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me to an eye-opening internship opportunity, who encouraged me to take up challenging

research questions, who set a great example of a responsible researcher by demonstrating

academic rigor and integrity, and who led me to where I am today. I am also indebted to

his funding support during my PhD study. Secondly, I would like to express my sincere
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The theory and practice of pricing have advanced significantly over the past decades. Pric-

ing management, the process of integrating all perspectives and information necessary to

consistently reach optimal pricing decisions, is a critical key to business success. This disser-

tation explores the roles of pricing management in revenue maximization and supply chain

coordination. In particular, we study how firms price dynamic upgrades to improve revenue

and how supply chain members share inventory risk through promised lead time pricing con-

tracts. Adopting a methodology that combines theoretical modeling and numerical analysis,

we provide detailed pricing guidance and business insights to practitioners.
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CHAPTER 1

INTRODUCTION

This dissertation consists of two essays that focus on recent innovative pricing management

strategies. In particular, we study how firms price dynamic upgrades to improve revenue

and how supply chain members share inventory risk through promised lead time pricing

contracts.

Upgrading – offering a premium product to recall and replace a reserved but unused

regular product – has been widely adopted in practice by travel companies. Traditionally,

upgrades are static in time, since they are offered once to customers either at the check-in

time (e.g., car rental industry) or at the booking time (e.g., hotel industry). In Chapter 2,

we study the upgrades that are dynamically offered if profitable between and including the

booking time and the check-in time. They are more flexible in terms of offer quantity and

timing. We remark that the traditional static upgrades are special cases of the dynamic one

considered in Chapter 2.

The research question in Chapter 2 is motivated by a Dallas-based hotels upgrading

process. The hotel hosts several conferences every year and offers two types of rooms: the

premium room and the regular room. Room prices are predetermined for each conference,

and the price of the premium room is naturally higher. The revenue manager uses an

email upgrading method. If the number of leftover premium rooms is high, the manager

sends emails to regular room purchasers several days before the check-in date and asks

whether they want to upgrade to premium rooms for a small upgrade fee. Currently, the

hotel’s upgrade process is manually done. The hotel is exploring the possibility of using

an automated system to jointly optimize the timing, quantity, and pricing of upgrades.

Firms that are similar to the Dallas-based hotel can also benefit from upgrades offered via

emails. In fact, such upgrade capabilities have recently been incorporated into some existing

automated revenue management systems (e.g., Rentalcar.com and Malaysia Airlines). These
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recent industry practices further attest to the timeliness and importance of studying dynamic

upgrades offered between the booking and the check-in times.

The trade-offs in the dynamic upgrade process are subtle. When the number of leftover

premium products is large, it is possible that some of them remain unsold by the check-in

time. Moreover, when the leftover regular products are few in numbers, they might be fully

booked, and the firm loses the chance to capture regular customers with low reservation

prices. These two outcomes can both be mitigated by upgrading. The firm also needs to

maintain enough premium capacity for forthcoming premium customers. When selling a

premium product through an upgrade, the firm loses the opportunity of selling it at the full

price but frees up a regular product capacity for a possible future sale. The firm needs to

analyze the trade-offs between the upgrade fee and the opportunity gain/loss of replacing a

leftover premium product by a regular one.

In Chapter 2, we focus on a firm selling two types of products, premium and regular, over

a sales season that naturally ends after the check-in date. No replenishment of products is

considered. Customers for each product arrive over time. Depending on the leftover capaci-

ties of both products at a particular time, the firm can incite regular product purchasers to

buy premium products by sending them upgrade notifications that contain upgrade links.

After receiving an upgrade link, a regular product purchaser becomes an upgradeable cus-

tomer. After clicking the link, the upgradeable customer is directed to the firm’s upgrade

website where she sees an upgrade fee. The upgrade process generates another customer

arrival stream in addition to the direct arrivals for premium and regular products. This

additional stream of demand depends on previous regular customer arrivals as well as how

the firm manages the upgrade process. The firm has the ability to deactivate some or all

upgrade links, if upgrading is no longer profitable. Deactivation of the link received by an

upgradeable customer cuts off the connection to the upgrade website and shuts down the

upgrade demand potentially coming from this customer. Upgrades are time-limited, and the
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firm controls their durations by sending and deactivating upgrade links. The upgrade notifi-

cations sent to customers contains no pricing information. At the arrival of an upgradeable

customer to the upgrade website (when an upgradeable customer clicks the link), an upgrade

fee is instantaneously generated. The upgrade fee depends on the cost-benefit analysis of

replacing a premium product by a regular one, which is in turn driven by current leftover

capacities as well as the future demand expectations. Hence, postponing the upgrade fee

until the arrival of an upgradeable customer gives the firm the most up-to-date information

in determining an optimal fee.

Our main contributions include the description of the dynamic upgrade process and the

optimization of this process to provide insights. The firm’s revenue maximization problem

is formulated as a dynamic program, and we show that the optimal upgrade policy is of a

pulsing type; the firm either maintains zero or the maximum number of upgrade links. Both

the optimal number of active links and the optimal upgrade fee are monotone with respect

to the leftover capacities. When there are more regular (resp., premium) products leftover,

it is optimal for the firm to maintain fewer (resp., more) active upgrade links and to offer

a higher (resp., lower) upgrade fee. To obtain these results analytically, we introduce new

properties of DH-modularity and DV-modularity for a function and prove these properties

for the optimal expected revenue function. Using a systematic numerical study, we compare

the industry-standard check-in fixed-price upgrade and the dynamic upgrade and quantify

the potential revenue improvement by switching from the static strategy to the dynamic

one. We determine when the revenue improvement is significant and how different market

environment parameters affect it. For example, we show that a firm can improve its revenue

by as much as 49% (in a market with a high premium product capacity level, a low regular

product capacity level, a low premium demand, a high regular demand, a high premium price,

a low regular price, and a high click rate) when it switches from a static check-in upgrade

policy to a dynamic upgrade policy. Finally, our model takes notification spamming into
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consideration and leads to a detailed guidance on industry implementations. We remark

that this chapter is written as a paper submitted for a publication. We request that the

interested reader to reference Çakanyıldırım et al. (2018).

Chapter 3 focuses on the promised lead time contract (PLTC). In a two-level supply

chain where stochastic customer demand is fulfilled only by downstream retailers, a PLTC

designed by the upstream manufacturer specifies the delivery lead times between the supply

chain members. The manufacturer guarantees shipment of each order on time and in full to

a retailer after the lead time. When the lead time is zero, the retailer can receive shipment

immediately to fulfill end customer demand and does not need to hold any inventory, while

the manufacturer needs to have ample inventory to satisfy the retailer’s order. When the

lead time is long enough, the manufacturer can start production after receiving the retailer’s

order and does not need to hold any inventory, while the retailer needs to place advance

orders so that it can receive shipments timely to fulfill end customer demand. Supply chain

members share inventory cost under a PLTC. A cost-benefit analysis of the shared inventory

cost determines the pricing of a certain promised lead time – the retailer pays a premium

for a short lead time or gets compensated for a long one.

The research question in Chapter 3 is inspired by the PLTCs designed by Herman Miller, a

major American manufacturer which produces customizable office furniture. We investigate

why Herman Miller designs different contracts for its dealers. In our model, we specifically

study the PLTCs between a manufacturer and two retailers with different inventory costs and

end customer demands. The manufacturer’s optimal contract design depends on whether

retailers are in the same or different markets; the manufacturer has to treat same-market

retailers fair, while it can discriminate retailers from different markets. We characterize the

optimal PLTCs in both the same-market and different-market settings, and compare these

decentralized results to those in the centralized control setting. The PLTC is efficient in

the different-market setting but not in the same-market setting. The manufacturer applies
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process standardization to produce multiple products; the initial steps in production are

standardized, and products are not differentiated until later customization steps. The stan-

dardized production process delays the differentiation point, increases flexibility of handling

fluctuating multiple-product orders from the retailers, decreases inventory costs and further

affects the optimal PLTCs. We quantify the impact of differentiation postponement on the

optimal promised lead times in all three settings and identify the conditions under which the

manufacturer shifts its production mode from make-to-order to make-to-stock. Chapter 3

explains why manufacturer offers different lead times to its retailers. Our analysis of post-

ponement illustrates and quantifies its indirect impact on supply chain PLTCs. For further

discussion and insights, we also refer the reader to Lutze et al. (2018).
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CHAPTER 2

DYNAMIC PRICING AND TIMING OF UPGRADES

2.1 Introduction

Upgrading – offering a premium product to recall and replace a reserved but unused regular

product – has been widely adopted in practice by travel companies. Traditionally, upgrading

is free of monetary charges and incorporated as a key feature in loyalty programs to improve

customer relationships. Most traditional upgrades are offered at the check-in time depending

on the availability of the premium product. Take the “500-mile upgrades” program from

American Airlines as an example. If better seats (than booked) are available at the check-in

time, high-tier loyalty program members get complimentary upgrades, and low-tier loyalty

program members may need to redeem 500 miles for the upgrades. Some other traditional

upgrades are offered at the booking time. In “systemwide upgrades” from American Airlines,

the highest tier loyalty program members receive 4 complimentary one-way upgrades to

business class annually when they reserve economy seats.

Recently emerged upgrades require monetary charges in the form of upgrade fees and

bring extra revenues to firms. One basic type of revenue-generating upgrade is carried out

at the check-in time. Examples include the upgrades offered by the front desk personnel at

a hotel or the check-in kiosk software at an airport. Such upgrades are especially popular in

the car rental industry, in which check-in agents ask customers if they want to upgrade the

currently-reserved car to a premium one. According to the Consumer Federation of America,

an average car rental company makes 10% of its revenue from such upgrades1. The other

type of revenue-generating upgrade is offered at the booking time. Upon completion of a

regular product reservation, customers may see an upgrade fee menu on the confirmation

webpage, based on which they decide whether to accept the upgrades or not. This type of

1https://www.allianztravelinsurance.com/travel/rental-cars/rental-car-upsells.htm
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booking-time upgrade is popular in the hotel industry. It is designed by nor1, a hospitality

merchandising technology company, under the name of eStandby Upgrade2. Both types of

upgrades are static in time, since they are offered once to customers either at the check-in

time or the booking time. In this chapter, we study the upgrades that are dynamically

offered if profitable after the booking time until the check-in time. They are more flexible in

terms of offer quantity and timing. We remark that the static check-in upgrade is a special

case of the dynamic one considered in this chapter.

This chapter is partially motivated by a Dallas-based medium-sized hotel’s upgrading

process. The hotel hosts several conferences every year and offers two types of rooms: the

premium room and the regular room. Room prices are predetermined for each conference,

and the price of the premium room is naturally higher. The hotel revenue manager uses

a simple upgrading method. If the number of leftover premium rooms for a particular

check-in date is high, the manager sends emails to regular room purchasers several days

before that check-in date and asks whether they want to upgrade to premium rooms for

a small upgrade fee. The manager prefers in-advance email upgrading to check-in front-

desk upgrading, because the former expedites the check-in process, gives more in-advance

visibility for cleaning the rooms and helps to realize the revenue earlier. Currently, the

hotel’s upgrade process is manually done. The hotel is exploring the possibility of using an

automated system to jointly optimize the timing, quantity and pricing of upgrades.

Firms that are similar to the Dallas-based hotel can benefit from upgrades offered via

emails. In fact, such upgrade capabilities have recently been incorporated into some existing

automated revenue management systems. Figure 2.1 shows screenshots of upgrade emails

from Rentalcar.com and Malaysia Airlines. These recent industry practices further attest

to the timeliness and importance of studying upgrades offered between the booking and

the check-in times. The medium of upgrade notifications is not restricted to email. eXpress

2http://www.nor1.com/estandby-upgrade/
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Upgrade3, newly developed by nor1, is an upgrade product adopting in-app push notifications

to engage customers (e.g., to deliver upgrade notifications). Recent statistics show that the

engagement rate of push notifications in the travel industry is about 30%4.

Figure 2.1. Upgrade email examples from Rentalcars.com and Malaysia Airlines

The trade-offs in the dynamic upgrade process are subtle. When the number of leftover

premium products (e.g., rooms, cars, or seats) is large, it is possible that some of them

remain unsold by the check-in time. Moreover, when the leftover regular products are few in

numbers, they might be fully booked and the firm loses the opportunity to capture regular

product customers with low reservation prices. These two outcomes can both be mitigated

by upgrading. The firm also needs to maintain enough premium capacity for forthcoming

premium customers. When selling a premium product through an upgrade, the firm loses

the opportunity of selling it at the full price but frees up a regular product capacity for a

possible future sale. The firm needs to analyze the trade-offs between the upgrade fee and

the opportunity gain/loss of replacing a leftover premium product by a regular one.

In this chapter, we focus on a firm (e.g., a hotel, a car rental company, or a cruise oper-

ator) selling two types of products, premium and regular, over a sales season that naturally

3http://www.nor1.com/express-upgrade/

4http://andrewchen.co/new-data-on-push-notification-ctrs-shows-the-best-apps-perform-4x-better-than-
the-worst-heres-why-guest-post/
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ends after the check-in day of these products. No replenishment of products is considered.

Customers for each product arrive over time. Depending on the leftover capacities of both

products at a particular time, the firm can incite regular product purchasers to buy premium

products by sending them upgrade notifications that contain upgrade links. After receiving

an upgrade link, a regular product purchaser becomes an upgradeable customer. After click-

ing the link, the upgradeable customer is directed to the firm’s upgrade website where she

sees an upgrade fee.

Firms often prefer to send upgrade notifications to a subset of regular product purchasers.

Reasons for limited upgrade notifications include the following. The duration between the

booking and the check-in times often allows firms to have several time epochs, each of

which provides an opportunity to send upgrade notifications. Some regular purchasers may

be contacted later, if they are not contacted at the present time. Discretely distributing

upgrade offers over time and sending notifications to a small set of regular purchasers at

a time epoch can reduce forgetting and inactivity of these purchasers. Moreover, sending

many notifications at once is riskier than sending a few at multiple times. If upgrades are

made available at once to all regular purchasers and are accepted, then all of the regular

sales can become premium sales. Consequently, the firm may be left with too few premium

products to sell at the original high price in the future. This outcome goes against the

spirit of upgrading, which is to smoothly balance the leftover capacities against the future

demands.

The upgrade process generates another customer arrival stream in addition to the arrivals

for premium and regular products. This additional stream of demand depends on previous

regular customer arrivals as well as how the firm manages the upgrade process. The noti-

fications emphasize the time-limitedness of the upgrade offers to create a sense of urgency

(similar to the Rentalcar.com email in Figure 2.1) but do not specify the deadlines of the

upgrade offers (similar to the Malaysia Airlines email in Figure 2.1). The firm has the ability
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to deactivate some or all upgrade links, if upgrading is no longer profitable. Deactivation of

the link received by an upgradeable customer cuts off the connection to the upgrade website

and shuts down the upgrade demand potentially coming from this customer. When upgrad-

ing becomes profitable again, the firm sends out new upgrade notifications with active links.

Therefore, upgrades are time-limited, and the firm controls their durations by sending and

deactivating upgrade links. Throughout the chapter, the number of upgradeable customers

and the number of active upgrade links are used interchangeably. The number of active links

maintained by the firm at any time affects the upgrade demand. Hence, the upgrade process

formulated in this chapter is a dynamic demand shaping strategy.

The upgrade notifications sent to customers include little pricing information (e.g., the

Rentalcars.com email in Figure 2.1) or no pricing information (e.g., the Malaysia Airlines

email in Figure 2.1). At the arrival of an upgradeable customer to the firm’s upgrade website

(when an upgradeable customer clicks the link), an upgrade fee is instantaneously generated.

The upgrade fee depends on the cost-benefit analysis of replacing a premium product by a

regular one, which is in turn driven by current leftover capacities as well as the future demand

expectations. Hence, postponing the determination of the upgrade fee until the arrival of

an upgradeable customer gives the firm the most up-to-date information in determining the

optimal fee. A lower upgrade fee increases the chance of a sale but decreases the marginal

revenue of the sale. Thus, the trade-off in the specification of the upgrade fee is similar to

that in classic dynamic pricing models.

The upgrade demand stream is created to mitigate a leftover capacity imbalance, i.e.,

when there are too many premium products and/or too few regular products. Another

method of such mitigation is dynamic pricing of the premium and regular products through-

out the season. Despite the presence of some online retailers opting for dynamic pricing,

several firms including small- or medium-sized hotels and car rental companies do not dy-

namically optimize product prices. Keeping product prices constant during the season is
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simpler to implement, fosters credibility of the firm and the trust between the firm and

most customers, eliminates cannibalization due to too-closely set dynamic prices, and avoids

strategic waiting of customers for lower prices. Because of these reasons and also to focus

on the problem of dynamic upgrades, we keep prices of both products constant during the

season. This setting also fits to our motivating example of the Dallas-based hotel. The firm

in this chapter dynamically decides on the timing, quantity and pricing of upgrades.

Some of our contributions include the description of the dynamic upgrade process and

the optimization of this process as well as its variations to provide insights. We develop

three model variations to study the dynamic upgrade pricing and timing problem. In the

base model, the firm chooses the upgrade fee from an interval. In the second model, the firm

is subject to fee restrictions and chooses upgrade fees from a subset of the interval (e.g., a

subinterval or a discrete set). In the third model, we incorporate upward substitution into

the base model; i.e., when the firm runs out of the regular product, it can consider selling

the premium product below its original price to an incoming regular customer. The selling

price can be interpreted as the regular product price plus a substitution fee. The firm’s

revenue maximization problems in all three models are formulated as dynamic programs. In

all models, we show that the optimal upgrade policies are of a pulsing type; the firm either

maintains zero or the maximum number of upgrade links. In the base and the restricted fee

model, both the optimal number of active links and the optimal upgrade fee are monotone

with respect to the leftover capacities. When there are more regular (resp., premium) prod-

ucts leftover, it is optimal for the firm to maintain fewer (resp., more) active upgrade links

and to offer a higher (resp., lower) upgrade fee. In order to obtain these results analytically,

we introduce new properties of DH-modularity and DV-modularity for a function and prove

these properties for the optimal expected revenue functions. By comparing optimal policies

across models, we show, for example, when restricting upgrade fees increases the optimal

number of upgrade notifications. We also show that the optimal substitution fee is always

smaller than the optimal upgrade fee.
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In addition, our model takes notification spamming into consideration and leads to a

detailed guidance on implementation. Using a systematic numerical study, we compare the

industry-standard check-in fixed-price upgrades and the dynamic upgrades and quantify the

potential revenue improvement by switching from the static strategy to a dynamic one. We

determine when the revenue improvement is significant and how the revenue improvement is

affected by the firm’s upgrade fee restriction and upward substitution. For example, we show

that a firm can improve its revenue by as much as 49% (in a market with a high premium

product capacity level, a low regular product capacity level, a low premium demand, a high

regular demand, a high premium price, a low regular price, and a high click rate) when it

switches from a static check-in upgrade policy to a dynamic upgrade policy.

The remainder of the chapter is organized as follows. In §2.2, we review the related

literature. In §2.3, we model the firm’s dynamic upgrade problem as a base model and

characterize the structure of the optimal upgrade policy. In §2.4, we analyze two variations

of the base model. In §2.5, we illustrate the implementation of the dynamic upgrade policy.

In §2.6, we quantify the benefits of dynamic upgrades through a numerical study. In §2.7,

we conclude the chapter. Proofs, counterexamples and additional arguments are relegated

to the appendices.

2.2 Literature Review

Chapter 2 is mainly related to three streams of literature on (i) dynamic pricing and adver-

tising, (ii) firm-driven upgrades, and (iii) email and push notification management.

Dynamic pricing and advertising: The literature on dynamic pricing of limited

capacity was pioneered by Gallego and van Ryzin (1994) and Bitran and Mondschein (1997).

We adopt the modeling framework by Bitran and Mondschein (1997) in which the time period

is small enough so that at most one customer shows up5. This literature has been developed

5Dividing time into short intervals is common in the revenue management literature and allows for a
formulation with an arbitrary sequence of customer arrivals. An alternative formulation is to assume that
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subsequently to incorporate multi-product pricing, incomplete demand information, strategic

customer behavior and competition. We refer the reader to Talluri and van Ryzin (2004),

Bitran and Caldentey (2003), Özer and Phillips (2012) and Chen and Chen (2015) for a

detailed review. Papers in this literature optimize prices of actual products, while we focus

on the optimal pricing of upgrades.

The dynamic upgrade notifications have an advertising effect as they inform the customers

about the upgrades. Thus, Chapter 2 is also related to the extensive marketing literature

on dynamic advertising; see Feichtinger et al. (1994) for a comprehensive review of earlier

papers. The most relevant papers within this literature focus on the pulsing policy, in which

a firm alternates between zero and a high level of advertising. One of the goals of these

papers is to identify models and conditions under which the pulsing policy is superior to the

policy of a constant level of advertising (e.g., Simon 1982, Mahajan and Muller 1986, Mesak

1992, and Aravindakshan and Naik 2015). The optimal upgrade policy in our model is also a

pulsing type: the firm either maintains zero or the maximum number of active upgrade links.

There is also a limited literature on joint dynamic pricing and advertising. This literature

focuses on a single product setting (e.g., MacDonald and Rasmussen 2010, Ye et al. 2015,

and Schlosser 2016). The key difference in our model is that the firm sells two products and

controls the upgradeable customer arrival rate by sending out upgrade notifications.

Firm-driven upgrades: Gallego and Stefanescu (2012) and Chen and Chen (2015)

refer to upgrading as replacing a customer’s regular product with a premium one for free.

They use upselling to denote a situation in which such a replacement comes with an extra

charge. In this chapter, we use the term upgrade to represent both the free and non-free

replacement. The literature studying firm-driven upgrades can be broadly classified into

three categories.

arrivals are according to a Poisson process. Instead of discrete time intervals, the decision controls can be
embedded at customer arrival epochs (see Puterman 1994, Chapter 11). Our results continue to hold for
this case as well.
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The first category studies upgrades for dynamic capacity management. In these studies,

a firm decides the initial capacities and allocates multiple classes of products to demands

from the same number of customer classes. Shumsky and Zhang (2009) find the optimal

allocation policy within the class of single-level free upgrade policies, in which a customer

whose preferred product has been depleted can be upgraded by at most one level. Extending

this work, Yu et al. (2015) study the optimal multi-level free upgrade policy. Unlike these

two papers primarily focusing on the capacity allocation problem, we concentrate on the

timing, quantity and pricing of upgrades.

