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A new method is proposed to estimate the bending rigidity of lipid membranes from molecular
dynamics simulations. An external cylindrical guiding potential is used to impose a sinusoidal de-
formation to a planar membrane. The bending rigidity is obtained from the mean force acting on the
cylinder by calibrating against a discretized Helfrich model that accounts for thermal fluctuations
of the membrane surface. The method has been successfully applied to a dimyristoyl phosphatidyl-
choline bilayer simulated with a coarse-grained model. A well-converged bending rigidity was ob-
tained for the tension-free membrane and showed reasonable agreement with that obtained from the
height fluctuation spectrum. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4811677]

I. INTRODUCTION

Lipid membranes show fascinating morphologies ow-
ing to their fluidity and flexibility. The membrane morpholo-
gies can be conventionally described by the Helfrich model,1

which uses a quadratic curvature expansion of the free energy:

E =
∫

dS
(κ

2
(c1 + c2 − c0)2 + κ̄c1c2

)
. (1)

Here c1 and c2 are the principal curvature radii of the mem-
brane surface and the integral is over the total area of
the membrane. κ is the bending rigidity, κ̄ is the saddle-
splay modulus, and c0 is the spontaneous curvature. In
spite of its simplicity, the model has been successfully used
to characterize various membrane morphologies observed
experimentally.

The elastic parameters depend on the composition of the
lipid membrane. For example, the bending rigidity is affected
by the concentration of cholesterol,2, 3 the length and unsatu-
ration of the lipid tail alkyl chains,4 and the presence HIV-1
fusion peptide.5 Thus, a link between the elastic parameters
and the molecular components of the membrane should pro-
vide a useful way to predict the mesoscopic, elastic behavior
of the membrane from the viewpoint of molecular science.
Therefore, many theoretical and simulation studies have been
undertaken to evaluate the elastic parameters using molecular
dynamics (MD) simulation trajectories.6, 7 The saddle-splay
modulus and the spontaneous curvature are often estimated
by using the stress profile across the membrane.8–12

To calculate the bending rigidity from MD simulations,
several different methods have been proposed. The most com-
monly used method is based on the height fluctuation spec-
trum of a membrane.13–20 An equilibrated MD trajectory of

a)Electronic mail: s.kawamoto@aist.go.jp
b)Electronic mail: w.shinoda@aist.go.jp

a planar lipid bilayer, of infinite extent due to the use of pe-
riodic boundary conditions (PBC), is employed for the anal-
ysis. The height fluctuation spectrum 〈|hq|2〉 is derived from
the Helfrich model

〈|hq |2〉 = kBT

q4κ
, (2)

where q = 2πn/L is the wavenumber, kB is the Boltzmann
constant, T is temperature, and L is the box size. 〈· · ·〉 denotes
the ensemble average. By fitting a height fluctuation spectrum
measured from MD simulations to this expression, we obtain
the bending rigidity κ . Since the Helfrich model considers an
elastic membrane with zero thickness, Eq. (2) should be most
accurate in the limit of q → 0. However, the convergence of
the low-q modes is slower than that of the high-q modes sim-
ply because of the available data density from MD trajecto-
ries. In addition, it was recently pointed out that uncertainty in
the choice of cutoff frequency, qcut, for the fitting may cause a
serious error.20 To minimize the fitting error, an elastic Hamil-
tonian for membrane energetics that captures bilayer undula-
tions and peristaltic deformations over all wavelengths was
proposed and used to estimate the elastic parameters.21 How-
ever, the intrinsic problem of the slow convergence of impor-
tant low-q modes still remains, so that substantial sampling is
required to be able to resolve the spectrum.

Recently, a new approach to estimate the bending rigid-
ity using thermal fluctuations of lipid orientation has been
proposed.22 The method is based on a fluctuation analysis of
an equilibrated membrane, and has a significant advantage in
better convergence at shorter wavelengths. Thus, the method
allows us to use a MD trajectory of a modest system size for
estimating the bending rigidity without a serious fitting error.
A few test calculations for DMPC bilayers with different force
fields indeed demonstrated a good numerical nature of the
spectrum of longitudinal molecular orientation fluctuations,
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though the estimated bending rigidity seems systematically
larger than that obtained from the standard height fluctuation
spectrum.22

Apart from fluctuation analysis, a more intuitive method
is to measure the bending rigidity from a response (force)
of a deformed membrane. den Otter and Briels27 invented a
method to measure the mean force required to impose a si-
nusoidal deformation to a lipid membrane. This method uses
the amplitude of selected undulatory modes as a reaction
coordinate and evaluates the mean force to keep the mem-
brane at the target amplitude. The calculated mean force was
compared to that predicted from the Helfrich Hamiltonian to
deduce the bending rigidity. This method was elegantly for-
mulated, though a practical problem remains in the slow con-
vergence of the bending rigidity. Farago and Pincus proposed
a different method by considering the free energy required to
deform the membrane.23 Even though their approach could
investigate the relation between a microscopic expression and
elastic coefficients, the numerical convergence of the bending
rigidity seems to be worse than that in the height fluctuation
spectrum.23 Therefore, these methods have not been widely
used in practical simulations of realistic membrane models.

