seen in Figure 5.6a that the MoS_2 deposit appears to thicker in the $-CH_3$ terminated SAM area compared to the -OH terminated SAM area. This is confirmed by examination of the individual Raman spectra in the -OH and $-CH_3$ terminated SAM areas (Figure 5.7); the intensity of the A_{1g} and E^{1}_{2g} modes are stronger for the $-CH_3$ terminated SAM. However, the 1T modes centered at ~155 cm⁻¹ are more intense on the -OH terminated SAM. Further, the mode centered at ~155 cm⁻¹ on the $-CH_3$

terminated SAM, which is likely due to strain-induced broadening of the $(A_{1g} - LA(M))$ mode, ^{14, 19} is more intense.

Figure 5.7 Representative Raman spectra collected in the –OH and –CH₃ terminated SAM areas after deposition of MoS₂ for 24 h on micropatterned –OH/–CH₃ terminated SAMs.

Figure 5.6 shows the Raman map analysis collected on MoS₂ deposited on micropatterned –OH/–CH₃ terminated SAMs and is similar to the data obtained on the micropatterned –COOH/ –CH₃ terminated SAMs. As expected, the E_{2g}^1 (326 cm⁻¹) and A_{1g} (425 cm⁻¹) modes have high intensities across the whole area. It is noted that due to the different thickness of the MoS₂ deposit these modes appear more intense in the –CH₃ terminated SAM areas. For the map centered at (184 cm⁻¹), there is little spatial variation in the Raman map suggesting that the J and $(A_{1g} - LA(M))$ modes are more intense in this region.

To eliminate the large Raman mode intensity differences of the deposited MoS_2 in the –OH and –CH₃ terminated SAM areas, the spectra were normalized so that the highest spectral intensity observed was 1. Regenerating the Raman maps using the normalized spectra revealed greater differences in the region between 100 - 200 cm⁻¹, where the 1T modes are observed.^{20, 22}

The greatest spectral difference between the -OH and $-CH_3$ terminated SAM areas was observed at 145cm⁻¹ which is close to the J₁ mode of 1T MoS₂ (Figure 5.8). ^{20, 22 24} Figure 5.8 shows the Raman map generated at this Raman shift.

Figure 5.8 Images after MoS_2 deposition for 24 h on $-OH/-CH_3$ micropatterned SAMs. The – OH terminated SAM is in the inverted "L" area (top right) while the $-CH_3$ terminated SAM is in the bottom left square area. a) Optical image of the mapped area (shown by the red box); b) Raman maps centered at b) 145 cm⁻¹.

5.4 Conclusions

The XPS and Raman data indicate that the deposited MoS₂ strongly interacts with the Au substrate. In Raman spectra, we observe the blue shift of the A_{1g} mode and a red shift of the E_{2g}^1 mode. Additionally, for the first time, we report that the J modes of 1T MoS₂ are significantly broadened. In the XPS spectra we observe that the Mo 3d and S 2s binding energies increase by ~1.1 eV for 1T MoS₂ while on for 2H MoS₂ the binding energy shift is negligible indicating that the interaction of the metallic 1T MoS₂ is likely stronger with the Au substrate.

Second, we demonstrate the area-selective MoS_2 deposition patterned $-COOH/-CH_3$ or $-OH/-CH_3$ SAM surfaces. Using Raman mapping in the -COOH and -OH terminated SAM areas we observe the deposition of 1T MoS_2 while on $-CH_3$ terminated SAMs we observe the deposition

of 2H MoS₂. The results suggest that CBD can be employed to create self-aligned transition metal

dichalcogenide structures.

5.5 References

1. Liao, L.; Lin, Y.-C.; Bao, M.; Cheng, R.; Bai, J.; Liu, Y.; Qu, Y.; Wang, K. L.; Huang, Y.; Duan, X., High-speed graphene transistors with a self-aligned nanowire gate. *Nature* **2010**, *467*, 305-308.

2. Liu, X.; Yang, X.; Gao, G.; Yang, Z.; Liu, H.; Li, Q.; Lou, Z.; Shen, G.; Liao, L.; Pan, C.; Wang, Z. L., Enhancing Photoresponsivity of Self-Aligned MoS₂ Field-Effect Transistors by Piezo-Phototronic Effect from GaN Nanowires. **2016**, *10*, 7451-7457.

3. Zhong, Z.; Wang, D.; Cui, Y.; Bockrath, M. W.; Lieber, C. M., Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems. *Science* **2003**, *302*, 1377-1379.

4. Minari, T.; Kano, M.; Miyadera, T.; Wang, S.-D.; Aoyagi, Y.; Tsukagoshi, K., Surface selective deposition of molecular semiconductors for solution-based integration of organic field-effect transistors. *Applied Physics Letters* **2009**, *94*, 093307.

5. Lu, P.; Walker, A. V., Making Nanoflowerbeds: Reaction Pathways Involved in the Selective Chemical Bath Deposition of ZnS on Functionalized Alkanethiolate Self-Assembled Monolayers. *ACS Nano* **2009**, *3*, 370-378.

6. Lu, P.; Walker, A. V., Selective Formation of Monodisperse CdSe Nanoparticles on Functionalized Self-Assembled Monolayers Using Chemical Bath Deposition. *Electrochim. Acta* **2010**, *55*, 8126-8134.

7. Shi, Z.; Walker, A. V., Chemical Bath Deposition of ZnO on Functionalized Self-Assembled Monolayers: Selective Deposition and Control of Deposit Morphology. *Langmuir* **2015**, *31*, 1421-1428.

8. Hedlund, J. K.; Ellsworth, A. A.; Walker, A. V., Using Surface Chemistry to Direct the Deposition of Nano-objects for Electronics. *ECS Transactions* **2018**, *In Press*.

9. Ellsworth, A. A.; Borner, K.; Yang, J.; Walker, A. V., Towards Molecular Electronics: Using Solution-Based Methods to Deposit Nanowires. *ECS Transactions* **2014**, *58* (43), 1-10.

10. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M., Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. *Chem. Rev.* **2005**, *105*, 1103-1169.

11. Gołasa, K.; Grzeszczyk, M.; Binder, J.; Bo żek, R.; Wysmo łek, A.; Babi ński, A., The disorder-induced Raman scattering in Au/MoS_2 heterostructures. *AIP Advances* **2015**, *5*, 077120(1-7).

12. Rahaman, M.; Rodriguez, R. D.; Plechinger, G.; Moras, S.; Schüller, C.; Korn, T.; Zahn, D. R. T., Highly Localized Strain in a MoS₂/Au Heterostructure Revealed by Tip-Enhanced Raman Spectroscopy. *Nano Letts.* **2017**, *17*, 6027-6033.

13. Cook, M.; Palandech, R.; Doore, K.; Ye, Z.; Ye, G.; He, R.; Stollenwerk, A. J., Influence of interface coupling on the electronic properties of the Au/MoS₂ junction. *Phys. Rev. B* **2015**, *92*, 201302(1-5).

14. Gong, C.; Huang, C.; Miller, J.; Cheng, L.; Hao, Y.; Cobden, D.; Kim, J.; Ruoff, R. S.; Wallace, R. M.; Cho, K.; Xu, X.; Chabal, Y. J., Metal Contacts on Physical Vapor Deposited Monolayer MoS₂. *ACS Nano* **2013**, *7* (12), 11350-11357.

15. Lin, Y.-K.; Chen, R.-S.; Chou, T.-C.; Lee, Y.-H.; Chen, Y.-F.; Chen, K.-H.; Chen, L.-C., Thickness-Dependent Binding Energy Shift in Few-Layer MoS₂ Grown by Chemical Vapor Deposition. *ACS Appl. Mater. Interfaces* **2016**, *8* (34), 22637-22646.

16. Farmanbar, M.; Brocks, G., First-principles study of van der Waals interactions and lattice mismatch at MoS₂/metal interfaces. *Phys. Rev. B* **2016**, *93*, 085304.

17. Fisher, G. L.; Walker, A. V.; Hooper, A. E.; Tighe, T. B.; Bahnck, K. B.; Skriba, H. T.; Reinard, M. D.; Haynie, B. C.; Opila, R. L.; Winograd, N.; Allara, D. L., Bond Insertion, Complexation and Penetration Pathways of Vapor-Deposited Aluminum Atoms with HO- and CH₃O- Terminated Organic Monolayers. *J. Am. Chem. Soc.* **2002**, *124*, 5528-5541.

18. Fisher, G. L.; Hooper, A. E.; Opila, R. L.; Allara, D. L.; Winograd, N., The Interaction of Vapor-Deposited Al Atoms with CO₂H Groups at the Surface of a Self-Assembled Alkanethiolate Monolayer on Gold. *J. Phys. Chem. B* **2000**, *104*, 3267-3273.

19. Windom, B. C.; Sawyer, W. G.; Hahn, D. W., A Raman Spectroscopic Study of MoS2 and MoO3: Applications to Tribological Systems. *Tribol. Lett.* **2011**, *42* (3), 301-310.

20. Jiménez Sandoval, S.; Yang, D.; Frindt, R. F.; Irwin, J. C., Raman study and lattice dynamics of single molecular layers of MoS₂. *Phys. Rev. B* **1991**, *44* (8), 3955-3962.

21. Johnson, P. B.; Christy, R. W., Optical Constants of the Noble Metals. *Phys. Rev. B* **1972**, *6* (12), 4370-4379.

22. Lv, R.; Robinson, J. A.; Schaak, R. E.; Sun, D.; Sun, Y.; Mallouk, T. E.; Terrones, M., Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Singleand Few-Layer Nanosheets. *Acc. Chem. Res.* **2015**, *48*, 56-64.

23. Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M., Photoluminescence from Chemically Exfoliated MoS₂. *Nano Letts*. **2011**, *11* (12), 5111-5116.

24. Voiry, D.; Mohite, A.; Chhowalla, M., Phase engineering of transition metal dichalcogenides. *Chem. Soc. Rev.* **2015**, *44*, 2702-2712.

CHAPTER 6

COMPOSITIONAL CHANGES IN COPPER SULFIDE THIN FILMS GROWN BY CHEMICAL BATH DEPOSITION ON FUNCTIONALIZED SELF-ASSEMBLED MONOLAYERS

6.1 Introduction

Copper sulfide is an attractive material due to its earth abundance¹ and non-toxic qualities²⁻³ making it a practical and low-cost option for many technological applications including in biochemistry,⁴⁻⁶ photocatalysis,⁷ solar cells,^{2-3, 8-9} and nanoelectronics.¹⁰⁻¹¹ One of the reasons that copper sulfide has many applications is that its stoichiometry can be varied from $1 \le Cu/S \le 2$ leading to a wide variety of electrical and other materials properties. In general copper sulfides are semiconductors but can act as metallic conductors.¹²⁻¹⁴ The stoichiometric forms of copper sulfide are covellite (CuS) and chalcocite (Cu₂S), but there are other less common, naturally occurring forms including spionkopite (Cu_{1.39}S), geerite (Cu_{1.6}S), anilite (Cu₇S₄) and digenite(Cu₉S₅) phases.¹⁵

Therefore one of the challenges in synthesizing copper sulfide thin films is the precise control of the film composition. Copper sulfide has been synthesized by various techniques including atomic layer deposition,¹⁶ chemical vapor deposition.¹⁷⁻¹⁹, hydrothermal,^{9, 20-23} solvothermal,²³ microwave assisted,²⁴ thermolysis,²² spray pyrolysis,²⁵ and sonoelectrochemical methods.²² However, these methods either require high temperatures, vacuum equipment, and/or expensive precursors. Further, it can be difficult to control the composition of the deposit.^{17-18, 25}

Chemical bath deposition (CBD) is a solution-based ion-exchange method that has been used to deposit a wide range of semiconducting materials including metal oxides,²⁶ selenides,²⁷⁻²⁸ and sulfides.²⁹ CBD is an attractive technique because it is low cost, and can be performed under ambient conditions at low temperatures.³⁰ There have been a number of studies of the CBD of copper sulfide films.^{13, 31-44} Depending on the reaction conditions, such as the bath pH and temperature, both CuS and Cu₂S have been observed to deposit as well as non-stoichiometric copper sulfides. Further, the composition of the deposit can be altered by the addition of Cu²⁺ ions in the deposition solution³⁷ or by annealing the film.^{37, 42} It has also been demonstrated that the substrate chemistry can affect the properties the deposited copper sulfide film.^{36, 43} However, the mechanisms underlying these effects are not well understood.

