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i3DTI: INTERACTIVE 3D TELE-IMMERSION

Suraj Raghuraman, PhD
The University of Texas at Dallas, 2017

Supervising Professor: B. Prabhakaran, Chair

3D Tele-Immersion (3DTI) approaches offer collaborative augmented virtuality, by immers-

ing multiple geographically distributed users in a single virtual world. Multiple cameras are

used to capture remote users and reconstruct their 3D models, to be rendered in the virtual

world. Large volumes of noisy data, captured by the cameras, are cleaned, processed, trans-

mitted, and rendered every frame. The complexities in processing and large transmission

payloads result in high latency, low frame rate rendering, leading to very limited interac-

tions between the users of the system. Interactive 3D Tele-Immersion (i3DTI) systems allow

geographically distributed users to be immersed in highly engaging and interactive virtual

worlds.

This dissertation presents a set of novel approaches, that improve the quality and perfor-

mance of all of the stages of an i3DTI application. An image based meshing approach reduces

the time taken for the 3D reconstruction of the captured data, to less than a millisecond. To

ensure low latency even over the internet, a skeleton based prediction strategy is presented,

that reduces the quantity of data transmitted per frame to just a few hundred bytes, while

still maintaining good quality rendering. Naturalistic full body interactions, based on the

skeleton that is estimated using multiple RGB-D cameras, keeps the users engaged while

using the system. Current 3DTI systems use internal clocks to measure the latency expe-

rienced by the users, while ignoring the time for capture, rendering, screen refreshing, etc.
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Two novel, millisecond accurate approaches, for measuring the latency felt by the user, are

presented. One of the approaches measures the latency across the internet while the system

is not actively in use, and the other measures the local latency while the system is in use. All

of the approaches are implemented as a framework in a highly scalable, performance opti-

mized, easy to use, and extendable architecture. Multiple applications, catering to domains

from Tele-Medicine to education, were created using the framework. The patient trials of

a remote patient diagnosis system, that was implemented between two geographically dis-

tributed locations using the i3DTI framework, was highly appreciated by the users; and the

remote patient diagnosis was highly correlated to the in-person diagnosis.
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CHAPTER 1

INTRODUCTION

All of the communication on the internet today is based on either text, audio, or video. Au-

diovisual communication restricts the users to a fixed visual point of view, while interacting

with each other. This fixed point of view limits the level of user engagement, and the possi-

ble modes of communication between the users. Collaborative Augmented Virtuality (CAV)

systems immerse multiple geographically distributed users into a single environment, that

combines both virtual and real world elements. These CAV systems enable users to commu-

nicate among themselves, using newer modalities that go beyond the traditional multimedia

modalities of text, audio, and video. With the continuous improvement of technologies like:

head mount displays that provide a new way of viewing the virtual world, haptic devices that

provide a sense of touch and force feedback, body sensors that can measure various aspects

and also provide tactile feedback, digital scent technologies that can detect and recreate

odors, and gustatory technologies that provide a virtual sense of taste, etc., CAV systems

facilitate much greater degrees of interaction and create a far better experience for the users.

1.1 3D Tele-Immersion

3D Tele-Immersion (3DTI) systems try to actualize CAV, by capturing and transporting

users from different locations into a single virtual world, where they are represented by their

own ”live” avatars, as shown in Figure 1.1. To show these ”live” 3D models, 3DTI systems

surround and capture the user, with multiple calibrated cameras. All of the cameras capture

the user at a minimum of 30fps, and in every frame, a 3D model of the user is reconstructed,

using the captured data. The model is then transmitted over the internet, to all of the other

users that are co-present in the 3DTI session. The 3D model of every user is rendered in the

virtual world, that is being displayed to each user, creating an illusion of co-presence. On
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Figure 1.1. The real world user, captured using multiple Kinect V2 cameras (left), and
rendered in a virtual world (right).

average, a RGB-D camera, such as a Kinect V2, generates about 6MB of data per frame,

for a good quality reconstruction; a typical 3DTI system uses at least 4 cameras, leading

to about 24MB of data per frame. Transmitting 24MB of data per frame, at 30 frames

per second, is challenging, even over a local gigabit Ethernet. The level of noise and the

complexities of reconstruction, using traditional approaches, lead to a few 100ms of latency

per frame, for just the processing alone. The combination of processing and transmission

delays cause considerable latency for the users, triggering user dissatisfaction. The high

latency, and heavy processing costs of 3DTI also restrict the rendering quality of, and user

interactions with, the virtual world; these complications limit most 3DTI applications even

further, by making the use or enjoyment of the system unrealistic for a majority of users.

Thus, traditional 3DTI systems fail to accomplish the principles of CAV, while achieving an

acceptable level of user satisfaction.

1.2 Interactive 3D Tele-Immersion

To better accomplish the principles of CAV while attaining a high quality user experience, the

novel concept of interactive 3D Tele-Immersion (i3DTI) is introduced in this dissertation. An

i3DTI system brings users, from different parts of the world, together into a highly interactive
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virtual world. The endless creative renderings possible in the virtual world, combined with

the superior level of interactions, deliver the user into a new world, where they star in a

realistic live game, while the real world fades away around them. The users of the i3DTI

systems interact with the virtual world naturally, using their entire body, just as they do in

the real world.

1.2.1 i3DTI Minimum Performance Requirements

In order to provide the best possible user experience, an i3DTI application needs to at least

meet, if not exceed, certain minimum performance requirements:

1. For a better viewing experience, the motion picture group recommends a minimum

frame rate of 24 fps, for all videos containing speech and audio, and 16 fps for videos

without audio. While i3DTI applications can exist, without necessitating any verbal

interaction with the user, it is counter-intuitive to create such an application given the

collaborative nature of i3DTI systems; i3DTI systems need to provide higher frame

rates, of at least 24 fps for the use of ”live” 3D avatars, while ensuring an above

average viewing experience for the users.

2. According to the online gaming community, a ping of over 120ms leads to noticeable

lag and a poor gaming experience. The i3DTI system need to have a latency of less

than 120ms, to keep the user engaged in highly interactive virtual worlds. exceptional

3. In order to maintain the high level of performance, the i3DTI framework should have a

massively distributed and parallel architecture. The i3DTI framework should be easily

expandable, allowing quick and easy additions of new algorithms, devices, modalities,

etc., without the need for extensive code additions or rewrites. The i3DTI framework

should be easy to use, and allow developers, with limited coding skills and experience,

to be able to create an i3DTI application.
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1.3 Contributions

An i3DTI system incorporates technologies from the fields of computer vision, machine

learning, networking, computer graphics, parallel computing, real-time systems, computer

architecture, software architecture, big data, queuing theory, etc. To improve the perfor-

mance of the 3DTI system on a massive scale, while reducing the resource usage, requires

completely new, innovative, and ingenious approaches at problem solving. The entire i3DTI

system was completely broken down, in an attempt to identify potential pressure points and

performance bottlenecks. Instead of relying on existing established techniques for performing

standard tasks, methods were considered, or disregarded, primarily based on performance.

This process of elimination resulted in the identification of some new problems, and em-

phasized the necessity for faster solutions to existing problems. While the focus was on

accomplishing the goal of creating an i3DTI system, many of the novel approaches presented

in this dissertation have theoretical foundations, and have wide ranging implications in their

corresponding fields. The main scientific contributions of the dissertation are:

• A fast, accurate and robust calibration technique, that can calibrate multiple cameras

simultaneously to a single common space. Minor modifications to the technique enable

the cameras to be calibrated, with any visible sensor.

• A distributed parts based image domain 3D reconstruction and rendering approach

that can render a 3D model of an entire scene, captured using multiple cameras within

a millisecond. The representation of the 3D reconstruction problem in the 2D image

domain, where even complex time consuming operations, like mesh decimation, are

solved in less than a millisecond.

• A real time skeleton pose detection approach based on the joint estimations from

multiple sensors. The probabilistic joint model that allows the use of any sensor that

is providing joint estimation, to boost the Kinect skeleton accuracy.
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• An accurately scaled collider based whole body collision model based only on the

skeleton.

• A low latency over the internet prediction based communication scheme for transmit-

ting live 3D models. The approach relies on previously received mesh, and on few bytes

of indicator data every frame, to render reasonably accurate live 3D models.

• Better quality low latency over the internet skeleton based multiple mesh prediction

scheme for transmitting live 3D models. Distortion Score is used to measure the

artifacts associated with animating a mesh.

• An approach to generate visually realistic forged color, depth, and 3D mesh streams,

containing manipulations of people’s actions.

• A fully automated accurate visual latency estimation approach for geographically dis-

tributed captures to render systems.

• A fully automated accurate (within 1ms) estimation of capture to display the latency

for a visual system, using a strobe light.

1.4 Dissertation Overview

The dissertation is logically organized into four parts with each of the parts containing

multiple chapters. The first part, Look and Feel, details all of the approaches that are

involved from the calibration of the cameras to the rendering of the live 3D user model at

high frame rates, with very low latency and low resource utilization. The techniques that

enables fast full body interactions with virtual world objects are also explained here.

The second part deals with data communication over the internet, and describes novel

methods that can transmit and render a ”live” 3D user model within milliseconds, even at

network speeds of less than 1Mbps. The possibility of creating malicious data streams using
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a communication approach is examined in detail, and a forgery detection method is also

presented.

The third part, Visual Latency, presents innovative methods for measuring the true visual

latency that is observed by the user, while using the system both locally, and over the inter-

net. We present a study that highlights the importance of visual quality and responsiveness

to the users of an i3DTI application.

The final part, Applications, showcases a real world i3DTI tele-health application, and

traces the evolution of the i3DTI framework, using a few selective applications that were

developed using the framework, throughout the years.
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PART I

LOOK AND FEEL
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The most processing intensive part of the entire i3DTI system is the 3D reconstruction

and rendering of the user in the virtual world, while allowing whole body user interaction

every frame. The approaches described here focus on the high quality visualization, and

realistic interactions for the user in the virtual world.

Chapter 2: The cameras used to capture the user need to be calibrated with each other,

to ensure the accurate 3D reconstruction of the user. The ball calibration approach uses a

spherical object to simultaneously cross calibrate all of the cameras in the scene. All of the

cameras can be calibrated using the ball approach in a couple of minutes, compared to the

hours taken by the other approaches.

Chapter 3: The data captured by the cameras contains the entirety of the scene, and is

prone to noise. Filters and segmentation approaches are used to reduce the noise, and isolate

the user from the captured images. The 3D surface reconstruction approach described in

the chapter, simultaneously reconstructs the captured data, while reducing the number of

triangles used for the mesh representation. This optimized representation reduces the size

of the mesh, allowing for faster network transmission and higher frame rate rendering of the

virtual world.

Chapter 4: i3DTI applications allow for natural full body interactions in order to

maximize the user’s level of engagement and overall satisfaction; by allowing the user to use

only their body instead of external devices, like keyboards, mouse devices, etc., it simplifies

user interaction, and makes the virtual world experience more realistic. Rather than relying

on the complete 3D reconstruction of the person for these interactions, a skeleton based

approach is proposed, to improve both the quality and responsiveness of the virtual world

interactions for the user. In this chapter, we present multiple approaches that can be used

to accurately estimate the skeleton of the person, using different modalities. The skeleton

pose detection approaches all use Kinect cameras, and are augmented with more cameras,

body sensors, or haptic devices to improve skeleton accuracy significantly, even in situations

with heavy occlusion.
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CHAPTER 2

CALIBRATION

3D capture and immersion technologies (Izadi et al., 2011; Raghuraman et al., 2012; Kurillo

and Bajcsy, 2013) use multiple cameras to capture a scene, or object, for reconstruction. 3D

reconstruction of real world objects requires capturing the object using multiple cameras.

The availability of commodity RGB-D cameras, such as Kinect V2, that can capture range

images, has become a lot more affordable, resulting in a lot of research in the field. Accurate

reconstruction requires both intrinsic calibration of the camera, and the extrinsic calibration

between cameras. While the intrinsic calibration remains unchanged for a given camera, the

extrinsic calibration changes whenever the camera is moved.

There are many methods to calibrate color cameras, both intrinsically and extrinsically.

These methods have been extended to work with RGB-D cameras, by calibrating the color

and the depth sensors with each other. Since they use a plane of some sort to calculate

the reference points, these methods can typically calibrate two RGB-D sensors at a time.

Calibrating a scene with multiple cameras, requires repeating the same calibration procedures

between all pairs of adjacent cameras. This repetitious process is often time consuming, and

leads to error propagation between cameras when the entire scene is calibrated. Procedures

like bundle adjustment, and using a single reference camera to calibrate all other cameras

to, are used to overcome error propagation. In spite of these efforts, achieving accurate

calibration is still difficult and time consuming.

The Ball Calibration (BC) method introduced in this paper, can calibrate a scene with

multiple cameras together, accurately in less than a minute. BC uses only the depth image to

calibrate, eliminating the error propagation from the color and depth sensor calibration. A

ball, or spherical object, is used for calibration instead of the plane, to allow all the cameras

in the scene to simultaneously capture the ball; this not only reduces the total time taken

to calibrate all the cameras, but also reduces the propagation of calibration errors between
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Figure 2.1. Reconstructed scene with a person captured with 7 Kinect V2 sensors, and
calibrated using ball calibration.

cameras. The final calibration is estimated pair-wise between cameras, using (Umeyama,

1991). In situations where the cameras cannot track the ball at the same time, due to

range or orientation reasons, a registration propagation strategy is proposed to minimize the

calibration errors between the two cameras. BC was able to calibrate a scene with 7 Kinect

V2 sensors in under 3 minutes, without any manual intervention, except for moving the

ball. A scene reconstructed with the calibration of the sensors is shown in Figure 2.1. The

main contributions of our work are: A sphere based point acquisition strategy for accurate

registration. A method for using the acquired points to calibrate all cameras in the scene at

the same time. A propagation strategy to allow calibration of distant cameras with lesser

error propagation, due to miscalibration of individual camera pairs.

2.1 Related Work

There has been a lot of research in the field of camera calibration over the years. In this

section, we primarily focus on work used to calibrate RGB-D cameras, especially the Kinect.
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A checkerboard pattern based calibration method was introduced by (Zhang, 2000). The

checkerboard pattern is printed on a plane and shown to the cameras. The method uses

the points, at the corners of the white and black squares, to identify point correspondence

between the cameras. For calibrating the Kinect, either the infrared image from the Kinect

is used, or the color cameras are calibrated with each other, and the depth cameras are

calibrated with the color cameras using the infrared image. Due to the various cross cali-

brations involved, the process is time consuming and susceptible to inaccurate calibration,

requiring re-calibration at various steps. An extra overhead Kinect was used by (Maimone

et al., 2012) to minimize the propagation error, by calibrating all the other Kinect sensors

with the overhead Kinect.

An intersection of plane based calibration method was proposed by (Auvinet et al., 2012).

A plane whiteboard is shown to the camera, and rotated in an orthogonal manner on all three

axes. The plane is tracked using a color detector. The points on the plane are fit to a plane

model, and the intersection of these planes is used as the reference point between cameras.

This is a very time consuming process, requiring accurate color to depth calibration and

plane rotation. The result depends on the angles between the cameras and the real world

board plane used. Methods based on the corners of the board (Beck and Froehlich, 2015;

Herrera et al., 2012; Li et al., 2013) have also been proposed, but are influenced by edge

noise, leading to poor calibration.

A 3D reconstruction approach based on block patterns was proposed by (Kowalski et al.,

2015). The block pattern is printed on a plane and shown to the cameras. The approach

can calibrate multiple Kinect V2 cameras, by calibrating their individual color cameras.

Since the method may not be accurate due to the cross calibration between color and depth,

Iterative Closest Points (ICP) is used to calibrate the Kinect V2 cameras for better results.

While this method takes less time to calibrate, its calibration is not very accurate.

A color to depth calibration for the Kinect V1 sensor was proposed by (Staranowicz et al.,

2013). A spherical object is shown to the Kinect, and detected on both the color and depth
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images. An ellipse is used to track the object in the color image, and a RANSAC detector

is used to track the object in the depth image. The center of the circle (depth) and ellipse

(color) are used for calibration. This method was shown to be very effective in calibrating

the color and depth cameras of the Kinect. However, this method cannot directly be applied

to multiple Kinect calibration, due to its planar point selection scheme.

2.2 Ball Calibration

Calibrating multiple depth cameras requires the identification of some point correspondence

between each of them. The Ball Calibration (BC) uses a ball to attain the point correspon-

dence required to calibrate the scene. Using the ball ensures that all cameras can visually

see the object, as long as the ball is placed inside the common scene that is captured by

all the cameras. The center of the ball is used as the correspondence point between the

cameras, to calibrate them. The actual calibration is performed for all pairs of cameras,

on a pair by pair basis, using Horn’s method (Horn et al., 1988). In situations where the

overlap of the capture area between 2 cameras is small, instead of relying on or waiting for a

fixed number of points to be captured, the calibration is propagated between the 2 cameras,

using the calibration results of the cameras in between them. At the end of the procedure,

all cameras are calibrated with each other, either directly or by a calibration propagation,

to yield accurate spatial reconstruction.

2.2.1 Point Selection

BC uses the center of the ball to identify point correspondences between cameras. In order to

automatically identify and select these points, both of these things need to happen: the ball

needs to be detected and its’ center accurately estimated. Ensuring correspondence requires

that the cameras capture the scene at the same time, and have the ball clearly visible. Since
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Figure 2.2. Various stages of foreground extraction from left to right: original depth image,
depth image after pre-processing, average background and the extracted foreground.

the Kinect V2 sensor does not allow triggered image capture, it is ensured that the images

are at most one frame apart (approximately 30ms).

The depth image captured by the Kinect V2 contains a lot of salt and pepper noise,

noises around object edges, and holes. The Kinect V2 sensor has a range of about 5m

and an elliptical conic (Yang et al., 2015), resulting in extremely noisy sides; these can

be eliminated using a bounding box. The 3D bounding box eliminates the noisy sides of

the image and points beyond 5m. To reduce the influence of these noisy patterns and

other surrounding objects, on ball detection, we perform background subtraction. A simple

aggregated background is estimated, using the initial depth images of each of the camera

views. For every depth image (I), as shown in Figure 2.2, using the background image (B), a

foreground mask (F) is estimated as |B− I| > τ , where τ is the background threshold set at

50mm. The foreground mask is then applied on the depth image to extract the foreground.

Ball Detection

Once the foreground has been extracted from the depth image, the total area of interest for

ball detection is restricted to this region of the image. The edges of the foreground image

are estimated using the canny edge detector. A low edge threshold is used to ensure that

even the minute inner and outer edges are detected, as seen in Figure 2.3. The conics of
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Figure 2.3. Circle Detection from left to right: edges in foreground image and circle detected
using Circular Hough Transform.

the Kinect V2 sensor are largely uniform across the X- and Y- axes. Hence, circular objects

inside the scene will remain circular in the image. For sensors having different X- and Y-

axes, an image re-size would ensure that circular objects in the real world would remain

circular in the image. A Circular Hough Transform (CHT) is applied on the edge image, to

identify circular objects in the scene. CHT requires a range of possible radii for the circle,

to reduce the amount of computation and accumulator storage. The size of the ball differs,

depending on the position of the ball inside the scene. So when the approach is initialized,

we assume that the ball is located in the range of 1 to 3 meters, resulting in a possible radii of

15 to 30 pixels. The circle detection threshold is set high, allowing even the low probability

circles to be recognized. Since we know that there is only one ball inside the image, the

circle with the highest probability is selected. For the subsequent frames, the range of the

circle detection radii in CHT is kept at ±5 pixels of the previously detected radii. Higher

preference is given to the circle detected near the previous circle, from the previous depth

image. Since the depth images are captured at 30fps, the ball cannot move a significant

distance between consecutive depth images. Enforcing this restriction, in conjunction with

sphere fitting, allows for accurate tracking of the ball.
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Figure 2.4. Sphere fit from left to right: sampled points (green) from detected circle (red),
points projected into 3D space, sphere fit for the points, viewed from front and top.

Sphere Fitting

Once the circle has been detected in the depth image, we first sample the circle area to

extract points, which would be part of the ball represented as a sphere in 3D. Since we want

to avoid the hand, or other areas which are not part of the ball, a smaller sampling circle,

typically 60% of the original radius, is used. By using just a fraction of the detected circle,

we ensure that neither the edge noise, nor external entities (fingers, hands, etc), contribute

to the sample point set. As seen in Figure 2.4, after the points are identified in the image,

they are projected into the 3D world coordinate system, using the intrinsic calibration of the

camera.

These points in 3D represent the side of the surface of the sphere. A least square fit

approach is used to identify the center and radius of the sphere. A sphere is represented

with points (x, y, z) on the surface, and can be written as:

x2 + y2 + z2 + ax+ by + cz + d = 0 (2.1)

where (a, b, c, d) are the parameters to be estimated. The center of the sphere is given by

(−a/2,−b/2,−c/2) and the radius of the sphere R =
√

(a2 + b2 + c2)/4− d. The system

of linear equations is solved using Singular Value Decomposition (SVD) and the parameters

are estimated. Even though a small portion of the circle is used to extract the points, the
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extracted points may be noisy due to the nature of the sensor, or the intrinsic calibration.

Since we know the real world radius of the ball, it is possible for us to create tolerable

bounds for the estimated radius of the detected sphere. By using a quick approximation,

and a threshold for the radius of the sphere, we can quickly eliminate incorrect ball detection.

The least square approach of fitting the sphere works very effectively, as seen in Figure 2.4.

Selection Constraint

The sphere centers are good reference points to calibrate the cameras. The sphere can be

seen by any of the cameras, as long as the cameras are pointed toward a common scene.

The center of the ball remains the same in the real world 3D space, no matter what camera

is capturing the ball; therefore, the center of the sphere serves as an effective feature to

calibrate the cameras. However, not all sphere centers can be used for representing point

correspondences for calibration. Motion and spatial constraints are applied to ensure that

the points selected are effective to represent the point correspondences.

Motion Constraint: The data is captured at 30fps, the cameras are synchronized

using Network Time Protocol (NTP), and are millisecond precise. Since there is no real way

of regulating when an image is captured by the Kinect, fast motion of the ball can result

in the deviation of the position of the center; this happens because the ball is captured at

different instances of time by each camera. Using sphere centers, captured while the ball is

moving fast, would result in non corresponding points being used for calibration; this would

eventually lead to inaccurate calibration. So, a motion constraint is applied to ensure that

the points selected remain the same (motion less than 5mm), for at least a couple of frames,

before they can be used for calibration.

Spatial Constraint: Points from different parts of the scene need to be captured to

enable accurate calibration. If all the points are captured based only on the motion con-

straint, then a large number of points would belong to the same region of the scene. To get
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representative points from the scene, and to avoid oversampling a region, a spatial constraint

is enforced. The spatial constraint ensures that there is at least a minimum of δ distance

between the previous point captured, and the next point captured for calibration.

2.2.2 Scene Calibration

The complete scene is calibrated in a pair-wise manner. Each camera is paired up with all

the other cameras. At each camera, the point is selected using the above procedure, and

is time stamped. For each pair of cameras, points within a temporal window of size ω, are

collected. Once the number of points crosses the threshold η, registration is performed using

the points. Subsequently, registration is performed after every η new points are added, until

the transformation matrix is stable. In cases where the camera configuration allows little to

no overlap between the camera views, the calibrated point pairs from neighboring cameras

are used to register the two cameras.

Registration

The collected point pairs, for each pair of cameras, are registered with each other. Registering

the point pairs aligns the two camera views with each other, to generate a single world

coordinate system having accurate calibration. The registration problem can be stated as

given, a m-dimensional point set P = {pi} and Q = {qi}, where i = 1, 2, · · · , n; then

determine the rotation matrix R ∈ Rm×m, translation vector t ∈ Rm and scale c, such that

the sum of the least square errors, E(R, t, c), is minimized.

argmin
R,t,c

E(R, t, c) = argmin
R,t,c

1

n

n∑
i=1

||pi − (cRqi + t)||2 (2.2)

There are many closed form solutions to the registration problem (Horn et al., 1988; Arun

et al., 1987; Umeyama, 1991). Popular methods (Horn et al., 1988; Arun et al., 1987) are

known to provide incorrect R, for highly noisy point sets (Umeyama, 1991). Even though
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Figure 2.5. Calibration results between Kinect A (red) and Kinect B (blue), from left to
right: without calibration and after calibration.

the likelihood of having corrupted point data is minimal, due to our use of multiple points

to estimate the sphere center, the solution proposed by (Umeyama, 1991) is used to register

the point sets. The approach first makes the points translation independent, by subtracting

the centroid of the points from all the points. Then SVD is performed on the covariance

matrix of the translation independent points. The reflective artifact is corrected using the

determinant of unitary matrices from SVD, and the R is estimated. The scale c is estimated

using the singular values. The translation t is determined by transforming the centroid to

the new orientation, and calculating the difference in position. This approach provides very

good alignment, even with as little as 10 good point pairs as shown in Figure 2.5.

Propagated Registration

The ball can be detected by all pairs of inwardly facing cameras; but to get accurate results,

the ball needs to be placed around the scene. In large scenes, cameras located at the extreme

ends have little to no overlapping region. Directly calibrating these cameras using the ball,

leads to inaccurate alignments as seen in Figure 2.6, primarily due to lack of variations in

the point correspondences. In situations with minimal or no overlapping region between
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Figure 2.6. Direct registration of the points (left), and calibration by propagated registration
(right), for two Kinect V2 sensors located at bottom right (red), and left middle (blue), with
5m of separation between them. In the scene, a ball is placed on the box next to a chair.

the cameras, it is not possible to get point correspondences with much variation. For these

situations, registration between the cameras is propagated.

The exact path taken for the propagation is supplied by the user calibrating the space.

For example, lets assume there are 4 cameras (1, 2, 3, 4) placed 2m from each other in a

straight line, and facing away from the line in an orthogonal direction; to calibrate cameras

1 and 4 using the path (1, 2, 3, 4), the points captured between 1 and 2 are transformed to

camera 4’s local space, using the calibration results for (1,2), (2,3) and (3,4). The local space

position of 1, and the local space position of 4, for each of the points is assumed to be a

known observation, similar to the ball center. Similarly, points captured between 3 and 4

are transformed to camera 1’s local space. An equal number of the transformed points are

chosen from each of the paths, and the registration procedure described in Section 2.2.2 is

applied to these new sets of point correspondences. If we just propagate the registration

between the cameras by multiplying the transformation matrices, then the final calibration

between the cameras is solely dependent on that path. Using a transformation multiplication

based strategy is good when it can be clearly verified that all the cameras in the path are

calibrated well with each other. The propagated registration strategy is similar to bundle
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adjustment in that it tries to optimize the calibration for the distant cameras, using all the

possible intermediate calibrations for the captured points. Since multiple paths are used, the

quality of calibration obtained by this approach is visually accurate. Figure 2.6 shows the

calibration result achieved by propagating registration through 4 different paths; the scene

had 7 different cameras and the paths used all of them.

2.3 Evaluation

The quality of calibration estimated using BC was evaluated with a setup consisting of 7

Kinect V2 sensors. The sensors were arranged with a maximum of 2m of height variation,

in a rectangular pattern, with a sensor on each side of the diagonal facing each other; please

refer to the supplementary material for a sensor arrangement diagram. All the sensors were

connected to an individual machine, having an Intel Xeon 3.0 ghz processor, 12GB RAM,

and Nvidia Quadro 4000 graphics. The machines were connected to each other on a 1 Gbps

network. The system clocks are synchronized within ±10ms of each other, using NTP.

The approach is implemented in C++, with GPU optimization on windows. The spatial

constraint minimum distance δ value was set to 100mm, to ensure a good variation as well

as a quick capture. Based on the synchronized clocks, ω is set at 40ms. η is set at 10 for

fast calibration.

Ball detection is a fundamental part of the BC method, allowing the method to function

without any manual intervention. To ensure that the ball is detected accurately at all times,

we studied thousands of frames of tagging and noticed that about 2% of the time, the head

was detected instead of the ball. The only time the head was detected instead of the ball,

as shown in Figure 2.7, was when the camera was at a high elevation looking down towards

the person and the scene; to avoid this problem, the person moving the ball inside the scene

wore a hat or a hood.
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Figure 2.7. Head getting detected as ball when the Kinect V2 is placed high facing downwards
(left), and wearing a hood over the head eliminates the false detection (right).

Comparison of result between BC and three prominent methods, representing each

style of extrinsic calibration for Kinect sensors, was also performed. For this comparison, to

avoid calibration propagation errors, only three Kinect V2 sensors were used. The sensors

were positioned in the shape of an L, with each of them located at a corner; there was also

some height variation between the sensors. All sensors were calibrated with respect to their

nearest sensor and the result rendered as a point cloud. BC and (Kowalski et al., 2015) seem

to perform the calibration well, with BC being off by at most 1cm in certain places, like on

the small orange ball (Figure 2.8). The (Kowalski et al., 2015) is off near the label of the

box, and other places by 2.5cm, despite performing ICP to refine the results. The original

calibration of the method was off at most places, by more than 4cm. The checker board based

(Zhang, 2000) method required multiple calibration attempts, taking a significant amount

of time. The best result that could be achieved by us, was off by more than 6cm at many

locations, like the white Kinect boxes in Figure 2.8. The plane intersection based approach

of (Auvinet et al., 2012) took a long time to calibrate, with a lot of work flipping the plane

a certain way; the calibration was off by 4cm at most locations.

BC method took the least amount of time to calibrate requiring about a minute to

calibrate all 3 sensors. The live scan 3D method (Kowalski et al., 2015) took about 2 to 3

minutes for all cameras. Both of the (Zhang, 2000) and (Auvinet et al., 2012) methods took
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Figure 2.8. Calibration result starting from top left: our ball calibration, visual pattern
approach (Kowalski et al., 2015), Zhang’s method (Zhang, 2000), and plane intersection
approach (Auvinet et al., 2012).

over 30mins to calibrate, with most of the time spent moving the board, or re-calibrating to

get better accuracy.

Scene calibration with 7 Kinect V2 sensors in a rectangular arrangement, with sensors

placed at different elevations and angles, was also performed. The entire calibration process

took about 3 to 4 minutes. The sensors that were located diagonally opposite each other,

were required to be calibrated by propagated registration. The scene was reconstructed fairly

accurately, with certain angles having up to 2cm in error. Figure 2.9 shows the front and

top views of the scene that were reconstructed using the setup.
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Figure 2.9. Point cloud rendering of a scene with multiple objects, captured using 7 Kinect
V2 sensors, calibrated simultaneously using our ball calibration method from left to right:
front and top view of scene.

2.4 Discussion

The Kinect V2 sensors use time of flight to estimate depth. When multiple Kinect V2 sensors

are used to capture the same scene, interference is caused between the sensors, resulting in

noisy depth estimation. For evaluating BC, 7 Kinect V2 sensors were positioned to capture

a 4m× 3m area, resulting in significant salt and pepper noise. Two sensors placed in close

proximity, do not seem to interfere much with each other; however, for certain configurations,

when the sensors face each other, there is a visually noticeable increase in noise. Applying

a median filter removes most of the noise in the depth image. The Kinect V2 sensor also

seems to have issues estimating the depth of glossy surfaces; so, in our method, we use an

older worn out basketball to ensure accurate tracking.

There is also a considerable amount of noise generated around a plane surface, as shown

in Figure 2.10; some plane based calibration methods (Auvinet et al., 2012) try to avoid

this noise by fitting a plane on the surface, while others (Kowalski et al., 2015) reduce it

by using filters and ignoring the rest of the noise. The amount of noise around a sphere is

considerably less in the case of Kinect V2, as seen in Figure 2.10. With the use of a large

number of points for estimating the center of the sphere, the noisy data does not really effect

the overall accuracy of the calibration. In approaches where noise is ignored (Kowalski et al.,

23



Figure 2.10. Noise while capturing a plane (left), and a sphere (right), using a single Kinect
V2 sensor located on the left side.

2015), either the result is misaligned, or a step using dense point registration like ICP, is

performed to improve the camera calibration.

The calibration between the color and depth cameras of the Kinect V2 sensor is not very

accurate, mainly due to the elliptical conics of the time of flight depth sensor; as a result,

most of the images bleed color into the object next to them. This same issue is also noticed

in all the methods that rely on color image, to register points or calibrate the sensors. By

just using the depth image, BC achieves better results. The Kinect V2 sensor accurately

measures depth in the range of 0.5m to 3m (Yang et al., 2015); after 3m, the depth accuracy

degrades significantly. We avoid positioning the ball beyond 4m from the camera, to ensure

reasonably high accuracy of the point used for calibration.
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CHAPTER 3

RENDERING

The 3DTI systems capture the user, using multiple cameras, to render a realistic 3D model of

the user in the virtual world. A new 3D model is reconstructed and rendered, every frame,

to ensure a one-to-one correspondence between the user’s actions, in the real and virtual

world. In order to achieve better performance, instead of creating one 3D model for the

user, our approach creates a 3D model for each captured image of the user. Each of the

different meshes are rendered together to give an impression of a single watertight 3D model

of the user.

Each camera machine processes the scene captured by each camera, independent of each

other, as shown in Figure 3.1. Each RGB-D camera provides the color and depth image of

the entire scene. The noisy images are filtered to improve their quality. The user is then

segmented out of the captured image. The segmented user data is then projected to 3D,

using the camera’s intrinsic parameters. This results in a point cloud representation of the

user. The point cloud represents each pixel in the image as a 3D point, so depending on the

resolution of the depth image, the resulting point cloud may be extremely dense and look

like a complete structure, or be sparse, with no clear visible structure. A mesh is created

from the point cloud to ensure a good quality rendering of the user, irrespective of the depth

image resolution, or the angle of rendering. The texture of the mesh is rendered by using the

color image captured by the camera. The color image captured by the camera, is mapped

onto the vertices of the mesh, using the extrinsic calibration of the color and depth cameras.

While rendering overlapping meshes, as is the case in situations involving multiple cam-

eras, alpha blending shader is used to avoid mesh overlap artifacts. The shader also ensures

the smooth rendering of shadows for the user’s model. The adaptation to light and the

smooth rendering, ensures that the user’s mesh is immersed completely inside of the virtual

world.
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Figure 3.1. The processing pipeline for each of the cameras, in an i3DTI system.

3.1 Related Work

There are many approaches to reconstruct a 3D mesh from structured and unstructured

point clouds. In this section we focus on real time approaches that are or can be used for

3DTI.

3DTI data transmission: A number techniques have been proposed in literature to

efficiently transmit 3D tele-immersion data. (Yang et al., 2006) presented a multi-stream

adaption frame work for 3DTI having two major steps - view based stream selection and

bandwidth dependent content adaption. A major issue associated with this approach is that

pixels are selected evenly without giving importance to fine details. (Shi et al., 2009) proposes

view dependent 3D video compression technique for mobile devices. (Redert et al., 2002)

and (Yang et al., 2006) use image and zlib compression, respectively. (Chen and Nahrstedt,

2013) proposes activity aware adaptive compression by combining activity recognition and

real-time morphing based compression. (Kum and Mayer-Patel, 2005) explores inter stream
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redundancy to achieve real time depth stream compression in 3DTI scenario. A model

based approach proposed in (Raghuraman et al., 2013) extracts kinematic parameters of

human body as skeleton information, which is further used for motion estimation followed

by compression. (Kurillo and Bajcsy, 2013) uses bisection algorithm meshing proposed

in (Vasudevan et al., 2011) based on depth variation, and performs efficient depth data

encoding and compression using this mesh hierarchy. In (Wu et al., 2011), authors perform

a psycho-physical study to come up with perceptual threshold for color-plus-depth level of

details which is used to correlate it with depth variation threshold in the bisection algorithm

meshing to come up with adaptation scheme for resource management.

Our survey indicates that very few techniques in literature focus on designing bandwidth

adaptive 3DTI system. Most of these methods are based on the key concept of reducing the

data size in order to increase fps. In this paper, we address the challenge from a different

perspective, by designing a bandwidth adaptive system that jointly determines optimal size

of 3D and texture data for available bandwidth. We also define the notion of quality used

in selection criterion, which allows us to apply different level of details in different parts of

body.

Meshing: Many methods are available for performing triangulation of 3D data, most

of which take a significantly high amount of time leading to non real-time rendering. Image

based meshing is faster, (Vasudevan et al., 2011) proposes a bisection algorithm for trian-

gulation based on amount of variation on gray scale values. It uses the fact that every

point in triangular region should be at same depth. Hence, if there is significant variation in

depth values inside any triangle then it should be further bisected to create smaller triangles.

(Raghuraman et al., 2013) proposes image based meshing technique to generate a fast dense

mesh which uses the underlying gird structure of depth image. However, when key vertices

are selected from depth image, underlying grid structure is lost. In order to address this

issue, we use fast image based sweep-line constrained delanuay triangulation (Domiter and

Zalik, 2008) along with segmentation information.
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Figure 3.2. An orthogonal rendering of a point cloud of a plane, captured using the Kinect
V2 without any noise filtering (left), and the results of the use of median filtering (right).

3.2 Noise Removal

RGB-D cameras capture the color and depth images of a scene. The color image is relatively

noise-free and has a higher resolution. The depth image, depending on the technique used to

generate it, suffers from different kinds of noises. The two popular techniques for generating

depth images are structured light and time of flight.

The structured light based depth cameras, like the Kinect V1, consists of an infrared

(IR) projector and an IR camera. The IR projector projects a fix set of patterns, which

are captured by the IR camera. Based on the differences between the dots in the projected

and captured pattern, the depth of the various points in the 3D world are estimated. This

technique leads to holes, especially around the edges, and in general, a lot of edge noise. The

noise can be reduced significantly by applying a bilateral filter on the depth image.

