
School of Natural Sciences and Mathematics

Adiabatically Tuning Quantized Supercurrents
in an Annular Bose-Einstein Condensate

UT Dallas Author(s):

JunpengHou
Xi-WangLuo
KueiSun
ChuanweiZhang

Rights:

©2017 American Physical Society. All Rights Reserved.

Citation:

Hou, Junpeng, Xi-Wang Luo, Kuei Sun, and Chuanwei Zhang. 2017.
"Adiabatically tuning quantized supercurrents in an annular Bose-Einstein
condensate." Physical Review. A 96(1), doi:10.1103/PhysRevA.96.011603

This document is being made freely available by the Eugene McDermott Library
of the University of Texas at Dallas with permission of the copyright owner. All
rights are reserved under United States copyright law unless specified otherwise.



RAPID COMMUNICATIONS

PHYSICAL REVIEW A 96, 011603(R) (2017)

Adiabatically tuning quantized supercurrents in an annular Bose-Einstein condensate

Junpeng Hou, Xi-Wang Luo, Kuei Sun, and Chuanwei Zhang*

Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA
(Received 11 May 2017; published 31 July 2017)

The ability to generate and tune quantized persistent supercurrents is crucial for building superconducting
or atomtronic devices with novel functionalities. In ultracold atoms, previous methods for generating quantized
supercurrents are generally based on dynamical processes to prepare atoms in metastable excited states. Here,
we show that arbitrary quantized circulation states can be adiabatically prepared and tuned as the ground state
of a ring-shaped Bose-Einstein condensate by utilizing spin–orbital-angular-momentum (SOAM) coupling and
an external potential. There exists superfluid hysteresis for tuning supercurrents between different quantization
values with nonlinear atomic interactions, which is explained by developing a nonlinear Landau-Zener theory.
Our work will provide a powerful platform for studying SOAM-coupled ultracold atomic gases and building
atomtronic circuits.
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Introduction. Quantized supercurrents are one of the most
remarkable phenomena of superfluids and superconductors
and have been widely studied in solid-state superconductors
[1] and ultracold atomic gases [2,3]. Such persistent circulation
currents are crucial elements for building many important
devices such as superconducting quantum interference devices
(SQUIDs) [4–6], superfluid gyroscopes [7–9], atomic inter-
ferometers [10–14], and atomtronic circuits [15,16]. These
important applications naturally require the experimental
ability of coherent generation and manipulation of quantized
supercurrents. In this context, ultracold atomic gases possess
intrinsic advantages for unprecedented control of experimental
parameters and the lack of disorder [17].

Great progress has been made recently for generating
quantized circulation supercurrents in a ring-shaped geom-
etry and exploring these properties and device applications
[2,18–25]. So far, two experimental tools have been applied to
prepare quantized circulation currents for an annular Bose-
Einstein condensate (BEC): (i) a short two-photon Raman
pulse with orbital-angular-momentum (OAM) transfer be-
tween two spin states [2,20,21] using Laguerre-Gaussian (LG)
laser beams [26], and (ii) periodic rotation of a local repulsive
potential barrier along a ring [22–25]. These methods involve
a dynamical process to transfer atoms to metastable high
OAM states [see Fig. 1(c)], which could induce complicated
excitations, heating, and decays of the BEC. Therefore, a
nature question is whether quantized supercurrents can be
adiabatically prepared and manipulated as the ground state
of an annular BEC to circumvent these issues.

To prepare a finite OAM circulation state as the ground
state, the OAM needs to be coupled with other degrees of
freedom such as spins, as we see from spin-orbit coupling
[27–34] . Recently, spin-OAM (SOAM) coupling has been
proposed for ultracold atoms using LG Raman lasers with
finite OAM to couple two atomic hyperfine spin states [35–37].
Since OAM is still a good quantum number on a ring, an
external nonuniform potential is needed to induce coupling
between different OAM states.