In this chapter we investigate the chemical bath deposition (CBD) of copper $-CH_3$, -OH and -COOH terminated self-assembled monolayers (SAMs). SAMs are ideal model substrates to investigate deposition reactions because they have a known well-ordered structure and are synthetically flexible.⁴⁵⁻⁴⁷ We demonstrate that copper sulfide deposition is strongly dependent on the bath pH which can be attributed to the decomposition of the sulfur source, thiourea. We also demonstrate for the first time that the chemical identity of the deposit can be altered by exploiting the interaction of the deposition precursors with the substrate. We show that on -OH and -COOH terminated SAMs the covellite is always deposited, which can be attributed to the interaction of S²⁻ ions with the negatively charged SAM surfaces. In contrast, on $-CH_3$ terminated SAMs, the deposit changes from covellite to chalcocite as the bath pH increases.

6.2 Experimental

6.2.1 Materials

All reagents were used as received without further purification. Thiourea (99%) was obtained from Alfa Aesar, Inc. (Ward Hill, MA). Sodium hydroxide (≥98%, pellets) were purchased from Fisher Chemicals (Thermo Fisher Scientific Inc., Waltham, MA). 16-mercaptohexadecanoic acid (90%)

(MHA), 1-hexadecanethiol (99%) (HDT), ethylenediaminetetraacetic acid (98%) (EDTA), and copper (II) sulfate pentahydrate (98%) were acquired from Sigma-Aldrich Inc. (St. Louis, MO). 16-Hydroxy-1-hexadecanethiol (99%) (MHL) was obtained from Frontier Scientific Inc. (Logan, UT). Ethanol (200 proof, undenatured) was purchased from Spectrum Chemical MFG Corp (New Brunswick, NJ).

The gold substrates were prepared in the Cleanroom Research Laboratory, University of Texas at Dallas. Briefly, silicon wafers ((111) orientation) were acquired from Addison Engineering Inc. (San Jose, CA), and ~200 Å of chromium followed by ~1000 Å of gold were thermally deposited onto these substrates.

6.2.2 Self-Assembled Monolayer Preparation

The preparation of alkanethiolate self-assembled monolayers has been described in detail previously.⁴⁸⁻⁵¹ In brief, a well-ordered SAM was prepared by immersing a gold substrate into a 1 mM solution of the desired alkanethiol (MHL, MHA or HDT) in ethanol for 24 hours at room temperature. After removal from the alkanethiol solution, the samples were then rinsed with ethanol and dried with nitrogen gas.

6.2.3 Chemical Bath Deposition of Copper Sulfide

The deposition bath was composed of 0.006 M copper sulfate pentahydrate, 0.016 M EDTA, and 0.012 M sodium hydroxide. To investigate the effect of the pH on the deposition, the bath pH was varied from pH 9 to pH 12. The pH of the deposition bath was adjusted using sodium hydroxide and sulfuric acid prior to the addition of the sulfur source, 0.012 M thiourea. The SAM substrate was immediately immersed into the bath for deposition times from 30 min to 24 hours. All samples

were sonicated in water for 2 minutes, rinsed with deionized water, and dried using nitrogen gas prior to further characterization.

6.2.4 X-ray Photoelectron Spectroscopy

Ex-situ x-ray photoelectron spectroscopy (XPS) measurements were collected using a PHI VersaProbe II (Physical Electronics Inc., Chanhassen, MN) equipped with an Al K α source (E_b = 1486.7 eV). During data acquisition, the pressure in the main chamber was maintained < 5×10⁻¹⁰ mbar. High-resolution photoelectron spectra were collected with a pass energy of 23.5 eV, energy step of 0.2 eV, and analysis angle of 45°. All spectra were obtained using a charge compensation with an electron beam incident on the surface. The binding energies were calibrated to the Au 4f_{7/2} binding energy (84.0 eV). The data were analyzed using CasaXPS 2.3.17 (RBD Instruments, Inc., Bend OR).

6.2.5 Time-of-Flight Secondary Ion Mass Spectrometry

Time-of-flight secondary ion mass spectrometry (TOF SIMS) data were collected with an ION TOF IV (ION TOF Inc., Chestnut Hill, NY) equipped with a Bi liquid metal ion gun. The instrument is comprised of three chambers: a loadlock, a preparation chamber and an analysis chamber. During data collection, the pressure of the analysis chamber was kept $< 5 \times 10^{-9}$ mbar during data collection. The Bi⁺ primary ions had a kinetic energy of 25 keV, and were contained in a ~100 nm probe beam. The analysis area was (100 × 100) µm². All spectra were acquired using an analysis area of (100 × 100) µm², and within the static regime using a total ion dose less than 10^{10} ions cm⁻². For each experimental condition, at least three samples were prepared, and three areas on each sample were examined.

6.3 Results and Discussion

6.3.1 Deposition of Cu_xS Films

After 24 h deposition, the photoelectron and TOF SIMS spectra clearly show that copper sulfide has deposited on the –CH₃, –OH and –COOH terminated SAMs. In the SIMS spectra, ions of the form $Cu_xS_y^-$ are observed indicating that copper sulfide deposition has occurred. Further, the data indicate that the molecular cluster ion intensities, Au_2M^- and AuM_2^- (where $M = -S(CH_2)_{15}CH_3$, - $S(CH_2)_{15}CH_2OH$ or $-S(CH_2)_{15}COOH$) have significantly decreased indicating that the SAMs are covered by a deposited layer (Figure 6.1).

The Cu 2p (Figure 6.2) photoelectron spectra also show that copper sulfide has deposited. At pH 9 the Cu $2p_{3/2}$ binding energy is 932.2 eV on –OH and –CH₃ terminated SAMs which indicates that CuS has deposited.⁵²⁻⁵⁴ On –COOH terminated SAMs, the Cu 2p photoelectron peak intensities are significantly smaller indicating that there is less Cu_xS deposited. The binding energy of the Cu $2p_{3/2}$ peak is 932.2 eV which is consistent with the deposition of CuS.⁵²⁻⁵⁴ As the deposition bath pH increases from 9 to 12, the binding energy of the Cu $2p_{3/2}$ peak remains constant for Cu_xS deposited on –OH and –COOH terminated SAMs indicating that the deposit remains CuS. In contrast, for –CH₃ terminated SAMs the Cu $2p_{3/2}$ binding energy increases from 932.2 eV at pH 9 to 932.3 eV at pH 11 to 932.4 eV at pH 12 suggesting that the deposit is changing from CuS to Cu₂S.⁵²⁻⁵⁴ The binding energies of the Cu $2p_{1/2}$ peaks are consistent with the Cu $2p_{3/2}$ photoelectron energies. For –OH and –COOH terminated SAMs the bath pH is changed from pH 9 to pH 12, the binding energy remains constant, 952.0 eV, indicating that CuS has deposited.⁵² For –CH₃ terminated SAMs the Cu $2p_{1/2}$ binding energy increases by +0.2 eV suggesting that the oxidation state of the copper is changing and that Cu₂S has deposited.⁵²⁻⁵⁴

Figure 6.1 High resolution negative ion spectra of Au_2M^- ((where $M = -S(CH_2)_{15}CH_3 -S(CH_2)_{15}CH_2OH$ or $-S(CH_2)_{15}COOH$) after deposition of copper sulfide for 24 h at room temperature on a) $-CH_3$; b) -OH and c) -COOH terminated SAMs. The deposition bath pH was varied from pH 9 to pH 12.

Figure 6.2 Cu 2p photoelectron spectra after deposition of copper sulfide for 24 h at room temperature on a) $-CH_3$; b) -OH and c) -COOH terminated SAMs. The deposition bath pH was varied from pH 9 to pH 12.

Perry and Taylor⁵³ observed distinct differences in the S 2p photoelectron spectra of CuS and Cu_2S both in the lineshape and a difference in binding energy of 0.8 eV. Figure 6.3 shows the S 2p photoelectron spectra of $-CH_3$, -OH and -COOH terminated SAMs after Cu_xS CBD for 24h. We note that the intensities of the S 2p peaks are much lower than the Cu 2p peaks because the photoelectron cross-section of S is much lower than for Cu.⁵⁵ For the bare alkanethiolate SAMs, there is a small S 2p peak observed at ~162.0 eV. After copper sulfide deposition for 24h, the intensity of the S 2p peak has significantly increased. Taken together with the Cu 2p photoelectron spectra, this observation is consistent with the deposition of a Cu_xS layer. For pH 9, the binding energy of the S 2p photoelectron is ~162.5 eV for all SAMs studied indicating that CuS has deposited in agreement with the Cu 2p photoelectron spectra. Further, the line shape is indicative of covellite, CuS. The lineshape is broad suggesting that there are two doublets present corresponding to the S²⁻ and S₂²⁻ ligands in covellite.^{53, 56} As the bath pH increases, for -COOHand -OH terminated SAMs the intensity of the S 2p peak increases but the binding energy remains the same ~162.5 eV indicating that more CuS is deposited. In contrast for -CH₃ terminated SAMs the S 2p photoelectron decreases in binding energy to ~161.8 eV and the lineshape slightly narrows which is consistent with the deposition of Cu₂S.⁵²⁻⁵³

Additional information about the Cu_xS deposit can be obtained from the x-ray initiated Auger electron spectroscopy (XAES) Cu LMM peak (Figure 6.4). This is because the Auger kinetic energy shifts are generally more sensitive to changes in chemical environment than the core photoelectron lines. In agreement with the Cu 2p and S 2p photoelectron data, for –COOH and –OH terminated SAMs, as the pH of the deposition bath is increased the kinetic energy of the Cu LMM peak remains ~918.2 eV indicating that the deposit is CuS.^{52-54, 57}

Figure 6.3 S 2p photoelectron spectra after deposition of copper sulfide for 24 h at room temperature on a) $-CH_3$ b) -OH and c) -COOH terminated SAMs. The deposition bath pH was varied from pH 9 to pH 12.

Further, the Cu LMM peak shape is consistent with the deposition of covellite, CuS.⁵⁷ For -CH₃ terminated SAMs, the Cu LMM kinetic energy decreases from 918.2 eV at pH 9 and pH 11 to 917.6 eV at pH 12 indicating that the deposit changes from covellite, CuS, to chalcocite, Cu₂S. ^{52-54, 57} The Cu LL peak also changes line shape and has a smaller shoulder on the high kinetic energy which also suggests that Cu₂S has deposited.^{54, 57} The differences in the photoelectron binding energies and the XAES kinetic energies are very small, and, taking into account the experimental errors in determining the line positions it is difficult to unambiguously determine the deposit composition. The modified Auger parameter, α ', can be employed to unambiguously determine film compositions without the interference of effects such as sample charging. For copper, the modified Auger parameter is the sum of the Cu 2p_{3/2} binding energy and the Cu LMM kinetic energy. For CuS and Cu₂S, the modified Auger parameters are 1850.3±0.2 eV and 1849.8±0.2 eV.⁵²⁻⁵⁴ Table 6.1 displays the values of the Cu 2p_{3/2} binding energies, the kinetic energies of the Cu LMM XAES peak, and the modified Auger parameters after Cu_xS CBD for 24 h on -CH₃, -OH and -COOH terminated SAMs. The data show that for all SAMs studied at CuS is deposited at pH 9 and pH 11. For pH 12, in agreement with the S 2p photoelectron spectra, the data show that on -COOH and -OH terminated SAMs the deposit remains covellite, CuS, but on -CH₃ terminated SAMs the deposit is chalcocite, Cu₂S.

Figure 6.4 Cu LMM peak measured for deposition on all three SAMs at pH 9, 11 and 12. Deposition time = hours.

Table 6.1 The values of the binding energies of the $Cu2p_{3/2}$ peak, kinetic energies of the Cu LMM XAES peak and calculated Auger parameter, α ', after Cu_xS CBD for 24 h on $-CH_3$, -OH and -COOH terminated SAMs.

SAM Terminal	Deposition Bath	Binding Energy	Kinetic Energy	α' (eV)
Group	рН	Cu2p3/2 (eV)	Cu LMM (eV)	
CH3	9	932.2	918.2	1850.4
	11	932.2	918.1	1850.3
	12	932.4	917.6	1850.0
-OH	9	932.2	918.2	1850.4
	11	932.2	918.2	1850.4
	12	932.2	918.2	1850.4
-СООН	9	932.4	918.0	1850.4
	11	932.2	918.2	1850.4
	12	932.4	918.0	1850.4

6.3.2 Reaction Pathways of Cu_xS CBD on Functionalized SAMs

Chemical bath deposition of metal sulfides have been extensively studied.³⁰ Typically in a CBD reaction the concentration of both the chalcogenide ion and the cation are controlled. Under basic reaction conditions (i.e. in the presence of OH^{-}), Cu_xS was deposited using the following (unbalanced) reaction equation:³⁰

$$Cu^{2+} + EDTA^{4-} \rightarrow [Cu(EDTA)]^{2-}$$
6.1

 $SC(NH_2)_2 + OH^- \rightarrow CN_2H_2 + H_2O + HS^-$ 6.2

$$\mathrm{HS}^{-} + \mathrm{OH}^{-} \rightarrow \mathrm{S}^{2-} + \mathrm{H}_{2}\mathrm{O}$$
 6.3

$$Cu^{2+} + S^{2-} \to CuS \tag{6.4}$$

$$2\mathrm{Cu}^{+} + \mathrm{S}^{2-} \to \mathrm{Cu}_2\mathrm{S} \tag{6.5}$$

In reaction 6.1, the concentration of "free" copper ions is controlled by a complexing agent, ethylenediaminetetraacetic acid (EDTA). Thiourea reacts with hydroxide ions present in solution to form bisulfide ions, HS^- (reaction 6.2). Subsequently the bisulfide ions decompose to S^{2-} ions (reaction 6.3) which then react with Cu^{2+} ions to form covellite (CuS) (reaction 6.4) or chalcocite (reaction 6.6).