Time of flight based cameras, like the Kinect V2, construct the depth image by emitting a

ray of light, and measuring the time it took for the light to get captured. This technique leads

to a lot of salt and pepper noise, especially around the edges. This noise can be minimized

substantially by using a median filter. The raw noise, during the capture of a plane facing

the Kinect V2 camera, and the corresponding median filtered result, with reduced noise, are

both shown in Figure 3.2.
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3.3 Segmentation

The cameras capture the entire scene, including both the user and the background. Segmen-

tation is the process of extracting the relevant foreground object from the captured images.

For the purposes of i3DTI, only the user needs to be reconstructed, so the background needs

to be segmented out. In situations where other objects need to be reconstructed, like the

ball when performing calibration, other specific segmentation approaches need to be used.

There are many techniques for segmenting a foreground object from a color or depth image.

In this section, our primary focus is only on those techniques which can extract the user

from the scene in real-time.

3.3.1 Person Extraction

The Kinect provides the skeleton information of the user, along with the color and depth

images. The user can be extracted from the scene, by overlaying the skeleton on the depth

image and using a region growing approach to identify the silhouette of the user, from the

depth image. Irrespective of the level of accuracy of the skeleton, the hip center joint of the

skeleton always corresponds to a point on the user’s depth image. So, the hip center is used

as the origin for the region growing approach. The region continues to grow in all directions,

away from the hip center, as long as the variation in depth values is within a threshold. The

threshold is determined based on the resolution of the depth image, and is typically about

10cm for a Kinect V2 image. Both the captured scene and the extracted user, using the

region growing approach, are shown in Figure 3.3.

3.3.2 Volumetric Segmentation

Sometimes the capture area can contain many different objects, along with the user. It is

possible, under these circumstances, that either the Kinect does not detect the user at all,
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Figure 3.3. Segmentation from left to right: captured scene, person extracted using region
growing and volumetric segmented scene.

or returns an inaccurate skeleton. To extract the user appropriately, from these types of

scenes, volumetric segmentation is used. The volumetric segmentation approach relies on

the fixed camera view, to create a 3D background representation. When the user enters the

scene, there is a clear change in the 3D representation of the scene. The 3D background

representation of the scene is overlaid on the current 3D representation of the scene, and

all of the points within a certain distance, from the background point, are removed in the

newer scene. The extent of background removal, depends on the distance threshold used. A

greater distance threshold would be able to completely remove the floor, to extract only the

user, as shown in Figure 3.3.

3.4 Image Meshing

Reconstructing a surface, from unorganized 3D point clouds, is a challenging problem that

is processing intensive. Most 3DTI techniques represent the depth information as a point

cloud, before generating a 3D mesh. This causes the reconstruction pipeline of these 3DTI

systems to be slow, and require lots of system resources. The main reason for the high

resource utilization and slower performance is the lack of neighborhood information in the

point cloud representation.

30



Figure 3.4. The square pattern used for triangulation from left to right: the selected points,
the 2 triangles if all points are within range, and possible triangle options depending on the
proximity of the points.

The depth image implicitly maintains the neighborhood information for each of the pixels,

within the structure of the image. The image meshing approach exploits the clear availability

of the neighborhood information in order to create triangles, quickly and effectively. This

approach uses a square pattern to identify the triangulations required for the entire image.

4 adjacent pixels, in a square pattern, are selected to form triangles. For a set of four points,

as shown in Figure 3.4, only 4 different combinations of triangles can be formed. A distance

measure is used to determine if a triangle should be formed, between all 4, or any of the 3

points, that are selected. If the points that are selected are within a distance of the meshing

threshold, then a triangle is formed between them, and the next set of 4 points are selected.

If all 4 points are within the meshing threshold, then 2 triangles are used to represent the

region. The approach processes each and every pixel, selecting the left, top left, and top,

neighbors of the pixel, to create the square structure that is used to evaluate the feasibility

of triangulation.

Since each pixel is processed, using the square representation, it is possible to implement

the entire meshing technique, parallelly on the GPU. In the GPU implementation, each

pixel is assigned to an individual GPU core, allowing the entire mesh to be generated in a

few microseconds. The sequential CPU implementation of the approach is also capable of

generating the mesh in a couple of milliseconds. The use of the image meshing technique

ensures that the i3DTI system is able to reconstruct and render the user efficiently allowing

highly responsive and detailed interactions.
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3.5 Low Poly Reconstruction

The image meshing approach relies on the compact arrangement of points in the image to

generate a mesh representation. Depending on the size of the depth image and the number

of pixels associated with the object, the vertex and triangle count of the generated mesh

can vary. Large meshes need more resources, transmission time and processing to render, so

if the mesh generated is large then the rendering pipeline would take longer to render the

mesh on screen than a mesh with lower polygon count. The compact structure of the depth

image representation can again be exploited to create lower polygon mesh representations of

the captured object.

The simplest way to reduce the number of vertices and triangles in the meshes that are

generated from the depth image is to reduce the size of the depth image itself. A depth

image scaled down to half the size would lead to about four times reduction in the number

of vertices and triangles in the resulting mesh. So for a uniform reduction in the quality and

the size of the mesh, the depth image is reduced in size using Gaussian pyramidal reduction.

An example of the mesh created using the original depth image and the reduced depth image

is shown in the Figure 3.5. The reduction in the size of the depth image also leads to up to

a four times faster meshing on the CPU.

3.6 Sparse Meshing

The low poly meshing approach generates meshes of lower resolution, by uniformly degrading

the denser mesh. While this approach is useful for creating lower poly meshes very quickly,

the overall quality of the returned mesh is much lower than the original dense mesh. Instead

of reducing the vertices and triangles uniformly throughout the mesh, it would be far more

beneficial to reduce the vertices/triangles from areas having little detail (arms, abdomen,

etc,), and retaining more vertices/triangles in regions with greater detail, like the face.
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Figure 3.5. Meshing results: High resolution dense mesh created using the original depth
image (left), and the lower resolution uniformly sparse mesh generated from a Gaussian
scaled down depth image (right).

Figure 3.6. The steps involved in the sparse mesh generation approach.

The quality preserving sparse mesh generation approach uses the curvature of a region to

determine if that region should have more, or less, triangles. This problem is extremely time

consuming when performed in the 3D space; so similarly, as with the low poly approach, the

sparse mesh approach is also applied to the depth image. The sparse mesh is generated from

the depth image, as shown in Figure 3.6.

The importance of each pixel, in the depth image, is established by the curvature associ-

ated with the pixel, that is calculated using the X and Y gradient components of the depth
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Figure 3.7. The sparse meshing of the profile of a user, from left to right, 12, 000 vertices
mesh, textured mesh, 1, 000 vertices mesh, and textured mesh.

image. The per pixel quality measure of the depth image provides a reasonable estimate for

the importance of the pixel in a local region. To get the high level structural aspects from

the depth image, a sparse grid structure is used. The depth image is divided into cells, by

a sparse grid, and a pixel, with the highest quality rating, is selected in each of the cells.

The highest quality rated pixels are selected as the vertices. The selected vertices are then

meshed together using a sweep-line constrained Delanuay triangulation (Domiter and Zalik,

2008). The result of the sparse mesh approach, for the profile of a captured user, is shown

in Figure 3.7.

3.7 View Dependent Rendering

The camera arrangement in our setup allows a larger playing area, resulting in only a subset

of the cameras capturing the user in the scene. Merging all the camera meshes every frame

to create one single mesh for rendering is time consuming. Rendering textured range images

captured from different camera poses is prone to texture merging artifacts (Pulli et al., 1997).

To achieve better display and faster rendering, we use a View dependent rendering approach

similar to (Pulli et al., 1997).
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Figure 3.8. Left: View dependent rendering based on the position of the virtual and real
world camera. Right: A user model rendered in the scene using view dependent rendering.

As the name suggests the meshes that are transmitted and rendered are dependent on

the viewing angle of the virtual camera. Camera meshes are selected based on the similarity

between the viewing angle and the capture angle of the object being rendered. If the object

is outside the field of view of the camera, none of the meshes are rendered. As shown in

Figure 3.8, if the angle of the ray cast from the virtual camera to the point on the object

and the ray cast from the capturing camera is less than a threshold, then the mesh from the

capturing camera is rendered. The threshold is determined based on the location and angles

of the cameras in the capture area. For faster approximation, the shoulder center joint of

the skeleton returned by all the cameras is used to determine the position of the user in the

scene. This joint position is taken as the point on the object and is used for determining

the meshes to be rendered. The meshes are rendered as shown in Figure 3.8 using an alpha

blending shader that colors the texture based on the vertex normal, captured camera angle,

and viewing camera angle.
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Shadows give the user a sense of 3D perception inside the game. As seen in previous

studies (Miles et al., 2012), using shadows increases the tracking and positioning capabilities

of subjects in virtual environments. The same machine is used for both rendering and

capturing the front view of the person. Since the processing is mostly done in the CPU

without any transmission involved, the front view of the person is used to generate the

shadow of the player.

3.8 Rendering Overlapping Meshes

The rendering approach creates a different mesh for each of the camera views. To avoid

disruptions in the capture of the object, typically the scene cameras are arranged to have

overlapping field of view. This common field of view results in the captured data containing

significant amount of overlap that is converted and carried over to the mesh. If all the meshes

are rendered directly then the result using a standard fragment shader is undiscernible as

shown in Figure 3.9.

The bad quality rendering of the overlapping meshes is primarily due to the lack of

specific ordering or prioritization allotted to the various surfaces of the meshes. To achieve

better quality rendering surfaces from each of the meshes need to be selected and prioritized

appropriately.

An Alpha Blending Shader (ABS) approach implemented at the fragment shader level

is used to provide blend weights for each of points of the meshes to create good quality

rendering. ABS uses the principle axes of the real world cameras, the mesh surface normal

and the principle axis of the virtual camera to estimate the alpha blending weights for each

of the mesh fragments. For a setup with n cameras each generating meshes (M1,M2, ...Mn)

every frame, the alpha blending weight for a surface j on mesh i with normal Sij is given by

Aij =
(Pi.Pv)(Pi.S

i
j)∑k<n

k=0 (Pk.Pv)(Pk.Sij)
(3.1)
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Figure 3.9. The effect of rendering overlapping meshes without an alpha blended shader
(left), and with a specialized alpha blended texture shader (right).

Where Pv is the principle axis of the virtual world camera and (P1, P2, ...Pn) are principle

axes for the capture cameras. The result obtained by ABS as shown in Figure 3.9 is far

superior compared to direct rendering and is similar to the real world capture of the person.

The ABS rendering creates an illusion of a single unified mesh of the user even though none

is made. Using sufficient number of cameras the ABS approach can lead to a clear 360◦

rendering of the user that looks exactly like a watertight 3D user mesh.

37



CHAPTER 4

INTERACTION

An i3DTI system reproduces the user as a “live” avatar in the virtual world. To create this 3D

model, the user is captured using multiple RGB-D cameras. Since the user is reconstructed

“as is”, any external input devices would also be captured, and reconstructed in the scene.

For this reason, to make the visual appearance of the user more consistent, the use of external

devices should be avoided as much as possible.

The use of external input devices interferes with the immersive nature of the i3DTI

system, by introducing possibly more complicated ways of interacting with the system. Cre-

ating a more natural exchange with the system, will increase the user’s level of interest,

involvement, and ability to interact with the system, thereby eliminating the need of any

external devices. Using the user’s pose and gestures to model all of the communication in-

side of the system, the i3DTI system create interactions that are both visually appropriate,

and naturally consistent. In this chapter, multiple methods are presented to capture the

user’s actions, by accurately estimating their pose. Interaction techniques, that model these

detected poses inside the virtual environment, are also presented. The combination of these

approaches, provides the user with intuitive ways of utilizing the system.

4.1 Skeleton Joint based Interactions

The rendering techniques represent the real world person in the virtual world, by showing

the “live” 3D model of the person. Similarly, the skeleton of the person serves as their

interaction model in the virtual world. The skeleton consists of multiple bones and joints,

each joined to an associated position in the 3D world. Objects can be assigned to these joint

positions and moved appropriately, based on the motion of the joint. For example, a helmet

can be placed on the user’s head, and moved around as the user moves within the scene.
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Figure 4.1. Joint based interaction from left to right: Picking up objects by closing the hand,
and positioning the table tennis racket in the hand.

Joints themselves, do not provide any orientation information, so a direct association of the

virtual world objects to the user’s joints, would lead to unrealistic object orientations.

Skeleton bones connect two joints together, and has both an associated position and

orientation. So, while the object can be positioned at a joint, the orientation of the object

can be determined based on the orientation of the bone. Using the same example as above,

instead of the helmet moving with the head joint, the helmet can be rotated based on the

orientation of the neck-to-head bone; this provides a much more realistic looking integration

of the virtual object, with the 3D model of the person.

For certain joints, like the hand, that consist of smaller bone regions (fingers), extra

pieces of information can be identified. It is possible to track the open/closed hands of a

person. Using the tracking, interactions that enable the user to pick up or release objects,

using their hands, can be created. Figure4.1 shows how a mug can be picked up from the

table, just by closing the user’s hand.

In order to obtain a reasonably accurate orientation of the hand, the hand needs to

be open. So, in situations where a racket needs to be controlled by a hand, a slightly
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unrealistic looking modeling is performed, as shown in Figure 4.1. Despite the awkward

visual representation, the gameplay is greatly improved by using open hands to move and

rotate the virtual racket.

4.2 Full Body Interaction

The joint based interactions allow users to pick up, and manipulate objects by using their

terminal joints, like their hand, head, feet, etc. These joint interactions are largely limited

to the motion of the virtual object, and are based on the corresponding motion of the

joint/bone. A user does not always need to use specific pick up/release motions, in order to

physically move objects in the real world. Cause/effect based interactions are also possible;

an example of this would be, how walking through grass causes the grass to bend. The full

body interaction technique enables the virtual environment to react, based on the user’s

entire body; this is achieved by creating a collision model around the physical body of the

user, in the virtual world.

The i3DTI system reconstructs a new full 3D model of the user, every frame. The recon-

struction process is resource intensive for each camera, and requires lots of data transmission,

in case a complete model of the user needs to be created. The use of view based render-

ing, and other partial mesh optimization approaches, improve system performance, while

simultaneously reducing resource utilization. The i3DTI system reconstructs a mesh, for

each camera view, to ensure faster performance. The view based rendering system never

generates a single mesh, to represent the person inside the scene. Since it uses view based

streaming, the rendering machine does not even contain a complete set of meshes that rep-

resent the person. Even if all of the views were present, creating a mesh based collider every

frame, is too computationally intensive to be feasible for a real-time low delay system. So,

instead of generating the collision model based on the mesh of the person, our system relies

on a primitive box and capsule colliders to cover the entire human model. Box colliders map
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Figure 4.2. Skeleton based full body colliders for various users.

the chest and abdominal region of the person, while all of the other parts, including the

head, are represented by a capsule collider.

The orientation and scale of each collider is determined by studying the skeleton of the

person. Since the skeleton represents the medial of the person’s mesh, it is possible to extract

a reasonably good estimate of the size of various parts of the body, using just the skeleton.

The human body is largely symmetrical, and many parts of the body maintain proportions

to each other. Various parts of the arms and legs are proportional to each other, while

the size of the thighs are relative to the hips, as are the biceps to the chest. Using these

associations, we built a model to empirically estimate the coefficients, used for determining

the size of the limbs, given the joint positions. We captured both the mesh and skeleton of 8

individuals (6 male, 2 female), of differing statures, in different poses. The meshes were then

segmented, and the colliders were fit, to get a scale estimation for each of the segments. As

expected, the length of the colliders for the limbs was found to be the same as the skeleton

limbs. However, the scale of the terminal colliders, like the head, feet, hands, etc., are almost

double the length of the bone. Weights were estimated, to map the position of the joints to

the width and radius information of the colliders, for each of the bones. Using these weights

for any given skeleton, our system generates the collider estimation, as shown in Figure 4.2.

Although not obtained from a statistical study on a huge population, the colliders have been

accurate for any of the users using the system.
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Once the scale of the colliders is determined, the orientations of the skeleton bones

are applied on the colliders, to accurately map the human being rendered. The entire

human model is made collision capable in microseconds, without any mesh or point cloud

information, by using the proportionality weight strategy for the collider scale estimation.

4.3 Multiple Kinect Pose Detection

Human pose identification has various applications in activity recognition, natural user in-

terface, gate analysis, etc. RGB-D cameras, with their extra depth stream, allow us to get

an accurate estimation of the person’s pose in real time. However, these skeleton estimations

can quickly become inaccurate, mainly due to occlusion. The use of multiple cameras, to

capture the same scene, allows us to obtain more information about the person and their

pose. Current approaches, used to identify the skeleton pose using multiple cameras, either

take too long (Shuai et al., 2017), use extra sensors (Wu et al., 2014), or require millions of

training examples (Shotton et al., 2013).

Even multiple Kinect based approaches (Yeung et al., 2013), use a small number of

Kinects to capture the user in a small space, with the person facing a fixed direction. Using

a large capture space with multiple Kinect sensors, to allow complete freedom to move

around in the space while tracking the user’s pose, is not normally explored because of the

issues that are caused: partial depth images of the person, fast motion, no user direction

information, etc. To allow a skeleton to be estimated in real time, no matter where the

person is in the activity space, we propose Joint Accuracy based Consensus (JAC).

JAC utilizes the skeletons and depth images from all of the Kinects, using the view of the

person to estimate an accurate skeleton. It assumes that the individual joint estimations,

from the Kinect, are more reliable than the complete skeleton. All of the joints are evaluated

to determine the Probability of an Accurate Joint (PAJ) being estimated precisely. Then,

a distance constrained greedy consensus approach is used to select the joints, such that the
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joint, PAJ, of the set is the maximum. The direction of the person is then used to determine

the right side of the body, from the left side.

We determine the direction of the person using the feet, knee angle, or torso and head, to

ensure that all of the joints are labeled correctly, irrespective of which direction the person

is facing. While it is possible to use face tracking to determine the direction that a person

is looking in, it is not necessarily the same direction in which that person’s body is aimed,

or positioned.

We developed two methods to measure the accuracy of the skeleton, by using all of the

views captured by the different Kinects. The containment score measures the error in the

skeleton by ensuring that the skeleton is always inside the person, irrespective of the camera

viewing angle, or the pose. The coverage score determines the error, in the extent to which

each skeleton bone covers a part of the body; it measures the error by verifying the amount

of points associated with each bone, after Voronoi segmentation.

4.3.1 Joint Accuracy based Consensus

A Kinect sensor provides the color, depth, and skeleton estimates for the captured scene. The

skeleton estimate is generated based on just the depth image, captured by that particular

sensor. The sensor captures the depth information using a time of flight approach, which also

results in large occlusions for any poses where the person is not directly facing the camera.

Since the Kinect was designed for a more natural user interface, it assumes that users will

be facing the Kinect, while performing all of their activities. It uses a depth variation based

interest point selector, and descriptor, to allow the tagging of the individual parts of the

depth image. A random forest based classifier is trained with millions of real and synthetic

depth images, of different sized users, performing various activities. Using these classifiers,

various parts of the body are tagged, and then connected, to generate the final human

skeleton. We believe that the Kinect sensor approach, though proprietary, has a very high
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accuracy, especially in detecting the location of the parts of the body, during non occluded

poses; this is mainly attributed to the huge amount of training data that is used to train the

classifier. The implementation of the classifier on the GPU, allows skeleton estimation in

real time; allowing us to estimate (Raghuraman et al., 2013), animate (Raghuraman et al.,

2015), or even interact (Raghuraman et al., 2012) with, the 3DTI system more naturally. So

instead of capturing a large training data set, with multiple depth cameras, we leverage our

approach on the accuracy of the Kinect’s body part detection.

Our Joint Accuracy based Consensus (JAC) approach uses the depth and skeleton in-

formation, from multiple Kinects, to generate a single skeleton of the person in the scene.

Instead of relying on the entire skeleton, which might be prone to errors caused by various

factors (Section 4.3.2), we treat the skeleton joints independent of each other. Treating these

joints separately, ensures that our method uses only the primary classification results of the

Kinect approach, as described in (Shotton et al., 2013). We then calculate the probability

of an accurate joint estimation by the Kinect, based on the joint position in the local Kinect

depth image, and the trends observed during experimentation. Even though the Kinect

provides joint state information, indicating whether the joint is tracked, inferred, or not

tracked, we found this information to be very unreliable in our experiment; because of this,

we decided to use only the joints whose joint state is tracked by the Kinect.

After calculating the PAJ of these tracked joints, we transform all of the joints from the

various Kinects to a single 3D space, and then re-estimate the side of the joints, based on

the location of their origin in the 3D space. Once all of the joint sides are re-estimated, we

use a distance constrained probability maximizing the consensus approach to determine the

location of the joints in 3D space. The direction of the person is determined by using the

legs (whenever possible), or the upper body, if no reliable leg information is available. Using

this direction, we tag the joints appropriately to their corresponding sides. The entire flow

of JAC is shown in Figure 4.3.
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Figure 4.3. Overview of our skeleton estimation approach.

Even though the accuracy of the Kinect joints is majorly affected by occlusion, most

of these issues can be resolved by using multiple cameras. Other factors also need to be

considered; in the next section, we elaborate on these factors and explain our approach in

detail.

4.3.2 Kinect Skeleton Defects

The single frame single camera skeleton identification of the Kinect is largely accurate; but

in certain situations, it is vulnerable to many problems. In order to better understand the

issues, we group them based on the source of the issue, as follows:

Sensor Noise: Kinect V2 sensors use the time of flight to measure the depth at each

pixel. This measurement is influenced by lighting, the reflectiveness of an object, dust,

curvature, etc. The depth sensor has a relatively low resolution of 512x424 pixels, with a

wide angle lens; so, depending on the location of the person (at least 1m from the camera

is needed to capture an entire person), a relatively low number of pixels are used to encode

the person, causing regions like the hand and fingers, to be captured with lower level detail.

Occlusion: For accurate skeleton identification, a direct line of sight is necessary

between the camera and the different parts of the body. These line of sight problems, or

occlusion, can be categorized as either external, or self occlusion. External occlusion occurs

when an external object occludes the object that is being tracked. Self occlusion occurs when
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deformation, or the pose of an object, hides certain other parts of that object; for example,

when a person stands with their hand behind their back, the back blocks the view of the

hand.

Object Interference: The position of objects, even if not occluding the view of the

camera, plays a key role in the detected skeleton; for example, if a person is sitting in a

chair, and the detected skeleton incorporates the chair as part of the person, this results in

an inaccurate skeleton. Even in an area with no external objects, the ground interferes with

the detection of the leg, especially the knee and the foot.

Motion Blur: When actions are performed very quickly, there is a noticeable difference

in the alignment between the depth and skeleton data. This particular problem might be

caused by a difference in the frame that was used for skeleton estimation compared to the

depth information that was captured, or it could just be from sensor noise.

Fitting: The skeleton is an estimate of the pose of the person, and should ideally be

located in the middle of the body. Since only one camera view is available, the skeleton

may be too close to the surface, or too far behind the person. It was noticed that, Kinect

detected skeletons are often times too far away from the surface of the body.

Lighting: The lighting, and the reflectiveness of the surfaces surrounding the person,

have significant influences on the overall skeleton that is detected. The Kinect sensor has

issues in estimating the depth of shiny black surfaces; because of this, the location of the

head and shoulder region is prone to errors, when capturing the person from behind.

While some issues like object interference, lighting, and sensor noise (to some extent),

can be reduced by managing the capture area appropriately, other issues, like motion blur

and edge noise from a sensor, can only be resolved with the use of better sensors, or sensor

specific filtering approaches. Fitting errors are mainly caused by partial viewing angles and

occlusion. In our 3DTI setup, we reduce depth image errors by using non-reflective carpet

and controlled lighting. A set of calibrated Kinects was used to reduce the level of occlusion

significantly, for a large number of poses.
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4.3.3 Probability of Accurate Joint

When each Kinect only has a partial view of the person, it is highly likely that none of

the Kinects will produce a complete and accurate skeleton. Picking a skeleton based on the

point of view, or other factors, is not feasible. Treating the skeleton as a hierarchical set of

joints, allows us to use all of the estimated skeletons appropriately, to form a single accurate

skeleton of the person. All of the joints are considered, independent of each other, but are

then ordered based on hierarchy, allowing the root joint to be processed first, and leaving

the the terminal joints to be processed at the end. Various independent factors influence the

accuracy of the joint directly. Each of these factors can be equated to a probability, which

in turn, can combine together to provide the Probability of an Accurate Joint (PAJ). The

key factors, that are referred to above, are listed below:

Occlusion The major cause of skeleton inaccuracies is occlusion; the use of multiple

cameras reduces occlusion significantly, but the problem still persists in the skeletons esti-

mated from each Kinect. It is obvious that, when parts of the body are not clearly visible

to the Kinect, the corresponding joints are interpolated at best. So, if we say P (O) is the

probability of occlusion, then P (O) determines the PAJ. We can determine the likelihood

that a joint is occluded, by segmenting the entire depth image using the skeleton. We use

a region growing based approach seeded at each joint, and the corresponding bone. When

two regions meet, the segment with the minimum distance of the point from the bone in 3D,

is assigned to the point. If the parent bone has no points in its segment, then that joint is

definitely occluded. Also, if the immediate neighborhood of the joint does not contain any

of points from its segments, then the joint is occluded.

Joint Position The depth estimations of a Kinect sensor are accurate only in a fixed

region (Yang et al., 2015); so, if the joint exists outside this region, the probability that the

joint is accurately estimated diminishes, the more it continues moving away from the region.

So, the PAJ based on position, P (L) = (| tan−1 x
z
| − τx)(| tan−1 x

z
| − τy)(z − τz), where τ is
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the focal point of the depth camera. Bone Angle The angle of the bone, in correlation

to the capture plane of the camera, plays a vital role in determining the position of the

joints. The more acute that the angle is, between the plane and the bone, the more likely

that the joint has been estimated correctly. Based on this, we estimate that the probability

of the joint, that is being empirically identified, due to the bone angle, is calculated as

P (A) = | cos θ|| cosφ|, where θ is the angle between the bone corresponding to the joint and

the xz-plane, and φ is the angle between the bone and yz-plane.

Bone Length We know that the person’s skeleton is a fixed size, so there should be

little to no variation in the person’s bone size, from frame to frame; the length of the bone

between 2 consecutive skeletons, from the same camera, must be almost identical, in order

for it to be a valid joint. Based on this, we can estimate the probability of the joint, based

on the bone length variation P (B) = 1− |Li−Li−1|
max(Li,Li−1)

σ: where Li is length of the bone in the

current frame, Li−1 is the length of the bone in the previous frame, and σ is the scale factor

that is set to 5, allowing up to 20% variation.

All of the probability calculations are bound in [0, 1], to ensure that there is no overflow.

By combining all of the conditional probabilities of these factors, we can estimate the overall

probability of the authenticity of the joint. Since the factors are independent of each other,

PAJ = P (O)P (L)P (A)P (B).

For all of the joints, and for all of the detected skeletons from the cameras, we compute

the P (j).

4.3.4 Side Reassignment

The Kinect skeleton uses local features to determine the position of the joints, and as a

result, the entire direction of the person is lost. So, the Kinect skeleton tracker assumes

that the person is always facing the camera. This assumption is not true in our multiple

Kinect camera setup; the person is completely surrounded by cameras, in order to capture
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Figure 4.4. The camera on the right tags the right side of the skeleton (red) and the left
(green); even after applying a camera extrinsic to change it to a left camera point of view,
the joint is still incorrectly tagged, thereby requiring manual side reassignment.

a complete view of them. The Kinects that are set up to capture the person from behind,

create problems with how the body joints will be tagged by the Kinects, for the left and

right sides. Given that the Kinect assumes the person is always facing the camera, (and

these Kinects are actually capturing the person from behind), the Kinect will incorrectly tag

all of the body joints exactly the opposite of what they are; all of the joints that are tagged

as being on the right side, will need to be changed, or reassigned, to the left, and vice versa.

Side Assignment Procedure: If we are given a set of joints that require the side

information and direction of the person, by using the hip center joint for reference, we start

tagging the joints to the right of the hip center as the right hip and right shoulder, and the

left side as the left hip and left shoulder. After the torso region joints are assigned sides, the

side information is propagated to all of the child joints, like the knee, elbow, wrist, ankle, etc.

This side assignment strategy ensures that even crossed arms, or legs, are tagged accurately.

In the case of a single Kinect, the primary assumption is that the person is facing the camera,

even though that may not be true, Figure 4.4 shows how the side assignments are done.
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Since the joints are tagged based on their individual proximity with respect to the camera

view, the same joint can be considered right or left, depending on the location of the camera.

Even after transforming all of the skeletons to the same primary camera point of view, by

using extrinsic calibrations, the sides can still be assigned incorrectly, as seen in Figure 4.4.

To ensure that the joint sides are marked accurately, the joints are reassigned using the

procedure mentioned above, after all of the skeletons are transformed to the primary camera

view.

4.3.5 Consensus Skeleton

To determine the skeleton, from the various joint positions from different Kinects, we use

a distance constraint totalPAJ maximization approach. The set of joints deemed to be

accurate, i.e. PAJ > 0, are selected, and then grouped, based on their individual tags.

Next, starting from the hip center, each group of joints are combined using the Algorithm

1, with the next group being selected based on the hierarchy of the joints in the skeleton.

The joint state, of each joint, is determined based on the γ returned by the algorithm. A

threshold of 1 was used, in deeming whether a joint was tracked correctly by JAC. If the

root joint, such as the hip center, is declared not tracked by the algorithm, then the skeleton

is completely invalidated by JAC: meaning there may not be any person inside the capture

area.

The joint consensus algorithm uses a forward selection based strategy, to select the seed

point that returns the optimum reward. The reward function is defined as γ, which is just

a ratio of the total selected joint positions PAJs, and the rejected PAJs. The approach

returns the result immediately, if the γ is greater than the Π. We use a high value of 2 for

Π, ensuring early termination, only if there is a two thirds majority in the selected set. The

small number of cameras, that actually return good PAJ joints, enable us to retain a high

threshold, without compromising on the run time performance of the algorithm. We use a
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Algorithm 1 Joint Consensus

1: procedure JointConsensus(jointPositions[], PAJs[], startIndex = 0)
2: center ← jointPositions[startIndex];n← jointPositions.size()
3: tP ← PAJs[startIndex];mP ← 0
4: for i← 1...n do
5: if i = startIndex then continue
6: end if
7: cdist← distance(jointPositions[i], center)
8: if cdist < Σ then
9: center ← (cdist ∗ tP + jointPositions[i])/(tP + PAJs[i])
10: tP ← tP + PAJs[i]
11: else
12: mP ← mP + PAJs[i]
13: end if
14: end for
15: if mP > 0 then
16: γ ← tP/mP
17: if γ < Π AND startIndex < n− 1 then
18: newCenter, γ′ ← JointConsensus(jointPositions, PAJs, startIndex+ 1)
19: if γ′ > γ then return (newCenter, γ′)
20: end if
21: end if
22: else
23: γ ← tP
24: end ifreturn (center, γ)
25: end procedure

Σ of 5cm, to ensure that the joints affected by calibration, or fast motion, still contribute

to the overall joint estimation. By using only the detected joints, from various cameras, to

determine the overall skeleton, it ensures that the consensus approach runs very fast, even

for large sets of overlapping cameras.

4.3.6 Person Direction

The direction of the person is very important, in determining the side of most of the joints

in the body. Since we use a set of Kinects to capture the user in an open space, we cannot

really draw any information about the direction of the person from the capture scene, just
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as in the case of the single Kinect. Since the person can twist their body or turn their head,

the direction of the person is not always the same as the direction of their face. To determine

the person’s direction, we follow a cascaded approach.

Direction of Feet: The easiest way to determine the direction of the person is to use the

direction of their feet. The direction of the person is the same as, the direction of the vector

passing through the point of intersection of the feet, and bisecting the angle between them.

If the feet are parallel to each other, then the direction is the same as the feet. Unfortunately,

due to ground noise, and its default assumption that the person is facing the Kinect, the

consensus approach generally does not accurately identify the feet.

Knee Direction: When visible, the knee joint is almost always at an angle, due to the

size variations between the lower and upper parts of the leg. Since the feet have a very little

degree of freedom, without the rotation of the knee, it is possible to determine the direction

of the feet, just by using the direction of the hip to knee bone if the bones are angular at

the knee. We can further locate the feet, by region growing in the same direction from the

ankle joint; the centroid of the grown region can serve as a good estimate of the feet.

Curvature around Knee: If there is no noticeable angle at the knee, then it means

the person is standing straight. In this situation, if we study the curvature of the surface

extracted from the depth image around the knee region, it is possible to estimate knee

direction. Due to the limited degree of freedom, muscles around the knee region form a

concave side (rear part), and a convex side (front part). To estimate the curvature, we select

eight points around the knee, orthogonal to the bone. We further sample another eight points,

using a fast detector like pattern (Rosten and Drummond, 2006). To avoid the interference

from noise, a wide selector is used to select a single point in a 16x16 neighborhood; each point

is then placed around the original point, to form a 3x3 monge patch. Finally, the curvature

of the center point in the patch is estimated. A Monge patch is a patch x : U → R3, of the

form x(u, v) =

[
u v f(u, v)

]T
; the form where U is an open set in R2, and f : U → R
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is a differentiable function. Corresponding gaussian curvature is computed as:

K =
fuufvv − f 2

uv

(1 + fu
2 + fv

2)2
(4.1)

where the subscript denotes the partial differentiation fu = ∂f
∂u

. For faster performance,

the entire computation can be performed on the GPU. The curvature value at each point

indicates a saddle point of 0, whereas it is a concave surface if greater than 0, and convex

if less than 0. Using this information, we select two opposing points, one concave and one

convex with high magnitudes, and use the convex point as the direction of the leg. If required,

a side fill approach can be used at the knee, to determine the size of the feet, if they are not

visible.

Head based torso direction: There is a likelihood that the knee joint may not be

visible, or that cloth deformations are causing the curvature estimation to yield no good

pair. In such scenarios, we use the torso region to determine the person’s direction. By

using the hip and shoulder joint positions, it is possible to get the axis of the torso region,

by fitting a plane through these points, and using the normal information. A faster way

is to estimate the normal, is by triangulating the points with respect to the centroid. The

normal, at the centroid, is the axis of the torso region. We use the disparity, in the size of

the front and rear part of the head, to determine the direction of the person on the axis. As

shown in Figure 4.5, even when a person turns their head, the front part of the head always

protrudes outward from the neck, or the body.

Once the direction of the person is determined, JAC assigns the appropriate sides to the

joints of the skeleton, using the approach described in Section 4.3.4.

4.3.7 Skeleton Accuracy

The Kinect generates a skeleton at 30fps; even over shorter periods of time, thousands of

skeletons are estimated. It is important to verify each and every skeleton, that is generated
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Figure 4.5. Person direction estimation using the head and torso region: The front part of
the head protrudes outwards more than the back, irrespective of looking forward (left) or
sideways (right).

by the system. Due to the noisy nature of the data, and the bulging nature of muscles in

the human body, it is very difficult to generate good ground truth information about the

skeleton, using sensor based motion capture systems. Since we are more interested in an

accurate description of the pose of the person, rather than the precise positioning of the

bones, we define a novel empirical approach to measure the correctness of the skeleton.

For a given 3D skeleton S, of a person captured by cameras K1...KC , into depth images

D1...DC , let s1...sc be the back projected skeletons, using each of cameras extrinsic and

intrinsic parameters onto a depth image. Then we define two scores to determine the accuracy

of the skeleton.

Containment Score: Intuitively, it is known that the skeleton of a person is contained

inside the body. So, no matter what the angle of the camera is to the person, the skeleton

cannot be seen by the camera. This basic fact, as shown in Figure 4.6, is used to determine

the containment score. While considering the RGB-D camera, from the camera’s point
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Figure 4.6. The containment score verifies that the skeleton is inside the person, by ensuring
that the skeleton is behind the depth data, from all of the camera views.

of view, the depth image should always have a pixel with a smaller depth value than the

skeleton, for all of the points on the skeleton. For each camera Ki, a mask image µi, with

active mask on ni pixels, is computed using the back projected skeleton si. The Kinect score

is calculated as

σi =
Si − µi.Di

ni
(4.2)

The final score, σ = ∀imax(σi). The maximum is taken to ensure that, even if one camera

view shows the skeleton, then an error is sent to the system. A low containment score means

a good skeleton estimate.

Coverage Score: The containment score only measures whether the skeleton is con-

tained inside the captured depth information; it does not verify the size or bone lengths of

the skeleton. To ensure that the skeleton covers the complete extent of the body, we define a

coverage score. The coverage score measures the percentage of body that each of the skeleton
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joints cover. The coverage for each bone is determined by using a Voronoi diagram based

partitioning of the point cloud, that is generated using all of the cameras and their depth

images. The percentage of points contained in each partition, corresponding to the bone, is

then compared with preset ranges for each bone. If a bone coverage percentage is different

from the specified range, then the score is calculated as the maximum discrepancy, in the

bone coverage percentage of the skeleton.

The coverage score is used primarily as an error indicator, which ensures that manual

verification is performed whenever necessary. The coverage score depends heavily on the

camera angles, as well as, the overlap between cameras. To avoid incorrect scoring caused

by camera overlap points, certain points that might overlap are removed. These points

are determined, by projecting each point from the camera Ki, onto the depth image of its

neighbors, and checking to see if the pixel value, in the depth image and the estimated depth,

are within a 1cm; if the points are that close to each other, then only one of them is added

to the point cloud.

4.3.8 Implementation

Our 3DTI setup uses multiple machines in a large capture area, where the person can perform

activities. The person was captured in an open scene (32x14sqft space), using the camera

setup shown in Figure 4.7. All of the machines were connected by a single gigabit switch.

