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Galaxy clusters are powerful testing grounds for cosmology. They are the largest, most

massively bound objects in the Universe and can give us deep insights on how baryons, dark

matter, and dark energy impacts on the formation of large scale structure in the cosmos. In

this dissertation we study the structure and environment of clusters, how neutrinos impact

on cluster masses, and how we may find them.

We study cluster profiles on large scales to gain better understanding on the relationship

between cosmic web filaments and clusters that reside in the nodes, which gives insight on

the evolution of clusters from their environment. For more than two decades, the Navarro,

Frenk, and White (NFW) model has stood the test of time; it is used to describe the

distribution of mass in galaxy clusters out to their outskirts, beyond which the NFW model

is no longer applicable. In this dissertation we assess how well the parameterised Diemer

& Kravstov (DK) mass density profile describes the mass distribution of galaxy clusters

extracted from cosmological simulations. This is determined from averaged synthetic lensing

measurements of the 50 most massive clusters extracted from the OverWhelmingly Large

Simulations (Cosmo-OWLS). The characteristics of the data reflect the Weighing the Giants

survey and data from the future Large Synoptic Survey Telescope (LSST). In comparison
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with the NFW model, the DK model is favored by the averaged data, in particular for

the LSST data, where the number density of background galaxies is higher. The DK profile

depends on the accretion history of clusters which is specified in the current study. Eventually

subsamples of galaxy clusters with qualities indicative of disparate accretion histories could

be studied.

We also study the impact of baryonic processes and massive neutrinos on weak lensing (WL)

peak statistics that can be used to constrain cosmological parameters. We use the BA-

HAMAS suite of cosmological simulations, which self-consistently include baryonic processes

and the e↵ect of massive neutrino free-streaming on the evolution of structure formation. We

construct synthetic WL catalogues by ray-tracing through light-cones, and use the aperture

mass statistic for the analysis. The WL peaks reflect the cumulative signal from massive

bound objects and general large-scale structure. We present the first study of WL peaks

in simulations that include both baryonic physics and massive neutrinos, so that the uncer-

tainty due to physics beyond the gravity of dark matter can be factored into constraints on

cosmological models. Assuming a fiducial model of baryonic physics, we also investigate the

correlation between peaks and massive haloes, over a range of neutrino masses. As higher

neutrino mass tends to suppress the formation of massive structures in the Universe, the

halo mass function and lensing peak counts are therefore modified as a function of neutrino

mass. Over most of the S/N . 5, the impact of fiducial baryonic physics is greater (less) than

neutrinos for 0.06 and 0.12 (0.24 and 0.48) eV models. Both baryonic physics and massive

neutrinos should be accounted for when deriving cosmological parameters from weak lensing

observations.
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5.6 stack with scaling (hF (x)i, Section 5.2) for ideal DK haloes. The green points
are hF (x)i with the corresponding error bars �hF (x)i. Even with ideal DK haloes,
stack with scaling is not well represented by the DK form. This is likely due
to the bias in parameter estimation that is needed for hF (x)i and parameter
dependency in the DK form (i.e., each signal that goes into stack may have
di↵erent concentrations and therefore di↵erent profile shapes, see Section 2.3).
The parameters used in the DK form is determined by fitting over the stack
without scaling (Figure 5.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.7 Each thin curve represents a cluster’s reduced shear that went into the stack, the
thick green curve represents the stack without scaling, and the thick red curve is
the NFW form, FNFW(x). Everything is then scaled using the best fit parameters
onto the stack, to compare with F (x). Here we follow Section 5.1 with the 50
most massive clusters with no noise. For simplicity, we omitted error bars to show
individual signals compared to the stack without scaling. This plot is an example
of how stack without scaling compares with each individual cluster shear profile
and the NFW form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
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green points are h�⌃(R)i (stack without scaling, following Section 5.1), scaled
by (2⇢crs)bf (so we can compare with F (x)) with error bars of �h✏i/(2⇢crs)bf
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curve is the NFW form, FNFW (x). It is clear that the stack is better represented
by DK than NFW. The DK �
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= 1.08 with d.o.f. = 64� 2. . . . . . . . . . . 53

5.9 This plot uses realistic LSST-like clusters from the AGN 8.0 simulation but with
added noise approximating that due to Large Scale Structure (�LSS). The green
points are h�⌃(R)i (stack with scaling, following Section 5.1), scaled by (2⇢crs)bf

(so we can compare with F (x)) with error bars as �h✏i/(2⇢crs)bf (Equation 5.5)
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F
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CHAPTER 1

INTRODUCTION

1.1 Cosmology

The study of cosmology and astrophysics tells a rich history of the Universe from its early

beginnings to predictions of its fate. This is done by testing model predictions of di↵erent

epochs against observational data and seeking to understand the physics of massive objects

from astroids in our solar system to the largest super clusters in the Universe. The prevailing

cosmological model is ⇤CDM (⇤ Cold Dark Matter), which is consistent with a broad range

of astrophysical observations, such as the Cosmic Microwave Background (CMB), type Ia

supernovae, Baryon Acoustic Oscillations (BAO), and gravitational lensing. As outlined

below, most of the matter is cold and dark and observations cannot be explained by just

matter, since the expansion of the Universe is accelerating. Observations are consistent with

the presence of a cosmological constant (⇤), however other alternatives such as models of

modified gravity are also being explored.

When we observe light from a distant object we are looking into the past, due to the

finite speed of light. The CMB is the earliest electromagnetic radiation in the Universe that

we can observe today, which was predicted in 1948 by Ralph Alpher and Robert Herman

(Alpher and Herman, 1948). The CMB gives us a temperature and polarization map of our

sky at the recombination epoch that shows small di↵erences in temperature, which reflects

the matter density fluctuations at that time (Hu, 2001; Hu and Dodelson, 2002; Hinshaw

et al., 2013; Planck Collaboration et al., 2018). This describes an early Universe that is hot,

dense, and nearly uniform. As the Universe expands and cools, the small density fluctuations

in the early Universe eventually evolve to large bound structures such as a large collection

of galaxies, called galaxy clusters, which we observe today. In the Millennium N-body

Simulation, Springel et al. (2005) show the 3D evolution of DM from early fluctuations to
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today. The structure of the DM distribution is commonly called the cosmic web, where the

web filaments feed into nodes, the intersections of filaments. The center of these nodes are

where galaxy clusters grow.

In 1912 Vesto Slipher recorded the first receding velocity of a spiral nebula (Slipher,

1913), which today we know are galaxies. Afterward he wrote a series of papers on receding

spiral galaxies that were critical to our understanding of the expanding Universe. Later

in 1929 Hubble compared the relative radial velocities of galaxies to their distances from

us Hubble (1929). This was the first analysis showing that galaxies that are farther away

from us move away from us more quickly, and lead to the discovery that our Universe

is expanding. Further work done on the radial velocities of supernovae tells us that the

Universe is undergoing accelerated expansion, where a possible source of the acceleration

is Dark Energy. In 1933 Fritz Zwicky studied of velocities of galaxies bound to the Coma

Cluster Zwicky (1937). He found that the observed luminous mass was not nearly enough

to keep the fast moving galaxies bound to the cluster, to which he concluded that the bulk

matter is dark. Further studies found that all clusters have an abundance of dark matter.

With the advent of X-ray satellites it was realised that most of the normal luminous mass

in galaxy clusters is in the form of plasma. Even so about 5 to 10 times as much mass

is required to be dark matter as compared with luminous matter. These studies deduce

that the Universe is not only made of baryonic matter, what makes up all luminous matter,

planets, and black holes, but also dark energy and dark matter. Today the energy density

of the Universe is thought to be approximately 5% baryonic matter, 25% dark matter, and

70% dark energy (Hinshaw et al., 2013; Planck Collaboration et al., 2018).

In this work we study galaxy clusters, the most massive bound structures in the Universe.

Most of the mass of clusters is thought to be cold dark matter, where about 1/8th of the mass

is X-ray emitting plasma and only a couple of percent is in the form of stars in cluster galaxies

(Allen et al., 2011). Because these massive structures house many di↵erent processes, they
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are interesting laboratories for cosmological studies. As most of the mass of clusters is dark,

the mass profiles are not only dependent on baryonic processes, but heavily dependent on the

properties of DM. In Spergel and Steinhardt (2000) for example, it is shown that observations

are consistent with DM being cold. Constraints can also be put on the DM interaction cross

section (e.g., Spergel and Steinhardt, 2000; Randall et al., 2008). Furthermore, the number

of clusters as a function of mass and redshift, called the cluster mass function, depends on

the properties of dark energy and mass density fluctuations of the Universe (Wen et al.,

2010). The cluster mass function is sensitive to ⌦m and �8 (defined below), and is a useful

tool in constraining those parameters. ⌦m is the fraction of dark and baryonic matter over

the critical density of the Universe while ⌦0 = ⌦m + ⌦⇤ is the density parameter, where

⌦⇤ is the dark energy content over the critical density. The critical density is an important

parameter to compare to because it tells us the eventual fate of the Universe. In the absence

of the cosmological constant (⇤ = 0) where ⌦0 = ⌦m, when ⌦0 < 1 the Universe is open

and will expand forever, ⌦0 = 1 the Universe is flat and will halt in its expansion at infinite

time, and ⌦0 > 1 the Universe is closed and will eventually recollapse. Current studies show

that ⌦m ⇡ 0.3 and ⌦0 ⇡ 1 (Hinshaw et al., 2013; Planck Collaboration et al., 2018). �8

is the dispersion of density fluctuations on the scales of 8h�1 Mpc. The mass fluctuations

in the early Universe gave birth to the large structures that we see today, so the properties

of the perturbations greatly influence the number count of the objects those perturbations

gave birth to. As clusters are important in our Universe today, we look at fluctuations on

scales 8h�1 Mpc box, which are characteristic cluster scales.

The masses of clusters can be determined by measuring X-ray emissions of the intracluster

medium (ICM), the radiation of energetic gas at the center of clusters; the Sunyaev Zel’dovich

(SZ) e↵ect, the inverse Thomson scattering of the CMB photons; gravitational lensing, the

distortion of light from background galaxy sources as it passes near to a cluster on the

way to us. In our work we focus on gravitational lensing, particularly weak gravitational

3



lensing. In strong gravitational lensing there can be multiply imaged sources or giant arcs,

with non-negligible magnification e↵ects, that can directly provide useful constraints on the

central regions of clusters. Weak gravitational lensing, however, does not result in multiple

images, and the images are not obviously stretched or magnified. In this case a statistical

approach is required to analyse background source populations and obtain information on the

lensing cluster. In the weak lensing regime, mass measurements can be carried out by fitting

parametric cluster mass models to distorted background galaxy shapes and orientations.

Other non-parametric techniques can be used to reconstruct cluster mass maps and other

statistics also quantify the lensing mass distribution.

Throughout this work we use the angular diameter distance, DA, to determine distances

from an object to us (Weinberg, 1972). The ratio, DA = L

✓
, is of the object’s true physical

size, L, divided by the comoving transverse angular size as viewed from earth, ✓. The line-

of-sight comoving distance, DC , is used to determine the distance from us to an object,

where the distance to that object remains constant with epoch while the object moves with

the expansion of the Universe. The distance between two objects at the same redshift,

(transverse distance) for a flat Universe ⌦k = 0, is �✓DA, where �✓ is the separation distance

on the sky. The angular diameter distance is the most commonly used distance for weak

lensing.

1.2 Constraining the Mass at the Outskirts of Galaxy Clusters

One of the research goals of this dissertation is to test if we can eventually use weak grav-

itational lensing signals of clusters to deduce the mass density profiles at the outskirts of

galaxy clusters, by fitting a parametric model. Navarro et al. (1997) (Hereafter referred to as

NFW) discovered that haloes formed in Cold Dark Matter (CDM) simulations of structure

formation are well described by a universal form of mass density profiles that is characterised

by a scale radius and the concentration of mass (or equivalent parameters). Jing and Suto
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(2000) found that about 70% of haloes formed in CDM simulations are well fit by this so-

called NFW profile. The NFW profile is also found to be a good fit to cluster scale haloes

in more recent analysis of gravitational lensing data from the fields of real galaxy clusters,

away from the central regions that are dominated by brightest cluster galaxies (e.g., Umetsu

et al., 2016). Variants on the NFW density profile that have slightly di↵erent behaviours,

in particular in the inner and outer regions of clusters, have been found to better repro-

duce higher resolution haloes (e.g., Moore et al., 1999; Jing and Suto, 2002; Fukushige and

Makino, 2001; Navarro et al., 2010).

In general, although cluster profiles are relatively simple and well described by the NFW

model (with the caveat of setting aside complex mergers and cluster systems), nevertheless in

their outskirts the large scale structure of filaments in the cosmic web and contributions from

neighbouring clusters eventually become important. It has therefore long been recognised

from simulations that eventually the NFW model ceases to be an accurate representation of

the mass density. Formally the mass of an NFW halo diverges when integrated to infinity,

and usually the NFW description is only applied out to the virial radius. The halo model

formalism (see e.g., Cooray and Sheth, 2002, for a review) is often used as a prescription

for these additional contributions beyond the single halo. Various works have used higher

resolution simulations than were available at the time of Navarro et al. (1997) and modified

the form of the NFW profile in the inner regions of haloes and/or added an extra contribution

to the density in the outskirts of haloes (e.g., Navarro et al., 2004; Prada et al., 2006; Hayashi

and White, 2008). Recently, using fits to cosmological simulations, Diemer and Kravtsov

(2014) (hereafter referred to as DK) suggested a new parametric model that describes clusters

and the structure in which they are embedded, with a dependency on the rate at which mass

has been accreted. We return to a full description of this model in a later chapter. The advent

of detailed wide field images of galaxy clusters, and surveys that will cover many thousands

of square degrees of the sky, motivates a consideration of the accuracy with which mass can
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be determined in the periphery of clusters, beyond the 1-halo term. Umetsu and Diemer

(2017), adopting the DK model, described lensing constraints on the shape of the average

mass profile of 16 massive galaxy clusters from the CLASH (Cluster Lensing and Supernova

survey with Hubble) sample of Postman et al. (2012). In that work they found that although

the DK model was slightly preferred compared with the NFW that the di↵erences were not

statistically significant.

We determined the average mass density profile of massive clusters by fitting to the

azimuthally averaged synthetic lensing signal over many clusters from cosmological simula-

tions; this process is called stacking. In practice this will help us understand how observed

clusters relate to their 3D surroundings and act as a first step toward our future research

goals. Stacked weak gravitational lensing can be used to show that the spherical NFW mass

density profile does well in describing clusters out to the virial radius (Niikura et al., 2015).

For larger scales we expect the spherical DK mass density profile to represent the stacked

signals better than the NFW. In particular, as outlined above, we consider the parametric

DK model since it is related to the cluster environment.

1.3 Neutrinos and Baryonic Physics in Structure Formation

The second main research topic of this dissertation investigates the impact of neutrinos and

baryonic physics on galaxy cluster observables. Galaxy clusters and large-scale structure

(LSS) provide a powerful laboratory to study the Universe (e.g., Bond et al., 1980; Blumen-

thal et al., 1984; Voit, 2005; Allen et al., 2011; Kravtsov and Borgani, 2012). Measurements

of LSS help constrain cosmological parameters, independent from observations of the CMB

and other probes.

Agreement between various astrophysical probes has provided strong evidence for a con-

cordance cosmology, the ⇤CDM model. However, recent high-precision measurements have

suggested a tension in some of the parameter estimates. For example, some authors have
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determined that local measurements of Hubble’s constant H0 (73.48±1.66 km/s/Mpc, Riess

et al. 2018) disagree with the value derived from the joint analysis of CMB and BAO

(67.4 ± 0.5 km/s/Mpc, Planck Collaboration et al. 2018). However some analyses have

suggested that the discrepancy between the measurements is of low significance. For exam-

ple, Feeney et al. (2018) developed a Bayesian hierarchical model of the distance ladder that

finds a local H0 value nearly identical to the Planck CMB measurement. Another tension

that has been found by some studies is between measurements of ⌦m and of �8 (see for

example the discussion in McCarthy et al., 2018; Planck Collaboration et al., 2018).

Traditionally, simulations of cosmological structure formation have considered only col-

lisionless gravitational dynamics. However, with the increase in computational capabilities,

some large-volume simulations have now been carried out to model the LSS for various cos-

mologies and using various prescriptions for baryonic physics (e.g., Dolag et al., 2009; Schaye

et al., 2010; Vogelsberger et al., 2013; Le Brun et al., 2014; Schaye et al., 2015; Dubois et al.,

2014; McCarthy et al., 2017; Pillepich et al., 2018). These and other simulations have shown

that baryonic physics a↵ects the total matter power spectrum (e.g., van Daalen et al., 2011;

Schneider and Teyssier, 2015), the halo mass function (e.g., Sawala et al., 2013; Velliscig

et al., 2014; Cusworth et al., 2014) and galaxy cluster mass density profiles and mass esti-

mation (e.g., Mummery et al., 2017; Henson et al., 2017; Lee et al., 2018). For example, on

galaxy and cluster scales baryonic feedback produces an outward pressure that acts against

the infall of matter, resulting in a shallower inner density profile, corresponding to a lower

concentration of mass (Mummery et al., 2017). These works have illustrated that the ad-

dition of baryons can have a significant impact on our measurements, and therefore on our

inference of cosmological parameters.

Theoretical and observational studies of the impact of neutrinos on cosmological structure

formation have been carried out by e.g., Hu et al. (1998); Bashinsky and Seljak (2004);

Hannestad et al. (2006); Gratton et al. (2008); Namikawa et al. (2010); Lahav et al. (2010);
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Bird et al. (2012); Wagner et al. (2012); Costanzi et al. (2013); Villaescusa-Navarro et al.

(2014); Castorina et al. (2014); Mummery et al. (2017); Moscardini et al. (2018); Hagstotz

et al. (2018). However, their mass is not yet known, and the relevance of massive neutrinos

to structure formation and to astrophysical observables is an open question. Lesgourgues

and Pastor (2006) found that the three active neutrino species have a summed mass of at

least 0.06 eV for normal or inverted hierarchies, by studying atmospheric and solar oscillation

experiments. In their fiducial analysis, Planck Collaboration et al. (2016a) adopt a value of

M⌫ = 0.06 eV. The CMB data itself can be used to constrain the summed neutrino mass

and, when combined with external BAO constraints, Planck Collaboration et al. (2016a)

set an upper limit of M⌫ < 0.21 eV. However, the derived upper limit is sensitive to the

treatment of internal tensions in the primary CMB data (e.g., Addison et al., 2016; Planck

Collaboration et al., 2017) and, when this is factored in, values of up to 0.4 eV are potentially

compatible with the data (e.g., Di Valentino et al., 2017; McCarthy et al., 2018; Poulin et al.,

2018).

Some studies find that the aforementioned tension in cosmological parameter measure-

ments can potentially be remedied with the inclusion of massive neutrinos (e.g., Wyman

et al., 2014; Battye and Moss, 2014; McCarthy et al., 2018). Mummery et al. (2017) used

cosmo-OWLS (the OverWhelmingly Large Simulations; Le Brun et al. 2014) and BAHAMAS

(BAryons and HAloes of MAssive Systems; McCarthy et al. 2018) to study how baryonic

physics and neutrinos impact the halo mass function, mass density profiles of haloes, the

halo mass-concentration relation, and the clustering properties of haloes.

The impact of baryonic physics and massive neutrinos is thought to be significant and

has been considered as systematics in various works on weak lensing (WL) statistics with

dark matter only simulations and observation surveys (e.g., Yang et al., 2013; Hildebrandt

et al., 2017; Martinet et al., 2018). In this work we are motivated by the studies above that

suggest the importance of physics beyond the gravity associated with cold dark matter. The
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statistics of the peaks on weak gravitational lensing maps has been shown to be a powerful

probe of cosmology and massive galaxy clusters (e.g., Kruse and Schneider, 1999, 2000; Jain

and Waerbeke, 2000; Dietrich and Hartlap, 2010; Maturi et al., 2010; Kratochvil et al., 2010;

Fan et al., 2010; Yang et al., 2011; Hamana et al., 2012; Martinet et al., 2015; Lin and

Kilbinger, 2015; Kacprzak et al., 2016; Liu and Haiman, 2016; Liu et al., 2016; Peel et al.,

2017, 2018; Martinet et al., 2018; Li et al., 2018; Shan et al., 2018). The weak lensing peaks

arise from massive structures such as galaxy clusters but also from the large scale structure

of the Universe. Thus, the peak statistics contain information about the Universe on both

non-linear and linear scales.