*Corresponding author: chuanwei.zhang@utdallas.edu

In this Rapid Communication, we show that the combina-
tion of these two ingredients, SOAM coupling and nonuniform
potential, allows adiabatic preparation and control of quantized
supercurrents with arbitrary OAM as the system ground state
in a ring-shaped BEC. Our main results are as follows:

(i) A circulation state with arbitrary OAM can be generated
on demand with a high precision from a nonrotating state at a
time scale ∼10h̄/ER , where ER = h̄2/2MR2 is the energy
unit defined by atomic mass M and ring radius R. Large
interaction strengths or OAM states shorten the time required
for the adiabatic process. Such a circulation state carries both
nonzero particle and spin supercurrents. Because the adiabatic
preparation process is free from complicated excitations and
the system is on the ground state, the generated quantized
supercurrents are stable against heating and decaying of
the BEC. Our adiabatic process with ground-state quantized
supercurrents thus provides a completely different route from

FIG. 1. (a) Experimental scheme to generate a SOAM-coupled
ring BEC with copropagating LG beams. (b) Raman transition
induced by the LG beams. (c) Schematic plot of the energy spectrum
vs average quasi-OAM number m with and without Raman coupling
(solid and dashed curves, respectively). The energy barriers between
integer m are due to nonlinear interactions. Green (red) circles denote
ground (excited) states. Previous experiments using a Raman short
pulse dynamically excite the BEC to an upper metastable state (dashed
arrow) [2,20,21], while in our scheme the system remains on the
ground state during the adiabatic process (solid arrows).
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previous schemes using dynamical process and metastable
excited states [2,20–25] .

(ii) The tuning of supercurrents between different circula-
tion states strongly depends on the interatomic interaction and
nonuniform potential, which, in a proper parameter region,
possesses superfluid hysteresis.

(iii) We develop a nonlinear Landau-Zener theory to explain
the observed adiabatic preparation and superfluid hysteresis,
which exhibits a swallowtail energy structure due to nonlinear
interactions.

Model and Hamiltonian. We consider an atomic BEC
with two internal spin states (ψ↑ ψ↓)T , subject to
a pair of copropagating vertical LG beams with op-
posite OAM number ±l [see Fig. 1(a)] and �±(r) =
�0(

√
2r
w

)
|l|

exp (− r2

w2 ± ilφ − ikLz), where (r,φ,z) are cylin-
drical coordinates, and �0, w, and kL are the beams’ amplitude,
waist, and wave vector in the ẑ direction, respectively. The
LG beams induce a Raman transition [as in Fig. 1(b)]
that generates the SOAM coupling [35–37]. An additional
far-detuned vertical LG laser with the same beam waist
and OAM provides the tube potential around the maximum
beam intensity r = √

l/2w and a horizontal “sheet” beam
provides the confinement along the z direction [21]. To-
gether, the SOAM-coupled BEC is confined on an annular
geometry of a fixed radius R and can be described by an
effective single-particle Hamiltonian [35] in units of ER and
h̄ (=1) as

H
ring
0 = −∂2

φ + (2il∂φ + δ/2)σz + �σx, (1)

plus interatomic interactions. Here, δ is the Zeeman detuning,
� is the Raman coupling strength, and {σ } are the Pauli
matrices.

The Hamiltonian has two energy bands. The eigenstates
of the lower band are plane waves in the φ̂ direction
|m〉 = (cos θm, − sin θm)T eimφ , where m is an integer due to
the periodic boundary condition. Note that m represents a
quasi-OAM quantum, while the up and down components
have real OAM ∝ (m ∓ l) [35], respectively. In other words,
the |m〉 state physically carries the quantized particle super-
current Jc(m) = m − l cos 2θm and spin supercurrent Js(m) =
m cos 2θm − l. The ground-state supercurrent configurations
change with �. Given δ = 0 and � = 0, the lower band has
two degenerate minima at m = ±l [as in Fig. 1(c)]. As �

increases, the double minima shift toward each other and
merge at m = 0 when � = 4l2 − 1, above which the band
has a single minimum m = 0. In the double-minima region,
any pair of | ± m〉 states exhibits a Z2 symmetry by having
opposite spin polarization 〈σz〉 = cos 2θm, opposite Jc, and
the same Js . Below, we focus on the plane-wave state with
m � 0.