The bulk of the processing was performed on a single estimation machine, with an Intel

i7 2.4GHz processor, 32GB RAM, and GTX 970 graphics. All 12 camera machines had a

Intel Xeon 3.0 GHz processor, 18GB RAM, and Nvidia Quadro 4000 graphics. All of the

machines were running Windows 8.1 64bit version, and had a Microsoft Kinect V2. The

code was written in C++. and unmanaged api of the Microsoft Kinect V2 SDK was used.

We use the intrinsic calibration of the Kinect, provided by the Microsoft Kinect SDK. The

extrinsic calibration is performed, using two cameras at a time. A planar intersection based
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Figure 4.7. The capture area with 12 Kinect cameras, that was used in our experiments.

calibration approach (Auvinet et al., 2012) is used, to get the extrinsic calibration between

the two cameras.

In our real-time setup, JAC is implemented in a distributed manner, to achieve faster

performance and to reduce transmission times. Calculating P (O), requires going through

the entire person region of the depth image. To optimize this operation, we calculate the

P (O) for all of the skeleton joints for a Kinect, at the same time. This requires between 3ms

to 6ms for the entire skeleton, depending on the posture of the person, captured from the

camera angle. The PAJ, for the entire skeleton, takes about 1ms more than the P (O). All

of these computations are carried out in the camera machines, and the joint positions along

with the PAJ, are transmitted to the estimation machine. Due to the small size of data, it

takes less than 1ms for the data to arrive at the estimation machine. The consensus skeleton

is generated in 1ms, once all of the Kinect machines’ data has arrived (about a 35ms window,

depending on when the Kinect captures the skeleton). The person’s direction, along with
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the feet position estimation, takes 1ms if only using the knee angle, 4ms if using depth based

knee curvature, and 5ms if using the torso face region. So in the live environment, JAC is

capable of generating a skeleton, even in the worst case scenario, in under 12ms, if all of the

cameras capture at the same time. The maximum time taken by JAC to estimate a skeleton,

while processing the data set, was 9ms. The entire data set was stored and processed on the

estimation machine.

4.4 Body Sensor Enhanced Skeleton

The multiple Kinect skeleton approach uses the redundancy that is created by the overlapping

field of use, of the different Kinects, to overcome the problem of occlusion, as it pertains

to pose estimation. In certain scenarios, like when external objects are present inside the

scene, it is not possible to have an unobstructed view of the user. In such cases, even

the multiple Kinect approach fails to provide a good estimation of the skeleton. Body

sensors are devices which can be attached to various parts of the body, to provide specific

measurements regarding that region of the body. So, specific sensors, that can measure the

position or orientation accurately in the real world, can be attached to the body to improve

the accuracy of skeleton identification.

An inertial Measurement Unit (IMU) sensor consists of a tri-axes accelerometer, gyro-

scope, and campus. Using an IMU sensor, it is possible to determine the orientation of the

sensor in the real world, quite accurately. Since the sensor is attached to the body, and is not

dependent on some external frame of reference or camera, the measurements are not affected

by occlusion. Madgwick et al. use the various readings from the IMU sensor to accurately

estimate the sensor orientation, using a gradient descent approach (Madgwick et al., 2011).

However, the IMU sensors, as well as the method itself, are highly susceptible to drift, when

under heavy motion, or when in rooms with large metal objects.
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The drift, in the orientation estimation of the sensor, can be overcome easily by re-

initializing the algorithm, whenever drift is detected; this would require the creation of a

detection algorithm, and also causes the loss of reading during initialization. Instead of using

a detect-and-fix strategy, we use a multiple interval based initialization strategy, to overcome

sensor drift related errors. Multiple instances of the (Madgwick et al., 2011) approach are

initialized using the sensor data at fixed intervals, each running for an average duration of

about 50 seconds (around 10, 000 samples); it was noticed that typically, the orientation

estimation approach drifted away after about 83 seconds. A new instance of the orientation

approach was started every 5, 000 samples, allowing the newer instance to take over the

previous instance, once it had reached the 10, 000 sample threshold.

Camera based approaches can provide a good estimation of the overall skeleton pose, but

are terrible at estimating the orientation of a bone, specifically the rotation along the bone

axis. In conditions requiring the accurate tracking of the joint orientation in all directions,

it is always better to use an IMU sensor. A hybrid skeleton can be created by combining the

camera based skeleton, with the orientation information, that is provided by the body sensors

that are attached to the body. The bone length, for the bones with the IMU sensor on them,

are obtained by averaging the bone lengths returned by the Kinect, but only when both of

the orientations, of the Kinect skeleton and the IMU sensor, match. After the bone lengths

are identified, the skeleton is always modified, based on the orientation of the IMU sensor,

whenever it is available; for the rest of the bones, the camera based skeleton estimation is

used. Figure 4.8 shows the Kinect skeleton, and the accurate hybrid skeleton that is created

by using the IMU sensors on the arm.

4.5 Haptic Enhanced Skeleton

The i3DTI framework is easy to extend, and is capable of supporting many different kinds

of devices. The haptic device is used to provide force feedback to the user, while interacting
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Figure 4.8. Combining the Kinect skeleton with the bone information from the IMU sensor.

with the system. For the force feedback to function properly, the haptic device must be

placed close to the user. In most situations, the close proximity of the haptic device to

the user, causes it to occlude at least the person’s hand. Even the multi-connect skeleton

estimation approach can not accurately determine the position, or orientation, of the user’s

hand, while it is occluded by the haptic device. It is possible to estimate the orientation of

the user’s hand using the body sensor approach, but given the large amount of occlusion,

multiple body sensors would be required to get a reasonable position estimate; for this reason,

it is more appropriate to estimate the user’s hand position just by using the haptic device.

When using the haptic device, it is assumed that the hand will usually be occluded by the

device; since the hand holds onto the haptic handle, the position of the handle can be used to

estimate the position of the hand. The haptic device has its own coordinate system, and the

cameras have their own R3 space. In order to calibrate the two spaces, common points need

to be extracted in both, the camera and haptic, spaces. When multiple cameras are used to

capture the user, a color marker placed on the haptic handle, as shown in Figure 4.9, can be
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Figure 4.9. Hand joint estimation using the position of the haptic.

detected and tracked to extract points for the camera space. In scenarios with only a front

facing camera, with no clear view of the haptic handle, a temporary camera, having a clear

view of the handle, is introduced into the scene. These two cameras are then calibrated,

using the approach described in Chapter 2. The points extracted from the camera space,

together with the corresponding haptic positions, are then registered using Horn’s method

(Horn et al., 1988).

After registering the camera and haptic space, the transformation matrix is then used

to calculate the position of the haptic handle, in the camera space. So whenever the haptic

device is in use, the position of the user’s hand is interpreted to be the same as the position

of the haptic handle, in the camera space. The haptic based hand position estimation, when

combined with the camera based skeleton, provides an accurate representation of the user’s

pose. This hybrid skeleton is used with various interaction techniques, to provide highly

responsive, natural user interactions, for i3DTI systems.
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PART II

COMMUNICATION
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An i3DTI application needs to transmit multi-modal data over the internet. 3D mesh

data is reconstructed every frame and contributes the majority of data being transmitted.

This data is typically transmitted either as a set of depth and color images, or a mesh and

texture image. The color/texture image is compressed using JPEG, while the rest of the

data is compressed using zlib (Salomon, 2007), which significantly reduces the data size. But

even with the compression, the data size per frame is still substantial, causing an increase

in latency and a drop in frame rate. In the communication part, we present approaches

that can transmit sequences of live captured 3D user mesh data, with minimal latency and

maximum frame rate over the internet.

Chapter 5: Given the large size of the mesh data, it is necessary to reduce the amount

of data that needs to be transmitted every frame. The skeleton prediction approach relies on

the user’s skeleton to predict the state of the user’s mesh at the sender’s side. A previously

received mesh is deformed using the latest skeleton, and then rendered on the receiving side.

Chapter 6: The skeleton prediction approach does not have any selection mechanism

for the mesh used for deformation. The choice of the mesh to be deformed is based purely on

network conditions, and leads to artifacts in the predicted mesh. The DIstortion Score POse

SElection (DISPOSE) approach eliminates these artifacts, by providing a selection strategy

for each of the meshes to be transmitted and used for prediction for each user pose.

Chapter 7: Since there is no restriction on the mesh that is deformed based on the

skeleton, it is possible for anybody to capture and manipulate other peoples’ meshes to

create realistic videos. The security impact of such manipulations, and the approaches to

detect them, are discussed in this chapter.
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CHAPTER 5

SKELETON PREDICTION

3D tele-immersion(3DTI) allows users from distant sites to collaborate in a single virtual

space, using their real life 3D avatar. It also enables interaction with shared 3D objects

in the virtual space, in real time. 3DTI has potential applications in remote training (Wu

et al., 2008), rehabilitation (Keshner and Kenyon, 2004), entertainment (Yang et al., 2006),

games (Raghuraman et al., 2012), etc. It combines many aspects of computer vision for

image acquisition, graphics for reconstruction and rendering, virtual reality for display, and

networking for high data transmission.

There are many challenges associated with providing such a system. A single frame of a

person, captured by a single camera, has around 100,000 points of information; this results

in a frame size of approximately 1.5 MBytes. A single site uses many such cameras to

attain high visual quality. To send such massive volumes of data across the internet, while

maintaining the quality of experience (QoE), is one of the major challenges in 3DTI systems.

QoE consists of both the visual quality as well as the rendering rate, which is measured in

frames per second (fps). These QoE requirements are often contradictory, since providing

higher visual quality often results in lower fps and vice-versa; so, sending a detailed mesh,

with a huge volume of data over the internet, results in excellent visual quality and accuracy,

but also leads to low frame rate, causing poor overall QoE.

Current methods used to deal with this problem involve compressing the data in some

way. Some methods use standard compression libraries directly on the color and depth data

(Redert et al., 2002). Some of the methods use a combination of standard compression

libraries to compress the data before it is sent over the internet (Yang et al., 2006). (Shi

et al., 2009) introduces a view-dependent real-time compression scheme geared towards use

in mobile devices. (Kum and Mayer-Patel, 2005) uses a reference stream to achieve inter-

stream compression. (Lien et al., 2009) uses a model based approach, where significant
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points (skeletal joints) are extracted from the point cloud frame, and then the compression

is achieved through motion estimation. All of these compression schemes are able to achieve

approx 10-15 fps over the internet.

Our approach uses the inherent redundancy in the data being transmitted, by predicting

and animating the mesh at the receiver side based on a few points of information, rather than

always compressing/decompressing data at both the sender/receiver end. In the process, we

transmit only a few bytes of data every frame, enabling us to achieve good frame rates. The

approach is motivated by three fundamental observations: (1) Transmitting large amounts of

transient information over the internet is not feasible; however, it is possible to stream small

pieces, less than 1KB, of information at a higher rate, even on a slow internet connection.

(2) 3D deformations are estimated by the impact of force at a point, resulting in the motion

of the points around it. By streaming only the locations of these key points and their

relationships with their neighbors, the entire scene can be reconstructed at the other end

(Tang et al., 2010). (3) Also, the skeleton of any object, in its most deformed state, can

be used to identify the points that influence the entire object (Yoshizawa et al., 2003). For

example, in the case of a human, the joints of the body signify all of the aspects of the bodily

deformation. By combining all of these aspects in this paper, a prediction based scheme is

introduced that uses already transmitted meshes, as well as skeletal points, to manipulate

the mesh at the receiver side. A small transmission of a small number of points can be used

to effectively predict the position of millions of points at the receiver side, giving a frame

rate equal to the rate at which the data is captured. Details of this method are discussed

more in Section 5.1

Our contributions form a novel method for solving the excessive data streaming prob-

lem, using a prediction that is based on the information that has already been streamed, by

deforming a live model. A fast segmentation and parallel prediction method is introduced

to allow the real time prediction of rigid body deformation, based on skeletal points.
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Figure 5.1. Shows the overall sequence of processing for the approach.

5.1 Our Approach

Reducing the amount of data being transferred by the 3DTI system would increase the frame

rate and improve the user experience. To achieve this goal, our approach uses a multiple

stage process, as shown in Figure 5.1. In the first stage, the skeletal points are identified from

the depth image at the transmitter side. These points, along with the mesh, are transmitted

to the receiver the first time. After this, the meshes are only sent if the network bandwidth

is sufficient to send it; subsequently, only the skeletal points are transmitted.

At the receiver side, the mesh is segmented based on the skeleton that was generated

using the skeletal points. This segmentation is stored and used to predict the behavior of

all the other points inside the region, based on the movement of the skeletal points. Finally,

the transformation of the segmented region is estimated and applied in accordance with the

skeletal point changes. Each of these steps are described in greater detail in the following

sections.

5.1.1 Skeleton Identification

3DTI usually involves transmitting the user’s mesh, so in this paper we consider only human

skeletons; so we use a human skeleton identification approach, described in (Shotton et al.,

2011). A computer vision based system is used to identify the limbs of the person. Features
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Figure 5.2. Skeletons and their corresponding mesh segmentation

are extracted from the depth image, and a random decision forest algorithm is used to

identify the various parts of body from these features. Once the broad level limbs have been

identified, a skeleton that is based on these limbs is fit to the overall model. The skeleton,

shown in Figure 5.2(a), is used. The estimated joint positions from this skeleton fitting are

used in our approach.

The standard skeleton, as shown in Figure 5.2(a), is sufficient for most representations

of the human body, but it cannot track the rotation of the skeletal segment about its axis.

A few extra skeletal segments are added to allow for such motions to be tracked. Since only

the point positions are transmitted, the extra information is generated at the receiver side
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from these points, allowing for small packets. The modified skeleton uses more segments to

represent the mesh of a human, as shown in Figure 5.2(b).

5.1.2 Segmentation

The entire mesh is segmented into different Segmented Regions(SR), based on the distance

between the vertex and the skeletal segment. Each skeletal segment has a control point

Pc(xc, yc, zc), typically consisting of a skeleton joint and a reference point Pr(xr, yr, zr), which

could be any point of the skeleton segment connecting two skeletal joints, or any point inside

the segmented region. To reduce the transmitted data and enable accurate tracking of the

SR, the control point of the next SR is used as the reference point whenever possible.

A Voronoi decomposition (Aurenhammer, 1991) based approach is used to segment the

regions around the line segment (Pc, Pr), by estimating the distance between a point and the

line. For a given point P (x, y, z), and a line segment (Pc, Pr), the distance d is given by

d =


||P − Pr|| if t ≥ 1

||Pc − P || if t ≤ 0

||(P−Pc)x(P−Pr)||
||Pc−Pr|| if 0 < t < 1

(5.1)

t =
(Pc − P ).(Pc − Pr)
||Pc − Pr||2

where t signifies the projection of the point on the line segment. Using the only the

distance metric, the entire mesh is segmented, as shown in Figure5.2(d). Using the skeleton

with extra segments allows for better segmentation of the mesh, since the segmentation

model is based on skeletal segments. It also allows us to capture the deformation that is

occurring due to the rotation of points around the line as the axis, which normally cannot

be captured by the line segment based representation.
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5.1.3 Prediction

The segmented regions are treated as individual rigid bodies that can undergo transforma-

tions independent of each other. A local spherical space, with the control point at its origin

is used to represent each point in the SR. A point in P (x, y, z) is represented in the local

spherical space as Ps(r, θ, φ), where

r = |Pc − P |

θ = arccos
z − zc
r

φ = arctan
y − yc
x− xc

(5.2)

Every SR for the received meshes is represented this way. The spherical value for the

reference point of a SR is represented as Prs(rrs, θrs, φrs); for the new value of control point

Pcn and reference point Prn, a new spherical value Prns is estimated for Prn using Pcn as

the center. Since we assume a rigid body, the value of r is not going to change for any of

the points. The new spherical value Psn, for a point Ps, is given by (r, θ + (θrns − θrs), φ +

(φrns−φrs)), once all of the points in all of the SRs are updated. The new point in 3D space

Pn(xn, yn, zn) is given by

xn = rn sin θn cosφn + xcn

yn = rn sin θn sinφn + ycn

zn = rn cos θn + zcn (5.3)

The prediction method relies on the relationship between the point and the control point

of the segment. The transformation is applied based on the changes to the skeletal segment,

on which the reference point is situated. A direct mapping relationship allows for fast

paralleled computations. This allows the prediction to run extremely fast on a large number

of points.
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Figure 5.3. Architecture of the 3D Tele-immersive system

5.2 Implementation

The architecture of the 3DTI system is shown in Figure 5.3. Each site consists of a renderer,

a gateway, and a set of camera machines. Multiple cameras are used to capture the person

at each site, and 3D reconstruction is performed on the capturing machine. One or more

cameras are connected to a camera machine, based on the data bandwidth available. In our

experiments, a single Kinect is used on the camera machine. The vision based skeleton de-

tection approach generates a confidence score for each identified skeletal point. The skeleton

from the camera, with the highest cumulative score, is used as the skeleton for that person

on the site.

All of the camera machines transmit the information to a central gateway. This acts as

a channel between the different sites and maintains the synchronization and flow of data.

A modified version of the stop and wait protocol is used to transmit information across
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the network to the remote site. Every time a mesh frame is sent out, the system waits for

an acknowledgment (ACK); once the ACK is received, the most recent packet is sent out.

Deflate (Salomon, 2007) is used to compress the mesh information and, on average, reduces

the size of the data by 50-75 times. The skeleton points are transmitted as soon as they are

generated.

The rendering machine combines the information coming in from various local sources,

and from remote sources through the gateway, to generate the meshes to be rendered. It

also performs the segmentation based on the skeleton and mesh information it receives. For

proper segmentation, the renderer maintains a skeletal buffer, in order to match the mesh

with the skeleton it received in the past. Every time a skeleton frame is received, the renderer

applies the prediction algorithm on the points associated with that skeleton, based on the

initial segmentation.

5.3 Experiments

A variety of experiments were performed to test the results of each stage, and also to gauge

the effectiveness of the approach in a real life situation. All of the experiments used a single

Kinect camera for the acquisition of the mesh data at a site. In order to allow for better

visual comparison, the rendering view was kept similar to the view of the capturing cameras

for all comparisons. Standard qualitative measures cannot be directly applied here, since

two consecutive frames of a static scene, using a Kinect camera, show significant differences;

hence, it is not possible for direct one-to-one point level mapping, between the frames,

without approximations. Consequently, it is also not possible to compare the predicted

result for each point. So, the metric of Quality of Experience (QoE), in this case visual

experience, was used to measure the performance of the approach, as described in (Wu

et al., 2011). All of the participants dressed normally, and there was no special care taken

to avoid loose clothing.
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Figure 5.4. Incorrect mesh segmentation and its corresponding skeleton for folded hands

To validate the segmentation part of the approach, poses extracted from six different

activities were used: waving, punching, kicking, jumping jack, hands in pocket, and folded

hands. A visual validation scheme was used to gauge the correctness of the segmentation.

All mesh segments were colored as shown in Figure 5.2(d), and visually verified. It was

noticed that the standard skeleton, shown in Figure 5.2(c), performed poorly in almost all of

the poses, except when the hands were away from the body. The modified skeleton, shown

in Figure 5.2(d), performed well in all of the cases, except when the hands were very close

to the body, especially when the hands were folded, as shown in Figure 5.4.

Meshes generated at various frame rates (1 to 30fps) were used to validate the effective-

ness of the prediction method. The same six actions were used. Numerous gaps were noticed

when using the point cloud representation for rendering the data, but these gaps soon dis-

appeared with the use of a mesh. A sample activity of hand waving, at various frame rates,

is shown in Figure 5.5. There is a direct correlation between the initial pose that is used to

segment the points, and the future predicted mesh based on the activities performed. If the

segmentation is perfect, then the predicted meshes are also very similar; but if either the

skeleton determination or the segmentation perform badly, then the prediction results are
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Figure 5.5. Prediction sequence based on the first frame for a one second period at 5 fps.
Top row shows the actual data and bottom row the predicted result.

very poor too. Therefore, it is important to select the right key poses that the predictions

should be based on. In this paper, no such determination is made, and all of the predictions

are based on the mesh information that is made available.

Finally, a virtual training setup was used to test the real world effectiveness of the

solution. Both the sites used standard cable internet, with a 10mbps down and 512kbps

up connection. The trainer asked the users to perform the six activities listed above. The

trainer at the other end then looked at the results side by side in real time, one with the

prediction and the other without, having to decide which looked better. It was observed that

the users preferred the prediction based methods in most of the cases, except the activity

involving the folded hands, and a few with their hands in their pockets. It is evident that

the prediction based scheme performs better in real world conditions, except when occlusion

causes incorrect skeleton detection and segmentation.

5.3.1 Comparison With Existing Approaches

Existing approaches use compression to solve the problem of reducing the amount of data to

be transferred to increase the frame rate. Since our approach uses a prediction based method

73



to solve the same problem, a direct comparison cannot be drawn between the approaches.

However, we can compare the number of bytes transferred per frame using each method,

over a period of time per camera. At a camera level, all of the systems generate an equal

amount of information per frame. For compression based techniques, all of the generated

frames need to be transmitted, thereby reducing the frame rate; Whereas for the skeleton

prediction technique, streaming only a few mesh frames might yield high frame rates that

result in better quality rendering. The data is reduced in size by approximately 5:1 in (Yang

et al., 2006), 15:1 in (Kum and Mayer-Patel, 2005), and 50:1 in (Lien et al., 2009), with

residuals results in about 1-2, 3-6, and 10-15 fps, respectively. It is possible to achieve 30

fps(rate of capture) using the non residual version of (Lien et al., 2009), by degrading the

rendering quality dramatically. However, in using our method, we achieved that same frame

rate without significant degradation.
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CHAPTER 6

DISTORTION SCORE BASED POSE SELECTION

3D Tele-immersion (3DTI) systems are used in a wide range of applications like telepresence,

tele-medicine, physical rehabilitation, gaming, teleart, etc. (Kurillo and Bajcsy, 2013). 3DTI

systems allow real time collaboration between people at different locations, by rendering their

”live” avatars in an interactive virtual world; this is achieved by using multiple cameras to

capture the scene at each location. Every frame of captured information is processed to

generate 3D models, which are then transmitted over the internet, and rendered in the vir-

tual world. The generated meshes are large in size (about 6 MB per camera), consisting of

thousands of vertices and triangles. Even on high speed networks, after lossy/lossless com-

pression, the transmission frame rate averages around 10 fps, resulting in a jittery rendering

at the other side.

Skeleton based 3DTI transmission schemes (Lien et al., 2007; Raghuraman et al., 2013)

overcome the issues of low frame rates that are present in the compression based systems,

by using skeletal data to animate the sender‘s 3D mesh. Smaller size skeleton data is trans-

mitted every frame, to allow the receiver to animate the current pose at the sender’s side.

The large sized 3D meshes are transmitted only intermittently, depending on the network

bandwidth. The reason for this is that, any recently transmitted mesh will produce good

quality animation for any given skeleton.

However, the situations where the most recently transmitted mesh and skeleton have a

high amount of inconsistency, result in poor animation. For example, if the most recently

transmitted mesh has a person with folded arms, and the most recent skeleton is in a T-

pose, then the resulting animation would be comprised due to the occlusion in the mesh.

Therefore, choosing meshes to be transmitted, based only on the availability of network

bandwidth, compromises the quality of the animation.
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Figure 6.1. The architecture of DISPOSE based 3DPTI.

Pose space, or example based, animation (Lewis et al., 2000; Xu et al., 2011) can success-

fully generate good quality animation, using only a few key mesh poses. By retaining many

more meshes, instead of just using the last received mesh, enables the system to generate

more realistic animation. 3DTI systems generate approximately 30 meshes a second. Online

pose set generation, in real time, using traditional approaches is not feasible for such large

volumes of data.

Proposed Approach: In this paper, we present a DIstortion Score based POse SElec-

tion (DISPOSE) approach to generate high quality animation, by selecting the best possible

outcome for a given pose. The images captured by the RGB-D cameras, go through a series

of processing steps to generate a deformable mesh. Artifacts are caused by various real world

factors, like self occlusion, clothing, lighting, etc. Moreover, the captured data that is noisy,

along with inaccuracies in the processing pipeline, result in artifacts. DISPOSE models all

of these possible artifacts as distortion in the animated mesh. By studying these distortions,

DISPOSE decides on the mesh that is most likely to generate the best possible estimation

of the pose.

DISPOSE is applied both on the sending and the receiving side of a regular 3DTI setup,

as shown in Figure 6.1. At the sender’s side, the DISPOSE based 3DTI approach determines
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the candidate meshes that need to be transmitted over the network, based on the effectiveness

of the mesh to animate different poses. At the receiver’s side, the DISPOSE approach also

buffers distinct meshes, to allow the animation from the best candidate pose, for that given

skeleton. While creating an animation sequence, higher priority is given to the most recently

selected pose, in order to retain temporal coherence between the frames, thereby improving

the perceived visual quality. The average mesh captured by a single RGB-D camera is

about 6MB, requiring 450ms to transmit on a 100 Mbps network. With compression (Yang

et al., 2006) needing 250ms of processing time, the mesh size is reduced to about 2MB,

which requires 150ms to transmit over a 100 Mbps network. In comparison, for every frame,

DISPOSE requires 2ms to transmit the skeleton, and 5ms to animate the mesh at the receiver

side.

Our Contributions:

• The real-time quantification of distortions that are introduced during the animation of

a captured human 3D model, using RGB-D cameras. The proposed Distortion Score

shows linearity with respect to the visual quality of the 3D human meshes.

• Online creation of distinct example poses, suitable for animation in real time.

• The proposed Distortion Score is shown to be effective in 3D tele-immersion both

(i) at the sender side for selecting candidate meshes to be transmitted, and (ii) at

the receiver side for the selection from a repository of received meshes, so that the

animated sequence shows better visual quality.

• Incorporation of the proposed DISPOSE method implies that the latency in rendering

the sender side activities, are reduced to the transmission delay that is associated with

the skeletal data transmission. Since the skeletal data is about 250 bytes, this latency

is indeed very low.
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6.1 Related Works

Many methods have been proposed to transmit 3DTI information. Silhoute based meshes are

directly transmitted by (Petit et al., 2009). Image and zlib compression are used by (Redert

et al., 2002) and (Yang et al., 2006) respectively. View-dependent compression was proposed

by (Shi et al., 2009), for mobile devices. A heuristic based lossless mesh compression was

proposed by (Mekuria et al., 2014). A block difference based stereo camera data compression

was proposed by (Zhou et al., 2011). Multi-stream adaptive compression based transmission

was proposed by (Yang et al., 2006, 2010). A single merged mesh is transmitted by (Alexiadis

et al., 2014; Mekuria et al., 2013; Alexiadis et al., 2013), for improved performance. Multiple

views obtained using the Kinect and bisection algorithm (Vasudevan et al., 2011) for meshing,

allowed (Kurillo and Bajcsy, 2013) to develop a low latency compression 3DTI approach.

Skeleton based approaches (Lien et al., 2007; Raghuraman et al., 2013) extract the skele-

ton from the data, and use interpolation to generate the next frame by using the previously

arrived information. While skeleton based approaches offer higher frame rates, the visual

quality of the result depends on the actions that are being performed, and the transmitted

mesh.

Our approach uses multiple meshes to generate the animation at the receiver side. Ani-

mation that uses multiple pose meshes (Lewis et al., 2000; Weber et al., 2007) produce good

quality results. These methods require set poses and a highly accurate registration in situ-

ations involving captured meshes. Mesh to mesh registration takes a significant amount of

time (Weber et al., 2007). Alternatively, using a single weighted mesh to generate animations

with little artifact, reduces some post processing time(Vaillant et al., 2013). Generating ac-

curate weights for meshes is too time consuming to be used in 3DTI systems. Combination

methods, using pose selection and interpolation, are proven to be effective for video genera-

tion (Xu et al., 2011); however, these methods require offline mesh pose database creation,

and take seconds to synthesize a single frame.
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Given that the overall process of generating weights or pose database is time consuming,

our method instead focuses on determining the quality of the animation result, to select the

visually “optimal” result. Various mesh evaluation metrics have been proposed in literature.

A surface approximation of Hausdroff distance was used by (Aspert et al., 2002), to perform

more efficiently. A surface roughness based measure was proposed by (Corsini et al., 2007),

for comparing watermarked meshes. Metrics based on simple distortion measures, such as

Hausdroff distance and root mean square error, do not correlate with the human visual

perception. A distortion metric, based on the difference of the structure (captured via

curvature statistics) of the meshes being compared, was proposed by (Lavoué, 2011). Local

mesh roughness, derived from Gaussian curvature, was proposed by (Wang et al., 2012).

Even though these methods correlate well with human visual perception, their computation

takes a few seconds for a single mesh.

6.2 3D Tele-Immersion Overview

3D Tele-Immersion systems allow geographically distributed users to be immersed in a unified

virtual environment. To display the ”live” avatar of the person, multiple cameras are used

to capture the user. All of the cameras are calibrated both intrinsically and extrinsically.

For each session, depending on the transmission scheme, the following steps are performed

each frame:

Acquisition: The user is captured using an array of stereo or RGB-D cameras that are

surrounding them. The user is then extracted from the image, using background subtraction.

Meshing: Captured range images are projected to 3D using the intrinsic calibration of

the cameras. The local neighborhood information from the range images is used to triangu-

late points, in creating a single mesh for each camera (Pajarola et al., 2003). These meshes

are realigned based on the extrinsic calibration between the cameras. The aligned meshes
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are then zippered together using (Turk and Levoy, 1994), to create a single mesh for each

user.

Compression and transmission: The generated mesh is compressed using zlib. The

texture image is encoded as a jpeg image, similar to (Redert et al., 2002) and (Yang et al.,

2006). The data is then transmitted to the receiver for rendering.

Skeleton based 3DTI transmit compressed meshes when the network bandwidth is avail-

able. A reference skeleton is transmitted every frame, allowing the receiver to animate the

last received mesh into the sender’s pose. These are extra operations that are involved:

Skeleton Extraction: The skeleton is provided by the Kinect sensor, using a vision

based approach in real time. The extracted skeleton is inaccurate in cases of occlusion.

Occlusion related inaccuracies can largely be avoided by combining multiple Kinect skeletons

to a single more accurate skeleton (Yeung et al., 2013). Even with multiple Kinects, the

skeleton can be inaccurate in situations with self occlusion.

Segmentation: If an image based transmission scheme is used, then the depth images

are directly transmitted to the receiver, and the depth image is segmented into regions based

on the skeleton. A region growing based approach, as described in (Adams and Bischof,

1994), is used to identify each part of the body. If a mesh is transmitted directly, then a

voronoi based approach is used to segment the mesh. The skeleton is projected onto the

3D space. The distance between the skeleton joint and the vertex is used to determine the

segmentation.

Skinning: When a skeleton is received, the most recently segmented mesh is used to

animate the mesh. Spherical blend skinning, that uses a constant weight for each segment,

is used to animate the mesh. Since estimating accurate weights for each vertex is time

consuming, a rigid association is assumed for the entire segment.
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Figure 6.2. From left to right: The various artifacts (highlighted) that are generated by
occlusion, rigging, segmentation, meshing and skinning, respectively.

6.3 Visual Quality Challenges

The visual quality of the result is affected by the network bandwidth restrictions, camera

calibration, noise from the cameras, depth estimation, image distortion, etc. Typically the

data captured from a Kinect is extremely noisy. While processing this noisy data, a lot of

new errors are introduced, depending on the type of processing. The noise generated at the

source level by the RGB-D cameras, as well as calibration errors between the cameras, are

not considered in this paper. We primarily focus on the errors generated by the following:

Occlusion: RGB-D cameras follow the pinhole capture model, which results in a lot

of missing elements while capturing a scene. For an item to be captured by the camera, it

needs to be in direct view of the camera. Since many of the poses, such as folded hands,

cause occlusion, these poses create an empty space in the mesh, as shown in Figure 6.2.

Clothing: Skeletal animation is not used to deform clothes. Loose clothes are simulated,

independent of the overall body of the rigged model. The deformation of clothing relies on not

just a single frame, but also on a series of events before the current frame. In skeleton based

3DTI systems, the vertices of the clothes are treated the same as the body, which creates

large artifacts. After animation, depending on the texture of the clothes, inconsistencies

between individual segments of the mesh are also clearly visible.
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Rigging: In character animation, rigging should fit the hierarchical bone structure, also

called the skeleton, to the mesh accurately. This is typically done by a person, or by a

semi-automatic script. The skeleton identification process identifies and fits the skeleton to

the depth information, with reasonably good accuracy. However, for many poses, such as

the one shown in Figure 6.2, this rigging process can yield bad results, causing a cascading

set of errors from various other parts of the system. Rigging error almost always leads to

segmentation errors, causing similar artifacts.

Segmentation: It is not always possible to determine the exact boundaries of each

limb with a high degree of accuracy. If the segmentation is incorrect (refer Figure 6.2), the

animation yielded will also be incorrect, resulting in cobweb artifacts.

Meshing: When the mesh is created from the depth image, it is not possible to determine

and segment the exact boundaries of the various objects inside the scene. The segmentation

information is not used while creating triangles for the mesh; this can cause the generated

triangles to span across limbs, or connect the person to the object near them, as seen in

Figure 6.2. When such a mesh is used for animation, cobweb artifacts are generated.

Skinning: Skinning moves the vertices of the mesh to achieve its animation, and is based

on certain assumptions. The primary assumption is that all of the deformation, occurring

in the mesh, should be a direct result of the changes in the skeleton. The actual influence of

the skeleton on the position of the vertex, is interpreted differently in every method, thereby

resulting in different artifacts. Figure 6.2 shows the artifact generated, when using the most

widely used Linear Blend Skinning (LBS) method. When using LBS, typically the artifacts

show a shrinking of the mesh around the joints. For the method used in (Raghuraman et al.,

2013), there is a problem with the stretching of the bone joints.

In the later sections, we show that all of the artifacts that are generated can be trans-

formed to a measurable form of meshing artifacts. We also define the Distortion Score, which

measures the exact amount of artifact in the mesh. This score can be used to understand

the visual quality of the mesh to be rendered.
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6.4 DISPOSE

3D tele-immmersion systems generate a large number of meshes every second, only a few of

which are useful in animating a mesh by using the skeleton of the participant. In skeletal

animation, a rigged mesh can generate a few fixed animations, and the vertex skinning

weights of the mesh are tuned to ensure that there are no artifacts during the animation.

Despite tuning the associated weights, the animation that is produced by the rigged meshes

is accurate only within the bounds of the motion currently being performed. Over time,

as new (never seen before) movements are introduced, it is highly likely that the mesh will

deform in an undesirable manner, to animate these new actions. Therefore, the quality of

animation is directly influenced by the vertex weights and chosen mesh. DIstortion Score

based POse SElection (DISPOSE) provides a scheme of selecting the mesh that is the most

likely to produce a better quality animation, for the given skeleton. Instead of using a single

mesh of a person in a particular pose to animate all other poses, DISPOSE selects a mesh,

from a set of meshes, that is most likely to animate the current pose accurately, without any

artifacts. The visual quality of the rendered result is enhanced significantly by selecting the

most suitable mesh to animate the user’s current pose.

We briefly discuss mesh optimality, with respect to estimating poses. We refer to an

ideal rigged mesh, as one by which all other meshes can be animated accurately. A rigged

mesh, with its weights estimated for all possible poses, is considered an ideal rigged mesh.

Selecting desirable mesh and accurately estimating its weights is too time consuming to use

in real-time applications. Rather than relying on a single ideal mesh, a set of good meshes

that can animate all of the poses is created. Each mesh in this set, is capable of animating a

large distinct set of poses accurately. Each of these good meshes can only accurately animate

a few poses. Intuitively, the best mesh to use is a mesh that is captured in that same pose.

So the set of good meshes may actually contain highly occluded meshes, like in situations

where the user is standing with their arms folded for most of the animation. The selection of
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good poses is dependent not only on generic factors like occlusion or deformation, but also

on application specific factors, like the activities being performed or the clothes being worn

during the session.

Pose selection is not commutative. Although two poses might have similar skeletons, it

might take significant effort to estimate one pose from the other. For example, it might be

easy to use an up-arrow pose to estimate a pose with hands behind the back. However, the

reverse is not plausible; using a pose with hands behind the back to animate an up-arrow

pose would yield poor and inaccurate results, primarily due to the occlusion of the hands.

For this reason, a pose should not be selected based solely on its skeletal similarity.

6.4.1 Formal Definition of the Pose Selection Problem

We now provide a formal definition for the problem of optimal pose selection. We define a

Pose as a pair comprised of both the mesh, and its corresponding skeleton p = {M,S}. The

mesh selection problem is defined as follows:

Given a set of poses P = {p1, p2, ...pn}, and a target pose skeleton ST , select a pose

p = {M,S} ∈ P that animates the mesh MT , corresponding to skeleton ST , with the best

visual quality.

Let us define a function Mout = A(Min, Sin, Sout) that transforms a mesh Min with

skeleton Sin, into a mesh Mout, given the corresponding skeleton Sout. We use this function

to redefine our problem as:

Given a set of poses P = {p1, p2, ...pn}, and a target pose skeleton ST , select a pose

p = {M,S} ∈ P , such that the difference between a generated mesh MAT = A(M,S, ST ),

and the actual captured mesh MT is minimized.

The objective of this approach is to determine the optimal pose from a set of poses, so

that the generated mesh MAT is most similar to the actual mesh MT . If it were possible

to directly derive the difference |MT −MAT |, then the solution would be straightforward.
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However, due to the noisy camera capture, the meshes that are generated for the exact same

scene can look very different at a detailed level. Even in the absence of noise, there can

be variations in vertex density, triangulation, etc., that might incorrectly manifest as errors

due to animation. This kind of similarity is generally verified visually by people. The mesh

quality metrics that are described in Section 6.1, predominantly concentrate on analyzing

variations from the original to generate the score. In this case, the inaccurate results are due

to the noisy quality of both the original and target meshes.