We estimate the impact that baryons and massive neutrinos have on the counts of weak

gravitational lensing peaks. The cosmological hydrodynamical simulations that we use in

this work is BAHAMAS, a suite that includes the e↵ects of massive neutrinos and for which

the e�ciencies of stellar and Active Galactic Nuclei (AGN) feedback have been carefully

calibrated to match the observed baryon fractions of massive systems (McCarthy et al.,

2017). For each run we use light-cones from BAHAMAS and generate sets of synthetic

weak lensing surveys with di↵erent source redshift distributions and source number densities

for galaxies from which the weak lensing signal is measured. The synthetic surveys used

in this work are based on the Kilo Degree Survey (KiDS) (Hildebrandt et al., 2017), Deep

Ground Based, and Deep Spaced Based survey characteristics, such as those expected for

the Large Synoptic Survey Telescope (LSST, Chang et al. 2013) and Euclid (e.g., Laureijs

et al., 2011; Amendola et al., 2018) and for the Hubble Space Telescope (HST, e.g., the weak

lensing observations in King et al. (2016)). We determine peaks on maps of the aperture

mass statistic (Schneider, 1996; Schneider et al., 1998; Maturi et al., 2010). This statistic has

been used on wide field surveys to identify massive objects, e.g., Hetterscheidt et al. (2005).

Various cluster detection methods that incorporate tomographic redshift information for the

source galaxies and di↵erent shapes of filter function have also been developed. For example,
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Hennawi and Spergel (2005) considered the e�ciency of cluster detection using the aperture

mass statistic and also including tomographic information and optimal filtering.

Miyoung Choi led the research on comparing the dark matter only simulations with simu-

lations including the impact of a range of di↵erent baryonic prescriptions. I also contributed

to that research. For a fiducial baryonic physics model, we both explore the impact of mas-

sive neutrinos, the lower bound of the summed neutrino mass in BAHAMAS is taken from

Lesgourgues and Pastor (2006), with additional runs increasing the summed neutrino mass

by factors of 2 up to 0.48 eV. Using a fiducial baryonic prescription outlined in Section 3.2, I

lead the examination of the correlation between high signal-to-noise (S/N) peaks and massive

galaxy clusters and assessing our ability to detect clusters using aperture mass peaks.

1.4 Shapes of Galaxy Clusters

Though we assume spherical mass density models in Chapter 5, galaxy clusters are in general

non-spherical. However, we use spherical models to represent them on average because

clusters are randomly shaped and oriented on the sky. To study individual galaxy clusters

it will be important to consider their departure from spherical mass densities.

High resolution simulations of galaxy cluster formation carried out since the ground-

breaking work of Navarro et al. (1997) confirm that the shapes of cluster-scale dark matter

haloes often significantly depart from spherical symmetry. Haloes are mostly (football-

shaped) prolate halos, with axis ratios between the shortest and longest axis as small as 0.4

(e.g., Jing and Suto, 2002; Shaw et al., 2006; Bett et al., 2007; Despali et al., 2014). In fact,

triaxial haloes are a direct consequence of initial mass density fluctuations that are described

by a Gaussian random field undergoing gravitational collapse (e.g., Doroshkevich, 1970).

The degree to which cluster shapes di↵er from spherical symmetry also depends on the

mass and redshift (e.g., Despali et al., 2014). If dark matter is in particle form, the shape of

cluster haloes also reflects the interaction cross-section for dark matter particles (e.g., Peter
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et al., 2013). Galaxy clusters can also exhibit very complex structure due to merger activity

(e.g., Abell 2146 King et al., 2016).

Considering the shapes of galaxy clusters is a particular interest of mine, where I will

discuss them further in the Current and Future Work Chapter (Chapter 7).

1.5 Contents of this Dissertation

Chapter 2 describes the background gravitational lensing concepts needed for this disser-

tation. Chapter 3 describes the cosmological simulations used in this work. Chapter 4

describes how the synthetic weak lensing catalogues are created from the cosmological simu-

lations used in this dissertation. Chapter 5 introduces stacking and goes over the results on

Fong et al. (2018): “Prospects for Determining the Mass Distributions of Galaxy Clusters on

Large Scales Using Weak Gravitational Lensing”. Chapter 6 introduces weak lensing peak

statistics and goes over the results in a recently MNRAS submitted paper (Fong & Choi

et al. 2019): “The impact of baryonic physics and massive neutrinos on weak lensing peak

statistics”. Chapter 7 discusses current and future work.

Much of the text in Chapters 1, 2, 3, 4, and 5 originally appeared as part of “Prospects

for Determining the Mass Distributions of Galaxy Clusters on Large Scales Using Weak

Gravitational Lensing”, M. Fong, R. Bowyer, A. Whitehead, B. Lee, L. King, D. Applegate,

I. McCarthy (2018), MNRAS 478-5366-5378 Fong et al. (2018). Rachel Bowyer and Alisha

Whitehead were undergraduate students at Rice University and at UTD respectively, advised

by Matthew Fong and Lindsay King. The Cosmo-OWLS cosmological simulations were

provided by Ian McCarthy. The shear fields and moment of inertia tensors were calculated

by Brandyn Lee. Rachel Bowyer created Figure 7.9. Doug Applegate provided the Weighing

the Giants observational data and advice on Python algorithms. Doug Applegate and Ian

McCarthy gave advice throughout the work. All the writing and other work was carried

out by Matthew Fong in collaboration with Lindsay King. This article has been accepted
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for publication in Monthly Notices of the Royal Astronomical Society c�: 2018, M. Fong,

Published by Oxford University Press on behalf of the Royal Astronomical Society. All

rights reserved.

Much of the text in Chapters 1, 2, 3, 4, and 6 has been submitted to MNRAS, “The

impact of baryonic physics and massive neutrinos on weak lensing peak statistics”, M.Fong,

M. Choi, V. Catlett, B. Lee, A. Peel, R. Bowyer, L. King, I. McCarthy (2019), MNRAS

submitted: MN-19-1088-MJ. Victoria Catlett and Rachel Bowyer are/were undergraduate

students at UTD and Rice University respectively, advised by Matthew Fong and Lindsay

King. The BAHAMAS cosmological simulations were provided by Ian McCarthy. The

moment of inertia tensor code was provided by Brandyn Lee and adapted by Matthew

Fong and Victoria Catlett. Miyoung Choi and Victoria Catlett adapted Debbie Bard’s

aperture mass GPU code to run on a local machine and on a supercomputer at TACC.

Austin Peel provided code to determine peaks on the aperture mass maps. Austin Peel

and Ian McCarthy gave advice throughout the work. All the writing and other work was

carried out by Matthew Fong (focusing on high S/N cluster mass peaks) and Miyoung Choi

(focusing on lower S/N LSS peaks, most of which is not included in this dissertation) in

collaboration with Lindsay King. This article has been accepted for publication in Monthly

Notices of the Royal Astronomical Society Published by Oxford University Press on behalf

of the Royal Astronomical Society.

Unless otherwise stated algorithms and code were developed for this dissertation. The

packages from other references that we use in this dissertation are Colossus, for all cos-

mological and DK profile calculations (Diemer, 2017), and LmFit, for minimization and

parameter estimation (Newville et al., 2014). Bard et al. (2012) wrote the suite of tools used

in Chapter 6 for the calculation of the aperture mass statistic. We also use various publicly

available libraries in Python, for example to calculate fourier transforms.
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CHAPTER 2

WEAK GRAVITATIONAL LENSING

The material in the section has been taken from our papers listed at the end of Section

1.5: the version on record (Fong et al., 2018) and an original version (MNRAS submitted:

MN-19-1088-MJ).

2.1 Brief Weak Lensing Introduction

The deflection and distortion of light as it passes a massive object can be predicted with

General Relativity (GR) (Einstein, 1916). Clusters, having very large masses, are powerful

gravitational lenses, or deflectors. As light bundles from a source well beyond the lens pass

the lens, they are deflected and distorted in shape and size. This is due to the light passing

through the gravitational potential of the lens and any other structure between the source

and the observer along the line-of-sight. Because the distance that the light travels from

background sources are much larger than the extent of the cluster itself, we use the thin lens

approximation. For an introduction to weak gravitational lensing see for example Schneider

(2005).

In Figure 2.1 we show the lens geometry of gravitational lensing assuming a point source.

In the thin lens approximation we assume that the mass of the deflector is projected onto

a flat plane, called the lens plane. Because light is deflected we do not observe a source at

its true position �, but at the position ✓, where ↵̂ is the angle through which a light ray is

deflected at the lens plane.

With an extended source, the image can be distorted in shape and size. In the case of

cluster lensing where the angular size of the source is much smaller than the angular scale

on which the tidal gravitational field varies, the distortion of an image can be described by

linearized lens mapping, i.e., the Jacobi matrix A (Schneider, 2005). The locally linearized
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Figure 2.1: Diagram of lens geometry. � is the angular position of the source, ✓ is the
angular position of the source image, and ↵̂ is the deflection angle. The distances are from
the observer to the lens or deflector plane, the lens plane to the source plane, and from the
observer to the source plane, Dd, Dds, and Ds respectively. ⌘ and ⇠ are the distances from
the center of the source plane to the source and from the center of the lens plane to the
source image, respectively. From Schneider et al. (1992).

lens equation is

� � �0 = A(✓0) · (✓ � ✓0), (2.1)
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and the Jacobi Matrix is:

A(✓) = (1� )

0

B@
1� g1 �g2

�g2 1 + g1

1

CA . (2.2)

The reduced shear,

g(✓) =
�(✓)

1� (✓)
, (2.3)

describes the image distortion due to the lens (assuming a circular source), which is a complex

number with real and imaginary components g1 and g2. The convergence, , is the surface

mass density scaled by the critical surface mass density. The critical surface mass density is

a quantity which characterizes the lens system, where any lens with  > 1 is a su�cient but

not necessary condition for multiple images. The shear is denoted by �. In this Figure 2.2

Figure 2.2: Diagram of lensing distortion for a circular source. The circular source shown
on the left is distorted by a lens, which we observe on the right. In the absence of shear,
the isotropically magnified image, shown on the top right, depends on the convergence.
When both convergence and shear are present, the stretched image appearance, shown on
the bottom right, depends on both the convergence and shear. ' is the direction of the
distortion image with respect to the field-of-view.

we show a distorted image of a circular source (shown on the left). In the absence of shear,
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the isotropically magnified image (shown on the top right) depends on the convergence, .

When both convergence and shear, �, are present, the stretched image appearance (shown

on the bottom right), depends on both the convergence and shear. ' is the phase, or the

orientation of the distortion image with respect to the field-of-view. The the factor 2 in the

phase is the fact that an ellipse transforms into itself after a rotation by ⇡. The compact

form of the shear and reduced shear are:

� = �1 + i�2 = |�|e2i' (2.4)

and

g = g1 + ig2 = |g|e2i'. (2.5)

For this work we use weak gravitational lensing to study the masses and mass density

profiles of clusters. In the weak lensing regime  ⌧ 1 and g ⇡ �+ for spherical lenses,

where + denotes the tangential component. Formally the tangential shear is (following the

convention in Schneider, 2005):

�+ = �Re[�e�2i�] = ��1 cos(2�)� �2 sin(2�), (2.6)

where � is the position angle of the image with respect to the lens center. With spherically

symmetric models, like the NFW and DK profiles, the (reduced) shear is the same as the

tangential (reduced) shear.

For completion the cross component of the shear is:

�⇥ = �Im[�e�2i�] = �1 sin(2�)� �2 cos(2�). (2.7)

In observations we measure the ellipticities of lensed images, the ellipse axis ratio, q = b

a
,

and the orientation, '. The compact form of an image ellipticity is:

✏ =
1� q

1 + q
e
2i' = ✏1 + i✏2 = |✏|e2i'. (2.8)
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The measured ellipticity is a combination of the complex intrinsic ellipticity ✏
s of the source

and the complex distortion due to the lens, g:

✏ =
✏
s + g

1 + g⇤✏s
, (2.9)

where the * denotes the complex conjugate. In the absence of lensing, if galaxies are randomly

oriented in the Universe, taking the average ellipticities of enough unlensed galaxies on a

patch of sky results in < ✏
s
>⇡ 0. In the weak lensing limit, the average of a large sample

of observed lensed ellipticities then yields (Schneider, 2005):

< ✏ >= g ⇡ �. (2.10)

Therefore in the weak lensing regime we can determine the shear of a cluster given a large

enough number of lensed galaxies, providing a way to estimate the mass density profile.

The deflection and distortion of light bundles depend on the mass distribution of the

lens itself and any other structure along the line-of-sight. In the thin lens approximation,

the extent of the cluster is much smaller than the line-of-sight distance of the lens or the

source. To calculate the shear of a spherically symmetric 3D mass density profile, we obtain

the 2D surface mass density by integrating the 3D profile along the line-of-sight, dz, from

�1 < z < 1 from the cluster center:

⌃(R) = 2

Z 1

0

⇢(R, z)dz. (2.11)

R = Dd

p
✓
2
1 + ✓

2
2 is the projected radius relative to the center of the lens on the lens plane,

where ✓1 and ✓2 are angular variables on the sky and Dd is the angular diameter distance to

the deflector or lens plane.

The convergence is the ratio of the surface mass density to the critical surface mass

density:

(R) =
⌃(R)

⌃cr

, (2.12)
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where the critical mass density is (Subramanian and Cowling, 1986):

⌃cr ⌘
v
2
c

4⇡G

Ds

DdDds

. (2.13)

Dd, Ds, and Dds are the angular diameter distances between the observer and the lens, the

observer and the source, and the lens and the source respectively, while vc is the speed of

light, and G is the gravitational constant.

In the case of a spherically symmetric lens, the tangential shear is given by:

�+(x) =
⌃(x)� ⌃(x)

⌃cr(zd, zs)
⌘ �⌃(x)

⌃cr(zd, zs)
, (2.14)

where x = R/rs, with R being the projected distance on the lens plane from the halo centre

and rs is the scale radius. The mean surface mass density of the halo is given by

⌃(x) =
2

x2

Z
x

0

x
0⌃(x0)dx0

. (2.15)

2.2 Mass Density Models

Parametric lens models are useful in that we can compare the mass density of clusters to

theoretical predictions. In this work we will look at two profiles. The Navarro, Frenk,

and White (NFW, Navarro et al., 1997) and the Diemer and Kravstov (DK, Diemer and

Kravtsov, 2014) models. The NFW profile is a good fit to the spherically averaged profiles

of haloes formed in cold dark matter simulations out to (very roughly the virial radius) r200c

(Navarro et al., 1997). r200c defines a sphere that encloses a mean density of 200⇢cr(z), and

the mass enclosed inside the sphere of radius r200c is

M200c ⌘ M(< r200c) =
800⇡

3
⇢cr(z)r

3
200c, (2.16)

where the critical mass density of the Universe where the halo formed is ⇢cr(z) =
3H2(z)
8⇡G .

The mass density profile is given by:

⇢NFW(r) =
�c⇢cr

(r/rs) (1 + r/rs)
2 , (2.17)
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where the characteristic overdensity for the halo is:

�c =
200

3

c
3

ln(1 + c)� c/(1 + c)
. (2.18)

H(z) is the Hubble parameter at redshift z, and G is Newton’s Gravitational constant. This

profile is parameterised by the scale radius, rs = r200c/c, and the concentration parameter,

c.

DK proposes a mass density profile that describes the average mass density of clusters

within and beyond the virial radius (Diemer and Kravtsov, 2014). It more accurately cap-

tures the steepening at radii r � 0.5r200m of averaged ⇤CDM haloes than the NFW profile,

and flattens out to the mean density of the universe, ⇢m on large scales. The subscript m

denotes the mean density of the Universe as opposed to the critical density of the Universe.

The DK mass density is

⇢dk(r) = ⇢inner ⇤ ftrans + ⇢outer

⇢inner = ⇢Einasto = ⇢sexp

 
� 2

↵slope

"✓
r

rs

◆↵
slope

� 1

#!

ftrans =

"
1 +

✓
r

rt

◆�
slope
#� �steepness

�slope

⇢outer = ⇢m

2

4 be

1
⇢max

+
⇣

r

5r200m

⌘se + 1

3

5 .

(2.19)

The Einasto profile (Einasto, 1965) describes the inner density, the transition term ftrans

describes the steepening of the profile around a truncation radius rt, and the outer density

is a power law that flattens out to the mean density of the Universe. The inner density is

characterised by the scale density ⇢s and ↵
slope, where ⇢s is the mass density at r = rs and

↵
slope determines how quickly the slope of the inner Einasto profile steepens. The transition

term parameters are �
steepness and �

slope, where �
steepness defines the steepness of the density

around r ⇡ r200m and �
slope tells how quickly the slope changes. The outer density profile
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parameters are ⇢m, the radius r200m that encloses an average overdensity of 200⇢m, and

parameters that describe the normalization and slope of the power law of the outer profile,

be and se respectively. The outer density profile is a modification of Diemer and Kravtsov

(2014), where the term 1
⇢max

is introduced to avoid a spike toward the center of the cluster.

This term determines the maximum overdensity that can be contributed from the outer

profile. We use the Colossus (Diemer, 2017) package for all DK profile calculations, where

1
⇢max

= 0.001. Note that the mean cosmic density acts like a constant density sheet of mass

and hence does not impact on the shapes of distant galaxies.

Diemer and Kravtsov (2014) show that some of the parameters are correlated, reducing

the number of free parameters from eight to four:

↵
slope(⌫) = 0.155 + 0.0095⌫2

,

rt = (1.9� 0.18⌫)r200m,
(2.20)

where ⌫ is the peak height. In this work, we fix �
slope = 4 and �

steepness = 8, which is an

accurate fit to the mass density profiles if the truncation radius is related to ⌫ and r200m

(Diemer and Kravtsov, 2014). The remaining four parameters are the Einasto parameters

⇢s and rs, and the two outer profile parameters be and se. In Diemer and Kravtsov (2014),

the best-fit for the outer parameters are be ⇡ 1.0 and se ⇡ 1.5. For the majority of this

work we will fix be = 1.0 and se = 1.5 for the DK model and use the mass and concentration

parameters, M200c and c, to describe the NFW and DK models.

2.3 Gravitational Shear for the NFW and DK Models

The NFW tangential shear can be obtained analytically:

�
NFW
+ (x) ⌘ �⌃NFW(x)

⌃cr(zd, zs)
=

2⇢crs
⌃cr(zd, zs)

f
NFW(x), (2.21)
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with the form of the shear (Niikura et al., 2015; Bartelmann, 1996):

f
NFW(x) =

8
>>>>><

>>>>>:

2

x2
ln

x

2
+

1

1� x2

✓
1 +

2� 3x2

x2
p
1� x2

cosh�1 1

x

◆
, (x < 1)

5

3
� 2 ln 2, (x = 1)

2

x2
ln

x

2
� 1

x2 � 1

✓
1 +

2� 3x2

x2
p
x2 � 1

cos�1 1

x

◆
, (x > 1)

and the central density parameter (following notation in Niikura et al., 2015):

⇢c = �c⇢cr =
M200c

4⇡r3
s
m(c)

, (2.22)

where m(c) = log(1 + c) � c

1+c
. The NFW tangential shear form f

NFW(x) is self-similar,

meaning �
NFW
+ (x) has the same shape for any combinations of M200c and c.

The DK shear cannot be obtained analytically, so it must be calculated numerically.

Figure 2.3 shows that the DK and NFW 3D density, 2D convergence, and shear are very

similar within r200c for typical parameters that are relevant to this chapter (M200c = 5 ⇥

1014M� and c = 4; r200c = 1.41 Mpc). The profiles remain in agreement for a wide range

of mass and concentration combinations within r200c, encompassing the average parameters

for the sample of 50 massive simulated clusters that are used in this chapter. We first of all

hypothesize that the DK shear can be approximated similarly to the NFW profile, where

the DK shear form is self-similar:

�
DK
+ (x) ⌘ �⌃DK(x)

⌃cr(zd, zs)
=

2⇢crs
⌃cr(zd, zs)

f
DK(x,~⇡), (2.23)

where ~⇡ are the mass and concentration parameters. Since the DK profile, fDK(x,~⇡) has to

be calculated numerically.