Harmandaris and Deserno used a tubular membrane
spanning the simulation box to evaluate the bending rigidity.24

The imposed curvature of the tubular geometry is advanta-
geous for evaluating the bending energy, which generates a
net pulling force along the axial direction of the tube. The
force is detected as a pressure difference between the axial
and radial directions. The bending rigidity, κ , is estimated
from the relationship F = 2πκ/R, where F is the force and R
is the radius of the tube. The method was successfully applied
to a simple coarse-grained (CG) model.24 A problem arises,
however, when we apply the method to a realistic molecular
model because of the difficulty of preparing a strain-free ini-
tial configuration of the tubular membrane. A flip-flop motion
is prohibitively rare in a bilayer simulation using a realistic
model so that the number of lipids in each leaflet has to be
carefully chosen to realize a relaxed tubular membrane.

The method proposed by den Otter,25 and later separately
by Noguchi,26 applies a lateral compression to a planar mem-
brane under PBC. When the compression exceeds a threshold
value, the membrane buckles. The bending rigidity is calcu-
lated from a relation between the curvature of the membrane
and the lateral force needed to support the buckled membrane.
Even though the curvature has been changed owing to the lat-
eral compression, the two leaflets of the bilayer are symmetri-
cally curved so that the bilayer can be relaxed without an ex-
change of lipids. This is advantageous over the tubular mem-
brane method for application to a realistic membrane model.
However, the bending rigidity obtained in this way is for the
laterally compressed membrane, which may not be the same
as that of the tensionless membrane.

In this work, we propose a novel method to estimate the
bending rigidity of lipid membranes from a MD simulation
in which external guiding potentials are added to the standard
force field. Two cylindrical guiding potentials are employed
to impose a sinusoidal deformation to a planar membrane
(see Fig. 1). We measure the restoring force of the deformed
membrane, which is detected as the mean force exerted on the
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FIG. 1. The membrane bends in the x-direction under the influence of two
cylinders with their long axis along the y-direction. (a) Schematic of the de-
formed surface projected onto the xz plane. Two filled circles represent the
cylinders. (b) The 3D image of panel (a). (c) Closeup view near one of the
cylinders. The membranes described in MD simulations have a finite thick-
ness of d whereas the thickness is zero in the Helfrich model.

membrane from the cylinders. The mean force is determined
as a function of the curvature of the deformed membrane and
the bending rigidity through the Helfrich model. We numeri-
cally solve the Helfrich model, which provides reference data
to estimate the bending rigidity by a measurement of the mean
force from a MD simulation. The bending rigidity obtained in
this way shows good agreement with that estimated by the
height fluctuation spectrum of the tensionless membrane.

Among the previously available methods, the present
guiding method is most closely related to the method by den
Otter and Briels.27 Both measure the mean force required to
impose a sinusoidal deformation to the membrane, and ob-
tain the bending rigidity by a comparison of the force esti-
mated from the Helfrich model. However, the present method
has a significant advantage in the numerical precision of the
obtained bending rigidity. One of the most important differ-
ences is that the present method evaluates the force required
for the deformation of the Helfrich membrane numerically,
rather than analytically, without using a small gradient ap-
proximation. In the previous method,27 due to the small gradi-
ent approximation, the amplitude of membrane deformations
was limited in the small amplitude range. Therefore, the re-
quired force to impose the bending cannot be large compared
to the thermal noise. This, in practice, limits the numerical
precision for the estimation of the bending rigidity. Also, the
previous method27 deforms the membrane under constant vol-
ume conditions, while the present method employs constant
pressure conditions (NPT ensemble), which can more natu-
rally simulate a tension free membrane. Because the overall
deformation of the two leaflets of the bilayer is identical in the
present method, the structural relaxation should occur without
exchange of lipids between the two leaflets, that is, no flip-
flop motion is required in contrast to the case of the tubular
membrane.24 Unlike the lateral compression method, here the
membrane curvature is directly changed due to the external
field. Therefore, the net tension is kept negligibly small in the
NPT ensemble as long as the deformation of the membrane
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is small. Thus, we can evaluate the bending rigidity of a ten-
sionless membrane using the present method.

The remainder of this paper is organized as follows. In
Sec. II, we derive a relation between the bending rigidity and
the force required for the membrane deformation using the
Helfrich model. The relation was numerically solved using a
Langevin dynamics (LD) simulation of the discretized version
of the Helfrich model to take into account the thermal fluctu-
ations of the membrane. The details of the molecular model
and the molecular dynamics simulations are also provided.
Furthermore, we briefly explain how we calculate the spec-
trum of thermal fluctuations of height and lipid orientation,
respectively, and applied the lateral compression method25, 26

in the context of our MD simulations, which were used for a
comparison to our numerical simulations. In Sec. III, simu-
lation results are presented for both the Helfrich and coarse-
grained molecular models. Using a dimyristoyl phosphatidyl-
choline (DMPC) bilayer as a test system, we demonstrate that
the present method yields a reasonable bending rigidity. The
paper ends with conclusions in Sec. IV.

II. METHODS

A. Normal force required to support membrane
curvature

We consider a symmetric lipid bilayer with zero sponta-
neous curvature. The membrane undergoes a sinusoidal de-
formation in the x-direction due to the influence of two cylin-
ders placed as shown in Fig. 1. If we can measure the force
required for the deformation as a function of the induced cur-
vature, we can evaluate the bending rigidity of the membrane
using the Helfrich model (or more generally a stress-strain
relation).