Therefore, we redesign our problem from one of minimizing mesh difference to minimizing

transformation artifacts. The objective is to measure the amount of artifacts that are gener-

ated as a result of transforming a mesh M into a mesh MAT , to correspond to the captured

skeleton ST . We refer to this as Distortion Score (σ). If the Distortion Score σ(p) can be

computed for each pose p ∈ P , with respect to the target skeleton ST , then the optimal pose

to be selected would be argmin(σ(p)).

6.4.2 Distortion Score

We define Distortion Score σ as the amount of deformation that mesh M , in pose S, has to

undergo to look like mesh MAT in pose ST . Intuitively, the lesser the deformation, the lesser

the artifacts created, thereby resulting in a more accurate rendering. Using mesh frames,

that are in the local temporal neighborhood of the target pose, has been shown to yield

accurate animations (Raghuraman et al., 2013). It has also been shown that a large amount

of artifacts are generated for some frames, even in the same neighborhood. Therefore, merely

selecting a pose based on the minimum effort distance does not necessarily ensure minimum

artifact. As a result, skeleton similarity measurements cannot be used to estimate the σ.

All of the artifacts are modeled as excessive deformation. For this, we define deformation

as the degree of change in the size of the triangles of the mesh. As mentioned in Section

6.3, meshing, rigging, segmentation, and skinning artifacts result in the excessive stretching,
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or shrinking, of the triangles of the mesh. Occlusion causes holes, and clipping of the

mesh, neither of which lead to any measurable deformation. The artifacts caused by self

occlusion can be measured using the Distortion approach, by changing the criteria used

for surface reconstruction. The 3D reconstruction approach uses the depth information to

group neighboring pixels together forming triangles. The use of depth information ensures

that the foreground object does not get meshed together with background objects and that

the resulting mesh is largely Delaunay triangulated. Since the background is already removed

from the depth image before meshing, ignoring the depth information only leads to triangles

being formed between the body parts that are occluded and the parts that cover them. So

when either of these body parts move, it causes the connecting triangles to stretch increasing

the corresponding Distortion Score. Most of the clothing related artifacts are also captured

by this reconstruction strategy. Some details, like minor wrinkles and texture mapping, are

not handled by this strategy.

At an abstract level, the Distortion Score σ measures the cumulative degree of the changes

in the dimensions of all of the triangles of the mesh while its being transformed to the target

pose. The mesh is transformed into the target pose by displacing the vertices of the mesh.

These vertex displacements cause the edges of the mesh triangles to vary. The variation in

edge lengths aptly encode the impact of the transformation on the mesh. The cumulative

sum of all of the edge variations provides a single value summarization of the animation

process to the mesh. The holistic score, that is calculated as the difference between all

of the edges of the original and deformed mesh, would cause large variations in a few of

the edges to go unnoticed. To give higher precedence to large edge variations, only the

edges that can be deformed are considered. In the current animation strategy, vertices can

be associated with only one segment, so only the edges connecting the vertices from two

different segments can get deformed. This reduces the computation cost for estimating the

Distortion Score significantly, while maintaining the level of contribution of each deformable

edge to the Distortion Score.
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Figure 6.3. The effect of using various scoring methods: (left to right) selected pose with
holistic scoring, selected pose with regional scoring, animated result for holistic scoring(less
than 40 triangles in the head region change), animated result for regional scoring.

The mesh is divided into different regions, based on the segmentation information avail-

able from the rigging process. Edges connecting the vertices in two different regions are

associated with both of them. The Distortion Score is calculated regionally by using the

weighted averages of the regional Distortion Scores. As seen in Figure 6.3, by using a re-

gional approach, the edge variations in the head region contribute more to the Distortion

Score, thereby increasing it.

Given a mesh M that is transformed to MAT , consisting of edges e ∈ E, regions R =

{r1, r2...rm}, ri ⊂ E, then the regional Distortion Score σr is given by:

σr =

∑
e∈r

∆len(e)∑
e∈r

len(e)
(6.1)
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Where len(e) is the length of edge e and ∆len(e) is the change in its length due to deforma-

tion. The overall Distortion Score σ is calculated as:

σ =
1

m

∑
r∈R

ωrσr (6.2)

where ωr is the weight factor associated with the corresponding region of the mesh. The

region based approach provides control over the influence of different regions on the overall

Distortion Score for a mesh, thereby facilitating fault isolation. For example, for the mesh

shown in Figure 6.3, the regional scores indicate that the regions corresponding to the hand

and the head are erroneous. This also allows us to assign higher precedence to certain regions

of the body over others, while computing σ for the entire mesh. For instance, a 3DTI session

focusing on upper body rehabilitation can give higher ω values to the upper body, compared

to the lower body. Some regions like the thumb, palm, and foot are prone to capture errors;

reducing the ω values for these regions improves the result significantly.

6.4.3 Pose Selection

The optimal pose for a given target pose requires selecting the pose with the lowest σ, with

respect to the target pose. The search is in the order of O(NE), where N is the number

of candidate meshes, and E is the number of edges in a mesh. A single camera mesh can

contain hundreds of thousands of edges. So, every new addition to the pose set significantly

increases the processing time for the linear search. We have considered two strategies for

searching the pose repository and selecting the candidate mesh:

• Exhaustive Search: The search can be performed in parallel to calculate the σ for each

mesh. However, even this strategy might result in slow selection for a large set of poses.

Computing the σ for each and every pose in a large pose set and taking the minimum,

may not be feasible for real time performance.
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• Threshold-based Search: The search uses an approximation to select the candidate

pose with acceptable visual quality. If we are able to identify the σ associated with

acceptable visual quality, then the search operation only needs to find a pose that

yields a σ that is less than the threshold. The computation cost of this kind of search

is reduced tremendously, by foregoing the need to find the optimal mesh. The worst

case scenario, of no mesh being able to provide acceptable visual quality, results in an

exhaustive search and heavy computation costs. The worst case would typically only

occur when the good mesh set is small, still leading to lower search times.

For this strategy, we use the session information to estimate the value for the threshold.

A 3DTI session running for few minutes requires the animation of thousands of meshes.

Each animation cycle results in an optimal pose being selected from the pose set, with

a minimum σ value. The average of the σ values, over multiple animation cycles, can

serve as a very good approximation of the desired visual quality. The starting threshold

is set using prior knowledge of the score that was gained by running other sessions.

However, during the initial stages, due to the limited availability of poses, the search

is usually performed on the entire pose set.

The performance of the search can be further improved by using the temporal information

about the action in progress. Optimization can be performed based on the selection patterns

of the poses in the pose set. For example, if certain poses are selected more often, then higher

priority can be given to calculating σ for those poses, over others in the set. In Section 6.6.1,

we have discussed the performance of the exhaustive and threshold-based search.

6.4.4 Animation Sequences

Selecting the optimal pose for animating every frame, without considering any temporal

aspects, might lead to temporal inconsistencies. For example, consider a scenario where a
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person is waving their arms, with the just the T-pose and up arrow pose in the pose set, as

shown in Figure 6.4; it is highly likely that the DISPOSE method will pick either of the poses

in a repetitive alternate manner, resulting in a jittery animation sequence. In this particular

situation, the shoulder region of the person changes significantly between the two poses, as

seen in Figure 6.4, which causes the sequence to look even worse. Since the approach only

considers the σ of each candidate mesh independently, and does not measure the quality or

features of the candidate poses, these kinds of situations might occur too frequently. Even

though both of the poses are equally capable of animating the target skeleton, it is important

from the animation sequence point of view, to hold onto one pose for as long as possible.

In the above example, if the same pose was used to animate the entire sequence, then the

resulting animation would be devoid of the twitching that was most likely caused by the

frequent switching of selected poses. Therefore, by giving the most recently selected pose

higher priority over the other poses in the pose set, it ensures that this pose is held onto

until its σ exceeds the cut-off threshold (discussed in Section 6.4.3). This causes the resulting

mesh animation sequences to be more consistent and visually appealing.

6.5 DISPOSE in 3DTI

Skeletal schemes (Lien et al., 2007; Raghuraman et al., 2013) for 3D Tele-Immersion deform

the last received mesh, based on the current skeleton. These techniques discard the previously

received meshes, and do not have any selection criteria for the mesh being transmitted. To

overcome these limitations, we propose the application of the DISPOSE in 3DTI.

DISPOSE is applied in two stages, as shown in Figure 6.1. The first stage involves directly

streaming the skeleton, and applying DISPOSE on the Candidate Pose Repository(CPR) at

the receiver side, to render the result. The second stage involves the processing of the

captured data to produce a rigged mesh, and maintaining the CPR. The meshes that need
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Figure 6.4. Effect of selected pose on animation: T-pose (left) and up arrow pose. (right)
Due to the stretching of the shirt, while in T-Pose, the results look considerably different.

to be added into the CPR are identified at the sender side, and transmitted to the receiver

side that maintains the actual CPR.

6.5.1 Sender Side - Identifying Candidate Pose

Among the meshes captured by the camera, the candidate pose mesh is identified based on

its ability to animate other poses. The candidate pose mesh is identified by applying the

criteria used to determine an ideal rigged mesh. The candidate pose mesh selection process

used to select the mesh to be streamed from the sender side, is described as follows:

Let Pu be the universal set of all possible poses that can be performed by the person

and Pw be the set of poses performed by the person in a fixed time duration. Then Pc is

the candidate pose mesh for streaming in Pw, such that Pc can be used to animate a large

number of poses in Pw, with a high degree of accuracy.

Candidate Pose Selection Strategy:
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1. To identify Pc, the temporal neighborhood of the poses generated around Pc are used.

A Usable Pose Set (UPS) stores all of the probable candidate pose meshes. A Tar-

get Skeleton Set (TSS) of the recently transmitted skeletons is also maintained. The

candidate pose mesh is identified from a UPS of size N using an Ω(N) algorithm.

2. A Rigging Quotient, (χ), is calculated as Np/Ns, where Np is the number of meshes

animated accurately (σ, lower than the selection threshold) by the pose mesh, and Ns

is the total number of skeletons in the TSS.

3. When the bandwidth is available to transmit the mesh, the pose mesh with the highest

rigging quotient (χs) is transmitted. All of the other meshes that were captured before

the transmitted pose mesh, except for meshes with χ greater than Retain Threshold

(RT), are removed from the UPS. RT is calculated as a percentage of χs, and is directly

proportional to the network bandwidth.

4. All of the skeletons that occurred before the transmitted mesh are removed from TSS.

The candidate pose selection strategy ensures that only meshes, capable for animating

different poses with minimal artifacts, are transmitted over the network.

Newer skeletons are added to the TSS as soon as they are detected. While adding a

mesh, the σ of the mesh is compared with the existing meshes in the UPS. If the pose mesh

has a low σ for an existing pose mesh, then it replaces the mesh in the UPS. Otherwise, the

mesh is added to the UPS, only if it can animate at least two skeletons in the TSS with low

σ. The χ for all of the meshes in the UPS are recalculated, only if the UPS has changed.

6.5.2 Candidate Pose Repository

On the receiver side, a Candidate Pose Repository (CPR) keeps track of all of the meshes

received from the sender. For every skeleton received, DISPOSE is used to select the candi-

date pose mesh from the CPR, and animates the target mesh for the corresponding skeleton.
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It is highly likely that in a high speed network environment, the sender would send a large

number of meshes. As a result, the amount of time that is taken to select the candidate pose

mesh, and animate the target mesh, would be substantial. So, it is extremely important to

limit the size of the CPR, within the runtime bound of the system. If the animation using

DISPOSE takes longer than the runtime bound, the CPR is pruned. We use an always-add-

and-prune-when-required strategy for limiting the size of the CPR.

A received mesh is always added to the CPR, since the new pose mesh may have the

latest facial expressions, and/or other changes in the human mesh. This addition to the

CPR may require replacing an already existing candidate pose mesh, to limit the number of

meshes in the CPR. The pruning strategy is as follows:

• The σ of received candidate pose meshes, with respect to all of the poses in the CPR

is calculated. Any mesh in the CPR, having a σ less than the Equal Threshold(ET),

is replaced by the new mesh; for example, if the received candidate pose mesh can

animate one of the existing meshes very accurately, then it replaces that mesh in the

CPR. ET is set to a value lower than 0.1, depending on the required pruning level.

• Each candidate pose mesh has an associated usage count, and is arranged by the order

of usage. New meshes that are added to the CPR are considered as used when they are

added. Also, every time a candidate pose mesh is selected, the usage counter increases

for that particular mesh. While pruning, poses that have not been used or are rarely

used, are removed from the CPR.

When using the always-add-and-prune-when-required strategy, DISPOSE gives good vi-

sual results in a timely manner. During our experiments, it was observed that the value of

ET plays a key role in controlling the size of the CPR.
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Figure 6.5. Illustration of 12 fundamental poses captured in the dataset.

6.6 Evaluation

Setup: Experiments were carried out on a system running Microsoft Windows 8.1, with an

Intel i7 3.4ghz processor, 32GB RAM, and GTX 590 GPU. A single Microsoft Kinect V2

sensor was used to capture the actions of the users. Only one sensor was used to ensure

that the system could compensate for all kinds of occlusion. All of the computations were

performed on the CPU; i.e., a single machine was used to both store and process the infor-

mation from the cameras. The entire processing pipeline used to generate the rigged mesh,

as described in Section 6.2, was running on the same machine in parallel.

Dataset: A dataset of 7 participants with varying physical attributes, was captured

using a single RGB-D camera, and used to evaluate the performance of the DISPOSE based

3DTI approach. A dataset of mesh streams was created by capturing users performing

specific actions while primarily facing the camera. Due to the large size of data, this dataset

was made available upon request. The actions involved two phases:

1. performing 12 fundamental poses, as shown in Figure 6.5, followed by
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2. performing activities that the participant chose to perform for the rest of the 2 minute

duration.

The actions performed in the second phase varied across the participants, with several of

these actions resulting in self-occlusion (due to the use of a single Kinect camera). A total of

about 25,000 frames of information were captured using the 7 participants. All of the data

was used for the experiments and the user study.

6.6.1 Experiments

We carried out two categories of experiments in order to gauge the performance of the

Distortion Score, and the effectiveness of using the DISPOSE strategy to generate animation

sequences. The Distortion Score was calculated with all of the region weights set to 1. The

threshold value was set to 0.15, for the threshold-based search.

Performance of Distortion Score

Linearity of Distortion Score: In the first experiment, the high level of accuracy, and

the progressive nature of the score, are validated. The Distortion Score σ was calculated

for the entire dataset, using the 12 candidate poses. Meshes were clustered based on σ, and

visually inspected to verify the visual quality of each cluster. It was noticed that the quality

of the meshes is progressively worse when going from σ = 0 to σ = 3; a small snapshot of the

same is shown in Figure 6.6). It was possible to verify, at a coarse level, that the increase in

artifacts corresponds to a similar increase in the Distortion Scores. However, at a fine level,

it was very hard to determine the difference in meshes that were very close to each other, in

terms of σ.

Running Time of Distortion Score: Theoretically, the running time of DISPOSE is

linear to the number of meshes in the CPR; i.e., Ω(NE), where N is the number of meshes

in the CPR, and E is the average number of edges in a mesh. But parallel implementation
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Figure 6.6. Instances of Varying Distortion Scores from multiple participants, in increasing
order from left to right.

of the exhaustive search approach on the test machine resulted in non linear growth, as

the number of meshes increased. As seen in Figure 6.7, after crossing a threshold of 19

candidate pose meshes, the parallel exhaustive search starts to take longer than the linear

growth, and becomes infeasible to compute and use in real-time. Since the CPU was used,

the performance reduction was not caused by a lack of memory as seen in the threshold

search results, but was instead triggered by the large number of threads used to compute

the score.

In comparison, the threshold based selection, described in Section 6.4.3, performs faster,

even with a large CPR. The advantage of stopping the search after finding a reasonably

good match, allows the CPR to grow to more than 100 meshes, with the result computed in

under 20ms. However, the threshold-based search also takes the same time as the exhaustive
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Figure 6.7. Comparison of processing times for the exhaustive search and threshold based
search.

search when the quality threshold is set to very high quality, and no good candidate pose

mesh is available. If the number of meshes in the CPR is pruned, the threshold-based search

time could be maintained below 20ms.

Efficacy of Threshold based Search: It is clear that the threshold search approach of

mesh selection is faster and more scaleable, than the exhaustive search. The qualities of the

result, generated by both the exhaustive and the threshold-based approach, were found to be

highly similar. To study the difference in quality, frames with the highest variation, between

the threshold and the exhaustive search, were selected. The typical threshold was found

to be 0.15 on the entire dataset, and used as the default starting value for the threshold.

The highest variation found was 0.12, and the meshes always looked similar from the overall

artifact point of view. As seen in Figure 6.8, it is very difficult to determine which of the

two is of better quality, after ignoring the edge noise from RGB-D capture.

Evaluating DISPOSE in 3DTI

Latency and Frame-rates: Next, we compared the performance of DISPOSE-based 3DTI

in terms of the payload size and the latency associated with the processing of the input,

with the systems available in literature. Both skeleton based 3DTI and DISPOSE-based
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Figure 6.8. The mesh selected by the exhaustive search (left), having σ = 0.02, and the
threshold based selected mesh (right), having σ = 0.14

.

3DTI, have the lowest payload size and highest frame rates, as shown in Table 6.1. With

an average payload size of just over 250 bytes and a bit rate of about 56kbps, the results

generated by the animation approaches is very responsive in real time, even over a low speed

internet connection. With internet bandwidth around 1Mbps upload speed, and after an

initial lead-time for a single frame transfer, the animation approaches perform at the source

frame rate of 30fps; all of the compression based approaches take more time to update just

one frame. The compression of (Lien et al., 2007) is comparable to our approach, for the

lowest quality settings; but given its large processing times per frame (in seconds), it was

not included in the table.

User Study: We performed a user study where 37 participants compared the visual

quality (appearance without artifacts) of skeleton based 3DTI (Raghuraman et al., 2013),

DISPOSE-based 3DTI, and the lossless compressed stream (Yang et al., 2006). The par-

ticipants were shown the recorded versions of the compression based stream at 10Mbps,

DISPOSE, skeleton based 3DTI, and the original stream, side by side. A total of 12 videos

were generated from the dataset, with videos 7 and 9 having high self occlusion. The par-

ticipants were asked to rate the visual quality and responsiveness, on a scale of 1 to 10. Due
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Table 6.1. Comparison of various 3DTI transmission strategies in literature.
Method Processing

Latency
(ms)

Payload
Size(Mb)

FPS*

(Petit et al., 2009) NA 29 15
(Zhou et al., 2011) 80 8 14
(Mekuria et al., 2014) 151 58 5
(Alexiadis et al., 2014) 500 7 20
(Yang et al., 2006) 159.5 NA 5
(Yang et al., 2010) 106.9 NA 7
(Alexiadis et al., 2013) 136.7 NA 7.3
(Mekuria et al., 2013) 200 4.3 8
(Kurillo and Bajcsy, 2013) 47 NA 20
(Raghuraman et al., 2013) 1 0.002 30
DISPOSE 6 0.002 30

NA: Data not available
* - as reported based on network conditions used

to the absence of formal definitions and specifications for these qualitative measures, the

responses reflect the participants’ respective subjective interpretations. The preferred ap-

proach of the participants, based on the choice of visual quality, is shown in Figure 6.9. Both,

of the skeleton based 3DTI and DISPOSE, approaches had high ratings for responsiveness,

while the compression based stream was considered the worst.

6.7 Discussion

Using the DISPOSE approach to generate animation sequences is very effective, at generating

real time animation, using an online stream of meshes (no correspondence) and skeletons.

We discuss a few observations of the approach below.

Ability to handle self occlusion: This experiment focused on the ability of DISPOSE

to improve the capture quality of the original meshes, specifically in terms of self-occlusion.

The raw images captured using the Kinect, and other pin hole based RGB-D cameras, is
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Figure 6.9. Results of the user study for preference of transmission strategies.

highly susceptible to self occlusion, as shown in Figure 6.10. Since the DISPOSE based

approach chooses a mesh that will result in minimal distortion, it was noticed that the

visual quality of the rendering was better at the receiver side than the sender side; this is

due to portions of the mesh being missing, due to self occlusion at the senders side. Since

the pipeline to capture, mesh, and render takes slightly longer than the DISPOSE based

rendering, using DISPOSE also at the sender’s side can increase performance considerably,

especially when using multiple camera capture.

Skeleton similarity based selection: Pose mesh selection based approaches (Xu et al.,

2011; Lewis et al., 2000; Hilsmann et al., 2013) rely on the similarity between the pose and

the mesh skeletons in the database, to select the appropriate mesh to animate the mesh.

We found that skeleton similarity based indexing, distance metric based selection, etc., work

effectively in scenarios with proper meshing, rigging, segmentation, and skinning. However,

online real-time applications, like 3DTI skeleton match based approaches, generate many

artifacts (Figure 6.3). Skeleton based strategies are faster, and may be required to achieve

higher frame rates at lower processing costs. Currently using the threshold-based search, it

is possible to achieve 30fps on the CPU, for pose mesh sets with about 200 meshes.
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Figure 6.10. Capture with self occlusion: (left to right) captured mesh with occlusion,
selected pose, and animated mesh without occlusion.

Effect of inaccurate skeleton: As we mentioned earlier, we use the Microsoft SDK

for extracting the skeletal data stream from the Kinect cameras. Skeletal data is quite

accurate in normal exercise poses, but is prone to error in cases of occlusion. We observed

that, in about 780 of the 25,000 captured frames, the skeleton associated with the mesh was

inaccurate. Since DISPOSE uses just the skeleton to animate the result, all of the rendered

sequences for these frames were inconsistent. In cases with heavy distortions, as shown in

Figure 6.11, the frames were not rendered to the user, due to very high σ.

Unlike the animation part, the pose set update process can tolerate large skeleton in-

accuracies(greater than 5cm), effectively. Larger errors result in very high σ for the mesh,

resulting in low χ, thereby keeping the mesh from being added to the candidate pose set.

Certain meshes, with small skeletal joint errors, can still have a low σ and a high χ, forcing

its addition into the candidate pose set. Estimating a single skeleton, using multiple Kinects,

has been shown to be fairly resistant to occlusion (Yeung et al., 2013).

Other distortion/quality scores: The preliminary analysis, using faster quality met-

rics like the dihedral angle, did not provide good quality results. Significant noise, in the
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Figure 6.11. Incorrect skeleton detection, resulting in inaccurate animation: (left to right)
detected skeleton, actual mesh, and animated mesh.

captured depth information, affects the scores determined by the quality metrics tremen-

dously. It was often observed that the animated meshes were given a higher score than even

the originally captured meshes. Given this ambiguity, no quantitative comparisons were

performed using the quality scores.

Skinning artifacts: Our 3DTI system currently uses fixed weights for the entire seg-

ment. Spherical blend skinning produces joint artifacts, even on meshes rigged manually

by experts. Selecting the best rendered mesh, based on these artifacts, is therefore benefi-

cial even when multiple expertly weighted meshes are available, or in any of the pose space

based approaches. DISPOSE simply selects the most suitable animated mesh, based on σ;

and since it does not play any role in the actual vertex updates, the animation quality is

ultimately decided by the skinning approach used to deform the meshes.

102



CHAPTER 7

SECURITY IMPACT OF PREDICTION

RGB-D cameras, such as Microsoft Kinect, have become very popular among computer vi-

sion researchers because of their ability to provide depth information, which reduces the

complexity of some key vision problems. Hence, these cameras are being used in numerous

applications, including surveillance, interactive advertising, etc. In particular, the depth

image data has been used to extract a human’s signature in a scene and for re-identification

of the human by signature matching (Barbosa et al., 2012; Vezzani et al., 2013). RGB-D

cameras produce the same depth images in a minimally illuminated scene or in the dark;

normal digital cameras can not be used in this scenario. This introduces a new area of

surveillance based on depth images. To the best of our knowledge, most research in using

RGB-D cameras for surveillance focus mainly on using the depth image for extracting in-

formation on the human(s) present in the scene. Not much seems to have been done on the

vulnerabilities of the forensic tools. On this front of vulnerability analysis, previous research

(Milani et al., 2012) focuses mainly on many forensic and anti-forensics techniques for image

and video manipulation, with little explorations on depth or 3D stream manipulations.

In this paper, we start by presenting an anti-forensic 3D object stream manipulation

framework to capture and manipulate live RGB-D data streams to generate realistic im-

ages/videos showing individuals doing activities they did not actually perform. This anti-

forensic framework takes raw live or recorded RGB-D streams and a skeleton sequence as

input. The skeleton sequence can come from another live/recorded stream or one created

using animation software, like Autodesk Motionbuilder. The system then produces a real

time realistic sequence of 3D models, like a 3D reconstruction system would, but with the

actor in the live stream performing actions shown by the skeleton sequence. To produce

this stream with modified behavior, the framework identifies the actor and generates a 3D

reconstruction: it detects the skeleton pose in every frame, segments the depth image of
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Figure 7.1. The behavior manipulated rendering of a person

the actor, and then correspondingly deforms the 3D mesh in real time. The delivered result

gives the end user the impression that the actor on the screen is performing the activity (see

Figure 7.1). (This anti-forensic framework can also introduce human(s) into a scene where

there were no humans). We then conduct a user study to visually inspect the manipulated

depth, color and 3D video streams and check whether humans are able to identify/recognize

the manipulations, just as security personnel would do. This study, using vision and graphics

researchers, shows that it is indeed difficult for humans to detect the manipulations.

Next, we investigate forensic approaches for their ability to detect the manipulations. We

particularly focus on depth image streams as various approaches suggest the use of RGB-

D cameras for multi-attribute people in re-identification in surveillance (Barbosa et al.,

2012; Vezzani et al., 2013). We use block-based depth noise evaluation approach to detect

manipulations in the depth stream. The results show that inter frame noise can be a key

factor in identifying certain types of depth image forgery.
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Related Work: Our framework uses the depth and color stream, to produce manipu-

lated depth, color and 3D streams. Segmentation plays a vital role in the generation of these

streams. Segmentation is a widely researched topic in both computer vision and graphics.

3D methods for segmentation (Chen et al., 2009) that rely on distances, curvature, graph

based cuts etc. are slow and inaccurate for human body segmentation. Methods specific for

human body segmentation (Ladicky et al., 2013) rely on pixel wise classifiers or pose fitting

(Huang et al., 2013) resulting in highly computational and non real time results. (Shotton

et al., 2011) uses a highly optimized region based random forest to provide highly accu-

rate skeletons using depth data. Region growing based segmentation methods are very fast

(Adams and Bischof, 1994) and accurate depending on the boundary condition. Our method

uses a combination of pose and region growing to achieve pixel wise real time human body

segmentation.

Many methods have been proposed for generating and detecting forgery in color im-

ages/videos.(Farid, 2009; Milani et al., 2012). While anti-forensic methods focus on fooling

a specific forensic algorithm, to the best of our knowledge no methods have been proposed

to generate such realistic forged videos(Milani et al., 2012). Since we use depth streams, the

focus is mainly on pixel based techniques that study noise and neighborhood information to

detect forgery (Fridrich et al., 2003; Popescu and Farid, 2004).

7.1 Anti-Forensic Framework

The anti-forensic framework generates two types of forgeries. Type I forged streams place

humans extracted from the real world with complex background and positions them in other

complex scenes. Type II streams, not only extract the person, but also manipulates the

behavior of the person before placing them in other scenes. Both of these forgeries are made

possible due to accurate segmentation of the person and skeletal animation.
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Figure 7.2. The various aspects of anti-forensic framework to generate behavior manipulated
streams.

To generate the forged information, color, depth and skeletal streams of the Kinect are

used. As shown in Figure 7.2, the raw values of the depth and skeleton are combined together

to get the segmented depth image, with each part of the body identified. At this point the

depth image only contains the person. A 3D mesh is generated using this depth image and

the color image is used to add texture to this mesh. Since the depth image was already

segmented, the new mesh retains the segmentation information.

The segmented mesh is then deformed using a new skeleton from a different activity.

The deformed mesh is rendered in 3D to generate the processed 3D stream. To generate

the color and depth streams, the vertices of the mesh are back projected from 3D to 2D

and combined with a background depth and color image. Each frame in the input stream

is processed using the same procedure generating a constant manipulated Type II stream.

Type I stream is generated by directly using the segmented mesh. The later sections discuss

the various steps in detail.

7.1.1 Real-time Segmentation

Accurately identifying and estimating the extent of various parts of the body is essential

in generating good quality animation. The goal of segmentation is to accurately tag each
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Figure 7.3. The various stages in the segmentation process – (from left to right) the depth
image is filtered to extract the person, then edges are estimated, skeleton is overlaid on
the edge image, segments are then identified by growing from the seed points on the joint,
reaching the final result.

vertex of the body to its corresponding bone, such that any motion of the bone would result

in a proportional change in the position of the vertex. A region growing based method is

used to segment the depth image accurately and quickly. Various steps involved are shown

in Figure 7.3 and described below:

Depth filter is applied to extract the region where the person might be present. Depth

filter performs similarly to a background mask and allows the generation of depth bounds

for the foreground. This method eliminates most of the background and unrelated objects

from the scene.

Contour detection uses a canny edge detector on the depth image to identify the

silhouette of the person. Depending on the noise levels of the depth image, some extra

contours outside the body can also be detected as shown in Figure 7.3.

Skeleton identification is performed using a real time, highly accurate depth image

based approach (Shotton et al., 2011) and is available via the Kinect SDK. Since only a single

depth image is used for the skeleton identification, occlusion is highly likely and results in

faulty skeletons. The method uses a depth image descriptor based random forest to classify

and tag skeletal joints, sometimes leading to misaligned bones as shown in Figure 7.4.

Region growing is then used to perform pixel level segmentation of the image. Each

pixel falling on the line between the bone joints is used as the seed point. Using the largest

107



Figure 7.4. The effect of number of seeds points on the segmentation, from left to right the
skeleton is misaligned a little, using a single seed point at the middle of the joint results in
bad segmentation and using the multiple seeds fix gives optimal segmentation.

number of seed points ensures higher accuracy by ensuring a better coverage. The pixels

neighboring the seed point are assigned the same segment tag as the seed point. The prop-

agation of the tag is continued until either a contour pixel is reached or it reaches a pixel

that is already tagged to a bone segment with shorter distance. This procedure is continued

till all the outward paths from the seed points have been exhausted. The contour condition

is then relaxed and all the unsegmented inner pixels are then assigned a segment using the

shortest distance to the bone. After this procedure, all pixels not connected to the person

remain unsegmented and are eliminated. The region growing method not only segments the

person but also eliminates noisy pixels, leading to a clean extraction of the person.

7.1.2 Behavior Manipulation

Computer animation methods are used to manipulate the behavior of the person in the scene.

The color and depth image are converted into a point cloud using the extrinsic parameters

of the cameras. To map the texture to the points, the mapping between the color and depth

image is also retained.

Mesh generation exploits the inherent structure in the depth image to quickly triangu-

late and produce a mesh. Comparison methods proposed in (Raghuraman et al., 2013) are
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Figure 7.5. Deformed meshes generated without using segmentation information are on the
left, and with segmentation information on the right.

used to identify and connect neighboring vertices. Since the mesh needs to be transformed

for different body poses, the direct application method may give bad results. Consequently,

the meshing method was modified to not only consider depth and spatial neighborhood, but

also the segmentation information. Only those vertices from segments that are adjacent to

each other are allowed to be part of a triangle. Meshes generated using this method have

fewer overlapping triangles which leads to a clean skeletal animation, as shown in Figure 7.5.

Skeletal animation is performed on the segmented model using rigid body deformation.

The real time streaming deformation technique described in (Raghuraman et al., 2013) is

used to deform the model. In this method, each joint is represented by a control point and

a representative point. Control point is the point around which the rotation of the joint

happens. Spherical representation is used for all the vertices in the segment centered around

the control point. The angular changes of the skeleton are first applied to the skeleton

corresponding to the segmented model. Since the skeleton is generated every time for each

frame using fitting, the size of the skeleton changes between frames. Due to this, all changes

are executed on the same skeleton. The angles corresponding to each vertex, in the spherical

representation, are then transformed by the same angular deviation as the representative

point. This procedure is repeated for each new skeleton or mesh to generate the 3D object

stream.
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Manipulated color and depth images are generated from the 3D mesh using a point

cloud representation. The 3D point cloud is generated by representing the vertices of the

mesh as 3D points. The original mesh that is constructed is dense, having a large number of

vertices thereby yielding a fairly dense point cloud. The images are generated by projecting

each point in the point cloud to a point on a 2D plane using the Intrinsic parameter matrix

of the camera. Simultaneously, a color image, of same resolution as that of depth image,

is generated by assigning color values of a 3D point in the colored point cloud to its corre-

sponding 2D point. Depth images and color images, generated in this manner, are generally

noisy as some points on the 3D point cloud may not have direct corresponding points in the

2D plane. As a result, there might be holes in the depth and color images. To overcome this

issue, we interpolate these values with its 4-connected neighbors, generating seamless depth

and color images. The majority of artifacts in both depth and color images are eliminated

using the interpolation as seen in Figure 7.6. Type I depth images are generated using the

original 3D mesh, and Type II are generated after applying the deformation using a new

skeletal pose.

7.2 Evaluation

To study the quality of forged streams generated by the framework, both automatic forensic

methods and user study were used. All the data was captured using the new Kinect V2

sensor and was processed using a 3.4Ghz Intel CPU. The color images were captured at

1080p and depth images had a resolution of 512x424. The entire processing for generating a

Type II forged stream took about 20ms. The number of seed points does not play any role

in the time taken by the segmentation algorithm. The reduction in number of seed points

can have an adverse effect on the accuracy of the segmentation as shown in Figure 7.4.

Using standard distance based techniques, like Voronoi diagrams, for estimating segments
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Figure 7.6. Altered color image generated without interpolation on top and with interpola-
tion on bottom

as described in (Raghuraman et al., 2013), result in bad segmentation when the bones are

close to each other as shown in Figure 7.7.

Six different people were captured performing different activities such as waving, raising

left arm, raising right arm and raising both arms in three different backgrounds. All actions

were performed with the subjects facing the camera and special care was taken to ensure

that the actions lie on the camera plane. Using this captured raw data, we created different

sets of Type I and Type II forged depth, color and 3D rendering sequences. The automatic

method described below used all the depth samples, whereas a small percentage of samples

was selected for the user study.
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Figure 7.7. The segmentation done using Voronoi on the left and edge based method on the
right, notice the head region

7.2.1 Forensic Evaluation

RGB-D cameras like Kinect generate noisy depth data. The noise levels are so high that

they can be easily noticed by looking at consecutive depth frames. If the forger uses a single

depth frame for the background, then the sequence generated will not exhibit this noise

characteristic. Unlike color images, insertions into depth images do not influence the pixel

neighborhood, but it reduces the distortion artifact present around the edges of the depth

images. Insertions into the background do not cause such noisy artifacts and can also be

detected. Based on these observations a noise analysis based method was developed to detect

forgery.

To analyze the noise variation in original and forged depth images, we define two noise

measures: intra frame noise IFN and inter frame noise ÎFN . First a given frame It at

instance t is divided into a set of NR grid regions R. Then IFNt = |
∑NR

n=1 |(1−σ)It(n)|/NR|,

where It(n) is nth region of image grid and σ is a gaussian smoothing filter of size 5X5. The

inter noise between the frames t and t+ 1 is given by ÎFNt = 2|IFNt − IFNt+1|/(IFNt +

IFNt+1). Using ÎFNt, type I and type II depth image forgeries using a static background

can be detected as verified by our experiments.

Experiments were performed on sequences of Type I and Type II forged images. We

computed intra frame noise for each frame and inter frame noise for each pair of consecutive
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Figure 7.8. Noise analysis for original depth images, Type I and Type II forged depth images
with single image and multiple images as background in all frames.

frames. Following plots assist in understanding the estimated noise ranges in all the cases.

Figure 7.8 shows the plot of variation of normalized inter frame noise across a number of

frames for three different datasets. From the plots, it is very clear that normalized inter

frame noise in the original is very high compared to that in forged depth images; Hence

it can be used as a distinguishing factor between original depth images and forged depth

images.

In the second set of experiments, we generate a sequence of Type I and Type II forged

images by inserting the depth image region corresponding to a person into a sequence of

depth images of a background. We repeat the above experiments on the new dataset. From

the noise values obtained in this case, it is clear that the simple noise based depth image

forgery detection may fail to distinguish between the original depth image and the back-

projected depth image. As shown in Figure 7.8, the obtained noise plots illustrate that it is

difficult to distinguish between the original and back-projected depth images based on inter
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frame noise as the noise level in both cases is similar. As future work, we will explore other

approaches for detecting forgeries in depth images.

7.2.2 User Study

A panel of 6 graduate student researchers in computer vision and graphics were used to

evaluate the results. Each student was given a set of images and video sequences of variable

lengths. They had to identify if the images/videos are real or manipulated or undecidable,

and also explain what identifying feature they used to make the distinction. In all, more

than 100 images and 20 videos were used to evaluate the system. A few similar images

and videos were provided to the participants to give them an idea of the quality. All the

participants were given the same set of images/videos for evaluation. The data consisted of

40 depth(10 real, 15 Type I, 15 Type II), color 40 depth (10 real, 20 Type I, 10 Type II) and

20 3D rendered images (10 real, 10 Type II). Two videos each of real, Type I and Type II of

depth, color and 3D were provided, along with 4 low resolution(240x160) color videos. The

low resolution videos were provided to check on the effect of video quality on identification.

Live evaluations were carried out by switching between live camera and manipulated camera

feeds in real time. This dataset will be made available, and a subset of it is uploaded as

supplementary material.

The participants were able to identify both Type I and Type II forged high resolution

color videos. Some of the forged color images were also identified correctly. The participants

mostly studied the edges of the person in the images to detect forgery in both the situations.