In Figure 2.4 we vary the parameters for the NFW and DK shear forms. For cosmo-OWLS

(Section 3.1) the mean mass of the 50 most massive clusters is hM3Di = 6.64 ⇥ 1014M�

with a range 4.04 < M
3D[1014M�] < 17.401. The range of parameters plotted are 2.0 <

1
The simulation masses (M3D

) are calculated by identifying the particle deepest in the potential well of a

cluster and calculating the mass density within spheres around that particle. When a mean enclosed density

of 200⇢c is reached, the mass enclosed in r3D is M3D
.
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Figure 2.3: For NFW and DK, the upper, middle, and lower panels compare the 3D mass
density, convergence, and shear profiles respectively. The DK profile is the solid blue curve,
the NFW is the dashed orange curve, and r200c = 1.41Mpc is the solid green vertical line.
In this example we use typical values of M200c = 5⇥ 1014M� and c = 4 to illustrate that the
DK and NFW profiles are a good match out to the virial radius.

M200c[1014M�] < 17.4 and 2.5 < c < 5.5, encompassing the masses of clusters used in the

simulations, and the concentration range encompasses the minimum and maximum concen-

trations using the c-M relation of various models.2 In the top panel we show the NFW and

DK shear forms, dashed curve and solid curves respectively, and a weak lensing outer fit

radius of 2.3 Mpc (rs ⇡ 0.38 Mpc), dashed vertical line. Because the NFW shear can be

written exactly as in Equation 2.21, the NFW forms are in exact agreement, and is repre-

2Colossus was used to calculate concentrations. The models are Bullock et al. (2001); Du↵y et al.

(2008); Klypin et al. (2011); Prada et al. (2012); Bhattacharya et al. (2013); Dutton and Macciò (2014);

Diemer and Kravtsov (2015); Klypin et al. (2016). Please see Diemer (2017) for details.
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sented by the dashed red curve fNFW (x). However since Equation 2.23 is an approximation,

the f
DK(x,~⇡) forms do not lie on top of each other for the wide range of parameters listed

above. This means that f
DK(x,~⇡) in Equation 2.23 depends on mass and concentration.

A more typical mass and concentration in the simulation (M200c[1014M�] = 5.0, c = 4.0)

is represented by a thick dashed curve. The DK forms, for masses and concentrations we

use in this work, have roughly the same small di↵erence from the thick dashed black curve

within the weak lensing fit range. Therefore the plot shows that the DK and NFW forms

are both nearly self-similar over fit ranges typically probed by weak lensing observations,

for clusters relevant to this work. Furthermore, Niikura et al. (2015) shows that the NFW

shear does a good job at representing the stacked shear of the 50 massive clusters in their

simulations and in observations, out to about 2.3 Mpc. With the NFW and DK shear forms

in agreement within roughly r200c, we can determine the mass and concentration from the

stacked shear by fitting over the weak lensing range (where both the DK and NFW shear

profiles are similar) using the NFW profile. We then use these parameters (~⇡) to determine

the DK form (fDK(x,~⇡)) out to larger radii and compare the form to stacked shear data,

within and beyond r200c.

For spherical profiles the reduced shear, g, is given by

g(x) =
2⇢crs

⌃cr(zd, zs)

f(x)

1� (x)
=

2⇢crs
⌃cr(zd, zs)

F (x). (2.24)

Here f(x) can be the form of the NFW or DK shear profiles, fNFW(x) and f
DK(x,~⇡) re-

spectively, while F (x) is the form of the NFW or DK reduced shear profiles, FNFW(x) and

F
DK(x,~⇡) respectively. In the weak lensing regime (x) ⌧ 1 and F (x) ⇡ f(x).

Figure 2.5 shows the ideal reduced shear profiles of the DK and NFW profiles with the

same parameters. The solid lines are DK and the dashed are the NFW. The mass of these

clusters is M200c = 1015M� with concentrations 3, 4, and 5, from bottom to top. This shows

that the DK ideal reduced shear profiles do in fact di↵er from the NFW for high masses,
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Figure 2.4: The top panel here shows the shear forms (scaled shear) for the NFW and DK
profiles for a wide range of parameters. The dashed red curve is the NFW form, fNFW (x),
the solid curves are the DK forms, fDK , and the dashed vertical line a outer fit radius of
2.3 Mpc (rs ⇡ 0.38 Mpc). The range of parameters plotted are 2.0 < M200c[1014M�] < 17.4
and 2.5 < c < 5.5. The NFW form is self-similar so for any parameters the form will lie on
the dashed curve, however the DK form varies with mass and concentration. The bottom
panel measures the di↵erence between the NFW and DK forms. The dashed horizontal line
represents the di↵erence between the NFW form to itself (y = 0), and the other lines are the
di↵erence between the DK forms and NFW form. Most of parameters used in these panels
are quite extreme, where a more typical mass and concentration (M200c[1014M�] = 5.0,
c = 4.0) is highlighted by a thick black dashed curve. To the left of the dashed vertical
line, the DK forms are nearly self-similar for more typical mass ranges used in this chapter.
This shows that, though the DK and NFW forms di↵er quite significantly for large radii, for
typical present day weak lensing fit ranges the DK and NFW forms nearly agree with one
another for more typical masses and concentrations we use in this work.

well outside of the mean of the cluster masses in this dissertation. However, for more typical

masses and concentrations, M200c ⇡ 5� 7⇥ 1014M� and c = 2� 7, the profiles within r200c

agree with one another.

In this chapter we want to see if the numerical DK form F
DK(x,~⇡) is supported by

surveys on large scales, keeping in mind the concentration dependency outside of r200c. In
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Figure 2.5: The solid and the dashed lines are the DK and NFW ideal reduced shear profiles
respectively. Though the profiles are similar for the typical average parameters used in this
dissertation, we show that for higher mass bins there are deviations when varying concen-
tration. The mass of these clusters is M200c = 1 ⇥ 1015M� with concentrations 3, 4, and 5,
from bottom to top. Six of the 50 clusters used in this dissertation are more massive than
this example.

that section we showed that, within the weak lensing regime and r200c, the NFW and DK

profiles behave similarly. So if the concentration can be determined by using the NFW

profile, then that concentration can be used in the DK form. As a reference we will compare
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this to the NFW form F
NFW(x). For the NFW, the reduced shear gNFW(x) = �

NFW(x)
1�NFW(x) is,

though complicated, an analytic function of x. Note that g(x) and x are dimensionless.

From Equation 2.24, with an ideal spherical halo we can get the ”form” of the reduced

shear for an individual halo with

F (x) =
⌃cr

2⇢crs
g(x). (2.25)

The scaling factor ⌃cr
2⇢crs

scales the signal according to cluster mass. So in the ideal case, the

form of the reduced shear, F (x), will be the same for all clusters in the weak lensing regime

and r200c and within the parameter space of this chapter. The form, F (x) = f(x)
1�(x) , can vary

due to the parameter dependency in (x). However, our focus is in the weak lensing regime

where (x) ⌧ 1 and therefore F (x) ⇡ f(x)3. For the rest of this chapter we will simply just

refer to F (x) since FDK(x,⇡) and F
NFW (x) are very similar in the weak lensing regime out

to the virial radius. We want to test if the DK profile can describe stacked clusters beyond

the virial radius. As the scaling factor shifts a reduced shear signal vertically to obtain F (x),

the choice in scaling the radial bins can shift the curve either left or right. It is important to

note that neither changes the shape of the signal. Through this chapter we scale the radial

bins by rs.

3
It can be shown that scaling �NFW

for various ideal haloes will all conform to the curve fNFW
(x) for

all of x
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CHAPTER 3

SIMULATIONS

The material in the section has been taken from our papers listed at the end of Section

1.5: the version on record (Fong et al., 2018) and an original version (MNRAS submitted:

MN-19-1088-MJ).

3.1 Cosmo-OWLS

The simulations used in the first project, on stacking weak lensing signals from galaxy

clusters, are from Cosmo-OWLS (Le Brun et al., 2014), a suite of cosmological hydrodynamic

simulations using a version of the GADGET3 code (last described in Springel, 2005). The

runs explore structure formation in cosmologies with dark matter only, and with dark matter

and various prescriptions for baryonic physics. A particularly important e↵ect is due to AGN

(Active Galactic Nucleus) feedback, the feedback radiation due to accretion of matter onto

super massive black holes at the center of galaxies. Without this feedback, simulations

produce an excess of massive galaxies, called the overcooling problem. The strength of

AGN feedback in Cosmo-OWLS was tuned to reproduce a wide range of observations. The

simulation runs were carried out in periodic boxes of 400 h
�1 Mpc on a side (comoving),

using the same initial conditions and cosmological parameters from WMAP7 (Komatsu

et al., 2011): {⌦m,⌦b,⌦⇤, �8, ns, h} = {0.272, 0.0455, 0.728, 0.81, 0.967, 0.704}. Each run

uses 2 ⇥ 10243 particles with masses ⇡ 3.75 ⇥ 109h�1M� and ⇡ 7.54 ⇥ 108h�1M� for dark

matter particles and for baryonic particles respectively.

We specifically use two of the six simulation runs from Le Brun et al. (2014):

• DMO: a Dark Matter Only run that accounts for only gravitational interaction between

particles.

27



• AGN Feedback 8.0, the feedback due to accretion of matter on to supermassive black

holes at the center of galaxies: in addition to gravity this run implements star formation

(Schaye and Dalla Vecchia, 2008), with radiative cooling, stellar evolution and chemical

enrichment (Wiersma et al. 2009a and Wiersma et al. 2009b), supernova feedback

(Dalla Vecchia and Schaye, 2008) and a UV/X-Ray photoionizing background (Haardt

and Madau, 2001). The growth of supermassive black holes and AGN feedback are

described by prescriptions from Booth and Schaye (2009). AGN 8.0 yields clusters that

are closest to observed clusters out of the various Cosmo-OWLS runs.

The 50 most massive clusters at z = 0.25, having M200c in excess of 4.04 ⇥ 1014M� in the

DMO run, were extracted in boxes of 30 Mpc on a side. These clusters were matched to

their counterpart clusters in the AGN 8.0 run, then each of the clusters was projected along

the z-axis in order to obtain maps of the projected mass density, a scaled version of the

lensing convergence. The maps of lensing shear and reduced shear were obtained using the

relationship between lensing convergence and shear in Fourier space (see e.g., Schneider,

2005).

3.2 BAHAMAS

In the second project, studying the impact of summed neutrino mass on weak lensing peaks

and clusters, we use data extracted from BAHAMAS (McCarthy et al., 2017). Motivated

by the fact that neutrinos are massive and by the tension between cosmological parameter

estimates from the LSS and the primary CMB, BAHAMAS allows for a range of non-zero

neutrino masses (McCarthy et al., 2018). BAHAMAS is the only suite of cosmological

hydrodynamical simulations that have been explicitly calibrated on the baryon fractions of

collapsed systems. This guarantees that the response of the redistribution of total matter

due to baryonic physics is broadly correct (see Table 1 of McCarthy et al., 2017). In this

28



section we will discuss the di↵erent runs with varying cosmologies and neutrino mass that we

use from the BAHAMAS simulations. We also discuss the creation of synthetic light-cones

and weak lensing galaxy catalogues used in our study.

The initial conditions for BAHAMAS are based on the cosmological parameters derived

from the cosmic microwave background WMAP 9-yr mission (WMAP9, Hinshaw et al.,

2013) and the Planck 2015 mission (Planck2015, Planck Collaboration et al., 2016), using

the six-parameter standard ⇤CDM model.

McCarthy et al. (2018) generated suites of WMAP9 simulations for the collisionless dy-

namics (DMONLY), for varying AGN feedback temperatures with massless neutrinos, and

also for di↵erent summed neutrino mass with fiducial AGN feedback (see Table 3.1). For

example, the BAHAMAS fiducial AGN feedback value 7.8 has AGN feedback temperature

�Theat = 107.8K. This feedback radiation comes from the active galactic nuclei at the center

of galaxies. The summed neutrino masses are set to M⌫ [eV] = 0.06, 0.12, 0.24, and 0.48. See

McCarthy et al. (2018) for details of the baryonic physics implemented in the simulations.

The suites for the Planck 2015 cosmology were also generated by McCarthy et al. (2018)

for varying neutrino mass to explore the �8�⌦m parameter space, and to attempt to resolve

the well known tension at 2-� between the missions. For the “Planck 2015/ALens � based”

simulations used in this dissertation, the Markov Chains of Planck Collaboration et al.

(2016b) corresponding to the “CMB+BAO+CMB lensing” with marginalization over ALens

(the amplitude of the CMB lensing power spectrum) was used (See Figure 2 of McCarthy

et al. (2018)). Cosmological parameter sets were selected that have summed neutrino mass

within �M⌫ = 0.02 eV of the target value, and the weighted mean of the other important

cosmological parameters is taken from the Markov Chains. By selecting parameter values

in this way, it ensures that the selected cosmologies are consistent with the CMB+BAO

constraints.
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Table 3.1: Cosmological parameter values for 12 suites of the BAHAMAS simulations (Mc-
Carthy et al., 2017, 2018). Adjustments on the summed neutrino mass, baryonic matter
fractions, AGN feedback temperatures, �8 values, and changes in S8 are given in this table.
The columns are: (1) The summed mass of the 3 active neutrino species (we adopt a normal
hierarchy for the individual masses); (2) the logarithm to base 10 of the AGN feedback tem-
perature defined by McCarthy et al.; (3) the total matter density; (4) present-day baryon
density; (5) present-day dark matter density; (6) present-day neutrino density, computed as
⌦⌫ = M⌫/(93.14 eV h

2); (7) present-day (linearly-evolved) amplitude of the matter power
spectrum on a scale of 8 Mpch�1 (note that we use As rather than �8 to compute the power
spectrum used for the initial conditions, thus the initial conditions are CMB normalised);
(8) S8 = �8

p
⌦m/0.3.

(1) (2) (3) (4) (5) (6) (7) (8)

M⌫(eV) log(�Theat[K]) ⌦m ⌦b ⌦cdm ⌦⌫ �8 S8

WMAP9-based

0 (DMONLY) - 0.2793 0.0463 0.2330 0.0 0.8211 0.7923

0 (Low AGN) 7.6 0.2793 0.0463 0.2330 0.0 0.8211 0.7923

0 (Fiducial AGN) 7.8 0.2793 0.0463 0.2330 0.0 0.8211 0.7923

0 (High AGN) 8.0 0.2793 0.0463 0.2330 0.0 0.8211 0.7923

0.06 7.8 0.2793 0.0463 0.2317 0.0013 0.8069 0.7786

0.12 7.8 0.2793 0.0463 0.2304 0.0026 0.7924 0.7646

0.24 7.8 0.2793 0.0463 0.2277 0.0053 0.7600 0.7333

0.48 7.8 0.2793 0.0463 0.2225 0.0105 0.7001 0.6755

Planck 2015/ALens-based

0.06 7.8 0.3067 0.0482 0.2571 0.0014 0.8085 0.8175

0.12 7.8 0.3091 0.0488 0.2574 0.0029 0.7943 0.8063

0.24 7.8 0.3129 0.0496 0.2576 0.0057 0.7664 0.7827

0.48 7.8 0.3197 0.0513 0.2567 0.0117 0.7030 0.7257
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CHAPTER 4

GENERATION OF SYNTHETIC GRAVITATIONAL

LENSING GALAXY CATALOGUES

The material in the section has been taken from our papers listed at the end of Section

1.5: the version on record (Fong et al., 2018) and an original version (MNRAS submitted:

MN-19-1088-MJ).

In this chapter we describe how we generate synthetic catalogues of galaxies lensed by

foreground galaxy clusters or galaxy clusters embedded in the LSS of the Universe, in Sections

4.1 and 4.2 respectively.

4.1 Mock Catalogues from Cosmo-OWLS

In Chapter 5 we use mock catalogues from Cosmo-OWLS to investigate the DK profile

described in Section 2.2 earlier in this dissertation. From Cosmo-OWLS we obtain  and �

(real and complex components �1, �2) on a 2D projected lens plane with 30 Mpc per side and

2, 000 regularly spaced pixel bins spanning each side. We describe how � is obtained from

 in the next section on mock catalogues from BAHAMAS. From there we generate sets of

background source galaxies with random locations, with zs = 1. Di↵erent number densities

of galaxies were explored, n0 = 10 or 30 gal/arcmin2 and the total number of galaxies

adjusted using Poisson statistics to allow for shot noise in their number. For upcoming

surveys like LSST, we use n0 = 30 gal/arcmin2, while for past surveys like Weighing the

Giants (WtG, Applegate et al., 2014), n0 = 10 gal/arcmin2 in keeping with the observations.

The (complex) intrinsic ellipticity of each source galaxy, describing its shape and orientation

of the non-lensed source, ✏
s, was drawn from a Gaussian distribution with �✏s = 0.25.

Following Schneider et al. (2000), the number density of galaxies on each small patch of sky
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was modified to account for lensing magnification1, n = n0µ
�slope�1, where µ = 1

(1�)2��2 is

the magnification on the small patch, and �slope is the slope of the unlensed source counts

taken to be �slope = 0.5. The magnification of each galaxy due to the foreground cluster was

calculated at each location, and after drawing a random uniform variate ⌘random 2 [0, 1], the

galaxy was only included in the lensed galaxy catalogue if [µ]�slope�1 � ⌘random, otherwise

discarded. This accounts for the change in brightness of lensed galaxies as well as the

stretching of space around them, having more magnified galaxies more likely to be excluded.

Since we are in the weak lensing regime we assume that the galaxy image positions are not

o↵set from the source positions.

After taking into account survey characteristics, and intrinsic shape noise, we calculate

(complex) ✏ (Equation 2.9) at galaxy positions on the lens plane. The ellipticity amplitude

and tangential component, ✏(sa) and ✏(sa)+ respectively, are given by (Schneider et al., 2000)

✏(sa) =
q

✏
2
1(sa)

+ ✏
2
2(sa)

(4.1)

and

✏(sa)+ = �✏1(sa) cos(2�)� ✏2(sa) sin(2�), (4.2)

where ✏1(sa) and ✏2(sa) are the real and complex components of the lensed galaxy sa respec-

tively.

For the AGN 8.0 and DMO simulations multiple WtG and LSST-like Monte Carlo runs

were carried out to obtain synthetic weak lensing catalogues, taken from boxes centered

on galaxy clusters with 30 Mpc per side, where the di↵erences between similar survey-

like Monte Carlo runs are the random background source galaxy locations (still with zs =

1) and shape noise realizations. This was done to see if di↵erent realizations would give

significantly di↵erent results when the synthetic catalogues were analysed, comparing the

1
Although this e↵ect is small, we include it for completeness.
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average (stacked) cluster signals on large scales with the DK reduced shear. Though all the

LSST-like runs for 50 clusters had some large di↵erences in mass estimations for individual

clusters, there were no significant di↵erences in the final average results. The same can be

said about the WtG-like runs, but these results have larger error bars because of the lower

number density of background galaxies from which the shear is measured (see Section 5.7).

We also explore using exclusively ideal DK or NFW haloes (as opposed to clusters from

simulations) for each set of survey-like characteristics to compare our simulation runs with

ideal runs (see Section 5.4).

4.2 Synthetic Weak Lensing Catalogues from BAHAMAS light-cones

For the BAHAMAS simulations that we use to explore the impact of massive neutrinos and

baryonic physics on gravitational lensing signatures, we employ light-cones for the simula-

tions instead of extracting clusters in boxes. Light-cones can be thought of as capturing the

dark and luminous structure that is distributed in redshift, that light-bundles would pass by

on their journey through the Universe. This gives us access to galaxy clusters as well as to

the uncorrelated LSS along the line-of-sight to the distant galaxies from which we measure

the weak lensing signal. The convergence and shear for the light-cones are determined for

distant galaxies which have a distribution in redshift, reflecting di↵erent types of surveys,

discussed later in this section.

The simulation boxes of BAHAMAS from which the light-cones are constructed are

400Mpch�1 per comoving side. In order to construct BAHAMAS light-cones, McCarthy

et al. (2018) saved particle data at snapshots from z = 3 to today. There are 15 snapshots

at z = 0.0, 0.125, 0.25, 0.375, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, and 3.0.