Preparation of quantized supercurrent. To create the ground
state or manipulate the supercurrent circulation in the ring
system, one may properly tune � to load the BEC at a desired
quantum m, as it naturally pursues the energy minimum.
However, there are two issues preventing this. First, all m

states are stationary states and do not couple to each other,
so a high-m state can have a very long lifetime. Second, a
smooth transition between adjacent m states encounters an
energy barrier induced by an interatomic interaction, which

FIG. 2. Time evolution of the BEC’s population at |m〉, or Pm,
under the simultaneous increase in � and decrease in V (solid
and dashed curves in the inset, respectively). (a) Loading the BEC
to |0〉 from an initially prepared state with potential VM = 3. The
system parameters are l = 1, �M = 3, g↑↑ = 15, and g↓↓ = g↑↓ =
0.9954g↑↑. (b) Loading to |9〉 with higher LG beams l = 10 and
stronger �M = 70 in a similar procedure. (c) Same initial state as (b),
but the BEC transfers across multiple states to |5〉 (with �M = 180).
(d) Same as (c) except stronger g↑↑ = 60 and VM = 15.

takes the form of

Eg = 1

2π

∫ 2π

0
(g↑↑|ψ↑|4 + g↓↓|ψ↓|4 + 2g↑↓|ψ↑|2|ψ↓|2)dφ.

(2)

In Fig. 1(c), we schematically plot the system energy versus
expectation value of m for a superposition of two adjacent
|m〉 states. The ripples reflect the interaction effects: The local
minima correspond to pure |m〉 states, while the local maxima
correspond to the equal superposition of two adjacent |m〉
states, which possess density modulations that cost interaction
energy.

To assist the BEC to overcome the barrier and move
toward a lower-energy state, it is essential to trigger sufficient
coupling between adjacent |m〉 states. We propose the use
of a linear external potential Vext = V (t)x/R = V (t) cos φ,
which couples two states as 〈m| cos φ|m ± 1〉 = 1

2 〈m|eiφ +
e−iφ |m ± 1〉 
= 0. Such a potential has already been experi-
mentally applied to annular BECs without SOAM coupling
[38]. In addition, one can use the linear slope around x =
0 for a Gaussian laser V (x) = V0 exp [−(x − ξ )2/2ξ 2] ≈
V0 exp (−1/2)(1 + x/ξ ) with ξ � R. We propose a process
of tuning both � and V simultaneously, as illustrated in
the inset of Fig. 2(a), and simulate the system evolution
with the time-dependent Gross-Pitaevskii equation (GPE).
Initially, the BEC is prepared in the presence of external
potential V (0) = VM. The Raman coupling � is then slowly
ramped on to shift the band minimum, while V is gradually
turned off to suppress the coupling. Finally, at �(t) = �M and
V (t) = 0, the BEC stays in the new ground state, the targeted
single-m state, which decouples from the others and carries
the aforementioned particle and spin supercurrents.

Our simulation of four different cases is presented in
Fig. 2. We plot the BEC’s population Pm at several associated
m states as a function of time. In Fig. 2(a) for l = 1, the
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FIG. 3. The inner panel shows the time procedure of �(t) (solid
curve, right axis) and V (t) (dashed curve, left axis) for studying the
superfluid hysteresis. The Raman coupling �m (�M) corresponds
to the ground state being |3〉 (|2〉). (a)–(d) Time evolution of the
expectation value 〈m〉 shows no transition at VM = 0.2, single-side
transition at VM = 1.6, a hysteretic loop at VM = 1.8, and a loop
without hysteresis at VM = 3, respectively. The forward evolution
(orange curve) starts from |3〉, and the reversal (blue curve) starts
from |2〉, with both directions indicated by the arrows.