The data show that the Cu_xS deposition is strongly dependent on the bath pH. As the bath pH increases, the Cu 2p and S 2p photoelectron intensities indicate that more Cu_xS is deposited at pH 12 than at pH 9. This effect is particularly strong for –COOH terminated SAMs. Second, on –CH₃ terminated SAMs, the deposit changes from CuS to Cu_2S whereas on –COOH and –OH terminated SAMs the deposit remains CuS.

Figure 6.5 The average Cu $2p_{3/2}$ photoelectron peak height after deposition of copper sulfide for 24 h at room temperature on $-CH_3$, -OH and -COOH terminated SAMs. The deposition bath pH was varied from pH 9 to pH 12.

The increase in the amount of Cu_xS deposited can be explained in the following way. As the pH increases, more HS⁻ is produced (reaction 6.2) leading to an increase in the concentration of S²⁻ ions in solution and consequently more Cu_xS is deposited. We estimate that for at bath pH of 9, the concentration of S²⁻ ions is 5×10^{-9} M and at a bath pH of 12, the concentration has increased to 5×10^{-6} M. However, we only observe an increase of $\sim 3 \times$ in the Cu $2p_{3/2}$ peak heights (or intensities) (Figure 6.5) indicating that there are other factors that affect the Cu_xS deposition. It is interesting to note that at pH 9, on –COOH terminated SAMs there is the least amount of CuS deposited but at pH 12 the largest amount of CuS is deposited. In contrast for –CH₃ terminated SAMs, while there is an increase in the amount of copper sulfide deposited from pH 9 to pH 12 it is not as large for –COOH terminated SAMs. Further on –CH₃ terminated SAMs, the copper sulfide deposit changes from covellite (CuS) to chalcocite (Cu₂S).

The above discussion indicates that the chemistry nature of the substrate is critical factor in the deposition of copper sulfide films by CBD. The larger increase in the amount of CuS deposited on –COOH terminated SAMs can be explained in the following way. For –COOH terminated SAMs, the surface $pK_{\frac{1}{2}}$ is ~8.0, which is the pH of the solution at which a surface is 50 % ionized.⁵⁸ Thus as the bath pH increases the –COOH terminal group deprotonates to form carboxylate ions, COO⁻, and at pH 11 the surface is almost fully deprotonated. The increase in the copper sulfide deposition can be attributed to the formation of copper-carboxylate ions which serve as the nucleation sites for subsequent deposition.⁵⁹⁻⁶⁴ In the SIMS spectra after Cu_xS CBD we observe ions of the form Cu(COO)CH_x⁺ (Figure 6.6). The intensity of these ion increase with bath pH and deposition time.

Figure 6.6 High resolution positive ion spectra centered at m/z 163 after deposition of Cu_xS at pH 11 on –COOH terminated SAMs (MHA) at various time points including bare MHA (time = 0), 30 minutes, 5 hours and 24 hours.

It is also observed that the Cu_xS deposit changes, and is dependent on both the substrate and bath pH. For –COOH and –OH terminated SAMs, covellite is deposited at all bath pH studied. In contrast for –CH₃ terminated SAMs, covellite is deposited at pH 9 and pH 11 but chalcocite is deposited at pH 12. These observations can be explained in the following way. Above pH 9, the –COOH terminated SAM is almost completely deprotonated leading to the formation of a charged surface composed of COO⁻ ions at the solution-substrate interface. The C-OH terminal bond of –OH terminated SAMs is polar with the –OH group having a small negative charge (δ^{-}). Consequently, as the bath pH increases these negatively charged surfaces repel the S²⁻ ions present in solution. Thus, the deposit CuS which is composed of S₂²⁻ and S²⁻ ions ligands.⁵³ In contrast for –CH₃ terminated SAMs, the C-H bonds of the methyl terminal group are not polar. In this case, the S²⁻ ions are not repelled by the –CH₃ terminated SAMs, and consequently S²⁻ deposition is preferred on these surfaces and chalcocite forms at a bath pH of 12. We note that on –CH₃ terminated SAMs the modified Auger parameter of the deposit decreases with bath pH. This suggests that the deposited copper sulfide layer changes from CuS at pH 9 to a mixed CuS/Cu₂S film at pH 11 to Cu₂S at pH 12.

6.4 Conclusions

Copper sulfide deposition using the CBD method reported here is strongly dependent on the pH of the deposition bath. First, as the bath pH increases the amount of copper sulfide deposited increases which can be attributed to the decomposition of the thiourea sulfur source. Second, as the bath pH increases, the deposit changes from CuS to Cu_2S on $-CH_3$ terminated SAMs. However,

on -OH and -COOH terminated SAMs the deposit is CuS at all deposition bath pHs investigated.

This effect can be attributed to the interaction of the S^{2-} ions with the SAM terminal groups.

6.5 References

1. Haxel, G. B.; Boore, S.; Mayfield, S. Rare Earth Elements-Critical Resources for High Technology. <u>https://pubs.usgs.gov/fs/2002/fs087-02</u> (accessed November 23).

2. Shah, A.; Torres, P.; Tscharner, R.; Wyrsch, N.; Keppner, H., Photovoltaic Technology: The Case for Thin-Film Solar Cells. *Science* **1999**, *285*, 692-698.

3. Polman, A.; Knight, M.; Garnett, E. C.; Ehrler, B.; Sinke, W. C., Photovoltaic materials: Present efficienies and future challenges. *Science* **2016**, *352* (6283), aad4424.

4. Bai, J.; Jiang, X., A Facile One-Pot Synthesis of Copper Sulfide-Decorated Reduced Graphene Oxide Composites for Enhanced Detecting of H_2O_2 in Biological Environments. *Analytical Chemistry* **2013**, *85*, 8095-8101.

5. Ding, K.; Zeng, J.; Jing, L.; Qiao, R.; Liu, C.; Jiao, M.; Li, Z.; Gao, M., Aqueous synthesis of PEGylated copper sulfide nanoparticles for photoacoustic imaging of tumors. *Nanoscale* **2015**, *7*, 11075-11081.

6. Goel, S.; Chen, F.; Cai, W., Synthesis and Biomedical Applications of Copper Sulfide Nanoparticles: From Sensors to Theranostics. *Small* **2014**, *10* (4), 631-645.

7. Chen, X.; Li, H.; Wu, Y.; Wu, H.; Wu, L.; Tan, P.; Pan, J.; Xiong, X., Facile fabrication of novel porous graphitic carbon nitride/copper sulfide nanocomposites with enhanded visible light driven photocatalytic performance. *Journal of Colloid and Interface Science* **2016**, *476*, 132-143.

8. Lee, H.; Yoon, S. W.; Kim, E. J.; Park, J., In-Situ Growth of Copper Sulfide Nanocrystals on Multiwalled Carbon Nanotubes and Their Application as Novel Solar Cell and Amperometric Glucose Sensor Materials. *Nano Letters* **2007**, *7* (3), 778-784.

9. Wu, Y.; Wadia, C.; Ma, W.; Sadtler, B.; Alivisatos, A. P., Synthesis and Photovoltaic Application of Copper(I) Sulfide Nanocrystals. *Nano Letters* **2008**, *8* (8), 2551-2555.

10. Sakamoto, T.; Sunamura, H.; Kawaura, H.; Hasegawa, T.; Nakayama, T.; Aono, M., Nanometer-scale switches using copper sulfide. *Applied Physics Letters* **2003**, *82* (18), 3032-3034.

11. Tang, J.; Huo, Z.; Brittman, S.; Gao, H.; Yang, P., Solution-processed core-shell nanowires for efficient photovoltaic cells. *Nature Nanotechnology* **2011**, *6*, 568-572.

12. Kimihiko, O.; Shichio, K., Electrical Conduction and Phase Transition of Copper Sulfides. *Japanese Journal of Applied Physics* **1973**, *12* (8), 1130.

13. Grozdanov, I.; Najdoski, M., Optical and Electrical Properties of Copper Sulfide Films of Variable Composition. *Journal of Solid State Chemistry* **1995**, *114* (2), 469-475.

14. Munson, R. A.; DeSorbo, W.; Kouvel, J. S., Electrical, Magnetic, and Superconducting Properties of Copper Disulfide. *The Journal of Chemical Physics* **1967**, *47* (5), 1769-1770.

15. Wang, Y.; Liu, F.; Ji, Y.; Yang, M.; Liu, W.; Wang, W.; Sun, Q.; Zhang, Z.; Zhao, X.; Liu, X., Controllable synthesis of various kinds of copper sulfides (CuS, Cu₇S₄, Cu₉S₅) for high-performance supercapacitors. *Dalton Transactions* **2015**, *44*, 10431-10437.

16. Martinson, A. B. F.; Riha, S. C.; Thimsen, E.; Elam, J. W.; Pellin, M. J., Structural, optical, and electronic stability of copper sulfide thin films grown by atomic layer deposition. *Energy & Environmental Science* **2013**, *6*, 1868-1878.

17. Carbone, I.; Zhou, Q.; Vollbrecht, B.; Yang, L.; Medling, S.; Bezryadina, A.; Bridges, F.; Aler, G. B., Pulsed chemical vapor deposition of Cu₂S into a porous TiO₂ matrix. *Journal of Vacuum Science & Technology A: Vacuum, Surfaces and Films* **2011**, *29* (5), 051505.

18. Nomura, R.; Miyawaki, K.; Toyosaki, T.; Matsuda, H., Preparation of Copper Sulfide Thin Layers by a Single-Source MOCVD Process. *Chemical Vapor Deposition* **1996**, *2* (5), 174-179.

19. Abdelhady, A. L.; Ramasamy, K.; Malik, M. A.; O'Brien, P.; Haigh, S. J.; Raftery, J., New routes to copper sulfide nanostructures and thin films. *Journal of Materials Chemistry* **2011**, *21*, 17888-17895.

20. Lu, Q.; Gao, F.; Zhao, D., One-Step Synthesis and Assembly of Copper Sulfide Nanoparticles to Nanowires, Nanotubes, and Nanovesicles by a Simple Organic Amine-Assisted Hydrothermal Process. *Nano Letters* **2002**, *2* (7), 725-728.

21. Chen, X.; Wang, Z.; Wang, X.; Zhang, R.; Liu, X.; Lin, W.; Qian, Y., Synthesis of novel copper sulfide hollow spheres generated from copper (II)-thiourea complex. *Journal of Crystal Growth* **2004**, *263*, 570-574.

22. Zhao, Y.; Pan, H.; Lou, Y.; Qiu, X.; Zhu, J.; Burda, C., Plasmonic Cu_{2-x}S Nanocrystals: Optical and Structural Properties of Copper-Deficient Copper(I) Sulfides. *Journal of the American Chemical Society* **2009**, *131*, 4253-4261.

23. Shamraiz, U.; Hussain, R. A.; Badshah, A., Fabrication and applications of copper sulfide (CuS) nanostructures. *Journal of Solid State Chemistry* **2016**, *238*, 25-40.

24. Liao, X.-H.; Chen, N.-Y.; Xu, S.; Yang, S.-B.; Zhu, J.-J., A microwave assisted heating method for the preparation of copper sulfide nanorods. *Journal of Crystal Growth* **2003**, *252*, 593-598.

25. Isac, L.; Duta, A.; Kriza, A.; Manolache, S.; Nanu, M., Copper sulfides obtained by spray pyrolysis - Possible absorbers in solid-state solar cells. *Thin Solid Films* **2007**, *515* (15), 5755-5758.

26. Shi, Z.; Walker, A. V., Chemical Bath Deposition of ZnO on Functionalized Self-Assembled Monolayers: Selective Deposition and Control of Deposit Morphology. *Langmuir* **2015**, *31*, 1421-1428.