The snapshots were then randomly oriented and translated, and slices of 5⇥ 5 deg2 (at pixel

resolution of 10 arcseconds) were taken from the snapshots. A total of 25 randomisations of

rotations and translations of the 15 snapshots were performed, the same for each cosmology
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and prescription for baryonic physics and neutrino mass, so that cosmic variance does not

play a role when comparing light-cones across di↵erent runs. Here we consider 25 light-cones

with a total area 625 deg2.

The distorted appearance of the weakly lensed images of distant sources can be described

by lensing convergence and shear. The weak lensing calculations here assume the so-called

”Born approximation”, where the paths of light rays are approximated as straight lines in

comoving coordinates. This has been shown to be accurate for weak lensing (Schneider et al.,

1998; White and Vale, 2004). In a given cosmological model, the weak lensing convergence

at a particular angular position, (✓), depends on the spatial distribution of mass density

fluctuations, �, in the Universe, and the redshift distribution of sources that are being lensed

by the fluctuations, ps(z):

(✓) =
3⌦mH

2
0

2v2
c

Z
�(zmax)

0

(1 + z)s(�)�(�, ✓)d�, (4.3)

where vc is the speed of light, � is the cosmological comoving distance, and s(�) is a lensing

kernel defined as:

s(�) = �(z)

Z
zmax

z

ps(z
0)

✓
�(z0)� �(z))

�(z0)

◆
dz

0
. (4.4)

The lensing kernel depends on the source redshift probability distribution, ps(z), where the

maximum source redshift is zmax and the distribution is normalised to 1. The light-cones we

use from BAHAMAS extend out to zmax = 3. The lensing convergence results in an isotropic

magnification of a lensed source.

Given a map of the weak lensing convergence, the complex shear, � = �1 + i�2, can be

obtained using Fourier transform techniques since both � and  can be written as linear

combinations of second derivatives of the lensing potential. Following e.g., Clowe et al.

(2004):

�̃ =

 
k̂
2
1 � k̂

2
2

k̂
2
1 + k̂

2
2

̃,
2k̂1k̂2

k̂
2
1 + k̂

2
2

̃

!
(4.5)
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where �̃ and ̃ are the Fourier transforms of the complex � and scalar  maps, and k̂ are

wave vectors in Fourier space. The inverse Fourier transform of �̃ yields �.

The light-cones extracted from the simulations then give us ideal convergence maps,

integrating the spatial matter overdensities �(�, ✓) through the discrete slices along the line

of sight with the kernel containing the source redshift distribution ns(z), as in Equation 4.3

and 4.4. We adopt two di↵erent redshift distributions, one for the 450 deg2 Kilo Degree

Survey (KiDS-450, Hildebrandt et al., 2017) and one predicted for the LSST survey (Chang

et al., 2013). The convergence maps for the former were created by McCarthy et al. (2018)

and the convergence maps for the latter were constructed for this work. Shear maps, and

reduced shear maps, are constructed from convergence maps using Equation 4.5 and 2.24.

Using the reduced shear maps from the simulations, synthetic catalogues of weakly lensed

galaxies are produced.

As for the Cosmo-OWLS catalogues, we populate the maps with unlensed galaxies that

are randomly placed on the sky, with number density appropriate for observations with a

particular survey. In this case, however, the sources are distributed in redshift. The moduli

of the complex ellipticities (related to the axis ratios) are drawn from a Gaussian distribution

with �✏s = 0.25 and zero mean. The position angles, 's, are randomly assigned between 0

and ⇡. At the position of a source galaxy, the reduced shear is extracted at the nearest pixel

of the BAHAMAS maps. The observed ellipticity is determined using Equation 2.9 (e.g.,

Bartelmann, 1996; Schneider et al., 1998).

In this work we roughly base one of the 625 deg2 synthetic surveys on Hildebrandt et al.

(2017), where they analyse ⇠ 450 deg2 of imaging data from the Kilo Degree Survey, or KiDS.

In KiDS the e↵ective number density of galaxies is 8.53 gal/arcmin2 (the number density

of galaxies was determined in Hildebrandt et al. (2017) by using the method proposed by

Heymans et al. (2012)), but for our synthetic survey we use a source number density of 9

gal/arcmin2. The observed ellipticity dispersion in Hildebrandt et al. (2017) is �✏s ⇡ 0.33.
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We also consider synthetic surveys of the same 625 deg2 area, but with convergence (shear

and reduced shear) maps constructed using the source redshift distribution from Chang et al.

(2013), estimated for the deeper upcoming Large Synoptic Survey Telescope (LSST, Chang

et al., 2013). Both LSST and Euclid (Amendola et al., 2018; Laureijs et al., 2011) surveys

have an expected e↵ective galaxy source number density ne↵ = 30 gal/arcmin2. We also

consider ne↵ = 60 gal/arcmin2 when we create our synthetic lensing catalogues, to reflect

deeper space based characteristics, such as the HST (see for example the source number

density in King et al. (2016)). Note that we use the same redshift distribution for this even

deeper survey, but increase the e↵ective number density of sources from which the shear

can be measured. The di↵erent surveys with the e↵ective number density of 9, 30, and 60

gal/arcmin2 will be referred to as KiDS, Deep Ground Based (DGB), and Deep Space Based

(DSB) respectively.

Similar to Martinet et al. (2018), we generate 5 synthetic catalogues of observed ellip-

ticities with di↵erent shape realisations per suite (as in Table 3.1) to make sure that the

simulations are not biased to one particular realisation of shape noise. Across simulation

suites for di↵erent neutrino mass and baryonic physics we keep the same positions and the

same five sets of random seeds for the shape noise.
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CHAPTER 5

STUDYING THE DISTRIBUTION OF MASS AT THE OUTSKIRTS OF

CLUSTERS USING COSMO-OWLS

The material in the section has been taken from our paper listed at the end of Section 1.5:

an original version (MNRAS submitted: MN-19-1088-MJ).

This chapter is concerned with our analysis of the DK profile and how well it describes

synthetic stacked cluster lensing signals, and determining whether DK fits can be made to

upcoming observational data.

5.1 Stacking Cluster Signals Without Scaling

Realistic clusters are not spherical, and mass estimates from weak lensing fits using a spher-

ical model generally have high scatter with small bias. However, we can determine the mean

signal of clusters better than any individual cluster which can have low signal to noise for in-

dividual measurements, by taking the weighted average of many clusters’ signals - a method

called stacking. This process increases the signal to noise by averaging out any shear due to

substructure unrelated to the lens, and the impact of triaxiality. Though we lose information

of individual clusters with this method, we can obtain more precise estimates on the average

behaviour of the stacked clusters. In this chapter we follow the method in Niikura et al.

(2015):

h�⌃(R)i = 1

N

NcX

a=1

X

sa;|R(a)sa |2R0

w(a,sa)⌃cr(a)✏(sa)+(Rsa) (5.1)

where the first summation
P

Nc

a=1 is over each cluster a in the stack with Nc clusters, while

the second
P

sa;|R(a)sa |2R0 runs over the background galaxies sa, that belong to cluster a, that

reside in the preset radial bins R
0. The tangential ellipticity of the sath source galaxy of
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cluster a at position Rsa is e(sa)+(Rsa). The normalization factor is defined as

N =
NcX

a=1

X

sa;|R(a)sa |2R0

w(a,sa), (5.2)

with the weight factor for each background galaxy in a cluster adopted from Okabe and

Smith (2016)1:

w(a,sa) =
1

⌃2
cr(za, zsa)(�

2
(sa)✏

+ ↵
2
noise)

. (5.3)

za and zsa are the redshifts of the ath cluster and sath background galaxy respectively. For

the sath source galaxy, �(sa)✏ is the measurement error, and ↵noise is the constant factor

that regularizes the weight. For this chapter we set �(sa)✏ to a constant for all galaxies and

↵noise = 0.4 (Similar to Niikura et al., 2015; Okabe et al., 2010) in Equation 5.3. With

⌃cr(a) a constant throughout this chapter (redshifts are constant), this makes the weight a

constant value and will be factored out with N . In practice the redshifts and measurement

uncertainties, �(sa)✏, would be provided from observational data.

The stacked radial bins is given as

R ⌘ 1

N

NcX

a=1

X

sa;|R(a)sa |2R0

w(a,sa)R(a)sa , (5.4)

where R(a)sa is the position of the background galaxy sa from the center of cluster a.2

The statistical uncertainty of the stacked lensing at each radial bin is estimated as

�
2
h✏i(R) =

1

2N2

NcX

a=1

X

sa;|R(a)sa |2R0

w
2
(a,sa)✏

2
(sa)(Rsa). (5.5)

It is important to note that Equations 5.1 and 5.5 are functions of stacked radial bins R

(Equation 5.4).

1
This di↵ers slightly from Niikura et al. (2015) by the ellipticity amplitude ✏2(sa). The ellipticity amplitude

in the weight is not included in this chapter.

2
In this chapter we use a common redshift of clusters and of sources, so ⌃cr(a) essentially becomes factored

out. So we are taking the weighted average positions of sources in the bins set by R0
.
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5.2 Stacking Cluster Signals With Scaling

Niikura et al. (2015) shows that stacking with NFW scaling will have less scatter as opposed

to the stacking without scaling method and that the NFW profile describes stacked clusters

(with or without scaling) out to the virial radius very well. Furthermore, for reasonable

parameters in stacking, the DK and NFW profiles (⇢, ⌃, �, and g) agree with each other

out to the virial radius. With this process, we can scale the lensing data with the common

scaling factor ⌃cr
2⇢crs

(in Equation 2.25) and study the non-analytic DK reduced shear form

F
DK(x,~⇡). The parameters ~⇡ (in the form, see Section 2.3) is determined by fitting the

stack, Equation 5.1, with the NFW profile.

Stacked weak lensing with NFW scaling reduces scatter of the reduced shear signals going

into the stack. Haloes in simulations exhibit a high degree of self-similarity (e.g., NFW) when

scaled appropriately. Therefore the expectation when we scale before stacking is that the

diversity (or spread) in the profiles will be minimised (Niikura et al., 2015, Figure 4).

The stack with NFW scaling will be represented as hF (x)i, instead of the individual halo

form F (x) (Equation 2.25). The stacked reduced shear with scaling follows as

hF (x)i = 1

N

NcX

a=1

X

sa;|x(a)sa |2x0

w(a,sa)⌃cr(a)✏(sa)+(xsa)

2⇢c(M(a), c(a))rs(M(a), c(a))
, (5.6)

where ✏(sa)+(xsa) is the tangential ellipticity of a source galaxy at position xsa = R/rs(M(a), c(a)),

and the parameters (M(a), c(a)) are the NFW M200c and concentration fit parameters for clus-

ter a (see Section 5.3.1 for details on fits). In the case of stacking with scaling, the second

summation in the normalization N is over sa; |x(a)sa | 2 x
0.

x ⌘ 1

N

NcX

a=1

X

sa;|x(a)sa |2x0

w(a,sa)x(a)sa , (5.7)

Diemer and Kravtsov (2014, Figure 3) shows that scaling the mass density profiles by ⇢m

and the radial bins by r200m can reduce scatter for the outskirts of haloes. We studied the
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stacking results with r200m and rs and found that scaling with r200m gives slightly better �2

results than rs. However, when the ratios of the simulation run �
2 over the mean ideal halo

stacks �2 are taken (which will be further discussed in Section 5.5), we get roughly similar

results with both scaling methods. For consistency, throughout this chapter we will scale

with rs.

We find that the resulting stacks using scaling even when using ideal NFW or DK haloes

do not agree with the NFW or DK forms. The disagreement is due to parameter estimation

of M200c and c, and therefore rs.3 However this disagreement can be mitigated when using

ratios of the �
2 results with respect to the �2 results of ideal DK haloes (see Section 5.5).

The errors of the stack at each x can then be obtained from

�
2
hF i(x) =

1

2N2

NcX

a=1

X

sa;|x(a)sa |2x0

w
2
(a,sa)

⌃2
cr(a)✏

2
(sa)

(xsa)

4⇢2
c
(M(a), c(a))r2s(M(a), c(a))

. (5.8)

Both Equations 5.6 and 5.8 are functions of Equation 5.7.

5.3 Fitting Method

To obtain the parameters that describe the profiles in Section 2.2, we use the background

galaxy ellipticities, described in Section 4.1. This is done by azimuthally averaging the

tangential shear with N = 300 galaxies per bin to obtain g(r) (Equation 2.10) for cluster a,

then fitting the data with g
NFW (r) to obtain the free parameters (M200c, c) for each cluster,

or (M(a), c(a)). Throughout this dissertation we fit with the NFW profile to the inner region

since the fitting process is much faster than using the DK profile (NFW shear is analytic)

and the parameter estimation is similar to the DK profile anyway. With these parameters

we can calculate the scaling factor 2⇢crs
⌃cr

in Equation 2.25 using Equation 2.16, Equation 2.22

and rs = r200c/c. The fit ranges are set to 0.20 < r[Mpc] < 2.30 and 0.75 < r[Mpc] < 3.00

3
This was tested by following this stacking process with one run using weak lensing parameter estimates

and another run using true parameters
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for LSST-like surveys and WtG-like surveys respectively. The LSST-like lower limit of the fit

range was taken from Niikura et al. (2015) while the higher fit range is from the highest value

of r3D200c from the simulation catalog. The fit range from the WtG sample is from Applegate

et al. (2014). The two fit ranges used in this chapter do not have a significant impact on

the stacking results. The error for the fits is determined from the variance from binning and

the number of galaxies per bin, �/
p
N . Throughout this chapter we use the public module

LmFit4 as the fitting tool (Newville, Stensitzki, Allen, and Ingargiola, 2014). The fitting

function used in LmFit minimizes the sum of squared residuals:

L =
X

i

(h✏ii � g
NFW

i
)2

�i/
p
Ni

, (5.9)

where h✏ii, gNFW

i
, and �i/

p
Ni are the average tangential ellipticities, predicted NFW re-

duced shear, and error in bin i

5.3.1 Parameterized Mass Model Fits

Throughout this chapter we use the public module LmFit5 as the fitting tool (Newville,

Stensitzki, Allen, and Ingargiola, 2014), where both the fits and the error bars are determined

from the module. The Cosmo-OWLS synthetic cluster lensing data used in this chapter will

be one of the LSST-like runs with true mass range for the sample of the 50 most massive

clusters being 4.04 < M
3D
200c[10

14
M�] < 17.4 with an average of hM3D

200[10
14
M�]i = 6.64. The

true mass of a cluster, M3D, is calculated by finding the particle deepest in the potential well

of a cluster, and calculating the density within spherical shells around the particle. Once the

average mass density becomes 200⇢c, the corresponding radius is r3D200c and the mass enclosed

isM3D
200c. There are no true concentrations calculated for the simulations for cluster-to-cluster

comparisons.

4
The LmFit package is Free software, using an Open Source license

5
The LmFit package is Free software, using an Open Source license
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Figure 5.1 and Figure 5.2 show individual mass estimates compared with true mass for an

AGN 8.0 LSST-like run. The many other runs with di↵erent noise realizations yield similar

results. The red squares and blue points and error bars are the DK and NFWM200c estimates

respectively. The plots show that the DK and NFW fits agree well with one another for lower

masses, and di↵er from one another for higher masses. For higher masses, the DK fits give

lower masses than the NFW does. Note that we fix the outer DK parameters se and be for

this section.

Figure 5.3 shows the NFW and DK fit parameters. The NFW and DK parameters are

marked by circles and dots respectively, connected by lines. Di↵erences in fits in the x or

y-directions reflect on the di↵erence in estimates for mass and concentrations respectively.

For lower mass clusters the DK and NFW mass estimates are similar, which is what we

would expect if the DK and NFW shear profiles are similar in this mass range (see Section

2.3). For the largest mass clusters, the di↵erence between the mass estimates tend to be

higher. For the entire mass range we find that the DK mass estimates do better than the

NFW. The overall bias (arithmetic average) of NFW mass estimates in this sample is ⇡ 15%

(biased high), which is large in magnitude, but the sample includes two extremely triaxial

clusters with the long axis close to the line-of-sight. Once these are excluded, the bias drops

to ⇡ 10%. For the DK the bias is ⇡ 10% (high bias) including all clusters and ⇡ 5% for

excluding the two triaxial clusters. Throughout this chapter we keep all of the 50 clusters in

our stacking process and there is a significant scatter in the biases from run to run. When

we have a larger sample of 300 clusters our bias drops significantly. For simulated clusters

we found the bias for NFW and DK profiles to be overestimating by ⇡ 7% and ⇡ 5%

respectively.

5.3.2 Extreme Galaxy Clusters in Cosmo-OWLS

Many of the clusters significantly depart from spherical, and as detailed in Lee et al. (2018),

the moments of inertia were calculated for each of the clusters, giving descriptions as ellip-

42



Figure 5.1: The red squares and blue points values plotted here are the DK and NFW mass
estimates respectively versus the true masses from the simulation. The green dotted line is
y = x. In this example, we consider the run with AGN 8.0 for LSST-like surveys and for
the 50 most massive clusters in the sample. This shows that the DK fits prefer a lower mass
estimate than that of the NFW. This trend is similar with other runs.

soids with ratios for the major, intermediate and minor axes, along with their orientation in

3D and with respect to the z-axis along which the cluster mass is projected. Of the 50 most

massive clusters we found that there are two clusters in this sample that are extremely tri-
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Figure 5.2: This plot is using the same data as Figure 5.1. The green dashed line is y = x

and the blue points with error bars are the DK vs. NFW fit mass estimates. For the lower
mass clusters (of the 50 most massive clusters in the simulation), the DK and NFW masses
are in agreement. For higher masses, their estimates begin to diverge, showing that for the
highest mass clusters DK mass estimates are lower than the NFW.

axial, and their major axes are aligned close to the line of sight. As noted above, when their

synthetic lensing data are omitted, the average bias and error drop significantly. Figure 5.4

shows a convergence map for one of the highly triaxial clusters. The three di↵erent arrows
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Figure 5.3: This figure is over the same run as Figures 5.1 and 5.2.The NFW and DK fit
parameters are marked by larger circles and smaller points respectively, where each cluster
fit results are connected by lines of the same colour. Di↵erences in fits in the x or y-directions
reflects on the di↵erence in estimates for mass and concentrations respectively. This plot
shows that the NFW and DK profiles agree with mass and concentration estimation for
lower mass bins (of the 50 most massive clusters) and the DK profile prefers a lower mass
for higher mass bins, preferring higher concentrations to compensate. Also it looks like the
DK profile generally prefers in a lower mass than the NFW throughout this cluster sample,
though that is not always true in general.
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represent the physical projection of the major, intermediate, and minor axes in the xy-plane.

Note that the shortest arrow corresponds to the major axis, indicating that the major axis is

close to the line-of-sight as black, gray, and white respectively. From the moment of inertia

tensor, the minor and intermediate to major axis ratios are 0.45 and 0.62 (Lee et al., 2018).

In addition the masses determined from the projections in the xz and yz-planes are signifi-

cantly di↵erent. However, since in practice we would not be able to identify these clusters as

highly triaxial, we keep them in our analysis. With huge samples of galaxy clusters expected

from future surveys many clusters can be stacked to study mass profiles. The results from

Corless and King (2007) indicate that stacking at least 100, and more ideally 500, clusters

in a particular mass range would negate the impact of triaxiality on the determination of

masses from a sample. We are currently investigating improved triaxial models for individual

clusters, derived from lensing, X-Ray, Sunyaev-Zel’dovich and other cluster data.

5.4 Ideal DK Lensing Data Sets

Before detailing the simulation results we explore how both stacking methods work with

ideal DK haloes. We use the 50 most massive clusters in the sample and determine their

concentrations using DK14 M � c relation. Then we generate ideal DK data sets and follow

the steps in Section 4.1 for LSST-like runs with realistic shape noise levels. We follow the

steps in Sections 5.1 and 5.2.