BEC starts from a |1〉 dominant state and ends at an almost
single-m state, |0〉, demonstrating an effective transfer between
adjacent states. Although the initial state also couples to |2〉,
the BEC clearly pursues the lower-energy state |0〉. In general,
higher-energy states are hardly involved during the transition.
The same procedure can be applied to a large l = 10, as
shown in Fig. 2(b), where only �M is changed for the desired
band minimum. The system actually undergoes a smoother
transition with a shorter transition time for a large l. Using the
same strategy, one may possibly reach any m state (0 � m � l)
by repeating the � and V cycle to lower the m number one
by one. However, such a transfer, e.g., from |10〉 to |5〉, can be
achieved with a single process and hence in a shorter time [see
Fig. 2(c)]. The BEC passes through multiple m states with each
intermediate m state dominating in a narrow time window,
and stops at the final m state. In Fig. 2(d), we quadruple
the interatomic interaction and increase VM accordingly to
overcome the interaction energy barrier. The transition goes
more smoothly and the transition time is significantly shorter.

Superfluid hysteresis. Hysteresis is a hallmark phenomenon
of quantized supercurrents [16,39,40], and recently a hystere-
sis loop for supercurrent jumps in an annular BEC has been
observed in experiments, where a periodically rotating local
laser barrier is used to induce the transition [25]. In our system,
the supercurrent change is driven by the SOAM coupling
to change the ground state, which, unlike the local laser
barrier, acts on the whole system uniformly. Below, we will
show the existence of superfluid hysteresis using numerical
GPE simulation (Fig. 3), followed by developing a nonlinear
Landau-Zener theory [41–43] to explain the physics, where
a swallowtail band structure is ascribed to the origin of the
observed hysteretic phenomenon.

The time procedure of �(t) and V (t) in our simulation is
illustrated in the inset of Fig. 3(a). In the forward evolution,

( )
( )

( )

( ) ( )

FIG. 4. (a1) Schematic plot of the double-well structure of the
system in the phase space, characterized by the energy difference
between the two minima ��, barrier height �V , and hopping
strength hV . (a)–(d) Energy band structure during the evolution in
Figs. 3(a)–3(d), respectively. The green and red curves represent the
band minima and maxima (or saddle points), respectively. The arrows
indicate the evolution direction, same as in Fig. 3, and the dashed lines
indicate the sudden jump to ground states. (c) is rescaled to emphasize
the swallowtail structure.

�(t) linearly increases from �m to �M with the initial
ground state prepared at �m, while V (t) is turned on up
to the maximum VM and then symmetrically turned off. In
the backward evolution, �(t) and V (t) take the time-reversal
path, with the initial ground state prepared at �M. Since V (t)
is the key ingredient that induces the transition, we expect
that it plays a crucial role on the hysteresis phenomenon.
In Figs. 3(a)–3(d), we plot the expectation value 〈m〉 for
transitions between |2〉 and |3〉 at various VM. At weak
VM = 0.2, there is no transition [Fig. 3(a)]. At VM = 1.6
[Fig. 3(b)], the system cannot jump from |3〉 to |2〉 before
the coupling is turned off, leaving the path unclosed. With the
increase of the potential to VM = 1.8 [Fig. 3(c)], a two-way
transition happens with a clear hysteresis loop. At a strong
VM = 3 [Fig. 3(d)], the coupling completely overwhelms the
barrier, and the loop becomes trivial, as the system follows the
same path forward and backward.

The above observed phenomena can be intuitively illus-
trated from a double-well energy structure [Fig. 4(a1)] in a
proper phase space of parameters of the system. Initially, BEC
always stays in one of the minimum (ground state). During the
evolution, the energy difference �� between the two minima
changes with �(t), while the barrier height �V is determined
by the interaction and V (t). If VM is sufficiently weak, the two
minima are well separated by the barrier, and the hopping
hV is not strong enough to overcome it. As a result, the
BEC is trapped in one minimum without any transition. As
VM increases, the minimum on which the BEC originally
stays disappears during the process, and the BEC jumps
to the other minimum. Such an evolution is not symmetric
in the time-reversal path, leading to the hysteretic behavior
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[Fig. 3(c)]. If VM is strong, the initial minimum continuously
evolves to the final minimum, and vice versa, resulting in the
trivial loop [Fig. 3(d)].