The second category studies upgrades for revenue management, in which the number of

customer classes can be greater than the number of capacity classes. Gallego and Stefanescu

(2009) study capacity holder’s and reseller’s upgrade problems with both an independent de-

mand model and a multinomial logit model. They formulate the stochastic optimal control

problems and analyze the corresponding fluid models. Steinhardt and Gönsch (2012) ana-

lyze the dynamic program with independent demands from Gallego and Stefanescu (2009)

and propose new structural results. They also propose two different dynamic programming

decomposition approaches to get tight upper bounds on the value of the original dynamic

program. Recently, McCaffrey and Walczak (2016) solve an airline-specific upgrade problem

with two classes of capacities (business and economy seats). The upgrades in these three pa-

pers are offered either at the booking time or postponed until the check-in time. In contrast,

Chapter 2 endogenizes the timing and pricing of upgrades as decisions.

The third category focuses on the recently emerged conditional upgrade pricing problem.

In the conditional upgrade, a customer upon completion of her booking of a regular product

may see an upgrade menu on the confirmation webpage or receive an email that leads to

an upgrade menu. The customer accepts or rejects the upgrade based on the corresponding

upgrade fee. The upgrade is fulfilled at the check-in time, and the customer pays the upgrade

fee only if the premium product is available. Cui et al. (2016) and Yılmaz et al. (2016) analyze
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the interaction between the firm and customers with game theoretic models and evaluate the

benefit of conditional upgrades in the presence of strategic customer behavior. Biyalogorsky

et al. (2005) study upgrades as probabilistic goods (payments of upgrades are required at the

booking time) and identify the situation in which upgrading is more profitable than advance

selling. The upgrades considered in this category of papers are offered at the booking time.

The upgrades, in Chapter 2, do not have probabilistic features and are dynamically priced

and offered from the booking time until the check-in time.

Email and push notification management: Emails and push notifications, the ve-

hicles of upgrade notifications in Chapter 2, are widely-adopted marketing tools in industry.

However, the dynamic management of such tools has received limited attention in marketing

and operations literature. Neslin et al. (2013) point out that a customer’s response to mar-

keting and purchase probability depend on her “recency”, which is the length of time since

the customer’s previous purchase. They suggest a recency-based customer targeting strategy

through emails. Investigating the impact of the number of emails sent by a firm on its prof-

itability, Zhang et al. (2017) provide a guidance for email marketing campaigns. The email

marketing policies in both papers are driven by customer response behavior. In contrast, our

optimal upgrade notification policy is driven by capacity imbalance. Recently, Wang et al.

(2017) formulate a dynamic push notification campaign as a large-scale resource-allocation

problem and analyze the problem in an asymptotic regime.

2.3 The Base Model

Here we introduce the base model for the dynamic upgrade pricing and timing problem. In

§2.3.1, we describe the dynamic upgrade process and formulate the firm’s revenue maximiza-

tion problem as a dynamic program. In §2.3.2, we show the structure of the optimal upgrade

policy and the corresponding monotonicity properties.
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2.3.1 Dynamic Upgrade Process and Formulation

Consider a firm that sells two types of products, premium and regular, at predetermined

prices over a finite sales season. No replenishment is allowed, and leftover products have

zero value after the end of the season (e.g., after the check-in date or the departure time).

Customers arrive over time and reserve the products whose consumption takes place at the

end of the season. Each new customer tries to reserve a premium or a regular product. If the

preferred product (premium or regular) is available, the customer pays the corresponding

price and becomes a (premium or regular) purchaser. Otherwise, the customer leaves without

purchasing. Cancellation is not allowed. As a consequence of random arrivals, leftover

capacities may be imbalanced compared to the future demands.

Dynamic upgrades are used to balance the leftover capacities until the end of the season.

When there are many leftover premium products and/or few leftover regular products, the

firm can balance the leftover capacities by sending upgrade notifications via emails or phone

push notifications to regular purchasers. An upgrade notification contains a time-limited

upgrade link, and its purpose is to incite a regular purchaser to upgrade to a premium

product at a discounted price. If upgrades later cease to be beneficial to the firm, the

links can be deactivated. A regular purchaser who has an active upgrade link is called an

upgradeable customer. After clicking the link, the upgradeable customer is directed to the

firm’s upgrade website and sees an upgrade fee. Based on the upgrade fee, the upgradeable

customer decides whether to accept the upgrade to a premium product or not.

The sales season is divided into N periods. Period 1 is the starting period of the season

and period N + 1 is the final consumption period after the sales season. Throughout the

chapter, we use the following notation for brevity. For any nonnegative integers a and b with

a < b, [a : b] is defined as the set containing all integers between and including a and b;

[a : b] := {a, a+ 1, ..., b}. All notations are summarized in Appendix A.1.
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The firm tracks the leftover capacities as state variables. The premium product price

is higher than that of the regular product. We use (hn, ln) to denote the pair of leftover

capacities of premium and regular products in any period n ∈ [1 : N + 1]. In period 1, the

initial capacities of premium and regular products are H and L. In period n, the firm has

L− ln regular purchasers.

The firm has two decisions to make in any period n. The first decision is how many

upgrade links to send and to deactivate. Sending and deactivating upgrade links is equivalent

to deciding on the number un of active upgrade links to maintain. With a greater un, it

is more likely that one of the upgradeable customers clicks the upgrade link. The firm

uses un to control the clicking (or the arrival) process of the upgradeable customers. The

firm considers upgrades only when the leftover regular capacity ln is less than or equal to a

prespecified threshold M , which is the upgrade triggering level. This threshold is set by the

management to ensure that the firm sells enough regular products (or accumulates enough

regular product purchasers) before considering upgrades. When ln > M , the firm has an

ample leftover capacity of regular products, so an upgrade to release a unit of regular capacity

is likely to be unnecessary. This upgrade triggering mechanism is similar to eXpress Upgrade

by nor1. Both upgrades are initiated closer to the end of the sales season. eXpress Upgrade

is triggered by a preset triggering date, while our upgrade process is triggered by the upgrade

triggering threshold M . The maximum number of active upgrade links the firm can maintain

is C, which measures the firm’s maximum upgrade capability. A Firm often sets such a limit

on the total active upgrade links at any given time to better manage the spamming issue

and its brand image. The ratio of C and L−M is set below 1, which ensures that the firm

has enough regular purchasers to notify once the upgrade process is triggered. We return to

the discussion of M and C in §2.5.

The second decision is the upgrade fee pn to charge in period n when an upgradeable

customer clicks. We use ph and pl with ph > pl to represent the prices of the premium

17



and the regular products, respectively. An upgradeable customer, who already paid pl for

a regular product, has an upgrade reservation price (willingness-to-pay for the upgrade) no

greater than ph−pl. We assume that the reservation price is identical and independent across

upgradeable customers and over time periods. The upgrade reservation price is modeled as

a random variable, whose distribution has a support of [0, ph − pl] and a tail probability of

α(·). When an upgrade fee pn ∈ [0, ph− pl] is charged in period n, an upgradeable customer

accepts the upgrade with probability α(pn) and rejects it with probability 1 − α(pn). The

acceptance probability α(pn) is decreasing in pn
6. The firm uses pn to control the upgrade

acceptance rate. An upgradeable customer who rejects an upgrade may receive upgrades

again in the future. The assumption of independence over time implies that an upgradeable

customer’s acceptance decision is not affected by her previous upgrade rejections, if any.

The assumption of identical reservation price over time allows us to simplify the notation by

using α(·) for all periods. If this assumption fails, the analysis in the chapter still holds by

appropriately replacing α(·) with αn(·).

The sequence of events is as follows: (1) At the beginning of period n, the firm observes

the leftover capacities (hn, ln). If hn > 0 and ln ≤ M (the premium product is available

and the leftover regular capacity falls below the triggering level), the firm decides on (i) how

many active upgrade links un ∈ [0 : C] to maintain and (ii) what upgrade fee pn ∈ [0, ph−pl]

to charge if upgrades are offered. (2) During period n, a premium customer arrives with

probability λhn, a regular customer arrives with probability λln, an upgradeable customer

arrives with probability unλn, where λn is the clicking probability if there is only one active

upgrade link. Alternatively, no customer arrives with probability 1 − λhn − λln − unλn. (3)

The arriving premium/regular customer buys her preferred product if it is available. The

upgradeable customer clicking the link sees the upgrade fee pn, who then accepts the upgrade

with probability α(pn) or rejects it with probability 1 − α(pn). The arrival process with at

6Throughout the dissertation, we use increasing and decreasing in the weak sense.
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most one customer per period is widely used in revenue management literature (see, e.g.,

Talluri and van Ryzin 2005), and is related to merging and splitting of Poisson arrival

processes.

We now formulate the firm’s revenue maximizing dynamic upgrade problem as a dynamic

program. In the sequel, we drop the time index n of the state variables, decision variables

and all probability parameters when their meanings are clear from the context. Let Vn(h, l)

denote the firm’s optimal expected revenue at the beginning of period n ∈ [1 : N + 1] with

h units of premium product and l units of regular product. The dynamic programming

formulation is given by

Vn(h, l) = max
u∈[0:C]

p∈[0,ph−pl]

{
(1− λh − λl − uλ)Vn+1(h, l)

+λh[ph + Vn+1(h− 1, l)] + λl[pl1Il≥1 + Vn+1(h, l − 1Il≥1)]

+uλα(p)[p+ Vn+1(h− 1, l + 1)] + uλ[1− α(p)]Vn+1(h, l)
}

for h ∈ [1 : H], l ∈ [0 : M ] and n ∈ [1 : N ], (2.1)

Vn(h, l) = (1− λh − λl)Vn+1(h, l) + λh[ph + Vn+1(h− 1, l)] + λl[pl + Vn+1(h, l − 1)]

for h ∈ [1 : H], l ∈ [M + 1 : L] and n ∈ [1 : N ], (2.2)

Vn(0, l) = (1− λh − λl)Vn+1(0, l) + λhVn+1(0, l) + λl[pl1Il≥1 + Vn+1(0, l − 1Il≥1)]

= (1− λl)Vn+1(0, l) + λl[pl1Il≥1 + Vn+1(0, l − 1Il≥1)]

for l ∈ [0 : L] and n ∈ [1 : N ], (2.3)

VN+1(h, l) = 0 for h ∈ [0 : H] and l ∈ [0 : L], (2.4)

where 1IA ∈ {0, 1} is an indicator function taking the value of 1 only when A is true. The first

term inside Equation (2.1) is the firm’s expected revenue-to-go in the event that no customer

shows up. The second and third terms correspond to a premium and a regular customer

arrival, respectively. The forth and fifth terms correspond to the upgrade acceptance and

rejection respectively by an upgradeable customer clicking the link. Notice that the firm
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has one fewer premium product and one more regular product in the acceptance case. The

region [1 : H]× [0 : M ] in Equation (2.1) contains all possible states (h, l) in which the firm

may offer upgrades, and is referred to as the potential upgrade region. Equation (2.2) is for

the region above the upgrade triggering level M . In this region, the firm does not consider

offering upgrades. Equation (2.3) is for the vertical boundary, where no premium product is

left and the firm cannot offer upgrades. Equation (2.4) is for the terminal condition, which

indicates that the salvage values of both products are zero.

2.3.2 Optimal Policy Structure

Equation (2.1) can be simplified and equivalently written as

Vn(h, l) = (1− λh − λl)Vn+1(h, l) + λh[ph + Vn+1(h− 1, l)] + λl[pl1Il≥1 + Vn+1(h, l − 1Il≥1)]

+ max
u∈[0:C]

p∈[0,ph−pl]

uλα(p)[p+ ∆n+1(h, l)]

= (1− λh − λl)Vn+1(h, l) + λh[ph + Vn+1(h− 1, l)] + λl[pl1Il≥1 + Vn+1(h, l − 1Il≥1)]

+ max
u∈[0:C]

{
uλ max

p∈[0,ph−pl]
α(p)[p+ ∆n+1(h, l)]

}
, (2.5)

where ∆n+1(h, l) := Vn+1(h − 1, l + 1) − Vn+1(h, l) is the change in expected revenue after

replacing one unit of premium product by one unit of regular product in period n+ 1 when

there are h units of premium product and l units of regular product leftover. Equation (2.5)

indicates that the firm’s joint optimization problem over (u, p) in period n can be solved

sequentially by finding the optimal upgrade fee first and then the optimal number of active

upgrade links.

We first solve the first-stage optimal upgrade pricing problem. For (h, l) ∈ [1 : H]× [0 :

M ], we define

δn(p, h, l) := α(p)[p+ ∆n+1(h, l)] and δ∗n(h, l) := max
p∈[0,ph−pl]

δn(p, h, l), (2.6)
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where δn(p, h, l) is the expected revenue from an arriving upgradeable customer in period n

when the upgrade fee is set to p, and δ∗n(h, l) is the corresponding optimal expected upgrade

revenue at the optimal upgrade fee.

Revenue maximization problem in the form of α(p)(p+ ∆) similar to (2.6) is commonly

seen in dynamic pricing literature (e.g., Bitran and Mondschein 1997 and Ye et al. 2015).

∆ usually has a negative value, and is perceived as the opportunity cost. ∆n+1(h, l) in our

model can be either positive or negative, and we refer to it as the upgrade opportunity value.

We make the following regularity assumption: The upgrade reservation price distribution

with tail probability α(·) is smooth enough, such that
{
p ∈ [0, ph−pl] : δn(p, h, l) = δ∗n(h, l)

}
is a closed set. The assumption is satisfied by distributions with increasing failure rate,

which makes the set of maximizer(s) a singleton. It is also satisfied by certain distributions

with non-increasing failure rate, such as beta distribution with shape parameters of 1/2.

The assumption ensures that the set of maximizer(s) of the optimization problem in (2.6) is

closed, and that we can pick the largest maximizer as the optimal upgrade fee in period n

at state (h, l):

p∗n(h, l) := max{p ∈ [0, ph − pl] : δn(p, h, l) = δ∗n(h, l)}.

The solution of the second-stage optimization problem in (2.5) is the optimal number of

active upgrade links in period n at state (h, l):

u∗n(h, l) = arg maxu∈[0:C]uλδ
∗
n(h, l).

We have the following result.

Proposition 1. The optimal upgrade policy is of a pulsing type: u∗n(h, l) = 1Iδ∗n(h,l)>0C.

First note that when δ∗n(h, l) > 0, upgrading is profitable. Thus, the firm should maintain

as many active links as possible. When δ∗n(h, l) ≤ 0, upgrading is not profitable and the firm

should deactivate all of the upgrade links.

21



To better understand the optimal dynamic upgrade policy, we investigate properties of

Vn(h, l) over the region of [0 : H] × [0 : M + 1]. This region is the union of the potential

upgrade region [1 : H] × [0 : M ], its left boundary {0} × [0 : M ] and its upper boundary

[0 : H]× {M + 1}. We have the following results.

Proposition 2. For n ∈ [1 : N + 1], Vn(h, l) satisfies the following properties:

a) Submodularity: Vn(h, l + 1) − Vn(h, l) ≥ Vn(h + 1, l + 1) − Vn(h + 1, l) for (h, l) ∈ [0 :

H − 1]× [0 : M ],

b) DH-modularity: Vn(h − 1, l + 1) − Vn(h, l) ≤ Vn(h, l + 1) − Vn(h + 1, l) for (h, l) ∈ [1 :

H − 1]× [0 : M ],

c) DV-modularity: Vn(h− 1, l+ 1)− Vn(h, l) ≥ Vn(h− 1, l+ 2)− Vn(h, l+ 1) for (h, l) ∈ [1 :

H]× [0 : M − 1],

d) H-concavity: Vn(h+1, l)−Vn(h, l) ≤ Vn(h, l)−Vn(h−1, l) ≤ ph for (h, l) ∈ [1 : H−1]×[0 :

M + 1],

e) V-concavity: Vn(h, l+1)−Vn(h, l) ≤ Vn(h, l)−Vn(h, l−1) ≤ pl for (h, l) ∈ [0 : H]×[1 : M ].

Property a) of submodularity is based on horizontally comparing vertical differences of

Vn: Vn(h, l + 1) − Vn(h, l) ≥ Vn(h + 1, l + 1) − Vn(h + 1, l) illustrated in Figure 2.2, or

vertically comparing horizontal differences of Vn: Vn(h + 1, l) − Vn(h, l) ≥ Vn(h + 1, l +

1) − Vn(h, l + 1). Interestingly, these two comparisons are equivalent, and there is no need

to differentiate them. Property b) DH-modularity and property c) DV-modularity are more

refined properties compared to submodularity. They can be written as ∆n(h, l) ≤ ∆n(h+1, l)

and ∆n(h, l) ≥ ∆n(h, l + 1), respectively. These two inequalities involve the horizontal

and vertical comparisons of diagonal differences of Vn(h, l), hence named as DH- and DV-

modularity; see Figure 2.2. DH- and DV-modularity are not equivalent to each other and

require separate notations to differentiate between each other. Any four properties out of

five in Proposition 2 do not imply the leftover one. In Figure 2.2, we give a counterexample

by failing only submodularity. More counterexamples can be found in Appendix A.1.
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Figure 2.2. Top-left panel: Diagonal difference on the right is larger. Top-right panel:
Diagonal difference above is smaller. Bottom-left panel: Vertical difference on the left is
larger. Bottom-right panel: Submodularity is not implied by DH- and DV-modularity, H-
and V-concavity.

Property a) states that the premium product and the regular product have a substitu-

tion effect on each other, i.e., the premium product can be used to capture regular product

demand (see Chapter 1 and 2 in Topkis 1998 for more about submodularity and substitutabil-

ity). Property b) of Proposition 2 implies that the expected revenue difference after replacing

one unit of premium product by one unit of regular product is larger when there are more

premium products. Property c) implies that the same expected revenue difference is smaller

when there are more regular products. Properties d) and e) imply that the marginal value

of either product is larger when there are fewer of them and that each product’s marginal

value is always smaller than its price.
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Properties a), d) and e) of Proposition 2 directly lead to the following proposition, which

implies that the marginal value of one premium product as well as one regular product is

decreasing when there are more leftover capacities.

Proposition 3. For n ∈ [1 : N + 1], we have the following properties of Vn(h, l)

a) Vn(h+ 1, l+ 1)− Vn(h, l) ≥ Vn(h+ 2, l+ 1)− Vn(h+ 1, l) for (h, l) ∈ [0 : H − 2]× [0 : M ],

b) Vn(h+1, l+1)−Vn(h, l) ≥ Vn(h+1, l+2)−Vn(h, l+1) for (h, l) ∈ [0 : H−1]× [0 : M−1].

With properties b) and c) of Proposition 2, we can derive the following result.

Proposition 4. The optimal number of active upgrade links u∗n(h, l) is increasing in h and

decreasing in l. The optimal upgrade fee p∗n(h, l) is decreasing in h and increasing in l.

Proposition 4 characterizes the monotonicity properties of the optimal policy. When

there are more premium products, they are less likely to be sold out before the end of season.

Therefore, it is optimal to sell premium products through a large number of upgrade links

at a lower upgrade fee. When there are more regular products, they are less likely to be sold

out before the end of the season. The firm is less concerned about losing regular customer

demand and freeing up regular product capacity. Therefore, it is optimal to maintain upgrade

links for fewer regular purchasers at a higher price. Due to the monotonicities of the optimal

number of active upgrade links, the potential upgrade region [1 : H]× [0 : M ] can be divided

into two subregions. The firm offers upgrades only in the lower right subregion (e.g., see

Figure 2.3), which can be referred to as the upgrade region and has high premium capacity

and low regular capacity.

Next, we consider the monotonicity of optimal upgrade links and fees over time. Classic

single product dynamic pricing literature shows that the optimal price decreases over time

for a given capacity level if the customer reservation price distribution is stationary (e.g.,

Gallego and van Ryzin 1994, Bitran and Mondschein 1997, and Zhao and Zheng 2000). The

reason for this classical time-monotonicity property is that the product’s opportunity cost is

24



decreasing over time. In contrast, the time monotonicity is not true in the dynamic upgrade

pricing setting, even under the stationarity of the reservation price and the arrival processes.

The reason is that the upgrade opportunity value ∆n+1(h, l), which depends on both capacity

levels and future demands, is not monotone with respect to time. Hence, it is not optimal

to reduce or increase upgrade fees over time. Since the upgrade fee is not decreasing over

time, strategically-waiting customers are not guaranteed an upgrade offer with a lower fee.

Hence, the firm need not be overly concerned about strategic customer behavior and is more

willing to implement the dynamic upgrade policy.

The optimal dynamic upgrade fees are robust with respect to proportionally changing

prices. In a setting where ph, pl, and the upgrade reservation price increase or decrease by

the same proportion and the arrival rate parameters are kept the same, the firm can get

new optimal fees by simply increasing or decreasing the previous optimal upgrade fees by

the same proportion. However, in a setting where ph and pl increase or decrease by the same

amount and the upgrade reservation price stays the same, the firm needs to find the new

optimal policy by solving a new dynamic program. The reason for the difference is that

∆n+1(h, l) is affected by ph and pl, instead of ph − pl alone.

Our model can be used to optimize the prices of both the premium and regular products

at the beginning of the sales season: max0≤pl≤ph V1(H,L|ph, pl). Likewise, incorporated with

the cost c(H,L) of acquiring H and L units of premium and regular capacities, our model

can also be used to optimize the initial capacity levels: maxH,L≥0 V1(H,L)− c(H,L). These

price and capacity optimization problems are static, but their input V1 is obtained from the

dynamic programming recursion of the upgrade pricing and timing problem.

2.4 Restricted Upgrade Fee and Upward Substitution

In this section, we build two model variations of the base model. The first considers a firm

choosing upgrade fees from a restricted subset. The second incorporates upward substitution,
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in which the firm can sell a premium product to an arriving regular customer if the regular

product stocks out.

2.4.1 Dynamic Upgrade with Restricted Upgrade Fee

Firms in industry may have varying levels of flexibility in adjusting prices; that is, they

may not be able to optimize the upgrade fee over the interval [0, ph − pl]. In one scenario,

firms may deliberately restrict the upgrade fee choice set. One example is that firms want to

protect their brand images and avoid selling many premium products at low upgrade fees.

Another example is that firms want to avert high upgrade fees and make upgrades more

acceptable and effective. Therefore, the upgrade fee choice set may be [p, p] ⊆ [0, ph − pl].