In Figure 5.5 the green points are h�⌃(R)i (stack without scaling), scaled by 2⇢crs

determined by fitting onto the stack, with error bars �h✏i. The fit range for each stack

depends on the type of run and can be found in Section 5.3; in this case the fit range is set

to 0.20 < r[Mpc] < 2.30. The thick black curve is FDK(x,~⇡) (DK form) and, for reference,

the red curve is F
NFW (x) (NFW form). The parameters used in F

DK(x,~⇡) is determined

from the NFW fit results onto the stack (rs[Mpc] = 0.50). The stack uses 64 bins and the

�
2
red

of the stack to F
DK(x,~⇡) is 1.09. We use d.o.f. = 64 � 2 for the DK form because of
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Figure 5.4: map of a simulated cluster in xy projection overlaid with a vector representation
of the cluster axes in projection. The  map is zoomed into a radius of 5 Mpc. The arrows
labelled 1, 2, and 3 represent the major, intermediate, and minor axes respectively. The axes
have been scaled according to their respective eigenvalues. Though longest in 3D space, the
major axis appears shortest in projection because it lies in a similar direction to the line of
sight (z axis).This leads to a large error in mass estimation when using a spherical model.

the parameter, ~⇡, dependency. This shows that FDK(x,~⇡) represents the stacked signals of

ideal DK haloes. This has been done over eight total runs with �
2
red

= 1.06.

In Figure 5.6 the green points are hF (x)i (stack with scaling) with error bars �hF i. The

thick black curve is F
DK(x,~⇡) (DK form) and, for reference, the red curve is F

NFW (x)

(NFW form). The parameters is the same as above (determined by NFW fitting the normal
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Figure 5.5: Stack without scaling (Section 5.1) for ideal DK haloes. The green points are
h�⌃(R)i (stack without scaling) scaled by 2⇢crs (determined by fitting onto the stack), to
compare with F (x). The corresponding error bars is �h✏i. The thick black curve is FDK(x,~⇡)
(DK form) and, for reference, the red curve is FNFW (x) (NFW form). This shows that stack
without scaling for ideal DK haloes is well represented by the DK form.

stack). �
2
red

= 4.36 of the stack to F
DK(x,~⇡) with d.o.f. = 64 � 2, for the 64 bins and

the parameters ~⇡ dependency. For eight total runs �2
red

= 8.63. This shows that stack with

scaling, using weak lensing mass and concentrations estimates, for ideal DK haloes is not well

represented by F
DK(x,~⇡). When we use the true parameters, the �

2
red

values are reduced,
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Figure 5.6: stack with scaling (hF (x)i, Section 5.2) for ideal DK haloes. The green points
are hF (x)i with the corresponding error bars �hF (x)i. Even with ideal DK haloes, stack with
scaling is not well represented by the DK form. This is likely due to the bias in parameter
estimation that is needed for hF (x)i and parameter dependency in the DK form (i.e., each
signal that goes into stack may have di↵erent concentrations and therefore di↵erent profile
shapes, see Section 2.3). The parameters used in the DK form is determined by fitting over
the stack without scaling (Figure 5.5).

with an average of 1.74. stack with scaling likely is not well represented by F
DK(x,~⇡) due to

the di�culty in accurately estimating the parameters and that the shear form is dependent
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on parameters ~⇡. The spread in parameters ~⇡ values can be seen outside r200c (= 1.69 Mpc)

(see Section 2.3), where the stack dips below the NFW and DK forms. Since the shear form

depends on M200c and c outside ⇠ r200c, the form varies for each individual signal outside of

that. This may cause the stacked signals to di↵er from that of FDK(x,~⇡) (DK form), where

c is determined from the fit onto h�⌃(R)i (stack without scaling).

The DK form performs better for the stack without scaling, h�⌃(R)i (then scaled by the

best-fit parameters to the stack itself), as opposed to stack with scaling, hF (x)i, for ideal DK

haloes when using weak lensing parameter estimation. The DK form is better represented

by stack with scaling when we use the exact parameters that created the haloes in the first

place, but still not as good as stack without scaling. So for the rest of this chapter we will

focus on the stacking without scaling method, h�⌃(R)i.

There is another DK scaled mass density form proposed by Umetsu and Diemer (2017)

that gives would give good results when stacking very massive clusters. However, for the

mass range considered here, we have tested that even though stacking with scaling works for

ideal NFW haloes in the absence of noise, the individual cluster parameters are too poorly

constrained with realistic noise for stacking to be viable.

5.5 Stacking Without Scaling for AGN 8.0 Cluster Lensing Data

In this section we look at the 50 most massive clusters in a single LSST-like run over the

AGN 8.0 simulation while setting the radial bins as 0.20 < R
0[Mpc] < 15.0 in 64 bins.

For illustration we look at the results with no shape noise, or ✏
s = 0 in Equation 2.8. In

Figure 5.7 we follow Section 5.1. The thin curves are the individual cluster signals and the

thick green curve is the stack without scaling (h�⌃(R)i, Equation 5.1), all scaled by the

best fit parameters to the stack. The thick red curve is the same NFW form, FNFW(x) in

Equation 2.25. Here, h�⌃(R)i (stack without scaling) is scaled by 2⇢crs and R is scaled by rs,

parameters determined by fitting to the stack (Equation 5.1), to compare with the DK form,
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Table 5.1: Ratios for DK and NFW profile, �2
red

/�
2
red

, for the LSST-like runs for AGN 8.0
and DMO simulations. In this section we only have M200c and c as the free parameters for
the DK form and we used 64 radial bins for the analysis (d.o.f. = 64� 2). The NFW form
doesn’t have parameters, so the d.o.f. = 64 for NFW. The average �

2
red

values for stack
without scaling, h�⌃(R)i, for the ideal DK and NFW halo runs with LSST-like noise are
�
2
red

= 1.06 and 1.26 respectively. The �
2
red

values are calculated over eight LSST-like runs
but over ideal DK or NFW haloes.

DK NFW
Runs AGN 8.0 DMO AGN 8.0 DMO
1 1.41 1.34 2.83 3.46
2 1.01 1.20 3.41 2.50
3 1.18 1.36 2.96 3.10
4 1.20 1.35 2.00 3.47
Avg. 1.20 1.31 2.84 3.13

F
DK(x,~⇡) (parameters ~⇡ determined by the NFW fit onto the stack for 0.20 < r[Mpc] < 2.30

in this case). Using the same parameters, each individual signal is scaled by 2⇢crs/⌃cr and

radial positions by rs.

Now we include realistic shape noise (�✏ = 0.25 in Section 4.1) for the same clusters for

one of the runs. These results can be seen in Figure 5.8. This shows that the stack without

scaling is very well represented by the DK profile, with �
2
red

= 1.08 and d.o.f. = 64 � 2

(NFW: �2
red

= 4.30 and d.o.f. = 64).

To help us determine if the stack is well represented by the DK profile, we use the NFW

profile as reference. First, we follow the same procedure in determining the stacks but instead

of using simulations we use ideal DK or NFW haloes. We then take an average of their �2
red

values. To determine if the simulation haloes are more like DK or NFW, we take the ratio

of the simulation stack �
2
red

values with the average of the ideal halo runs, �2
red

. Therefore,

whichever ratio is closer to 1 then the resulting simulation stack behaves more like either the

ideal DK or NFW haloes. In Table 5.1 we look at the DK and NFW results for AGN 8.0

and DMO simulations for LSST-like runs, without Large Scale Structure noise. With these

ratios it is clear that the mass density profiles of the simulated clusters behave more like the
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Figure 5.7: Each thin curve represents a cluster’s reduced shear that went into the stack, the
thick green curve represents the stack without scaling, and the thick red curve is the NFW
form, FNFW(x). Everything is then scaled using the best fit parameters onto the stack, to
compare with F (x). Here we follow Section 5.1 with the 50 most massive clusters with no
noise. For simplicity, we omitted error bars to show individual signals compared to the stack
without scaling. This plot is an example of how stack without scaling compares with each
individual cluster shear profile and the NFW form.

DK profile, but using this analysis it is di�cult to determine if baryonic prescriptions have

any impact on their overall profile.
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Figure 5.8: This plot uses realistic LSST-like clusters from the AGN 8.0 simulation. The
green points are h�⌃(R)i (stack without scaling, following Section 5.1), scaled by (2⇢crs)bf

(so we can compare with F (x)) with error bars of �h✏i/(2⇢crs)bf (Equation 5.5). The thick
black curve is the DK form, FDK(x,~⇡), and the red curve is the NFW form, FNFW (x). It
is clear that the stack is better represented by DK than NFW. The DK �

2
red

= 1.08 with
d.o.f. = 64� 2.
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Table 5.2: Ratios for DK profile, �2
red

/�
2
red

, for the LSST-like runs for AGN 8.0 and DMO
simulations. This table is similar to Table 5.1 but with Large Scale Structure noise �LSS =
0.004. The average �

2
red

values for stack without scaling, h�⌃(R)i, for the ideal DK and
NFW halo runs with LSST-like noise are �

2
red

= 0.57 and 0.51 respectively. The �
2
red

values
are calculated over eight LSST-like runs.

DK NFW
Runs AGN 8.0 DMO AGN 8.0 DMO
1 1.08 1.13 1.78 1.97
2 0.87 0.96 1.64 1.49
3 0.98 1.17 1.66 1.86
4 0.92 0.97 1.35 1.66
Avg. 0.97 1.06 1.61 1.75

5.6 Impact of Uncorrelated Large Scale Structure

We also look at the results when Large Scale Structure noise �LSS is included. In real data

there would be more noise due to structure along the line of sight, which is not fully accounted

for by taking 30 Mpc boxes from the simulations. For simplicity we set �LSS = 0.004, typical

of the noise at the outskirts of clusters due to LSS in Dodelson (2004); the inner region of

the DK and NFW reduced shear forms are very similar anyway and the DK and NFW forms

depart toward the outskirts. Another simplification in our treatment of the LSS is that

the noise originating from uncorrelated projected LSS (i.e., structures not associated with

the clusters themselves) is correlated at various scales, and this is of particular importance

at large radii (in excess of r ⇡ 100; e.g., Hoekstra (2003)). Figure 5.9 is the results for

the stacking without scaling method (Section 5.1), with new error bars with �LSS added in

quadrature to the stacked error bars, �2
h✏i. It is clear that the stack (without scaling) is well

represented by the DK profile even when the noise due to large scale structure is included.

(�2
red

= 0.50 and 0.84 for DK and NFW forms respecively. For DK, the d.o.f. = 64�2 while

for NFW d.o.f. = 64). The low �
2
red

values are due to large error bars.
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Figure 5.9: This plot uses realistic LSST-like clusters from the AGN 8.0 simulation but with
added noise approximating that due to Large Scale Structure (�LSS). The green points are
h�⌃(R)i (stack with scaling, following Section 5.1), scaled by (2⇢crs)bf (so we can compare
with F (x)) with error bars as �h✏i/(2⇢crs)bf (Equation 5.5) and �LSS/(2⇢crs)bf added in
quadrature. The thick black curve is the DK form, FDK(x), and the red curve is the NFW
form, FNFW (x). It is clear that the stack is better represented by DK than NFW. The
added noise is extremely crude (flat �LSS = 0.004), but is included in this plot to show the
di�culty in distinguishing between the DK and NFW forms when Large Scale Structure is
considered.
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Table 5.2 is similar to Table 5.1, but with the addition of noise due to Large Scale

Structure. Again we can see that the simulation haloes are more like DK, but it is di�cult

to tell if baryonic prescriptions have any e↵ect on the shape of them.

Overall the DK profile is a good representation of stacks created without scaling, h�⌃(R)i,

of the most massive clusters in the simulations with LSST-like or WtG-like parameters.

These conclusions for samples such as WtG will be strengthened with larger samples.

In this section we showed one example of a LSST-like run over the AGN 8.0 simulation

with noise levels determined in Sections 5.2 and 5.1. For this work, many variations of

stacking with and without scaling, hF (x)i and h�⌃(R)i respectively, have been tested against

the DK and NFW forms, FDK(x,~⇡) and F
NFW (x) respectively. We see how the inclusion

of ellipticity amplitude in the weight (Equation 5.3, as in Niikura et al. (2015)) and how

using “true parameters” (or better estimated parameters) as opposed to weak lensing fit

parameters e↵ects the overall results. Using ellipticity amplitude in the weight, as in Niikura

et al. (2015), has little e↵ect on the �2 ratios. Using the “true parameters” does give better

�
2
red

values but the ratios and plots are qualitatively the same. We also explore increasing

�✏, from 0 to 0.25, for the Gaussian distribution where we randomly choose the intrinsic

ellipticities (see Section 4.1) to see how it e↵ects stack with scaling, hF (x)i. We find that

stack with scaling results still aren’t represented by the DK form due to the parameters ~⇡

dependency in F
DK(x,~⇡).

5.7 Application of Stacking Without Scaling to Extended Field-of-View WtG-

like Data

For WtG-like runs we use n0 = 10 gals/arcmin2 instead of LSST-like runs, where n0 = 30

gals/arcmin2. The field-of-view used in our simulation is 30 Mpc, more than double that of

typical clusters from the WtG survey. Figure 5.10 shows stack without scaling (h�⌃(R)i)

in green for a WtG-like run for the AGN 8.0 simulation using the 50 most massive clusters,
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Table 5.3: Ratios for DK and NFW profile, �2
red

/�
2
red

, for the WtG-like runs for AGN 8.0
and DMO simulations. The DK form has ~⇡ as the free parameters and uses 64 radial bins
for the analysis, so the d.o.f. = 64� 2. The NFW form does not have any parameters in the
form, so the d.o.f. = 64. The average �

2
red

values for stack without scaling, h�⌃(R)i, for
the ideal DK and NFW halo runs with WtG-like noise are �2

red
= 1.04 and 1.13 respectively.

The �
2
red

values are calculated over eight WtG-like runs but over ideal DK or NFW haloes.

DK NFW
Runs AGN 8.0 DMO AGN 8.0 DMO
1 1.33 1.35 1.14 2.12
2 1.37 0.95 1.21 1.72
3 1.05 1.26 2.18 1.54
4 0.73 1.21 1.47 1.28
Avg. 1.12 1.19 1.50 1.67

Table 5.4: Ratios for DK profile, �2
red

/�
2
red

, for the WtG-like runs for AGN 8.0 and DMO
simulations. This table is similar to Table 5.3 but with Large Scale Structure noise �LSS =
0.004. The average �

2
red

values for h�⌃(R)i for the ideal DK and NFW halo runs with
WtG-like noise are �

2
red

= 0.66 and 0.65 respectively. The �
2
red

values are calculated over
eight WtG-like runs.

DK NFW
Runs AGN 8.0 DMO AGN 8.0 DMO
1 1.34 1.59 1.35 2.07
2 1.12 0.91 1.11 1.29
3 0.96 1.05 1.48 1.24
4 0.76 0.99 1.14 1.08
Avg. 1.05 1.14 1.27 1.42

compared to the DK and NFW forms, the thick black and red lines respectively. To show

how the number density e↵ects error bars, we exclude large scale structure noise. With a

decrease in number of background sources, the error bars increase (compare with Figure

5.8, where the number density is n0 = 30 gals/arcmin2), rendering the NFW and DK forms

indistinguishable from the stack. In order to distinguish between the NFW and DK profiles,

we need to either increase the number density of background galaxies or include more clusters.
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Figure 5.10: Here we plot stack without scaling (h�⌃(R)i, following Section 5.1) in green for
a WtG-like run for the AGN 8.0 simulation using the 50 most massive clusters. The thick
black and red curves are F

DK(x,~⇡) and F
NFW (x), the DK and NFW forms, respectively.

This shows that with a smaller number density of background galaxies, n0, the more di�cult
it is to distinguish between the NFW and DK forms (Compare with Figure 5.8, where the
number density is n0 = 30 gals/arcmin2). So in order to distinguish, we either need to
increase the number of sources or include more cluster signals.

Tables 5.3 and 5.4 are similar to the LSST-like runs at the end of Section 5.5. Overall

the results are that the DK profile performs better than the NFW when representing the
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simulation stacks, though the di↵erences between the ratios are somewhat smaller. So even

though the smaller number density of sources and the large scale structure noise both make

the �
2
red

values larger, the ratios (�2
red

/�
2
red

⇡ 1) can be used to show that the WtG-like

simulations behave more closely to that of DK than NFW haloes.

Another way that the �
2
red

values can be improved is to simply increase the number of

clusters that go into the stack. Throughout this section we have used the 50 most massive

clusters from the simulations. Here we show the results of the 300 most massive M
3D
200c

values in the AGN 8.0 simulation for a WtG-like run (n0 = 10 gals/arcmin2). hM3D
200ci =

3.30 ⇥ 1014M� with 1.97 < M
3D
200c[10

14M�] < 17.35. Here we exclude the noise due to large

scale structure to show how the increase of number of clusters in the stack can e↵ect the

error bars. Figure 5.11 shows that, even with the large mass range and lower number density

of sources, stacked shear can be used to show that haloes behave more like DK than NFW

haloes on large scales, so long as there is a su�cient number of cluster signals to make

up for the lower number density of sources (Compare with Figure 5.10, where there are 50

clusters in the stack). In this case we just use the �2
red

values; �2
red

are 0.97 and 1.33 for DK

(d.o.f. = 64� 2) and NFW (d.o.f. = 64) respectively.

Since there are fewer galaxy clusters in the CLASH sample than in the WtG sample,

we concur with the conclusions Umetsu and Diemer (2017) regarding the CLASH sample.

Even with a wider field of view for a sample such as WtG, it is unlikely that the large scale

environment of the clusters could be studied at a level to distinguish between the DK and

NFW profile.

5.8 Splashback Radius

In this section we show an example of the splashback radius, rsp, which depends on DK

parameters (see Section 2.2). The splashback radius is located at the minimum of the

logarithmic derivative of the mass density profile described by the DK model (Diemer and
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Figure 5.11: This figure is the same as Figure 5.10 but with 300 (as opposed to 50) of the most
massive clusters from the AGN 8.0 simulation for a WtG-like run (n0 = 10 gals/arcmin2).
hM3D

200ci = 3.30⇥ 1014M� with 1.97 < M
3D
200c[10

14M�] < 17.35. This figure shows the results
for a larger number of clusters with a much larger mass range, where �

2
red

are 0.97 and 1.33
for DK (d.o.f. = 64� 2) and NFW (d.o.f. = 64) respectively.

Kravtsov, 2014). It is a physical boundary where accreted matter reaches its first orbital

apocenter (More et al., 2015). This feature can be seen as a sharp drop o↵ in the DK mass

density profile and is a function of the mass accretion rate. Therefore studying the DK

model and splashback radius can give us interesting information on the growth and other
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properties of galaxy clusters (e.g., More et al., 2015, 2016; Chang et al., 2017; Snaith et al.,

2017; Umetsu and Diemer, 2017).

Figure 5.12 shows the the splashback radius of the DK profile. Here we use M200c, c, se, be

from fitting the DK model onto h�⌃(R)i (stack without scaling, following Section 5.1)

for realistic LSST-like clusters from the AGN 8.0 simulation Cosmo-OWLS (see Section 5.5,

Figure 5.8, and Table 5.1). Plotted in the top, middle, and bottom panels are the exponential

behavior of r for ⇢,⌃, and g respectively. The dashed green line is the DK profile using the

fit parameters and the solid green line is the NFW profile for reference. The Red dashed

vertical line is the truncation radius rt = 3.02 Mpc and the vertical black solid lines are the

minimum of the logarithmic derivative of ⇢ with respect to r for each panel. The true rsp is

the minimum of the DK mass density profile (top panel), which is 2.72 Mpc. The middle

and bottom panel minima are located at 1.80 and 6.20 Mpc respectively.

5.9 DK Mass Density and Stacking Conclusions

Gravitational lensing is an essential tool for probing the distribution of mass in galaxy

clusters, most of which is dark matter. The most commonly used mass density profile to

describe cluster scale structures is the NFW profile, which has stood two decades of scrutiny.

Advances in the resolution of cosmological simulations, and in the incorporation of physical

processes associated with baryonic matter - beyond gravity for dark matter only simulations,

have resulted in refinements to the NFW model, for example that of Diemer and Kravtsov

(2014).

Gravitational lensing estimates of cluster mass have rather a large scatter, with sources

of noise including the finite sampling of the lensing potential by background galaxies which

have an intrinsic distribution of shapes. Other factors include triaxiality in 3D, particularly

when clusters are very elongated along the line of sight or in the plane of the sky. Besides

boosting the lensing signal, and hence the quality of information on the average cluster mass
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Figure 5.12: The splashback radius of the DK profile using M200c, c, se, be fit parameters onto
h�⌃(R)i (stack without scaling, following Section 5.1) for realistic LSST-like clusters from
the AGN 8.0 simulation Cosmo-OWLS (see Section 5.5, Figure 5.8, and Table 5.1). Plotted
in the top, middle, and bottom panels are the exponential behavior of r for ⇢,⌃, and g

respectively. The dashed green line is the DK profile using the fit parameters and the solid
green line is the NFW profile for reference. The Red dashed vertical line is the truncation
radius rt = 3.02 Mpc and the vertical black solid lines are the minimum of the exponential
behavior of r for each panel. The true rsp is the minimum of the DK mass density profile
(top panel), which is 2.72 Mpc. The middle and bottom panel minima are located at 1.80
and 6.20 Mpc respectively.

profile, stacking averages the 3D structure of clusters, assuming that the sample is random

on the sky.