This intuitive picture is confirmed by developing a nonlinear
Landau-Zener theory for our system. As shown in Fig. 2,
the transition process between |m〉 and |m − 1〉 barely in-
volves other higher-energy states, which allows us to build
an effective Hamiltonian in a truncated space spanned by
two relevant quasi-OAM and two spin states. The system’s
wave function is determined by four complex amplitudes as(a1
a2

)
ei(m−1)φ+(a3

a4

)
eimφ , subject to a normalization condi-

tion
∑4

j=1 pj = 1 with pj = |aj |2.
Following the general formalism for nonlinear Landau-

Zener tunneling [42,43], we construct a semiclassical Hamil-
tonian with canonical coordinates (qj = arg aj ,pj ),

H = (l−m+1)2p1+(l−m)2p3+(l + m − 1)2p2+ (l + m)2p4

+2V [
√

p1p3 cos(q1 − q3) + √
p2p4 cos q2]

+ 2�[
√

p1p2 cos(q1 − q2) + √
p3p4 cos q3]

+ (g/π )[p1p3+p2p4+√
p1p2p3p4 cos(q1−q2−q3)],

(3)

with the global phase fixed q4 = 0 and g = g↑↑ = g↓↓ = g↓↑.
For each �(t) and V (t) during the transition, we can find

a global energy minimum (ground-state energy) in the phase
space formed by six parameters (pi,qi) (i = 1,2,3). There also
exist other interaction-induced local energy minima, as shown
in the energy structure in Figs. 4(a)–4(d), with parameters
corresponding to Figs. 3(a)–3(d), respectively. In particular,
a double-well structure with the emergence of two energy
minima similar to Fig. 4(a1) is observed in the phase space
(see the Appendix B), which confirms the above intuitive
explanation of the hysteretic behavior. Because of multiple
local energy minima for the same parameter, the energy band
structure in Fig. 4 shows a swallowtail shape in the proper
parameter region. In Fig. 4(a), two bands simply cross and
both minima survive during the procedure. As a result, the
condensate remains on its initial minimum, which ends as a
metastable state, without undergoing a transition [Fig. 3(a)].
With a larger potential [Fig. 4(b)], only the left-hand-side
band minimum breaks. Therefore, when starting from |2〉, the
minimum disappears after the cross, forcing BEC to drop to
the ground state. This result agrees with the GPE simulation
in Fig. 3(b). With a deeper trap, the breakdown of the band
minimum is symmetric [Fig. 4(c)], therefore abrupt changes
in 〈m〉 happen in both directions, yielding the hysteresis loop
observed in Fig. 3(c). After VM exceeds some critical value,
the barrier vanishes and the BEC always stays on the ground
state [Fig. 4(d)]. Therefore, the system follows exactly the
same path during the evolution as observed in Fig. 3(d). Our
quantized supercurrent preparation should use this parameter
region.

Experimental consideration. In experiments, we can con-
sider a 87Rb gas [22,23] trapped in a ring of radius R = 8 μm,
and use LG beams l = 10 [20]. The energy unit ER = 2πh̄ ×
0.924 Hz. For the transition procedure (|10〉 to |5〉) shown in
Fig. 2(d), �M = 2πh̄ × 166 Hz, VM = 2πh̄ × 14 Hz, and the
overall time length T = 3.4 s. For a small Raman coupling

strength �M around 1 kHz, the heating effect can be neglected
within a time scale of a few seconds [44]. Considering the same
configuration but with 23Na [45], the parameters become ER =
2πh̄ × 3.434 Hz, �M = 2πh̄ × 618 Hz, VM = 2πh̄ × 52 Hz,
and T = 0.9 s.