In another scenario, firms want to avoid pricing at an arbitrary decimal (e.g., $13.76) and

changing prices dramatically. As another example, firms may prefer using a predetermined

discrete set of prices, such as a set of $4.99, $9.99, $14.99 and $19.99, from which they pick

the optimal one. When firms want to discretize the upgrade fee choice set, the set would

be {p1, ..., pm} ⊆ [0, ph − pl]. An extreme example is that the upgrade fee choice set is a

singleton; firms charge a fixed upgrade fee over the sales season and only control dynamic

upgrade availability.

Define V r
n (h, l) as the optimal expected revenue of the restricted fee model at state (h, l)

in period n. This revenue can be obtained by replacing [0, ph−pl] with [p, p] or {p1, ..., pm} in

Equation (2.1). V r
n (h, l) still satisfies the five properties in Proposition 2, and the analytical

results from the base model can be extended to the restricted fee model. The structure of

its optimal policy is stated in the following corollary.

Corollary 1. For a restricted fee model, we have the similar results in Proposition 1 and 4:

a) The optimal upgrade policy is of a pulsing type.

b) The optimal number of active upgrade links is increasing in h and decreasing in l, and

the optimal upgrade fee is decreasing in h and increasing in l.
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Figure 2.3. Upgrade region comparisons across three models and two time periods. Top to
bottom, rows have time period 70 and 360. Left to right, columns have restricted fee model
with p = 0.98(ph − pl), base model, and restricted fee model with p = (ph − pl).

A common question of interest is how the price restriction affects the optimal expected

revenue and the optimal policy. Here, we answer the question by mainly focusing on the

comparison between the restricted fee model with choice set [p, p] and the base model with

[0, ph − pl]. First, we compare expected revenues. The upgrade fee restriction decreases

the pricing flexibility and leads to a lower expected revenue; the restricted fee model always

provides a revenue lower bound for the base model. Second, we compare the optimal upgrade

regions. Unlike the expected revenue comparison, the upgrade region comparison is subtle

and depends on p. We provide six examples in Figure 2.3, which depict the upgrade region

comparisons between the base and restricted fee models. When p < ph− pl, there is no clear

answer. Note from Figure 2.3 that the upgrade region of the base model can be either larger
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or smaller than the restricted fee model. However, when p = ph−pl, we numerically find that

the upgrade region of the restricted fee model contains that of the base model. This finding

of containment between upgrade regions indicates that if the base model optimally offers

upgrades at state (h, l) in period n, it is also optimal for the restricted fee model to offer

upgrades at the same state in the same period. We theoretically prove this numerical finding

of containment for the left boundary of the potential upgrade region by Proposition 5 and

Proposition 6. We define ∆r
n(h, l) := V r

n (h− 1, l + 1)− V r
n (h, l) as the upgrade opportunity

value and ur,∗n (h, l) as the optimal number of upgrade links in the restricted fee model at

state (h, l) in period n.

Proposition 5. If p = ph − pl, then for n ∈ [1 : N + 1], we have the following across-model

comparisons:

a) Diagonal difference: ∆n(1, l) ≤ ∆r
n(1, l) for l ∈ [0 : M ],

b) Horizontal difference: Vn(1, l)− Vn(0, l) ≥ V r
n (1, l)− V r

n (0, l) for l ∈ [0 : M ],

c) Vertical difference: Vn(0, l + 1)− Vn(0, l) = V r
n (0, l + 1)− V r

n (0, l) for l ∈ [0 : L− 1].

Property a) states that the upgrade opportunity value is smaller in the base model.

Property b) implies that the expected revenue of a premium product (horizontal difference)

is larger in the base model. Finally, property c) says that the upgrade fee restriction does

not affect the marginal value of the regular product (vertical difference) when there is no

premium product leftover. Property a) in Proposition 5 leads to the containment result on

the left boundary of the potential upgrade region in Proposition 6. In particular, if the base

model offers upgrades at a state in a period, it is also optimal for a restricted fee model to

offer upgrades at the same state in the same period.

Proposition 6. If p = ph − pl, u∗n(1, l) > 0 implies ur,∗n (1, l) > 0 for l ∈ [0 : M ].

Despite its numerical illustration and analytical proof, the containment property is counter-

intuitive. At first glance, one would say that the firm is more inclined to offer upgrades when
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it has more control (less restriction) in choosing the upgrade fees. This general intuition has

traces in dynamic pricing literature. For example, Aydin and Ziya (2008), in an upselling

context, find that a firm is more inclined to offer upsells with discounts when there is more

flexibility of choosing the discount level. After a careful inspection, however, the containment

property makes sense in our upgrade context. Whether to offer upgrades or not depends

on whether upgrades can generate a positive revenue. A larger fee p helps bring in positive

revenues p + ∆n+1(h, l) and p + ∆r
n+1(h, l) at more states of leftover capacities (h, l), but

lowers the upgrade acceptance probability α(p). The base model can charge lower fees to

make upgrades more acceptable, while the restricted fee model has less pricing flexibility,

which makes upgrades less acceptable. To compensate for the lower acceptance rate, the

restricted fee model offers upgrades at more states and its upgrade region contains that of

the base model.

2.4.2 Dynamic Upgrade with Upward Substitution

When the regular product is out of stock, the firm can offer the premium product to an

incoming regular customer. This practice can be termed as (stockout-based) upward sub-

stitution and be incorporated to extend the base model. Note that the premium product is

offered directly to a regular customer in the case of upward substitution, whereas it is offered

to an upgradeable customer through a notification in the case of upgrade. When the pre-

mium product is available but the regular product is not, the firm in the substitution model

offers a premium product at the price pl + f s ∈ [pl, ph] to an incoming regular customer.

f s ∈ [0, ph − pl] is the substitution fee. The tail probability of the substitution reservation

price distribution is captured by αs(·), which satisfies αs(0) = 1 and αs(ph − pl) = 0. A

regular customer accepts a substitution offer at fee f s with probability αs(f s). Both tail

probabilities α(·) associated with an upgrade and αs(·) associated with a substitution have

the same domain of [0, ph − pl].

29



Let V s
n (h, l) denote the optimal expected revenue with substitution when starting in

period n with h units of premium product and l units of regular product. The dynamic

programming equations for V s
n (h, l) are the same as Equation (2.2), (2.3) and (2.4). However,

Equation (2.1) applies only for h ∈ [1 : H], l ∈ [1 : M ] and n ∈ [1 : N ] and the next equation

applies for h ∈ [1 : H], l = 0 and n ∈ [1 : N ].

V s
n (h, 0) = max

us∈[0:C]

fs, ps∈[0,ph−pl]

{
(1− λh − λl − usλ)V s

n+1(h, 0) + λh[ph + V s
n+1(h− 1, 0)]

+λlαs(f s)[pl + f s + V s
n+1(h− 1, 0)] + λl[1− αs(f s)]V s

n+1(h, 0)

+usλα(ps)[ps + V s
n+1(h− 1, 1)] + usλ[1− α(ps)]V s

n+1(h, 0)
}
,

where us and ps are respectively the number of upgrade links and the upgrade fee. Similar

to the base model, we can define ∆s
n+1(h, l) := V s

n+1(h− 1, l + 1)− V s
n+1(h, l), δsn(ps, h, l) :=

α(ps)[ps + ∆s
n+1(h, l)] and δs,∗n (h, l) := max{δsn(ps, h, l) : ps ∈ [0, ph − pl]}. Using these to

rewrite the DP equations over the lower boundary and the interior of the potential upgrade

region, we arrive at the following equations analogous to Equation (2.5) for h ∈ [1 : H] and

n ∈ [1 : N ] and their consequence stated as the following corollary.

V s
n (h, 0) = (1− λh)V s

n+1(h, 0) + λh[ph + V s
n+1(h− 1, 0)]

+ max
fs∈[0,ph−pl]

{
λlαs(f s)[pl + f s + V s

n+1(h− 1, 0)− V s
n+1(h, 0)]

}
+ max

us∈[0:C]

{
usλδs,∗n (h, 0)

}
,

V s
n (h, l) = (1− λh − λl)V s

n+1(h, l) + λh[ph + V s
n+1(h− 1, l)]

+λl[pl + V s
n+1(h, l − 1)] + max

us∈[0:C]

{
usλδs,∗n (h, l)

}
for l ∈ [1 : M ].

Corollary 2. The optimal upgrade policy is a pulsing type.

Unlike the base model, the optimal upgrade policy in the substitution model does not have

a monotone property with respect to the leftover capacities. The reason is that Proposition
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2 is no longer true for the upward substitution model; specifically, V s
n (h, l) may fail to

satisfy the DV-modular property. The DV-modularity requires ∆s
n(h, l) ≥ ∆s

n(h, l + 1). To

illustrate the failing of DV-modularity, we provide an example with the opposite inequality

∆s
n(h, 0) < ∆s

n(h, 1) in Appendix A.2. The possibility of ∆s
n(h, l) increasing in l leads to the

possibility of the optimal number of upgrade links increasing in l. That is, the firm may

avoid offering upgrades when the regular leftover capacity is very low, but upgrades may be

offered when the regular leftover capacity is high. In contrast, the firm in the base model

always tends to offer upgrades with the purpose of increasing the regular leftover capacity

when it is low. The intuition of the finding in the upward substitution model is as follows:

Since the upgrade opportunity value ∆s
n(h, 0) might be smaller than ∆s

n(h, 1), upgrades are

less beneficial when the regular product stocks out. The firm may prefer the regular product

stockout and get a higher revenue through upward substitution. A further examination of

∆s
n(h, l) reveals that it may be neither increasing nor decreasing in l; the firm may avoid

upgrades when the regular capacity is either low or high but offers upgrades when the regular

capacity is medium.

The firm needs to make two pricing decisions when the regular product is out of stock and

the premium product is still available: the optimal substitution fee f s,∗n (h) and the optimal

upgrade fee ps,∗n (h, 0). The following proposition implies that the optimal substitution fee

is no greater than the optimal upgrade fee, when the substitution reservation price and the

upgrade reservation price are identically distributed.

Proposition 7. f s,∗n (h) ≤ ps,∗n (h, 0), if αs(p) = α(p) for p ∈ [0, ph − pl].

An accepted substitution consumes a premium product and at least generates pl revenue,

while an accepted upgrade consumes a premium product and frees a regular product capacity

whose value is at most pl. Since the opportunity value of a substitution pl +V s
n+1(h− 1, 0)−

V s
n+1(h, 0) is higher than that of an upgrade V s

n+1(h − 1, 1) − V s
n+1(h, 0), the firm charges a

higher upgrade fee to compensate for the lower upgrade opportunity value.
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2.5 Implementation of the Dynamic Upgrade Policy

A dynamic upgrade policy implementation requires firms to send notifications and engage

in after-sales interaction with regular purchasers. These notifications, if too many, can

cause inadvertent spamming indiscriminately and repetitively sending notifications to a

regular purchaser. Most firms consider upgrades as promotional events7. A large number

of upgrades sell the premium product below its original selling price and may devalue the

product in consumers’ minds. Hence, in order to protect their brand images (e.g., to appear

less promotional and reduce possibility of being perceived as spammers), firms often monitor

the number of notifications and the resulting upgrade sales. The extent of spamming and

the volume of upgrade sales are related to the values of the upgrade triggering level M and

the maximum upgrade capability C introduced in §2.3.1. An implementation also requires

firms to maintain customer lists (such as the list of upgradeable customers). We elaborate

on these issues next.

The upgrade triggering level M < L ensures that a firm sells enough regular products

before considering upgrades. In other words, when ln ≤M , the firm has a limited number of

leftover regular products and can use upgrades to free regular products for future demand.

When upgrading is considered, the number of regular products sold or the number of regular

purchasers, L − ln, is at least L −M . The firm can choose to offer upgrades to all regular

purchasers L−ln. However, the firm may want to maintain a small number of active upgrade

links, that is C – the maximum number of active upgrade links at any given point in time.

The firm sets C based on the consideration of spamming and premium product devaluation.

Broadly speaking, a larger C results in a larger number of notifications, more spamming and

more upgrade sales. Without a limit on the maximum active upgrade links (i.e., C = ∞),

the pulsing policy of Proposition 1 remains optimal. This optimal policy requires the firm

7http://europe.etbtravelnews.global/99459/rail-europe-announces-swiss-pass-free-upgrade-promotion/
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to send upgrade links to all regular purchasers or to deactivate all links. Such a policy

may cause the firm to send many upgrade notifications, leading to spamming. Kumar et al.

(2015), in a permission-based marketing context, empirically show that sending emails too

often speeds up customer opt-outs, reduces the number of receivers and eventually leads to

response reduction. To mitigate these concerns, our model employs the maximum upgrade

capability C where C ≤ L−M . The firm, when needed, can draw C customers out of L− ln

regular purchasers and maintains active upgrade links only for them. When the ratio of C

to L−M is small, the firm can identify and notify C regular purchasers who have not been

notified recently. Therefore, the firm can reduce spamming and limit upgrade sales.

Figure 2.4. Movement of purchasers among three lists. Upward substitution is not considered
here. Solid lines denote moves by the firm; broken lines denote moves by the customers.

The implementation of dynamic upgrades requires the firm to track three lists. H is the

list of purchasers with premium products, who are either premium purchasers or upgraded

regular purchasers. U is the list of upgradeable customers. L is the list of regular purchasers

who are neither upgradeable nor upgraded. The regular purchasers in L are ordered based on

their upgrade notification recency; the purchasers who received an upgrade notification most

recently are put at the bottom of the list. H, U and L are mutually exclusive. H∪U∪L is the
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set of all purchasers, and U ∪L is the set of all regular purchasers who are not upgraded yet.

When a premium (resp., regular) customer purchases a premium (resp., regular) product,

she enters H (resp., L), see Figure 2.4. The firm updates the three lists dynamically during

the sales season.

The implementation of dynamic upgrades requires the action of purchaser movement

among H, L and U . When upgrades turn profitable, the firm sends notifications to the top

C regular purchasers in L, and moves them to U . When an upgradeable customer accepts the

upgrade, she is moved from U to H. When an upgradeable customer rejects the upgrade, she

is moved from U to the bottom of L. When upgrades turn unprofitable, the firm deactivates

all the upgrade links, and moves all upgradeable customers from U to the bottom of L.

We use a small-sized hotel as an example to show the purchaser movement among lists

H, L and U . The hotel has 15 premium rooms and 20 regular rooms, i.e., (H,L) = (15, 20),

to sell over 500 periods. If each period is an hour, the sales season is approximately 20 days.

In the example, we use M = 10 and C = 5. Suppose that upgrading becomes optimal for the

first time in period 250 when the leftover capacity is (hn, ln) = (8, 5). The hotel has sold 15

regular rooms and keeps all 15 regular purchasers in the ordered list L at the end of period

249. After the hotel sends active upgrade links to regular purchasers 1 : 5 and moves them

from L to U , L contains regular purchasers 6 : 15. Suppose that the upgradeable customer

1 in U clicks the link but rejects the upgrade, the hotel moves her back to the bottom of list

L, which becomes 6 : 15, 1. Then U contains four upgradeable customers 2 : 5, who have

not clicked the upgrade links. In period 251, the leftover capacity stays at (hn, ln) = (8, 5).

Suppose the optimal decision is still to offer upgrades. The hotel then moves purchaser 6

from L to U and sends her an upgrade link, and U contains upgradeable customers 2 : 6.

Suppose upgradeable customer 3 clicks the link and accepts the upgrade, she is moved to

H. U now only contains upgradeable customers 2, 4, 5, 6. The hotel then has one fewer

premium room and one more regular room. In period 252, (hn, ln) = (7, 6). If it is optimal
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to stop upgrading, the hotel deactivates all four active links and puts upgradeable customers

2, 4, 5, 6 back to the bottom of L. Suppose a regular customer arrives, the hotel numbers

her as purchaser 16, adds her into L and has one fewer regular room.

Regular purchasers who reject upgrades (i.e., customer 1 in the example above) are put

back into L. Such purchasers may receive upgrade notifications again in the future. We

assume in §2.3.1 that upgrade reservation price distributions are independent over time.

This assumption helps simplify the dynamic upgrade pricing problem; the firm does not

need to keep a record of customers rejecting upgrade offers and the corresponding upgrade

fees. When the ratio of C to L −M is relatively small, the firm can only notify a limited

number of regular purchasers each time it sends out new upgrade links. Since the list of L

is long (at least contains L −M regular purchasers), it will take a long time for a regular

purchaser to receive an upgrade link again. During this time, the purchaser may forget her

previous upgrade fee(s) and change her reservation price, which justifies the independence

of reservation prices over time.

An optional action of dynamic upgrade implementation is purchaser reminding/reloading.

This action is tied to the upgradeable customer clicking behavior. We assume in §2.3.1 that

the upgrade link clicking probability is not affected by the length of the time duration after

an upgradeable customer receiving a notification. The customer clicking probability may

decay over time. However, the relaxation of this assumption requires the firm to track when

each upgradeable customer received her upgrade notification, which enlarges the state space

and makes the dynamic upgrade pricing problem intractable. To remedy this assumption

and to make dynamic upgrade implementation effective, the firm can adopt purchaser re-

minding/reloading. If an upgradeable customer does not respond to the offer for a certain

amount of time, the firm can either send a reminder to her or move her back to L and reload

U with another regular purchaser from L.

To summarize, the dynamic upgrade model features parameters M and C. A small M

gives a long list of regular purchasers to upgrade from. A small C ensures that each regular
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purchaser receives the upgrade notification infrequently. Together, they help the firm limit

the upgrade sales and protect its brand image. A small ratio of C to L−M and the ordering

of purchasers in L help the firm avoid repetitively and indiscriminately sending upgrade noti-

fications, hence reduce spamming. The dynamic upgrade implementation involves purchaser

movement and purchaser reminding/reloading among three lists. We provide an algorithm

in Table A.4 in Appendix A.3 to show a particular implementation.

2.6 Quantifying the Values of Dynamic Upgrades

In this section, we conduct a systematic numerical study to a) compare different upgrade

strategies and quantify the benefits of dynamic upgrades, b) quantify the impact of different

operating factors on the benefits of dynamic upgrades, and c) explain the trade-off between

revenue maximization and brand image protection.

2.6.1 Benefits of Dynamic Upgrades

Numerical Study Setup. We generate 2,187 = 37 different problem instances, for which

we solve dynamic programs to optimality. The parameter values used in our study are

summarized in Table 2.1. Parameters of instances come from the Cartesian product of

these sets. The number N of periods is 500; if each time period is an hour long, the entire

sales season lasts approximately 20 days. The value sets of initial capacity parameters (H,L)

apply to small to medium sized hotels with fewer premium rooms than regular rooms. We use

(µh, µl) = (Nλh, Nλl) to represent the total expected demands over the entire sales season.

Possible combinations of (H,L, µh, µl) contain the instances where the capacity and demand

are balanced (e.g., (5, 15, 5, 15) and (15, 25, 15, 25)) and imbalanced (e.g., (5, 15, 15, 15) and

(15, 15, 10, 25)). The click rate parameter λ takes three values of low, medium and high. We

use µ = Nλ to represent the expected number of total clicks over the entire sales season if

only one upgrade link is active. Since the sales season is approximately of 20 days, µ = 1 (5
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or 10) implies that an upgradeable customer on average clicks the upgrade link once every 20

(4 or 2) days. (M,C) is fixed at (10, 5), which works for all instances because of C ≤ L−M

for all possible L. We use the uniform distribution for the upgrade reservation price; i.e.,

the upgrade acceptance probability for a fee p ∈ [0, ph− pl] is α(p) = (ph− pl− p)/(ph− pl).

Table 2.1. Parameter value sets
Parameter Value set Parameter Value set Parameter Value set Parameter Value set
N {500} H {5, 10, 15} L {15, 20, 25} µ = Nλ {1, 5, 10}
M {10} ph {1.2, 1.5, 1.8} pl {0.4, 0.7, 1}
C {5} µh = Nλh {5, 10, 15} µl = Nλl {15, 20, 25}

Models of Interest. We consider four different dynamic upgrade strategies: dynamic

upgrade with a fixed fee (DF), dynamic upgrade with a set of discrete fees (DD), dynamic

upgrade with an interval of fees (DI), and dynamic upgrade with an interval of fees and

upward substitution (DIUS). DI is in our base model. We compare these four strategies

with the check-in upgrade with fixed fee (CF). In CF, the firm needs to decide only on the

check-in upgrade fee. If the firm has h units of premium product and l units of regular

product leftover at the check-in time, it can offer at most min{h, L − l} upgrades. The

optimal expected revenue of CF strategy in period n and at state (h, l) is given by

V c
n (h, l) = (1− λh − λl)V c

n+1(h, l) + λh[ph1Ih≥1 + V c
n+1(h− 1Ih≥1, l)]

+λl[pl1Il≥1 + V c
n+1(h, l − 1Il≥1)] for n ∈ [1 : N ],

V c
N+1(h, l) = min{h, L− l} max

p∈[0,ph−pl]
α(p)p.

With the assumption of uniform upgrade reservation price distribution, the optimal check-in

upgrade fee is (ph − pl)/2, and the corresponding accepting probability is α((ph − pl)/2) =

1/2. The theoretical analysis in §2.3 and §2.4 does not incorporate check-in upgrades and

assumes VN+1(h, l) = V r
N+1(h, l) = V s

N+1(h, l) = 0. To make a fair comparison, we replace

VN+1(h, l) = V r
N+1(h, l) = V s

N+1(h, l) by

V c
N+1(h, l) = min{h, L− l} max

p∈[0,ph−pl]
α(p)p = min{h, L− l}p

h − pl

4
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and incorporate the check-in upgrades into all four dynamic upgrade strategies. The new

terminal condition V c
N+1(h, l) does not affect the optimality of the pulsing solution in any

one of the four dynamic upgrade strategies. It also satisfies the five properties in Proposition

2, so the monotonicity structure of the pulsing solution in DF, DD and DI still holds. In

DF, we assume that the upgrade fee is fixed at (ph − pl)/2, which is equal to the optimal

check-in upgrade fee. In DD, we assume upgrade fees are dynamically picked from the set

of {0, (ph − pl)/4, (ph − pl)/2, 3(ph − pl)/4, (ph − pl)}. Finally, in DIUS, we assume that the

upward substitution is accepted at fee f s with probability α(f s); the substitution reservation

price distribution and the upgrade reservation price distribution are the same.

Benefits of Dynamic Upgrades. Despite the clear advantage of dynamic upgrade

strategy, they are not always preferred for multiple reasons. Some firms simply do not have

the technical capabilities required for the implementation of a dynamic strategy, whereas

some others intending to adopt the dynamic upgrade strategy prefer to avoid changing up-

grade fee frequently and dramatically. Therefore, it is of interest to understand the potential

benefits that would be gained through dynamic upgrade availability, upgrade fee pricing flex-

ibility and upward substitution. The five strategies in our numerical study can be ordered

as CF, DF, DD, DI, and DIUS based on their sophistication levels. For the 2,187 instances

generated, we compute the optimal expected revenue under each policy and the percentage

improvements obtained by switching from less sophisticated strategies to more sophisticated

ones.