In this section we used 50 clusters extracted the cosmological simulations from cosmo-

OWLS Le Brun et al. (2014), specifically DMO and AGN 8.0 runs, the latter implementing
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feedback from black holes and other baryonic physics. We considered synthetic weak lens-

ing data with background galaxy number density characteristic of the Weighing The Giants

survey, and future LSST surveys. Using two di↵erent stacking procedures, we compared

the accuracy with which NFW and DK models describe the stacked lensing data, and the

prospects for measuring a departure from the NFW form. On larger scales, and for stacked

lensing data, the DK model gives a more accurate description of the azimuthally averaged

shear from WtG-like and LSST-like surveys. In particular for the LSST-like surveys, assum-

ing n0 = 30 gals/arcmin2 compared with the n0 = 10 gals/arcmin2 for WtG, there are good

prospects for detecting features beyond the applicability of the NFW model, in particular

the steepening of the mass density profile around the splashback radius. The conclusions

are the same for the DMO and AGN 8.0 runs. This is consistent with detailed studies of the

lensing signatures of individual clusters from these and other cosmo-OWLS runs (Lee et al.,

2018).

The distinction between the lensing signals of NFW and DK models has interesting

implications for the estimation of cluster mass, and constraints on the dark matter and

other large scale structure surrounding them. As discussed in Diemer and Kravtsov (2014),

the parameters of their model are sensitive to the rate at which matter is accreted onto

clusters. With large enough samples of clusters, we may be able to identify subsets of those

which are more or less rapidly accreting, based on some physical indicator such as blue stellar

populations indicative of star formation, and test whether they have distinct DK parameters

and the relationship between splashback radius and mass accretion rate. In future work we

will stack synthetic and real lensing data sets aligned based on their longest axes on the sky,

since filaments tend to preferentially occur close to the major axes of clusters. Preliminary

simulations indicate that this will enable us to study the periphery of clusters, and the large

scale structures in which they are embedded, in greater detail.
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CHAPTER 6

THE IMPACT OF MASSIVE NEUTRINOS AND BARYONIC PHYSICS ON

WEAK LENSING PEAK STATISTICS

The material in the section has been taken from our paper listed at the end of Section 1.5:

the version on record (Fong et al., 2018).

In this chapter we present the first study that uses cosmological simulations, including

both massive neutrinos and baryonic physics, to study weak lensing peak statistics.

6.1 Aperture Mass Statistic

In this section we outline the aperture mass statistic (Schneider, 1996) that we use to measure

the weak lensing signal, and how we map the aperture mass over the synthetic surveys.

Finally we describe how we determine the weak lensing peaks based on the aperture mass

maps.

We can take advantage of the fact that the average shape of unlensed galaxies is circular

for a large enough sample, or h✏si = 0. So if we take an ensemble of lensed galaxy shapes,

we can recover the reduced shear, h✏i = g (see Equation 2.9).

An important tool is the aperture mass (Schneider, 1996), which can be used to map

dark and luminous matter. Although not employed in this dissertation, the variance of

the aperture mass as a function of aperture scale can be used to constrain cosmological

parameters (e.g., see Schneider, 2005, and references therein).

The aperture mass, Map, is constructed by integrating the weighted convergence within

an aperture:

Map(~✓0) =

Z
d
2
✓U(~✓ � ~✓0)(~✓), (6.1)

where ✓0 is the 2D location of the aperture centre, and U is a weight function that is com-

pensated within the filter radius, smoothly goes to zero at a finite radius, and is zero outside
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of that radius. It should be also localised in Fourier space with no oscillatory behaviour in

the power spectrum (Leonard et al., 2012). Since the convergence and the shear are related

(see Chapter 2), the aperture mass can be expressed as

Map(~✓0) =

Z
d
2
✓Q(~✓ � ~✓0) �+(~✓, ~✓0) , (6.2)

where the shear weight function or filter function is Q(✓) = 2
✓2

R
✓

0 d✓
0
✓
0
U(✓0)� U(✓) and the

tangential shear is g+ ⇡ �+ in the weak lensing limit.

In practice for real or synthetic observations of lensed galaxies we express the integral in

Equation 6.2 as a sum over discrete galaxies. The aperture mass then becomes the weighted

sum over the tangential ellipticities:

Map(~✓0) =
1

Ngal

NgalX

i

Q(~✓i � ~✓0) ✏t(~✓i, ~✓0) , (6.3)

where Ngal is the total number of observed galaxies inside the aperture, and ✏+ is the observed

tangential ellipticity and expressed as:

✏+(~✓, ~✓0) = �[✏1(~✓) cos(2�(~✓, ~✓0)) + ✏2(~✓) sin(2�(~✓, ~✓0))]. (6.4)

The filter functions are optimised for di↵erent applications (see for example Maturi et al.

2010). In this work we use a filter function that is optimised to detect NFW haloes taken

from Schirmer et al. (2007):

QNFW(x) =
1

1 + e6�150x + e�47+50x

tanh(x/xc)

x/xc

, (6.5)

where x = ✓/✓ap is the angular distance from the aperture centre ✓0 scaled by the filter size

✓ap. xc is analogous to the halo concentration in the NFW profile, and it was empirically

set to xc = 0.15 in Hetterscheidt et al. (2005). This is consistent with Martinet et al.

(2018). Figure 6.1 is a plot of the filter function, QNFW(x) (Equation 6.5), used in this

work. Note that the filter function downweights galaxies towards the centre of the aperture,

which excludes contamination by the presence of a bright central galaxy in a cluster and the

strong lensing regime. The filter function is truncated at ✓ = ✓ap and the aperture mass is

calculated within the filter size, ✓ap.
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Figure 6.1: QNFW(x) is the aperture mass filter function used in this work (Equation 6.5),
taken from Schirmer et al. (2007). The aperture mass calculated in Equation 6.3 cuts o↵
at the filter size, ✓ = ✓ap and the fallo↵ towards the centre down-weights the bright central
galaxy and the strong lensing regime.

6.2 S/N Peaks

To calculate the S/N ratio for the aperture mass statistic we proceed as in Martinet et al.

(2018), where the standard deviation of the aperture mass in the absence of shear is given

by:

�(Map(~✓0)) =
1p
2Ngal

0

@
NgalX

i

|✏(~✓i)|2Q2(~✓i � ~✓0)

1

A

1
2

. (6.6)

The S/N ratio for an aperture measurement is:

S

N
(~✓0) =

p
2
PNgal

i
Q(~✓i � ~✓0)✏t(~✓i, ~✓0)qPNgal

i
|✏(~✓i)|2Q2(~✓i � ~✓0)

. (6.7)
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Here we use publicly available software, developed by Bard et al. (2012), which im-

plements GPU computing for fast calculation of the aperture mass. The algorithm scans

grid points over the synthetic weak lensing data and returns the aperture mass, variance,

and S/N values. We ran the code on the synthetic data from Section 4.2 using filter sizes

✓ap = 8.0, 10.0, 12.5, and 15.0 arcmin. For a compromise between the computational e�-

ciency and resolution, the resolution of the aperture maps is set to 512 ⇥ 512 pixels which is

0.5859 arcmin per pixel, similar to Martinet et al. (2018). Figure 6.2 shows a sample of the

direct overlay of the S/N contour lines (lower limit of S/N at 0 and contour lines increase

by increment of 1) on top of the original convergence map (grey scale) of the simulation.

The triangles are the S/N peak locations (S/N> 2) obtained by a peak detection Python

script which examines if each pixel of the S/N map has a higher value than the 8 nearest

neighboring pixels. The cross marks are the locations of galaxy clusters taken directly from

the BAHAMAS Friends-of-Friends (FoF) catalogues.

In this work we study the impact of the di↵erent baryonic prescriptions and summed

neutrino masses, the relationship between higher S/N peaks, and the presence of massive

clusters.

We use the natural log of the ratio-of-means (RoM) to quantify the di↵erence in the

peak counts and to properly propagate errors for relative comparisons. This method was

introduced in Friedrich et al. (2008) to compare characteristics such as bias and statistical

power using simulated data sets. For our purpose, we calibrate the mean of the peak counts

of 5 di↵erent noise realisations per each simulation in order to avoid potential bias to one

particular noise realisation. Then the natural log of the RoM, ln (µx/µ0), of each bin is

calibrated with the variance:

V ar


ln

✓
µx

µ0

◆�
= V ar [ln(µx)� ln(µ0)]

=
1

nx

✓
�x

µx

◆2

+
1

n0

✓
�0

µ0

◆2

,

(6.8)
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Figure 6.2: A 60 ⇥ 60 arcmin2 sub-region of a 5 ⇥ 5 deg2 aperture mass map for source
number density 9 gal/arcmin2. The aperture size is 12.5 arcmin, and the S/N contour lines
are plotted from 0 with an increment of 1. The field in grey scale in the background is the
original BAHAMAS convergence map, and the cross marks are the locations of clusters from
the BAHAMAS friends-of-friends catalogues, where the lowest mass cut is 1014M� and the
upper limit redshift cut is at z=0.5. The triangles are the peak locations above S/N=2.

where µx is the mean of the peak counts of the di↵erent realisations for each of the simulation

suites with varying AGN feedback and summed neutrino mass, and µ0 is the mean of the peak

counts from the standard simulation suite that will be used for comparison. Similarly �x and

�0 are the standard deviations of the corresponding distributions. Note as an approximation,

when interpreting plots of the ln(RoM) and ln(RoM) ⌧ 1, RoM ⇡ 1 + ln(RoM).

Note that Martinet et al. (2018) used dark matter only simulations to investigate the

impact of a much wider range of cosmologies (particularly ⌦m and �8) on peak counts

for comparison with KiDS data. In this work, as noted in the introduction, we focus on

investigating the impact of baryonic processes (including star formation, AGN feedback and

supernova feedback) and massive neutrinos on the peak statistics.
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6.3 Dependence of Weak Lensing Peak Counts on Baryonic Physics and Summed

Neutrino Mass

In our work with Miyoung Choi we consider synthetic surveys with di↵erent source redshift

distributions and e↵ective number density of sources from which lensing shear can be mea-

sured, KiDS, DGB, and DSB as outlined in Section 4.2. The plots shown in this section

have the filter size fixed at 12.5 arcmin, for consistency with Martinet et al. (2018), and use

the 625 deg2 field-of-view for the DGB source redshift distribution simulations (neff = 30

gal/arcmin2) in WMAP9 cosmology.

Figure 6.3 shows the S/N peak distributions for di↵erent baryonic physics prescriptions

in the top panel. The bottom panel shows the ln(RoM) compared to the DMONLY peak

count. All of these models do not include massive neutrinos. The low S/N peak counts

tend to be boosted by up to about 6 percent in comparison with DMONLY. For KiDS (9

gal/arcmin2) we found that the low S/N peaks show a modest boost from baryons resulting

in only a few percent deviation from DMONLY. According to the discussion in Martinet

et al. (2018), much of the constraining power of peak counts for cosmological models comes

from the lower S/N range. Our results indicate that when baryonic processes are accounted

for in the error budget, care should be taken to calibrate the impact of baryons as a function

of the source number density.

In DMONLY simulations higher S/N peak values are more likely to be produced by more

massive clusters, although there is an additional complication due to the dependence of peak

height on cluster redshift for a given source population (e.g., Figure 17 of Hamana et al.,

2004). The impact of baryons is more significant at higher S/N, where higher peak values

are more likely to arise from massive haloes (Hennawi and Spergel, 2005). The massive

haloes are more likely to have greater AGN feedback strength that cause the mass density

profiles to be flatter and less concentrated (Mummery et al., 2017), thereby returning lower

S/N values than the DMONLY case and having a larger e↵ect on the high S/N peaks. This
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Figure 6.3: The S/N peak counts for the di↵erent baryonic physics prescriptions and the
DMONLY case, all without massive neutrinos. The bottom panel shows the ln(RoM) com-
pared to the DMONLY peak count.

also tends to push matter out from the centre of massive haloes and into the environment,

contributing to the lower S/N distribution. In Table 3.1 the S8 values do not vary with

AGN temperature, yet these plots show that increasing AGN temperature changes the peak

distribution similar to decreasing S8 (see Martinet et al., 2018). In agreement with previous

work (e.g., Osato et al., 2015), this implies that estimating cosmological parameters when

using cosmological simulations without baryonic processes can lead to a bias. This is also

true for the summed neutrino mass, as discussed below. Additionally, the deviation among

the higher S/N peak counts with di↵erent AGN feedback strength is hard to resolve, even
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though the error bars due to scatter from the di↵erent shape noise realisations are tighter

than those for the lower number density of sources (as anticipated).

Figure 6.4: The S/N peak counts with varying summed neutrino mass, all with fiducial bary-
onic physics prescription, for DGB data. The bottom panel shows the ln(RoM) compared
to the zero summed neutrino mass peak count.

The top panel of Figure 6.4 shows the S/N peak distributions for di↵erent summed

neutrino mass, where all models here include the underlying fiducial baryonic physics pre-

scription. The bottom shows the ln(RoM) compared to the zero summed neutrino mass peak

count. These figures show that increasing summed neutrino mass also suppresses (boosts)

the high (low) S/N peak counts. This is expected as free-streaming neutrinos impede the

growth of LSS and therefore have a larger impact on more massive haloes, suppressing the
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high end of the halo mass function more significantly with increasing neutrino mass (e.g.,

Costanzi et al., 2013; Mummery et al., 2017). Free-streaming neutrinos also spreads matter

more uniformly in the Universe, which contributes to the low S/N peak counts. Furthermore,

in Table 3.1 increasing summed neutrino mass corresponds to decreasing S8 = �8

p
⌦m/0.3.

Reducing ⌦m or �8 decreases the matter content of the Universe or clustering of structure,

producing less massive haloes and high S/N peaks. When this happens it also adds more to

the random Gaussian noise in the distribution (see discussion in Martinet et al., 2018, for

more details), boosting the low S/N peaks counts.

Note the similarity of the suppression (boosting) in high (low) S/N peak counts due

to AGN feedback and massive neutrinos. This can make di↵erentiating baryonic physics

and massive neutrinos based purely on S/N peak counts quite di�cult. One avenue that can

potentially be used to help break this degeneracy, using peak counts alone, is the dependence

of the peak counts on redshift, which could be measured using tomographic information (e.g.,

Hildebrandt et al., 2017). Furthermore Mummery et al. (2017) shows that the halo mass

function is e↵ected by baryonic physics prescription and summed neutrino mass di↵erently

for di↵erent redshifts. This is beyond the scope of this chapter and will be included in future

work.

The impact of WMAP 9 and Planck 2015 cosmologies for M⌫ = 0.06, 0.12, 0.24, and

0.48 eV summed neutrino mass models (all with fiducial baryonic physics) are compared

with WMAP 9 M⌫ = 0.00 eV, as a reference model, in Figures 6.5a and 6.5b, for 9 and 30

gal/arcmin2 respectively. Note that we exclude the WMAP 9 M⌫ = 0.48 eV model as it is

well outside of the range of the Planck 2015 models (see Figure 6.4). The S/N peak counts

with theWMAP 9 cosmology show that there is a negative (positive) di↵erence for the higher

(lower) S/N peaks for all of the M⌫ models (with the exception of the last S/N peak bin in

the 0.06 eV model, where the statistics in this bin are poor). Furthermore increasing M⌫

suppresses (boosts) the higher (lower) S/N peaks. The peak counts with the Planck 2015
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cosmology show that there is a positive (negative) di↵erence for the higher (lower) S/N peaks

for the M⌫ 0.06 to 0.24 eV models. Furthermore the Planck 2015 M⌫ = 0.24 and 0.48 eV

models clearly bracket the WMAP 9 M⌫ = 0.00, 0.06, and 0.12 eV models for both KiDS

and DGB. This suggests degeneracy between summed neutrino mass and other cosmological

parameters in the framework of fiducial baryonic physics. The S/N peak counts are roughly

ordered with respect to the S8 values (see Table 3.1), in agreement with Martinet et al.

(2018).

For DGB the weak lensing peak counts with M⌫ = 0.12 eV for WMAP 9 and Planck 2015

have an absolute maximum relative di↵erence of ⇠5 and ⇠11 percent respectively (up to S/N

of 5) compared with the WMAP 9 zero neutrino mass model. As can be seen from Figure

6.5b, the di↵erences between the peak counts for suites with summed neutrino masses 0.06

and 0.12 eV inside theWMAP 9 and Planck 2015 cosmologies are smaller than the di↵erences

between the counts across the cosmologies. However for higher summed neutrino mass,

models across cosmologies but with similar S8 values have peak counts that are di�cult to

distinguish. For example the WMAP 9 M⌫ =0.00 (0.24) eV model has similar peak counts

to the Planck 2015 M⌫ =0.24 (0.48) eV model.

Figure 6.6 (corresponding values listed in Table 6.1) compares the peak counts inWMAP 9

M⌫ = 0.0, 0.06, 0.12, 0.24, and 0.48 eV models (all with fiducial baryonic physics) to

DMONLY, for DGB data. Assuming that baryonic physics and massive neutrinos act inde-

pendently (Mummery et al., 2017): at lower summed neutrino mass, 0.06 and 0.12 eV, the

impact of fiducual baryonic physics on the peak counts tends to be comparable to that of

massive neutrinos up to S/N ⇠ 5; at higher summed neutrino mass, 0.24 and 0.48 eV, the

presence of massive neutrinos tends to be more important than fiducial baryonic physics.

These conclusions are also sensitive to the source number density and intrinsic galaxy ellip-

ticity dispersion.
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Table 6.1: The relative percentage di↵erences in S/N peak counts for the DGB survey (these
values are taken from Figures 6.4 and 6.6). The values are in units of percent (%) and
compare the five di↵erent simulations (M⌫ = 0.0, 0.06, 0.12, 0.24, and 0.48 eV, all with
fiducial baryonic physics) per S/N bin with the DMONLY simulation.

M⌫ [eV]
S/N 0.00 0.06 0.12 0.24 0.48
0-1 4.1 6.1 7.7 12.2 21.8
1-2 4.1 5.8 7.3 11.9 22.0
2-3 1.9 2.6 4.6 6.0 9.0
3-4 -3.6 -3.8 -4.1 -5.7 -11.9
4-5 -7.4 -8.2 -11.4 -17.4 -30.0
5-6 -6.3 -13.0 -16.5 -26.3 -42.4
6-7 -12.3 -19.8 -23.5 -33.3 -53.0
7-8 -11.4 -15.6 -21.7 -39.0 -56.0
8-9 -12.7 -21.8 -21.9 -38.9 -63.2
9-10 -16.2 -15.4 -26.8 -42.3 -67.5

6.4 High S/N Weak Lensing Peaks

In this section, we focus on the high S/N peaks for the Planck 2015 cosmology with fiducial

baryonic physics and varying neutrino mass. We discuss: (1) how summed neutrino mass

e↵ects the cluster mass function and also give some examples of the di↵erences in mass for

specific clusters. (2) S/N peak dependence on survey characteristics and noise. (3) How

filter size impacts on the detection of high S/N peaks. (4) Using cluster positions to find
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nearby S/N peaks, within an aperture size, to study the correlation between cluster mass

and S/N peaks. This would be analogous to targeting clusters (for example known clusters

or clusters selected using another technique) and measuring their aperture mass signal. (5)

Using S/N peak locations to find nearby clusters, analogous to carrying out a blind weak

lensing survey.

We use the light-cone catalogues from the simulation selecting objects with masses

M200c � 1014M� and z  0.9. Clusters are identified by running a friends-of-friends (FoF)

algorithm on the full simulation snapshot data. Spherical overdensity masses for the FoF

groups are calculated using the SUBFIND algorithm. An overdensity of 200 with respect to

the critical density at the snapshot redshift of the FoF group is used (i.e., M200c).