In this section, we first derive a formal expression for the
force required to support an ideally deformed membrane from
the Helfrich model, and then give a discretized membrane
model to numerically evaluate the bending rigidity based on
the Helfrich model. The latter is introduced to include the ef-
fect of thermal fluctuations in the force calculation. Finally,
we give the simulation conditions together with the details of
the model system.

1. Helfrich model

Suppose a lipid membrane spans the simulation unit cell
in the Lx and Ly directions under PBC. As shown in Fig. 1, the
membrane is curved only along Lx, so that the membrane cur-
vature along Ly is roughly zero. The box size Ly is held fixed
and Lx is adjusted to realize zero surface tension. We ignore
the increase of surface tension along Ly due to the anisotropy
of the curved membrane,26 which should be reasonable as
long as the membrane curvature is not too large. We also as-
sume that the intrinsic area of the membrane is kept constant
at S = L × Ly during this deformation. Here L is the length of
the membrane measured along the membrane surface in the x-
direction. The energy change for the membrane deformation

is then written as26

Ebend[φ] = κLy

2

∫ L

0
ds

(
dφ

ds

)2

, (3)

where κ is the bending rigidity. In this expression, the bending
energy is simply described by the arc length, s, and the angle
φ between the tangent line and the x-axis (see Fig. 1(a)). We
assume the interval between the two cylinders is shorter than
the persistence length of the membrane, so that the membrane
behaves ideally as an elastic sheet touching each cylinder at
points in the xz plane: (x, z) = (Lx/4, zm) and ( − Lx/4, −zm).
From symmetry, we can write this condition simply as∫ L/4

0
ds sin φ = zm. (4)

The membrane shape is determined by minimizing the bend-
ing energy Ebend under the condition of Eq. (4). The Euler-
Lagrange equation is written as

− λ cos φ + d2φ

ds2
= 0, (5)

where λ is the Lagrange multiplier. According to the symme-
try of the deformation, the equation is solved with the follow-
ing boundary conditions:

φ

(
L

4

)
= 0, (6)

dφ

ds

∣∣∣∣
s=0

= 0. (7)

Using the solution of Eq. (5), φ = φ*, we obtain the bending
energy as a function of zm. The derivative of the bending en-
ergy with respect to zm yields the restoring force at the point
(Lx/4, zm) along the z-axis

FzH = −1

2

∂Ebend[φ∗]

∂zm
, (8)

where the factor of 1/2 is included to account for the two
cylinders in the simulation box. In the small bending regime
limit, zm/L � 1, the force is derived as

FzH = 96κ
Lyzm

L3
. (9)

2. Discretized Helfrich model with external
cylindrical potential

Here we introduce a discrete particle model that is de-
signed to reproduce the elastic behavior of the Helfrich model.
Even though the force has to be evaluated numerically using
the discretized model, we can explicitly consider the thermal
fluctuations of the membrane. The membrane deformation is
applied by an explicit consideration of the cylindrical guiding
potentials rather than as a boundary condition of Eq. (4). This
is advantageous for a comparison with the MD simulations as
discussed later.

The model describes the membrane with n bead seg-
ments:

∫ L

0 ds → ∑n
i=1 �s, where �s = L/n. Then, we
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x

z

FIG. 2. Definition of angles θ i in the discrete particle model of the
membrane.

rewrite the bending energy as follows:

Ebend = κLy

2

∫ L

0
ds

(
dφ

ds

)2

� κLy

2

L

n

n∑
i=1

(
φi − φi−1

�s

)2

=
n∑

i=1

1

2

nκLy

L
θ2
i

=
n∑

i=1

1

2
kθθ

2
i . (10)

Here kθ ≡ nκLy/L, φi is the tangential angle at segment i, and
θ i = φi − φi − 1, as shown in Fig. 2. θ0 = θn because of PBC.
The bond length between the neighboring segments should
be kept at �s. This is in principle feasible using the SHAKE
algorithm.28 For the sake of computational simplicity, how-
ever, we instead introduce a harmonic potential to keep the
bond length close to �s:

Ubond =
n∑

i=1

1

2
kbond(|qi − qi+1| − �s)2, (11)

where qi = (xi, zi) is the position of ith bead. We need to
consider the effect of the strength of the bond force constant
on the simulation results. The spring constant, kbond, should be
changed depending on n, κ and the membrane size L, Ly. It is
convenient to use a dimensionless parameter, k∗

bond, to control
the stiffness of the bond potential

k∗
bond = kbond

L3

nκLy

. (12)

We find that k∗
bond = 6.4 × 104 is large enough to obtain a well

converged result as shown later.
We now consider the cylindrical wall potential used to

impose the membrane bending. As shown in Fig. 1, two
cylindrical potentials U+ and U− are placed at (Lx/4, zc) and
(−Lx/4, −zc), respectively, pushing the membrane in opposite
directions along the z-axis:

Ucylinder =
n∑

i=1

(u+(qi) + u−(qi)). (13)

We choose a purely repulsive cylindrical wall potential for u±:

u±(qi) =
{− kcyl

3 �R±(qi)
3 for �R±(qi) < 0

0 for �R±(qi) ≥ 0
, (14)

where

�R±(qi) =
√(

xi ∓ Lx

4

)2

+ (zi ∓ zc)2 − R0. (15)

Thus, for a large kcyl value, beads are expelled from the cylin-
der interior. The force exerted on the membrane from the
cylinders is calculated by