Table 2.2. Percentage improvements in expected revenue
CF → DF CF → DD CF → DI CF → DIUS DI → DIUS

Max 38.25 46.08 47.39 49.35 17.84
Min 0.00 0.00 0.00 0.00 0.00
Average 2.86 3.49 3.64 4.31 0.61

Table 2.2 provides the summary statistics such as maximum, minimum and average im-

provements over the 2,187 instances. It demonstrates the value of dynamic upgrade strate-

gies; even the simplest dynamic strategy DF improves revenue by 2.86% on average over
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the static CF, and DIUS achieves an average 4.31% improvement. For a highly imbalanced

instance with premium product overcapacity and regular product undercapacity, such as

(H,L, µh, µl) = (15, 15, 5, 25), DIUS can generate a significant 49.35% revenue improvement

over CF.

For a firm currently using CF and considering switching to a dynamic strategy, the

amount of pricing flexibility to adopt is crucial. More flexibility brings in a higher revenue,

but often at the expense of a higher technological and transactional investment. The average

revenue improvements in DD and DI are 3.49% and 3.64%, respectively, which are not

significantly different from each other. For an average firm with tight budget constraint,

DD or even DF can be a good option. It is also important to check the extra benefit

of upward substitution on top of dynamic pricing and timing of upgrades. The average

revenue improvement gained by switching from DI to DIUS is 0.61%, whereas the average

improvement gained by switching from CF to DI is 3.64%. Therefore, although the upward

substitution brings in some extra revenue, the adoption of the dynamic pricing and timing

of upgrades has a much more significant impact.

2.6.2 Impact of Environment on Benefits of Dynamic Upgrades

We quantify the impact of various operating factors on the dynamic upgrade strategies. In

particular, we investigate how these factors affect the revenue improvements achieved by

advancing from CF to DF, DD, DI and DIUS . We use the following parameters in the base

instance: N = 500, H = 15, L = 20, µh = 10, µl = 20, µ = 5, ph = 1.5, pl = 0.7, M = 10,

and C = 5. For this instance, (H,L, µh, µl) = (15, 20, 10, 20) means that the firm’s premium

capacity is slightly over its expected demand while the regular capacity and its demand

match. We choose this base instance, since most travel firms (e.g., airlines, cruise lines and

hotels) purposefully build extra premium capacity. Below we change one parameter at a

time while keeping the others constant.
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Figure 2.5. Impact of demand intensities µh and µl

Impact of Demand Intensities. We test the impact of demand intensities by varying

µh ∈ [6 : 15] and µl ∈ [16 : 25]. The results are illustrated in Figure 2.5. We observe that

the percentage revenue improvements from CF to four dynamic strategies decrease with the

premium demand intensity while they increase with the regular demand intensity. Intuitively,

when the premium demand intensity is high, most of the premium capacity is going to be

sold at its original price. The firm has less incentive to offer upgrades, and the value of

dynamic upgrades shrinks. When the regular demand intensity is high, the regular capacity

depletion is more likely to happen, after which the firm loses the opportunity to capture the

regular demand. Dynamic upgrades, which allow the firm to free regular capacity, bring in a

higher revenue improvement when this capacity depletion happens faster. In the right panel

of Figure 2.5, we can also observe that the revenue improvement from DI to DIUS increases

with the regular demand intensity. The upward substitution, as an extra means to capture

regular demand, provides a larger value when the regular demand is higher.

Impact of Initial Capacity Levels. Figure 2.6 illustrates the impacts of initial capacity

levels as measured by H and L. A higher initial premium capacity amplifies the firm’s

ability to extract extra revenue from regular purchasers through dynamic upgrades. Hence,

the revenue improvements increase with H. In contrast, a higher regular initial capacity

reduces the firm’s need to free regular capacity through upgrades. Consequently, the revenue
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improvements decrease with L. We can also observe that the revenue improvement from DI

to DIUS is shrinking with a higher L; with a higher regular initial capacity, the probability of

regular product stockout is low, and the firm is less likely to collect revenue through upward

substitution.
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Figure 2.6. Impact of initial capacities H and L
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Figure 2.7. Impact of price differential ph − pl and regular price pl

Impact of Product Prices. Companies in travel industry usually use state-of-the-art

price optimization software to set the regular product price, on top of which they add a

differential and get the premium product price (Yılmaz et al. 2016). The impact of the price

differential and the regular product price is shown in Figure 2.7. In the left panel of Figure
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2.7, a larger price differential gives the firm an opportunity to charge a higher upgrade fee

and further boosts the revenue improvements. Hence, the revenue improvements increase as

the price differential increases. In the right panel, since the price differential stays constant,

the revenue from upgrades stays about the same. Hence, a higher regular product price leads

to smaller percentage revenue improvements.

Impact of Click Rate. The click rate µ is a measure of the dynamic upgrade effective-

ness. The percentage revenue improvements increase with the click rate, as shown in Figure

2.8. A high click rate and a high pricing flexibility are complementary. Even with a high

click rate, DF strategy with its fixed upgrade fee is not as capable as DD or DI strategy in

converting an incoming upgradeable customer into an upgrade purchaser. As a consequence,

the revenue improvement from DF to a flexible strategy (e.g., DD or DI) also increases with

the click rate. Both dynamic upgrade and upward substitution are tools to balance the

leftover capacities. When the click rate is high, the balancing effect from dynamic upgrade

dominates the one from substitution, and the revenue improvement gap between DI and

DIUS strategies decreases with the click rate.
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Figure 2.8. Impact of click rate µ

These numerical results help identify that dynamic pricing and timing of upgrades yield

a high revenue compared to check-in fixed-fee upgrades, in particular, when (i) the premium
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product demand is low, (ii) the regular demand is high, (iii) the premium product capacity

level is high, (iv) the regular capacity level is low, (v) the price differential is high, (vi) the

regular product price is low, and (vii) the click rate is high.

2.6.3 Impact of Environment on Revenues

In this section, we illustrate the impact of operating environment on optimal expected rev-

enues. In general, the revenues are increasing with higher initial capacities, higher prices,

higher demand intensities and a higher click rate. We now investigate how the upgrade

triggering level M , the maximum upgrade capability C and customers’ upgrade reservation

price distribution affect the revenues.

Revenue Maximization versus Brand Image Protection. In the numerical study

above, we assume fixed M = 10 and C = 5. Now we focus on the base instance with

N = 500, H = 15, L = 20, µh = 10, µl = 20, µ = 5, ph = 1.5 and pl = 0.7 and check

the impact of M and C. A larger M allows the firm to activate dynamic upgrades earlier,

and a larger C allows for notifying more customers. In the left panel of Figure 2.9, the

highest optimal expected revenue 30.87 is achieved at (M,C) = (10, 10). Although pursuing

the highest expected revenue is crucial, a firm deciding on (M,C) also needs to consider its

brand image. In the middle panel of Figure 2.9, we show the expected number of upgrade

notifications sent during the sales season, which measures the amount of spamming. The

highest expected number of notifications 24.62 occurs at (M,C) = (11, 9). In the right panel

of Figure 2.9, we show the expected volume of upgrade sales during the sales season, which is

related to premium product devaluation. The highest volume 4.74 occurs at (M,C) = (12, 8).

As we can see from Figure 2.9, a slightly increased revenue comes with a much larger number

of upgrade notifications and a larger volume of upgrade sales. A firm deciding on M and C

can use our model and graphs similar to Figure 2.9 to trade off a larger expected revenue

against a higher level of spamming and premium product devaluation.
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Figure 2.9. Impact of M and C

Impact of Upgrade Reservation Price Distribution. So far, we assume that the

upgrade reservation price distribution is uniform. Another question of interest is how dif-

ferent upgrade reservation price distributions affect the firm’s expected revenue, especially,

whether a larger variance has a positive or negative impact. A larger variance means that

the firm has less information about the reservation price distribution. Without a careful

inspection, one may say that a larger variance hurts the firm. The actual finding, in our dy-

namic upgrade pricing context, reveals that a larger variance may either increase or decrease

the firm’s expected revenue depending on the instance.

For the purpose of illustrating the benefit of a large variance, we construct the following

example for DI strategy. λh = λl = λ = 0.1, ph = 2, pl = 1, and C = 4. We consider

two reservation price distributions. Both distributions have the same mean 0.5. The base

distribution is one concentrated at the single point of 0.5; all upgradeable customers have

the same reservation price and at most want to pay 0.5 for the upgrades. The other one

is a two-point distribution with equal mass of 0.5 on each point; half of the upgradeable

customers at most want to pay 0.1 and the other half at most want to pay 0.9 for the

upgrades. The sales season has two periods. We now calculate the expected revenue V 1
n

(single-point distribution) and V 2
n (two-point distribution) for period 2 and 1. As we can see

in Table 2.3, V 1
2 (h, l) ≥ V 2

2 (h, l) is true for all possible states. However, V 1
1 (1, l) < V 2

1 (1, l)

for l ∈ [0 : M ].
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Table 2.3. Expected revenue comparison
State (h, l) Less variability More variability
(0, 0) V 1

N(0, 0) = 0.00 ≥ V 2
N(0, 0) = 0.00

(h, 0) with h ∈ [1 : H] V 1
N(h, 0) = 0.40 ≥ V 2

N(h, 0) = 0.38
(0, l) with l ∈ [1 : M ] V 1

N(0, l) = 0.10 ≥ V 2
N(0, l) = 0.10

(h, l) ∈ [1 : H]× [1 : M ] V 1
N(h, l) = 0.50 ≥ V 2

N(h, l) = 0.48
(0, 0) V 1

N−1(0, 0) = 0.00 ≥ V 2
N−1(0, 0) = 0

(1, 0) V 1
N−1(1, 0) = 0.64 < V 2

N−1(1, 0) = 0.67
(h, 0) with h ∈ [2 : H] V 1

N−1(h, 0) = 0.84 ≥ V 2
N−1(h, 0) = 0.78

(0, 1) V 1
N−1(0, 1) = 0.19 ≥ V 2

N−1(0, 1) = 0.19
(0, l) with l ∈ [2 : M ] V 1

N−1(0, l) = 0.20 ≥ V 2
N−1(0, l) = 0.20

(1, 1) V 1
N−1(1, 1) = 0.79 < V 2

N−1(1, 1) = 0.84
(h, 0) with h ∈ [2 : H] V 1

N−1(h, 1) = 0.99 ≥ V 2
N−1(h, 1) = 0.95

(1, l) with l ∈ [2 : M ] V 1
N−1(1, l) = 0.80 < V 2

N−1(1, l) = 0.85
(h, l) ∈ [2 : H]× [2 : M ] V 1

N−1(h, l) = 1.00 ≥ V 2
N−1(h, l) = 0.96

This finding can be explained as follows. When the mean of the reservation price stays

unchanged, a larger variance implies the existence of more customers with lower reservation

prices. With a certain fee, it is less likely to make an upgrade offer acceptable. However, a

larger variance also means the existence of more customers with higher reservation prices,

which allows the firm to charge a higher fee and still to capture the demand from a customer

with high reservation price. These are the reasons why a larger variance may help or hurt

the firm. From a mathematical point view, this finding is due to the lack of convexity of the

revenue function in the customer reservation price. Jensen’s inequality cannot be applied; a

larger variance does not necessarily imply less revenue.

2.7 Conclusion

Upgrading has become a common operational tactic for companies to boost revenue. In

Chapter 2, we describe a dynamic upgrade process for a firm that sells two types of products

(premium and regular) at fixed prices and offers upgrades from the booking time until the

check-in time. The firm sends regular purchasers upgrade notifications (via email or push

notification) that contain upgrade links. The links lead customers to the firm’s upgrade
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website, who then accept or reject the upgrades based on the upgrade fees determined also

dynamically by the firm. An optimal policy specifies the timing (availability) and pricing

of the dynamic upgrades. Such decisions involve analyzing subtle trade-offs. The pricing

decision requires the firm to analyze the loss and gain of replacing a unit of premium capacity

by a regular one. The availability decision at a particular time depends on the profitability

of upgrades at that time. Based on a dynamic programming model that incorporates the

above trade-offs, we characterize the optimal upgrade policy as a pulsing policy. The firm

either maintains zero or the maximum number of active upgrade links. Both the optimal

availability and pricing decisions exhibit monotonicity properties with respect to the capacity

levels. We also consider two extensions of our base model. The first one restricts the upgrade

fee. We identify a condition under which the upgrade region of the restricted fee model

counterintuitively contains that of the base model. This optimal policy comparison further

reveals managerial insights related to upgrading. The second extension incorporates upward

substitution to capture the regular customer demand when the regular product stocks out.

We show that the substitution fee should be no greater than the upgrade fee.

Our comprehensive and systematic numerical study helps managers identify suitable

contexts to adopt the dynamic upgrade strategy and understand the effects of upgrade

fee pricing flexibility as well as upward substitution on the benefit of dynamic upgrades.

Specifically, the revenue improvement from the current industry-standard check-in fixed-

fee upgrades to dynamic upgrades is significant (e.g., up to 49% improvement) when the

premium product capacity level is high, the regular capacity level is low, the premium

product demand is low, the regular demand is high, the regular product price is low, the

price differential is high, and the click rate is high. A high pricing flexibility magnifies the

benefit of a high click rate. A low regular demand and a high regular capacity weaken

the contribution of the upward substitution. Emails and push notifications are widely used

marketing tools to attract customers. This chapter is the first one to study how to use such
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tools to engage existing purchasers for additional revenue through upgrades while managing

spamming and brand image related issues. The implementation of the upgrade models is

easy, and we provide an algorithm.

Given the novelty of dynamic upgrades, it has many potential applications in the practice

of selling services/products to maximize revenues. Potential application-oriented research

includes the incorporation of dynamic upgrades into existing dynamic pricing system, multi-

product dynamic upgrades, and demand learning through dynamic upgrade pricing. The

comparison of consumer behaviors towards dynamic upgrades and other existing upgrade

strategies would also be exciting.
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CHAPTER 3

IMPACT OF POSTPONEMENT MANUFACTURING STRATEGY ON

CONTRACT DESIGN

3.1 Introduction

Mass customization has been adopted by many industries in response to diverse customer

demands, even though it comes with higher production and inventory costs. To cope with

these disadvantages, firms apply process standardization to the initial steps in production,

so that products are not differentiated until later customization steps. Delaying the prod-

uct differentiation increases firms’ flexibility of handling fluctuating multi-product demands.

The strategy of postponement, or delayed product differentiation, was first introduced by

Alderson (1950). Since then, there has been an extensive literature studying this topic. We

refer the reader to Anand and Mendelson (1998), Swaminathan and Lee (2003), Yang et

al. (2004), Forza et al. (2008) and Cheng et al. (2010) for a detailed review. A stream of

research within this vast literature develops mathematical models to evaluate the benefits

of postponement. For example, Lee (1996) show that postponement always leads to inven-

tory reduction under stationary demand assumption; such reduction is greater when the end

product demands are negatively correlated. Lee and Whang (1998) extend Lee (1996) by

modeling the demand as a random walk process. They quantify the benefit of postponement

as the value of uncertainty resolutions and the value of forecast improvement. Aviv and Fed-

ergruen (2001) develop a multi-period model with demand learning in a Bayesian framework

and illustrate the incremental benefits of postponement from the learning effect. Hu et al.

(2016) evaluate the value of postponement for a two-product newsvendor under social influ-

ence, where customers arrive sequentially and their purchase decisions can be influenced by

earlier purchases. These papers focus on inventory systems of an individual manufacturer,

and study the benefits of postponement through inventory cost reduction. However, as a

48



member of a supply chain, the manufacturer’s postponement strategy may also affect other

supply chain members as well as the contracts between them. In this chapter, our goal is to

evaluate the impact of postponement on supply chain contracts.

We consider a two-stage supply chain with a manufacturer and two retailers. The manu-

facturer first produces a batch of common intermediate products and customizes them into

different end products. This multi-product manufacturing system can also be interpreted

as a distribution system (see, e.g., Eppen and Schrage 1981, Federgruen and Zipkin 1984a,

Schwarz 1989, Erkip et al. 1990, Güllü 1997, Özer 2003, and Gürbüz et al. 2007), which

consists of a central depot and several warehouses. Demands are observed and satisfied at

the warehouses. The depot does not hold inventory; it only places orders and allocates them

to the warehouses. Both retailers order the customized end products from the manufac-

turer and meet their stochastic end customer demands respectively. Unsatisfied demands

are backlogged. Examples of this type of supply chain structure are common in traditional

manufacturing industry. Take Herman Miller, a major American manufacturer of office

furniture, as an example. It manufactures and sells customized office desks and chairs to

corporate customers through its dealerships (retailers).

Supply chain members face replenishment lead times. The manufacturer has a produc-

tion lead time and prefers retailers placing orders in advance of their requirement. However,

retailers face order fulfillment lead times and prefer that the manufacturer fully fulfills orders

quickly. Since the supply chain members in either stage want to avoid the demand uncer-

tainty during lead times, there are incentive conflicts between the two stages. The supply

chain incentive can be aligned by a promised lead time contract, which was discussed by

Hariharan and Zipkin (1995) and Lutze and Özer (2008). Under such a contract, the retailer

places advance orders with the manufacturer. The manufacturer guarantees shipment of

each order on time and in full after a promised lead time. The promised lead time con-

tract eliminates the retailer’s risk from uncertain supply and decreases the manufacturer’s
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risk from uncertain demand. A cost benefit analysis of this interaction and the resulting

inventory costs determine who pays for the promised lead time contract. Notice that the

promised lead time is not the retailer’s replenishment lead time; his total replenishment lead

time is the promised lead time plus a transportation lead time from the manufacturer to

the retailer. When the promised lead time is zero, the manufacturer holds ample inventory

and satisfies the retailer’s order instantaneously. When the promised lead time is equal

to manufacturer’s total production lead time, the retailer places his order well in advance.

The manufacturer then holds zero inventory and starts production after receiving the order.

The longest promised lead time is the manufacturer’s total production lead time, since any

longer promised lead time does not further eliminate the manufacturer demand uncertainty

but hurts the retailer.

The contract design is affected by the supply chain setting. We study the promised lead

time contract in the two-stage supply chain under three settings. To create a benchmark, we

first establish optimal promised lead times for a centralized setting. When system control is

not centralized, we study the different market setting and the same market setting. In the

different market setting, the retailers are geographically dispersed and cannot observe each

other’s contract terms. The manufacturer can fully discriminate the retailers by offering them

different contracts. In the same market setting, contracts offered by the manufacturer are

public information to both retailers. Perfect discrimination is not feasible and the retailers

self-select their contracts from a menu designed by the manufacturer. In all three settings, we

show that an optimal promised lead time is either zero or equal to the manufacturer’s total

production lead time; it is never optimal to split the inventory between the manufacturer

and an individual retailer. The optimal promised lead times in the centralized setting and

the different market setting are the same. However, the same market setting has different

contracts, in which the retailer with a higher inventory cost always gets a shorter promised

lead time.
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Two papers studying promised lead times in a two-stage supply chain are closely related

to ours. Barnes-Schuster et al. (2006) study a centralized supply chain under normally

distributed demand. Retailers have identical holding and penalty costs. They show that the

manufacturer optimally offers the longest promised lead time to retailers with large stan-

dard deviations while giving the shortest promised lead time to retailers with small standard

deviations. Lutze and Özer (2008) analyze a supply chain facing a finite planning horizon,

where the retailer may have private information about his shortage cost. To minimize her

own inventory cost while ensuring the retailer’s participation, the manufacturer designs a

contract which specifies a promised lead time and a lump-sum payment. They derive the

optimal contract under both full and asymmetric information. Chapter 3 is similar to the

above two in that we study how a manufacturer shares the demand uncertainty with down-

stream retailers by specifying promised lead times. However, the manufacturer in Chapter

3 produces multiple products.

This chapter characterizes the impact of postponement on supply chain contract design

(promised lead time contracts in particular) and the manufacturer production mode selec-

tion in three different market settings. When the promised lead times equal manufacturer’s

total production lead time (resp., zero), the manufacturer is applying a make-to-order (resp.,

make-to-stock) production mode. Postponement, under certain conditions, shifts the man-

ufacturer’s production mode from make-to-order to make-to-stock. Gupta and Benjaafar

(2004) and Su et al. (2010) are among the first to study postponement and production

mode. Both papers adopt queuing models to study capacitated manufacturing systems,

where the production modes (make-to-order and/or make-to-stock) are fixed. Gupta and

Benjaafar (2004) consider the production stage of the common intermediate product as a

make-to-stock system and the stage of the customized end products as a make-to-order sys-

tem. They specifically evaluate the benefits of postponement when delivery lead times are

load dependent and induced by the capacity constraint. Su et al. (2010) focus on a make-

to-order system and identify when and why postponement is beneficial using inventory cost
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and waiting time as performance metrics. In contrast, the production modes in this chapter

are endogenous and driven by the optimal promised lead time contracts, and we study how

postponement affects the contract design and further changes the manufacturer’s production

mode selection. For a comprehensive review of the broad literature on make-to-order versus

make-to-stock, see Soman et al. (2004).

The remainder of this chapter is organized as follows. In §3.2, we first treat the promised

lead times as given and study the production and inventory problems of the supply chain

members. In §3.3, we characterize the optimal promised lead time contracts in three settings

based on the results from §3.2. We analyze the impact of postponement on the optimal

promised lead time contracts in §3.4 and quantify the impact using numerical examples in

§3.5. In §3.6, we conclude the chapter. Proofs and additional arguments are relegated to

the appendices.

3.2 Two-stage Supply Chain

We study a two-stage supply chain consisting of a multi-product manufacturer and two

retailers, as shown in Figure 3.1, over an infinite planning horizon. The manufacturer requires

L periods to produce a common intermediate product and allocates this product among

customization sequences for J different end products. Each customization sequence requires

l periods to complete. Retailer k ∈ {1, 2} orders J end products, and the manufacturer

ships out the full order sk ≥ 0 periods later, i.e., the promised lead time. Retailer k receives

the order after a transportation lead time. Without loss of generality, we assume that the

transportation lead times are zero for both retailers; both retailers receive deliveries of full

orders immediately after the manufacturer’s shipments. All our results are still true when

the transportation lead times are positive. Stochastic end customer demands are satisfied

through retailers’ on hand inventory. Otherwise, they are backlogged. Demand in period

t for end product j ∈ {1, 2, ..., J} at retailer k ∈ {1, 2}, denoted by Dt
kj, is modeled as a
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sequence of stationary, independent and normally distributed random variables with finite

mean µkj and standard deviation σkj. The manufacturer and the retailers know the demand

distributions. We use φ(·) and Φ(·) to represent the pdf and cdf of the standard normal

distribution.