27. Lugo, S.; Sánchez, Y.; Neuschitzer, M.; Xie, H.; Insignares-Cuello, C.; Izquierdo-Roca, V.; Peña, Y.; Saucedo, E., Chemical bath deposition route for the synthesis of ultra-thin CuIn(S,Se)₂ based solar cells. *Thin Solid Films* **2015**, *582*, 74-78.

28. Pramanik, P.; Bhattacharya, S., Preparation and Characterization of thin films of molybdenum sulphide and selenide by a chemical deposition technique. *Journal of Materials Science Letters* **1989**, *8*, 781-782.

29. Safanova, M.; Nair, P. K.; Mellikov, E.; Garcia, A. R.; Kerm, K.; Revathi, N.; Romann, T.; Mikli, V.; Volobujeva, O., Chemical bath deposition of SnS thin films on ZnS and CdS substrates. *Journal of Materials Science: Materials in Electronics* **2014**, *25*, 3160-3165.

30. Hodes, G., *Chemical solution deposition of semiconductor films* Marcel Dekker: New York, 2003.

31. Nair, M. T. S.; Nair, P. K., Chemical bath deposition of Cu_xS thin films and their prospective large area applications. *Semiconductor Science and Technology* **1989**, *4*, 191-199.

32. Vas-Umnuay, P.; Chang, C.-h., Growth Kinetics of Copper Sulfide Thin Films by Chemical Bath Deposition. *ECS Journal of Solid State Science and Technology* **2013**, *2* (4), 120-129.

33. Lindroos, S.; Arnold, A.; Leskelä, M., Growth of CuS thin films by the successive ionic layer adsorption and reaction method. *Applied Surface Science* **2000**, *158* (12), 75-80.

34. Lokhande, C. D., A chemical method for preparation of metal sulfide thin films. *Materials Chemistry and Physics* **1991**, 28 (1), 145-149.

35. Gadave, K. M.; Lokhande, C. D., Formation of Cu_xS films through a chemical bath deposition process. *Thin Solid Films* **1993**, *229* (1), 1-4.

36. Lu, Y.; Meng, X.; Yi, G.; Jia, J., In situ growth of CuS thin films on functionalized self-assembled monolayers using chemical bath deposition. *Journal of Colloid and Interface Science* **2011**, *356* (2), 726-733.

37. Munce, C. G.; Parker, G. K.; Holt, S. A.; Hope, G. A., A Raman spectroelectrochemical investigation of chemical bath deposited CuxS thin films and their modification. *Colloids and Surfaces A* **2007**, *295* (1-3), 152-158.

38. Fatas, E.; Garcia, T.; Montemayor, C.; Medina, A.; Camarero, E. G.; Arjona, F., Formation of Cu_xS thin films through a chemical bath deposition process. *Materials Chemistry and Physics* **1985**, *12* (2), 121-128.

39. Fernandez, A. M.; Sebastian, P. J.; Campos, J.; Gomez-Daza, O.; Nair, P. K.; Nair, M. T. S., Structural and opto-electronic properties of chemically deposited CuxS thin film and the precipitate. *Thin Solid Films* **1994**, *237* (12), 141-147.

40. Grozdanov, I.; Barlingay, C. K.; Dey, S. K., Novel applications of chemically deposited Cu_xS thin films. *Materials Letters* **1995**, *23* (46), 181-185.

41. Huang, L.; Zingaro, R. A.; Meyers, E. A.; Nair, P. K.; Nair, M. T. S., Chemical Deposition of Thin Films of Copper Sulfide on Glass Surfaces Modified with Organosilanes. *Phosphorus, Sulfur, and Silicon and the Related Elements* **1995**, *105*, 175-185.

42. Nair, M. T. S.; Guerrero, L.; Nair, P. K., Conversion of chemically deposited CuS thin films to Cu_{1.8}S and Cu_{1.96}S by annealing. *Semiconductor Science and Technology* **1998**, *13* (10), 1164.

43. Nair, P. K.; Nair, M. T. S.; Pathirana, H. M. K. K.; Zingaro, R. A.; E.A., M., Structure and Composition of Chemically Deposited Thin Films of Bismuth Sulfide and Copper Sulfide: Effect on Optical and Electrical Properties. *Journal of the Electrochemical Society* **1993**, *140*, 754-759.

44. Sagade, A. A.; Sharma, R., Copper sulphide (CuxS) as an ammonia gas sensor working at room temperature. *Sensors and Actuators B: Chemical* **2008**, *133* (1), 135-143.

45. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M., Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. *Chemical Reviews* **2005**, *105*, 1103-1169.

46. Ulman, A., Formation and Structure of Self-Assembled Monolayers. *Chemical Reviews* **1996**, *96*, 1533-1554.

47. Casalini, S.; Bortolotti, C. A.; Leonardi, F.; Biscarini, F., Self-assembled monolayers in organic electronics. *Chemical Society Reviews* **2017**, *46*, 40-71.

48. Fisher, G. L.; Walker, A. V.; Hooper, A. E.; Tighe, T. B.; Bahnck, K. B.; Skriba, H. T.; Reinard, M. D.; Haynie, B. C.; Opila, R. L.; Winograd, N.; Allara, D. L., Bond Insertion, Complexation and Penetration Pathways of Vapor-Deposited Aluminum Atoms with HO- and CH₃O- Terminated Organic Monolayers. *Journal of the American Chemical Society* **2002**, *124*, 5528-5541.

49. Hooper, A.; Fisher, G. L.; Konstadinidis, K.; Jung, D.; Nguyen, H.; Opila, R.; Collins, R. W.; Winograd, N.; Allara, D. L., Chemical Effects of Methyl and Methyl Ester Groups on the Nucleation and Growth of Vapor-Deposited Aluminum Films. *Journal of the American Chemical Society* **1999**, *121*, 8052-8064.

50. Fisher, G. L.; Hooper, A. E.; Opila, R. L.; Allara, D. L.; Winograd, N., The Interaction of Vapor-Deposited Al Atoms with CO₂H Groups at the Surface of a Self-Assembled Alkanethiolate Monolayer on Gold. *Journal of Physical Chemistry B* **2000**, *104*, 3267-3273.

51. Laibinis, P. E.; Bain, C. D.; Nuzzo, R. G.; Whitesides, G. M., Structure and Wetting Properties of ω-Alkoxy-*n*-alkanethiolate Monolayers on Gold and Silver. *Journal of Physical Chemistry* **1995**, *99*, 7663-7676.

52. NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20, National Institute of Standards and Technology, Gaithersburg MD, 20899 (2000), doi:10.18434/T4T88K, (retrieved December 2nd, 2018).

53. Perry, D. L.; Taylor, J. A., X-ray photoelectron and Auger spectroscopic studies of Cu₂S and CuS. *Journal of Materials Science Letters* **1986**, *5*, 384-386.

54. Biesinger, M. C., Advanced analysis of copper X-ray photoelectron spectra. *Surface and Interface Analysis* **2017**, *49* (13), 1325-1334.

55. Vickerman, J. C.; Gilmore, I. S., *Surface Analysis - The Principle Techniques*. Second ed.; John Wiley & Sons Ltd.: 2009.

56. Xie, Y.; Riedinger, A.; Prato, M.; Casu, A.; Genovese, A.; Guardia, P.; Sottini, S.; Sangregorio, C.; Miszta, K.; Ghosh, S.; Pellegrino, T.; Manna, L., Copper Sulfide Nanocrystals with Tunable

Composition by Reduction of Covellite Nanocrystals with Cu⁺ Ions. *Journal of the American Chemical Society* **2013**, *135*, 17630-17637.

57. Kundu, M.; Hasegawa, T.; Terabe, K.; Yamamoto, K.; Aono, M., Structural studies of copper sulfide films: effect of ambient atmosphere. *Science and Technology of Advanced Materials* **2008**, *9* (3), 035011.

58. Chechik, V.; Crooks, R. M.; Stirling, C. J. M., Reactions and Reactivity in Self-Assembled Monolayers. *Advanced Materials* **2000**, *12*, 1161-1171.

59. Lu, P.; Walker, A. V., Selective Formation of Monodisperse CdSe Nanoparticles on Functionalized Self-Assembled Monolayers Using Chemical Bath Deposition. *Electrochimica Acta* **2010**, *55*, 8126-8134.

60. Shi, Z.; Walker, A. V., Chemical Bath Deposition of ZnO on Functionalized Self-Assembled Monolayers: Selective Deposition and Control of Deposit Morphology. *Langmuir* **2015**, *31* (4), 1421-1428.

61. Lu, P.; Walker, A. V., Investigation of the Mechanism of Electroless Deposition of Copper on Functionalized Alkanethiolate Self-Assembled Monolayers Adsorbed on Gold. *Langmuir* **2007**, *23*, 12577-12582.

62. Lu, P.; Walker, A. V., Making Nanoflowerbeds: Reaction Pathways Involved in the Selective Chemical Bath Deposition of ZnS on Functionalized Alkanethiolate Self-Assembled Monolayers. *ACS Nano* **2009**, *3*, 370-378.

63. Yang, J.; Walker, A. V., Morphological Control of PbS Grown on Functionalized Self-Assembled Monolayers by Chemical Bath Deposition. *Langmuir* **2014**, *30*, 6954-6962.

64. Lu, P.; Shi, Z.; Walker, A. V., Selective Electroless Deposition of Copper on Organic Thin Films with Improved Morphology. *Langmuir* **2011**, *27*, 13022-13028.

CHAPTER 7

COPPER SULFIDE THIN FILMS GROWN BY CHEMICAL BATH DEPOSITION ON FUNCTIONALIZED SELF-ASSEMBLED MONOLAYERS: SELECTIVE DEPOSITION

7.1 Introduction

Copper sulfide has many technological applications including in biochemistry,¹⁻³ photocatalysis,⁴ solar cells,⁵⁻⁸ and nanoelectronics.⁹⁻¹⁰ It can be synthesized by various techniques including atomic layer deposition,¹¹ and chemical vapor deposition.¹²⁻¹⁴, hydrothermal,^{8, 15-18} solvothermal,¹⁸ microwave assisted,¹⁹ thermolysis,¹⁷ spray pyrolysis,²⁰ sonoelectrochemical methods,¹⁷ and chemical bath deposition (CBD).²¹⁻³⁵ CBD is an attractive method for organic thin film substrates because it can be performed a low temperatures, is carried out under ambient conditions and does not require a conductive substrate.

Little is known about the role of the substrate chemistry in the deposition efficiency and selectivity of CuS deposition. It has also been reported that the substrate chemistry can affect the properties of the deposited copper sulfide film,^{26, 34} but the mechanisms underlying these effects are not well understood. In CBD, the formation of surface complexes³⁶⁻³⁹ and the hydrophobic/hydrophilic properties of self-assembled monolayers⁴⁰ have been employed to perform selective growth of ZnO³⁷, ZnS,³⁸ CdSe³⁶ and PbS.^{37, 39} In general the interaction of the surface with the metal cation has been critical in determining the selective growth of these films. For example, the formation of M²⁺-carboxylate surface complexes, where M = Zn, Cd and Pb, have been demonstrated to act as the nucleation sites for site-selective deposition of ZnO³⁷, ZnS,³⁸ CdSe³⁶ and PbS.³⁹

In this chapter we investigate the CBD of CuS on $-CH_3$, -OH and -COOH terminated SAMs at room temperature using thioacetamide as a sulfur source. We demonstrate that the deposition selectivity is strongly dependent on the interaction of the SAM terminal group with the deposit precursors. At pH 9, more copper sulfide is deposited on $-CH_3$ terminated SAMs than -OH and -COOH terminated SAMs. In contrast, at pH 12 more copper sulfide is deposited on -COOH terminated SAMs than on $-CH_3$ and -OH terminated SAMs. These changes in deposition selectivity can be attributed to three competing effects. As the bath pH increases the thioacetamide decomposition rate greatly increases leading to a higher concentration of S²⁻ available for the deposition reaction. Second, the interaction of the S²⁻ ions with the -OH and -COOH SAMs for bath pH > 9, copper-carboxylate surface complexes can form which act as the nucleation sites for subsequent CuS film formation. For $-CH_3$ terminated SAMs, there is no specific interaction with the deposition bath reagents.

7.2 Methods

7.2.1 Materials

All reagents were used without further purification. Thioacetamide (99%) was obtained from Alfa Aesar, Inc. Sodium hydroxide (≥98%, pellets) were acquired from Fisher Chemicals (Thermo Fisher Scientific Inc., Waltham, MA). 16-Hydroxy-1-hexadecanethiol (99%) (MHL) was purchased from Frontier Scientific Inc. (Logan, UT). 16-mercaptohexadecanoic acid (90%) (MHA), 1-hexadecanethiol (99%) (HDT), ethylenediaminetetraacetic acid (98%) (EDTA), and copper (II) sulfate pentahydrate (98%) were purchased from Sigma Aldrich Inc. (St. Louis, MO).