FzH± = −
〈

n∑
i=1

∂u±
∂zi

〉
, (16)

where 〈· · ·〉 denotes an ensemble average, and zi is the z-
coordinate of the ith bead. These two force components
should have the same magnitude but opposite sign. Therefore,
for sampling efficiency, we take the average of the forces ex-
erted on the two cylinders:

FzH = |FzH+| + |FzH−|
2

, (17)

which should be comparable to Eq. (8).
We evaluate the averaged force for each fixed position of

the cylinder, zm, during a numerical simulation of the system
of a chain of n connected particles, which is described by the
potential energy U = Ebend + Ubond + Ucylinder. We used a LD
simulation to thermalize the system and evaluate the average
force in Eq. (16). The equation of motion (EOM) of the ith
particle is given in the xz plane as

m
d2qi

dt2
= − ∂U

∂qi

− γ
dqi

dt
+

√
γ kBT ζ i , (18)

where m is the mass of particle, γ is the friction coeffi-
cient, and ζ i is zero-mean Gaussian white noise satisfying the
condition

〈ζiα(t)ζjβ(t ′)〉 = 2δαβδij δ(t − t ′), (19)

where α and β are indices for the x and z axis, respec-
tively. The system is also coupled to a Parrinello-Rahman
barostat29 to realize a zero tension in the x-direction. The sim-
ulation setup is chosen to represent a membrane similar to the
molecular system described in the next subsection, namely,
T = 310 K and Ly = 6.3 nm, which is used to deter-
mine the bending constant kθ , and L/Ly = 1–6. The ra-
dius and force constant of the cylinder are R0 = 0.6 nm and
kcyl = 41 840 kJ/mol/nm3. The specific parameters for the LD
simulations of the discretized Helfrich model are as fol-
lows. The discretization number is n = 64; the time step used
to integrate the EOM is 0.005τ ; the friction coefficient is
γ = 1.0m/τ ; and the time constant for the pressure con-
trol is τ p = 10τ . The LD simulation length at each sam-
pling point is 10 000τ . τ is the fundamental unit of time,
9(L/n)2(ρ/κ)1/2, where ρ = 2186 amu/nm2 is the density of
the membrane. The mass of the particle is m = ρLLy/n.
We have carried out the LD simulations in the range of κ

= (1–20) × 10−20 J to obtain the average force FzH as a
function of zm, which is later used as reference data to deter-
mine the bending rigidity of the molecular system from MD
simulations.
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3. Molecular dynamics simulation

We have employed a coarse grained molecular model to
simulate a DMPC bilayer system.30, 31 In this model, a sin-
gle CG water particle represents three water molecules, and
a DMPC molecule is described using 13 connected CG seg-
ments. Eight of the 13 segments are hydrophobic denoted
as CM and CT. CT represents a terminal alkane group of
CH3CH2CH2– and CM represents –CH2CH2CH2–. For fur-
ther details, we refer the reader to the original papers.30, 31

The external cylinder potential is introduced in a simi-
lar manner as shown in Fig. 1, though only the CT and CM
segments interact with the cylinders

UCG
cylinder =

∑
i∈CM,CT

(u+(r i) + u−(r i)) , (20)

where r i = (xi, yi, zi) denotes the coordinate of the ith CG
segment. The same repulsive potential is used as given in
Eqs. (14) and (15), which should be read by replacing q by r .
Thus, this potential excludes only DMPC hydrophobic chains
from the cylindrical region, while water and hydrophilic seg-
ments (lipid head groups) have free access to this region. We
use the same kcyl and R0 as in the LD simulations of the dis-
cretized Helfrich model. The simulation results are not sensi-
tive to the choice of these parameters, although R0 = 0.6 nm
should be smaller than the radius of the membrane curvature
and should be larger than individual lipid molecules to sup-
port the membrane. The forces exerted on the membrane (the
molecular system) from the two cylinders are calculated as

FzCG± = −
〈 ∑

i∈CM,CT

∂u±
∂zi

〉
. (21)

These two force components should have the same magnitude
but opposite sign. As in Eq. (17), we take the average of these
forces to compare with the Helfrich model of Eq. (17):

FzCG = |FzCG+| + |FzCG−|
2

. (22)

Unlike the Helfrich model, we need to evaluate the mem-
brane thickness, d, to define the mid-plane position, zm, as
depicted in Fig. 1(c):

zm = zcyl + R0 + d

2
, (23)

where the cylinder position along the z-axis, zcyl, and the
cylinder radius, R0, are given parameters. Here we define the
positive direction of zm and zcyl to point towards the mem-
brane. We determine d using the linear relation between the
force, FzCG, and zm in the small bending regime given by
Eq. (9). Further details are found in Sec. III.