Figure 3.1. Supply Chain Structure

The inventory levels at both stages are periodically reviewed. The sequence of events

is shown in Figure 3.2. At the beginning of each period t, the manufacturer receives both

finished intermediate products and customized end products. She then produces a new batch

of intermediate products. The manufacturer does not hold inventory for the intermediate

product and allocates them immediately to the J customization sequences. During period

t, the manufacturer fully fulfills retailer k’s orders dt−sk,tk1 , ... , dt−sk,tkJ , which were placed

sk periods ago and are due for delivery. She also receives orders dt,t+skk1 , ... , dt,t+skkJ from

each retailer k to be delivered in period t + sk. The manufacturer incurs the same unit

holding cost hm for any remaining inventory of J end products. The manufacturer’s unit

penalty cost pm represents the cost of borrowing a unit of any product j from an emergency
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source when her on-hand inventory is not enough to satisfy retailers’ orders. The emergency

source must be returned, and the manufacturer incurs the penalty cost until doing so. To

our knowledge, the usage of an emergency source of this nature first appeared in Lee et al.

(2000) and Graves and Willems (2000). We remark that s1 = s2 = 0 corresponds to the

classical postponement inventory problem and formulation in Lee (1996).

Figure 3.2. Sequence of events in period t

During period t, retailer k receives the orders of dt−sk,tk1 , ... , dt−sk,tkJ , and places a new

batch of orders dt,t+skk1 , ... , dt,t+skkJ . At the end of period t, the end customer demand Dt
kj for

every end product j at retailer k is realized. Retailer k either satisfies customer demands

through on-hand inventory or backlogs. He incurs holding cost for the leftover inventory or

penalty cost for backlog across J end products. We allow retailers to have different inventory

costs. In particular, retailer k has unit holding cost ckhr and unit penalty cost ckpr. A retailer

having a higher value of ck can be interpreted as one located in a neighborhood where storage

space is more expensive and the cost of customer impatience is higher. This proportional

inventory cost structure was introduced first by Federgruen and Zipkin (1984b).

We assume that unit production costs, wholesale prices, and retail prices are exogenously

fixed constants across all J end products, respectively. The retailers capture all end customer
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demands, since unsatisfied demands are backlogged. Thus, for the retailers, maximizing

profit is equivalent to minimizing inventory cost. Similarly, the manufacturer fully satisfies

orders from the retailers due to the existence of the emergency source. Her goal of profit

maximization is also equivalent to inventory cost minimization. Hence, we focus on the

inventory cost minimization problems.

The promised lead times affect the distribution of demand uncertainty among two re-

tailers and the manufacturer. For retailer k, the promised lead time requires him to place

an order sk periods in advance. A longer promised lead time increases retailer k’s demand

uncertainty, since he carries inventory to protect against end customer demand uncertainty

over the promised lead time. The promised lead times generate advance orders and reduce

the manufacturer’s demand uncertainty. Recall that the manufacturer’s total production

time is L + l and she plans production based on the retailers’ orders. Note that when

s1 = s2 = L + l + 1, the manufacturer produces to order and carries zero inventory. Hence,

sk greater than L + l + 1 does not further eliminate the manufacturer’s demand uncer-

tainty but hurts retailer k. Thus, it is never optimal to set sk greater than L + l + 1, i.e.,

sk ∈ {0, 1, . . . , L + l + 1}. Also note that when s1 = s2 = 0, the manufacturer employs

make-to-stock production mode, and retailers get instantaneous order deliveries.

3.2.1 Retailer’s Problem

For a given promised lead time sk, retailer k minimizes his inventory cost over an infinite

horizon. Due to the manufacturer’s emergency source that decouples the two-stage supply

chain, each retailer k is guaranteed on-time delivery of all orders and his optimal order

quantity is not affected by the availability of inventory at the manufacturer. Also note that

end customer demands for different end products are independent. Hence, for each product j,

retailer k independently solves a stationary, single location, periodic review inventory control

problem with a fixed lead time sk and no upstream supply restriction. This problem, shown
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by Arrow et al. (1958), can be rewritten as a problem with zero lead time by modifying the

demand distribution to incorporate all demands during the lead time. A myopic base-stock

policy is optimal for this problem under either the expected discounted cost criterion or

the long-run average cost criterion (e.g., Veinott 1965, Iglehart 1961, and Lovejoy 1990).

Retailer k can obtain the optimal base-stock level for end product j by solving the following

problem:

max
ykj

E[ckhr(ykj −
sk∑
n=0

Dt+n
kj )+ + ckpr(ykj −

sk∑
n=0

Dt+n
kj )−]. (3.1)

ykj is the base-stock level, and the expectation is taken over
∑sk

n=0D
t+n
kj , which is the total

demand during lead time sk. Since the end customer demand arrives after retailer k receives

the delivery, he still needs to hold inventory against one-period demand uncertainty even

if sk = 0. Retailer k’s optimal inventory cost over an infinite horizon can be characterized

by the expected average cost per period under the optimal base-stock policy. We provide

closed-form expressions for retailer k’s optimal base-stock levels and the resulting expected

average cost per period as follows.

Proposition 8. Given a promised lead time sk, retailer k’s optimal base-stock level ykj(sk)

for product j, and the corresponding optimal expected cost per period Gk(sk) are

ykj(sk) = µkj(sk + 1) + Φ−1(
pr

pr + hr
)σkj
√
sk + 1, and

Gk(sk) = ck(hr + pr)φ(Φ−1(
pr

pr + hr
))ψk(sk),

where ψk(sk) = (
∑J

j=1 σkj)
√
sk + 1 is concave increasing in sk.

The first term of ykj(sk) is the expected demand for product j over retailer k’s promised

lead time. The second term is his safety stock. The function ψk(sk) in Proposition 8

represents the effective standard deviation of demands for all J products over the promised

lead time at retailer k. ψk(sk) and retailer k’s inventory cost are increasing in sk. Therefore,
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the retailer prefers a short promised lead time. The concavity property of ψk(sk) implies

that retailer k is more sensitive to an increase in his promised lead time (or, equivalently,

benefits more from a decrease in his promised lead time) when the promised lead time is

short.

3.2.2 Manufacturer’s Problem

The manufacturer’s problem can be modeled as a two-echelon inventory problem over an in-

finite horizon. It requires L periods to produce a common intermediate product and another

l periods to customize the intermediate product into J end products. The manufacturer’s

demand depends on the retailers’ ordering policy. From Proposition 8, we know that retailer

k optimally follows a stationary base-stock policy. As a result, he orders in each period to

recover the units demanded by the end consumers from the previous period. The manufac-

turer, therefore, observes the same end consumer demand stream after a single period delay.

That is, dt,t+skkj = Dt−1
kj ∼ N(µkj, σ

2
kj). At the beginning of each period t, the demand for

end product j due for delivery in period t+ n is the sum of the observed portion

ot,t+nj := dt+n−s1,t+n1j 1I{s1>n} + dt+n−s2,t+n2j 1I{s1>n}

and the unobserved portion

ut,t+nj := dt+n−s1,t+n1j 1I{s1≤n} + dt+n−s2,t+n2j 1I{s2≤n},

where 1IA ∈ {0, 1} is an indicator function taking the value of 1 only when A is true. The

manufacturer may incur unit holding cost hm for leftover inventory of J end products or

unit penalty cost pm for borrowing products from an emergency source.

Establishing the manufacturer’s optimal policy is computationally intensive, even in the

absence of retailers’ advance demand information. Our goal here is to obtain a good approx-

imation to the problem, so that we can quantify manufacturer’s inventory cost in a closed
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form. We use one of the best methods known to date to solve the manufacturer’s complex

production problem. The method is based on restricting the policy space to a set of base-

stock policies with myopic allocation and invoking the Allocation Assumption from Eppen

and Schrage (1981). Several other researchers (e.g., Federgruen and Zipkin 1984a, Erkip et

al. 1990, Aviv and Federgruen 2001, Özer 2003, and Alptekinoglu and Tang 2005) have used

this method since then. Under the policy restriction, the manufacturer produces a batch

of intermediate products in period t and brings the system inventory to a base-stock level.

She then distributes the finished intermediate products in period t+L among J customiza-

tion sequences by following a myopic allocation rule. The myopic allocation minimizes the

expected costs in period t + L + l when the allocation actually takes effect, while ignores

costs in all subsequent periods. Under the Allocation Assumption, the manufacturer always

receives sufficient intermediate products in period t+L, so that each customization sequence

can be allocated sufficient intermediate products to ensure an equal probability of stockout

(or the same service level) across all J end products in period t + L + l. With the policy

restriction and the Allocation Assumption, we can find the optimal base stock level and the

corresponding expected inventory cost per period in closed forms.

Now, we develop the manufacturer’s cost function. Due to the base-stock policy, a batch

of intermediate product is produced to bring the total system stock to yt at the beginning

of period t. The system stock yt includes the on-hand and in-transit inventory of both the

intermediate product and J end products. It protects the system from unobserved demand

variation over L+ l + 1 periods. We define the total demand over the intermediate product

production lead time L as

V t :=
L−1∑
n=0

J∑
j=1

(ot,t+nj + ut,t+nj )
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and the total demand for end product j ∈ {1, 2, ..., J} during periods t+L through t+L+ l

as

W t+L
j :=

L+l∑
n=L

(ot,t+nj + ut,t+nj ).

At the beginning of period t + L, the amount of all end products to be finished by period

t + L + l is yt − V t. To minimize the inventory cost at the end of period t + L + l, the

manufacturer solves

min
yt,yt+L

1 ,...,yt+L
J

J∑
j=1

Gj(y
t+L
j )

s. t.
J∑
j=1

yt+Lj = yt − V t

yt+Lj ≥ yt+L−1
j − (ot,t+L−1

j + ut,t+L−1
j ) for j ∈ {1, 2, ..., J},

where yt+Lj represents the total amount of on-hand and in-transit inventory of end product

j in period t+L after the myopic allocation, and the inventory cost of product j at the end

of period t+ L+ l is represented by

Gj(y
t+L
j ) := E[hm(yt+Lj −W t+L

j )+ + pm(yt+Lj −W t+L
j )−],

where the expectation is taken over product j’s unobserved demand from period t + L to

period t + L + l. The equality constraint exists because the manufacturer does not hold

inventory of intermediate product; all available intermediate products must be allocated to

J end products. The inequality constraints ensure that the allocation of intermediate prod-

ucts to each end product is non-negative. Given the Allocation Assumption, the inequality

constraints are always satisfied, and the myopic allocation problem can be simplified into

min
yt,yt+L

1 ,...,yt+L
J

J∑
j=1

Gj(y
t+L
j ) s. t.

J∑
j=1

yt+Lj = yt − V t. (3.2)

Since the end customer demand is independent and stationary, the expected inventory cost

charged to period t + L + l would be the same as any other period during the infinite time
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horizon. Hence, we characterize the manufacturer’s inventory cost over infinite horizon by

the expected average cost per period solved from (3.2). Next, we provide the multi-product

manufacturer’s optimal inventory policy and the resulting expected inventory cost in closed

forms.

Proposition 9. Given lead times (L, l, s1, s2), the manufacturer’s optimal base-stock level

in each period t and the resulting expected inventory cost per period are

yt(L, l, s1, s2)

=
J∑
j=1

L+l∑
n=0

ot,t+nj +
J∑
j=1

2∑
k=1

(L+ l + 1− sk)µkj + Φ−1

(
pm

hm + pm

)
ψm(L, l, s1, s2)

and

Gm(L, l, s1, s2) = (hm + pm)φ

[
Φ−1

(
pm

hm + pm

)]
ψm(L, l, s1, s2),

where

ψm(L, l, s1, s2)

=

√√√√√√ J∑
j=1

2∑
k=1

(L− sk)σ2
kj1I{sk<L} +

 J∑
j=1

√√√√√ ∑2
k=1(l + 1)σ2

kj1I{sk<L}

+
∑2

k=1(L+ l + 1− sk)σ2
kj1I{L≤sk≤L+l+1}


2

.

The first term of yt(L, l, s1, s2) is the observed demand during the production lead time,

the second is the expected value of the unobserved demand, and the third is the safety

stock. The function ψm(L, l, s1, s2) represents the effective standard deviation of the total

demand during the production lead time for the multi-product manufacturer. The first term

measures the demand variation during the first L periods and the second term measures the

demand variation during the l periods of end product customization. Proposition 9 extends

the multi-product inventory control literature to account for advance demand information

from retailers with possibly different promised lead times. Proposition 9 can also be easily

extended to consider more general supply chain settings with more than two retailers.
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Proposition 10. ψm(L, l, s1, s2) satisfies the following properties:

a) ψm(L, l, s1, s2) ≥ ψm(L, l, s1 + 1, s2),

b) ψm(L, l, s1, s2) ≥ ψm(L, l, s1, s2 + 1),

c) ψm(L, l, s1, s2)− ψm(L, l, s1 − 1, s2) ≥ ψm(L, l, s1 + 1, s2)− ψm(L, l, s1, s2),

d) ψm(L, l, s1, s2)− ψm(L, l, s1, s2 − 1) ≥ ψm(L, l, s1, s2 + 1)− ψm(L, l, s1, s2).

Proposition 10 implies that the manufacturer’s effective inventory cost and total inventory

position are concave decreasing in s1 and s2 respectively. Therefore, she prefers longer

promised lead times. For an extreme case in which s1 = s2 = L+ l+1, the manufacturer has

perfect information about future demand, employs make-to-order production and carries no

inventory. The concavity property implies that the marginal benefit of promised lead times

increases as they get longer. In other words, a reduction in promised lead times hurts the

manufacturer more when the promised lead times are long.

So far, we provide an approximation of the manufacturer’s inventory cost with the help of

policy restriction and Allocation Assumption. The accuracy of this approximation depends

on whether Allocation Assumption actually holds. Eppen and Schrage (1981) and Erkip

et al. (1990) show that this assumption holds with high probability. Even if Allocation

Assumption does not hold, Federgruen and Zipkin (1984a) show that the resulting production

and allocation decisions yield expected costs very close to optimal for multi-product inventory

systems with a low demand coefficient of variation. We remark that prior applications of

Allocation Assumption do not consider the possibility of promised lead times, i.e., sk > 0.

We examine the impact of promised lead times in the following proposition.

Proposition 11. Allocation Assumption holds with certainty when sk ≥ L+1 for k ∈ {1, 2}.

When the promised lead times are shorter than L+1, the necessary condition of Allocation

Assumption is similar to that from Eppen and Schrage (1981), making it equally possible to

restore the system to an equal probability of stockout across all J end products. When the
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promised lead times are equal to or longer than L + 1, Allocation Assumption holds with

certainty. When sk ≥ L + 1, the manufacturer at period t fully observes all the demands

from period t to period t+L. She knows in advance how the multi-product inventory system

will shift away from the equal probability of stockout, so that she can produce just enough

intermediate products and allocate them exactly to restore the equal probability of stockout.

3.3 Optimal Lead Times

Our goal is to arrive at optimal promised lead times in the two-stage supply chain. Propo-

sition 8 and 10 highlight the incentive conflicts between the manufacturer and the retailers.

The concavity properties of their costs imply potential structural results of the optimal

promised lead times. As a benchmark, we first determine the promised lead times that min-

imize the expected per period inventory cost of a supply chain under centralized control.

Next, we study two decentralized systems from the manufacturer’s perspective, whose goal

is to design promised lead time contracts for the retailers which minimize her own inventory

cost.

We assume, without loss of generality, that the retailers’ inventory cost and risk param-

eters satisfy the following inequality:

c1

J∑
j=1

σ1j > c2

J∑
j=1

σ2j. (3.3)

This assumption guarantees G1(s) > G2(s) for any s ∈ {0, ..., L+l+1}. It means that retailer

1 faces higher holding and penalty costs and/or a greater uncertainty in her end customer

demands. We introduce the following notations, which will be used in the derivation of

optimal lead times.

αr := (hr + pr)φ

(
Φ−1

(
pr

pr + hr

))
, αm := (hm + pm)φ

(
Φ−1

(
pm

pm + hm

))
,

a := c1 [ψ1(L+ l + 1)− ψ1(0)] , b := c2 [ψ2(L+ l + 1)− ψ2(0)] ,

x := ψm(L, l, 0, 0), y := ψm(L, l, 0, L+ l + 1), z := ψm(L, l, L+ l + 1, 0).
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αr and αm measure the costs of demand uncertainty. We can rewrite the manufacturer’s and

retailer k’s inventory costs as Gm(L, l, s1, s2) = αmψm(L, l, s1, s2) and Gk(sk) = ckαrψk(sk).

We have a > b > 0 because of inequality (3.3). αra and αrb measure the additional inventory

costs when retailer 1 and 2 respectively shifts his promised lead time from 0 to L + l + 1.

αmx, αmy, αmz represent the manufacturer’s inventory costs under different combinations

of promised lead times. Also notice that x > y > 0 and x > z > 0 are always true from

Proposition 10.

3.3.1 Centralized Supply Chain

When the supply chain is centralized, we denote the promised lead times that minimize the

total supply chain inventory cost Gm(L, l, s1, s2) +G1(s1) +G2(s2) as sC1 (L, l) and sC2 (L, l).

Proposition 12. The optimal promised lead times that minimize the expected inventory cost

of the centralized supply chain are characterized as follows:

(
sC1 (L, l), sC2 (L, l)

)
=



(L+ l + 1, L+ l + 1), if αr

αm
∈ (0,M ]

(L+ l + 1, 0), if αr

αm
∈ (M,M ] ∩ (0,M ]

(0, L+ l + 1), if αr

αm
∈ (M,M ] ∩ (M,+∞)

(0, 0), if αr

αm
∈ (M,+∞)

,

where M := min
{

x
a+b

, y
a
, z
b

}
, M := max

{
x
a+b

, x−z
a
, x−y

b

}
, and M := y−z

a−b .

Since the supply chain total cost is concave in s1 and s2 respectively from Proposition

8 and 10, its minimum must occur at one of the extreme points. Sharing responsibility

for inventory uncertainty between the manufacturer and a retailer is not optimal for the

supply chain. The ratio of αr/αm measures retailers’ cost of demand uncertainty relative

to the manufacturer’s. When the ratio of αr/αm is lower than M , the manufacturer’s cost

of uncertainty is sufficiently higher than the retailers’. It is cheaper to store inventory at

the retailers’ end. The optimal promised lead times are L + l + 1, and the manufacturer
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makes to order for both retailers. When the ratio of αr/αm lies between M and M , the

manufacturer’s cost of uncertainty is close to the retailers’, and the retailers have different

promised lead times. Whether retailer 1 or 2 gets 0 promised lead time depends on the

magnitude of supply chain cost reduction by shifting the inventory from either retailer to

the manufacturer. For example, when αr/αm is smaller than M , retailer 2 is an expensive

location to store inventory. It is optimal for the manufacturer to hold inventory for retailer 2

under 0 promised lead time. When the ratio of αr/αm is higher than M , the manufacturer’s

cost of uncertainty is sufficiently lower than the retailers’. It is cheaper to store inventory at

the manufacturer end. The optimal promised lead times are 0, and the manufacturer makes

to stock for both retailers.

Corollary 3. When c1 = c2 and
σ1j
σ2j

= c for all j ∈ {1, ..., J}, M = M = x
a+b

and

(
sC1 (L, l), sC2 (L, l)

)
=

 (L+ l + 1, L+ l + 1), if αr

αm
∈ (0, x

a+b
]

(0, 0), if αr

αm
∈ ( x

a+b
,+∞)

.

Note that c1 = c2 implies both retailers have the same holding and penalty costs.
σ1j
σ2j

= c

implies that the ratio between the standard deviations of two retailers are identical across J

products. Corollary 3 gives a condition under which different promised lead times are never

optimal. We remark that Proposition 12 and Corollary 3 also generalize the result from

the single-product supply chain in Barnes-Schuster et al. (2006) to a multi-product supply

chain.

3.3.2 Decentralized Supply Chain

The previous section establishes the optimal promised lead-times for a centrally controlled

supply chain. Next we focus on a decentralized supply chain in which the manufacturer’s

goal is to minimize her inventory cost by designing promised lead time contracts for the

retailers. Proposition 8 and 10 imply that the manufacturer prefers a longer promised lead
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time while retailers prefer shorter promised lead times. The concavity properties of the cost

functions suggest that the manufacturer may need to compensate/charge retailers with a

non-linear pricing scheme, so that the retailers are willing to accept different promised lead

times.

A promised lead time contract has two parameters: promised lead time sk and correspond-

ing per-period payment πk. The analysis of inventory costs under a certain sk determines πk.

When πk is positive, we interpret the monetary transaction as a payment from the manufac-

turer to retailer k. When designing promised lead time contracts, the manufacturer should

take two important factors into consideration. First, each retailer k’s inventory cost under

the contract should not exceed the market protection level, that is, the maximum acceptable

inventory cost Uk. Market protection levels prevent the manufacturer from over-exploiting

the retailers and create sufficiently profitable margins for them. Only if retailer k’s total

expected cost under promised lead time sk plus the corresponding payment πk is below Uk,

he is willing to accept the manufacturer’s contract. Second, the manufacturer should also

consider whether the retailers are in different markets (the manufacturer may offer different

contract terms) or in the same market (the manufacturer needs to offer similar terms and

let the retailers self select). In the following two subsections, we solve for the optimal lead

times for both market settings.

3.3.3 Different Market Setting

When the manufacturer sells to retailers in separate (e.g., geographically dispersed) mar-

kets, retailer k only observes his own promised lead time contract. The manufacturer can

design one contract for each retailer individually, while making sure each retailer accepts

the contract. The U1 and U2 may be different due to the different market setting. The
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manufacturer’s inventory minimization problem is as follows:

minimize Gm(L, l, s1, s2) + π1 + π2

(s1, π1), (s2, π2)

subject to G1(s1)− π1 ≤ U1

G2(s2)− π2 ≤ U2

s1, s2 ∈ {0, ..., L+ l + 1}

(3.4)

We denote the optimal solutions to (3.4) as sD1 (L, l), sD2 (L, l), πD1 (L, l), and πD2 (L, l). The

manufacturer’s objective function requires her to consider the total cost in both markets while

offering separate contracts in each. Even when the retailers operate in different markets, the

manufacturer’s problem above is not separable; the contract terms that the manufacturer

offers in one market depend on the contract terms offered in the other market. This occurs

because the manufacturer’s two-stage production process makes multiple customized end

products, each potentially serving to replenish inventory in both markets.