Ethanol (200 proof, undenatured) was obtained from Spectrum Chemical MFG Corp (New Brunswick, NJ).

The gold substrates used in this study were prepared in the Cleanroom Research Laboratory, University of Texas at Dallas. Briefly, silicon wafers ((111) orientation) were acquired from Addison Engineering Inc. (San Jose, CA), and ~200 Å of chromium followed by ~1000 Å of gold were thermally deposited using a CHA-50 e-beam evaporator (CHA Industries, Freemont CA) onto these substrates.

7.2.2 Preparation of self-assembled monolayers on gold substrates

The preparation of alkanethiolate self-assembled monolayers has been described in detail previously.⁴¹⁻⁴⁴ Briefly, a well-ordered SAM was prepared by immersing a gold substrate into a 1 mM solution of the appropriate alkanethiol (MHL, MHA or HDT) in ethanol for 24 hours at room temperature. After removal from the alkanethiol solution, the samples were then rinsed with ethanol and dried with nitrogen gas.

7.2.3 Chemical bath deposition of copper sulfide

The deposition bath was composed of 0.006 M copper sulfate pentahydrate, 0.016 M EDTA, and 0.012 M sodium hydroxide, and 0.012 M thiourea. To investigate the effect of the pH on the deposition, the bath pH was varied from pH 6 to pH 12. The pH of the deposition bath was adjusted using sodium hydroxide and sulfuric acid prior to the addition of the sulfur source, 0.012 M thioacetamide. The SAM substrate was immediately immersed into the bath for 24 hours at room temperature. After deposition all samples were sonicated in water for 2 minutes, rinsed with deionized water, and dried using nitrogen gas prior to further characterization.

We note that at pH 12 the bath color changes from blue to green during deposition. The solution also becomes cloudy. At pH 6 and pH 9, the deposition solution remains blue throughout deposition.

7.2.4 X-ray photoelectron spectroscopy

Ex-situ x-ray photoelectron spectroscopy (XPS) measurements were acquired using a PHI VersaProbe II (Physical Electronics Inc., Chanhassen, MN) equipped with an Al K α source (E_b = 1486.7 eV). During data collection, the chamber pressure was maintained < 5 × 10⁻¹⁰ mbar. High-resolution photoelectron spectra were collected with a pass energy of 23.5 eV, energy step of 0.2 eV, and analysis angle of 45°. All spectra were obtained using a charge compensation with both electron and ion beams incident on the surface. The binding energies were calibrated to the Au 4f_{7/2} binding energy (84.0 eV).

The data were analyzed using CasaXPS 2.3.17 (RBD Instruments, Inc., Bend OR). The Cu $2p_{3/2}$ peak height was obtained in the following way. The Cu 2p spectra were fit with a Shirley background. The peak height was obtained from the difference between the number of counts at the Cu $2p_{3/2}$ photoelectron peak maximum and the Shirley background.

7.2.5 TOF SIMS

Time-of-flight secondary ion mass spectrometry (TOF SIMS) data were collected with an ION TOF IV (ION TOF Inc., Chestnut Hill, NY) equipped with a Bi liquid metal ion gun. The instrument is comprised of three chambers: a loadlock, a preparation chamber and an analysis chamber. During data collection, the pressure of the analysis chamber was kept $< 5 \times 10^{-9}$ mbar during data collection. The Bi⁺ primary ions had a kinetic energy of 25 keV, and were contained in a ~100 nm probe beam. All spectra were acquired using an analysis area of (100 × 100) μ m²,

and within the static regime using a total ion dose less than $<<10^{10}$ ions cm⁻². For each experimental condition, at least three samples were prepared, and three areas on each sample were examined. The spectra shown are representative of these data.

7.3 Results and Discussion

For every bath pH investigated after deposition, the TOF SIMS data clearly show that copper sulfide has deposited: $Cu_xS_yH_z^{\pm}$ ions are observed in the positive and negative ion mass spectra. Further, the data show that the molecular cluster ion intensities, AuM_2^- and Au_2M^- (where $M = -S(CH_2)_{15}CH_3$, $-S(CH_2)_{15}CH_2OH$ or $-S(CH_2)_{15}COOH$) also decrease (Figure 7.1). After deposition at pH 6 and pH 9, the intensity of these ions is reduced suggesting that the SAMs are not fully covered by the deposited layer. At pH 12 no molecular ions are observed indicating that the SAMs are fully covered by the deposited copper sulfide layer.

Further information about the deposited layer can be obtained from the Cu 2p and S 2p photoelectron spectra, and the x-ray initiated Auger electron spectroscopy (XAES) Cu LMM peak. For every deposition bath pH we observe that the Cu $2p_{3/2}$ binding energy is 932.2 eV on all the SAM substrates indicating that CuS has deposited (Figure 7.2).⁴⁵⁻⁴⁷ The Cu $2p_{1/2}$ are consistent with the Cu $2p_{3/2}$ photoelectron energies. Since the intensities of photoelectron spectra are directly related to the amount of material present in the sample, in Figure 7.2 it can be clearly seen that the amount of copper sulfide deposited significantly increases as the bath pH changes from pH 6 to pH 12. Further, at pH 9 there is more CuS deposited on the –CH₃ terminated SAM than on the –OH and –COOH terminated SAM surface suggesting that copper sulfide preferentially deposits on the –CH₃ SAM surface.

Figure 7.1 High resolution negative ion spectra of Au_2M^- (where $M = -S(CH_2)_{15}CH_3$, $-S(CH_2)_{15}CH_2OH$ or $-S(CH_2)_{15}COOH$) after deposition of copper sulfide for 24 h at room temperature on a) $-CH_3$; b) -OH and c) -COOH terminated SAMs. The deposition bath pH was varied from pH 6 to pH 12. Also shown for reference are the mass spectra of the bare SAMs.

Figure 7.2 Cu 2p photoelectron spectra after deposition of copper sulfide for 24 h at room temperature on a) –CH₃; b) –OH and c) –COOH terminated SAMs. The deposition bath pH was varied from pH 6 to pH 12.

The S 2p photoelectron spectra confirm that covellite (CuS) has deposited on the SAM surfaces (Figure 7.3). The S 2p peak shape and binding energy indicate that CuS has deposited. Although the S 2p cannot be resolved into the $2p_{3/2}$ and $2p_{1/2}$ doublet the peak binding energy, ~162.5 eV, are consistent with the deposition of CuS.^{46, 48} Further, the lineshape is broad suggesting that there are two doublets present which correspond to the S²⁻ and S₂²⁻ ligands present in CuS.^{46, 48} In addition, as the bath pH increases from 6 to 12, there is a significant increase in the intensities of the S 2p photoelectron peaks indicating that more copper sulfide is deposited. We also note that at pH 9 the intensity of S 2p photoelectron peak is larger after deposition on –CH₃ terminated SAMs than on –OH and –COOH terminated SAMs indicating that there is preferential deposition of copper sulfide on the methyl-terminated surface.

To confirm that covellite has deposited, the Cu LMM XAES kinetic energy was obtained and the modified Auger parameter, α ', calculated (Table 7.1). The modified Auger parameter can be employed to unequivocally determine the copper sulfide composition without the interference of final state effects such as sample charging. For copper, the modified Auger parameter is the sum of the Cu 2p_{3/2} binding energy and the Cu LMM kinetic energy. For covellite, CuS, the modified Auger parameter is 1850.3±0.2 eV.⁴⁵⁻⁴⁷ The data clearly show that the modified Auger parameter for the deposited films is consistent with the deposition of covellite, CuS (Table 7.1).

Figure 7.3 S 2p photoelectron spectra after deposition of copper sulfide for 24 h at room temperature on a) $-CH_3$; b) -OH and c) -COOH terminated SAMs. The deposition bath pH was varied from pH 9 to pH 12.

Table 7.1 The values of the binding energies of the $Cu2p_{3/2}$ peak, kinetic energies of the Cu LMM XAES peak and calculated Auger parameter, α ', after Cu_xS CBD for 24 h on $-CH_3$, -OH and -COOH terminated SAMs.

SAM Terminal	Deposition Bath	Binding Energy	Kinetic Energy	α' (eV) ¹
Group	pH	Cu2p _{3/2} (eV)	Cu LMM (eV) ¹	
-CH3	6	932.2	-	-
	9	932.2	918.0	1850.2
	12	932.2	918.4	1850.6
–OH	6	932.2	-	-
	9	932.4	-	-
	12	932.2	918.2	1850.4
-СООН	6	932.2	-	-
	9	932.2	-	-
	12	932.4	918.2	1850.4

¹The Cu LMM kinetic energy could not be accurately determined for some deposition conditions because the peak intensity was very weak. Consequently, not modified Auger parameter could be calculated.

Figure 7.4 Variation of the average Cu $2p_{3/2}$ peak height bath pH after CuS CBD for 24 h on –COOH, -OH and –CH₃ terminated SAMs.

To further investigate the apparent differences in the amount of copper sulfide deposited on –CH₃, –OH and –COOH terminated SAMs, the variation of the Cu 2p_{3/2} photoelectron peak height with bath pH was obtained (Figure 7.4). The peak height is related to the peak intensity (area), and can be employed here as a measure of the amount of copper sulfide deposited because there are no overlapping peaks or interferences in the photoelectron spectra which would lead to inaccuracies in the quantitative estimation. In Figure 7.4, it can clearly be seen that as the bath pH increases the amount of copper sulfide deposited also increases. However, there are differences observed for the different functionalized SAMs. On –CH₃ terminated SAMs, the amount of copper sulfide steadily increases with pH. Further, at pH 9 the amount of copper sulfide is largest on – CH₃ terminated SAMs. For –OH terminated SAMs there is also an increase in the amount of copper deposited but it is slower. In general, on hydroxyl terminated SAM surfaces we observe the least amount of copper sulfide deposition. In contrast, the largest amount of copper sulfide is deposited on –COOH terminated SAMs at pH 12 but little copper sulfide is deposited at pH 6 and pH 9.

7.3.1 Reaction Pathways

The reaction pathways involved in the CBD of CuS on functionalized SAMs using thioacetamide must account for the following observations:

- a) At pH 6 very little copper sulfide is deposited;
- b) At pH 9 the largest amount of CuS is deposited on –CH₃ terminated SAMs but at pH 12 the largest amount of CuS is observed on –COOH terminated SAMs;
- c) The steady increase in the amount of CuS deposited on –CH₃ terminated SAMs as the bath pH increase; and

d) The large increase in the amount of CuS deposited on –COOH terminated SAMs as the bath pH increases from pH to pH 12.

In CBD reactions, the concentration of the metal ion and the chalcogenide ion are controlled.⁴⁹ Under basic reaction conditions (i.e. pH 9, and pH 12) CuS can be deposited using the following (unbalanced) reaction pathway:⁴⁹⁻⁵⁰

$$Cu^{2+} + EDTA^{4-} \rightarrow [Cu(EDTA)]^{2-}$$
7.1

$$CH_3CSNH_2 + 2OH^- \rightarrow CH_3COO^- + NH_3 + HS^-$$
7.2

$$\mathrm{HS}^{-} + \mathrm{OH}^{-} \rightarrow \mathrm{S}^{2-} + \mathrm{H}_{2}\mathrm{O}$$
 7.3

$$Cu^{2+} + S^{2-} \to CuS$$
 7.4

The concentration of "free" copper ions is controlled by a complexing agent, ethylenediaminetetraacetic acid (EDTA) (reaction 7.1). Thioacetamide reacts with hydroxide ions present in solution to form bisulfide ions, HS⁻ (reaction 7.2). Subsequently the bisulfide ions decompose to S^{2-} ions (reaction 7.3) which then react with Cu^{2+} ions to form covellite (CuS) (reaction 7.4). However in weakly acidic solutions (ie. pH 6), the deposition reaction may proceed through the decomposition of a Cu^{2+} -thioacetamide complex rather than formation of intermediate bisulfide and sulfide ion.⁴⁹ This reaction is much slower than the hydrolysis of thioacetamide under basic conditions (reactions 7.2 and 7.3), and so less copper sulfide is deposited at pH 6 than pH 9 or pH 12. Reactions 7.2 and 7.3 also clearly show that as the bath pH increases, i.e. the concentration of OH⁻ ions in the bath increases, the deposition rate is likely to increase. This is because by Le Chatelier's principle the increased [OH⁻] concentration will drive reactions to 7.2 and 7.3 to the product side leading to an increase in the S²⁻ concentration and more CuS deposited (reaction 7.4).