Conclusion. We have proposed a method to adiabatically
prepare and tune arbitrary quantized circulation states as
the ground states of an annular BEC, which carry both the
quantized atom and spin supercurrents. The whole procedure
can be achieved at a time scale ∼10h̄/ER with a satisfactory
fidelity. Our system provides a powerful platform for study-
ing phenomena and applications of quantized supercurrents,
exploring the physics of SOAM-coupled atomic gases, and
building atomtronic devices with relevant functionalities.

Acknowledgments. This work is supported by AFOSR
(FA9550-16-1-0387), NSF (PHY-1505496), and ARO
(W911NF-17-1-0128).

APPENDIX A: TIME SCALE OF THE
ADIABATIC PROCESS

For the adiabatic process given in Fig. 2(a), VM should be
strong enough to overcome the energy barrier to obtain the
desired final state. Therefore, a larger VM is required for a
stronger interaction with a rough linear relation as shown in
the inset in Fig. 5(a). The red dots show the minimum values
of VM to achieve a smooth transition between different |m〉
states, where the energy minima for adjacent |m〉 states are
smoothly connected.

The required time length of the adiabatic process is closely
related to the choice of the adiabatic path in the parameter
space. If the overall time length T is too small, excitations are
involved during the process, and consequently the transition is
imperfect. Figure 5(a) illustrates the relations between fidelity
and overall time length (T ) of the process in Fig. 2(a). The
fidelity is defined as the modulus square of the overlap between
the final state and the target state. As T decreases, excitations
and their interference with the ground state lead to the fidelity
oscillation near T = 7.5, and the adiabatic approach breaks
down below the time length T = 7, where a sudden drop of
the fidelity occurs.

For nonlinear quantum problems, the adiabaticity is also
related to the fundamental frequencies of periodic orbits
around the energy minima. These frequencies can be calculated
by linearizing the semiclassical Hamiltonian Eq. (3) around
the energy minima. One should expect to have three pairs

FIG. 5. (a) Final-state fidelity vs the overall time length. The
inner panel gives the minimum VM required to induce a smooth
transition. (b) Fundamental frequencies of the periodic orbits at the
energy minimum. All the parameters are the same as in Fig. 2(a).
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FIG. 6. Phase space portraits. Each panel contains three equal-
energy surfaces, given by (−10.41, − 10.38, − 10.3) in (a),
(−10.83, − 10.8, − 10.5) in (b), (−11.1, − 11.05, − 10.9) in (c),
and (−11.64, − 11.62, − 11.55) in (d). The red arrows denote the
approximate positions of the minima.

of frequencies (ω1,ω2,ω3) since the degrees of freedom is 6.
Figure 5(b) shows how these fundamental frequencies vary

with time during the adiabatic process shown in Fig. 2(a). The
minimum frequency is about 1, indicating that the overall time
length should be much longer than 1 to avoid excitations of
such periodic orbits. For the processes shown in Figs. 2(a) and
3(d), the energy minimum is far away from any energy maxima
in the phase space, therefore the time scales of the adiabatic
processes are determined by the fundamental frequencies, as
confirmed by the results shown in Fig. 5(a). For the hysteresis
process, the adiabaticity breaks down and our simulation
suggests that a longer time is always preferred to get a smoother
hysteresis loop.

APPENDIX B: ENERGY MINIMA IN THE PHASE SPACE

We project the whole phase space to a three-dimensional
(3D) subspace spanned by (p1,p2,p3) to visualize the energy
minima since the minima always satisfy q1 = 2π , q2 = π , and
q3 = π . At t = 66, there is only one minimum that gives the
ground state, as shown in Fig. 6(a). As we change � and V ,
a second local minimum appears [see Fig. 6(b) at t = 73],
accompanied by the emergence of a local maximum. Though
the second minimum may have a lower energy, the BEC will
stay at the first minimum [see Fig. 6(c) at t = 77] until it
merges with the maximum and disappears, after which the
BEC flows towards the second minimum [see Fig. 6(d) at
t = 85]. Those phase-space portraits provide us with a clear
picture of the physics behind the hysteresis and also confirm
our intuitive explanation in Fig. 4(a).
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