In Figure 6.7 we plot the number counts of clusters for each neutrino mass suite on

the top panel. For the bottom panels we take the ratios with respect to the M⌫ = 0.06

eV distribution. Taken directly from the BAHAMAS light-cones, Figure 6.7 shows that as

summed neutrino mass increases, the number count of massive haloes, N(M200c), becomes

suppressed.1 These results are consistent with the findings of e.g., Costanzi et al. (2013);

Castorina et al. (2014); Mummery et al. (2017); Hagstotz et al. (2018).

The reason for this trend is that neutrinos can free-stream out of overdense regions which

inhibits the growth of structure. Increasing the mass in the neutrino component means that

a larger fraction of the total mass can free-stream out. The ratio becomes noisy at high

masses, due to their rarity. With a larger survey area and sample of high-mass clusters we

expect this feature to be smoothed out. We also studied the impact of summed neutrino

mass on cluster shapes by analysing their moment of inertia tensors, finding that their axis

ratios have no significant change but the overall sizes are altered. This will be a subject of

a future project.

1
Note that the light-cone catalogue masses only depend on the simulation, so the distributions are un-

changed for varying filter sizes and noise realisations.
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Figure 6.8 shows the same field-of-view for four di↵erent simulations, where they only

di↵er by neutrino mass. The four panels are M⌫ [eV] = 0.06, 0.12, 0.24, and 0.48 for the

top left, top right, bottom left, and bottom right panels respectively. The grey scale is the

convergence map and ⇥s are the cluster locations. The smaller the ⇥ the higher the cluster’s

redshift. The values next to the ⇥s are the cluster masses in units of 1014M�. This shows

that with increasing summed neutrino mass most cluster masses decrease (See Figure 6.7),

though not all. Note that we only show cluster masses M200c � 1014 M�, and some clusters

drop below this limit.

6.4.1 Noise Realisations

We study a total of five shape noise realisations of weak lensing on 625 deg2, for the

Planck 2015 cosmology with M⌫ = 0.06 eV. Each noise realisation has a di↵erent set of

random seeds for intrinsic galaxy ellipticities (see Section 4.2). The galaxy positions are the

same for each run. In this section we consider cluster-mass objects and high peak values

(S/N � 3).

For KiDS (DGB) data with ne↵ = 9 (30) gal/arcmin2 Figure 6.9a (Figure 6.9b) shows

the impact of di↵erent shape noise realisations on the aperture mass maps and S/N peaks.

Each panel shows the same field-of-view (1⇥ 1 deg2). The grey scale and ⇥ markers are the

convergence maps and cluster locations respectively. The line contours and triangles are the

aperture mass S/N and S/N peaks (� 3) respectively. A smaller triangle or ⇥ corresponds

to a lower S/N peak value or a higher cluster redshift, respectively. ⇥ markers and the

convergence maps do not change between noise realisations because they are taken directly

from the BAHAMAS simulation. Figures 6.9a and 6.9b show that aperture mass S/N maps

and therefore peak locations depend heavily on the noise realisation, but are more consistent

with a higher e↵ective number density of source galaxies. The match between S/N peaks and

cluster locations is in rough agreement with Martinet et al. (2018, Figure 3), where peaks

are not always associated with clusters.
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6.4.2 Filter Sizes

Even though we use a fiducial filter size of 12.5 arcmin (see Martinet et al. (2018)) throughout

most of this chapter, in this subsection we highlight the well-known impact of filter size (e.g.,

Hetterscheidt et al., 2005; Schirmer et al., 2007; Martinet et al., 2018). We focus on the 0.06

eV model. In practice for a real observational survey the filter size would be adjusted

depending on the noise properties of the survey and the science goals.

Figure 6.10 shows how the S/N peak distribution varies with filter size. The lines rep-

resent ✓ap = 8.0, 10.0, 12.5 and 15.0 arcmin. The top sub-panels show the S/N peak value

distributions and the bottom sub-panels show the logarithmic ratio of means of the distribu-

tions relative to ✓ap = 12.5 arcmin. This shows that increasing aperture size suppresses the

S/N peak counts for lower S/N values while boosting counts for higher values. The larger

filter sizes tend to be more sensitive to larger structures (contributing more to the higher

S/N values) and less sensitive to smaller structures (suppressing lower S/N counts). This is

consistent with works which have sought to optimise the aperture mass filter functions or

have employed other optimal filtering techniques (e.g., Hennawi and Spergel, 2005; Schirmer

et al., 2007; Maturi et al., 2010). Martinet et al. (2018) found that a filter size of 12.5 arcmin

maximises the number of peaks above a S/N of 3 for the KiDS data. However our synthetic

catalogues are not constructed in exactly the same manner. For example we have a di↵erent

intrinsic shape noise and the optimal filter size can also change as a function of number

density (see Figures 6.5a and Figure 6.5b).

6.4.3 Summed Neutrino Mass and S/N vs. Cluster Mass

In Section 6.3 we discuss how summed neutrino mass impacts on the S/N peak distribution,

in particular we find that increasing summed neutrino mass suppresses the high S/N peaks.

In the beginning of this section (Section 6.4) we discussed how increasing summed neutrino

mass tends to decrease the masses of clusters, consistent with the authors mentioned above.

77



In this subsection we study the relationship between S/N peak values and cluster mass, and

the dependence on summed neutrino mass.

First we study the correlation between S/N peaks and cluster locations. Note that given

the redshift distribution of KiDS, it is not likely that clusters with redshifts above z = 0.5

will be significantly detected with lensing. We also limit the lower bound S/N peak values

to 3 for consistency with the regime dominated by clusters rather than large-scale structure

in a KiDS-like survey (Martinet et al., 2018).

The clusters and any associated S/N peak locations can then be used to investigate how

well S/N peaks trace cluster mass. We do this by taking circular areas of radius ✓ap centred

on cluster centres to identify nearby S/N peaks. Note that there may not be any S/N peaks

within the circles (See Figure 6.9). When there are multiple S/N peaks enclosed, we allow

for two options: either choose the closest S/N peak or the highest value enclosed. In this

chapter we will show only the results for choosing the closest S/N peaks.2 We also allow

S/N peaks to be chosen by multiple clusters.3

In the case of assuming known cluster locations and choosing the closest S/N peak, in

Figure 6.11 we plot S/N peak values vs. M200c for the four di↵erent summed neutrino masses,

M⌫ [eV] = 0.06, 0.12, 0.24, and 0.48, with the upper and lower panels showing the results for

KiDS and DGB respectively. Note that in these panels the clusters are not segregated into

redshift bins. This means that the lensing e�ciencies are not accounted for when comparing

S/N peaks to cluster mass. The Pearson correlation coe�cient (PCC) measures the linear

relationship between two datasets, where the value can range from �1 to +1. PCC = 0

means there is no linear correlation and +1(�1) means there is a positive(negative) linear

relationship. The PCC values for each sub-panel are (M⌫ , PCC), for KiDS: (0.06 eV, 0.28),

2
When choosing the highest S/N peaks some points in the plot of S/N against M200c are shifted to higher

S/N values, but the distributions for choosing by closest and highest are mostly the same.

3
When we allow S/N peaks to be associated with only one cluster, there is a potential bias in fields where

there are multiple clusters.
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(0.12 eV, 0.30), (0.24 eV, 0.30), (0.48 eV, 0.31); and for DGB: (0.06 eV, 0.46), (0.12 eV,

0.46), (0.24 eV, 0.46), (0.48 eV, 0.49). The plots show that increasing summed neutrino

mass tends to decrease cluster masses and S/N peak height (see Figures 6.7 and 6.4).

Figure 6.12 shows the S/N values vs. M200c segregated into di↵erent redshift bins for

KiDS and DGB (upper and lower panels respectively). The simulations are for M⌫ = 0.06

eV. The lines are the average of the S/N values in logarithmic mass bins and the error bars

show the variance of S/N inside the mass bins (note that there is a limit at S/N = 3, which

impacts on the error bars in particular for the higher redshifts). The Pearson Correlation

Coe�cient values are (zbin, PCC), for KiDS: ([0.1, 0.2], 0.63), ([0.2, 0.3], 0.67), ([0.3, 0.4],

0.43), ([0.4, 0.5], 0.24), ([0.5, 0.6], 0.04), ([0.6, 0.7], -0.05), ([0.7, 0.8], -0.03), ([0.8, 0.9],

-0.06); and for DGB: ([0.1, 0.2], 0.67), ([0.2, 0.3], 0.71), ([0.3, 0.4], 0.64), ([0.4, 0.5], 0.56),

([0.5, 0.6], 0.36), ([0.6, 0.7], 0.31), ([0.7, 0.8], 0.15), ([0.8, 0.9], 0.04). For both KiDS and

DGB the PCC values decrease with increasing redshift. This figure and corresponding PCC

values show that there is not only a greater correlation between S/N peaks and M200c for the

lower redshift bins, but that increasing the number density of background sources also has

a significant impact on the correlation. The redshifts of the clusters enter into the lensing

geometry, while increasing the number density of background sources tends to increase the

aperture mass signal. In the highest redshift bins there are fewer sources that are background

to the clusters, again decreasing the lensing signal. The di↵erences in cosmology between the

di↵erent summed neutrino mass models also have a slight impact on cosmological distance

measures, which enter into Equation 4.3.

6.4.4 Summary of Weak Lensing Peak Statistics for Varying Survey Character-

istics

In this sub-section, as well as KiDS and DGB, we also consider a deeper survey (DSB,

ne↵ = 60 gal/arcmin2) to show how lensing source number densities e↵ect the correspondence
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between high S/N peaks and clusters. For particular survey characteristics, ray-tracing

through simulations with a reasonable prescription for baryonic physics and summed neutrino

mass can be used to calibrate the correspondence between S/N peaks and clusters or other

features in the LSS.

Figure 6.13 is the S/N peak distribution for KiDS, DGB, and DSB (dashed, solid, and

dash-dotted curves respectively). As ne↵ increases, the number of S/N peaks is significantly

increased for S/N � 3. Furthermore, the increase in number density of background sources

can produce extremely high S/N peak values. Note that we use a filter function that down-

weights the strong lensing regime when centred on a cluster (Equation 6.5 and Figure 6.1).

In practice we would apply corrections for factors such as intrinsic alignment of galaxies, and

the boost factor in dense regions, as in for example Kacprzak et al. (2016); Martinet et al.

(2018). However, intrinsic alignment is thought to have negligible impact on S/N peaks (see

discussion in Shan et al., 2018) and BAHAMAS doesn’t have the resolution to measure and

establish the intrinsic alignments of galaxies directly.

In Figure 6.14 we determine the fraction of cluster-mass objects in our catalogue that

enclose a S/N peak (� 3) within radius ✓ap, or NS/N/Ntotal. KiDS, DGB, and DSB are

represented by the dashed, solid, and dash-dotted curves, respectively. For DSB, the fraction

is almost 1 for the entire cluster mass range considered here, so the vast majority of clusters

are detected at high significance by weak lensing.

Figure 6.15 shows the fraction of S/N peaks (� 3) that enclose a cluster-mass object

within radius ✓ap = 12.5 arcmin. The dashed, solid, and dash-dotted curves are for KiDS,

DGB, and DSB source number densities respectively. Note that this plot di↵ers from Figure

6.14 because there is a di↵erent number of S/N peaks than cluster-mass haloes, and we are

using those as the centres of our circles when searching for nearby masses, for example see

Figure 6.9. Identifying clusters around S/N peaks is similar to using a blind weak lensing

survey to search for massive objects (e.g., Hetterscheidt et al., 2005).
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High S/N peaks arise from clusters but also from features in the LSS. For a given cluster,

increasing the source number density increases the S/N with which the cluster is detected

(see Figure 6.12) and can also increase the number of peaks associated with a particular

cluster (see Figure 6.9). Caution should be used when interpreting this figure. For example,

at a S/N ⇡ 5, 95% of S/N peaks are associated with clusters for KiDS, however there are far

fewer S/N peaks on the KiDS maps (see Figure 6.13) and hence many clusters go undetected

(see Figure 6.14).

6.5 S/N Peak Conclusions

In this chapter we have quantified the impact of baryonic physics and massive neutrinos on

weak lensing peak statistics. We have considered a range of prescriptions for the baryonic

physics (with zero neutrino mass) and summed neutrino mass (M⌫ = 0.06, 0.12, 0.24, 0.48

eV, for the fiducial baryonic physics model) implemented in the BAHAMAS simulations

(McCarthy et al., 2018). Our results for baryonic physics and massive neutrinos can guide

the error budget when deriving cosmological parameters from WL peak statistics. Di↵erent

assumptions are made for the redshift distributions of the galaxy source populations in

the synthetic surveys, and the number densities of sources on the sky from which weak

lensing shear can be measured (9, 30 and 60 gal/arcmin2). We have also considered the

correspondence between high S/N peaks and galaxy clusters for a fiducial baryonic physics

prescription while varying summed neutrino mass.

The WL peak statistics were determined from synthetic aperture mass S/N maps calcu-

lated from shape noise realisations of simulated WL data fields. Calculation of the conver-

gence assumed di↵erent source redshift distributions, and we use source number densities

roughly corresponding to the KiDS data and the expectation for LSST and Euclid. We also

considered a higher source number density corresponding to space-based observations, such

as HST. Aperture mass S/N maps were determined using the aperture mass filter function
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optimized to the NFW profile (Schirmer et al., 2007) with the publicly available code from

Bard et al. (2012). We use a filter size of 12.5 arcmin for consistency with Martinet et al.

(2015).

In summary we find that:

• Considering the WMAP 9 cosmology, the impact of baryonic physics (in addition to

the gravity of DM) boosts (suppresses) the peak counts for low (high) S/N. The low

S/N peaks are consistently boosted by less than a few percent with the KiDS survey,

whereas for deeper DGB data the low S/N peaks are boosted by about 2-6 percent

relative to DMONLY case. With DGB number density, the lower S/N peak statistics

are more sensitive to baryonic physics. The high S/N peaks become more suppressed

with increasing S/N value. We explain this suppression using the fact that AGN

feedback changes the shape of the mass density profiles of massive clusters. Baryonic

physics is roughly degenerate with the impact of S8 seen in Martinet et al. (2018) as

well as with massive neutrinos.

• Free-streaming neutrinos during the early epoch of the Universe hinder formation of

LSS and result in changing S8 and, therefore, impact the WL peak distribution. For

theWMAP 9 cosmology 0.06 and 0.12 eV summed neutrino mass models, the impact of

massive neutrinos (at fixed fiducial baryonic physics) on the peak counts compared with

DMONLY (collisionless dynamics) tends to be less significant than that of baryonic

physics. For higher 0.24 and 0.48 eV summed neutrino mass models, the impact

of massive neutrinos tends to be greater than that of baryonic physics. The lowest

source density (9 gal/arcmin2) peak distributions for the 0.06 and 0.12 eV models

are not significantly di↵erent, but higher summed neutrino mass models become more

distinguishable from the DMONLY model, even at this low source number density.

For deeper surveys the peak distributions have greater power to di↵erentiate between

summed neutrino mass models.
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• Di↵erent cosmological parameters based on WMAP 9 and Planck 2015 surveys were

compared, using models with summed neutrino mass 0.06, 0.12, 0.24, and 0.48 eV, all

with fiducial baryonic physics. The peak distributions show clear di↵erences for the

WMAP 9 and Planck 2015 cosmologies if restricted to the 0.06 and 0.12 eV models;

the peak distributions of Planck 2015 at low S/N are suppressed consistently by ⇠ 5

percent for the 30 gal/arcmin2 source number density case, and the high S/N peaks

are boosted by ⇠5 to ⇠10 percent, compared to the WMAP 9 peak distributions.

However considering higher summed neutrino mass (0.24 and 0.48 eV), models across

cosmologies but with similar S8 values have peak counts that are di�cult to distinguish.

For example the WMAP 9 M⌫ =0.00 (0.24) eV model has similar peak counts to the

Planck 2015 M⌫ =0.24 (0.48) eV model.

• Impact of massive neutrinos on high S/N peaks and massive clusters: consistent with

Costanzi et al. (2013); Castorina et al. (2014); Mummery et al. (2017); Hagstotz et al.

(2018), the cluster mass function is suppressed when including baryonic physics and

non-zero neutrino mass. Increasing the summed neutrino mass typically, although not

always, reduces the masses and S/N peak heights of individual galaxy clusters. For a

fixed prescription of baryonic physics in the Planck 2015 cosmology, higher neutrino

mass reduces the number of high S/N peaks.

• E�ciency of cluster detection for M⌫ = 0.06 eV and fiducial baryonic physics: even

for the most massive clusters (� 1014M�), a weak lensing S/N peak is not always

present at the lowest source number density, 9 gal/arcmin2. For example, in Figure

6.14, at M200c ⇡ 8 ⇥ 1014M� there is ⇡ 80 percent likelihood that a cluster has a

corresponding weak lensing peak (� 3). Note that the random distribution of intrinsic

background galaxy shapes from which the shear is measured has an impact on the

detection of a foreground cluster using aperture mass peaks. At higher source number
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density (30 gal/arcmin2) we find that more than 90 percent of clusters have a detected

weak lensing peak. For the highest number density 60 gal/arcmin2, we find that nearly

all clusters have significant weak lensing peaks. These statements on the detection of

massive clusters for di↵erent source densities hold for the range of summed neutrino

masses considered. However, the number of clusters decreases as a function of summed

neutrino mass. The ability to study the peak statistics for intermediate redshift galaxy

clusters relies on deeper lensing data. This can be seen in the di↵erences between

Figures 6.12a and 6.12b.

• Figure 6.6 and Table 6.1 encapsulates the main findings of this chapter. For the

WMAP 9 cosmology, the percentage di↵erence between the S/N peak counts in com-

parison with the DMONLY (collisionless dynamics) model is shown for summed neu-

trino mass 0.00, 0.06, 0.12, 0.24 and 0.48 eV models (all with fiducial baryonic physics).