While evaluating the low resolution color videos, all the participants were unable to identify

the difference 76% of the time. The low resolution encoding of the videos introduces artifacts

in the videos, which was most often the confusing aspect to the participants. The higher

resolution data is easier to identify, mainly due to the noise from the depth information

getting propagated onto the color image segmentation of the person. With newer and better
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capture technology, these artifacts will disappear and make it much harder to identify forgery

visually in color streams.

Both depth and 3D rendering proved to be very challenging tasks for the participants.

With the noisy nature of the edges in the original data for both depth and 3D, there was no

easy visual way for the participants to identify forgery. Similar to the automated method for

identification, when the participants were given depth video in a single background depth

frame, everyone could identify it as forged. However, with a sequence of background frames,

confidence and accuracy of classification dropped significantly. 3D rendered Type II im-

ages/videos generated with no occlusion were always classified as original. Some were able

to identify the forgeries after careful examination of the image for stretching and texture

artifacts, due to the striped clothing of the person in the video. Since the other videos

and images had plain clothed people with very little texture information, participants were

unable to detect the forgery with confidence.

7.3 Discussion

The anti-forensic framework works very effectively while generating 3D renderings and depth

streams. If only depth streams are used to process and identify like in (Barbosa et al., 2012;

Vezzani et al., 2013), then it is easily possible to fool the systems, giving false results. Much

more robust methods based on the characteristics of the noise around the edges need to be

developed. As shown in the evaluation section, detection methods using just noise based

parameters can be easily overcome.

Color images/videos are easily identifiable mainly due to the crop/add nature of the

insertion into the background. Using image blending for insertion will avoid sharp edgy

additions, and may result in even lower detection rate as far as users are concerned. Forgery

in low resolution videos, similar to the ones generated in modern surveillance systems, is

already very hard to detect for users.
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In the case of 3D renderings with the constraint of no occlusion, it is clear that streams

of information can be manipulated without the knowledge of the captured individual. It

was possible to identify the altered stream in two scenarios – (a) when the motion induced

was on a different plane, resulting in occluded or extended body parts, and (b) when the

skeleton was not identified correctly for certain poses. Both the scenarios involve minor

issues that can be rectified by careful frame selection. Since this study deals with real time

stream manipulation, frame selection was not considered. Almost all user study participants

felt that the only way to identify the difference is to look at the overall shape of the body

and compare it to the actual person. Despite being intuitive, this method produced a lot

of true negatives. Some even tried to do shadow analysis, but were inconclusive since the

shadow is generated virtually. Many vision problems are easily solved by people, but the

problem of identifying counterfeit streams of 3D information is very hard to solve even for

humans. Observing anomalies of the framework remains the only way to identify manipulated

streams. As technology improves, artifacts will become fewer and sparser, resulting in an

indistinguishable stream.
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PART III

OBSERVED LATENCY
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The observed latency of an i3DTI application is the delay between an event in the real

world and the corresponding virtual world rendering. All of the latencies referred to so

far in this document, have been implicit latencies. Implicit latency is the time between the

actual arrival of the information into the application, and the request to render the processed

result. We present approaches to measure the observed latency of an i3DTI system and then

analyze the impact of the latency on the quality of experience of the user engaged in an

i3DTI system.

Chapter 8: The observed latency across geographically distributed locations is esti-

mated using the approach presented here. This approach requires the i3DTI setup to capture

a pattern generated independent of the system to estimate latency, so it cannot be performed

while the system is in use by the user.

Chapter 9: The latency estimation approach described here is specifically designed to

capture the latency at a local site. This approach uses a small strobe light and can estimate

the latency of the system while the user is actively using the system.

Chapter 10: The impact of latency on the user experience is studied here using a soccer

game. The question of whether the users prefer better performance, or better quality ren-

dering, is answered by analyzing user responses to the soccer game, in multiple optimization

setups.
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CHAPTER 8

SCENE LATENCY

3D Tele-Immersion (3DTI) systems have a wide range of applications including 3D tele-

presence, remote medicine, arts, gaming, etc. (Kurillo and Bajcsy, 2013). 3DTI enables

multiple users to simultaneously coexist and interact in a virtual world, using their ”live”

3D models. The ”live” 3D models are reconstructed in real time by capturing the user using

multiple RGB-D, or stereo, cameras. Each of the users can be geographically distributed in

different locations, connected to each other via the internet. Each location is referred to as

a site, and consists of multiple cameras and processing machines.

The use of multiple cameras results in large amounts of data being captured and recon-

structed in every single frame. Large quantities of noisy information captured by cameras,

along with the complexities of 3D reconstruction, lead to processing delays. To allow faster

data capture and processing, multiple machines are generally used for capture and reconstruc-

tion, as shown in Figure 8.1; This results in large volumes of information being transferred

even at a single site, and these network latencies contribute to additional delays (intra-site

delays). In each frame, the need for real time reconstruction of the 3D model results in a

dense mesh, with hundreds of thousands of triangles. Rendering these large meshes every

frame, lowers the rendering frame rate, and contributes to the delay. When multiple sites

are involved, these large meshes are compressed and transmitted over the internet, leading

to inter-site delays.

Latency in a 3DTI system can be broadly categorized based on when the latency was

caused, such as: (a) Capture: Time taken to capture and send the information to the

program. (b) Processing: Time taken to process the data. (c) Transmission: Time

taken to move data from machine to machine within a site (intra-site delays) and across

sites (inter-site). (d) Rendering: Time taken to draw and show the results to the user.
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Figure 8.1. A sample layout with a high speed camera (HSC) recording the displays for
the VPLE based latency estimation of a system with four Kinect V2s, processed on camera
machines (CM1 to CM4).

8.0.1 Measuring Latency

Observed latency (L) is the amount of time between a real world event, and the display of

the real world event within the system. For example, if a user moves his/her arm, L would

represent how long it takes the system to display that action. A large portion of L can

be measured implicitly within the system. The implicit latency (L′) is the total duration

from the time the data arrived from the sensors, to the time the data is sent to the display

buffer. 3DTI systems use a variety of capture and rendering technologies (both hardware

and software). For these 3DTI systems, estimating L′ involves aggregating network data

transfer latencies apart from the capture, processing, and rendering latencies. Since 3DTI

typically involves multiple machines over possibly heterogeneous networks, it is difficult to

use clock-based mechanisms to measure these latencies. Even when clock synchronization

protocols are used, the clocks may be off by twice the network propagation delay, so the
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clock-based latency measurements may not reflect what is experienced by the user. In other

words, no matter how detailed the implicit system delay measurements are, the L′ might

still be significantly inaccurate, compared to what is really observed.

While L′ provides information on the delays associated with the application, it still is

not the same as the delay observed by the user, L. Most displays run at 60Hz and have a

response rate of 5ms, so depending on when a rendered frame is sent to the display, an extra

16.5ms for refresh and 5ms to update the screen, will be added onto the latency. There

is no way to accurately measure how long it took for a rendered frame in memory to show

on a screen, from within the system. Using these numbers, Ohl et al. estimated that their

system would take a maximum of 30ms to render on a monitor grid controlled using VRUI.

However, they found that it was actually taking about 80ms (Ohl et al., 2015). The only

way to estimate L accurately, is by measuring it from the point of view of the user. This

can only be done by having a measurement approach that is independent of the system, and

is able to track both the input and output of the system from the real world.

8.0.2 Outside Observer Technique

Outside observer techniques measure latency from outside the system, relying only on the

delay between the input and output of the system; Due to this, latency can be measured

without the need to modify the system (in terms of the probes to be introduced in the system

software). There are many approaches for the measurement of L, for Virtual Environments

(VE). VE systems do not reconstruct a real world scene but instead, rely on input trackers

to regulate the rendering.

VE latency estimation methods (Steed, 2008; Mine, 1993; Di Luca, 2010; He et al., 2000)

are predominantly outside observer based techniques, where an external point of reference is

used to track both the real world object and the corresponding virtual rendered object. High

Speed Cameras (HSC), or special sensors, are used to monitor the delay in motion between

the real and virtual object, to estimate latency.
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To capture a High Frame Rate (HFR) Video, the HSC needs to use low exposure rates,

like 1 ms for 960 fps and 2 ms for 480 fps, videos. These low exposures cause illumination and

color inaccuracies (Wu et al., 2013), leading to efforts involving manual frame counting (He

et al., 2000). There are methods that are shown to work on HFR videos (Friston and Steed,

2014; Wu et al., 2013), but these rely on specific markers and need to be setup a certain

way, which may not work in multiple camera setups. 3DTI systems can be geographically

distributed, adding a new dimension to the problem; Replicating the same motion, with any

degree of certainty in two different locations, unnecessarily complicates the problem.

8.1 VPLE

The Visual Pattern Latency Estimation (VPLE) is an outside observer technique that can

measure L between geographically distributed 3DTI sites. VPLE is a completely independent

system, and does not require any changes to the 3DTI system. The method does not require

any special calibration or hardware to function accurately.

VPLE uses a rapidly changing visual pattern that encodes relative system time, instead of

the motion of an object. The visual pattern is captured and rendered by the 3DTI system.

The visual patterns provide a reference of time, even allowing the estimation of L across

different locations. Along with the L, the use of visual patterns allows VPLE to measure

the system frame rate and the exposure rate of individual cameras. The generated patterns

are designed to be robust against many issues, including geometric distortions, illumination

changes, flickering, overexposure, etc.

An external observer (a HSC) is used to capture both the visual pattern and the rendered

result of the system, to estimate L. Videos that are captured at fixed frame rates provide

very good relative time estimates. For example, each frame in a 960 fps HFR video represents

1/960 of a second (1.04 ms). The accuracy of the approach is dependent on the refresh rate

of the pattern, and the capture speed of the high speed camera (HSC). A fully automated
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Figure 8.2. A sample layout, with a high speed camera (HSC) recording the displays for the
VPLE based latency estimation application (App), with a Kinect V2.

computer vision based pattern recognition approach then decodes each of the patterns to

compute latency. L is computed using the difference between the original and application

rendered pattern.

8.1.1 The Approach

For an application with a single camera, VPLE estimation is setup as shown in Figure 8.2.

The L of the application is estimated by VPLE as follows: A pattern generator renders a

periodically changing pattern (PG) on a display (DG). The application camera is positioned

so that it can capture the entire pattern display, along with as little background as possible.

The application is then made to render the captured pattern (PA), as clearly as possible on

a display (DA). The HSC is positioned so that it can capture both of the displays clearly. A
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HFR video is recorded by the HSC, showing both the patterns PG and PA clearly in every

frame. The HFR video is then processed offline to determine the L.

VPLE method consists of three components: (a) Pattern generator: creates a unique

pattern encoding the current time instance. (b) Pattern recognizer: decodes all the

patterns from the HFR video. (c) Latency estimator: calculates L using the decoded

patterns from the HFR video. These are all discussed in detail, in later sections.

8.2 Related Work

Most latency related research on 3DTI systems is primarily focused on the quality of service

or the quality of experience over the network/internet (Kurillo and Bajcsy, 2013). All these

works (Wu et al., 2011; Raghuraman and Prabhakaran, 2015; Desai et al., 2015; Mekuria

et al., 2014; Alexiadis et al., 2014; Beck et al., 2013; Zhou et al., 2011) either compute L′,

or just use the transmission delay as the main latency. Latency has a major impact on

the user’s comfort in Virtual Environments (VE), leading to many techniques having been

developed to measure latency in VE. Some use internal techniques, like adding hooks to

Direct X API calls, to determine the exact time taken by the application to render a scene

(Chen et al., 2011). A mechanical arm fitted with a rotary encoder, in conjunction with a

system clock, was used by Adelstein et al. to measure the latency of trackers with different

accelerations (Adelstein et al., 1996). All of these methods require modification within the

system at various levels, and the last two methods require special hardware to be built.

It is not really possible to modify most VEs due to the presence of libraries and specific

hardware, so most techniques use an outside observer approach. Outside observer methods

track both the real and virtual worlds simultaneously, measuring the latency from the dis-

crepancies between the two. Many techniques use an external camera to track an object in

the virtual world, and a real world tracker object. Latency is computed by counting the

number of frames between the movement of the real world tracker and the virtual object.
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A manual frame counting approach was presented by (He et al., 2000). Steed attached a

tracker to a pendulum, and tracked the virtual object and the tracker using video cameras

to estimate latency (Steed, 2008). The latency estimated by the phase difference between

the motion of the objects, fitted to a Sine wave. Swindells et al. measured latency by us-

ing the angular deviation between a virtual turn table positioned over the real turn table

(Swindells et al., 2000). Sielhorst et al. encoded time in moving circles to measure the la-

tency of a video see-through augmented reality system, using an external camera (Sielhorst

et al., 2007). Friston et al. used a high speed camera to track a pendulum in the real world,

and a virtual object using blob detectors; The latency was estimated using frame counting

(Friston and Steed, 2014). Wu et al. used a 1000 fps high speed camera to track the position

of a slider in the real and virtual worlds, and counted the frames to achieve close to a 1ms

accuracy (Wu et al., 2013).

Other techniques use special hardware to estimate latency. Mine’s method uses a photo

diode to track a real world object on a pendulum, and the corresponding virtual object

through a certain point (Mine, 1993). The diode, pendulum, and screen need to be positioned

perfectly in order for the latency estimation to work. Di Luca used a pair of photo diodes,

both looking at a gray scale gradient attached to a moving, real world and virtual world object

(Di Luca, 2010); The photo diodes are connected to the sound card, allowing measurements

up to 44 KHz.

While none of the methods described above can be applied directly to a geographically

distributed 3DTI system, some of the methods can be modified to work for estimating latency

at a single site. Ohl et al. modified (Mine, 1993) and (Steed, 2008) to measure the latency

of a 3D presence system at one site (Ohl et al., 2015).

8.2.1 3D Tele-Immersion Overview

3DTI systems allow geographically distributed users to interact with each other by display-

ing their ”live” 3D reconstructed models in the virtual world. To allow such interaction
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Figure 8.3. The 3DTI processing pipeline of a single site, with one RGB-D camera.

on each site, multiple calibrated RGB-D, or stereo, cameras are used to capture the user,

reconstruct a 3D model, and transmit it to other sites, every frame. For 3DTI systems, that

use overlapping 3D meshes from individual cameras to render the user(Kurillo and Bajcsy,

2013; Raghuraman and Prabhakaran, 2015; Mekuria et al., 2014; Desai et al., 2015; Vasude-

van et al., 2011; Beck et al., 2013), every frame from each camera is processed, as shown in

Figure 8.3. All 3DTI system setups in this paper use only RGB-D cameras, so the flow is

described using the depth and color images as input. Stereo camera based 3DTI systems

follow a very similar flow, with the depth being estimated using image disparity.

Commodity RGB-D cameras return noisy depth images, which are filtered using bilateral,

median, or some similar noise removal technique, depending on the noise characteristic of

the captured depth image. A combination of both color and depth images may also be used

to remove noise, and enhance the depth image. After noise removal, the areas of interest

can be extracted using background subtraction, region based filtering, or another equivalent

method. Based on the intrinsic parameters of the camera, the depth image is projected to

the real world 3D coordinate system, creating a point cloud. Due to the limited resolution

of the depth image, if the generated point cloud is rendered directly, it will be full of holes.

So instead of rendering a point cloud, a 3D surface mesh is reconstructed from the data.

Depending on the surface reconstruction method, either the point cloud or the combination

of the depth image along with a mapped point cloud, are used to generate the mesh. 3D mesh
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generation is the most important, and processing intensive, step in the 3DTI pipeline. The

color image is clipped and mapped to the 3D mesh, using the extrinsic calibration between

the color and depth images. The meshes from each of the cameras are then realigned, based

on the calibration settings between the cameras. The realigned meshes are rendered in a 3D

virtual scene, using texture shaders to handle the overlap between the meshes. The texture

shaders use the capture angle, surface normal, etc., to blend the colors from various mesh

textures, and then render the final mesh in the scene.

In setups having multiple sites connected over the internet, the data is transmitted over

and rendered on displays at the other sites. There are many techniques (Vasudevan et al.,

2011; Mekuria et al., 2014; Raghuraman and Prabhakaran, 2015; Desai et al., 2015) devel-

oped specifically for the efficient transmission of 3DTI data. Evaluating these methods are

beyond the scope of this work. The main factors influencing the latency of all 3DTI sys-

tems are the number of cameras used, network performance, camera capture rate, image

resolution, hardware data transfer speed (camera to machine or machine to display), size of

data transferred, location of object relative to camera, shape of object, data transfer rates

between main memory and GPU memory, and CPU/GPU utilization and synchronization

delays. So instead, the L of the following three commonly used 3DTI meshing approaches,

along with a geometry shader based implementation, are studied:

Bisection Meshing (3DTIB) (Vasudevan et al., 2011): A low poly mesh is generated

from the depth image, by bisecting triangles based on the standard deviation of the region

inside the triangle. The method starts by dividing the depth image into two triangles; If

the standard deviation of the points inside the triangle is less than a threshold, then the

triangle is added to the mesh. If the standard deviation is greater than the threshold, then

the triangle is divided into two by bisecting the largest side. Whenever necessary, extra

triangles are added to keep the mesh conformed. This procedure is continued till either the

criteria is met or the lowest size triangle is added to the mesh.
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CS3 (3DTIC) (Desai et al., 2015): A low poly mesh is generated by weighting each

pixel, based on its curvature in the depth image. A hessian operator is used to score each

pixel in the depth image. The scores are sorted and a percentage of pixels having the highest

scores are selected. Triangulation is performed, using a sweep line based image meshing

approach.

Depth Image Meshing (3DTID) (Raghuraman and Prabhakaran, 2015): A

dense mesh is generated, using the variation in depth as the sole criteria. A square is moved

across the depth image, at each point the depth values of the pixels at the corners of the

square are compared with each other. If the depth values of at least three pixels are within

a certain threshold of each other, then the points are triangulated. To generate a sparser

mesh using this approach, a shrunken down depth image is used as input.

Shader Meshing (3DTIS): The simplicity of marching a square across the depth

image to reconstruct a mesh, allows the meshing approach to be parallelised easily. Each

square is processed in its own thread, and generates the necessary triangles. Rather than

implement the meshing approach on the GPU using CUDA or OpenCL, which would require

a hierarchical merge operation to combine all the triangles generated from each thread, the

meshing approach is implemented directly on the rendering pipeline, at the geometric shader

using GLSL. At each pixel in the depth image, the geometric shader generates the required

triangles and renders the result, without the need for an explicit hierarchical merge operation.

This approach is very efficient, as long as shadowing is disabled for the mesh, or the scene

only has a few lights. Since the meshing is performed at the geometric shader level, multiple

renders that are typically required for generating shadows, will cause the depth image to be

meshed repeatedly, leading to performance degradation.
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Figure 8.4. Issues with HFR, high exposure, and capture from monitors. From Left to
Right: a grid captured with geometric distortion, the capture of a fast moving dot causing
overexposure, the HFR capture of a color gradient grid shown on the monitor, the HFR
capture of a black monitor, and flickering due to partial frame rendering.

8.3 Pattern Generation

The VPLE approach relies on the accurate decoding of the patterns captured using the HSC,

from both the pattern generation display and the rendered result of the application. A new

pattern is generated each time the monitor is refreshed. Each pattern that is generated

depicts an instance in time. The pattern is generated in such a way that it can be detected

and identified easily, from the images captured by both the high and low frame rate cameras.

To enable such a pattern to be generated, we first need to identify and address the various

issues involved in capturing and processing these patterns.

8.3.1 Challenges

VPLE relies on the accurate decoding of HFR video frames containing content rendered on

monitors, captured using a HSC. The capture of content from monitors using cameras raises

many issues; A majority of them are shown in Figure 8.4 and can be categorized based on

their cause, as the following:

Geometric distortion: Using multiple cameras for capturing, it is highly likely that

many of the captures are off angle, resulting in geometric distortions. Since the rendered
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result of the application, that was created using the capture of the original pattern, is also

captured using the HSC, each frame will now have a combination of distortions, making

dense patterns undecipherable.

Overexposure: The pattern display refreshes at an extremely fast rate. Since the

capture camera of the application might capture at a lower frame rate, it is very likely that

any change in the luminescence of a region would not be captured by the camera, due to

overexposure.

Light scatter: Even with the most precise LCD displays, there is a noticeable light

scatter around the brighter pixels, that is captured by external cameras; The problem is

intensified due to overexposure, which leads to distorted patterns. Reducing the brightness

of the display, slightly improves the results.

Color diffusion: Since our approach relies on a high speed camera to capture both the

rendered and the original pattern, the exposure rate of the camera per frame, is extremely

low (just a few ms); This causes severe problems with the white balance of the image, creating

illumination artifacts and washed out colors throughout the image.

Flickering: When a HSC captures a display, there is a chance of the capture happening

at the exact same instance the display is refreshing; The likelihood can be reduced, by using

a low response time display (1 ms) and a V-sync/H-sync rate to update the pattern.

Display Artifacts: High response rate displays refresh the screen every millisecond,

but the input to these monitors is typically provided at a much lower rate. So either frames

are repeated, or propriety algorithms are applied, to generate intermediate frames to reduce

motion blur.

8.3.2 Visual Pattern

The visual pattern addresses all of the challenges, with the use of a binary blocks design.

The pattern is laid out as a uniformly spaced grid of square blocks. Each block represents
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Figure 8.5. From Left to Right (not to scale): The structure of the pattern, and the sequence
of 2 consecutive patterns, generated using our approach at 144 Hz.

a binary value: a solid white block indicates 1, and a black block indicates 0. The binary

nature of the blocks, and the uniform spacing between each grid cell, provides the flexibility

to overcome geometric distortions, light scatter, color diffusion, and display artifacts. This

grid is divided into 7 regions, consisting of 3 different components, as shown in Figure 8.5.

The moment of capture is uniquely encoded into the following components:

Boundary Markers (BM): All four corner cells of the pattern grid are considered the

boundary markers. The BM cells are used to represent both the size and the state of the

pattern. The pattern is either completely rendered or is in the refresh state. The refresh

state is caused when the pattern is captured during the refreshing of the display. To track

the refresh of the display, every time a new pattern is generated, all the BM cells are either

bright gray (0.9) or gray (0.5). Normally, LCD monitors raytrace from the corners in either

a horizontal vertical, or a vertical horizontal manner; By having a BM in every corner,

irrespective of the raytracing approach used by the monitor, incomplete display refresh can

be identified. If the display is in the middle of a refresh cycle, then the BM markers would

be different shades of gray.

Exposure Ticker (ET): Flickering and overexposure issues are identified using the

exposure ticker. When a frame is overexposed, all the BM shades are the same high lumi-

nescence value. The ET consists of two vertical regions on either side of the pattern grid.
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In each of the regions, a single active cell is moved in the vertical direction. On the left ET,

the active cell moves from bottom to top and on the right side, it moves from top to bottom;

This motion is repeated every time it reaches a BM. The use of opposite sides and motion

directions allows the recognizer to overcome flickering. Overexposure can be identified by

counting the number of active cells in each of the regions. Ideally, there should only be one

active cell in each region, but in the case of overexposure, multiple cells will be active.

Timer: The timer is the most important component of the pattern. The timer encom-

passes the entire central region of the pattern. The pattern consists of binary blocks, so it is

possible to represent the entire system clock value as the timer. However, due to overexpo-

sure, it will not be possible to accurately decode the clock from the image, despite knowing

the amount of overexposure using ET. Since the aim is to measure latency, a timer relative

to a specific reference in time in milliseconds (τ), is sufficient.

The timer is represented by an incremental dot pattern, to avoid any impact from all

of the issues listed in Section 8.3.1. The refresh rate of the display is typically lower than

the 1KHz, so the timer representing system time in milliseconds, is an unnecessary waste

of space. Instead, time is tracked using the pattern generator display refresh rate (νG). A

counter (σ) is used to track the timer value locally, for pattern generation. At the start of

the pattern, generation σ is initialized to represent the current time in milliseconds (TC).

The value of σ is calculated as:

σ = (νG(TC − τ)) mod χ (8.1)

where χ is the maximum possible value of σ. A new pattern is generated every time the

display refreshes, and σ is incremented. If σ reaches χ, σ is reset to 0. The value of χ is

always one greater than the total number of cells in the timer region.

The value of σ is rendered by activating cells in the timer region. Starting from the

bottom left, going from left to right, bottom to top, each cell is activated until the number
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Figure 8.6. Patterns captured using the HSC from Left to Right: a generated pattern PG,
the corresponding pattern rendered by the application PA with RoI marked in red, and the
regions identified in PA, with timer marked in yellow, and ET marked in blue.

of active cells is equal to σ; This way, the value of σ can easily be decoded by counting the

number of active cells in the timer region.

Together, all of the regions allow for the automatic recognition and decoding of all the

information, contained in each of the regions.

8.4 Pattern Recognition

The pattern recognition approach needs to be able to recognize the HSC captured pattern

from both the pattern generator display, and the pattern on the App rendered display. While

the image of the generated pattern (PG) is clearer, given that its directly captured from the

display DG, the pattern rendered by the application (PA) captured from display DA, shows

severe signs of the issues listed in Section 8.3.1. This is mainly due to the fact that PA

is generated by the capture, processing, and rendering of PG by the App. A video frame

from a single Kinect V2 based 3DTI setup is shown in Figure 8.6. The pattern generating

process itself addresses many of these challenges, but our recognition approach still needs to

be adaptable to be able to detect and decode PA.

A single HSC frame can contain multiple patterns, depending on the scene setup. For

example, a setup with multiple App cameras, as shown in Figure 8.1, can have 5 patterns
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in the same frame. For this reason, the pattern recognition approach is provided with an

approximate Region of Interest (RoI). For a given setup, the location of the cameras, the

displays, and the rendering will mostly be the same. So, the RoI needs to be provided only

once. The RoI can either be specified manually depending on the scene setup, or can be

automated using computer vision techniques to detect the display. For all of the experiments

in this paper, we relied on a manual RoI assessment for both PG and PA.

The application rendered pattern can sometimes be mirrored, depending on the RGB-D

camera used. Some RGB-D cameras, like the MS Kinect, capture mirrored images. Pattern

recognition is tolerant to vertical and horizontal flipped patterns because our pattern consists

of symmetrically laid out components, and each component encodes data by counts.

For each RoI, the pattern recognition approach uses the following 3 stage process:

Pattern Detection: It is assumed that the given RoI largely consists of a centrally

located pattern. The generated pattern is gray scaled, but each HFR video is in color; So,

the region inside the RoI is extracted, and converted to a gray scale image.

The BMs represent the corners of the pattern in the image. To identify the location

of the BMs, the gray scale image is divided either into a 4 × 4, 3 × 3, or 2 × 2 tile grid,

starting with a 4 × 4 grid. The four corner tiles are assumed to contain one BM each.

Otsu’s method (Otsu, 1979) is applied on each corner tile to estimate a gray threshold for

the region, based on its histogram. Since each tile is only supposed to contain black or gray

regions, the threshold estimation is very accurate. A binary image is generated by applying

the threshold. Independent disconnected components are identified in the binary image.

The component larger than 9pixels in size and closest to the corner of the original image, is

considered to be the BM for the tile.

If all 4 BMs are not found, then the lower grid size is used until all 4 BMs are found.

If the BMs are not found, even at the lowest grid size, then the pattern is marked to be

ignored. Once the BMs are found, the mean gray level of each of the BMs is estimated.
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If all of the gray level values are not close to each other (within 25), then the pattern was

captured during a refresh, and the pattern is marked to be ignored. All of the ignored frames

are estimated based on temporal coherence, which is discussed in the Section 8.5.

Region Detection: The pattern could have been captured off angle by the HSC, so the

pattern may be distorted. This can be identified based on the location of the BMs. The

pattern is a largely sparse structure, and the decoding of each component does not depend

on precise positioning; So the regions are identified without correcting the distortion.

The BM regions {BMTL, BMTR, BMBL, BMBR} located at top left, top right, bottom

left and bottom right respectively, are used to determine the three remaining regions. The

original pattern regions are positioned relative to the BMs, as shown in Figure 8.5. So the

left ET is between BMTL and BMBL, and the right ET is between BMTR and BMBR. The

timer region is between all four BMs.

The exact boundaries for these regions are drawn by using half the size of the BM as

padding on each of the sides, as shown in Figure 8.6. Due to light scatter, overexposure,

and geometric distortions, there is a likelihood that the cells have changed in size. The extra

padding, provided on all the sides of the regions, ensures that the entirety of the cell is in

the region.

Pattern Decoding: Along with other factors, the brightness of the monitor used to

display the pattern, determines the level of darkness associated with black and the level of

intensity of the white. For each identified region, Otsu’s method (Otsu, 1979) is applied

to estimate a gray threshold for each region, based on its histogram. There is a likelihood

that the timer region might not have any active cells; In such a situation, the threshold

returned by Otsu’s method might be extremely low ( < 0.2). To avoid errors in decoding,

the threshold is then set to middle (0.5). The binary image is then created for each region

by applying the threshold. The binary image is broken down into independent disconnected

components; Components smaller than 9pixels are removed, and the remaining components

highlight all the cells that are active in each region.
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For the timer region, the σ value is the total number of components in the timer region.

The number of frames of exposure contained in the ET section is the average of the total

number of components in both the left and right regions of ET. In the case where the left

and right ET values are not the same, it means the screen was being refreshed at the time

of capture. The exposure value is retained as calculated.

8.5 Latency Estimation

The latency is estimated by using the entire video containing both the PG and PA, clearly

visible on each frame. For a video consisting of f frames, containing generated patterns

(PG
1, ...PG

f ) and application patterns (PA
1, ...PA

f ), each frame is decoded to produce σ

values (σG
1, ...σG

f ), (σA
1, ...σA

f ) from the timer region, and exposure values (EG
1, ...EG

f )

and (EA
1, ...EA

f ) from the ET. If any of the PG have an exposure greater than 1, then the

frame is ignored. It is highly likely that due to the low frame rate of the RGB-D cameras, PA

will be filled with high exposure values; This allows us to examine the actual instance when

the App camera started the capture, and the instance when the capture was completed.

Ignored frames: The frame previous to the ignored frame is used to compute the

values for E,C. If the previous frame does not have any valid values, then the current frame

is also marked invalid. If more than α frames are marked invalid, then the video is considered

invalid and is not used for the latency estimation.

The latency for the application is estimated by using the σ values, along with the capture

frequency of HSC νHSC , and the pattern generation frequency νG. Latency is estimated for

all the valid frames, following the first change in the σA value. For any frame i, if σA
i−1 > σA

i

then it means that the σ was reset during the capture of the frame by the application camera,

and all the next frames with the same value as σA
i are ignored for the latency estimation.
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Latency, at a frame i, is given by:

Li =


χ+σG

i−σAi

νG
+ ηi

νHSC
If σG

i + ηiνG
νHSC

< σA
i

σG
i−σAi

νG
+ ηi

νHSC
Otherwise

(8.2)

where ηi is the number of frames since the value of σG changed. Even though this situation

is highly unlikely, invalid frames are treated as no change, and are included in the count of

ηi.

Considering that the HSC always captures at a higher frame rate than the App camera,

it is only possible for the value of σA
i > σG

i, if the counter has reset or if the PG
i was invalid.

Since invalid frames are repeated using the previous frame, it is likely that σG
i might be

low due to repetitions; So by adding the remaining counter value, calculated using the frame

counting from HSC, σG
i is adjusted to allow accurate Li estimations, even for minute latency

situations. If the σG has reset, then adding the max counter value χ will provide an accurate

Li. While measuring the latency, the instance when the capture was completed is considered;

However, if the latency from the start of capture needs to be estimated, then EAνG can be

added to the estimated latency.

8.6 VPLE in 3DTI

3DTI systems can be setup in various different configurations, depending on the application.

Examining all of these setups is beyond the scope of this paper, so the usage of VPLE for all

of the base cases, from which any 3DTI arrangement can be derived, are described below:

8.6.1 Single Camera

For a 3DTI system, with a single site having one camera, VPLE can be applied directly, as

shown in Figure 8.2. The pattern generator display (DG) is placed in view of the camera, and

the 3D mesh of the DG is rendered by the system on the application display (DA), located

in such a way that both the displays can be captured together by an HSC.
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8.6.2 Multiple Cameras

All of the cameras in the scene are aligned to view the DG, as shown in Figure 8.1. Typically,

all of the cameras in each of the sites are calibrated to allow a complete 3D reconstruction

of the user. Since the goal is to measure latency L, it is important to view as many camera

views as possible, so all of the cameras are calibrated to render a view of the DG, side by

side on the DA. The HSC is positioned to capture both the DG and the DA, placed near

each other. Due to the presence and the positioning of multiple cameras, the HSC might

need to be placed at suboptimal angles. All of the patterns on DG and DA need to be clearly

visible to the HSC. The L is estimated from the point of view of each camera, by providing

the relevant region of interest for the rendering associated with the camera, in the HSC

video. Even in situations with synchronized camera capture, depending on the processing,

rendering pipeline, etc., the Ls for each camera might differ. To compute the L for the entire

multiple camera 3DTI system, an average/max of individual camera Ls can be used.

8.6.3 Multiple Sites

A multiple site 3DTI setup, as shown in Figure 8.7, consists of a display and one or more

RGB-D cameras at each location. The L on each site can be measured using the single or

multiple camera approach described above. To maintain a frame of reference between both

sites, the system clocks for all of the machines are always synchronized. The clock synchro-

nization allows the pattern generator to display the same pattern on multiple sites, without

the need for the generators to communicate with each other. For this to work correctly,

the pattern generators should have the same τ value. More details on the effectiveness of

synchronized pattern generation can be found in Section 8.8.

Since the pattern generators on all the sites are synchronized, even the multiple site L

estimation can be performed similar to Section 8.6.2. At every site, the meshes from the

sites can be rendered side by side, to show the pattern on the DA. Then, both DA and DG
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Figure 8.7. A sample setup for latency estimation, in a multiple site 3DTI application using
VPLE, by capturing the displays using high speed cameras (HSC).

are captured together using the HSC. The L associated with the communication between the

sites can be measured directly by comparing the pattern from that site, with the generated

pattern.

This approach assumes that the system clocks, on all the sites, are synchronized to a

high degree of accuracy. The L estimation can have a maximum error of up to ±( 1
νG

+ ∆),

where ∆ is the maximum difference in the clocks of the two sites.

8.7 Implementation

A 3DTI setup consists of scores of different types of hardware. For convenience, all of the

hardware used for the experiments are grouped and tagged based on their configuration.

Many machines having two different configurations were used for all of the experiments: A1:

Intel i7 6600k @ 4.5 GHz, 32GB DDR4 RAM, NVIDIA GTX 980 TI, Windows 8.1; and A2:

Intel i5 5600 @ 3.2 GHz, 16GB DDR4 RAM, NVIDIA GTX 1060, Windows 10.
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All machines were connected using a 1 Gbps wired network on a 10GbE cisco switch.

Multiple monitors of the same type were used: Acer 24in LED, 144 Hz, 1ms; The following

three types of RGB-D cameras were used with multiple resolutions and frame rates: C1: MS

Kinect XBOX 360, with MS Kinect SDK v1.7; C2: MS Kinect XBOX One, with MS Kinect

SDK v2.0; and C3: Creative senz3D, with Intel Perceptual Computing SDK. Sony RX10 III

capable of capturing HFR (High Frame Rate) at a maximum of 960 fps at 1080p was the HSC

used for all VPLE. The camera is only capable of capturing about 2000 frames at a time,

so for each experiment, multiple videos were recorded. Since the maximum possible refresh

rate for the monitors that we used was 144 Hz, all the videos, unless specified otherwise,

were captured at 480 fps.

The 3DTI software is developed in C++ using CUDA 8, BOOST, CGAL, Eigen, GLEW,

GLFW, GLM, OpenCV, OpenGL, Speex, TBB, Zlib and a host of device specific libraries for

MS Windows. The 3DTI framework integrates with the Unity3D gaming engine to provide

real-time detailed interactive scenes. Network Time Protocol (NTP) is used to synchronize

the clocks of all the machines to be millisecond precise. The pattern generator is written

in C++ using GLFW and OpenGL 4.4, and is capable of running at 1200 Hz on A1; But

due to the limited refresh rates of the monitors, the pattern was updated and rendered at a

V-Sync rate dependent on the monitor’s refresh rate. The pattern generator was run on A1

and A2, rendering on monitors at 144 Hz. The pattern recognition and latency estimation

from the HFR videos are done in MATLAB.

For all of the evaluations, a timer region of size 23×21 with χ = 254 was used. A square

pattern allowed for better detection from all angles. For situations when pattern recognition

fails, the video ignore level α was set to 40 frames (2% of the total frames in each video).

The α value was used as an indicator, to check if manual intervention is required.
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8.8 Evaluation

To measure latency accurately, VPLE relies on many independent components. Different

evaluations are performed to verify each of these components, and the entire VPLE setup.

HSC frame rate: To ensure that the HFR video captured using the HSC is always at a

constant frame rate, hundreds of videos of patterns generated and displayed at 120Hz, were

recorded at 240, 480, and 960 fps, for a fixed duration of 4s. The total number of frames

in every video was always found to be consistent with the fps option. To ensure accurate

spacing between the frames, the system time was logged for every 100 patterns generated.

It was found that over a period of 20,000 frames, the refresh rate drifted by about 0.97%.

When the patterns in the HFR video were decoded, the pattern change (σ value change)

was found to be approx 1.9 frames for 240 fps, about 3.7 frames for 480 fps, and 7.67 frames

for 960 fps.