Proposition 13. sDk (L, l) = sCk (L, l) and πDk (L, l) = Gk

(
sDk (L, l)

)
− Uk for k ∈ {1, 2}.

When the multi-product manufacturer faces two retailers in different markets, she op-

timally offers the promised lead times that minimize not only her own expected cost, but

also the total supply chain expected inventory cost. In other words, the promised lead time

contracts coordinate the supply chain when retailers operate in different markets. Also no-

tice that the manufacturer may offer different terms to retailers from Proposition 12 and 13.

Retailers always incur their maximum acceptable inventory costs regardless of the promised

lead times.

3.3.4 Same Market Setting

When the retailers are in the same markets, the manufacturer may not be able to offer differ-

ent terms to different retailers in the same market, since offering retailer 1 a shorter promised
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lead time than that of retailer 2 may appear to be preferential treatment. Since passing the

Sherman Antitrust Act in 1890, the United States Congress has repeatedly demonstrated

the interest of the federal government in protecting normal marketplace competition in inter-

state commerce. The Federal Trade Commission enforces fair and nondiscriminatory business

practices according to statutes such as the Sherman Act (1890), Clayton Act (1914), and

Robinson-Patman Act (1936). Yet even if such service discrimination were legal, retailers

may demand fair treatment, an equal service policy. The manufacturer can avoid this com-

plication and maximize her profit by offering both retailers a menu of (s1, π1) and (s2, π2)

and allowing them to pick the contract of their choice. The retailers then segment themselves

according to their self-selections. The manufacturer’s optimization problem is as follows:

minimize Gm(L, l, s1, s2) + π1 + π2

(s1, π1), (s2, π2)

subject to Gk(sk)− πk ≤ U for k ∈ {1, 2}

Gk(sk)− πk ≤ Gk(sq)− πq for k, q ∈ {1, 2} and k 6= q

sk ∈ {0, . . . , L+ l + 1} for k ∈ {1, 2}

(3.5)

Problem (3.5) is a nonlinear program over s1, s2, π1, and π2. We denote its optimal

solutions as sS1 (L, l), sS2 (L, l), πS1 (L, l), and πS2 (L, l). The first set of participation constraints

in problem (3.5) ensure that the total expected cost Gk(sk) − πk for each retailer k will

not exceed his maximum acceptable inventory cost U . Due to the same market setting, we

assume without loss of generality (and to keep notation and discussion simple) the market

protection levels are the same for both retailers, i.e., U1 = U2 = U . The second set of

self-selection constraints ensure that each retailer k prefers the promised lead time contract

the manufacturer designs for him over the other.

67



Proposition 14.

(
sS1 (L, l), sS2 (L, l)

)
=


(L+ l + 1, L+ l + 1) if αr

αm
∈ (0, N ]

(0, L+ l + 1) if αr

αm
∈ (N,N ]

(0, 0) if αr

αm
∈ (N,+∞)

,

πS1 (L, l) = G1(sS1 (L, l))− U,

πS2 (L, l) = [G1(sS1 (L, l))−G2(sS1 (L, l))] +G2(sD2 (L, l))− U,

where N := min{ x
2α
, y

2α−b}, N := max{ x
2α
, x−y

b
}, and πD1 (L, l) ≤ πD2 (L, l).

According to Proposition 14, the optimal promised lead times fall into the set of {(L +

l + 1, L + l + 1), (0, L + l + 1), (0, 0)}. When the ratio of αr/αm is lower than N (resp.,

higher than N), the manufacturer’s cost of uncertainty is sufficiently higher (resp., lower)

than the retailers’. It is cheaper to store inventory at the retailers’ (resp., manufacturer’s)

end. The optimal promised lead times are L+ l + 1 (resp., 0), and the manufacturer makes

to order (resp., makes to stock) for both retailers. Recall that in both the centralized setting

and the different market setting, either retailer may get 0 promised lead time when the

manufacturer’s cost of uncertainty is close to the retailers’ (i.e., M ≤ αr/αm ≤ M). In

contrast, when the ratio of αr/αm lies between N and N in the same market setting, the

manufacturer designs a shorter promised lead time for retailer 1 who has a higher inventory

cost, and compensate him less or charge him more for his acceptance of the shorter lead time.

The difference is due to the self-selection constraints in problem (3.5). The manufacturer

knows that retailer 1, compared to retailer 2, has a higher inventory cost and is more sensitive

to an increase in promised lead time. To induce retailer 1 to select the contract intended

for him, the manufacturer need to design retailer 1’s contract with a shorter lead time. By

charging a higher premium for the shorter lead time, the manufacturer also prevents retailer

2 from selecting retailer 1’s contract.
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3.4 Postponement Effect

A postponement strategy corresponds to increasing the production lead time for the common

intermediate product L, while keeping the total production time L+ l fixed. By increasing L

for a fixed L+ l, the manufacturer can delay the point of product differentiation and thereby

be more responsive to retailers’ orders. We explore the properties of ψm(L, l, s1, s2) that are

necessary in determining the impact of postponement on the optimal lead time contract.

Proposition 15. The manufacturer’s effective standard deviation of production lead time

demand ψm(L, l, s1, s2) is concave decreasing in postponement.
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Figure 3.3. Impact of postponement pm = 3, hm = 2, L+ l = 15, J = 4, σ2
1j = 3, σ2

j2 = 2

Postponement affects the manufacturer’s effective standard deviation and therefore af-

fects both the optimal base stock level and the resulting expected per-period inventory cost.

An example is given in Figure 3.3 to illustrate Proposition 15. We fix L+ l = 15 and let L,
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or the postponement point, change from 0 to 15. If we also fix s1 and s2, the manufacturer’s

inventory cost Gm is a function of postponement. In Figure 3.3, Gm is concave decreasing

in postponement. When min{s1, s2} > L, the manufacturer knows all necessary demand

information before allocating intermediate product for customization. Further delaying the

production differentiation point does not bring in any extra benefit. Thus Gm is unaffected

by the postponement.

So far, we have extended existing literature about the impact of postponement on in-

ventory cost by incorporating promised lead times. Now we want to take supply chain

contract design into consideration. From Proposition 12, 13 and 14, optimal lead times in

three different market settings are specified by critical thresholds M , M , N and N . The

changing tendency of these thresholds with respect to postponement reveals the impact of

postponement on the promised lead time contracts.

Proposition 16. a) M and N are always decreasing in postponement,

b) M is decreasing in postponement if∑J
j=1 σ

2
1j[∑J

j=1 σ1j

]2 >

∑J
j=1(σ2

1j + σ2
2j)[∑J

j=1

√
σ2

1j + σ2
2j

]2 and

∑J
j=1 σ

2
2j[∑J

j=1 σ2j

]2 >

∑J
j=1(σ2

1j + σ2
2j)[∑J

j=1

√
σ2

1j + σ2
2j

]2 ,

c) N is decreasing in postponement if∑J
j=1 σ

2
1j[∑J

j=1 σ1j

]2 >

∑J
j=1(σ2

1j + σ2
2j)[∑J

j=1

√
σ2

1j + σ2
2j

]2 .

Proposition 16 illustrates the condition under which M , M , N and N are decreasing

in postponement. When the promised lead times are long (resp., short), the manufacturer

adopts a make-to-order (resp., make-to-stock) production mode. A postponement strategy

increases the likelihood that the manufacturer should optimally offer short promised lead

times and make to stock. In other words, a postponement strategy enables the supply chain
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to carry more inventory at the manufacturer end and be more responsive to the retailers.

Proposition 16 also shows that considering only the manufacturer’s inventory cost while

overlooking the impact on promised lead time contracts under estimates the benefits of

postponement strategy.

Corollary 4. When J = 2 or
σ1j
σ2j

= c for all j ∈ {1, ..., J}, M , M , N and N are always

decreasing in postponement.

If there are only two end products or the ratio between the standard deviations of retailers’

demands are identical across J products, postponement always leads to shorter promised lead

times.

3.5 Quantifying the Value of Postponement

To illustrate the impact of postponement on the optimal promised lead time contracts and

supply chain members’ inventory costs, we present a simple example in which the manufac-

turer produces two products in L + l = 4 periods. We set pm = pr = 3 and hm = hr = 2

for both the manufacturer and retailers. Retailer 1 has cost parameter c1 = 0.8 and demand

variances σ2
1,1 = σ2

1,2 = 7, while retailer 2 has cost parameter c2 = 1.5 and demand variances

σ2
2,1 = σ2

2,2 = 1.5. Compared to retailer 1, retailer 2 suffers less demand variation but more

holding and backlogging costs. The market protection levels are U1 = U2 = 10 for both the

retailers in both the different market setting and the same market setting.

Table 3.1. Postponement Impact in Centrailized Setting
Postponement Total Cost M’s Cost R’s Costs Optimal Lead Times
L l Gm +G1 +G2 Gm G1 G2 sC1 sC2
0 4 37.42 0 20.03 17.39 5 5
1 3 37.17 10.04 20.03 7.10 5 0
2 2 36.59 9.46 20.03 7.10 5 0
3 1 35.98 8.85 20.03 7.10 5 0
4 0 34.78 19.51 8.18 7.10 0 0
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In Table 3.1, we display the optimal promised lead time contract as a function of post-

ponement (L, l). From the first row, we can see that the optimal lead times are long, since

postponement effect is not strong enough to have an impact. It is optimal to store inventory

at the retailers’ end. Retailer 2 has much larger cost parameters than the manufacturer does.

When the manufacturer redesigns its production process and delay production differentia-

tion to a later point in the manufacturing process (i.e., for large L), storing inventory at the

manufacturer becomes less costly than at retailer 2. Thus, the manufacturer, in the 2nd, 3rd

and 4th rows, begins offering instantaneous delivery for retailer 2. As postponement goes

even further, manufacturer’s cost gets low enough to store inventory for the entire supply

chain. The promised lead times become zero in row 5. It is also easy to notice that the

supply chain total cost is decreasing with postponement. In Table 3.2, the total costs and

optimal lead times are the same as those in Table 3.1. The market protection level balance

the total cost among the manufacturer and the retailers. Both retailers always suffer their

largest cost, which is 10. In Table 3.3, the first interesting finding is that the total cost is

not decreasing in postponement. Compared to the different market case, the same market

setting has a higher manufacturer’s cost and lower retailers’ costs and different promised

lead time contracts.

Table 3.2. Postponement Impact in Different Market Setting
Postponement Total Cost M’s Cost R’s Cost Optimal Lead Times Optimal Payments
L l Gm +G1 +G2 Gm G1 G2 sD1 sD2 πD1 πD2
0 4 37.42 17.42 10 10 5 5 10.03 7.39
1 3 37.17 17.17 10 10 5 0 10.03 -2.90
2 2 36.59 16.59 10 10 5 0 10.03 -2.90
3 1 35.98 15.98 10 10 5 0 10.03 -2.90
4 0 34.78 14.78 10 10 0 0 -1.82 -2.90
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Table 3.3. Postponement Impact in Same Market Setting
Postponement Total Cost M’s Cost R’s Cost Optimal Lead Times Optimal Payments
L l Gm +G1 +G2 Gm G1 G2 sS1 sS2 πS1 πS2
0 4 37.42 20.06 10 7.36 5 5 10.03 10.03
1 3 37.42 20.06 10 7.36 5 5 10.03 10.03
2 2 37.80 18.88 10 8.92 0 0 -1.82 -1.82
3 1 36.34 17.43 10 8.92 0 0 -1.82 -1.82
4 0 34.78 15.86 10 8.92 0 0 -1.82 -1.82

3.6 Conclusion

In Chapter 3, we extend existing supply chain inventory cost models to a multi-product,

multi-retailer model with advance orders and delayed production differentiation. Addition-

ally, we allow retailers to differ in the products and service levels they provide to end con-

sumers. We discover the significant influence that postponement has on optimal promised

lead time contracts between a manufacturer and two retailers.

Due to supply chain coordination issues between the multi-product manufacturer and

the retailers, the manufacturer may need to compensate retailers with a non-linear pricing

scheme to accept different promised lead times. The ensuing portfolio of promised lead time

agreements is influenced by the extent to which the manufacturer postpones customization.

In a centrally controlled system, the manufacturer optimally offers either make-to-stock or

make-to-order service to each retailer.

When system control is not centralized, even when the retailers are geographically dis-

persed or in different markets, the manufacturer’s problem of determining optimal promised

lead times is not separable. That is, the optimal choice of promised lead times is not same

as the optimal promised lead time for a single retailer. Hence, our results provide a valu-

able guide to determining the optimal promised lead time agreement. Retailers incur their

maximum acceptable inventory cost, regardless of promised lead times or postponement.

When retailers are in the same market, the manufacturer provides a shorter promised

lead time for the retailer with a higher expected inventory cost, but the retailer pays more for
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it. We examine the behavior of the manufacturer’s non-linear pricing scheme with respect to

promised lead times. For the retailer having lower inventory costs, corresponding payment

is concave increasing in the promised lead times for both retailers. For the retailer having

higher inventory costs, the result differs. The corresponding payments to such a retailer is

concave increasing in his own promised lead time but not affected by the low cost retailer’s

promised lead time.

Our main contribution is the analysis of the impact of postponement on promised lead

time contracts. Postponement increases the likelihood that the manufacturer should opti-

mally make to stock (immediate delivery), and the retailers optimally do not carry inventory.

Our numerical example illustrate the potential requirement of supply chain contract reopti-

mization after postponement being adopted on the manufacturer end.
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CHAPTER 4

CONCLUSION

This dissertation explores how firms price dynamic upgrades to improve revenue and how

supply chain members share inventory risk through promised lead time pricing contracts.

Upgrading is a travel industry practice used to mitigate supply-demand mismatches

among products of different quality levels. Such upgrades are usually implemented either

at the booking time or at the check-in time. In Chapter 2, we consider dynamically-offered

upgrades between the booking and the check-in times by a firm that sells two types of

products (premium and regular). The firm decides on the timing and quantity of upgrades.

Customers who purchased the regular product may be offered upgrades via notifications con-

taining a link to an upgrade website. A regular product purchaser either accepts or rejects

the upgrade offer after clicking the link and observing the upgrade fee (price) dynamically

determined by the firm. The upgrade is time limited. When the upgrade process is not

profitable, the firm can stop it by deactivating the upgrade links. Formulating the firm’s

revenue maximization problem as a dynamic program, we show that the optimal upgrade

policy is of a pulsing type. The firm either maintains zero or the maximum number of active

links. Both the optimal number of active links and the optimal upgrade fee are monotone

with respect to the leftover capacities. We then propose and analyze two model variations:

one with a restricted upgrade fee choice set and one with upward stockout substitution, in

which the firm can sell a premium product to an arriving regular customer at a discount if

the regular product stocks out. Finally, through a systematic numerical study, we quantify

the revenue improvement from industry-standard check-in fixed-price upgrades to dynamic

pricing and timing of upgrades. We also identify the market environment, in which the

revenue improvement is significant across various models.

Postponement, or delayed product differentiation, is a common strategy for mass cus-

tomization. It directly affects the inventory policy and cost of a multi-product manufacturer,
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and may also have an impact on the interactions among supply chain members. In Chap-

ter 3, we focus on a two-stage supply chain consisting of a multi-product manufacturer and

two retailers. We specifically study the impact of postponement on promised lead time con-

tracts, under which the manufacturer guarantees on-time shipments of complete orders to

the retailers within the promised lead times. The optimal contracts designed by the man-

ufacturer depend on whether the retailers are in different markets (both retailers cannot

observe each other’s contract terms, and the manufacturer may discriminate between them)

or in the same market (contract terms are public information, and both retailers self-select

their contracts from a menu designed by the manufacturer). We characterize the optimal

promised lead times in both settings and compare them to those in a base setting where the

supply chain is under a centralized control. In all three settings, the optimal promised lead

time for each retailer is equal to either the total length of the manufacturer’s production

time (the longest) or zero (the shortest). In contrast to the centralized and different market

settings, the retailer with a lower inventory cost always gets a shorter promised lead time

in the same market setting. We then analyze the impact of postponement on the optimal

promised lead times in all three settings and characterize the conditions under which the

manufacturer shifts its production mode from make-to-order (when the promised lead times

are the longest) to make-to-stock (when the promised lead times are the shortest). Finally,

through numerical examples, we quantify the impact of postponement on the promised lead

time contracts and the inventory costs of supply chain members.
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APPENDIX A

SUPPLEMENTAL MATERIALS FOR CHAPTER 2

A.1 Notations and Proofs

Table A.1. Notations for Chapter 2
Firm

H : premium product initial capacity
L : regular product initial capacity
ph : premium product price
pl : regular product price
M : upgrade triggering level
C : maximum upgrade capability (i.e., maximum number of active links the firm can maintain)
h : premium leftover capacity
l : regular leftover capacity
u : number of active upgrade links
p : upgrade fee
n : time period
N : total number of time periods in the sales season

Vn(h, l) : expected optimal revenue function over periods [n : N + 1]
∆n(h, l) : upgrade opportunity value (i.e., diagonal difference of expected optimal revenue function)
δn(p, h, l) : expected upgrade revenue from an upgradeable customer at upgrade fee p
u∗n(h, l) : the optimal number of active upgrade links
p∗n(h, l) : the optimal upgrade fee
δ∗n(h, l) : the optimal expected upgrade revenue from an upgradeable customer
V r
n (h, l) : expected optimal revenue function of the restricted upgrade fee model

∆r
n(h, l) : upgrade opportunity value of the restricted upgrade fee model

ur : number of active upgrade links in the restricted upgrade fee model
ur,∗n (h, l) : the optimal number of active upgrade links in the restricted upgrade fee model
V s
n (h, l) : expected optimal revenue function of the upward substitution model

∆s
n(h, l) : upgrade opportunity value of the upward substitution model

f s : upward substitution fee
f s,∗n (h) : the optimal upward substitution fee

ps : upgrade fee in the upward substitution model
ps,∗n (h, l) : the optimal upgrade fee in the upward substitution model

us : number of active upgrade links in the upward substitution model
Customer

λh : premium customer arrival probability
λl : regular customer arrival probability
λ : upgradeable customer arrival probability when there is only one active link

α(p) : upgrade accepting probability at upgrade fee p
αs(f s) : upward substitution accepting probability at substitution fee f s

We define the revenue function π(p,∆) = α(p)(p + ∆) for a sale between a seller and a

buyer. ∆ > 0 can be interpreted as a third-party subsidy paid to the seller after each sale,

whereas ∆ ≤ 0 is a cost suffered by the seller. α(p) defined on [a, b] is the probability of a
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sale when the price is p, which can be derived from the tail probability of the reservation

price distribution. Let the maximum revenue be Π(∆) = maxp∈[a,b] α(p)(p + ∆). The set

of optimal prices is {p ∈ [a, b] : π(p,∆) = Π(∆)}, which is assumed to be closed. This

assumption is satisfied by distributions with an increasing failure rate, which makes the

set of optimal prices a singleton. Distributions with a non-increasing failure rate, such as

beta distribution with shape parameters as 1/2, also satisfy this assumption. The maximal

optimal price is defined as p∗(∆) = max{p ∈ [a, b] : π(p,∆) = Π(∆)}.

Lemma 1. For ∆1 ≥ ∆2, we have Π(∆1) ≥ Π(∆2) and p∗(∆1) ≤ p∗(∆2).

Proof of Lemma 1: The revenue function inequality follows from Π(∆2) = α(p∗(∆2))(∆2+

p∗(∆2)) ≤ α(p∗(∆2))(p∗(∆2) + ∆1) ≤ α(p∗(∆1))(p∗(∆1) + ∆1) = Π(∆1). A sufficient con-

dition for the optimal price inequality is π(p,∆2) ≤ π(p∗(∆1),∆2) for p ≤ p∗(∆1). Since

π(p∗(∆1),∆1) − π(p,∆1) ≥ 0, the sufficient condition holds if π(p∗(∆1),∆2) − π(p,∆2) ≥

π(p∗(∆1),∆1) − π(p,∆1) for p ≤ p∗(∆1). The last inequality reduces to α(p)(∆1 − ∆2) ≥

α(p∗(∆1))(∆1−∆2), which is true because ∆1 ≥ ∆2 and α(p) ≥ α(p∗(∆1)) for p ≤ p∗(∆1). �

From Lemma 1, the optimal revenue increases while the optimal price decreases in ∆. In

classic dynamic pricing literature, ∆ usually represents the opportunity cost of one unit of

product, which is always nonpositive. In Chapter 2, ∆ can be either positive, zero or neg-

ative. It represents the upgrade opportunity value ∆n+1(h, l) = Vn+1(h−1, l+1)−Vn+1(h, l).

Proof of Proposition 1: For (h, l) ∈ [1 : H]× [0 : M ], the optimal expected revenue is:

Vn(h, l) = (1− λh − λl)Vn+1(h, l) + λh[ph + Vn+1(h− 1, l)] + λl[pl1Il≥1 + Vn+1(h, l − 1Il≥1)]

+ max
u∈[0:C]

{
uλ max

p∈[0,ph−pl]
α(p)[p+ ∆n+1(h, l)]

}
= (1− λh − λl)Vn+1(h, l) + λh[ph + Vn+1(h− 1, l)] + λl[pl1Il≥1 + Vn+1(h, l − 1Il≥1)]

+ max
u∈[0:C]

{
uλδ∗n(h, l)

}
.
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Notice that Vn(h, l) is linear in u, whose coefficient is λδ∗n(h, l). If δ∗n(h, l) > 0, u∗n(h, l) = C.

If δ∗n(h, l) ≤ 0, u∗n(h, l) = 0. Thus, the optimal number of upgrade links in period n at state

(h, l) is: u∗n(h, l) = 1Iδ∗n(h,l)>0C. �

To better understand the optimal dynamic upgrade policy, we study the properties of the

value function Vn(h, l). The following Lemma 2 is part of property d) and e) in Proposition

2 and can be proved separately. It implies that the expected value of one unit of product is

never greater than its price.

Lemma 2. Vn(1, 0)− Vn(0, 0) ≤ ph and Vn(0, 1)− Vn(0, 0) ≤ pl for n ∈ [1 : N + 1].

Proof of Lemma 2: For brevity, we use p∗h,l to represent p∗n(h, l) during this proof.