In order to check for finite size effects, we used several
different sizes for the simulation box Lx, while Ly and Lz are
kept small. The initial configurations of the DMPC bilayer
systems are prepared by replicating a small system of 6.3 nm
× 6.3 nm × 9.0 nm. The small membrane system consists
of 128 DMPC lipids and 2128 CG water particles and was
equilibrated in the NPT ensemble. The pressures normal and
lateral to the membrane were separately controlled at 1.0 atm
using a Parrinello-Rahman barostat29 with a time constant of

5.0 ps. The temperature was set to 310 K using a Nosé-Hoover
thermostat32 with a time constant of 0.5 ps. The simulation
box was elongated by copying the small system to obtain
L/Ly = 1, 2, 3, 4, 5, and 6. We refer to these systems as S1,
S2, S3, S4, S5, and S6, respectively. The total arc length of
membrane, L, is chosen as Lx of the initially prepared pla-
nar membrane for each system. Thus, the area of the whole
membrane is S = LLy. Then, we introduced the cylinders into
these systems, as shown in Fig. 1. In the MD simulations, Ly

is kept constant, while Lx and Lz separately fluctuate to realize
〈Px〉 = 〈Pz〉 = 1 atm. Namely, the MD simulations are carried
out in the NPxLyPzT ensemble. This is a reasonable choice
to achieve a tensionless membrane as long as the membrane
curvature is not too large. The settings for the thermostat and
barostat are the same as for the equilibration runs of the small
system. We measured the force of Eq. (22) in the range of
0 < zm/(L/4) < 0.5. A time step of 10 fs is used. The non-
bonded interaction is truncated at 1.5 nm, while the Coulomb
interaction is computed using the Particle-Particle Particle-
Mesh (PPPM) scheme.33 MD simulation lengths were 100 ns
(20 ns for equilibration) for the small systems, S1–S3, and 1
μs (200 ns for equilibration) for the larger systems, S4–S6,
respectively. CG-MD simulations have been performed using
the LAMMPS code.34

B. Calculation of bending rigidity by other methods
for comparison

For the purpose of comparison, we also used the spec-
trum of thermal fluctuations of height and lipid orientation,
and the lateral compression method to evaluate κ in the MD
simulations using the same CG force field.30, 31 We briefly
describe the simulation conditions and analysis methods
here.

1. Height fluctuation spectrum

We have carried out a MD simulation of a DMPC bilayer
for 1 μs. The system is composed of 2048 DMPC molecules
and 34 048 CG water particles, which is the same hydration
number as used in the MD simulations with the external cylin-
der potential. The statistical error is estimated using 10 in-
dependent samples by analyzing the spectrum in blocks of
100 ns. The glycerol “GL” segment of each DMPC molecule
is used to define the membrane surface.31 Since no flip-flop
motion was detected during the simulations, the upper and
lower leaflets of the membrane were clearly identified. A grid
of 32 × 32 points was assigned to each monolayer giving one
lipid molecule per grid point on average. When multiple lipids
were found in a given grid cell, the height of the monolayer
surface was calculated as an arithmetic average of the heights
of the GL segments in the grid cell. When no lipids occu-
pied a grid cell, the height of the grid cell was calculated as
the arithmetic average of its neighbors. No smoothing filter
to average over grid cells was used. The membrane height,
h, at each grid point was taken as the average of the heights
of the two monolayer surfaces. κ was then estimated from
Eq. (2).
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2. Spectrum of lipid orientation fluctuations

Using the theoretical notation derived in Ref. 22, the
bending elasticity is related to fluctuations of lipid orienta-
tion:

〈∣∣n||
q

∣∣2〉 = kBT

q2κ
, (24)

where n
||
q is the longitudinal component of the spectrum of

lipid orientation. The analysis has been made for the same
MD trajectory of a DMPC bilayer system as used in the height
fluctuation spectrum. The molecular orientation of a lipid was
represented by the vector connecting from the midpoint of
two ester segments “EST” towards the midpoint of the tail
segments “CT.” The notation of the segment is the same as in
Ref. 31.

3. Buckling due to lateral compression

κ can also be estimated from the buckling of a membrane
due to lateral compression.25, 26 The direction of the buckling
is controlled by choosing the box size as Ly < Lx, which in-
duces the buckling selectively along the x-axis. The mem-
brane is laterally compressed by shrinking the Lx box size.
Like the novel method proposed in this study, this method
also induces membrane bending under PBC, and evaluates
the bending rigidity by measuring the force required for the
bending:

Fx = LyLz(Px − Pz). (25)

MD simulations have been repeated at different cell lengths
Lx. The projected area on the x–y plane, A = LxLy, is con-
stant during the MD simulations; thus, the NPzAT ensemble is
employed. A Parrinello-Rahman barostat29 and Nosé-Hoover
thermostat32 are used to realize the conditions Pz = 1 atm and
T = 310 K. We used system S4 for this study. Lx was varied
over nine different lengths in the range of 0.6 < Lx/L < 1. The
simulation length was 1 μs for each choice of Lx.

III. RESULTS AND DISCUSSION

A. Numerical simulation of the discretized
Helfrich model

We now report the results from LD simulations of the
discrete particle model derived from the Helfrich model. In
this model, the membrane is represented by n discretized par-
ticles, and the constant area condition is approximated with a
harmonic spring of force constant k∗

bond. In the limit of large n
and k∗

bond, the discretized model is equal to the Helfrich model.
Figure 3(a) shows convergence of the force FzH with increas-
ing n, where k∗

bond = 6.4 × 104. For any choice of zm, the force
is well converged at n = 64; the relative error of the force is
less than 0.3% at n = 64 with respect to the force at n = 256.
Figure 3(b) shows convergence of the force FzH with increas-
ing k∗

bond, where n = 64. k∗
bond = 6.4 × 104 is large enough to

obtain the converged force; the relative error is less than 0.3%
with respect to the force obtained with k∗

bond = 6.4 × 105. The
convergence of FzH is not affected by the system size or κ .
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FIG. 3. Convergence of FzH as a function of the number of bead segments, n
(a), and bond potential strength, k∗

bond (b), of the discretized Helfrich model.
The results are obtained for the system L/Ly = 4 and κ = 9.5 × 10−20 J. The
forces are calculated at zm/L = 0.025 (filled circles), 0.075 (open squares),
and 0.125 (filled triangles).