Assuming that baryonic physics and massive neutrinos act independently (Mummery

et al., 2017): for lower (non-zero) summed neutrino mass models 0.06 and 0.12 eV,

baryonic physics tends to have a greater impact on the results than massive neutri-

nos; for higher summed neutrino mass models 0.24 and 0.48 eV, massive neutrinos can

change the peak counts by more than fiducial baryonic physics. We have considered a

range of models for baryonic physics and summed neutrino mass; the precise impact

will depend on the true baryonic physics and summed neutrinos mass, as well as on

the characteristics of the survey itself.
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(a) 9 gal/arcmin
2

(b) 30 gal/arcmin
2

Figure 6.5: The impact of di↵erent cosmologies (WMAP 9 and Planck 2015) on the weak
lensing peak statistics with aperture filter size fixed at 12.5 arcmin. The number densities
shown here are 9 and 30 gal/arcmin2, corresponding to KiDS and DGB respectively. The
bottom panels show the ln(RoM) compared toWMAP 9 with fidual AGN feedback and
the error bars show the variance of the five di↵erent shape noise realisations. The dashed
horizontal line shows where the ratio is unity. Note that we exclude the WMAP 9 M⌫ =
0.48 eV model as it is well outside of the range of the Planck 2015 models (see Figure 6.4).
All of the models have fiducial baryonic physics.
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Figure 6.6: Relative percentage di↵erences in peak counts with respect to the DMONLY
peak count distribution (Figure 6.4). For the DGB survey, five models (M⌫ = 0.00, 0.06,
0.12, 0.24, and 0.48 eV, all with fiducial baryonic physics) of the WMAP 9 cosmology are
compared with the DMONLY model in order to determine percentage di↵erences in each
interval of S/N.
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Figure 6.7: The cluster counts as a function of mass for di↵erent summed neutrino mass
runs. The solid, dotted, dash-dotted, and dashed lines correspond to M⌫ [eV] = 0.06, 0.12,
0.24, and 0.48. These results are for ✓ap = 12.5 arcmin, and ne↵ = 9 gal/arcmin2. The
bottom panel shows the ratio of the number counts between the di↵erent massive neutrino
simulations in comparison with the 0.06 eV model.
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Figure 6.8: The locations of clusters on the convergence maps for di↵erent summed neutrino
mass. This is the same field-of-view for four di↵erent simulations in the Planck 2015 cos-
mology with ne↵ = 9 gal/arcmin2. The four panels have M⌫ [eV] = 0.06, 0.12, 0.24, and 0.48
for the top left, top right, bottom left, and bottom right panels respectively. The grey scale
is the convergence map and ⇥s are the cluster locations. The smaller the ⇥ the higher the
cluster redshift. The values next to the ⇥s are the cluster masses in units of 1014 M�.
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(a) 9 gal/arcmin
2

(b) 30 gal/arcmin
2

Figure 6.9: The correspondence between the locations of S/N peaks and massive dark matter
haloes for four sets of shape noise realisations for KiDS and DGB surveys. The grey scale is
the convergence map, the line contours are the S/N of the aperture mass map, triangle mark-
ers are the S/N peaks, and ⇥ markers are cluster locations from the halo finder catalogue.
A smaller triangle or ⇥ corresponds to a lower S/N peak value or a higher cluster redshift,
respectively. All four panels show the same field-of-view (1⇥ 1 deg2) with the Planck 2015
cosmology and M⌫ = 0.06 eV.
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(a) 9 gal/arcmin
2

(b) 30 gal/arcmin
2

Figure 6.10: The distribution by S/N for various aperture sizes for KiDS and DGB, top and
bottom panels respectively. The lines represent ✓ap = 8.0, 10.0, 12.5, and 15.0 arcmin. The
top sub-panels show the S/N distribution while the bottom sub-panels show the logarithmic
ratio of means for the distributions relative to ✓ap = 12.5 arcmin. The error bars show the
variance of the five di↵erent shape noise realisations.
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(a) 9 gal/arcmin
2

(b) 30 gal/arcmin
2

Figure 6.11: The S/N peaks vs. M200c for di↵erent summed neutrino mass for KiDS and DGB
(left and right panels respectively). The di↵erent sub-panels correspond to di↵erent summed
neutrino mass M⌫ [eV] = 0.06, 0.12, 0.24, and 0.48. This shows the S/N peaks closest to the
cluster centres. The points are the S/N values plotted against cluster mass, while the line
shows the mean S/N in logarithmic mass bins. The Pearson Correlation Coe�cient (PCC)
is calculated for each sub-panel (see text for details). The PCC values for each sub-panel
are (M⌫ , PCC), for KiDS: (0.06 eV, 0.28), (0.12 eV, 0.30), (0.24 eV, 0.30), (0.48 eV, 0.31);
and for DGB: (0.06 eV, 0.46), (0.12 eV, 0.46), (0.24 eV, 0.46), (0.48 eV, 0.49).
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(a) 9 gal/arcmin
2

(b) 30 gal/arcmin
2

Figure 6.12: The S/N peaks vs. M200c in di↵erent redshift bins for KiDS and DGB (upper
and lower panels respectively). The points are the S/N peak values (� 3) closest to the
massive objects; the lines are the average of the S/N values in logarithmic mass bins and
the error bars show the variance (note that there is a limit at S/N = 3). This plot is for
M⌫ = 0.06 eV. The Pearson Correlation Coe�cient values are (zbin, PCC), for KiDS: ([0.1,
0.2], 0.63), ([0.2, 0.3], 0.67), ([0.3, 0.4], 0.43), ([0.4, 0.5], 0.24), ([0.5, 0.6], 0.04), ([0.6, 0.7],
-0.05), ([0.7, 0.8], -0.03), ([0.8, 0.9], -0.06); and for DGB: ([0.1, 0.2], 0.67), ([0.2, 0.3], 0.71),
([0.3, 0.4], 0.64), ([0.4, 0.5], 0.56), ([0.5, 0.6], 0.36), ([0.6, 0.7], 0.31), ([0.7, 0.8], 0.15), ([0.8,
0.9], 0.04).
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Figure 6.13: The high S/N peak distribution for ne↵ = 9, 30, and 60 gal/arcmin2 (dashed,
solid, and dash-dotted curves respectively).
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Figure 6.14: The fraction of clusters that have an associated S/N peak as a function of
cluster mass. Source number densities ne↵ = 9, 30, and 60 gal/arcmin2 are represented by
the dashed, solid, and dash-dotted curves, respectively.
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Figure 6.15: The fraction of S/N peaks (� 3) that have a nearby cluster within radius
✓ap = 12.5 arcmin, for di↵erent galaxy number densities ne↵ = 9, 30, and 60 gal/arcmin2

(represented by the dashed, solid, and dash-dotted curves, respectively).
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CHAPTER 7

CURRENT AND FUTURE WORK

7.1 Cluster Shapes

High resolution simulations of galaxy cluster formation carried out since the ground-breaking

work of Navarro et al. (1997) confirm that the shapes of cluster-scale dark matter haloes often

significantly depart from spherical symmetry. Haloes are mostly (football-shaped) prolate

halos, with axis ratios between the shortest and longest axis as small as 0.4 (e.g., Jing and

Suto, 2002; Shaw et al., 2006; Bett et al., 2007; Despali et al., 2014). In fact, triaxial haloes

are a direct consequence of initial mass density fluctuations that are described by a Gaussian

random field undergoing gravitational collapse (e.g., Doroshkevich, 1970).

The degree to which cluster shapes di↵er from spherical symmetry also depends on the

mass and redshift (e.g., Despali et al., 2014). If dark matter is in particle form, the shape of

cluster haloes also reflects the interaction cross-section for dark matter particles (e.g., Peter

et al., 2013). Galaxy clusters can also exhibit very complex structure due to merger activity

(e.g., Abell 2146 King et al., 2016).

Understanding the shapes of galaxy clusters has a wide range of applications, which will

be outlined below and further discussed in the Future Work Chapter.

Rachel Bowyer was an REU student at the Maria Mitchell Observatory NSF-REU pro-

gram, advised by MF and LJK, and she continued working with us on her senior dissertation

at Rice University. Using the Cosmo-OWLS moment of inertia tensors determined from the

bound particles of each cluster, we obtained the Eigenvectors and Eigenvalues for each clus-

ter. These were then used to give the true projected major axis and 3D orientation angle.

These are our true values, to which we compared the projected orientation angles obtained

from di↵erent methods. These results can be found in Figures 7.1, 7.2, 7.3, and 7.4.

Using cluster weak lensing shear data we can map out the signal-to-noise for real or

synthetic data sets. These maps have the advantage of not being restricted to a specific
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Figure 7.1: This shows, for 66 simulated clusters, how many true 3D major, intermediate,
and minor axis are aligned with the projected major axis.

parametric form, and give us an estimate of the projected shapes of the clusters causing the

lensing signals. This has been implemented by Miyoung Choi, Victoria Catlett (advised by

MF and LJK) and Moutaz Haq (advised by MF and LJK) on a local machine and on a

supercomputer at Texas Advanced Computing Center. From here we can fit fo the aperture

mass maps of clusters and determine the projected axis ratios and orientations, as outlined

in the next paragraph. However, care must be taken, since di↵erent filter sizes may have an

e↵ect on the aperture maps, which can be seen in Figure 7.5.

Peter Gibson (Williamette University) was an REU student at the Maria Mitchell Obser-

vatory NSF-REU program, advised by MF and LJK. He created a code to obtain projected

cluster axis ratios and orientation angles from Cosmo-OWLS clusters, by fitting ellipses to
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Figure 7.2: This shows stacked kappa maps for clusters without any orientation adjustments.
The clusters here are extracted with line-of-sight along the z-direction, all sharing common
x and y-hat directions. The blue, red, and yellow arrows represent the projected 3D major,
intermediate, and minor axes of the moment of inertia of the cluster, respectively, where the
3D lengths are normalized to the radius of the circle. The longer the arrow, the smaller the
angle between the axis and the lens plane, or x and y-hat directions. The stacked kappa
maps here look spherical, as we’d expect.

the convergence and S/N contours. This was done by fitting over various bands of (real)

convergence and of (reconstructed) S/N for each cluster to determine the orientation angles

from the centers to the outskirts of clusters. Examples of the orientation fits on S/N and

their comparisons with the true projected ellipsoid axes can be seen in Figures 7.6, 7.7, and

7.8.

Our research with Peter has also found many clusters that have very di↵erent orientation

fits for the 10 di↵erent S/N bands. This suggests that the inner regions of those clusters

have shapes that are very di↵erent from the outer regions, in other words mass isodensity

twisting. By extracting the halo merger trees of these objects, which shows their formation

history from smaller objects, we can correlate isodensity twisting with clusters that have

gone through major mergers, such that two distinct clusters are no longer distinguishable

on optical images. Hence this investigation of cosmological simulations might enable us to
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Figure 7.3: This shows stacked kappa maps for clusters while aligning their true 3D major
axis. TThe blue, red, and yellow arrows represent the projected 3D major, intermediate, and
minor axes of the moment of inertia of the cluster, respectively, where the 3D lengths are
normalized to the radius of the circle. The longer the arrow, the smaller the angle between
the axis and the lens plane, or x and y-hat directions. The clusters are similar to Figure
7.2, but with their orientation angle set to zero. The stack shows a stronger signal along the
x-axis, where we’d expect a stronger shear signal. Using the shear signal along this axis, we
may get better insight on how clusters are related to filaments.

identify a new means to detect clusters that have undergone major mergers via their lensing

properties.

Along with Victoria Catlett, an undergraduate student at UTD (advised by MF and LJK)

we are investigating how summed neutrino mass a↵ects cluster shapes, assuming fiducial

baryonic physics that best reproduces the observed properties of clusters. We were originally

going to include this study into the Fong, Choi, Catlett et al. (2019) paper but we decided

to make it a separate publication. Using BAHAMAS we have calculated the moment of

inertia tensors at the present day (z = 0) for the most massive 2, 000 clusters, for each of the

runs with neutrino mass of 0.06, 0.12 0.24, and 0.48 eV. With the moment of inertia data

we compare the axis ratios of the clusters in Figure 7.9. This will be the first detailed study

of cluster shapes in cosmological simulations that self consistently include baryonic physics

and massive neutrinos.
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Figure 7.4: These plots show the pixel distance, to a contour value of 0.2, against the angle
starting from the x-axis. For the left panel, this shows that the stack kappa drops to 0.2 at
almost a constant pixel distance from the center. For the right panel, this shows that the
stack kappa drops to 0.2 further out for the angles along the x-direction as opposed the the
others.

Figure 7.5: These plots show the aperture mass signal-to-noise maps of the same cluster,
but with di↵erent aperture mass sizes. The left panel shows an aperture size of 10 arcmin
while the right shows 5 arcmin. If an ellipse is applied to these maps, we may obtain slightly
di↵erent orientation angles. So we will need to study how aperture sizes e↵ects the shape
and orientation of the maps. This can be done by comparing the orientations to the true
orientation values found in Rachel’s work.
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Figure 7.6: This plot shows an example of ellipse orientation fit results for 10 S/N band for
a particular cluster (FoF ID 6). The orientation results vary depending on which S/N band
is used. Note that the S/N values are very large in this example because we are using ideal
shear in this example and not adding any shape noise to the ellipticities before calculating
the aperture mass, or S/N map.

We are currently developing a Python pipeline to fit triaxial mass models to galaxy

cluster data. We will use this pipeline to carry out an analysis of the CLASH sample
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Figure 7.7: A comparison of the orientation angles (colors corresponding to the 10 S/N
bands, See Figure 7.6) and the true projected major, intermediate, and minor axis of the
ellipsoid of the cluster, determined from the moment of inertia (FoF ID 6). In this case most
ellipse orientations do not agree with the projected major axis.

(Postman et al., 2012) using their weak lensing, strong lensing, X-ray, and SZ data. I

am continuing Brandyn Lee’s work on triaxiality, developing Python code that produces
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Figure 7.8: The median angular separation, between the orientation angle and the projected
major axis for the 10 rings, for the most massive clusters. All S/N rings on average have
similar orientation predictability.

a triaxial NFW mass density (Stark, 1977; Binney, 1985; Oguri et al., 2003) to represent

clusters beyond spherical shapes. Brandyn wrote Python code using the MCMC algorithm

to fit over weak lensing data using X-ray, SZ, and strong lensing priors. This can potentially

be a very powerful tool in estimating cluster parameters, being more accurate than the
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Figure 7.9: The contours are the lines of constant distribution density of a/c vs. b/c distri-
butions for varying summed neutrino mass (eV). The values plotted are the contour values.

spherical NFW model. For example, assuming a spherical NFW to fit onto a prolate cluster

can result in a 50% di↵erence in mass (Corless and King, 2007). Examples of the triaxial

NFW for the 3D density, convergence, and reduced shear can be seen in Figures 7.10, 7.11,

and 7.12 respectively. The cluster mass function is sensitive to cosmological parameters.

We will eventually investigate how well spherical vs. triaxial NFW cluster mass fits will do

in deriving the cluster mass function and constraining cosmological parameters �8 and ⌦m.

Although lower mass clusters will be stacked to obtain an average lensing signal, which will

greatly minimize the impact of cluster shape on cosmological parameter determination from
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the cluster mass function, there are other statistics which rely on the most massive rare

clusters where individual triaxial masses with accurate error bars.

Figure 7.10: An example 3D map of the triaxial NFW density. Plotted here is a small band
of density for the triaxial NFW model, shown in blue dots. Projecting the points along
the Z

0
los-direction gives an idea of how the convergence shape should appear on the X 0

los-Y
0
los

plane, shown as orange dots. The dashed lines are the X
0
los, Y

0
los, and Z

0
los the line-of-sight

orthogonal coordinates, and the solid lines are the minor, intermediate, and major axis of
the triaxial halo, xmin, yint, and zmaj respectively. The parameters M200c, c, a, b, ✓,� are the
triaxial NFW parameters. M200c and c are the NFW mass and concentration, a and b are
the minor and intermediate axes scaled by the major axis, ✓ is the angle between Z

0
los and

zmaj, and � is the angle between the projected Z
0
los (onto the xmin-yint plane) and �X

0
los,

where X
0
los is constrained to be in the xmin-yint plane.

The triaxial NFW model has 6 parameters and the time to generate the convergence

and shear is non-negligible. Therefore any tightening on the priors for the MCMC process

will significantly improve our constraints and computation time. In addition to using X-

ray, SZ priors, and strong lensing priors, we can use our work with Peter Gibson on fitting
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Figure 7.11: The convergence of the traixial NFW halo shown in Figure 7.10.

ellipses onto shear maps, to restrict the parameter space being explored. We will eventually

train Peter’s ellipse fitting code onto BAHAMAS clusters incorporating full line-of-sight

structure with specific survey characteristics, as opposed to Cosmo-OWLS clusters, to obtain

appropriate error bars on orientation estimates. These results will then be used to motivate

the uncertainties on CLASH cluster projected orientation angles.

7.2 Other Future Work

Throughout my graduate career, I have worked closely with LSST/DESC. We worked in

the CLMM (Cluster Mass Models) working group to create a module that produces weak

lensing shear profiles for any input spherical mass density profile. The CLMM module will

be developed to fit a large volume of cluster weak lensing data from LSST.
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Figure 7.12: The reduced shear of the traixial NFW halo shown in Figure 7.10.

Now that we have access to BAHAMAS light-cones (where we have also been incorporat-

ing cosmic shear into our results), it will be very interesting to studying how the splashback

radius, rsp parameterized by the DK profile (Diemer and Kravtsov, 2014), changes with

summed neutrino mass. In other words, we can properly study how neutrino mass impacts

on the rates at which matter falls into clusters, or the evolution of clusters. It would also

be interesting to investigate cluster formation and evolution in more detail, in particular the

(average) lensing signatures of clusters in simulations grouped by redshift, baryonic prescrip-

tions, and neutrino mass.

In our work above we study the spherical DK model after stacking weak lensing signals

of many clusters. This gives us an idea of how cluster densities fall o↵ to the mean matter

density of the Universe and tells us the rate at which the clusters accrete matter from their

surroundings. However, if we wish to study clusters in context of the cosmic web, we will

attempt to wedge out the shear signals that aren’t due to the filaments. An issue is that
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the filaments feeding from the web into a cluster have a very small impact on the shear

signal. However, the major axis of clusters tends to align with filaments (Hahn et al.,

2007; Ganeshaiah Veena et al., 2018). So we can boost the signal-to-noise of the shear

due to filaments by aligning the major axes of the clusters and stack their shear signals.

The orientation angle of clusters, as discussed just above, will be crucial in stacking cluster

weak lensing data by their projected major axis. After stacking the shear maps with their

orientations aligned, we will fit the DK profile onto the stacked shear map with alignment to

study the impact on parameters such as the splashback radius along the major axis. This will

tell us how the rate of matter infalling towards clusters major axes (with a higher probability

being along filaments) di↵ers from the general environment.
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E. Suchyta, J. Aleksić, D. Bacon, M. R. Becker, C. Bonnett, S. L. Bridle, C. Chang,
T. F. Eifler, W. G. Hartley, E. M. Hu↵, E. Krause, N. MacCrann, P. Melchior, A. Nicola,
S. Samuro↵, E. Sheldon, M. A. Troxel, J. Weller, J. Zuntz, T. M. C. Abbott, F. B.
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Valentino, J. M. Diego, O. Doré, M. Douspis, A. Ducout, X. Dupac, S. Dusini, G. Efs-
tathiou, F. Elsner, T. A. Enßlin, H. K. Eriksen, Y. Fantaye, M. Farhang, J. Fergusson,
R. Fernandez-Cobos, F. Finelli, F. Forastieri, M. Frailis, E. Franceschi, A. Frolov, S. Gale-
otta, S. Galli, K. Ganga, R. T. Génova-Santos, M. Gerbino, T. Ghosh, J. González-Nuevo,
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straints on the Self-Interaction Cross Section of Dark Matter from Numerical Simulations
of the Merging Galaxy Cluster 1E 0657-56. ApJ 679, 1173–1180.

Riess, A. G., S. Casertano, W. Yuan, L. Macri, J. Anderson, J. W. MacKenty, J. B. Bowers,
K. I. Clubb, A. V. Filippenko, D. O. Jones, and B. E. Tucker (2018, Mar). New Parallaxes
of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications
for the Hubble Constant. ApJ 855, 136.

Sawala, T., C. S. Frenk, R. A. Crain, A. Jenkins, J. Schaye, T. Theuns, and J. Zavala (2013,
May). The abundance of (not just) dark matter haloes. MNRAS 431, 1366–1382.

Schaye, J., R. A. Crain, R. G. Bower, M. Furlong, M. Schaller, T. Theuns, C. Dalla Vecchia,
C. S. Frenk, I. G. McCarthy, J. C. Helly, A. Jenkins, Y. M. Rosas-Guevara, S. D. M.
White, M. Baes, C. M. Booth, P. Camps, J. F. Navarro, Y. Qu, A. Rahmati, T. Sawala,
P. A. Thomas, and J. Trayford (2015, January). The EAGLE project: simulating the
evolution and assembly of galaxies and their environments. MNRAS 446, 521–554.

121



Schaye, J. and C. Dalla Vecchia (2008, January). On the relation between the Schmidt and
Kennicutt-Schmidt star formation laws and its implications for numerical simulations.
MNRAS 383, 1210–1222.

Schaye, J., C. Dalla Vecchia, C. M. Booth, R. P. C. Wiersma, T. Theuns, M. R. Haas,
S. Bertone, A. R. Du↵y, I. G. McCarthy, and F. van de Voort (2010, March). The physics
driving the cosmic star formation history. MNRAS 402, 1536–1560.

Schirmer, M., T. Erben, M. Hetterscheidt, and P. Schneider (2007, February). GaBoDS:
the Garching-Bonn Deep Survey. IX. A sample of 158 shear-selected mass concentration
candidates. A&A 462, 875–887.

Schneider, A. and R. Teyssier (2015, December). A new method to quantify the e↵ects of
baryons on the matter power spectrum. J. Cosmology Astropart. Phys. 12, 049.

Schneider, P. (1996, December). Detection of (dark) matter concentrations via weak gravi-
tational lensing. MNRAS 283, 837–853.

Schneider, P. (2005, September). Weak gravitational lensing. ArXiv Astrophysics e-prints .

Schneider, P., J. Ehlers, and E. E. Falco (1992). Gravitational Lenses.

Schneider, P., L. King, and T. Erben (2000, January). Cluster mass profiles from weak
lensing: constraints from shear and magnification information. A&A 353, 41–56.

Schneider, P., L. van Waerbeke, B. Jain, and G. Kruse (1998, June). A new measure for
cosmic shear. MNRAS 296, 873–892.

Shan, H., X. Liu, H. Hildebrandt, C. Pan, N. Martinet, Z. Fan, P. Schneider, M. Asgari,
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