Because the optimal upgrade fee is picked from [0, ph − pl], we have 0 ≤ p∗h,l ≤ ph − pl.

Since Vn(0, 0) = 0, Lemma 2 is equivalent to Vn(0, 1) ≤ pl and Vn(1, 0) ≤ ph. The proof

is by induction. In period N + 1, VN+1(0, 1) = VN+1(1, 0) = 0 ≤ min{pl, ph}. Assuming

Vn+1(0, 1) ≤ pl and Vn+1(1, 0) ≤ ph, we want to validate Vn(0, 1) ≤ pl and Vn(1, 0) ≤ ph. We

have Vn(0, 1) ≤ pl, since Vn(0, 1) = (1 − λl)Vn+1(0, 1) + λlpl. For the inequality of Vn(1, 0),

we use Equation (2.5). When δ∗n(1, 0) ≤ 0, Vn(1, 0) = (1− λh)Vn+1(1, 0) + λhph ≤ ph. When

δ∗n(1, 0) > 0,

Vn(1, 0) = [1− λh − Cλ]Vn+1(1, 0) + λhph + Cλα(p∗1,0)[p∗1,0 + Vn+1(0, 1)]

+Cλ[1− α(p∗1,0)]Vn+1(1, 0)

≤ [1− λh − Cλ]ph + λhph + Cλα(p∗1,0)(p∗1,0 + pl) + Cλ[1− α(p∗1,0)]ph

≤ [1− λh − Cλ]ph + λhph + Cλα(p∗1,0)ph + Cλ[1− α(p∗1,0)]ph

= ph.

So Vn(0, 1) ≤ pl and Vn(1, 0) ≤ ph, which complete the induction step. �
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We introduce three new notations to shorten our following proofs:

Ψ[Vn+1(h, l)] = (1− λh − λl)Vn+1(h, l) + λh[ph1Ih≥1 + Vn+1(h− 1Ih≥1, l)]

+λl[pl1Il≥1 + Vn+1(h, l − 1Il≥1)],

∆h
n(h, l) = Vn(h, l)− Vn(h− 1, l),

∆l
n(h, l) = Vn(h, l)− Vn(h, l − 1).

Functional Ψ in Ψ[Vn+1(h, l)] is a short-hand notation to capture the expected revenue at

state (h, l) over periods [n : N+1] if upgrades are not offered in period n. Thus, the expected

optimal revenue at (h, l) ∈ [1 : H]× [0 : M ] can be written as

Vn(h, l) = Ψ[Vn+1(h, l)] + max
u∈[0:C] and p∈[0,ph−pl]

uλα(p)[p+ ∆n+1(h, l)].

The horizontal difference ∆h
n(h, l) is defined to represent the marginal value of the hth unit of

premium product when the leftover capacities are (h, l) in period n. The vertical difference

∆l
n(h, l) is defined to represent the marginal value of the lth unit of regular product when

the leftover capacities are (h, l) in period n.

Before the proof of Proposition 2, we provide two counterexamples in Figure A.1 to

show that neither DH-modularity nor DV-modularity follows from the other four proper-

ties. Similar to these and the counterexample in the main body of Chapter 2 showing that

submodularity does not follow from the other four properties, we can also construct coun-

terexamples showing that neither H-concavity nor V-concavity follows from the other four

properties. Thus, each property needs to be individually proved.

Proof of Proposition 2: We prove all five properties by induction. They are true in period

N + 1, since VN+1(h, l) = 0. As the induction hypothesis, we assume all five properties are

true in period n + 1, and validate them one by one in period n. DP formulations are

different on the corner point (0, 0), two boundaries (0, l) for l > 0 and (h, 0) for h > 0, and
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Figure A.1. DH-modularity and DV-modularity counterexamples

in the interior region (h, l) for h, l > 0. The proof of each property consists of four parts

corresponding to these four regions. For brevity, we use p∗h,l to represent p∗n(h, l).

When properties DH- and DV-modularity are true in period n+ 1, δn(p, h, l) = α(p)[p+

∆n+1(h, l)], δ∗n(h, l) = maxp∈[0,ph−pl] δn(p, h, l) and Lemma 1 imply

δ∗n(h, l + 1) ≤ δ∗n(h, l) ≤ δ∗n(h+ 1, l) and p∗h,l+1 ≥ p∗h,l ≥ p∗h+1,l. (A.1)

Inequalities in (A.1) are used repeatedly to determine if upgrades should be offered at a

certain state (h, l) in period n. Because of inequalities in (A.1), the proof for each property

in each region contains multiple cases listed in Table A.2. DH-, DV-, sub-modularity are two-

dimensional properties, whose proofs are similar. H- and V -concavities are one-dimensional

properties, whose proofs are similar. We introduce the following three notations to shorten

our proofs for the interior region:

Ψ[Vn+1(h, l)] = (1− λh − λl)Vn+1(h, l) + λh[ph1Ih≥1 + Vn+1(h− 1Ih≥1, l)]

+λl[pl1Il≥1 + Vn+1(h, l − 1Il≥1)],

∆h
n(h, l) = Vn(h, l)− Vn(h− 1, l),

∆l
n(h, l) = Vn(h, l)− Vn(h, l − 1).
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Table A.2. Number of cases and the required properties in period n + 1 for each property
and region pair

Regions
Property in period n Interior Horizontal boundary Vertical boundary Corner
a) Submodularity 6 cases 6 cases 3 cases 3 cases
Proof of a) requires a), b), c), d) ,e) a), b), c), d), e) a), b), c) a), b), c)
b) DH-modularity 5 cases 5 cases 4 cases 4 cases
Proof of b) requires b), c) a), b), c) a), b), c), Lemma 2 a), b), c), Lemma 2
c) DV-modularity 5 cases 5 cases 3 cases 3 cases
Proof of c) requires b), c) a), b), c), Lemma 2 a), b), c) a), b), c), Lemma 2
d) H-concavity 4 cases 4 cases 3 cases 3 cases
Proof of d) requires a), b), c), d) a), b), c), d) a), b), c), d), Lemma 2 a), b), c), d), Lemma 2
e) V -concavity 4 cases 4 cases 1 case 1 case
Proof of e) requires a), b), c), e) a), b), c), e), Lemma 2 e) e), Lemma 2

Proof of property a): [0 : H−1]×[0 : M ] is partitioned into the interior [1 : H−1]×[1 : M ],

the horizontal boundary [1 : H−1]×{0}, the vertical boundary {0}× [1 : M ] and the corner

(0, 0). The submodularity property at state (h, l) ∈ [0 : H − 1]× [0 : M ] in period n can be

equivalently expressed as

Vn(h, l + 1)− Vn(h, l) ≥ Vn(h+ 1, l + 1)− Vn(h+ 1, l),

∆l
n(h, l + 1) ≥ ∆l

n(h+ 1, l + 1),

Vn(h+ 1, l)− Vn(h, l) ≥ Vn(h+ 1, l + 1)− Vn(h, l + 1),

∆h
n(h+ 1, l) ≥ ∆h

n(h+ 1, l + 1).

For most cases, we obtain the last two inequality. The inequalities involve states (h, l + 1),

(h, l), (h+ 1, l + 1) and (h+ 1, l). Specializing Inequalities (A.1) for these states, we obtain

δ∗n(h, l + 1) ≤ δ∗n(h, l) ≤ δ∗n(h+ 1, l) and δ∗n(h, l + 1) ≤ δ∗n(h+ 1, l + 1) ≤ δ∗n(h+ 1, l). Notice

that not all of δ∗ can be ordered. In particular, δ∗n(h, l) can be either larger or smaller than

δ∗n(h+ 1, l + 1).

Interior [1 : H − 1]× [1 : M ]. There are 6 possible cases.
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Case 1: δ∗n(h, l + 1) ≤ {δ∗n(h, l), δ∗n(h+ 1, l + 1)} ≤ δ∗n(h+ 1, l) ≤ 0.

Vn(h+ 1, l)

= (1− λh − λl)Vn+1(h+ 1, l) + λh[ph + Vn+1(h, l)] + λl[pl + Vn+1(h+ 1, l − 1)],

Vn(h, l)

= (1− λh − λl)Vn+1(h, l) + λh[ph + Vn+1(h− 1, l)] + λl[pl + Vn+1(h, l − 1)],

Vn(h+ 1, l + 1)

= (1− λh − λl)Vn+1(h+ 1, l + 1) + λh[ph + Vn+1(h, l + 1)] + λl[pl + Vn+1(h+ 1, l)],

Vn(h, l + 1)

= (1− λh − λl)Vn+1(h, l + 1) + λh[ph + Vn+1(h− 1, l + 1)] + λl[pl + Vn+1(h, l)].

From the submodularity in period n + 1, we have ∆h
n(h + 1, l) ≥ ∆h

n(h + 1, l + 1) through

term-by-term comparisons.

Case 2: δ∗n(h, l + 1) ≤ {δ∗n(h, l), δ∗n(h+ 1, l + 1)} < δ∗n(h+ 1, l).

Vn(h+ 1, l) = Ψ[Vn+1(h+ 1, l)] + Cλδ∗n(h+ 1, l) ≥ Ψ[Vn+1(h+ 1, l)],

Vn(h, l) = Ψ[Vn+1(h, l)],

Vn(h+ 1, l + 1) = Ψ[Vn+1(h+ 1, l + 1)],

Vn(h, l + 1) = Ψ[Vn+1(h, l + 1)].

The inequality is from δ∗n(h + 1, l) ≥ 0. Due to the submodularity in period n + 1, we have

∆h
n(h+ 1, l) ≥ ∆h

n(h+ 1, l + 1).

Case 3: δ∗n(h, l + 1) ≤ δ∗n(h+ 1, l + 1) ≤ 0 < δ∗n(h, l) ≤ δ∗n(h+ 1, l).

Vn(h+ 1, l) = Ψ[Vn+1(h+ 1, l)] + Cλδ∗n(h+ 1, l),

Vn(h, l) = Ψ[Vn+1(h, l)] + Cλδ∗n(h, l),

Vn(h+ 1, l + 1) = Ψ[Vn+1(h+ 1, l + 1)],

Vn(h, l + 1) = Ψ[Vn+1(h, l + 1)].
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∆h
n(h+ 1, l) = (1− λh − λl)∆h

n+1(h+ 1, l) + λh∆h
n+1(h, l) + λl∆h

n+1(h+ 1, l − 1)

+Cλ[δ∗n(h+ 1, l)− δ∗n(h, l)]

≥ (1− λh − λl)∆h
n+1(h+ 1, l) + λh∆h

n+1(h, l) + λl∆h
n+1(h+ 1, l − 1),

∆h
n(h+ 1, l + 1) = (1− λh − λl)∆h

n+1(h+ 1, l + 1) + λh∆h
n+1(h, l + 1) + λl∆h

n+1(h+ 1, l).

The inequality is from δ∗n(h+ 1, l) ≥ δ∗n(h, l). Due to the submodularity in period n+ 1, we

have ∆h
n(h+ 1, l) ≥ ∆h

n(h+ 1, l + 1) through term-by-term comparisons.

Case 4: δ∗n(h, l + 1) ≤ δ∗n(h, l) ≤ 0 < δ∗n(h+ 1, l + 1) ≤ δ∗n(h+ 1, l).

Vn(h+ 1, l) = Ψ[Vn+1(h+ 1, l)] + Cλδ∗n(h+ 1, l),

Vn(h, l) = Ψ[Vn+1(h, l)],

Vn(h+ 1, l + 1) = Ψ[Vn+1(h+ 1, l + 1)] + Cλδ∗n(h+ 1, l + 1),

Vn(h, l + 1) = Ψ[Vn+1(h, l + 1)].

∆h
n(h+ 1, l) = (1− λh − λl)∆h

n+1(h+ 1, l) + λh∆h
n+1(h, l) + λl∆h

n+1(h+ 1, l − 1)

+Cλδ∗n(h+ 1, l),

∆h
n(h+ 1, l + 1) = (1− λh − λl)∆h

n+1(h+ 1, l + 1) + λh∆h
n+1(h, l + 1) + λl∆h

n+1(h+ 1, l)

+Cλδ∗n(h+ 1, l + 1).

Due to the submodularity in period n + 1 and δ∗n(h + 1, l) ≥ δ∗n(h + 1, l + 1), we have

∆h
n(h+ 1, l) ≥ ∆h

n(h+ 1, l + 1) through term-by-term comparisons.

Case 5: δ∗n(h, l + 1) ≤ 0 < {δ∗n(h+ 1, l + 1), δ∗n(h, l)} ≤ δ∗n(h+ 1, l).

Since δ∗n(h+1, l+1) can be larger or smaller than δ∗n(h, l), this is the most complicated case

in the entire proof. We consider two subcases: Subcase A is ∆n+1(h, l) ≤ ∆n+1(h+1, l+1) and

Subcase B is ∆n+1(h, l) ≥ ∆n+1(h+1, l+1). We obtain different but equivalent submodularity

inequalities for each case, in particular ∆l
n(h, l + 1) ≥ ∆l

n(h + 1, l + 1) for Subcase A and

∆h
n(h+ 1, l) ≥ ∆h

n(h+ 1, l + 1) for Subcase B.
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Subcase A: ∆n+1(h, l) ≤ ∆n+1(h+ 1, l+ 1). By Lemma 1, ∆n+1(h, l) ≤ ∆n+1(h+ 1, l+ 1)

implies δ∗n(h, l) ≤ δ∗n(h+ 1, l + 1), p∗h,l ≥ p∗h+1,l+1 and α(p∗h,l) ≤ α(p∗h+1,l+1).

Vn(h, l + 1) = Ψ[Vn+1(h, l + 1)]

≥ Ψ[Vn+1(h, l + 1)] + Cλδ∗n(h, l + 1)

≥ Ψ[Vn+1(h, l + 1)] + Cλα(p∗h,l)[p
∗
h,l + Vn+1(h− 1, l + 2)− Vn+1(h, l + 1)],

Vn(h, l) = Ψ[Vn+1(h, l)] + Cλα(p∗h,l)[p
∗
h,l + Vn+1(h− 1, l + 1)− Vn+1(h, l)],

Vn(h+ 1, l + 1) = Ψ[Vn+1(h+ 1, l + 1)]

+Cλα(p∗h+1,l+1)[p∗h+1,l+1 + Vn+1(h, l + 2)− Vn+1(h+ 1, l + 1)],

Vn(h+ 1, l) = Ψ[Vn+1(h+ 1, l)] + Cλα(p∗h+1,l)[p
∗
h+1,l + Vn+1(h, l + 1)− Vn+1(h+ 1, l)]

≥ Ψ[Vn+1(h+ 1, l)]

+Cλα(p∗h+1,l+1)[p∗h+1,l+1 + Vn+1(h, l + 1)− Vn+1(h+ 1, l)].

Above, the first inequality follows from δ∗n(h, l + 1) ≤ 0. The second and third follow from

the facts that p∗h,l and p∗h+1,l+1 are not the optimal fees for δn(p, h, l + 1) and δn(p, h + 1, l),

respectively.

∆l
n(h, l + 1)

≥ (1− λh − λl)∆l
n+1(h, l + 1) + λh∆l

n+1(h− 1, l + 1) + λl∆l
n+1(h, l)

+Cλα(p∗h,l)[Vn+1(h− 1, l + 2)− Vn+1(h− 1, l + 1) + Vn+1(h, l)− Vn+1(h, l + 1)]

= [1− λh − λl − Cλα(p∗h+1,l+1)]∆l
n+1(h, l + 1) + λh∆l

n+1(h− 1, l + 1) + λl∆l
n+1(h, l)

+Cλα(p∗h,l)∆
l
n+1(h− 1, l + 2) + Cλ[α(p∗h+1,l+1)− α(p∗h,l)]∆

l
n+1(h, l + 1)

≥ [1− λh − λl − Cλα(p∗h+1,l+1)]∆l
n+1(h, l + 1) + λh∆l

n+1(h− 1, l + 1) + λl∆l
n+1(h, l)

+Cλα(p∗h+1,l+1)∆l
n+1(h, l + 2)
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The second inequality is from α(p∗h+1,l+1)−α(p∗h,l) ≥ 0, the submodularity ∆l
n+1(h−1, l+2) ≥

∆l
n+1(h, l + 2) and the V -concavity ∆l

n+1(h, l + 1) ≥ ∆l
n+1(h, l + 2).

∆l
n(h+ 1, l + 1)

≤ (1− λh − λl)∆l
n+1(h+ 1, l + 1) + λh∆l

n+1(h, l + 1) + λl∆l
n+1(h+ 1, l)

+Cλα(p∗h+1,l+1)[Vn+1(h, l + 2)− Vn+1(h, l + 1) + Vn+1(h+ 1, l)− Vn+1(h+ 1, l + 1)]

= [1− λh − λl − Cλα(p∗h+1,l+1)]∆l
n+1(h+ 1, l + 1) + λh∆l

n+1(h, l + 1) + λl∆l
n+1(h+ 1, l)

+Cλα(p∗h+1,l+1)∆l
n+1(h, l + 2)

The submodularity in period n + 1 then implies the submodularity ∆l
n(h, l + 1) ≥ ∆l

n(h +

1, l + 1) in period n through term-by-term comparisons.

Subcase B: ∆n+1(h, l) ≥ ∆n+1(h+ 1, l+ 1). By Lemma 1, ∆n+1(h, l) ≥ ∆n+1(h+ 1, l+ 1)

implies δ∗n(h, l) ≥ δ∗n(h+ 1, l + 1), p∗h,l ≤ p∗h+1,l+1 and α(p∗h,l) ≥ α(p∗h+1,l+1).

Vn(h+ 1, l) = Ψ[Vn+1(h+ 1, l)] + Cλα(p∗h+1,l)[p
∗
h+1,l + Vn+1(h, l + 1)− Vn+1(h+ 1, l)]

≥ Ψ[Vn+1(h+ 1, l)] + Cλα(p∗h,l)[p
∗
h,l + Vn+1(h, l + 1)− Vn+1(h+ 1, l)],

Vn(h, l) = Ψ[Vn+1(h, l)] + Cλα(p∗h,l)[p
∗
h,l + Vn+1(h− 1, l + 1)− Vn+1(h, l)],

Vn(h+ 1, l + 1) = Ψ[Vn+1(h+ 1, l + 1)]

+Cλα(p∗h+1,l+1)[p∗h+1,l+1 + Vn+1(h, l + 2)− Vn+1(h+ 1, l + 1)],

Vn(h, l + 1) = Ψ[Vn+1(h, l + 1)]

≥ Ψ[Vn+1(h, l + 1)] + Cλδ∗n(h, l + 1)

≥ Ψ[Vn+1(h, l + 1)]

+Cλα(p∗h+1,l+1)[p∗h+1,l+1 + Vn+1(h− 1, l + 2)− Vn+1(h, l + 1)].

Above, the first inequality follows from the fact that p∗h,l is not the optimal fee for δn(p, h+

1, l). The second inequality is from δ∗n(h, l + 1) ≤ 0. The third inequality follows from the
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fact that p∗h+1,l+1 is not the optimal fee for δn(p, h, l + 1).

∆h
n(h+ 1, l)

≥ (1− λh − λl)∆h
n+1(h+ 1, l) + λh∆h

n+1(h, l) + λl∆h
n+1(h+ 1, l − 1)

+Cλα(p∗h,l)[Vn+1(h, l + 1)− Vn+1(h− 1, l + 1) + Vn+1(h, l)− Vn+1(h+ 1, l)]

= [1− λh − λl − Cλα(p∗h,l)]∆
h
n+1(h+ 1, l) + λh∆h

n+1(h, l) + λl∆h
n+1(h+ 1, l − 1)

+Cλα(p∗h,l)∆
h
n+1(h, l + 1).

∆h
n(h+ 1, l + 1)

≤ (1− λh − λl)∆h
n+1(h+ 1, l + 1) + λh∆h

n+1(h, l + 1) + λl∆h
n+1(h+ 1, l)

+Cλα(p∗h+1,l+1)[Vn+1(h, l + 2)− Vn+1(h− 1, l + 2) + Vn+1(h, l + 1)− Vn+1(h+ 1, l + 1)]

= [1− λh − λl − Cλα(p∗h,l)]∆
h
n+1(h+ 1, l + 1) + λh∆h

n+1(h, l + 1) + λl∆h
n+1(h+ 1, l)

+Cλα(p∗h+1,l+1)∆h
n+1(h, l + 2) + Cλ[α(p∗h,l)− α(p∗h+1,l+1)]∆h

n+1(h+ 1, l + 1)

≤ [1− λh − λl − Cλα(p∗h,l)]∆
h
n+1(h+ 1, l + 1) + λh∆h

n+1(h, l + 1) + λl∆h
n+1(h+ 1, l)

+Cλα(p∗h,l)∆
h
n+1(h, l + 1).

The third inequality follows from the submodularity ∆h
n+1(h, l+ 2) ≤ ∆h

n+1(h, l+ 1) and the

H-concavity ∆h
n+1(h + 1, l + 1) ≤ ∆h

n+1(h, l + 1). The submodularity in period n + 1 then

implies the submodularity ∆h
n(h+ 1, l) ≥ ∆h

n(h+ 1, l+ 1) in period n through term-by-term

comparisons.

Case 6: 0 < δ∗n(h, l + 1) ≤ {δ∗n(h + 1, l + 1), δ∗n(h, l)} ≤ δ∗n(h + 1, l). The proof follows

similar arguments as in Case 5.
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Subcase A: ∆n+1(h, l) ≤ ∆n+1(h+ 1, l+ 1). By Lemma 1, ∆n+1(h, l) ≤ ∆n+1(h+ 1, l+ 1)

implies δ∗n(h, l) ≤ δ∗n(h+ 1, l + 1), p∗h,l ≥ p∗h+1,l+1 and α(p∗h,l) ≤ α(p∗h+1,l+1).

Vn(h, l + 1)

= Ψ[Vn+1(h, l + 1)] + Cλδ∗n(h, l + 1)

≥ Ψ[Vn+1(h, l + 1)] + Cλα(p∗h,l)[p
∗
h,l + Vn+1(h− 1, l + 2)− Vn+1(h, l + 1)],

Vn(h, l)

= Ψ[Vn+1(h, l)] + Cλα(p∗h,l)[p
∗
h,l + Vn+1(h− 1, l + 1)− Vn+1(h, l)],

Vn(h+ 1, l + 1)

= Ψ[Vn+1(h+ 1, l + 1] + Cλα(p∗h+1,l+1)[p∗h+1,l+1 + Vn+1(h, l + 2)− Vn+1(h+ 1, l + 1)],

Vn(h+ 1, l)

= Ψ[Vn+1(h+ 1, l) + Cλα(p∗h+1,l)[p
∗
h+1,l + Vn+1(h, l + 1)− Vn+1(h+ 1, l)]

≥ Ψ[Vn+1(h+ 1, l)] + Cλα(p∗h+1,l+1)[p∗h+1,l+1 + Vn+1(h, l + 1)− Vn+1(h+ 1, l)].