Thus, we use n = 64 and k∗
bond = 6.4 × 104 for all LD simu-

lations of the discretized Helfrich model.
Figure 4(a) plots the average force FzH as a function of

the bending rigidity κ . It is clearly seen that the force FzH is
proportional to the bending rigidity κ . This relation is useful
as a reference to estimate the bending rigidity of a membrane
described by a molecular model on the basis of measuring the
force FzCG.

Figure 4(b) plots the force FzH as a function of the con-
tacting height zm of the cylinder to the membrane surface. LD
was usually conducted at a finite temperature of 310 K, al-
though we also estimated the force at T = 0 K using simu-
lated annealing. The slope of the force for zm < 1 nm at T = 0
K shows good agreement with the theoretical force of Eq. (9)
derived in the small bending regime. Thus, we confirmed that
the simulation of the discretized Helfrich model correctly re-
produces the mechanical properties of the Helfrich membrane
at T = 0 K. The LD simulations at T = 310 K reveal that the
force is increased by the thermal fluctuations of the membrane
surface, which is more important at small zm heights. Since
the increment of FzH due to thermal fluctuations directly af-
fects the estimation of the bending rigidity, it is important to
take into account the thermal fluctuations using a numerical
simulation.
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FIG. 4. Average force exerted on the curved membrane from the supporting
cylinders in the LD simulation of the discretized Helfrich model. The results
are obtained for the system L/Ly = 4. (a) The force FzH as a function of the
bending rigidity κ for the contacting position zm = 1.3 nm and the tempera-
ture T = 310 K. (b) The force FzH as a function of zm at T = 310 K (solid
line) and T = 0 K (dashed line) for κ = 9.5 × 10−20 J. The theoretical slope
of Eq. (9) derived in the limit of zm � L is also plotted (dotted line).
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FIG. 5. A snapshot from a CG-MD simulation of a DMPC membrane (S4) at
zcyl = 1.4 nm. Cylindrical repulsive walls (black circles) push on the lipid hy-
drophobic tails (cyan). Lipid head groups are shown translucence and water
particles are not shown for simplicity. The simulation unit cell is drawn with
thin blue lines. The white line denotes the ideal curved membrane profile of
the Helfrich model at the same zm value.

B. Bending rigidity from CG-MD simulations
of a DMPC bilayer

Figure 5 shows a typical snapshot from a CG-MD simu-
lation of a DMPC bilayer in the presence of two cylindrical
wall potentials. The cylinders repel the hydrophobic core of
the membrane, thus imposing a sinusoidal deformation on the
membrane. The ideal curved membrane profile derived from
the Helfrich model at the same zm is also plotted in white. The
Helfrich profile is close to the mid-plane of the lipid bilayer,
which suggests that the bilayer system behaves as predicted
by the Helfrich model.

Different from the Helfrich model, the actual membrane
simulated by CG-MD has a finite thickness. We need to esti-
mate the membrane thickness, d, to clearly define the mem-
brane height at the contact line to the cylinder, zm, using
Eq. (23). We plot the force FzCG measured at several cylin-
der positions, zcyl, for a DMPC bilayer of L = 25.2 nm (S4)
in Fig. 6(a). The average force is well converged during the
MD run as seen from the small error bars estimated by block
analysis. In the small bending limit, i.e., zm � L, the force
FzCG should be a linear function of zm, and thus of zcyl, ac-
cording to Eq. (9). This is clearly confirmed from Fig. 6(a).
We obtain the straight line by a least-squares fit using the first
three points in the small zcyl regime. Then, we estimate the
coordinate of zc0, which is the cylinder position which con-
tacts the membrane. Since the CG-MD simulations have been
carried out at finite temperature, zc0 is affected by the undu-
lations of the membrane. The amplitude of undulation, h, is
related to the size of the membrane as h ∼ L.14 Therefore, zc0

estimated from different box sizes are different as shown in
Fig. 6(b). Taking the limit of L → 0, we evaluate the position
of the cylinder that first contacts the membrane with no un-
dulations, where zm = 0 by definition. We obtained zc0, L → 0

= −1.84 nm, and, using Eq. (23), d = 2.48 nm from
0 = zc0, L → 0 + R0 + d/2.

Figure 7 shows the force FzCG as a function of zm. We
evaluate the bending rigidity from each force FzCG by assum-
ing FzCG = FzH(κ) that we evaluated using the discretized
Helfrich model at the same conditions for L, Ly, T, and zm.
The obtained κ is also plotted in Fig. 7. κ is almost constant
over all zm. The convergence of κ seems better at larger zm,
although the approximation made in the Helfrich model de-
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FIG. 6. (a) The force FzCG as a function of the cylinder position zcyl obtained
from CG-MD of the system S4. The fit to the data is shown with a dashed line.
zc0 is identified as the zero force value of the fit. (b) zc0 is plotted as a function
of the membrane size L. A linear fit is shown with a dashed line.

grades, in principle, for a highly curved membrane. For ex-
ample, higher order elastic energy terms should affect the
force. Therefore, we typically estimate κ using the force for
0 < zm/(L/4) < 0.5, which is 0 < zm < 3 nm for system S4.
Taking the average in the range of 0 < zm < 3 nm, we obtain
κ = (8.6 ± 0.4) × 10−20 J, which is plotted as a dotted line
in Fig. 7. We also plot the force curve of FzH using κ = 8.6
× 10−20 J as a solid line in the figure.