Our experiments indicate that the reaction pathways involved in CuS CBD are more complicated than the above discussion suggests. The data also clearly show that the chemical nature of the SAM terminal group is also important in the deposition process. Methyl-terminated SAMs are hydrophobic while hydroxyl- and carboxylic-acid terminated SAMs are hydrophilic. deposition However, this cannot account for the differences observed. If hydrophobicity/hydrophilicity of the substrates controlled the CBD process, we would expect that the least amount of CuS would be deposited on the -CH₃ terminated SAMs at every bath pH studied. However, at pH 9 there is more copper sulfide deposited on the hydrophobic $-CH_3$ terminated SAM than on the -COOH and -OH terminated SAMs! This indicates that it is the interaction of the precursor ions with the SAM terminal groups that lead to the differences in the observed deposition.

We propose that the deposition can be explained via a kinetically controlled reaction. On $-CH_3$ terminated SAMs, the terminal C-H bonds are non-polar. Consequently, there is no specific interaction between either the Cu²⁺ or S²⁻ ions in solution and the $-CH_3$ terminal group. Nucleation of the copper sulfide layer likely occurs due to trapping (most likely at defects) of either Cu²⁺ or S²⁻ ions or by the precipitation of small clusters (cluster-by-cluster growth).^{36-39, 50-51} As the pH of the deposition bath increases, there is a steady increase in the amount of copper sulfide deposited because the concentration of S²⁻ in solution increases. Hydroxyl-terminated SAMs have a polar terminal C-OH bond with -OH group having a small negative charge (δ^{-}). As the deposition bath pH increases, the negatively charged -OH group repels some of the S²⁻ ions in solution leading to less CuS deposited than on $-CH_3$ terminated SAMs.

Figure 7.5 High resolution positive ion spectra centered at m/z 163 after deposition of CuS for 24 h at pH 6, pH and pH 12 on –COOH terminated SAMs.

The large increase in the amount of CuS deposited on –COOH terminated SAMs can be explained in the following way. For –COOH terminated SAMs, the surface $pK_{\frac{1}{2}}$ is ~8.0, which is the pH of the solution at which a surface is 50 % ionized.⁵² Thus as the bath pH increases the – COOH terminal group deprotonates to form carboxylate ions, COO⁻, and at pH 12 the surface is almost fully deprotonated. This leads to two competing effects. The large increase in the copper sulfide deposition can be attributed to the formation of copper-carboxylate complexes which serve as the nucleation sites for subsequent deposition.^{36-39, 51, 53} After CuS CBD, we observe ions of the form Cu(COO)CH_x⁺ (Figure 7.5), which are characteristic of the formation of copper-carboxylate surface complexes.⁵¹ In Figure 7.5, it can be seen that at pH 6 there are no Cu(COO)CH₄⁺ ions present in the mass spectrum which is consistent with the measure surface $pK_{\frac{1}{2}}^{52}$; at this bath pH, the –COOH terminal group is fully protonated. Above pH 9, the ion intensity of Cu(COO)CH₄⁺ increases suggesting that more copper-carboxylate complexes form at higher bath pH (i.e. pH 12). Thus at pH 12 there is more copper sulfide deposited on –COOH terminated SAMs than on –CH₃ and –OH terminated SAMs. However, the equilibrium constant, *K*, for the complexation of Cu²⁺ and carboxylic acids (<100)⁵⁴ is very low. In the deposition bath there is a large concentration of EDTA and Cu²⁺ has a very high binding constant to EDTA, (5×10^{18}),⁵⁵ and so it is likely that few copper-complexes will form. This suggests that the surface is negatively charged and similarly to –OH terminated SAMs there is repulsion between some of the S²⁻ ions in solution. Therefore at pH 9, there is less CuS deposited on –COOH terminated SAMs than on –CH₃ terminated SAMs.

7.4 Conclusions

Copper sulfide CBD using thioacetamide is strongly dependent on the pH of the deposition bath. Our data suggests that this is due to the interaction of the deposit precursors with the functionalized SAMs. For $-CH_3$ terminated SAMs, there is no specific interaction with the deposition bath reagents. As the bath pH increases there is a steady increase in the amount of CuS deposited due to an increase in the S²⁻ concentration in the bath. For -OH terminated SAMs, there is also a steady increase in the CuS deposited with bath pH which can also be attributed to the increase in the S²⁻ concentration. However, the amount of CuS deposited is less than on $-CH_3$ terminated SAMs because the S²⁻ in solution are repelled by the slightly negatively charged, polar -OH terminal group.

Copper sulfide deposition on –COOH terminated SAMs is very strongly dependent on the deposition bath pH due to two competing effects: the formation of copper-carboxylate surface complexes which can serve as the nucleation sites for film growth, and the repulsion of S^{2-} ions by the negatively charged –COO⁻ terminated surface at pH 9 and pH 12. Thus, at pH 9, more copper sulfide is deposited on –CH₃ terminated SAMs but at pH 12 more copper sulfide is deposited on the carboxylic acid terminated SAM.

7.5 References

1. Bai, J.; Jiang, X., A Facile One-Pot Synthesis of Copper Sulfide-Decorated Reduced Graphene Oxide Composites for Enhanced Detecting of H₂O₂ in Biological Environments. *Analytical Chemistry* **2013**, *85*, 8095-8101.

2. Ding, K.; Zeng, J.; Jing, L.; Qiao, R.; Liu, C.; Jiao, M.; Li, Z.; Gao, M., Aqueous synthesisi of PEGylated copper sulfide nanoparticles for photoacoustic imaging of tumors. *Nanoscale* **2015**, *7*, 11075-11081.

3. Goel, S.; Chen, F.; Cai, W., Synthesis and Biomedical Applications of Copper Sulfide Nanoparticles: From Sensors to Theranostics. *Small* **2014**, *10* (4), 631-645.

4. Chen, X.; Li, H.; Wu, Y.; Wu, H.; Wu, L.; Tan, P.; Pan, J.; Xiong, X., Facile fabrication of novel porous graphitic carbon nitride/copper sulfide nanocomposites with enhanded visible light driven photocatalytic performance. *Journal of Colloid and Interface Science* **2016**, *476*, 132-143.

5. Shah, A.; Torres, P.; Tscharner, R.; Wyrsch, N.; Keppner, H., Photovoltaic Technology: The Case for Thin-Film Solar Cells. *Science* **1999**, *285*, 692-698.

6. Polman, A.; Knight, M.; Garnett, E. C.; Ehrler, B.; Sinke, W. C., Photovoltaic materials: Present efficienies and future challenges. *Science* **2016**, *352* (6283), aad4424.

7. Lee, H.; Yoon, S. W.; Kim, E. J.; Park, J., In-Situ Growth of Copper Sulfide Nanocrystals on Multiwalled Carbon Nanotubes and Their Application as Novel Solar Cell and Amperometric Glucose Sensor Materials. *Nano Letters* **2007**, *7* (3), 778-784.

8. Wu, Y.; Wadia, C.; Ma, W.; Sadtler, B.; Alivisatos, A. P., Synthesis and Photovoltaic Application of Copper(I) Sulfide Nanocrystals. *Nano Letters* **2008**, *8* (8), 2551-2555.

9. Sakamoto, T.; Sunamura, H.; Kawaura, H.; Hasegawa, T.; Nakayama, T.; Aono, M., Nanometer-scale switches using copper sulfide. *Applied Physics Letters* **2003**, *82* (18), 3032-3034.

10. Tang, J.; Huo, Z.; Brittman, S.; Gao, H.; Yang, P., Solution-processed core-shell nanowires for efficient photovoltaic cells. *Nature Nanotechnology* **2011**, *6*, 568-572.

11. Martinson, A. B. F.; Riha, S. C.; Thimsen, E.; Elam, J. W.; Pellin, M. J., Structural, optical, and electronic stability of copper sulfide thin films grown by atomic layer deposition. *Energy & Environmental Science* **2013**, *6*, 1868-1878.

12. Carbone, I.; Zhou, Q.; Vollbrecht, B.; Yang, L.; Medling, S.; Bezryadina, A.; Bridges, F.; Aler, G. B., Pulsed chemical vapor deposition of Cu₂S into a porous TiO₂ matrix. *Journal of Vacuum Science & Technology A: Vacuum, Surfaces and Films* **2011**, *29* (5), 051505.

13. Nomura, R.; Miyawaki, K.; Toyosaki, T.; Matsuda, H., Preparation of Copper Sulfide Thin Layers by a Single-Source MOCVD Process. *Chemical Vapor Deposition* **1996**, *2* (5), 174-179.

14. Abdelhady, A. L.; Ramasamy, K.; Malik, M. A.; O'Brien, P.; Haigh, S. J.; Raftery, J., New routes to copper sulfide nanostructures and thin films. *Journal of Materials Chemistry* **2011**, *21*, 17888-17895.

15. Lu, Q.; Gao, F.; Zhao, D., One-Step Synthesis and Assembly of Copper Sulfide Nanoparticles to Nanowires, Nanotubes, and Nanovesicles by a Simple Organic Amine-Assisted Hydrothermal Process. *Nano Letters* **2002**, *2* (7), 725-728.

16. Chen, X.; Wang, Z.; Wang, X.; Zhang, R.; Liu, X.; Lin, W.; Qian, Y., Synthesis of novel copper sulfide hollow spheres generated from copper (II)-thiourea complex. *Journal of Crystal Growth* **2004**, *263*, 570-574.

17. Zhao, Y.; Pan, H.; Lou, Y.; Qiu, X.; Zhu, J.; Burda, C., Plasmonic Cu_{2-x}S Nanocrystals: Optical and Structural Properties of Copper-Deficient Copper(I) Sulfides. *Journal of the American Chemical Society* **2009**, *131*, 4253-4261.

18. Shamraiz, U.; Hussain, R. A.; Badshah, A., Fabrication and applications of copper sulfide (CuS) nanostructures. *Journal of Solid State Chemistry* **2016**, *238*, 25-40.

19. Liao, X.-H.; Chen, N.-Y.; Xu, S.; Yang, S.-B.; Zhu, J.-J., A microwave assisted heating method for the preparation of copper sulfide nanorods. *Journal of Crystal Growth* **2003**, *252*, 593-598.

20. Isac, L.; Duta, A.; Kriza, A.; Manolache, S.; Nanu, M., Copper sulfides obtained by spray pyrolysis - Possible absorbers in solid-state solar cells. *Thin Solid Films* **2007**, *515* (15), 5755-5758.

21. Nair, M. T. S.; Nair, P. K., Chemical bath deposition of Cu_xS thin films and their prospective large area applications. *Semiconductor Science and Technology* **1989**, *4*, 191-199.

22. Vas-Umnuay, P.; Chang, C.-h., Growth Kinetics of Copper Sulfide Thin Films by Chemical Bath Deposition. *ECS Journal of Solid State Science and Technology* **2013**, *2* (4), 120-129.

23. Lindroos, S.; Arnold, A.; Leskelä, M., Growth of CuS thin films by the successive ionic layer adsorption and reaction method. *Applied Surface Science* **2000**, *158* (1–2), 75-80.

24. Lokhande, C. D., A chemical method for preparation of metal sulfide thin films. *Materials Chemistry and Physics* **1991**, 28 (1), 145-149.

25. Gadave, K. M.; Lokhande, C. D., Formation of Cu_xS films through a chemical bath deposition process. *Thin Solid Films* **1993**, 229 (1), 1-4.

26. Lu, Y.; Meng, X.; Yi, G.; Jia, J., In situ growth of CuS thin films on functionalized self-assembled monolayers using chemical bath deposition. *Journal of Colloid and Interface Science* **2011**, *356* (2), 726-733.

27. Munce, C. G.; Parker, G. K.; Holt, S. A.; Hope, G. A., A Raman spectroelectrochemical investigation of chemical bath deposited CuxS thin films and their modification. *Colloids and Surfaces A* **2007**, *295* (1-3), 152-158.

28. Fatas, E.; Garcia, T.; Montemayor, C.; Medina, A.; Camarero, E. G.; Arjona, F., Formation of Cu_xS thin films through a chemical bath deposition process. *Materials Chemistry and Physics* **1985**, *12* (2), 121-128.

29. Fernandez, A. M.; Sebastian, P. J.; Campos, J.; Gomez-Daza, O.; Nair, P. K.; Nair, M. T. S., Structural and opto-electronic properties of chemically deposited CuxS thin film and the precipitate. *Thin Solid Films* **1994**, *237* (1–2), 141-147.

30. Grozdanov, I.; Barlingay, C. K.; Dey, S. K., Novel applications of chemically deposited Cu_xS thin films. *Materials Letters* **1995**, *23* (4 $\hat{a}\in$ 6), 181-185.

31. Grozdanov, I.; Najdoski, M., Optical and Electrical Properties of Copper Sulfide Films of Variable Composition. *Journal of Solid State Chemistry* **1995**, *114* (2), 469-475.