Pattern Generation: The pattern is supposed to be generated at the same frequency

as the refresh rate of the display. To verify the rate of pattern generation, the refresh rate

for the monitor was set to 50, 60, 100, 120 and 144 Hz; The HSC then captured videos, with

the pattern generator rendering the pattern on the monitor. There was a significant amount

of drift noticed when the pattern generator was run inside a window vs when the pattern

generator was rendered in full screen. This forced us to always run the pattern generator in

full screen, for all of the experiments. The patterns were decoded from each of the videos,

and the rate of growth of σ values were compared. The σ growth rate for each of the various

monitor refresh rates was as expected, as shown in Figure 8.8.

Synchronized Pattern Generation: The multiple site VPLE approach relies on the

synchronization between the pattern generators, to estimate L. The variation of σ values

between two pattern generators with the same τ is studied by running them on the same

machine (A1) and then on two different machines (A1 and A2). The clocks on all of the

machines were synchronized with a server that had a round trip time of 7ms. The patterns
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Figure 8.8. Left to Right: Variation in σ growth based on display refresh rates, mismatch
between σ of two synchronized pattern generators, and VPLE estimated L for simulated
delays.

were rendered on different monitors at 144Hz. HSC captured both the monitors at 480

fps, and the difference in the time (ms) between the two is shown in Figure 8.8. The time

deviation is only based on the difference in σ values per frame. On the same machine, the

maximum difference in σ was 1, which is happening in 0.07% of the frames. The difference

between the σ values on different machines was almost always at 1, but going as high as 2.

It was noticed that the patterns eventually start to drift away from each other over time,

and the drifts can be heavier depending on the hardware and resource usage of the machine.

Pattern Recognition: The pattern was captured directly using the HSC from various

angles off the monitor. The camera was always zoomed into the monitor, to ensure that

the pattern was clearly visible in the video. The pattern recognition worked accurately for

captured angles relative to the monitor, between −60◦ to +60◦.

While the pattern recognition approach is robust against the location and the angle

of capture from the HSC, the angle of capture from the application’s camera impacts the

recognition accuracy significantly. Since 3DTI approaches generate a mesh, which is rendered

on the display, and then captured by the HSC to produce the final HFR video, any significant

off angle captures of the display by the RGB-D camera leads to both noisy depth and color

images. The mesh generated using this noisy data contains artifacts that lead to poor
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recognition. For this reason, in all of the experiments, greater emphasis was given to the

position of the RGB-D camera, over the location of the HSC.

Latency Estimation: To verify the accuracy of the VPLE approach in estimating L,

a simulation was created to add a specific amount of delay before displaying the pattern. A

pattern generator (PG) was run on one machine (A1), and a display program (DP) was run

on another machine (A2), which was provided with the exact σ value being rendered by the

pattern generator at that instance. Once DP received a σ value, it slept for a fixed duration

without receiving any other information; On waking up, it rendered the pattern with the σ

value. Two machines were used to allow the patterns to be displayed in full screen, and to

avoid drifts in the refresh rate due to the operating system. The baseline latency between PG

and DP, without any delay, was visually undetectable at 1ms (at most). For simulated delays

of (10, 25, 50, 100, 200) ms, the average estimated delays were (10.6, 25.7, 51.1, 107.2, 234.3)

ms respectively. VPLE measures the current L at any given instance of time. The estimated

delay is the latency at the time of DP rendering a new pattern, which is also the minimum

observed latency for that data point (Figure 8.8). When DP sleeps, the packets are dropped,

resulting in a reduced frame rate. This adversely effects the current L leading to a high

average L; In this simulation, the average L was found to be (12.1, 34.2, 71.4, 147, 295.9) ms

for (10, 25, 50, 100, 200) ms delays, respectively.

8.9 Experiments

VPLE was applied to measure the observed latency for three fundamental 3DTI arrange-

ments, to understand the latency associated with just capturing and rendering the data from

the RGB-D cameras used by the 3DTI system. To decide on which RGB-D camera to use,

the capture latency for each of the cameras was estimated using VPLE. For this analysis,

the sample application from the manufacturers SDK was used. A well lit scene containing
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multiple color objects, along with the pattern generator display, were used. The machine A1

was used to acquire, process, and render the results.

All of the 3 cameras, the Kinect V1 (C1), Kinect V2 (C2), and Creative senz3D (C3) had

similar average L of (63.8, 65.5, 64)ms respectively. All of the cameras had similar exposure

rates of 28ms. Considering the similar latencies, the Kinect V2 was selected to be used in

all of the 3DTI experiments, due to its superior image quality.

In low light conditions, all of the cameras had an excess of white balance, which resulted

in a highly illuminated pattern with little to no black levels. The exposure rate of only

the Kinect V2 doubled, and the frame rate fell to 15 fps, which increased the latency. The

other cameras performed the same as they did in normal lighting conditions. The excessive

bright pixels in the captured HFR video couldn’t be processed by our system, so we had to

rely on using a manual threshold to extract the active cells. Given the issues that low light

conditions presented, all of the 3DTI experiments were done in well lit conditions.

All 4 different reconstruction methods, described in Section 8.2.1, were evaluated in

various 3DTI arrangements. The system was run for approximately 4 minutes for each of

the approaches. A total of 40s of HSC recording was used for the VPLE. During the recorded

time, the implicit latency was also measured on a per frame basis. The implicit latency was

calculated by probing the system clock at the point of capture, and the point of rendering.

Many of the approaches, like the 3DTIB, are optimized for flat surfaces and so, instead

of making the cameras point directly to the display, a larger scene with a few objects was

captured for all of the setups.

Single camera 3DTI: The 3DTI application was run on machine (A1). The variation

in L′ for the session is shown in Figure 8.9. The 3DTIC approach took the longest duration

and had a very erratic performance, with over 300ms of fluctuations (50% of the average L′).

One of these fluctuations was caught by the VPLE approach. However, the variation was

not noticed in the size of meshes generated by 3DTIC . The excessively high L and L′ (about
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Figure 8.9. Implicit latencies for (from Left to Right): a single camera 3DTI, a multi-camera
3DTI and a multi-site 3DTI.

6 times more than all of the other approaches) lead to a frame rate of 1 to 2 fps. 3DTIB

approach produced meshes of similar size to the 3DTIC approach (about 5k triangles) and

had an average L′ of 53.5ms, compared to 644ms of 3DTIC . For these reasons, the 3DTIC

approach was abandoned for the other 3DTI arrangements.

Both the 3DTIB and 3DTID approaches had similar average L values of 117ms and

128ms, respectively. But according to L′, 3DTID is, on average, 6ms faster than 3DTIB.

The slower overall performance by 3DTID is largely attributed to the fact that the meshes

generated by 3DTID are denser, with over 80k triangles. 3DTIS is the fastest approach of

all of the other approaches studied, in both L and L′. Despite the high latency values, all

of the 3 approaches ran at 30 fps, the capture frame rate of the Kinect V2.

Multi-camera 3DTI: The 3DTI application was run on machine (A1), and another

Kinect V2 was connected to machine (A2) capturing the same scene. A high speed network

was used to connect A1 and A2. There was no significant impact on L′ or L for the local

camera at A1, compared to the single camera 3DTI setup. On average, the L increased by

6ms, 12ms, and 4ms for 3DTIB, 3DTID, and 3DTIS respectively; However the L′ for the

local camera changed significantly, by about 22ms, 49ms, 27ms for 3DTIB, 3DTID, and

3DTIS respectively. The larger increase seen by the 3DTID approach is attributed to the

fact that more data needs to be transferred and rendered (dense mesh). The image data
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Figure 8.10. Observed latencies for (from Left to Right): a single camera 3DTI, a multi-
camera 3DTI and a multi-site 3DTI.

and sparse mesh data for 3DTIB and 3DTIS were a comparatively smaller size, so lesser

effort was required to render the data. The average L′ for 3DTIB, 3DTID, and 3DTIS

was 70.7ms, 95.2ms, and 33.7ms, respectively. Due to the network speed, there was only a

modest increase in L′ compared to the single camera setup. For the remote camera, 3DTID

takes the longest time due to its larger data size. The L values are proportionately higher

than L′, similar to the variation in L for the local camera. The largest component of latency

in this setup was due to the network; The capture and rendering aspects were about the

same for both the single and multi camera setups.

Multi-site 3DTI: Two sites were setup with machines A1 and A2, with one camera

on each site. Two other A1 machines were used to generate the pattern for each site. The

sites were setup locally with high speed LAN. The system clocks were synchronized to about

3ms to each other. The τ value was set to an hour before capture. For both the local and

remote cameras, the results were similar to the multi-camera setup, as shown in Figure 8.9,

and Figure 8.10. Since only one camera is used on each site, on the same network, and the

machines are connected the same way as in the multi-camera setup, the result is similar. The

only difference between the single and multi-camera setups, is that the data is transmitted

in both directions and rendered on both sites. Because of high network bandwidth, doubling

the data transmission did not seem to have any significant effects on latency.
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8.10 Discussion

Here we discuss many aspects of the VPLE that influence the overall usefulness of the

approach and its possible applications.

Visual application: The VPLE approach can be applied to any real time visual appli-

cation to measure the latency. In Section 8.9, the latency of a live 2D video feed from the

cameras is measured. Since the pattern is generated at the peak refresh rate of the monitor,

any application that requires an accurate visual counter can rely on the pattern generation.

Using a HSC at 960 fps, provides a resolution of close to 1ms, but is not really necessary for

most evaluations. The majority of the displays run at 60 Hz, so any camera capturing at

120 fps or more would be sufficient to estimate latency at acceptable levels, for applications

running on those displays.

Pattern size: The number of grid cells, size of each grid cell, and the amount of spacing

between cells from the HSC’s point of view are the most important parameters needed to

ensure the accurate functioning of VPLE. Increasing the number of cells will allow for longer

periods of latency estimation, without the need to ignore certain frames due to counter

rollover. The size of each cell from the HSC’s video is very important because smaller size

cells can cause the pattern recognition to fail. It was empirically determined that, a cell area

of less than 16 pixels on a HSC captured pattern, increases the number of ignored frames

dramatically, resulting in no visual latency estimation for large portions of the video.

Measurement accuracy: The measurement accuracy of the VPLE approach is highly

dependent on the refresh rate of the display used to render the generated pattern. It is

always possible to get a reasonable latency estimate in between refresh cycles, using the

temporal coherence between the captured video frames. While this estimate can accurately

capture the display update, it cannot however be used to ascertain the exact instance that

(interval of < 7ms) the rendered pattern was captured. The experiments in this paper use

a DG with a maximum refresh rate of 144Hz, so the minimum resolution for accurately

147



estimating latency is 7ms. Monitors with refresh rates of 240Hz are already available, that

can reduce the minimum resolution to 4ms.

Multiple cameras: In theory, there are no real restrictions on the number of simul-

taneous camera latencies that can be estimated, as long as pattern detection is possible.

However, in the real world, based on the size of the monitors and the distance of the HSC

from the displays, it may not be possible to track more than 4 cameras at the same time.

Situations involving a large number of cameras, visual latencies can be measured by disabling

any view based optimization, and switching through different camera views during the HSC

capture. Since the HFR video recording is manual, cameras feeds shown on the display can

be changed and recorded.

IR cameras: VPLE, for the most part, uses binary patterns to determine the visual

latency of a system. It can easily be adapted to measure the visual latency of an application

using an IR camera.
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CHAPTER 9

ACTION LATENCY

3D Presence systems capture, reconstruct, and render the user in real time. The complexity

of the operations, and the large volumes of data, introduce latencies. Current state-of-the-art

3D Presence and 3D Tele-immersion (3DTI) applications rely only on the implicit latency to

estimate the overall experience by the user (Kurillo and Bajcsy, 2013). Measuring these la-

tencies implicitly, by aggregating the processing times, or using hooks at the point of capture

and rendering, do not provide the complete latency noticed by the user. This measurement

ignores key aspects like: the time taken to acquire the image, the time required to display

the results on the device, data transfer times between the device and the machines, etc. To

accurately measure the entirety of the observed latency, an external latency measurement

system is required. To measure latency from the user’s point of view, outside observer tech-

niques treat the system as a black box, and measure the delay between the response of the

system to any stimuli, generally by using external visual or audio sensors (Steed, 2008). For

measuring latency, the outside observer techniques require exclusive access to the system,

and measure the latency for the system within the scope of the stimuli. These techniques are

applied in sensor based virtual environments, where the performance of the tracking methods

is not influenced by the size of the object, or the activities performed. In 3D Presence, the

performance of the reconstruction algorithm is dependent on the granularity and scale of the

captured object; So, directly applying currently available outside observer techniques will

either provide latency measures for the reconstruction of the entire scene (scene latency), or

only for the stimuli object (base latency).

In this chapter, we present an outside observer technique that can measure latency while

the user is using the system. The Strobe method introduces a small object in the scene as

shown in Figure 9.1, that is captured by an external high speed camera and is captured,

reconstructed, and rendered by the 3D Presence algorithm. The use of a small clearly visible

149



CM1 CM2 CM3

CM 4
Person 1

HSC

Figure 9.1. The Strobe approach setup to measure a multiple camera 3D presence system,
using a green strobe and a high speed camera (HSC).

strobe, positioned away from the cameras, reduces the contribution of latency associated

with the latency measuring method. The amount of overhead introduced by the latency

measuring exercise depends on the exact location of the strobe in the scene. A high speed

camera, capturing at 960fps, captures both the real world, and the virtually reconstructed,

strobe in a single frame. The difference, between the real world and reconstructed strobes

in the video, is used to determine the latency.

Evaluations of the method, on both the simulated and real world situations, highlight

the fact that the Strobe method can measure latency to within a millisecond accuracy. The

technique was applied to measure the latencies associated with: the raw color image capture

from various RGB-D cameras, the rendering to different devices, a 3D Presence system that

is reconstructing and rendering using 5 different approaches, etc. The observed latency,

measured by the Strobe approach, was largely as expected, based on the measured implicit
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latency. However, in certain situations, where there is lighting variation or usage of devices

like projectors, the observed latency differed significantly from the implicit latency.

9.1 Related Works

Existing research, in the field of 3D Presence and 3DTI systems, focuses on the quality of

experience or the quality of service that is measured internally over the network/internet

(Kurillo and Bajcsy, 2013). All of these works either use the transmission delay, or com-

bine all of the processing delays, to compute the system latency (Vasudevan et al., 2011;

Raghuraman and Prabhakaran, 2015; Desai et al., 2015).

In virtual environments (VE), the level of user comfort is highly correlated with the

latency of the system; So, internal techniques, like adding hooks to rendering API calls, are

used to measure the latency (Chen et al., 2011). Steed attached a tracker to a pendulum,

and tracked both the virtual object and the tracker using video cameras, to estimate latency

(Steed, 2008). The motions of the objects are fitted to a sine wave, and the phase difference

between the sine waves are used to estimate latency.

Modifying applications and adding hooks may not always be feasible, and in some in-

stances, can add to the latency. To measure the observed latency of the system, outside

observer techniques are used. The sinusoidal oscillations of a pendulum are used to measure

the latency of a VE (Steed, 2008; Friston and Steed, 2014). A tracker is attached to the end

of a pendulum and oscillated, resulting in the motion of a virtual object. These motions are

captured using a normal camera (Steed, 2008), or a high speed camera (Friston and Steed,

2014); A computer vision program then measures the latency by fitting the motions to a

sine wave, and estimating the face difference of the sine waves. Approaches that use high

speed cameras simply rely on the number of frames between the motion of the real world and

virtual objects, to measure the latency (Friston and Steed, 2014; Wu et al., 2013). Other

approaches rely on external sensors, or use sound cards, to have higher frequency capture
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rates, in order to measure latencies. Summaries of these methods can be found in (Steed,

2008).

Ohl et al. (Ohl et al., 2015) measured the observed latency of a 3D Presence system,

by modifying the sinusoidal pendulum approach of (Steed, 2008). When they compared

the observed latency with the expected latency, that was computed by adding up all of

the delays, the expected latency was significantly less than the observed latency. They at-

tributed these excess delays to the multiple monitor video wall, that was used for rendering

the scene (Ohl et al., 2015). When captured by the cameras, the motion of the pendulum

leads to motion blurred frames in the video, necessitating position approximations which re-

duces accuracy. The motion interpolation technology in many displays generate intermediate

frames to smooth motions, making motion based latency estimations even less accurate, like

(Steed, 2008; Friston and Steed, 2014). The Strobe method uses illumination changes with

no motion, making it resistant to both motion interpolation and motion blur.

9.1.1 3D Presence

3D Presence systems capture the user using multiple cameras, reconstruct a 3D model, and

render the model in the virtual world, all in real time for every frame captured by the cameras.

A comprehensive list, of 3D Presence systems and approaches, is provided in (Kurillo and

Bajcsy, 2013). For systems with RGB-D cameras, the data from each of the cameras is

filtered to reduce noise, and then segmented to isolate the target object. The intrinsic and

extrinsic calibrations of the RGB-D camera are used to project the depth image into 3D

space, and find the corresponding pixels in the color image. Finally, a mesh is generated

using a real time 3D reconstruction approach. The meshes are then realigned using extrinsic

calibrations between RGB-D cameras, and rendered with overlap handled using a fragment

shader, as described in (Vasudevan et al., 2011). There are many factors, like the number

of cameras, camera fps, shape of the object, hardware speed, transfer rates, network speed,
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etc., that effect the performance of the 3D Presence system. The main algorithmic aspect

is the reconstruction technique used for generating the 3D mesh. So the latency associated

with the following reconstruction and rendering approaches were estimated:

Bisection Meshing (BM) (Vasudevan et al., 2011): A low poly mesh is generated

from the depth image, by bisecting triangles based on the standard deviation of the region

inside the triangle. Bisection is stopped after reaching a minimum size. Whenever necessary,

extra triangles are added to keep the mesh conformed.

Hessian sweep line Meshing (HM) (Desai et al., 2015): Meshing is performed

using a sweep line image meshing approach on the percentage of points having high curvature

values, as estimated by the Hessian operator on the depth image.

Image Meshing (IM) (Raghuraman and Prabhakaran, 2015): A dense mesh is

generated by moving a square across the depth image, and adding a triangle if the corners

of the square are close to each other, depth-wise .

Shader Meshing (SM): The IM approach is implemented at the geometric shader for

efficient processing. The shader implementation eliminates the need for a merge operation

when compared to a parallel implementation using CUDA; But shadowing and other multiple

pass operations might result in re-meshing, which slows down the approach.

Unity Rendering (UR): The IM approach is applied on a scaled down (2:1) version

of the depth image, to generate a low poly model that is rendered in Unity3D.

9.2 Strobe Approach

Outside observer approaches, used to measure latency, are system independent and rely only

on the time between a stimuli, and the appropriate response from the system. In order

to be able to capture both the stimuli and the corresponding response, these approaches

require exclusive access to the system, whose latency needs to be measured. In the case of

3D Presence systems, the subject that is being reconstructed plays a vital role in the latency
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of the system. So, directly measuring the latency of capturing the entire scene or just the

stimulus object, does not provide an accurate estimate of the system latency while it is being

used by the user. To measure the latency while the user is actively using the system, the

Strobe approach uses a non-intrusive light emitting strobe.

The Strobe approach relies on the illumination change of the strobe to estimate system

latency. By simply relying on the illumination change, the approach is not susceptible to

capture angles, overexposure, display optimization, motion blur, noisy data, etc. The use of

a high speed camera to capture both the stimulus and response, enables the Strobe approach

to estimate latency with millisecond precision.

To measure the latency of a multi-camera system, the Strobe approach is set up as shown

in Figure 9.1. The strobe object, emitting a signal at a constant frequency, is positioned

away from the application cameras, so that the cameras have an unobstructed view of the

strobe. The strobe is then captured, reconstructed, and rendered by the application. A

high speed camera captures a video, containing both the real world and rendered strobe in

a single frame.

The Strobe approach relies on the illumination change of the strobe, so the colored video

is converted to grayscale for processing. Since a single video frame consists of an original and

reconstructed strobe object, manual intervention is required to identify them individually

in the frame. The region of interest, corresponding to the original and rendered strobe, are

highlighted by the user and provided as input for the strobe signal identification. Since the

strobe is located at a certain location in the scene, and the scene is rendered exactly the same

way every time, it is required to identify the real world and virtual locations in the video

only once per recording session. Each region then undergoes strobe signal identification and

state recognition, resulting in a couple of rectangular waves; These rectangular waves are

used to estimate latency.
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Figure 9.2. The effects of µ on the estimated strobe signal.

9.2.1 Strobe Signal Identification

To identify a strobe signal for a given region R, it needs to be ensured that all the pixels inside

R correspond to the strobe. Expecting the user to mark the strobe region accurately, where

all the pixels inside that region belong to the strobe, is extremely optimistic. However, it

can be expected that the user is able to highlight the region that largely contains the strobe.

Considering that the identified region largely consists of the strobe, a maximum likelihood

estimate S(p) can be estimated, where pixel p corresponds to the strobe. Since only the

pixels corresponding to the strobe will change periodically in intensity, the variance of a

pixel’s intensity throughout the video can be used as a measure for S(p).

The pixels with a S(p) value greater than µ are identified with the strobe. The value

for the strobe signal in each of the frames is estimated to be the average value of all of

the pixels that contain the strobe. The value of µ is very important in situations where it

is hard for the user to identify the strobe region accurately. While using µ = 0 may not

impact the accuracy of the state recognition in some cases, having an accurate µ enhances

the signal significantly, as shown in Figure 9.2. After analyzing a large number of videos, it

was found that the µ was set to the 75th percentile value of the regions S(p), and gave the

best amplitude varying curves.
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Figure 9.3. The effect of an incorrect σ on the rectangular state wave.

9.2.2 State Recognition

The strobe is either at a high state when it is on, or at a low state when it is off. It is

known that the strobe is on or off for a fixed period of time, emitting a periodic signal that

is captured. The identified strobe signal should ideally be a square wave. The signal might

get distorted to a rectangular wave when combined with application latencies. Due to the

various artifacts introduced by noisy capture, overexposure, bad calibration, incorrect 3D

reconstruction, inaccurate rendering, etc., the wave might consist of smaller rectangles.

The periodic nature of the signal, even in situations with obtuse delays, can be used

to transform the signal to a rectangular wave. This transformation can be performed by

applying a threshold, σ, that divides the signal into highs and lows. Since the signal is

supposed to be largely periodic, σ can be roughly approximated as the mean of the signal.

In certain situations, like the signal shown in Figure 9.3, the value of σ may not produce

a largely square signal. This can be easily identified by calculating the duty cycle of the

rectangular wave.

If the detected lacerations are concentrated in a small region of the signal, then the edge

is identified at the mean of the region. However, if the breakages are well distributed in

the signal, then the first, or third, quartile is used as σ. If neither of these values is able

to transform the signal into a largely periodic rectangular wave, then the signal is tagged

invalid and ignored.
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Figure 9.4. The local latency (l) that is measured between the state waves, WR and WD.

9.2.3 Latency Estimation

The latency is estimated as the time between the edges of the real world strobe state and

the rendered strobe state. Figure 9.4 shows a couple of rectangular state waves, WR for

the real world strobe state wave, and WD for the displayed strobe state wave. The local

latency (l) is the temporal difference between the occurrence of a rising edge on WR and the

corresponding rising edge on WD, or the temporal difference of the falling edges between the

two waves. The average of all of the individual latencies, for the span of the video, is the

observed latency of the system for that activity.

3D presence systems generally rely on RGB-D cameras that capture as an approx rate

of 30fps. When the strobe goes from the on to off state, there is a high likelihood that

due to the low shutter speed of the RGB-D cameras, the frame capturing the transition is

overexposed, as shown in Figure 9.5. This overexposure would result in the difference in

the period of the high (positive) side, and the low side of the wave. In situations where

a static scene is captured, it would be more appropriate to use the difference in the rising

edges of WR and WD to estimate the latency, then using both the rising and falling edges

together. Since the approach is meant to measure activity latency, other parameters are

not constant during the measure of latency, so both the rising and falling edges are used for

latency measurement.
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Figure 9.5. Various states of the strobe from top to bottom: Strobe turned On, turned Off,
and the overexposed capture of On to Off.

9.3 Implementation

The 3D Presence system is setup using multiple camera machines (Intel i5 5600 @ 3.2 GHz,

16GB DDR4 RAM, NVIDIA GTX 1060, Windows 10) and a rendering machine (Intel i7

6600k @ 4.5 GHz, 32GB DDR4 RAM, NVIDIA GTX 980 TI, Windows 8.1). All of the

machines are connected to an individual MS Kinect V2 sensor for data acquisition, from a

calibrated set of sensors capturing a scene. The rendering machine renders on a 1ms response

time 144Hz 24in Acer monitor, or a Samsung 3D LED TV. All of the camera machines have

gigabit networking, with the rendering machine having a 10GbE connection. A Sony RX10

III is used to capture the high frame rate 1080p video at 960 fps.

The 3D Presence system code is written using C++ and CUDA, with rendering done

in OpenGL 4.5, and shader written in GLSL. The Unity3D rendering is written in C#

and connected to the rest of the framework using sockets. All rendering is performed at

the V-Sync rate to avoid refresh related artifacts on the display. The latency estimation is

done by processing the video in MATLAB, and the source code is available upon request.

Network Time Protocol (NTP) is used to synchronize the clocks of all of the machines, to

be millisecond precise.
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9.4 Evaluation

The Strobe approach relies on the frequency of the strobe light, accurate state recognition,

and the frame rate of the high speed camera, to measure the latency precisely. The accuracy

of the Strobe approach and its vital aspects is validated as follows:

Camera Frame Rate: The high speed camera is configured to capture at a frame rate

of 960fps, resulting in an inter-frame interval (IFI) of 1.04ms. Directly measuring IFI, using

a 1KHz visual signal, may be inaccurate due to the likelihood of overexposure in each of

the captured video frames; So, a 100Hz signal is used to measure the IFI. Multiple fixed

duration videos, of an alternating black and white screen displayed on a 1ms response time

100Hz monitor, are captured using the high speed camera. It was verified that all the videos

contained an equal number of frames. The frames, between the first and last state change

in the video, were considered for estimating the IFI. The average number of frames between

the black and white state change of the monitor was 9.59, with a standard deviation of 0.49,

yielding a IFI of 1.046ms, which is almost the same as the expected IFI of 1.042ms.

State Recognition: The Strobe approach uses the change in illumination to estimate

the state change. Since no color information is used, an alternating black and white screen is

used to simulate the strobe signal. A monitor, with 1ms response time, was used to generate

the strobe signal at varying frequencies of 25Hz, 30Hz, 50Hz, 60Hz, and 72Hz. Multiple

videos, of varying frequencies of the strobe signal rendered on the monitor, were captured

using the high speed camera. Despite the low response time of the monitor, it is likely that

the video might contain frames that were captured when the monitor content was being

refreshed. By using a large region size to estimate the strobe signal, the influence of monitor

refresh and other display related artifacts are largely avoided. The time period of each of

the states were identified to within ±1ms of the expected value.

Simulated Delay: A reference signal with a period of 600ms was used to measure

simulated latencies, between 1 and 299ms. The Strobe approach was able to identify all of
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the latencies accurately. On further evaluation, it was verified that the Strobe approach is

able to identify latencies that are less than half the time period of the strobe signal. The

curves for the simulated delay were generated directly by the system.

For real world validation, a monitor running at 100Hz was used. A signal time period of

600ms was displayed on a monitor with a response time of 1ms, running at a frequency of

100Hz. An alternating black and white region was shown on the display, which corresponded

to the low and high value of the signal. Another signal, generated by delaying the original

signal, was also displayed similarly on a different region on the same monitor. In order to

verify that there was no delay between the rendering of the signals, both of the signals were

rendered on the display with no delay. As expected, it was found that, as long as the monitor

refresh interval is a multiple of half the time period of the signal, the signal is rendered and

interpreted accurately by the Strobe approach. Due to this reason, all the delays tested were

multiples of the refresh interval (10ms). The Strobe approach found the latency between the

signals to be 9.65, 19.94, 49.8, 99.76, 149.64, 199.6, 249.44, and 289.45ms respectively, for a

simulated delay of 10, 20, 50, 100, 150, 200, 250, and 290ms respectively.

Strobe Frequency: In all of the above evaluations, a monitor was used to generate

the strobe signal. Depending on the 3D reconstruction approach, large objects, like the

monitor, can take a significant amount of time to reconstruct compared to smaller objects.

Any strobe source with a time period greater than double the expected latency is sufficient

to measure the latency using the Strobe approach; So, a small strobe LED (Figure 9.5) is

used generate the strobe signal. To ensure that the LED signal is periodic and has a fixed

frequency, multiple videos of the LED signal were recorded by the high speed camera. The

time period of the signal was found to be 736ms, with a maximum variation of ±2ms.
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9.5 Experiments

The Strobe approach for latency estimation was applied to numerous situations related to 3D

Presence. The latencies associated with raw capture, rendering, single camera reconstruction,

and the entire 3D Presence are presented in the following sections.

9.5.1 Camera Latency

The capture and rendering of a color image, from an RGB-D camera, is dependent both

on the camera and the software used to acquire and show the image. Three widely used

RGB-D cameras, MS Kinect V1, MS Kinect V2, and Creative Senz 3D, were combined with

the example tool kit code provided for each of them to render color images. The latency

associated with all 3 cameras for capturing and rendering a color image in a well-lit room, on

a 144Hz monitor, was found to be in the range of 49 to 57ms. Under low light conditions,

the Kinect V1 performed exactly the same, with similar latencies. However, the Kinect V2

and the Creative Senz 3D increased their exposure rate, causing the latencies to increase to

around 88ms. The 3D Presence system uses Kinect V2s for the acquisition of RGB-D data;

In order to ensure timely acquisition, the capture scene was well-lit.

9.5.2 Display Latency

The time taken to render an image on screen varies between different types of hardware that

are used for rendering. The MS Kinect V2, with the example color image display program,

was used to render the live color feed of the camera on-screen. A 1ms response time monitor

was connected to the machine with a display port cable, and run at different refresh rates.

It was found that the latency for rendering the color image varied more than the expected

refresh rate variations. With the monitor refresh at 144Hz, 100Hz and 60Hz, the latency for

rendering the camera feed was 54, 67, and 78ms, respectively. Similarly, when the rendering
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was performed on a 60in 1080p 60Hz 3D Samsung TV, and a 1080p 60Hz 3D Canon projector

was connected to the machine with 15ft HDMI cables, the latency was higher than the 78ms

seen on the monitor. The TV had a latency of 93ms, and the projector averaged at 104ms.

The response time of both of the devices was supposed to be around 5ms, but is not clearly

rated. The added 10 to 15ms difference, between the projector and TV, could primarily be

due to the cable or the display technology. Since the high speed camera needs to capture

the displayed/projected result, the added time could also be due to projected surface, or the

lower luminosity for the projection at the beginning of the refresh. It is clear that the exact

hardware that is used to render has significant impact on the overall latency of the system,

so the monitor at 144Hz, with a 1ms response time was used for all of the 3D Presence

experiments.

9.5.3 Single Camera

A 3D Presence system, using a single MS Kinect V2 camera connected to a rendering ma-

chine, was used to capture and reconstruct an entire scene, with a variety of objects in it. All

of the reconstruction approaches that are listed in Section 9.1.1, were individually used to

reconstruct the scene, and both the implicit and observed latencies were estimated. Figure

9.6 shows the variation in implicit latency over time for a static scene, reconstructed using

all of the approaches mentioned in the above sections. There was no discernible difference

between the processing times and the implicit latencies for all of the approaches, with and

without, the strobe object in the scene. It is clear that the Strobe approach does not add

any new overhead to the 3D Presence system; Hence, the measured latency is equal to the

normal functioning 3D Presence system, and no greater. The average observed latency for

each of the approaches, BM, HM, IM, SM, and UR, are 156.5, 343, 104.3, 81, and 122.4ms,

respectively; And are comparable to their average implicit latencies of 90, 275.5, 26.8, 9.9,and

60.2ms, respectively.
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Figure 9.6. 3D reconstruction latency plots from left to right: Implicit latency measured for
an entire scene, the implicit and observed latency for a person waving and moving backwards,
away from the camera.

To analyze the variation in latency, when reconstructing just the user and not the entire

scene, two different size users (small and large frames) were asked to use the system. The

users were positioned at 1.25m and 2.5m away from the camera. At the closest distance,

the pixels corresponding to the user in the depth image, were the largest. At the furthest

distance, the pixels containing the user were significantly less. The users were asked to stand

in 3 different poses at each location; The poses were: standing with their arms naturally at

their side, the up arrow pose with their arms 45◦ to their body, and the T-pose with their

arms straight out, at their shoulders. The users had to stay still and hold the pose, in order

to ensure that the individual local latencies, extracted by the Strobe approach, are largely

similar. Each of the poses resulted in a significant variation in the size of the bounding

rectangle for the user, in the depth image.

The implicit latencies for the entire set of poses, at different locations, is shown in Figure

9.6. The latencies seem to vary significantly between locations, with minor variations for

the poses at each location. This same trend is seen in the observed latencies for the same

individual, as shown in Figure 9.6. The difference between the average implicit latency and

the observed latency, estimated using the Strobe approach, remains fairly constant for all of

the reconstruction and rendering approaches. The trend between the implicit and observed

latency remains the same, for even the smallest framed individual. At the furthest distance,

the latencies between the two users are quite similar, ±5ms. But at the distance of 1.5m,
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the latency associated with the larger person was as high as 10ms more than the latency

of the smaller user. The differences in the latency, at the furthest distance (2.5m), were

dependent on the amount of noise present in the depth image capture of the person. In

certain situations, big chunks of the larger user were not getting detected by the camera,

leading to lower latency.

9.5.4 Multiple Camera

Multiple cameras were positioned, one on top of the other, capturing the exact same scene

as in the single camera case, mentioned above. For as many as four cameras, the latencies,

both implicit and observed, for all of the approaches, increased by 30−35ms when compared

to the corresponding latency in the single camera setup. This trend continued when the user

was captured the same way as described in the previous section. The latency variations were

again in the range of 20−30ms. The transmission of data between machines, is performed by

compressing the color image to JPEG. The compression and decompression process, along

with the transmission time, are totally responsible for the excess delays noticed in the multi-

camera case. There were no significant processing or rendering latencies added on, largely

due to the efficient multi-threaded architecture of the 3D Presence system.

When the cameras are positioned to capture the 360◦ view of the user, the latency

was equivalent to the maximum latency associated with the capture, reconstruction, and

transmission of the camera closest to the user. This is similar to the situations represented

in the single camera case, along with the added transmission latency.
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CHAPTER 10

VISUAL QUALITY VS RESPONSIVENESS

Interactive 3D Tele-immersion (i3DTI) systems enable collaborative augmented virtuality,

by allowing geographically distributed users to see and interact with each other in a virtual

world. Each user is captured using multiple cameras to generate a 3D mesh of the user every

frame. These meshes are then transmitted and rendered at different sites to allow communi-

cation between the users. Even for a single camera, large quantities of data (approximately

6MB) are captured, processed, and transmitted every frame, resulting in low frame rates

and a perceivable lag even on high speed networks. So, even the current state-of-the-art 3D

Tele-Immersion (3DTI) applicatons for gaming (Wu et al., 2010; Raghuraman et al., 2012;

Venkatraman et al., 2013) are restricted to a single RGB-D camera, thereby limiting the

possible in-game virtual camera and user interactions.

Multiple camera capture is vital to support user customizable viewing options in i3DTI

applications. This compounds the latency of the application, prior research (Wu et al., 2010)

recommends a maximum latency of 120ms for ensuring user engagement. To achieve such

low latency, compromises in Visual Quality (VQ) need to be made. Mesh simplification can

reduce the mesh size, but of is time consuming and unsuitable for real time applications. The

fastest compression/decompression methods require more than 100ms per mesh, increasing

latency significantly.

Our i3DTI framework uses GPU acceleration to speed up processing, and distributes the

work load across multiple machines to reduce processing times drastically, and allow a 4

camera system to respond in under 50ms. Natural full body user interactions are realized

by using just the skeleton of the user. A virtual camera view based rendering approach is

used to select a small subset of cameras that need to be processed for rendering. Although

this reduces the delay significantly, it is still not sufficient in situations where there are many

cameras with overlapping views. By determining if users playing an engaging game require,
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Figure 10.1. Third person view of the striker kicking the ball towards the goal in the penalty
shootout game.

or even notice, the change in quality of their 3D reconstructed models, lower resolution

meshes can be generated to reduce system latency significantly. Prior studies (Wu et al.,

2011) have focused on just the VQ of the rendering in 3DTI, or the effects of latency on user

engagement in a 3DTI game (Wu et al., 2010).

In this paper, a two player i3DTI penalty shootout game as shown in Figure 10.1 is

developed to study the impact of low latency and high VQ on the user’s experience. Two

versions of the game, one with high VQ and the other having low latency, are evaluated

by a user study. To eliminate the bias due to the other player, the single player version of
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the games is used for all of the user study participants. The subjective evaluations of the

users, along with the system performance and in-game player performance scores, provide

interesting insights to answer the rendering quality question.

10.1 Related Work

Virtual Reality (VR) applications have been used to study or improve player performance

in ball games. The major obstacle for wide scale adoption of such applications is the latency

associated with the systems. A comprehensive survey of these efforts can be found in (Miles

et al., 2012).

Approaches for real time 3D reconstruction using multiple cameras in 3DTI have been

studied extensively and beyond the scope of this paper. A survey of recent 3DTI related

reconstruction approaches and applications is given in (Kurillo and Bajcsy, 2013). The first

3DTI gaming application ”I’m a Jedi” was presented by (Wu et al., 2010). This game allowed

interaction using a light saber between remote players. A single stereo camera was used per

player, and no virtual world objects or physics were used in the game. An immersive tennis

game, using body sensors to control the racket, was shown by (Raghuraman et al., 2012).

A Kinect camera was used to capture the player’s back, and a point cloud was rendered

using OpenGL. Basic collision detection was performed to allow the players to hit the ball.