A finite size effect on the value of κ in the present method
is examined. Figure 8 plots the estimated κ as a function of
membrane size, L. For a small membrane patch, the mem-
brane cannot ideally deform in the presence of the two cylin-
ders as assumed in the Helfrich model. Since the force re-
quired to repel the membrane is larger for a smaller membrane
patch, the cylinder induced a local structural relaxation of
the lipids around the cylinders in the smaller systems. There-
fore, the estimated κ shows a membrane size dependency
for small membranes (L � 20 nm). The method is safely
used for a large membrane patch, where the approximation
in the Helfrich model is reasonable such that the membrane
thickness is negligible compared with L. The bending rigid-
ity converges to a constant value for large membrane sizes
L > 25 nm (Fig. 8). The minimum size required for the con-
vergence should be determined by the elastic properties of
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FIG. 7. The force FzCG (solid circles) exerted on the membrane from the
supporting cylinders and the bending rigidity κ (open squares) of the DMPC
bilayer of system S4 as a function of zm. The solid line is the fitting function
of the force derived from the Helfrich model with κ = 8.6 × 10−20 J.
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FIG. 8. Estimated bending rigidity κ from CG-MD of a DMPC bilayer as a
function of the membrane size, L.

the membrane. Therefore, assuming similar elastic properties,
the minimum size would be the same for all-atom MD (Nlipid

∼ 512). This is smaller than that typically used in the anal-
ysis of the height fluctuation spectrum (e.g., Nlipid ∼ 2048).
Therefore, the present method should be useful for all-atom
MD simulations. By averaging over L > 25 nm, we obtain
κ = (8.6 ± 0.4) × 10−20 J for the DMPC bilayer. The re-
ported experimental values of κ for DMPC membranes are
in the wide range of 2.9–13 × 10−20 J,35–39 though the most
probable value is around 10 × 10−20 J, which is similar to our
estimation of κ by the present method. The large uncertainty
may be related to the different methods used in the experi-
mental measurements.39

C. Comparison with other methods

1. Height fluctuation spectrum

Figure 9 plots the height fluctuation spectrum 〈|hq|2〉
of the DMPC bilayer. The solid line shows the fitting
function of Eq. (2) derived from the Helfrich model with
κ = 8.6 × 10−20 J, which is obtained by a least-squares fit

0

0.1

22.0

q4
<

|h
q|

2 >

q / nm-1

2 /q / nm20 10

FIG. 9. The height fluctuation spectrum 〈|hq|2〉 of the DMPC bilayer mul-
tiplied by q4 (open circles, triangles, and squares are obtained from three
different 1 μs MD runs, respectively). The dashed line is the fitting function
derived from the extended continuous model21 with κ = 6.9 × 10−20 J. The
solid and gray lines are the function of Eq. (2) with κ = 8.6 × 10−20 J (as
measured by the guiding method) and κ = 12.5 ×10 −20 J (as measured by
the spectrum of longitudinal lipid orientation fluctuations). The filled circles
in gray represent the modified height fluctuation spectrum by subtracting the
tilt energy contribution.22

of the smallest four q points (i.e., qcut = 0.56 nm−1). Thus,
the κ value is the same as obtained by the proposed method.
However, the difficulty is its sensitivity to the choice of fitting
parameters, especially qcut.20 We found that κ gradually de-
creases with increasing qcut. For example, if we use the small-
est seven points in the plot (qcut = 0.79 nm−1), we obtain
κ = 6.9 × 10−20 J, which is the same value as found in a
previous paper31 using a different fitting function proposed
by Brannigan and Brown.21 The latter function has been de-
rived from the extended continuous model,21 which includes
deformations of a lipid bilayer such as protrusions, peristaltic
modes, and area expansion. The function uses a wider range
of q values for the fitting (qcut = 3.0 nm−1). The fitting func-
tion is also presented as a dashed line in Fig. 9. The data points
are dense in the high-q range so that the fitting is weighted
more heavily in the high-q data. Unfortunately the agreement
of the fitting curve degrades in the important low-q range.
Thus, it is difficult to determine which is a more appropri-
ate estimate for κ from Fig. 9. Namely, there is ambiguity
in the fitting procedure in this analysis. Nonetheless, it was
confirmed that the proposed method yields a consistent κ

value with those estimated by a conventional height fluctu-
ation spectrum within fitting error.