32. Huang, L.; Zingaro, R. A.; Meyers, E. A.; Nair, P. K.; Nair, M. T. S., Chemical Deposition of Thin Films of Copper Sulfide on Glass Surfaces Modified with Organosilanes. *Phosphorus, Sulfur, and Silicon and the Related Elements* **1995**, *105*, 175-185.

33. Nair, M. T. S.; Guerrero, L.; Nair, P. K., Conversion of chemically deposited CuS thin films to Cu_{1.8}S and Cu_{1.96}S by annealing. *Semiconductor Science and Technology* **1998**, *13* (10), 1164.

34. Nair, P. K.; Nair, M. T. S.; Pathirana, H. M. K. K.; Zingaro, R. A.; E.A., M., Structure and Composition of Chemically Deposited Thin Films of Bismuth Sulfide and Copper Sulfide: Effect on Optical and Electrical Properties. *Journal of the Electrochemical Society* **1993**, *140*, 754-759.

35. Sagade, A. A.; Sharma, R., Copper sulphide (CuxS) as an ammonia gas sensor working at room temperature. *Sensors and Actuators B: Chemical* **2008**, *133* (1), 135-143.

36. Lu, P.; Walker, A. V., Selective Formation of Monodisperse CdSe Nanoparticles on Functionalized Self-Assembled Monolayers Using Chemical Bath Deposition. *Electrochimica Acta* **2010**, *55*, 8126-8134.

37. Shi, Z.; Walker, A. V., Chemical Bath Deposition of ZnO on Functionalized Self-Assembled Monolayers: Selective Deposition and Control of Deposit Morphology. *Langmuir* **2015**, *31* (4), 1421-1428.

38. Lu, P.; Walker, A. V., Making Nanoflowerbeds: Reaction Pathways Involved in the Selective Chemical Bath Deposition of ZnS on Functionalized Alkanethiolate Self-Assembled Monolayers. *ACS Nano* **2009**, *3*, 370-378.

39. Yang, J.; Walker, A. V., Morphological Control of PbS Grown on Functionalized Self-Assembled Monolayers by Chemical Bath Deposition. *Langmuir* **2014**, *30*, 6954-6962.

40. Meldrum, F. C.; Flath, J.; Knoll, W., Formation of Patterned PbS and ZnS Films on Self-Assembled Monolayers. *Thin Solid Films* **1999**, *348*, 188-195.

41. Fisher, G. L.; Walker, A. V.; Hooper, A. E.; Tighe, T. B.; Bahnck, K. B.; Skriba, H. T.; Reinard, M. D.; Haynie, B. C.; Opila, R. L.; Winograd, N.; Allara, D. L., Bond Insertion, Complexation and Penetration Pathways of Vapor-Deposited Aluminum Atoms with HO- and CH₃O- Terminated Organic Monolayers. *Journal of the American Chemical Society* **2002**, *124*, 5528-5541. 42. Hooper, A.; Fisher, G. L.; Konstadinidis, K.; Jung, D.; Nguyen, H.; Opila, R.; Collins, R. W.; Winograd, N.; Allara, D. L., Chemical Effects of Methyl and Methyl Ester Groups on the Nucleation and Growth of Vapor-Deposited Aluminum Films. *Journal of the American Chemical Society* **1999**, *121*, 8052-8064.

43. Fisher, G. L.; Hooper, A. E.; Opila, R. L.; Allara, D. L.; Winograd, N., The Interaction of Vapor-Deposited Al Atoms with CO₂H Groups at the Surface of a Self-Assembled Alkanethiolate Monolayer on Gold. *Journal of Physical Chemistry B* **2000**, *104*, 3267-3273.

44. Laibinis, P. E.; Bain, C. D.; Nuzzo, R. G.; Whitesides, G. M., Structure and Wetting Properties of ω-Alkoxy-*n*-alkanethiolate Monolayers on Gold and Silver. *Journal of Physical Chemistry* **1995**, *99*, 7663-7676.

45. NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20, National Institute of Standards and Technology, Gaithersburg MD, 20899 (2000), doi:10.18434/T4T88K, (retrieved December 2nd, 2018).

46. Perry, D. L.; Taylor, J. A., X-ray photoelectron and Auger spectroscopic studies of Cu₂S and CuS. *Journal of Materials Science Letters* **1986**, *5*, 384-386.

47. Biesinger, M. C., Advanced analysis of copper X-ray photoelectron spectra. *Surface and Interface Analysis* **2017**, *49* (13), 1325-1334.

48. Xie, Y.; Riedinger, A.; Prato, M.; Casu, A.; Genovese, A.; Guardia, P.; Sottini, S.; Sangregorio, C.; Miszta, K.; Ghosh, S.; Pellegrino, T.; Manna, L., Copper Sulfide Nanocrystals with Tunable Composition by Reduction of Covellite Nanocrystals with Cu⁺ Ions. *Journal of the American Chemical Society* **2013**, *135*, 17630-17637.

49. Hodes, G., *Chemical solution deposition of semiconductor films* Marcel Dekker: New York, 2003.

50. Hedlund, J. K.; Ellsworth, A. A.; Walker, A. V., (Invited) Using Surface Chemistry to Direct the Deposition of Nano-objects for Electronics. *ECS Transactions* **2018**, *86* (3), 89-101.

51. Lu, P.; Walker, A. V., Investigation of the Mechanism of Electroless Deposition of Copper on Functionalized Alkanethiolate Self-Assembled Monolayers Adsorbed on Gold. *Langmuir* **2007**, *23*, 12577-12582.

52. Chechik, V.; Crooks, R. M.; Stirling, C. J. M., Reactions and Reactivity in Self-Assembled Monolayers. *Advanced Materials* **2000**, *12*, 1161-1171.

53. Lu, P.; Shi, Z.; Walker, A. V., Selective Electroless Deposition of Copper on Organic Thin Films with Improved Morphology. *Langmuir* **2011**, *27*, 13022-13028.

54. Martell, A. E.; Smith, R. M., Critical Stability Constants. Plenum Press: New York, 1974; Vol. 3, pp 1-12.

55. Martell, A. E.; Smith, R. M., Critical Stability Constants. Plenum Press: New York, 1974; Vol. 1, pp 204-211.

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

One of the major challenges for the fabrication and integration of nanomaterials into everyday technologies is the development of simple, low-cost, low temperature, and chemically and area selective deposition techniques for semiconducting materials. In this dissertation, room temperature chemical bath deposition (CBD) methods were developed to deposit semiconductor materials including molybdenum disulfide (MoS₂) and copper sulfide (Cu_xS) thin films onto organic substrates, in particular self-assembled monolayers (SAMs).

We have developed a room temperature chemical bath deposition method by which to deposit MoS₂ using ammonium molybdate as the Mo source and thioacetamide as the S source. Using Raman spectroscopy and XPS, we demonstrate that at room temperature the deposited MoS₂ polytype can be controlled by the surface energy of the substrate. On low energy, hydrophobic surfaces, such as $-CH_3$ and $-CO_2C_6F_5$ terminated SAMs, 2H MoS₂ is deposited. In contrast on high energy, hydrophilic surfaces, such as -OH and -COOH terminated SAMs, 1T MoS₂ is deposited. Further, this effect does not require well-ordered surfaces. On hydrophobic surfaces including PTFE tape, which is used to seal pipe threads, and hydrogen functionalized silicon (H-Si), 2H MoS₂ is deposited. On hydrophilic substrates, such as a soda-lime glass slide, 1T MoS₂ is deposited. Using the known surface energies of the SAMs, we estimate that the surfaces with energies larger than ~30 mJ/m² will stabilize the 1T MoS₂ film.

Using XPS, Raman spectroscopy, ATR IR spectroscopy, optical microscopy, AFM, SEM and TOF SIMS the reaction pathways involved in the CBD of MoS₂ have been investigated using ammonium molybdate as the Mo source and thioacetamide as the S source. The data shows that the reagent hydrazine is critical to the process. Hydrazine reacts with thioacetamide in the deposition bath to form hydrogen sulfide. In turn, the hydrogen sulfide reacts with the molybdate ions, MoO_4^{2-} , to form thiomolybdate ions, MoS_4^{2-} . After the formation of the thiomolybdate ions, the Mo(VI) species are reduced to Mo(IV) to form MoS_2 by hydrazine. The interaction of the deposited MoS_2 with the gold substrates has also been studied. Similar to gold nanoparticles and thin films deposited on MoS_2 films, it is observed that the deposited MoS_2 strongly interacts with the Au substrate. In Raman spectra, the blue shift of the A_{1g} mode exhibits a blue shift while the E_{2g}^1 mode is red shifted. Additionally, for the first time, it is observed that the J modes of 1T MoS_2 are significantly broadened. Further, in the XPS spectra the Mo 3d and S 2s binding energies increase by ~1.1 eV for 1T MoS_2 , while for 2H MoS_2 the binding energy shift is negligible. This suggests that the interaction of the metallic 1T MoS_2 is likely stronger with the Au substrate.

Using the understanding of the reaction pathways gained, area-selective deposition of 2H and 1T MoS₂ is demonstrated on micropatterned –COOH/–CH₃ or –OH/–CH₃ SAM surfaces. Using Raman mapping it is demonstrated that 1T MoS₂ is deposited on the –COOH and –OH terminated SAM areas while 2H MoS₂ is deposited on the –CH₃ terminated SAM areas.

The CBD of copper sulfide is strongly dependent on the bath pH and the terminal group of the SAM. As the bath pH increases the amount of copper sulfide deposited increases, which is attributed to the increase in the decomposition rate of the sulfur precursors, thiourea or thioacetamide to form sulfide ions. Using thiourea as a sulfur source, it is shown for the first time that the copper sulfide deposit can be changed from covellite, CuS, to chalcocite, Cu₂S on $-CH_3$

terminated SAMs. However on –COOH and –OH terminated SAMs the deposit is CuS due to the interaction of the sulfide ions with the terminal SAM groups.

Using thioacetamide as a sulfur source it is observed that the covellite, CuS, is deposited on –OH, –COOH and –CH₃ terminated SAMs. The deposition selectivity is strongly dependent on the interaction of the SAM terminal group with the CBD precursors. At pH 9, more copper sulfide is on –CH₃ terminated SAMs than –OH and –COOH terminated SAMs. In contrast, at pH 12 more copper sulfide is deposited on –COOH terminated SAMs than on –CH₃ and –OH terminated SAMs. The changes in deposition selectivity can be attributed to three different effects: the thioacetamide decomposition rate to form sulfide ions; the interaction of the formed S²⁻ ions with the –OH and –COOH SAM terminal groups; and at pH > 9 on –COOH terminated SAMs the formation of copper-carboxylate surface complexes which act as the nucleation sites for subsequent CuS film deposition.

8.2 Future Work

In chapter 5 MoS₂ deposited by CBD onto micropatterned SAMs showed polytype selectivity. On $-OH/-CH_3$ and $-COOH/-CH_3$ patterned SAMs, the optical images and Raman spectra intensities suggest that there is a thicker MoS₂ layer on the $-CH_3$ terminated SAM. These reactions should be carried out at shorter deposition times to observe early stages of the growth to understand the processes by which this preferential growth occurs. Similarly, in chapters 6 and 7, the data shows that Cu_xS deposits faster on $-CH_3$ terminated SAMs than on -OH and -COOH terminated SAMs, which are hydrophilic.

Taken together these results suggest that chemical bath deposition of Cu_xS and MoS_2 are strongly dependent on the interaction of the precursors with the surface. It appears that in a similar manner to electroless nanowire deposition on micropatterned substrates (ENDOM) that these metallic sulfides preferentially deposit on the uncharged –CH₃ terminated SAM surface, and that at short deposition times nanowire formation will be observed at the junction of patterned –CH₃ and –OH or –COOH terminated SAMs.

Finally, the CBD methods shown in this work can be used to develop new deposition methods to produce other semiconductor and TMD materials. Understanding the reaction pathways involved in the CBD of MoS_2 has led to new insights for the deposition of TMDs which have been previously inaccessible using room temperature methods, e.g. WS_2 .

APPENDIX

Chapter 3 Appendix

Figure A3.1 S 2p photoelectron spectra of mechanically exfoliated MoS_2 films deposited on MHA, MHL, HDT, and MHA-PFP SAMs. Deposition time: 24 h.

Figure A3.2 Valence band spectra of mechanically exfoliated MoS₂ films deposited on MHA, MHL, HDT, and MHA-PFP SAMs. Deposition time: 24 h.

Figure A3.3 Raman spectra of thicker MoS₂ films deposited on MHA and MHL.

Chapter 4 Appendix

Figure A4.1 AFM of MoS₂ deposited on HOPG. Deposition time ~ 27 h.