The baseball game developed by (Venkatraman et al., 2013) consisted of two Kinects, each

capturing a different player. Virtual objects, like a baseball bat and ball, were placed in

the players’ hands, based on the joint information provided by the Kinect. Players used

gestures to throw the ball and due to limited cameras, only a fixed view of the scene was

provided. All the above games use a single camera per site to capture the player, reducing

the processing time and overall complexity. The players are rendered inside the scene, but

their interaction is restricted to certain joints, or are dependent on external devices like
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sensors in (Raghuraman et al., 2012), or the light saber in (Wu et al., 2010). Our game

allows multiple angle rendering and whole body interaction.

The effect of the VQ of the mesh on user experience was studied by (Wu et al., 2011).

The study focused on how much deterioration is inconceivable by the user, allowing for lower

quality meshes to be transmitted without any change in user perception. Rather than letting

the user focus only on the rendered information, we engage the users in an interactive activity

and study their response on various questions related to their overall experience, including

VQ.

10.2 i3DTI Framework

A i3DTI system allows geographically distributed users to be present in and interact with

the virtual world, using their body. To achieve 3D presence, the user is captured from all

directions using multiple calibrated RGB-D cameras simultaneously, to generate a 3D mesh

that can be virtually rendered. The i3DTI framework is designed to address the major needs

of any i3DTI system, and allow rapid i3DTI application development. The i3DTI framework

handles not only the capture, reconstruction, transmission, and rendering of the user, but

also enables the natural full body user interaction with the system. For each of the cameras,

the framework uses a rendering pipeline and an interaction pipeline, as shown in Figure 10.2.

10.2.1 Rendering

The depth image returned by the RGB-D cameras is noisy, and the characteristics of the

noise vary from camera to camera. Depending on the noise, a median/bilateral or similar

filter is applied on the depth image, to improve image quality. The user can be isolated in the

depth image by using region based segmentation, or similar approaches. The depth image

is converted into a 3D point cloud, using the intrinsic parameters of the depth camera. The

point cloud, along with the neighborhood information from the depth image, are used to
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Figure 10.2. Reconstruction pipeline for a 3D immersive application using MS Kinect V2
for capture, and Unity3D for rendering.

generate the 3D mesh by applying a very fast image based meshing approach (Raghuraman

and Prabhakaran, 2015). The color image is then mapped to the vertices of the mesh, using

the extrinsic calibration between the color and depth cameras to create a fully textured 3D

mesh. The color image is cropped to the relevant size, and compressed to JPEG on the

GPU, to reduce the data size for faster transmission.

Even while rendering on 3D displays, depending on the RGB-D camera arrangement and

the position of the virtual camera, only a small subset of meshes generated from certain

cameras are required to be rendered. A view based camera selection approach (Pulli et al.,

1997) is provided by the framework to select the meshes to be rendered, based on the virtual

camera view. For faster performance, only the camera machines providing the selected

meshes need to capture, process, and transmit the data. For example, view based rendering

achieves better quality rendering, as shown in Figure 10.3, by adding only 25% (8 ms) to

the latency, in comparison to rendering only the front and back meshes. For a given camera

setup, the rendering quality can be varied by changing the level of details, and the degree of

overlap required for rendering a mesh. Rendering overlapping meshes directly leads to many

rendering artifacts. A fragment shader similar to (Vasudevan et al., 2011), that considers

the camera capture, virtual camera, surface normal, and virtual lighting to estimate the

color to be rendered, is used to eliminate the artifacts and blend the model inside the scene.
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Figure 10.3. Side view of the player mesh using view based rendering (left), and front and
back mesh rendering (right).

The model’s interaction with virtual lighting produces shadows, improving user’s depth

perception.

10.2.2 Interaction

The framework provides full body interaction using physics colliders. In an i3DTI system

a new mesh is created every frame, and estimating mesh based colliders, every frame, will

add significant latency. So instead of waiting for the mesh, the skeleton of the user is used

to create the colliders. The skeleton is either provided by the camera (MS Kinect V1 and

V2), or can be estimated from the depth image. The accuracy of the detected skeleton is

susceptible to noise and occlusion. By orienting the camera to see the user completely, the

detected skeleton accuracy can be increased. Even though the speed and orientations of the

joints, and the corresponding collisions may not be accurate all the time, our observations

show that this model is still reliable. Any i3DTI environment requires the person to see

the screen, thereby forcing them to face the front camera at all the times; This reduces the

possibility of severe occlusion, which results in good skeleton detection.

Fast collision detection is achieved by covering the body with a combination of box

and capsule colliders. Box colliders map the chest and abdomen region of the person. All
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Figure 10.4. Skeleton based colliders are shown in green for players of different size.

the other parts, including the head, are represented by a capsule collider. Since the skeleton

represents the medial of the person’s mesh, it is possible to extract a reasonably good estimate

for the size of various parts of the body using just the skeleton. The human body is largely

symmetrical, and many parts of the body are proportional to each other. For any given

skeleton, a joint association based model is used to estimate the size and orientation of each

collider. The entire human model is made collision capable in microseconds, without needing

any mesh or point cloud information, as shown in Figure 10.4.

10.3 The Game

The combination of the rendering and interaction pipeline of the i3DTI framework makes it

possible to create very engaging games with good quality graphics. To study the preferences

of the user, in terms of visual quality and the level of interaction, the game needs to cater

specifically to highlight the benefits and minimize the limitations of the i3DTI technology.

10.3.1 Game Requirements

Like video games, an i3DTI game needs to be intuitive, easy to play, engaging, etc. The

fundamental benefit of an i3DTI game is the ability to embed the user directly into the game.
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Figure 10.5. Play area setup, with multiple MS Kinect V2 cameras (marked in red) for
capture, TV, and projector for rendering.

This results in a one-to-one correspondence between the user’s expressions, movements,

actions, etc., in the real and virtual world. The capture area in the real world is limited in size,

as shown in Figure 10.5; To keep the game realistic, and maintain the direct correspondence,

the motion of the player in the game should also be limited. Occlusion, while capturing

the user, results in both an inaccurate skeleton and a reconstruction with holes and other

artifacts. To reduce the amount of self occlusion, the actions required to play the game

should position the user in poses that can be captured clearly by all the cameras. Using

external input devices causes visual occlusion, and provides a less engaging experience.

10.3.2 Penalty Shootout

Many different games can satisfy the requirements listed in Section 10.3.1. The penalty

shootout situation in soccer meets all of the criteria, and also allows for individual practice

play. The penalty game is played by two players, positioned as the striker or the goalkeeper.

The striker is supposed to send the ball through the goal post by kicking or using any other
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part of the body, except their hands. The goalkeeper is expected to stop the ball from going

into the net, using their entire body. The striker is positioned at the penalty spot and the

goalkeeper is on the goal line, as shown in Figure 10.1.

The player is provided a default third person point of view at the start of the game,

and can change the virtual cameras orientation and location to match their preference. To

improve the game play, the player is rendered translucently, allowing them to see the ball

and other objects through their body. The texture of the player model is altered based on

the virtual scene lighting, to provide realistic rendering. An accurate shadow of the player

is rendered by positioning multiple virtual light sources. The shadows in the scene enhance

the user’s capability to track the ball and other objects in the game.

10.3.3 Mini Games

While penalty shootout can be played and enjoyed without prior knowledge or skill, pos-

sessing good skills enhances the two player gaming experience. The mini games allow the

players to practice alone, to improve the necessary skills needed to play the penalty shootout

game. The mini games were equally challenging and required slightly different skills. They

also allowed for an independent assessment of the player’s perception about the system, and

the skill level of the player. The following three mini games were created, with increasing

level of difficulty:

Goalkeeper: The player learns the basic skills necessary to be a goalkeeper, like moving

in the virtual world, ball tracking, and blocking the ball with the body. The ball is placed

at the penalty spot and the ball’s projected target region is shown to the player a second

before the ball is kicked, as shown in Figure 10.6.

Targeted shooting: This game is designed to increase the precision of basic skills that

were developed in the previous goalkeeper mini game. The player is supposed to kick a static

ball, positioned at the penalty spot, as shown in Figure 10.6, into the net to hit the targets.
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Figure 10.6. From left to right: Goalkeeper, with the circle showing the expected ball
position, and the striker with practice targets.

Moving ball shooting: The ball is placed in the field of view of the player and passed

towards them. The player is expected to either stop and kick, or directly deflect the ball,

to hit the targets inside the goal. To be successful the player needs to be able to track the

ball, move appropriately, time and direct the kick accurately.

The inherent system lag, 3D reconstruction quality, collision accuracy, real to virtual

world correspondence, rendering quality, etc. are important factors effecting in-game player

performance. Playing the mini games forces the players to be engaged and adapt to the

inherent deficiencies of the system; This helps to ensure the player’s ability to evaluate the

system confidently.

10.3.4 Implementation

The i3DTI setup consisted of a total of 12 MS Kinect V2 cameras that were positioned

around the room, as shown in Figure 10.5. Each of the cameras are connected to a camera

machine (Intel Xeon 3.0 ghz processor, 18GB RAM and Nvidia Quadro 4000 graphics).

For the two player penalty game, the capture area was divided equally into two sites, each

containing 6 cameras to capture the user. At each site, 3 cameras were placed in front of and
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behind the user, so that each side of the user was captured by 2 cameras. The cameras are

pointed downward to capture the person from head to toe. Each site contained a rendering

machine (Intel i7 2.4ghz processor, 32GB RAM and Nvidia GTX 970 graphics) that was

connected to either a 3D TV or projector at each site. All of the machines are connected

to a local switch, using gigabit networking for the camera machines, and 10GbE networking

for the rendering machines.

The i3DTI system is implemented using massively parallel architectures in C++ and

CUDA, to minimize system latency. The work load is also distributed across a cluster of

machines used for both capture and rendering. The camera machines reduce noise using a

median filter, segment the user and generate a 3D mesh from the depth image. The camera

machines also generate texture mappings between the color image and the 3D user mesh,

crop the relevant regions, and compress the image using JPEG. The penalty shootout and

related mini games were developed in C# on the Unity3D gaming engine. TCP Sockets

were used to communicate between the i3DTI framework and the game. The MS Kinect

positioned in front of the display was used to track the skeleton of the user. The game was

rendered to the user in stereoscopic 3D, on either the TV or projector, depending on the site.

The system clocks of all the machines in the i3DTI setup are synchronized using NTP, to

within a millisecond. The system latency is measured as the time between camera capture

and the corresponding mesh rendering.

10.4 User Study

To answer the question of whether users prefer higher VQ or better interaction, a multiple

stage user study was performed using the penalty shootout game. A total of 39 unpaid

volunteers (21 male, 18 female), with varying backgrounds in the age group of 20 to 25, were

recruited to be part of the user study. All user study participants were given an initial survey

to determine their experience levels. Based on their replies, the study group consisted of 26
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computer gamers, 15 regular soccer players, and 20 VR users. Only 9 of the participants

indicated that they had neither experienced or seen 3D presence in action.

The overall user experience for a player in a two player game is too dependent on the

other player. Similar to real world soccer, penalty shootout favors the striker, putting the

user playing as the goalkeeper at a disadvantage; As a result, the user’s opinions about the

system, based purely on the experience of playing the two player penalty shootout game,

may be biased. So instead of making all of the participants play each other in the two player

game, and evaluate all the aspects of that experience, the single player mini games are used

for detailed questioning. The user study consisted of a mandatory section involving single

player mini games designed to answer the higher VQ or better interaction question, and

an optional section involving the two player penalty shootout game, that was played by 31

participants.

10.4.1 Mini Games Study

Two versions of the mini games were created 1) A view based rendering version for Opti-

mized Visual Quality (OVQ) and 2) A low latency version for Optimized Interaction Quality

(OIQ). The participants first finished all of the OVQ mini games, followed by all of the OIQ

mini games. The player’s performance and system latency were monitored during each of

the games played. A holistic view of each game played is provided by the subjective user

evaluations, quantitative player’s performance, and qualitative system latency information.

All of the user study participants played the games in the order described in Section 10.3.3.

Each participant was allowed to play a minimum of 10 turns, or more if requested by the

user. Players were allowed to customize the virtual camera view using verbal instructions

while playing the game. After playing each mini game, the user rated various aspects of their

game play experience on a 7 point Likert scale, ranging from strongly agree (3) to strongly

disagree (-3).
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Optimized Visual Quality

The OVQ version of the games is configured to use view based rendering for displaying the

user. The view based rendering of the user is captured by 6 uniformly distributed cameras,

results in, at most, 3 camera meshes being rendered for most viewing angles. The user

study questions were focused on the user’s perception of their own performance and system

aspects. Many of the players with no experience in gaming, VR, soccer, or 3DTI showed

poor technique while playing the games. These players struggled to kick a goal, or even

stop a ball heading towards the goal. The user ratings, grouped by question category, are

shown in Figure 10.7. Based on the user ratings, it is clear that the users are happy with the

performance of the system. The lowest user ratings were given to the questions that related

to ball interactions; Considering the user group had only a few soccer players, others seem

to require a greater amount of time to become acclimated to the system. After each game,

the users were asked to rate the responsiveness of the system. In many of the cases, the user

responses for the 3 questions varied by as much as 5 points; These did not correlate with

the system latencies measured during the same game play. This clearly shows that a few

users, with no VR or gaming experience, are not able of quantifying the responsiveness of

the system.

Optimized Interaction Quality

The OIQ version of the games uses only the meshes from the front and back cameras to

render the user. When the player model is viewed from any angle except straight from the

front or back, a large hole in the side is visible, as shown in Figure 10.3. The same set of

questions as Section 10.4.1 were answered by the user after playing the games in OIQ mode.

The inexperienced players continued to struggle to perform even the simplest of tasks, like

kicking the stationary ball. The difference between the average system latencies, of OVQ and

OIQ versions of the games, were only 8ms. Compared to the ratings of the OVQ version, the

177



Figure 10.7. Box plot of user ratings for OVQ study

OIQ version’s user ratings, showed in Figure 10.8, displayed a clear improvement in all of the

categories, except tracking the ball. The OIQ game versions use only two cameras, leading

to visible holes in the side of the body; Still there was an overall increase of about 0.5 points

for the user rendering quality. Considering there were no changes in physics or interactions

between the OVQ and OIQ game implementations, the improved user ratings for the ball

interaction questions can be attributed to the user’s ability to adapt to the system. Based

purely on the user perception captured in the user study, it is clear that the users prefer

faster interactions over VQ while playing an engaging game.

If only the subjective views of the users are considered, then most of them were able to

play the game very well. However, the quantitative results of player performance provide

a totally different outlook. There was no significant difference in the overall player perfor-

mance between OVQ and OIQ implementations, as seen in Figure 10.9. The perception

of improvement in kicking accuracy, shown by the subjective user ratings, turn out to be

baseless. There is no evidence of an increase in kicking accuracy between the OVQ and

OIQ implementations. This shows that the players engaged in playing the game seem to

lose a sense of perception in the real world. In situations where the user played longer, the
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Figure 10.8. Box plot of user ratings for OIQ study

Figure 10.9. Quantitative statistics of player performance for 1) OVQ and 2) OIQ.

player performance showed significant improvement, between the OVQ game play and the

corresponding OIQ game play. A few users with no prior gaming, VR, or soccer experi-

ence seemed to struggle even to kick the ball. Players having difficultly locating the static

ball, struggled in both situations and rated the system poorly. The skeleton tracking of the

foot is dependent on the footwear, and kicks made by users with shiny shoes were going in

unintended directions. Overall, despite the low user ratings given for the kicking accuracy,

some users with soccer experience were able to kick the ball accurately, while some with no

gaming or soccer experience struggled.
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Figure 10.10. Box plot of user ratings for the two player penalty shootout game.

The difference between the subjective user ratings, quantitative player performance, and

the system latencies clearly indicates that the user is completely immersed in the game.

With the focus primarily on improving their skills and better game play, the player loses a

sense of time and develops an elevated sense of performance. This trend can be clearly seen

by comparing the results of the OVQ and OIQ user studies, especially in the case of mesh

rendering quality, where a mesh with holes on the side is rated higher than a mesh without

it.

10.4.2 Penalty Shootout Study

The penalty shootout game was setup using two adjacent sites connected by a high speed

network. The game was implemented to be OVQ, and based on the camera setup, rendered

6 captured meshes at a time. The penalty shootout study pitted two randomly selected

players against each other. The first player was given 10 turns to kick the ball, while the

other defended the goal; The players then switched positions and repeated the task. The

user study questions focused on the VQ of the other player’s model, the perceived latency,

and their overall quality of experience. All of the users agreed that there was little to no

perceived latency, as shown in Figure 10.10. The study of the latency logs found that the
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average latency for the local site was 43 ms, and was 67 ms for the remote player. There were

some jitters, up to 30 ms, that were noticed during a couple of the sessions, corresponding to

the lower user rating. All of the users strongly agreed that the presence of the other player in

the game enhanced the user experience. Almost all of the users felt immersed in the game,

and preferred this game over a similar game with virtual models. Despite the lopsidedness

of the penalty shootout game in favor of the striker, users enjoyed it enough to want to play

again. Players with no soccer experience felt the game was like playing real soccer, but the

soccer players strongly disagreed. While everyone agreed that the rendered model was of

good quality and properly sized, most of them were unable to see the expressions on the

other player’s face due to the distant virtual camera positions.
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PART IV

APPLICATIONS
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All of the research presented so far has real world implications. Expecting someone to

implement each of the approaches, in a case by case basis depending on the kind of system

they want to make, adds unnecessary barriers and slows down development. The i3DTI

framework combines all of the research elements involved with i3DTI into a modular and

easy to use package. The framework abstracts the devices, network, and other complexities

of a i3DTI system, thereby allowing for the development of new approaches without dealing

with all of these specificities. The framework decouples the gaming engine and the bulk of

the distributed processing, enabling even graphic designers to build i3DTI applications. We

present some of the real world applications for tele-medicine, gaming, education, etc., that

were created using this framework.

Chapter 11: Using the i3DTI framework, we created an application for the remote

diagnosis of patients with upper body injuries, specifically those involving the shoulder and

elbow regions. This application was deployed between UT Dallas and the Dallas Veterans

Affairs Hospital. The application was used by a doctor to diagnose patients, and was found

to be very accurate.

Chapter 12: The framework was used to create lots of different i3DTI applications.

Some of the more interesting applications are briefly described in this chapter.
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CHAPTER 11

3D TACTILE TELE-IMMERSION FOR TELE-MEDICINE

According to the Centers for Disease Control (CDC), there are nearly 34.86 million Ameri-

cans living with limited upper body abilities, that affect daily activity (of Health and Services,

2015). Many of these affected people live in rural areas with no access to treatment centers.

Tele-medicine applications would be able to provide better accessibility to healthcare for

these patients. Current state-of-the-art tele-health applications for rehabilitation only allow

audiovisual communication (Chan et al., 2016). Some applications go beyond traditional

video conferencing, by using 3D Tele-Immersion (3DTI) (Kurillo et al., 2016).

3DTI enables collaborative augmented virtuality, allowing geographically distributed

users to interact with each other in a virtual world, using their ”live” 3D reconstructed

virtual models. This extra 3D information allows the doctor to visualize and diagnose the

patients better (Kurillo et al., 2016). For physical rehabilitation, the doctor has to both see

and feel the patient’s limbs. In the absence of physical feedback, the doctor has to rely on

clinicians to physically evaluate the patient, and convey their opinion to the doctor. For

accurate diagnosis, the doctor and clinician need to have a good rapport and understanding

of each other’s techniques, which is not always possible; this leads to the lack of availability

of quality healthcare for remote individuals.

Using a haptic device, the patient can feel the doctor’s actions and the doctor can feel the

patient’s reaction. Achieving this kind of seamless interaction between the patient and doctor

is extremely challenging over the internet (Venkatraman et al., 2014). Some tele-operation

approaches have been proposed (Maciejasz et al., 2014) that work over the internet, but

these allow the doctor to control a robot and get the force feedback based on the robot’s

motions.

In this paper, we introduce a 3D Tactile Tele-Immersion (3DTTI) framework that en-

ables bi-directional force feedback and motion, allowing scenarios such as doctor/patient
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Figure 11.1. The rendering from the patient side, captured during an RPDS session.

interaction possible. The framework models the bi-directional haptic force feedback and

motion problem, as two independent bilateral transparency problems. This allows both the

haptic devices to allow motion and provide force feedback, based on the other side’s motion,

even over the internet in situations with less than 40 ms of latency. 3DTTI also provides

audio and 3DTI capabilities for effective communication over the internet. Due to the large

volumes of data processed and transmitted over the internet, 3DTI systems have low frame

rates and significant delays. 3DTTI implements efficient algorithms in parallel, utilizing the

GPU, and distributing the load on each side to efficiently process, compress, decompress,

transmit, and render 3DTI data in real time at high frame rates.

The high frame rate, low latency performance of 3DTTI allows for the creation of

tele-heath applications. Remote Physical Diagnostic System (RPDS) was developed us-

ing 3DTTI, to allow doctors to diagnose patients having problems with their upper limbs,

specifically the shoulder and elbow regions. The system was implemented with the doctor

and patient located in different cities, connected over the internet, and rendered together in

the virtual world, as shown in Figure 11.1. The doctor was able to adapt the procedure used

for in-person diagnosis, for diagnosing the patient using RPDS.
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A preliminary study was performed using five healthy people, to refine the procedures

used by the doctor, and to update the system to ensure better quality and comfort for

all future users. To study the real world impact of the system, 15 patients, with shoulder

ailments, were recruited, to be diagnosed with RPDS. During the trial, the patients were

diagnosed in-person by a doctor, and then diagnosed using RPDS by another doctor. All of

the users had a favorable opinion about the system. A high degree of correlation was found,

when the in-person and RPDS diagnosis of the patients were analyzed. The high subjective

user ratings and accurate diagnoses, highlight the usefulness and promise of RPDS.

11.1 3DTTI Framework

The 3D Tactile Tele-Immersion (3DTTI) framework allows highly interactive communication

between geographically distributed users, by immersing them in a 3D virtual world, and

enabling them to feel each other’s movements and force feedback by using the haptic device.

3DTTI provides features for both seeing the users in a virtual world using 3D tele-presence,

and also feeling the user’s action, using haptic transparency.

11.1.1 3D Presence

The 3DTTI framework displays the ”live” 3D model of the user in the virtual world, at high

frame rates, by capturing the user using multiple calibrated RGB-D cameras. Creating a

single mesh for the user at a site, requires central acquisition and processing of all of the data

that is captured by each of the cameras, every frame. This centralized processing creates a

performance bottleneck for the system. So instead of creating a single mesh for each site, a

mesh is generated from each camera view. The images of the person, captured by each of

the cameras, is reconstructed independently of each other, using the steps shown in Figure

11.2. The user feels the forces via the haptic device, so it is necessary for the haptic device to

be present in the capture area, next to the user. The presence of the haptic device occludes
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Figure 11.2. The steps involved in the 3D reconstruction of a person, captured using a MS
Kinect V2 camera.

many parts of the user, making user identification difficult. The haptic devices need to be

statically placed at fixed locations near the user, in the capture area. So the point cloud that

is generated from the captured depth image, can be segmented volumetrically, to extract the

regions of interest. The point cloud, corresponding to the regions of interest, is then surface

reconstructed to produce a mesh. This mesh is transmitted and rendered in the virtual

world, at the various sites. Since multiple cameras capture the same scene and generate

different meshes, these meshes can overlap, leading to poor rendering quality if rendered

directly. So a fragment shader that considers the capture camera view, virtual camera view,

and the vertex normal, is used to handle the overlap and render the final result.

11.1.2 Haptic Transparency

In the case of remote diagnosis, and other contact based professions, it is important for

the participants to feel each others hands. For creating such realistic touch feedback, the

haptic devices are setup to ensure bidirectional haptic transparency. The bidirectional haptic

transparency can provide the feeling of contact between the users, by replicating the forces

applied on each side. In the 3DTTI framework, the bidirectional haptic transparency is

setup, by estimating the force at each of the sites, based on the position of the local and

remote haptic device. For a two site 3DTTI application, with a remote doctor diagnosing a

patient, the haptic transparency can be established, as shown in Figure 11.3.
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Figure 11.3. The haptic force feeback rendering for a two site transparency situation.

The force equation of both the doctor and the patient’s site, are exactly the same. The

force is estimated at the patient side as:

Fp = Kp(xp − xd) +Bpvp (11.1)

where Fp is the force feedback at patient’s side, and xp and xd are the positions of the HIP,

for the patient’s side and the doctor’s side. vd is the velocity of the HIP, Kp and Bp is the

stiffness parameter, and the damping parameter, respectively.

The haptic device is capable of producing some strong forces, that can lead to injury if

the user is not careful. In the case of haptic transparency, the forces are generated based on

the position of the remote haptic device; due to various reasons, like network delay, packet

loss, etc., it is possible for undesirable forces to be estimated and applied. The bidirectional

haptic transparency approach relies on the position consensus between the remote haptic

devices in order to keep the forces small; if one of the users let go of the haptic device,

then the device is completely controlled by the remote user, without any restrictions. This

situation is highly likely in all of the applications, and special care needs to be taken to avoid

user injury. To ensure the user is not harmed in any situation, a linear velocity based force

cut off mechanism is used to halt the forces applied by the haptic device. Whenever the

linear velocity of the haptic device, in the direction of the computed force, exceeds a preset

threshold, the situation is deemed dangerous, and the forces are disabled.
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The high frequency small size haptic data is typically transmitted using UDP. Due to

their high frequency, any packets that are delayed, or lost, are simply ignored. Since certain

networks do not allow UDP traffic, sometimes TCP needs to be used for transmitting the

haptic data. When the haptic data is transmitted over TCP, the loss or delay of a single

haptic data packet, can cause the entire haptic stream to be delayed; this causes longer

transmission times for future haptic packets. While our haptic transparency approach can

handle such occasional jitters, continuous long delays can lead to incorrect force estimations,

making the haptic device dangerous to the users; this will trigger the force cutoff mecha-

nism, thereby prompting a total tactile system shutdown. To avoid such a large pile up in

the TCP stream while transmitting high frequency haptic data packets, instead of directly

transmitting the haptic data that is acquired from the haptic device, an aggregation based

haptic packet generation scheme is used to create haptic data packets. Whenever a pile-up

is noticed during data transmission, the haptic data that is read from the device is averaged

out over a period of time, to create a single packet. These aggregated packets are then

transmitted and processed by the receiver, like any other haptic packet. The reduction in

the frequency of the packets allows the system to quickly recover from large sporadic jitters,

without causing significant haptic vibrations, or a complete tactile shutdown.

11.2 Remote Physical Diagnosis System

The Remote Physical Diagnosis System (RPDS) allows the doctor to physically evaluate a

patient from a remote location. The doctor and patient are able to see each other in 3D,

inside a virtual world, that allows them to move and see the world, from any point of view.

Audio communication allows natural dialog between them. The haptic transparency of the

3DTTI framework enables the doctor and patient to feel each other’s actions, using the

haptic device. The combination of audio 3D visualization and haptic feedback, allows for

seamless doctor/patient interaction, while enhancing the possibility of accurately diagnosing
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the patient. While the system is capable of handling any physical diagnosis, the haptic

device is designed to be used by the hand, so only upper body evaluations are possible. So,

in this paper, issues specific to the shoulder and elbow are studied.

The doctor diagnoses the patient with upper limb problems, by evaluating their upper

limb’s range of motion and maximum isometric strength. The doctor studies the reaction of

the patient, while performing the following ten basic motions: Elbow flexion and extension,

arm elevation and depression, internal and external shoulder rotation, shoulder abduction

and adduction, and shoulder protraction and retraction. The exact technique used to perform

these actions can vary slightly from doctor to doctor. To evaluate maximum isometric

strength, while the patient is performing the motions described above, the doctor applies

resisting force to see how much force the patient can overcome. The doctor diagnoses the

patient’s condition, after taking into account the results of the patient’s response to the

resisting force, their range of motion, and the level of pain they experienced while performing

the ten different motions.

11.2.1 In Person Diagnosis

During a normal patient consultation, the doctor asks the patient to perform ten basic

motions, as shown in Figure 11.4, and are described as follows:

Elbow Flexion/Extension: The patient is asked to bend their arm at the elbow

(flexion), and then straighten their arm (extension).

Arm Elevation/Depression: The patient stretches their arm out straight in front of

their body, elevates to shoulder level, and is asked to lift their arm upward (elevation), and

then to drop it downward (depression).

Shoulder Internal/External Rotation: While holding their elbow beside their ab-

domen, the patient bends their arm at the elbow to a 90◦ position; They are asked to move

their wrist towards the body (internal rotation), and then move their wrist away from the

body(external rotation).
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Figure 11.4. Arm motions for diagnosis shown top to bottom, left to right: elbow flexion,
elbow extension, arm elevation, arm depression, shoulder internal rotation, shoulder exter-
nal rotation, shoulder abduction, shoulder adduction, shoulder protraction, and shoulder
retraction.

Shoulder Abduction/Adduction: The patient stretches their arm, out straight in

front of their body and elevated to shoulder level; They are asked to move their arm sideways

away from their body (abduction), back to the original position, and then across, towards

the opposite side of their body (adduction).

Shoulder Protraction/Retraction: The patient extends their arm, out straight in

front of their body and elevated to shoulder level; They are asked to move their shoulder

forward, away from the body (protraction), and then backward, toward the body (retraction).

11.2.2 Real World Challenges

In order to implement a system of this magnitude, that sends sensitive information between

a hospital network and an external site, many hurdles needed to be overcome. A few of the

major challenges that were encountered, during our implementation, are listed below:

Capture Area: In laboratory conditions, the number of cameras used to capture the

person, the position of the cameras, and the size of the area, can all be controlled; this is

not possible when dealing with real world situations, like setting up a capture area inside a

hospital. The capture area in the hospital was about 2 by 3m in size, with uneven lighting.

The uneven lighting had to be corrected, by manually calibrating the virtual lighting in the

rendered scene. The Kinect V2 sensors that we used, required at least a meter of separation in
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order to capture the upper body of the person completely. For this reason, we were restricted

to using only one camera on the side. This restricted the overall 3D reconstruction to only

one side of the person, instead of a 360◦ view.

Network Performance: A 3DTI system requires a large amount of data to be trans-

mitted over the network. Each camera, even after compression, generates 200KB of data

per frame; transmitting this data at 30fps, would require around 48Mbps of bandwidth

per camera. The total available bandwidth at the hospital was about 80Mbps, so only two

cameras were used to capture the person at each of the sites, reducing the frame rate to

25fps.

Protocol Restrictions: Traditionally high frequency haptic data is transmitted over

UDP. Since hospital networks do not allow communication over UDP, we had to use TCP

instead. Further restrictions made the usage of RTP/RTSP to communicate the 3D data

untenable. After going through the firewall restrictions, we determined that the best option

was to use SSH tunneling, to communicate all of the data from/to the hospital, to the external

site. This heavily restricted our ability to optimize the communication at the network, or

packet level.

Security: Since sensitive data was being transmitted over the internet, the data needed

to be secure. The use of SSH tunneling ensured the data’s security.

Haptic Device: The size of the room, and the use of patients who need rehabilitation,

necessitated a smaller device with lower force feedback, for better user comfort and safety.

Display Device: Since the system was used by doctors, and patients who needed reha-

bilitation, the use of VR displays, such as CAVE, HMD, etc. was avoided; Instead, a 60in

3D TV was used.

11.2.3 Motion Mapping

The motions used by the doctor to diagnose the patient, need to be transformed from a

physical touch oriented setup, to a touch setup using haptic devices. For this, both the doctor
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Figure 11.5. Arm motions adapted to the haptic device for diagnosis, shown from top to
bottom, left to right: elbow flexion, elbow extension, arm elevation, arm depression, shoul-
der internal rotation, shoulder external rotation, shoulder abduction, shoulder adduction,
shoulder protraction, and shoulder retraction.

and patient were seated in a chair, beside a table containing the haptic device. While seated,

each user aligned their shoulder with the handle of the haptic device (neutral position). The

motions listed in Section 11.2 were modified, as shown in Figure 11.5, to be used with the

haptic device as follows:

Elbow Flexion/Extension: The patient places their elbow on the table and holds the

haptic handle; they are asked to bend their arm, pulling the handle toward their shoul-

der (flexion), and then extend their arm, moving the handle back down toward the table

(extension).

Arm Elevation/Depression: Patient stretches their arm out with their elbow ex-

tended, straight in front of their body and elevates it to shoulder level while holding the

haptic handle; keeping their arm straight, they are asked to move the haptic handle up

(elevation), and then down (depression).

Shoulder Internal/External Rotation: While holding their elbow beside their ab-

domen, the patient bends their arm at the elbow to a 90◦ position; while holding the haptic

handle in their hand, they are asked to move the handle inward (internal rotation) toward

their body, and then outward (external rotation) away from their body.

Shoulder Abduction/Adduction: The patient stretches their arm out with their

elbow extended, straight in front of their body and elevates it to approximately shoulder
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level while holding the haptic handle; keeping their arm straight, the patient is asked to

move the handle sideways away from their body (abduction), back to the original position,

and then across, toward the opposite side of their body (adduction).

Shoulder Protraction/Retraction: The patient extends their arm out with their

elbow extended, straight in front of their body, and elevates it to shoulder level while holding

the haptic handle; keeping their arm straight, the patient is asked to move the handle forward

(protraction) away from the body, and then backward (retraction) toward the body.

11.2.4 Implementation

The RPDS system was implemented over two geographically distributed sites, as shown in

Figure 11.6. Both sites are setup with each user seated at a table with the haptic device,

looking at a TV; The doctor is at one site, and the patient is at the other, as shown in

Figure 11.1 Each site had a rendering machine Intel i7 5600k @ 4.0 GHz, 32GB DDR4 RAM,

NVIDIA GTX 970, connected to a Force Dimension Omega 3 haptic device. The rendering

machine renders the scene in 3D, on a 60in Samsung 3D TV. Each site also contains a side

camera machine Intel Xeon W3530 @ 2.8 GHz, 14GB DDR3 RAM, NVIDIA Quadro 4000.

Both of the machines are also connected to MS Kinect V2 RGB-D cameras, to capture the

scene. All of the machines on each site are connected by gigabit Ethernet. A machine Intel

Xeon W3530 @ 2.8 GHz, 6GB DDR3 RAM, and running CentOS is open to the internet,

and acts as the gateway between the two sites.

The 3DTI software is developed in C++ using CUDA 8, BOOST, CGAL, Eigen, GLEW,

GLFW, GLM, OpenCV, OpenGL, Speex, TBB, Zlib, and a host of device specific libraries for

MS Windows. The 3DTI framework integrates with the Unity3D gaming engine, to provide

real-time detailed interactive scenes. Network Time Protocol (NTP) is used to synchronize

the clocks of all of the machines, to be millisecond precise.
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Figure 11.6. The two site setup of RPDS, with the doctor at one site, and the patient at
another.

For fast transmission over the network, the mesh information was tightly packed to

smaller 16bit floats, and the texture was encoded as a high quality JPEG image. To over-

come the issues associated with the network restrictions on the hospital side, a secure gateway

machine running CentOS 7 was setup at the university side, for all of the inter site com-

munication. Putty was used on windows to setup the tunnel, with the university gateway

machine running SSH daemon based on OpenSSH, this allowed the application to surpass all

of the network restrictions at the hospital. The packet compression at the application level,

using Zlib, was disabled and the SSH v2 compression for large payloads, using Zlib, was used

to compress the packets that were transmitted over the hospital and university network. A

separate tunnel was used for large mesh data streams, for optimal performance and flow

control. Smaller high frequency haptic data packets were transmitted over an uncompressed

tunnel, for faster performance. This multiple tunnel based approach was much faster than

using a single compressed tunnel, for all of the transmissions.
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11.3 Experiments

The RPDS was developed using an agile approach, allowing for quick feedback from the

doctors. After the initial setup, and validation of the system by the doctor, the system

was stress tested and benchmarked, to ensure the safety of the users at all times. Latency,

motion, and force bounds were established for the safe operation of the haptic device, with

communication over the internet. A preliminary trial, using 5 healthy volunteers as patients,

was performed to evaluate the real world usage of the system. These sessions were used by

both the doctor and system developers to improve the process, modify the motions, update

the system, survey questions, etc. After incorporating all of the identified changes, patients

with shoulder and elbow issues were recruited to use the system. A total of 15 patients

were diagnosed by a doctor in-person, and then another doctor diagnosed the patient using

RPDS.

11.3.1 System Performance

The system performance was monitored closely throughout all of the user trials. The round

trip ping, between the hospital machine and the university gateway, was around 5ms. All

of the machines at each site are connected to each other using gigabit Ethernet, with about

a millisecond of round trip delay. The distributed visual latency approach, described in

Chapter 8, cannot be used while using the system, so all of the latency measurements that

were carried out during the user trials, are the implicit latencies of the system. For the entire

scene, the visual latency is, on average, about 83ms more than the measured implicit latency.

Both the TV display, and the Kinect V2 sensors, seem to provide stable performance, leading

to very little variation. So an approximation of the visual latency, that is experienced by

the users, can be calculated by adding 83ms to the implicit latency of the system.

The size of the mesh data varies significantly, depending on the contents of the scene,

that is being reconstructed to create a mesh. Due to the small room size, the cameras are
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Figure 11.7. The system performance for the mesh (left) and the haptic (right) of the RPDS
during a patient diagnosis session between the hospital and university.

placed very close to user in the hospital. While the closeness of the camera provides a better

quality capture of the user, it leads to a highly detailed mesh, and results in an increase in

the volume of the data to be transmitted every frame. The larger size of the data results in

an increased implicit latency, as seen in Figure 11.7.

However, upon further examination, it was found that for the same data, the compres-

sion/encryption took about 5 times longer on Putty in windows, than it took on the OpenSSH

in CentOS. Distributing the responsibility of transmitting over SSH, to a dedicated Unix ma-

chine, can vastly improve the system throughput.