2. Spectrum of lipid orientation fluctuations

The spectrum of longitudinal lipid orientation fluctu-
ations shows a good convergence to the power law of
Eq. (24) in the wider q range, as shown in Fig. 10. The dashed
fitting line was obtained by a linear least-squares fitting of
the smallest seven q points (i.e., qcut = 0.79 nm−1); namely,
using data points of the wavelengths greater than twice the
membrane thickness. It was obvious that the fit was signifi-
cantly improved. The obtained bending rigidity from this fit
is 12.5 × 10−20 J, which is larger than the estimate from the
height fluctuation spectrum. The model used in the analysis
includes an additional tilt energy contribution, kBT/Kθq2 (Kθ

is the tilt modulus), to the height fluctuation spectrum.22 We
also evaluate the tilt modulus from the transverse orientation
spectrum. The modified height fluctuation spectrum obtained
by subtracting the tilt energy contribution is also plotted as
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FIG. 10. The spectrum of longitudinal lipid orientation fluctuations 〈|n||
q |2〉

of the DMPC bilayer multiplied by q2. The dashed line is the fitting function
of Eq. (24) with κ = 12.5 × 10−20 J.
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gray circles in Fig. 9. This yields a κ value of 10.7 × 10−20 J
using the smallest four q points.

Figure 9 reveals that the tilt energy contribution is negli-
gible only at the smallest q (L ∼ 25 nm). The length of 25 nm
corresponds to the minimum membrane size required to see
the convergence of κ by the proposed guiding method (see
Fig. 8). Thus, the size dependency found in the κ values by
the guiding method for a small membrane patch may be ex-
plained by the tilt energy contribution. This may suggest that
a larger system is required to estimate κ using Eq. (2) from the
height fluctuation spectrum as pointed out previously.22 How-
ever, the convergence of the height fluctuation spectrum at the
smallest two q points is not good even with 1 μs MD trajecto-
ries (see the difference in Fig. 9 between the data correspond-
ing to three separate 1 μs MD trajectories). A full understand-
ing of the origin of the quantitative discrepancy will need
further study with longer MD simulations of larger membrane
systems, which is beyond the scope of the present paper.

3. Buckling due to lateral compression

We also evaluated the bending rigidity using the lat-
eral compression method.25, 26 For this method, we measured
the lateral compression force required for buckling and ob-
tained κ using an analytic expression for the force derived
by Noguchi.26 Figure 11 plots the compression force FxCG of
the DMPC bilayer as a function of �Lx = L − Lx, the de-
crease of the cell length Lx from that of the tensionless planar
membrane due to the lateral compression of the membrane
along the x-axis. Under small compression, i.e., �Lx < 2 nm,
the membrane stays planar with a shrinking surface area. The
forces in this range are not useful to estimate the bending
rigidity. Upon further increasing the compression, the mem-
brane started to buckle. κ is evaluated from the lateral force to
support the buckled membrane and is plotted in Fig. 11. The
obtained κ values are constant over the range of 2 < �Lx

< 10 nm within statistical error. Thus, we obtain
κ = (9.7±0.4) × 10−20 J from this method. This is larger

0

2

4

6

8

10

12

0

20

40

60

80

0 5 10

/ 1
0

k
-2

0 J

F
x

C
G

/p
N

ΔLx / nm

FIG. 11. The force FxCG (filled circles) to support the compressed membrane
and the calculated bending rigidity κ (open squares) of the DMPC bilayer
of system S4 as a function of the box length, �Lx(=L − Lx). Each bending
rigidity value is calculated from the force measured at the given value of �Lx.
The solid line is the fitting function of the force derived from the Helfrich
model with κ = 9.7 × 10−20 J.

than that obtained from the guiding potential method by
13% ± 6%. The lateral compression decreases the membrane
area and increases the membrane thickness. In the case of
system S4, the membrane thickness, D, of the DMPC bilayer
was increased by �D/D = 4%. Using a relation predicted by
polymer brush theory,4 κ = KAD2/24, where KA is the area
expansion modulus, we can estimate the increase of κ by
the lateral compression as �κ/κ ∼ 2�D/D = 8%. Thus, the
higher κ value obtained using the lateral compression method
can be rationalized by the increase in membrane thickness.
When KA is large, the increase in membrane thickness should
be negligible assuming a constant volume of the membrane.
In this limit, the lateral compression method should yield
a similar κ value as measured by the guiding potential
method.

IV. CONCLUSIONS

We presented a new method for estimating the bending
rigidity of a lipid bilayer from MD simulations by imposing
membrane bending using two symmetrically placed cylindri-
cal external guiding potentials. The method relies on refer-
ence data of the required force to support the curved mem-
brane, which is obtained from a discretized Helfrich model
using a Langevin dynamics simulation. The discretized Hel-
frich model is needed to bridge the molecular system and
the continuum representation of the Helfrich model. The Hel-
frich model is solved numerically, instead of using an analytic
small gradient approximation as was done previously.27 The
Langevin dynamics simulation can evaluate the force induced
not only by the bending energy but also due to thermal fluctu-
ations, which is important to accurately estimate the bending
rigidity. We employed the present method in CG-MD simula-
tions of a DMPC membrane and obtained a reasonable bend-
ing rigidity for large membrane sizes of L > 25 nm. The κ

value is consistent with that obtained from thermal fluctu-
ations of the membrane height of a tension-free membrane
within the fitting errors. An estimate of bending rigidity from
thermal fluctuations of lipid orientation gave a higher value
than those obtained by other simulation methods, though such
a difference has also been observed among the different meth-
ods of experimental measurements.39 The bending rigidity
obtained from the lateral compression force required to sup-
port a buckled membrane seems to be slightly higher than that
of the tension-free membrane; the difference was explained
due to the slight compression. The present method gives a
practical procedure for the estimation of the bending rigidity
of realistic lipid bilayers based on active deformation of the
membrane.
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