Figure A4.2 Mo 3p and N 1s photoelectron spectra of the deposited film on HOPG after sputtering with 1 keV Ar^+ for times from 0 min (no sputtering) to 8min.

In the Mo 3p region, the photoelectron spectra show that there is also a nitrogen-containing species present on the surface. The Mo $3p_{1/2}$ and $3p_{3/2}$ binding energies are 413.0 eV and 395.0 eV which indicates that MoS₂ has been deposited in agreement with the Mo 3d and S 2s binding energies. Upon sputtering with 1keV Ar⁺, the binding energies of Mo do not change indicating that the MoS₂ layer is present. In contrast the N1s photoelectron peaks decrease in intensity indicating that the nitrogen-containing species is being removed from the sample, and that it is only present at the deposit surface. Initially a single N 1s photoelectron is observed with binding energy 400 eV. Upon Ar⁺ sputtering the photoelectron peak decreases sharply in intensity, and a second peak at ~397 eV is observed indicating that the nitrogen-species is being reduced. These binding energies are consistent with triazoles present on the surface² as well as molybdenum-containing complexes.¹

References: Chapter 4 Appendix

1. NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20, National Institute of Standards and Technology, Gaithersburg MD, 20899 (2000), doi:10.18434/T4T88K, (retrieved December 1st, 2018).

2. Ding-Bo, W.; Bao-Hua, C.; Bing, Z.; Yong-Xiang, M., XPS study of aroylhydrazones containing triazole and their chelates. *Polyhedron* **1997**, 16 (15), 2625-2629.

BIOGRAPHICAL SKETCH

Jenny Orbeck was born in Oak Park, Illinois in 1990. After obtaining her Bachelor of Science in Chemistry from The University of Iowa in 2012, she received an internship at Argonne National Laboratory in the Energy Systems division supported by the U.S. Department of Energy. She remained at Argonne until June 2014 when she moved to Dallas, Texas to pursue her doctoral education at The University of Texas at Dallas.

CURRICULUM VITAE

JENNY K. ORBECK (NEÉ: HEDLUND)

EDUCATION:

University of Texas at Dallas Richardson, TX Ph.D. in Chemistry Defense: December 2018 GPA: 3.50/4.00 Advisor: Dr. Amy V. Walker

University of Iowa

Iowa City, IA B.S. Chemistry, Minor Spanish Graduation Date: December 2012 GPA: 3.21/4.00

RESEARCH AND TEACHING EXPERIENCE:

Research Assistant: University of Texas at Dallas (June 2014 – Present) Develop solution phase deposition techniques for MoS₂ and Cu_xS nanomaterials Sample analysis using ToF SIMS, XPS, Raman spectroscopy, SEM, AFM, ATR-IR, and optical microscopy

Graduate Teaching Assistant: University of Texas at Dallas (Aug. 2014 – May 2015) Teaching assistant for general chemistry I and II lab courses

Chemistry Assistant, Special Term Appointee: Argonne National Laboratory, Energy Systems (Aug. 2013 – May 2014)

ALD materials research in Dr. Jeffrey Elam's lab In-situ FTIR study of ALD GaS_x films, high-temperature high-pressure ALD catalyst testing, and sample analysis using GC-MS

Undergraduate Laboratory Intern: Argonne National Laboratory, Energy Systems (Jan. 2013 – Aug. 2013)

Studied ALD synthesis and material characterization under the supervision of Dr. Jeffrey Elam and Dr. Joseph Libera

Undergraduate Laboratory Intern: Argonne National Laboratory, Center for Nanoscale Materials (May 2012 – Aug. 2012)

Nanoparticle synthesis for biomedical applications in Dr. Tijana Rajh's lab

Undergraduate Research Assistant: University of Iowa (May 2010 – May 2012)

Noble metal nanoparticle synthesis and characterization in Dr. Amanda Haes' lab

ANALYTICAL TOOLS

X-Ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry (ToF SIMS), Raman spectroscopy, attenuated total internal reflection infrared spectroscopy, scanning electron microscopy, atomic force microscopy, optical microscopy, UV-visible spectroscopy, Fouriertransform infrared spectroscopy, single-wavelength ellipsometry, and gas chromatography-mass spectrometry.

COLLABORATIVE PROJECTS

Amon Carter Museum of American Art, January 2017 – Present Project: Studying removal of damaging adhesives from José Posada prints using solvent fuming and subsequent sample analysis with optical microscopy and ToF SIMS.

Louisiana State University, J.R. Ragains, August 2015 **Project:** Employed ToF SIMS and XPS to study the formation of fluorinated thin films on gold.

University of Texas at Dallas, J.Y. Chan, August 2014 Project: Identified oxidation states in $Pr_2Fe_{4-x}Co_xSb_5$ (1 < x < 2.5) crystals using XPS.

Performed ad hoc analyses for the following: Essilor of America Inc., Cavendish Kinetics Inc., Texas Instruments Inc., and Daikin America Inc.

PROFESSIONAL SOCIETIES

American Vacuum Society American Chemical Society

PROFESSIONAL ACTIVITIES

American Vacuum Society, DFW Metroplex Student Chapter – Treasurer 2017 Chemistry Graduate Student Association, University of Texas at Dallas – President 2016/17 Chemistry Graduate Student Association, University of Texas at Dallas – Vice President 2015/16 Chemistry Graduate Student Association, University of Texas at Dallas – Co-founder 2014 Women in Science and Technology, Argonne National Laboratory – Member 2013/14 Alpha Chi Sigma, University of Iowa – House Treasurer 2012 Alpha Chi Sigma, University of Iowa – Events Chair 2011 American Chemical Society, University of Iowa Student Chapter – President 2012 University of Iowa Health Care Community Education Program – Education Leader 2011 University of Iowa Hospitals and Clinics – Student Leader Board Member 2010 & 2011 Alpha Delta Pi Sorority, University of Iowa – Vice President 2010

AWARDS

2D Focus Topic Student Travel Award, AVS 64th International Symposium, 2017
AVS Student Travel Award, AVS DFW Metroplex Student Chapter, 2017
Science Undergraduate Laboratory Internship: Argonne National Laboratory, U.S. Department of Energy, 2013
Russel K. Simms Scholarship, Department of Chemistry, University of Iowa, 2011
Alpha Chi Sigma Professional Chemistry Scholarship, University of Iowa, 2011
Distinguished Poster Award, Spring Undergraduate Research Festival, University of Iowa, 2011
Iowa Center for Research for Undergraduates Research Fellow, University of Iowa, 2010
Student Leader Board Scholarship, University of Iowa Hospitals and Clinics, 2010-2011
UI Iowa Heritage Award, University of Iowa, 2008-2012

CONFERENCE PRESENTATIONS

Presenting author is underlined.

- J.K. Hedlund, A.V. Walker, "Chemical Bath Deposition of Substrate Selective Molybdenum Disulfide," AVS Texas Chapter Conference 2018, Fort Worth, TX, Aug. 1st – Aug. 3rd, 2018.
- J.K. Hedlund, A.V. Walker, "Chemical Bath Deposition of Substrate Selective Molybdenum Disulfide," SIMS USA / Applied Surface Analysis / AVS Pacific Northwester Chapter Symposium, Richland, WA, June 19th – June 22nd, 2018.
- J.K. Hedlund, A.V. Walker, "Chemical Bath Deposition of Phase Selective MoS₂ on Templated Surfaces," AVS 64th International Symposium & Exhibition, Tampa, FL, October 29th – November 3rd, 2017.
- 4. <u>J.K. Orbeck</u>, A.V. Walker, "Chemical Bath Deposition of Molybdenum Disulfide Ultra-Thin Films," European Conference on Surface Science 32nd Annual, Grenoble, France, August 28th – September 2nd, 2016.
- J.K. Hedlund, R.P. Joshi, A.V. Walker, "Studying Copper Sulfide Chemical Bath Deposition Reactions on Organic Surfaces," AVS Texas Chapter Conference 2016, Richardson, TX, August 3rd – August 4th, 2016.
- J.K. Hedlund, A.V. Walker, "Chemical Bath Deposition of MoS₂ Ultra-Thin Films and Nanowires", AVS Texas Chapter Conference 2015, Richardson, TX, August 5th – August 6th, 2015.

- J.K. Hedlund, A.V. Walker, "Reducing Agent Effect of Cu Deposition on Organic Substrates", AVS Texas Chapter Conference 2014, Richardson, TX, August 6th – 7th, 2014. (Poster)
- 8. <u>J.K. Hedlund</u>, D.C. Cronauer, J.A. Libera, A.J. Kropf, V.R.R. Pendyala, J.W. Elam, "Ruthenium Hydrotreating Catalysts Prepared by Atomic Layer Deposition," Institute for Atom Efficient Chemical Transformations (IACT) Meeting, Argonne, IL, 2014. (Poster)
- J.K. Hedlund, M. Pierre, B. Shrestha, A.J. Haes, "Sensing drug mimics using size tunable solution phase SERS substrates", Midwest/Great Lakes Joint Regional ACS Meeting, St. Louis, MO, October 19th – October 22nd, 2011.
- 10. <u>J.K. Hedlund</u>, B. Shrestha, M. Pierre, A.J. Haes, "Synthesizing Nanoparticles with Lightning Rod Effects," Summer Undergraduate Research Festival 2011, Iowa City, IA. (Poster)
- 11. <u>J.K. Hedlund</u>, B. Shrestha, A.A. Volkert, A.J. Haes, "Interactions of Biomarkers with Functionalized Gold Nanoparticles," Spring Undergraduate Research Festival 2011, Iowa City, IA. (Poster)
- 12. J.K. Hedlund, A.A. Volkert, A.J. Haes, "Self-Assembly of Monolayers onto Noble Metal Nanoparticles," Fall Undergraduate Research Festival 2010, Iowa City, IA. (Poster)
- J.K. Hedlund, S. Nath, A.A. Volkert, A.J. Haes, "Encapsulating Noble Metal Nanoparticles with Silica," Summer Undergraduate Research Festival 2010, Iowa City, IA. (Poster)

PUBLICATIONS

- 1. <u>Hedlund, J.K.</u>; Walker, A.V., Facile One-Pot Synthesis of Molybdenum Disulfide Thin Films. **2018**, *Manuscript in preparation*.
- 2. <u>Hedlund, J. K.</u>; Walker, A.V., Polytype Control of MoS₂ Using Chemical Bath Deposition. **2018**, *To be submitted to the Journal of Chemical Physics*, American Institute of Physics.
- 3. <u>Hedlund, J. K.</u>; Ellsworth, A. A.; Walker, A. V., (Invited)Using Surface Chemistry to Direct the Deposition of Nano-objects for Electronics. *ECS Transactions* **2018**, *86* (3), 89-101.
- 4. Kelly, S. M.; Utter, J.; Walker, A. V.; Ellsworth, A. A.; <u>Hedlund, J. K.</u>, Characterization of the Aniline Dyes in the Colored Papers of José Posada's Prints Using Time-of-Flight Secondary Ion Mass Spectrometry to Aid in Developing a Treatment Protocol for the

Removal of Pressure-sensitive Tapes. *The Book and Paper Group Annual* **2017**, *36*, 87-100.

- Quarels, R. D.; Zhai, X.; Kuruppu, N.; <u>Hedlund, J. K.</u>; Ellsworth, A. A.; Walker, A. V.; Garno, J. C.; Ragains, J. R., Application of visible-light photosensitization to form alkylradical-derived thin films on gold. *Beilstein Journal of Nanotechnology* 2017, *8*, 1863-1877.
- Watkins-Curry, P.; Pujol, K. J.; Benavides, K. A.; Burnett, J. V.; <u>Hedlund, J. K.</u>; Bykova, J.; McCandless, G. T.; Walker, A. V.; Chan, J. Y., Emergence of Magnetic States in Pr₂Fe_{4-x}Co_xSb₅ (1 < x < 2.5). *Inorganic Chemistry* **2016**, *55* (4), 1946-1951.
- Hedlund, J. K.; Cronauer, D. C.; Jacobs, G.; Kropf, A. J.; Libera, J. A.; Elam, J. W.; Marshall, C. L.; Pendyala, V. R. R.; Davis, B. H., Titania Supported Ru Nanoclusters as Catalysts for Hydrodeoxygenation of Pyrolysis Oils. *Catalysis Letters* 2016, 146 (2), 525-539.
- 8. Meng, X.; Libera, J. A.; Fister, T. T.; <u>Hedlund, J. K.</u>; Fenter, P.; Elam, J. W., Atomic Layer Deposition of Gallium Sulfide Films Using Hexakis(dimethylamido)digallium and Hydrogen Sulfide. *Chemistry of Materials* **2013**, *26*, 1029-1039.