The average haptic data transmission delay for the system was only 3.7ms, with some

large variations at times. A typical diagnosis session using RPDS, takes about 15 minutes;

during this span, as seen in Figure 11.7, the implicit latency for the haptic processing remains

stable, with a few significant jittery stages. These disruptions lead to delays of over 120ms

for a single haptic data packet, and a quick recovery by the system, as seen in Figure 11.7.

The haptic data aggregation scheme works effectively, even while trasmitting over an SSH

tunnel, and eliminates the delay propagation, leading to a quick recovery, even in the cases

of large 100 +ms jitters.

197



During all of the user sessions, the haptic transparency performed as expected. The

success of the bidirectional haptic transparency is largely due to the relatively low trans-

mission latency between the two sites. To truly test the capabilities of the position based

transparency approach, large fixed delays were introduced during transmission, to simulate

network conditions. The transparency approach delivers stable forces, for delays as high as

125ms, when the haptic devices are moved in a similar direction. When the haptic devices

move in opposing directions, the forces are no longer smooth, after a delay of 40ms is intro-

duced. In situations when nobody is holding onto the haptic device, the force estimation is

unstable, even at a latency of 20ms.

11.3.2 Preliminary Study

An initial study, consisting of 5 healthy volunteers recruited from within the hospital, was

used to determine the shortcomings of the system. The doctor showed the volunteers the

motions to be performed, and made them repeat them. While interacting with the volunteers,

the doctor refined the motions used, the order of the motions, and the necessary questions

that were going to be asked to the patients. The users were asked about the appearance,

comfort level of using the haptic device, the accurate functioning of the system, the potential

of the system, the overall experience, etc. The results of the study are shown in Figure 11.8.

Even though the volunteers and doctors were happy with the overall system, they felt that

the rendering quality needed to be improved.

For the initial trials, only a single front facing camera was used at each site, to reconstruct

the user. While the healthy patients felt that they could see the doctor, and follow the actions

effectively, the doctor felt that they were not able to see the patient’s arm motions, primarily

due to the arm being occluded by the haptic device. For this reason, two cameras were used

for the future trials, with one front facing camera, and the other positioned to capture the

arm from the side. All of the users preferred seeing both themselves and the doctor, rendered
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Figure 11.8. User study results for the preliminary study with healthy users (left), and 15
patients with shoulder discomfort (right).

together in the virtual world. The virtual camera was positioned at a 45◦ angle, to allow

both the doctor and the patient to have an unobstructed view of each other, as shown in

Figure 11.1. The button on the haptic device was configured to show a close-up view of the

patient’s hand, as shown in Figure 11.9, giving the doctor access whenever necessary.

The amount of force applied by the doctor and the volunteers on the haptic device, often

resulted in the physical displacement of the entire haptic device. To ensure the accurate

reconstruction of forces, and the sliding of the haptic device under heavy force conditions,

the haptic devices, on both sides, were clamped onto the table, eliminating the movement

of the entire haptic device.

All of the users felt that the system was not able to evaluate them effectively, primarily

due to the limited amount of force that can be applied by the haptic device, and the motion

of the entire haptic device, in situations with large forces. Overall, the user trials served

their purpose of providing valuable feedback about the system. The improvements made,

based on the feedback, definitely had a positive impact on the future users of the system.

199



Figure 11.9. The close-up view of the patient, as rendered on the doctor’s side, and captured
during an RPDS session.

11.3.3 Patient Trials

Patient trials were carried out to verify the real world potential of the RPDS. A total of

15 patients, with shoulder ailments, volunteered to be part of the study. Special care was

taken to ensure that a good mix of patients, with varying causes and at different stages of

treatment, took part in the study. The patients had suffered from different conditions like:

muscular skeleton elbow or shoulder, were in rehabilitation from post shoulder surgery, had

a stroke or other neurological condition, had shoulder weakness or shoulder spasticity that

was hampering the use of the shoulder.

To compare the usefulness of the RPDS system compared to the in-person diagnosis, a

multiple diagnosis approach was adopted. Two doctors were asked to diagnose the range of

motion, and maximum isometric strength of the patient, using the 10 exercises described in

Section 11.2.1. The first doctor diagnosed the patient in-person, and soon after that, the

patient was diagnosed by the other doctor remotely, using the RPDS. The patient described
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Figure 11.10. User study results for the system specific questions, answered by the 15
patients.

their conditions to both of the doctors, before the start of the session. Each doctor diagnosed

the patient based on the 10 shoulder exercises. Both of them noted their diagnosis for the

patient, for the range of motion and maximum isometric strength approaches. After finishing

the RPDS session, the patient was asked to fill out the detailed questionnaire, shown in

Appendix B.

The user experience study results are shown in Figure 11.8. Almost all of the patients

reported having a good experience, while being remotely diagnosed by the doctor. Most of

the patients felt that the RPDS based diagnosis was as good as the in-person evaluation.

The patients showed a higher level of satisfaction with the experience when compared to the

preliminary study by the healthy volunteers, indicating that the improvements made to the

system after the first study, have improved the entire RPDS experience.

The patients overwhelmingly were happy with the performance of the RPDS, as shown

in Figure 11.10. While many felt that the feedback from the haptic device was similar to a

person;s hand, some felt that the handle of the haptic device was not very convenient to use.

Almost all of the patients felt that the system had the potential to replace the in-person

diagnosis, a majority of them felt that it is not presently better than the in-person diagnosis.
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Figure 11.11. The correlation between the in-person and RPDS diagnosis, of the patients
in the study, from left to right: range of motion (ROM) and max isometric strength (MIS),
green for match, red no match, and blue for match without considering pain; combined ROM
and MIS (green means MIS and ROM match, red means none match, blue all match without
pain, magenta ROM only match, yellow MIS only match.

There was a high degree of concordance between the in-person and RPDS diagnosis of

the patients, by two different doctors, as shown in Figure 11.11. According to the doctors,

it is possible that even when diagnosing the same patient in-person, there may not even be

a 90% match in diagnosis between the two doctors. So they felt extremely satisfied with the

overall consensus, that can be seen in the results.

The range of motion for shoulder adduction needed the patient to move their hand

towards their body, and most of the patients could only move their hand a small distance; this

caused the doctor to misdiagnose the patient consistently. The doctor felt that a larger size

haptic device, with a wider range of motion, was necessary to accurately diagnose shoulder

adduction issues of a patient. The doctor was able to accurately diagnose shoulder adduction,

for almost all of the patients, using the max isometric strength diagnosis. Overall, between

the two methods, the doctor was able to identify all but 7 conditions ( < 5% of all scenarios)

accurately, when not considering the pain.

Three patients had difficulty using the system. Along with the shoulder, two of the

patients (7 and A) also had issues with their hands, and had difficulty gripping onto the
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haptic device, which caused their hands to slip off of the device, resulting in an incorrect

diagnosis. The Omega3 haptic device has a smooth ball handle; a different kind of handle,

or something to fasten their hand to the handle, would have enabled a better grip and

therefore, a better evaluation. The co-operation, between the doctor and the patient, is vital

for a proper diagnosis. Patient F did not follow the doctor’s instructions, and gripped the

haptic handle incorrectly, with the palm of their hand facing upward. Both the in-person,

and the RPDS, doctor were not satisfied with their diagnosis of patient F.

11.4 Discussion

The doctors and the patients provided a lot of meaningful feedback while using the system.

Some of their interesting observations and insights are as follows:

Haptic Device: Due to the small size of the haptic device, the range of motion is very

restricted. A larger device, with a greater range of motion in each direction, would be more

useful. The maximum force is equivalent to about 5lbs, which is easily overcome, even for

injured patients. A higher maximum force, of 50lbs or more, would be better. The knob

handle of the haptic is too smooth, and very hard to hold onto, especially for those patients,

who have problems with their hands and/or wrists. Having various types of handles for

the haptic, or some kind of gripping/binding to temporarily attach the hand to the haptic

handle, would expand its uses, and its ability to help even more people.

More Cameras: The use of only two cameras is not sufficient to generate a complete

360◦ view of the person, so there are plenty of artifacts, making it difficult to evaluate. Visual

noise and artifacts caused by the occlusion of the person, due to the haptic device, make it

difficult to accurately visualize what the patient is doing. The inability to move the virtual

camera during the session, makes the 3D capture and rendering useless; either a controller

based camera motion, or fixed camera positions, is needed for the different actions.
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Network Restrictions: The limited bandwidth between the two sites causes the data

to be displayed with almost a second of delay, while the haptic data is available within 20ms.

The haptic device becomes unstable, if the delay in haptic data, during a session, is more

than 25ms; the current solution is to turn off the forces completely, when any instability is

noticed. But a better solution, that ensures accuracy, but not by reducing the force, needs

to be developed.

204



CHAPTER 12

OTHER APPLICATIONS

The framework allows for the creation of i3DTI applications, without the need to write

code. The distributed architecture of the framework makes it possible for developers/artists,

who are only capable of using a gaming engine, to develop applications without any prior

knowledge of the i3DTI framework. Prior to the creation of this framework, there was only

a single effort to make any kind of a highly interactive experience for users in a 3D tele-

immersion setup. The ”I am a Jedi” game (Wu et al., 2010) allowed users to use a real world

light saber to interact with each other in a 3DTI setup. The game did not have any scoring,

nor any other virtual objects for the players to use. The interaction was largely restricted

to one player swinging the light saber at the other player. The framework allows for natural

full body interactions between the user and the virtual world. To recreate a game like ”I am

a Jedi” (Wu et al., 2010), the real world light saber can now be replaced with a much more

realistic virtual world light saber.

The ease of creating such applications by using the framework, has allowed many students

to create highly interactive games for project work. Using the framework, other applications

were created to help solve real world problems, like physical rehabilitation, remote educa-

tion, etc. Some of these applications (Raghuraman et al., 2012; Venkatraman et al., 2013;

Ramalingam, 2016; Desai et al., 2016) are described in the following sections.

12.1 Tennis

A game was created to allow geographically distributed users to play tennis with each other,

using the early version of the framework. The two player game had each player positioned

opposite each other on a tennis court. Each player was positioned on an independent site,

away from the purview of the other player. Each of the sites used a projector to display
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Figure 12.1. An overview of the tennis game setup, using two sites with a player captured
using two Kinect V1 cameras on each site, a BSN sensor on each player’s hand, and a
projector displaying the game.

the player inside the game. The players’ motions were scaled up to allow easier navigation

throughout their side of the tennis court. Two Kinect V1 cameras were used to capture the

player from both the front and the back, as shown in Figure 12.1.

To accurately track the actions of the player, a Body Sensor Network (BSN) sensor

capable of 6-axis Inertial Measurement Unit (IMU) was placed on the hand of the player.

The BSN sensor tracked the orientation and the accelerations associated with the motions

of the hand. A tennis racket was positioned at the player’s hand, using the skeleton. The
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Figure 12.2. The BSN sensor on the player’s hand, and the corresponding orientation of the
tennis racket in the game.

orientation of the racket was determined by the BSN sensor orientation, as shown in Figure

12.2. The combination of the skeletal hand joint position and the BSN orientation, allowed

the player to move the tennis racket and rotate it. Despite the use of the sensor, the gameplay

was not very realistic compared to the real world, primarily because of the lack of a real

racket.

The tennis racket, the net, and the tennis court, were encapsulated by physics colliders.

A ball, with a spherical collider, was introduced for the gameplay. Realistic physics was

simulated for: the collision of the ball with the tennis racket, the ball bouncing on the court,

and the ball colliding with the net; this allowed the users the ability to serve and return the

ball fairly easily.
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Figure 12.3. The default third person view of a player playing tennis, showing both the
players rendered as a point cloud.

A third person view was used, at both of the sites, to show the user in the virtual world;

this allowed the user to see themselves from behind, as shown in Figure 12.3, while also

seeing the other player across the net. Open GL rendering was used to render the scene,

and the participants. A point cloud was used to show the users in the scene. There was no

lighting or shadow effects present in the game, causing user frustration due to their inability

to track the ball in the 3D virtual world. All future applications used ample lighting and

shadows to allow the users a more realistic rendering in 3D. The shadows give users clearer

depth perception, which enables them to track the virtual objects much more accurately.

Despite the poor gameplay, that resulted from lower quality rendering, unrealistic motion,

and the inability to track the ball, the users were still satisfied with seeing themselves in 3D,
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Figure 12.4. The pitcher finishing his pitch, with his arm in front of his leg, and the ball in
the air.

and with the potential of the game. These results motivated us to improve the technology

and make better applications.

12.2 Baseball

A baseball game was created by students, as a two player experience, with one player as the

pitcher and the other as the batter. Each of the players had an individual site, with two

Kinect V1 cameras capturing them from the front and back, and a projector rendering the

virtual world. Similar to the tennis game, a third person view was used to allow the player

to see themselves and the other player, as shown in Figure 12.4. The game was rendered
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Figure 12.5. The batter, holding the bat, ready to hit the ball.

in OGRE, with people rendered as meshes instead of a point cloud, leading to a full person

view, without holes.

A gesture based control system was created for the player to play the game. When the

pitcher is ready to pitch, they bring both hands together in order to make the virtual ball

appear in their hands. The pitcher has to wind up with their hand going behind their head,

and the ball is released when the hand goes in front of the left leg, as shown in Figure 12.4.

The trajectory of the ball, corresponds to the trajectory of the hand, estimated using the

position behind the head and the point of release, when the hand goes in front of the left leg.

The velocity of the ball is determined by the velocity of the hand between the two reference

points (behind head to in front of left leg).

The batter was given a virtual bat, whose handle was positioned in the left hand. The

right hand had to be positioned next to the left hand, and controlled the orientation of the

bat, as shown in Figure 12.5. By moving both of the hands, like in the real world, the batter

is able to move the bat and change its orientation, allowing them to hit the ball.
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Figure 12.6. The immersive CPR trainer. (a) shows the real-world scene, (b) shows the
visual occlusion problem, (c) shows the virtual world scene.

The game used the prediction method described in Chapter 5 allowing 30fps communica-

tion between the sites. The complexity of poses used in Baseball broke the skeletal tracking

of the Kinect, leading to inaccurate bat motions and wayward ball releases. This hampered

the user experience of the game, requiring better skeletal estimation and tracking, which was

later performed, as shown in Chapter 4.

12.3 Cardio-Pulmonary Resuscitation

Cardio-Pulmonary Resuscitation (CPR) is a primary emergency procedure, and instructor-

led training courses remain popular. Recent research (Yeung et al., 2011) shows that in

self-directed CPR training, performance improves if the trainee is allowed to watch their own

actions, since visual feedback can show if their motion correctly mimics that of the trainer.

An immersive virtual reality trainer was created, that enabled a trainee to perform CPR

training in a 3D virtual world. Our system provides visual and haptic feedback, which helps

provide a more realistic approach to learning the motions required to perform CPR. Figure

12.6(a) shows a real world training environment, where the trainee faces a Kinect camera,
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and compresses an Omega 3 haptic device in real-time, to perform chest compressions. On

the screen, the trainee views his actions as seen in the virtual world; he sees his own ”live”

image performing CPR on a 3D virtual human, in a supine position, as shown in Figure

12.6(c).

12.3.1 Challenges

The major challenges that need to be overcome by the CPR application are the following:

Visual Occlusion The scene captured by the Kinect has lots of equipment surrounding

the trainee, creating occlusion. The trainee is always behind the haptic device and the table,

which causes problems capturing and rendering the entire body of the trainee directly, as

shown in Figure 12.6(b). Since an Omega 3 haptic device is placed in front of the trainee,

and the trainee crosses their hands in front of their body, the captured 3D image will have

many white holes.

Chest Deformation The second challenge is to visually show the chest compressions

of the virtual human, which is directly related to how much the trainee pushes down on

the haptic handle. A fast and stable deformable method is needed to simulate the plausible

visual compression, while providing a smooth and stable force feedback back to the trainee.

Synchronization The haptic device and the Kinect generate data at different frame

rates. Due to its high data rate of 1KHZ, the haptic information is always faster than the

Kinect data. A very fast deformation algorithm, that is used by the system, generates the

deformation in real-time, resulting in haptic-based deformation that does not match the

Kinect based live model prediction.

12.3.2 Our Solution

The system is setup by positioning the Kinect below the display, with the haptic device in

front of the display, and in direct view of the camera. The haptic device is positioned at
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Figure 12.7. The working procedure of the immersive CPR trainer.

both the high and low positions to calibrate the camera, haptic, and virtual space. Once

this calibration is done, the system is ready to use. Every time a new trainee steps in, a few

frames of the complete person are captured, but typically just one frame is sufficient. The

trainee stands behind the haptic device, and performs the CPR compressions on the haptic

device, which are rendered by the system on the front display. The system provides both

visual and audio clues when an activity is performed incorrectly, such as bending the elbows,

or low compressing frequency.

The entire CPR process is based on a prediction algorithm for rendering, and a defor-

mation algorithm for force generation and deforming the virtual model, as shown in Figure

12.7. To lessen the challenge of visual occlusion for rendering, we utilize a prediction based

algorithm (Raghuraman et al., 2013); Chapter 5 includes greater detail of this approach.

This approach needs a short preprocessing step, where the person is captured. The captured

models are then deformed, based on the detected skeleton of the user, in order to predict the

user model without the visual occlusion. We begin by capturing a sequence of meshes and

skeletons of the trainee, without the haptic device. Once the training procedure begins, the
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Kinect’s only purpose is to produce the trainee’s skeletal joint information. The algorithm

regenerates a live mesh model for the trainee using the prediction algorithm.

Chest deformation is solved by using a haptic-enabled deformation model (Tian et al.,

2013), which applies a shape matching (Müller, Heidelberger, Teschner, and Gross, Müller

et al.) method to simulate the deformation stabily. We start by producing a voxel mesh for

the triangle mesh of the human model. Only the chest of the human model will perform

simulation. Constraint particle coupling (Tian et al., 2013) can provide smooth force feed-

back at 1KHz frequency, while the HIP (Haptic Interaction Point) is interacting with the

mesh. As shown in Figure 12.7, when the trainee compresses the haptic handle, collision

detection is performed between the HIP and the mesh. The force of the collision causes

the point of impact to move; this deformation is propagated throughout the model, using

shape matching. The force feedback that is provided to the user through the haptic device,

is estimated by shape matching while propagating the deformation through the mesh.

To resolve the synchronization issue, we use the calibration that is performed between

the haptic space and the Kinect space, to position the trainee in the virtual environment.

Given that the trainee is moving the device using both hands, and the position of the HIP is

known at every millisecond. we can reposition the hands of the trainee in the virtual space

every millisecond. Since the prediction method is based on the position of the joints of the

skeleton, the change in the position of the hands results in the corresponding change on the

”live” model of the trainee.

Our virtual reality system provides an immersive 3D environment that enables CPR

training. With smooth haptic feedback, the trainee feels the force corresponding to each

chest compression. To enhance the visual performance, a geometric based method is used

to generate the visual change of the human chest under each compression. Through a

prediction-based algorithm, we provide a high-fidelity experience where a trainee is placed

inside a virtual world, performing CPR on a virtual human.
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Figure 12.8. HoloBubble virtual scene from left to right: the design layout, and a virtual
rendering that shows the colored bubble generators and mirror setup.

12.4 HoloBubble

The HoloBubble game was created to benchmark the capabilities of the framework. The

game uses multiple cameras to capture and render the user in 3D, locally. The delay asso-

ciated with the capture, processing, rendering, and interaction of the data from each of the

cameras, is compounded by the number of cameras used. HoloBubble is a highly interactive

game where the user is required to burst bubbles that are being produced by bubble genera-

tors. The bubbles are randomly created by the generators at predefined speeds. The bubble

generators are arranged in a circle surrounding the user in the center of that circle. Mirrors

placed inside the scene allow greater visibility for the players; they are arranged to show the

front and sides of the player, as seen in Figure 12.8. Orthogonal reflection probes are used to

provide clearer rendering of the player on the mirrors. The game has multiple visual quality

and interaction quality modes. The game uses a larger number of cameras for higher visual

quality, and a smaller number of cameras for the lowest visual quality. The texture and

resolution of the mesh are varied for intermediate visual quality levels. The speed of bubble

generation is increased to force faster user response, and slower speeds are used to allow the

user to digest the rendered environment. A camera animation was created to revolve around

the user, to give them a full 360◦ view of themselves while playing the game.
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Figure 12.9. From left to right: The front view of the player playing the game, and the
rendered view of the player captured from behind, with the mirrors showing the front and
side of the player.

Figure 12.8 displays the start screen of the game without the player, the bubble generators

are seen on the floor in various colors; each color of the generator indicates the color of

bubbles that they produce. The player stands in the center of the bubble generators when

they are ready to start the game. The refection of the bubble generators are seen on the

mirrors at the front and sides. A long transparent beam of light shows the player where

the next bubble will be coming from, helping the player plan their next move. A sample

of the HoloBubble game, played by various players, is shown in Figure 12.9. The full body

interaction of the game enabled all of the users, irrespective of their gaming experience, to

learn and play the game easily. During our evaluation, it was noticed that using reflection

probes results in considerably slower rendering on the mirrors, compared to the 3D mesh.

The performance of the 3D mesh rendering deteriorated significantly when using more than

6 cameras. Despite this, all of the players were engaged and satisfied by the overall gaming

experience of HoloBubble.

12.5 Exergames

Augmented reality based Exergames for rehabilitation are designed and developed using the

Unity3D game engine. ShotPut, Bowling, RehabQuiz, and Balance are the 4 Exergames
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that were developed, each focusing on a different exercise. A simple strategy was employed:

a closed fist was used to grab an object, and an open fist was used to release an object.

The open and closed fist detection is performed using the Kinect V2 SDK. Each game has

virtual instructions that appear on each start screen. A scoring module calculates the score

for each particular game, and provides on-screen updates to motivate the player and make

it more challenging. All of the games require the person to be standing or sitting in front

of the Kinect, located right under the TV, where they are virtually rendered. The following

subsections describe the unique characteristics of each game.

12.5.1 ShotPut

Elbow flexion is an exercise performed to improve the motion of bending and straightening

the elbow. The game of ShotPut was selected and modified to replicate the elbow flexion

exercise. The scene of the game is created to look like a shot put arena, in an open stadium.

The game begins with the person standing in the virtual scene just described. The object of

this game is to throw the spherical object, the shot, as far away from the player as possible,

in the virtual world. By closing their fist, the game recognizes that they are now holding

the object (ball or sphere) in their hand, and must stretch that closed hand behind them

as far back as possible, over their shoulder; the player then thrusts that hand forward, as

quickly and extending it as far as they can, while opening their fist (to indicate that they

released the ball). The velocity of the throw is calculated using the change in the position

of the closed fist, to the final position of the open fist, with respect to the time it took to

go between the two positions. The further the player can extend their arm (both backward

and forward), the longer the distance the ball travels from the foul line, and the higher the

score the player receives. A virtual camera tracks and follows the ball once it is released.

Figure 12.10 shows a person playing the game, from the front; the open hand shows that

they released and threw the ball, to where it landed on the ground in front of them. The
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Figure 12.10. The ShotPut game, associated with elbow flexion, shows a person throwing
the ’shot’ as far as possible, and the distance its thrown from the foul line is how the score
is calculated. The score appears in the top right corner.

score in the right hand corner of Figure 12.10 shows the score of the current throw, based

on the distance it is from the foul line.

12.5.2 Bowling

Another important exercise that is needed for rehabilitating an elbow is elbow extension.

While keeping the elbow straight, the person must stretch their arm out behind them as far

as possible, and then bring it to the front. Similar to real world bowling, a virtual 10-pin

Bowling alley is generated, with the player standing at the end opposite the pins. The player

can play this game in a sitting or standing position, and starts the game by closing their fist

(holding the ball) with their arm at their side, parallel to their body. The idea of the elbow

extension exercise is clearly similar to the motions used in bowling; while keeping the elbow

straightened, the person stretches their arm back as far as possible, then swings it in front

of them, opening their fist to release the ball. In the real and virtual world, the released

ball rolls down the alley and the player’s score is calculated by the number of pins knocked
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Figure 12.11. The player practices the elbow extension exercise by playing the Bowling game,
and earns more points for each pin they knock down.

down by the ball as shown in Figure 12.11. In this virtual Bowling, to keep the players

from getting frustrated, the score is calculated only when at least one pin is knocked down.

For the ease of use and helpful motivation (needed in rehabilitation scenarios), the bowling

alley has the guard rails on the alley to eliminate ”gutter” balls, and making it a more fun

exercising activity. The force and direction that is applied on the ball is based on the angle

at which the person extends the ball backward and then releases it once its swung forward.

12.5.3 RehabQuiz

This Exergame was developed in the hopes of exercising not only the needed physical motion,

but adding a mental challenge as well. We created a trivia game, known as RehabQuiz, to

be played while doing the elbow rotation exercise. This exercise requires the participant to

place their elbow and lower arm close to their body (stomach specifically), and then rotating

the elbow to move the hand away from the body, while keeping the elbow against the body.

Virtually, this game is setup in a dark room, with the player sitting on a chair behind a

virtual table; the table contains a deck of trivia cards, along with 3 small bins, sitting to the
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Figure 12.12. A person using the elbow rotation exercise while playing the RehabQuiz, a
trivia game; this shows how the player picked up a trivia card by closing his hand near the
deck of cards, causing a trivia question to appear on the screen.

left of the deck of cards. Each of the 3 bins has an A, B, or C on them, representing the 3

possible answers for each of the trivia cards. After choosing a trivia card, the player must

then move their arm to the box with the correct and appropriate answer to the question

asked, and then discard that card into that box. This is repeated for each card chosen

throughout the game. In playing the game, the person performs an internal rotation of the

elbow in order to bring their hand close to the deck of cards to pick a card. The player closes

their fist to pick a card from the deck, causing the trivia question from the card to appear

on the screen, as shown in Figure 12.12.

Depending on the answer to the trivia question, the player uses an external rotation of

their elbow to move their hand to the correct bin (the bin labeled with the letter of the

correct answer), where they need to open their fist and drop their card. Depending on their

answer, ”Wrong” or ”Correct” shows up on the table in front of the bins and their score is

updated. This game is intended to draw the player’s focus to the trivia game, while hopefully

taking their mind off of, the possibly painful, but needed exercise they are performing while

playing it. This was an attempt to see what kind of activities motivate the participant to

220



continue doing the exercises they need to do. Finding a way to make stuff we need to do more

fun, should always be the goal, especially if it is something that makes us better somehow,

like rehabilitation does.

12.5.4 Balance

Lower limb rehabilitation is very important but the majority of the rehabilitation Exergames

we created, using virtual reality, focus on upper limbs. We propose Balance, a game specifi-

cally designed to exercise a player’s lower limbs, using the hip abduction exercise. To perform

the hip abduction exercise, the person must be standing on only one leg, while stretching the

other leg in and out, flexing the hip joint. Since this game can be physically difficult for those

with certain lower limb injuries, we decided to design a pleasant and peaceful background

for this game. We hoped to set a positive mood with a virtual beach scene, complete with

a lighthouse and some trees. The Balance game is started by placing a wooden plank on

water, causing it to float and rotate (react) in certain ways, whenever some unstable force is

applied to it. The game begins with the player standing on one leg, the left one by default,

on the floating wooden plank. The person needs to move, in real life, like they would if they

really are floating on that plank.

Since this is a balancing game, the game starts with the player being placed slightly away

from the plank’s center of gravity, causing it to be unstable; a constant force is being applied

to the plank in the direction of the person’s center mass, thereby creating an illusion that

the person is losing their balance, and will eventually fall into the water. If the angle of the

plank comes too close to the water, like greater than 80 or less than 280, the player appears

to drown in the virtual world. This is the key motivation to playing this game, to avoid

drowning in this virtual world. To avoid drowning, the player must move their right leg away

from the body, thereby performing the exercise, hip abduction. As seen in Figure 12.13, by

shifting the player’s center of mass to the left of their body, and applying the reverse force
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Figure 12.13. The Balance game, with the player practicing the hip abduction exercise by
standing on one leg, on a plank floating on water.

on the plank, the plank is forced to tilt in the opposite direction. The player’s score is based

on the duration of time they were able to stay on the plank, without falling into the water.

The longer the player stays on the plank, (and alive), the higher their score is for this game.

Getting players to do possibly painful or uncomfortable exercises, while engaging their mind

in a fun activity may lessen the pain involved in doing the exercise, hopefully just enough

to do the exercises necessary for their recovery.
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CHAPTER 13

CONCLUSION

Technologies, that make it possible to have real time i3DTI interactions, are very dependent

on the hardware used for the capture, processing, and rendering of data. As GPUs continue to

double in processing, many of the approaches, that are labeled infeasible for usage with i3DTI

systems today, become more likely to provide real-time results. This document provides a

comprehensive review and a detailed explanation of how to build an efficient and real-time

i3DTI system. Novel approaches for all of the aspects of the i3DTI pipeline are described in

the document, starting from calibration.

Portable i3DTI setups are made possible by reducing the time needed to calibrate the

cameras in a scene to a couple of minutes, using the ball calibration technique. The seg-

mentation and filtering approaches extract the person and the objects inside the scene, with

great precision. The inherent noise, associated with the capture of the scene by the RGB-D

camera, results in significant residue, even after filtering the input. The improvements in

capture technologies will soon ensure that the input is noise free, like in the case of how color

images lead to even better segmentation, and higher quality results. The image based recon-

struction approach is able to create a 3D mesh, from even a high resolution depth image, in

under a millisecond. The shear speed of the approach, combined with the per camera model

of rendering, allows optimization in the processing and transmission that are not possible

with a holistic single mesh representation of the user.

In order to maintain coherence between the user and their 3D reconstructed models, in

the virtual world while interacting with the system, physical input devices like keyboards

and mouse devices are avoided. All of the interaction with the system is controlled using

full body natural interactions, while maintaining one to one correspondence between the real

and virtual worlds. An efficient low latency multiple Kinect skeleton estimation approach

is presented, that can accurately identify the skeleton pose of a person, even if many of the
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views are occluded. A visually coherent low fatigue navigation approach is presented, that

ensures the user can navigate large virtual spaces from the confines of the small capture

area, without any natural motions being seen by the other users of the i3DTI system.

Instead of using compression in transmitting large volumes of data, that are generated

every frame by the i3DTI system, innovative approaches that rely on other modalities, like

the skeleton information gathered from the depth image, are used to predict the nature of the

3D user mesh data. The skeleton based approaches are shown to require transmission of a few

hundred bytes per frame. The prediction approaches process data many times faster than

the traditional compression methods, leading to a lower latency rendering of the results.

A possible solution to the security challenges introduced by the prediction approaches is

provided and a potential area for future research in security of RGB-D feeds is introduced.

Latency estimation approaches used to measure the observed latency at the local site,

and between geographically distributed sites, highlight the significant difference between the

latency observed by the user of the system, and the latency measured by implicit 3DTI

approaches. It is also shown that there is a significant difference in the latency between

the reconstruction of an entire scene versus that of an individual user. In highly interactive

situations, users do not recognize the visual quality of the models being rendered; since all

of their attention is focused on the interaction itself, they notice even small variations in the

latency of the system.

We present an immensely flexible i3DTI framework. The ease of development of new

i3DTI applications, using the framework, is highlighted by the large number of applications

being created by student developers. A real world tele-health application, working over the

internet, showcases all of the approaches used by the i3DTI framework. The high degree of

correlation between the in-person and remote diagnosis of the patient reaffirms the ability

and potential of i3DTI systems, by allowing users to transcend spatio-physical barriers in

order to interact with each other in the virtual world, similar to the way they would in the

real world.
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APPENDIX A

VISUAL QUALITY VS RESPONSIVENESS QUESTIONNAIRE

All the questions were to rate each question as: strongly agree, agree, somewhat agree,

neither agree nor disagree, somewhat disagree, disagree strongly, or disagree, except for the

additional comments.

• Basic participant profile questions

1. I am a computer gamer.

2. I am very experienced with VR technologies.

3. I have experienced 3D presence before.

4. I play soccer regularly.

• The following questions were asked for each of the two OVQ and OIQ scenarios.

Kicking the ball

1. I was able to find and kick the ball.

2. There was no noticeable delay while playing.

3. I was able to kick the ball accurately.

Kicking the moving ball

4. I was able to accurately track the position of the ball.

5. I was able to find the ball throughout the game.

6. There was no noticeable delay while playing.

7. I was able to kick the ball accurately.

8. I was able to kick the moving ball.
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9. I was able to move around in the scene.

Goal Keeping

10. I was able to accurately track the position of the ball.

11. I was able to find the ball throughout the game.

12. There was no noticeable delay while playing.

13. I was able to stop the ball as expected.

14. I was able to move around in the scene.

15. Additional comments

• The overall single player experience questions.

1. I was completely involved/interested in the game.

2. I would like to play this game again.

3. I was comfortable while playing this game.

4. My avatar was rendered accurately.

5. I was very interested in the game.

6. I was satisfied with my overall experience.

• Two player penalty game questions.

1. Seeing the other player enhances the experience.

2. There was no noticeable delay in other player’s motion

3. Other player’s model was accurate.

4. Size of the other player was accurate.

5. I was able to see the other player’s expressions.

226



6. The game was similar to a real world experience.

7. I would like to play the two player game again.

8. The two player game with live avatars is better than a game with virtual models.

• Quality of experience for the entire game single and two player.

1. I was very satisfied with the game.

2. The visual quality of the game was good.

3. The size of the my avatar was accurate.

4. The game was realistic.

5. I was able to learn and play easily.

6. I had to use floor markers to locate virtual objects.

7. The game was similar to real world soccer.

8. I lost sense of space and time.

9. I was completely immersed in the game.
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APPENDIX B

REMOTE PHYSICAL DIAGNOSTIC SYSTEM QUESTIONNAIRE

All the questions were to rate each question as: strongly agree, agree, somewhat agree,

neither agree nor disagree, somewhat disagree, disagree strongly, or disagree, except for the

additional comments.

1. It was easy to use the system.

2. I feel comfortable with the system.

3. The information (verbal instruction) provided with this system is clear.

4. I am able to efficiently complete my evaluation using this system.

5. The system was nice to look at.

6. Overall, I am satisfied with how easy it is to use this system.

7. The device showed the actions of the other person as they were doing it.

8. I could see the other person clearly.

9. I could see the other person’s actions clearly.

10. The device resisted and moved like a human hand.

11. The device moved smoothly.

12. The device was very responsive.

13. There was no noticeable delay while interacting with the other person.

14. I could effectively communicate with the other person.
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15. I was able to correct any miscommunication while using the system, by effectively

interacting with the other person.

16. This system has all the functions and capabilities I expect it to have, to interact with

the other person effectively.

17. The features of the system are effective in helping me learn and compete tasks.

18. I believe the virtual interaction using the system was productive.

19. I felt a part of the virtual world shown on TV.

20. There were no technical difficulties or interruptions during the session.

21. Overall, I am satisfied with the use of this system.

22. The system allows me to be physically evaluated as effectively as I would be in a

standard in-person evaluation.

23. In comparison with a standard in-person evaluation, it is as easy to interact with, and

be examined by, the remote person using this system.

24. Overall, I believe this system is better than a standard in-person evaluation.

25. Overall, I believe this system has potential to replace standard in-person clinical eval-

uation.

Doctor specific questions

26. It was possible to evaluate the arm strength of the patient using the system.

27. The primary in-person evaluation, and the system based evaluation, provided the same

result.

28. I was able to see the limb movement of the patient in order to evaluate them.
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Herrera, D., J. Kannala, and J. Heikkilä (2012). Joint depth and color camera calibration
with distortion correction. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 34 (10), 2058–2064.

231



Hilsmann, A., P. Fechteler, and P. Eisert (2013). Pose space image based rendering. Computer
Graphics Forum 32 (2pt3), 265–274.

Horn, B. K. P., H. Hilden, and S. Negahdaripour (1988). Closed-form solution of abso-
lute orientation using orthonormal matrices. JOURNAL OF THE OPTICAL SOCIETY
AMERICA 5 (7), 1127–1135.

Huang, C.-H., E. Boyer, and S. Ilic (2013, June). Robust human body shape and pose
tracking. In 3D Vision - 3DV 2013, 2013 International Conference on, pp. 287–294.

Izadi, S., D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S. Hodges,
D. Freeman, A. Davison, and A. Fitzgibbon (2011). Kinectfusion: Real-time 3d recon-
struction and interaction using a moving depth camera. In Proceedings of the 24th Annual
ACM Symposium on User Interface Software and Technology, UIST ’11, New York, NY,
USA, pp. 559–568. ACM.

Keshner, E. A. and R. V. Kenyon (2004). Using immersive technology for postural research
and rehabilitation. Assistive Technology 16 (1), 54–62. PMID: 15357148.

Kowalski, M., J. Naruniec, and M. Daniluk (2015, Oct). Livescan3d: A fast and inexpensive
3d data acquisition system for multiple kinect v2 sensors. In 3D Vision (3DV), 2015
International Conference on, pp. 318–325.

Kum, S.-U. and K. Mayer-Patel (2005, May). Real-time multidepth stream compression.
ACM Trans. Multimedia Comput. Commun. Appl. 1 (2), 128–150.

Kurillo, G. and R. Bajcsy (2013). 3d teleimmersion for collaboration and interaction of
geographically distributed users. Virtual Reality 17 (1), 29–43.

Kurillo, G., A. Y. Yang, V. Shia, A. Bair, and R. Bajcsy (2016). New Emergency Medicine
Paradigm via Augmented Telemedicine, pp. 502–511. Cham: Springer International Pub-
lishing.

Ladicky, L., P. H. Torr, and A. Zisserman (2013). Human pose estimation using a joint
pixel-wise and part-wise formulation. 2013 IEEE Conference on Computer Vision and
Pattern Recognition 0, 3578–3585.
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