Above, the first and second inequalities follow from the facts that p∗h,l and p∗h+1,l+1 are not

the optimal fees for δn(p, h, l + 1) and δn(p, h+ 1, l), respectively.

∆l
n(h, l + 1)

≥ (1− λh − λl)∆l
n+1(h, l + 1) + λh∆l

n+1(h− 1, l + 1) + λl∆l
n+1(h, l)

+Cλα(p∗h,l)[Vn+1(h− 1, l + 2)− Vn+1(h− 1, l + 1) + Vn+1(h, l)− Vn+1(h, l + 1)]

= [1− λh − λl − Cλα(p∗h+1,l+1)]∆l
n+1(h, l + 1) + λh∆l

n+1(h− 1, l + 1) + λl∆l
n+1(h, l)

+Cλα(p∗h,l)∆
l
n+1(h− 1, l + 2) + Cλ[α(p∗h+1,l+1)− α(p∗h,l)]∆

l
n+1(h, l + 1)

≥ [1− λh − λl − Cλα(p∗h+1,l+1)]∆l
n+1(h, l + 1) + λh∆l

n+1(h− 1, l + 1) + λl∆l
n+1(h, l)

+Cλα(p∗h+1,l+1)∆l
n+1(h, l + 2).
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The second inequality is from α(p∗h+1,l+1)−α(p∗h,l) ≥ 0, the submodularity ∆l
n+1(h−1, l+2) ≥

∆l
n+1(h, l + 2) and the V -concavity ∆l

n+1(h, l + 1) ≥ ∆l
n+1(h, l + 2).

∆l
n(h+ 1, l + 1)

≤ (1− λh − λl)∆l
n+1(h+ 1, l + 1) + λh∆l

n+1(h, l + 1) + λl∆l
n+1(h+ 1, l)

+Cλα(p∗h+1,l+1)[Vn+1(h, l + 2)− Vn+1(h, l + 1) + Vn+1(h+ 1, l)− Vn+1(h+ 1, l + 1)]

= [1− λh − λl − Cλα(p∗h+1,l+1)]∆l
n+1(h+ 1, l + 1) + λh∆l

n+1(h, l + 1) + λl∆l
n+1(h+ 1, l)

+Cλα(p∗h+1,l+1)∆l
n+1(h, l + 2).

The submodularity in period n + 1 then implies the submodularity ∆l
n(h, l + 1) ≥ ∆l

n(h +

1, l + 1) in period n through term-by-term comparisons.

Subcase B: ∆n+1(h, l) ≥ ∆n+1(h+ 1, l+ 1). By Lemma 1, ∆n+1(h, l) ≥ ∆n+1(h+ 1, l+ 1)

implies δ∗n(h, l) ≥ δ∗n(h+ 1, l + 1), p∗h,l ≤ p∗h+1,l+1 and α(p∗h,l) ≥ α(p∗h+1,l+1).

Vn(h+ 1, l) = Ψ[Vn+1(h+ 1, l)] + Cλα(p∗h+1,l)[p
∗
h+1,l + Vn+1(h, l + 1)− Vn+1(h+ 1, l)]

≥ Ψ[Vn+1(h+ 1, l)] + Cλα(p∗h,l)[p
∗
h,l + Vn+1(h, l + 1)− Vn+1(h+ 1, l)],

Vn(h, l) = Ψ[Vn+1(h, l)] + Cλα(p∗h,l)[p
∗
h,l + Vn+1(h− 1, l + 1)− Vn+1(h, l)],

Vn(h+ 1, l + 1) = Ψ[Vn+1(h+ 1, l + 1)]

+Cλα(p∗h+1,l+1)[p∗h+1,l+1 + Vn+1(h, l + 2)− Vn+1(h+ 1, l + 1)],

Vn(h, l + 1) = Ψ[Vn+1(h, l + 1) + Cλδ∗n(h, l + 1)

≥ Ψ[Vn+1(h, l + 1)

+Cλα(p∗h+1,l+1)[p∗h+1,l+1 + Vn+1(h− 1, l + 2)− Vn+1(h, l + 1)].
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Above, the first and second inequalities follow from the facts that p∗h,l and p∗h+1,l+1 are not

the optimal fees for δn(p, h+ 1, l) and δn(p, h, l + 1), respectively.

∆h
n(h+ 1, l)

≥ (1− λh − λl)∆h
n+1(h+ 1, l) + λh∆h

n+1(h, l) + λl∆h
n+1(h+ 1, l − 1)

+Cλα(p∗h,l)[Vn+1(h, l + 1)− Vn+1(h− 1, l + 1) + Vn+1(h, l)− Vn+1(h+ 1, l)]

= [1− λh − λl − Cλα(p∗h,l)]∆
h
n+1(h+ 1, l) + λh∆h

n+1(h, l) + λl∆h
n+1(h+ 1, l − 1)

+Cλα(p∗h,l)∆
h
n+1(h, l + 1).

∆h
n(h+ 1, l + 1)

≤ (1− λh − λl)∆h
n+1(h+ 1, l + 1) + λh∆h

n+1(h, l + 1) + λl∆h
n+1(h+ 1, l)

+Cλα(p∗h+1,l+1)[Vn+1(h, l + 2)− Vn+1(h− 1, l + 2) + Vn+1(h, l + 1)− Vn+1(h+ 1, l + 1)]

= [1− λh − λl − Cλα(p∗h,l)]∆
h
n+1(h+ 1, l + 1) + λh∆h

n+1(h, l + 1) + λl∆h
n+1(h+ 1, l)

+Cλα(p∗h+1,l+1)∆h
n+1(h, l + 2) + Cλ[α(p∗h,l)− α(p∗h+1,l+1)]∆h

n+1(h+ 1, l + 1)

≤ [1− λh − λl − Cλα(p∗h,l)]∆
h
n+1(h+ 1, l + 1) + λh∆h

n+1(h, l + 1) + λl∆h
n+1(h+ 1, l)

+Cλα(p∗h,l)∆
h
n+1(h, l + 1).

The second inequality follows from the submodularity ∆h
n+1(h, l+2) ≤ ∆h

n+1(h, l+1), the H-

concavity ∆h
n+1(h+1, l+1) ≤ ∆h

n+1(h, l+1) and α(p∗h,l)−α(p∗h+1,l+1) ≥ 0. The submodularity

in period n + 1 then implies the submodularity ∆h
n(h + 1, l) ≥ ∆h

n(h + 1, l + 1) in period n

through term-by-term comparisons.

Horizontal boundary [1 : H − 1]× {0}. There are 6 possible cases similar to the interior

region.
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Case 1: δ∗n(h, 1) ≤ {δ∗n(h, 0), δ∗n(h+ 1, 1)} ≤ δ∗n(h+ 1, 0) ≤ 0.

Vn(h+ 1, 0) = (1− λh)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)],

Vn(h, 0) = (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)],

Vn(h+ 1, 1) = (1− λh − λl)Vn+1(h+ 1, 1) + λh[ph + Vn+1(h, 1)] + λl[pl + Vn+1(h+ 1, 0)],

Vn(h, 1) = (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)].

∆h
n(h+ 1, 0) = (1− λh)∆h

n+1(h+ 1, 0) + λh∆h
n+1(h, 0)

= (1− λh − λl)∆h
n+1(h+ 1, 0) + λh∆h

n+1(h, 0) + λl∆h
n+1(h+ 1, 0)

∆h
n(h+ 1, 1) = (1− λh − λl)∆h

n+1(h+ 1, 1) + λh∆h
n+1(h, 1) + λl∆h

n+1(h+ 1, 0).

Due to the submodularity in period n+1, we have (1−λh−λl)∆h
n+1(h+1, 0)+λh∆h

n+1(h, 0) ≥

(1− λh − λl)∆h
n+1(h+ 1, 1) + λh∆h

n+1(h, 1). Thus ∆h
n(h+ 1, 0) ≥ ∆h

n(h+ 1, 1).

Case 2: δ∗n(h, 1) ≤ {δ∗n(h, 0), δ∗n(h+ 1, 1)} ≤ 0 < δ∗n(h+ 1, 0).

Vn(h+ 1, 0) = (1− λh)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)] + Cλδ∗n(h+ 1, 0)

≥ (1− λh)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)],

Vn(h, 0) = (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)],

Vn(h+ 1, 1) = (1− λh − λl)Vn+1(h+ 1, 1) + λh[ph + Vn+1(h, 1)] + λl[pl + Vn+1(h+ 1, 0)],

Vn(h, 1) = (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)].

The inequality is from δ∗n(h+ 1, 0) ≥ 0. Then, the proof is similar to Case 1.

Case 3: δ∗n(h, 1) ≤ δ∗n(h+ 1, 1) ≤ 0 < δ∗n(h, 0) ≤ δ∗n(h+ 1, 0).

Vn(h+ 1, 0) = (1− λh)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)] + Cλδ∗n(h+ 1, 0),

Vn(h, 0) = (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)] + Cλδ∗n(h, 0),

Vn(h+ 1, 1) = (1− λh − λl)Vn+1(h+ 1, 1) + λh[ph + Vn+1(h, 1)] + λl[pl + Vn+1(h+ 1, 0)],

Vn(h, 1) = (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)].
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∆h
n(h+ 1, 0) = (1− λh)∆h

n+1(h+ 1, 0) + λh∆h
n+1(h, 0) + Cλ[δ∗n(h+ 1, 0)− δ∗n(h, 0)]

≥ (1− λh)∆h
n+1(h+ 1, 0) + λh∆h

n+1(h, 0),

∆h
n(h+ 1, 1) = (1− λh − λl)∆h

n+1(h+ 1, 1) + λh∆h
n+1(h, 1) + λl∆h

n+1(h+ 1, 0).

The inequality is from δ∗n(h+ 1, 0) ≥ δ∗n(h, 0). Then, the proof is similar to Case 1.

Case 4: δ∗n(h, 1) ≤ δ∗n(h, 0) ≤ 0 < δ∗n(h+ 1, 1) ≤ δ∗n(h+ 1, 0).

Vn(h+ 1, 0) = (1− λh)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)] + Cλδ∗n(h+ 1, 0),

Vn(h, 0) = (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)],

Vn(h+ 1, 1) = (1− λh − λl)Vn+1(h+ 1, 1) + λh[ph + Vn+1(h, 1)] + λl[pl + Vn+1(h+ 1, 0)]

+Cλδ∗n(h+ 1, 1),

Vn(h, 1) = (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)].

∆h
n(h+ 1, 0) = (1− λh)∆h

n+1(h+ 1, 0) + λh∆h
n+1(h, 0) + Cλδ∗n(h+ 1, 0),

∆h
n(h+ 1, 1) = (1− λh − λl)∆h

n+1(h+ 1, 1) + λh∆h
n+1(h, 1) + λl∆h

n+1(h+ 1, 0)

+Cλδ∗n(h+ 1, 1).

We have δ∗n(h+ 1, 0) ≥ δ∗n(h+ 1, 1). Then, the proof is similar to Case 1.

Case 5: δ∗n(h, 1) ≤ 0 < {δ∗n(h, 0), δ∗n(h+ 1, 1)} ≤ δ∗n(h+ 1, 0).
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Subcase A: ∆n+1(h, 0) ≤ ∆n+1(h + 1, 1). By Lemma 1, ∆n+1(h, 0) ≤ ∆n+1(h + 1, 1)

implies δ∗n(h, 0) ≤ δ∗n(h+ 1, 1), p∗h,0 ≥ p∗h+1,1 and α(p∗h,0) ≤ α(p∗h+1,1).

Vn(h, 1) ≥ (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

+Cλδ∗n(h, 1)

≥ (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

+Cλα(p∗h,0)[p∗h,0 + Vn+1(h− 1, 2)− Vn+1(h, 1)],

Vn(h, 0) = (1− λh − λl)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)] + λlVn+1(h, 0)

+Cλα(p∗h,0)[p∗h,0 + Vn+1(h− 1, 1)− Vn+1(h, 0)],

Vn(h+ 1, 1) = (1− λh − λl)Vn+1(h+ 1, 1) + λh[ph + Vn+1(h, 1)] + λl[pl + Vn+1(h+ 1, 0)]

+Cλα(p∗h+1,1)[p∗h+1,1 + Vn+1(h, 2)− Vn+1(h+ 1, 1)],

Vn(h+ 1, 0) = (1− λh − λl)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)] + λlVn+1(h+ 1, 0)

+Cλα(p∗h+1,0)[p∗h+1,0 + Vn+1(h, 1)− Vn+1(h+ 1, 0)]

≥ (1− λh − λl)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)] + λlVn+1(h+ 1, 0)

+Cλα(p∗h+1,1)[p∗h+1,1 + Vn+1(h, 1)− Vn+1(h+ 1, 0)].

Above the first inequality follows from δ∗n(h, 1) ≤ 0; the second and third respectively follow

from the facts that p∗h,0 and p∗h+1,1 are not the optimal fee for δn(p, h, 1) and δn(p, h+ 1, 0).

∆l
n(h, 1) ≥ (1− λh − λl)∆l

n+1(h, 1) + λh∆l
n+1(h− 1, 1) + λlpl

+Cλα(p∗h,0)[Vn+1(h− 1, 2)− Vn+1(h− 1, 1) + Vn+1(h, 0)− Vn+1(h, 1)]

= [1− λh − λl − Cλα(p∗h+1,1)]∆l
n+1(h, 1) + λh∆l

n+1(h− 1, 1) + λlpl

+Cλα(p∗h,0)∆l
n+1(h− 1, 2) + Cλ[α(p∗h+1,1)− α(p∗h,0)]∆l

n+1(h, 1)

≥ [1− λh − λl − Cλα(p∗h+1,1)]∆l
n+1(h, 1) + λh∆l

n+1(h− 1, 1) + λlpl

+Cλα(p∗h+1,1)∆l
n+1(h, 2).
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The second inequality is from α(p∗h+1,1) − α(p∗h,0) ≥ 0, the submodularity ∆l
n+1(h − 1, 2) ≥

∆l
n+1(h, 2) and the V -concavity ∆l

n+1(h, 1) ≥ ∆l
n+1(h, 2).

∆l
n(h+ 1, 1) ≤ (1− λh − λl)∆l

n+1(h+ 1, 1) + λh∆l
n+1(h, 1) + λlpl

+Cλα(p∗h+1,1)[Vn+1(h, 2)− Vn+1(h, 1) + Vn+1(h+ 1, 0)− Vn+1(h+ 1, 1)]

= [1− λh − λl − Cλα(p∗h+1,1)]∆l
n+1(h+ 1, 1) + λh∆l

n+1(h, 1) + λlpl

+Cλα(p∗h+1,1)∆l
n+1(h, 2).

The submodularity in period n+ 1 then implies the submodularity ∆l
n(h, 1) ≥ ∆l

n(h+ 1, 1)

in period n through term-by-term comparisons.

Subcase B: ∆n+1(h, 0) ≥ ∆n+1(h + 1, 1). By Lemma 1, ∆n+1(h, 0) ≥ ∆n+1(h + 1, 1)

implies δ∗n(h, 0) ≥ δ∗n(h+ 1, 1), p∗h,0 ≤ p∗h+1,1 and α(p∗h,0) ≥ α(p∗h+1,1).

Vn(h+ 1, 0) = (1− λh − λl)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)] + λlVn+1(h+ 1, 0)

+Cλα(p∗h+1,0)[p∗h+1,0 + Vn+1(h, 1)− Vn+1(h+ 1, 0)]

≥ (1− λh − λl)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)] + λlVn+1(h+ 1, 0)

+Cλα(p∗h,0)[p∗h,0 + Vn+1(h, 1)− Vn+1(h+ 1, 0)],

Vn(h, 0) = (1− λh − λl)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)] + λlVn+1(h, 0)

+Cλα(p∗h,0)[p∗h,0 + Vn+1(h− 1, 1)− Vn+1(h, 0)],

Vn(h+ 1, 1) = (1− λh − λl)Vn+1(h+ 1, 1) + λh[ph + Vn+1(h, 1)] + λl[pl + Vn+1(h+ 1, 0)]

+Cλα(p∗h+1,1)[p∗h+1,1 + Vn+1(h, 2)− Vn+1(h+ 1, 1)],

Vn(h, 1) ≥ (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

+Cλδ∗n(h, 1)

≥ (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

+Cλα(p∗h+1,1)[p∗h+1,1 + Vn+1(h− 1, 2)− Vn+1(h, 1)].

94



Above the second inequality is from δ∗n(h, 1) ≤ 0; the first and third respectively follow from

the facts that p∗h,0 and p∗h+1,1 are not the optimal fee for δn(p, h+ 1, 0) and δn(p, h, 1).

∆h
n(h+ 1, 0)

≥ (1− λh − λl)∆h
n+1(h+ 1, 0) + λh∆h

n+1(h, 0) + λl∆h
n+1(h+ 1, 0)

+Cλα(p∗h,0)[Vn+1(h, 1)− Vn+1(h− 1, 1) + Vn+1(h, 0)− Vn+1(h+ 1, 0)]

= [1− λh − λl − Cλα(p∗h,0)]∆h
n+1(h+ 1, 0) + λh∆h

n+1(h, 0) + λl∆h
n+1(h+ 1, 0)

+Cλα(p∗h,0)∆h
n+1(h, 1),

∆h
n(h+ 1, 1)

≤ (1− λh − λl)∆h
n+1(h+ 1, 1) + λh∆h

n+1(h, 1) + λl∆h
n+1(h+ 1, 0)

+Cλα(p∗h+1,1)[Vn+1(h, 2)− Vn+1(h− 1, 2) + Vn+1(h, 1)− Vn+1(h+ 1, 1)]

= [1− λh − λl − Cλα(p∗h,0)]∆h
n+1(h+ 1, 1) + λh∆h

n+1(h, 1) + λl∆h
n+1(h+ 1, 0)

+Cλα(p∗h+1,1)∆h
n+1(h, 2) + Cλ[α(p∗h,0)− α(p∗h+1,1)][∆h

n+1(h+ 1, 1)]

≤ [1− λh − λl − Cλα(p∗h,0)]∆h
n+1(h+ 1, 1) + λh∆h

n+1(h, 1) + λl∆h
n+1(h+ 1, 0)

+Cλα(p∗h,0)∆h
n+1(h, 1).

The second inequality follows from the submodularity ∆h
n+1(h, 2) ≤ ∆h

n+1(h, 1), the H-

concavity ∆h
n+1(h + 1, 1) ≤ ∆h

n+1(h, 1) and α(p∗h,0) − α(p∗h+1,1) ≥ 0. The submodularity in

period n+ 1 then implies the submodularity ∆h
n(h+ 1, 0) ≥ ∆h

n(h+ 1, 1) in period n through

term-by-term comparisons.

Case 6: 0 < δ∗n(h, 1) ≤ {δ∗n(h, 0), δ∗n(h+ 1, 1)} ≤ δ∗n(h+ 1, 0).
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Subcase A: ∆n+1(h, 0) ≤ ∆n+1(h + 1, 1). By Lemma 1, ∆n+1(h, 0) ≤ ∆n+1(h + 1, 1)

implies δ∗n(h, 0) ≤ δ∗n(h+ 1, 1), p∗h,0 ≥ p∗h+1,1 and α(p∗h,0) ≤ α(p∗h+1,1).

Vn(h, 1) = (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

+Cλδ∗n(h, 1)

≥ (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

+Cλα(p∗h,0)[p∗h,0 + Vn+1(h− 1, 2)− Vn+1(h, 1)],

Vn(h, 0) = (1− λh − λl)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)] + λlVn+1(h, 0)

+Cλα(p∗h,0)[p∗h,0 + Vn+1(h− 1, 1)− Vn+1(h, 0)],

Vn(h+ 1, 1) = (1− λh − λl)Vn+1(h+ 1, 1) + λh[ph + Vn+1(h, 1)] + λl[pl + Vn+1(h+ 1, 0)]

+Cλα(p∗h+1,1)[p∗h+1,1 + Vn+1(h, 2)− Vn+1(h+ 1, 1)],

Vn(h+ 1, 0) = (1− λh − λl)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)] + λlVn+1(h+ 1, 0)

+Cλα(p∗h+1,0)[p∗h+1,0 + Vn+1(h, 1)− Vn+1(h+ 1, 0)]

≥ (1− λh − λl)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)] + λlVn+1(h+ 1, 0)

+Cλα(p∗h+1,1)[p∗h+1,1 + Vn+1(h, 1)− Vn+1(h+ 1, 0)].

Then the proof is identical to that of Case 5 Subcase A.
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Subcase B: ∆n+1(h, 0) ≥ ∆n+1(h + 1, 1). By Lemma 1, ∆n+1(h, 0) ≥ ∆n+1(h + 1, 1)

implies δ∗n(h, 0) ≥ δ∗n(h+ 1, 1), p∗h,0 ≤ p∗h+1,1 and α(p∗h,0) ≥ α(p∗h+1,1).

Vn(h+ 1, 0) = (1− λh − λl)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)] + λlVn+1(h+ 1, 0)

+Cλα(p∗h+1,0)[p∗h+1,0 + Vn+1(h, 1)− Vn+1(h+ 1, 0)]

≥ (1− λh − λl)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)] + λlVn+1(h+ 1, 0)

+Cλα(p∗h,0)[p∗h,0 + Vn+1(h, 1)− Vn+1(h+ 1, 0)],

Vn(h, 0) = (1− λh − λl)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)] + λlVn+1(h, 0)

+Cλα(p∗h,0)[p∗h,0 + Vn+1(h− 1, 1)− Vn+1(h, 0)],

Vn(h+ 1, 1) = (1− λh − λl)Vn+1(h+ 1, 1) + λh[ph + Vn+1(h, 1)] + λl[pl + Vn+1(h+ 1, 0)]

+Cλα(p∗h+1,1)[p∗h+1,1 + Vn+1(h, 2)− Vn+1(h+ 1, 1)],

Vn(h, 1) = (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

+Cλδ∗n(h, 1)

≥ (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

+Cλα(p∗h+1,1)[p∗h+1,1 + Vn+1(h− 1, 2)− Vn+1(h, 1)].

Then the proof is identical to that of Case 5 Subcase B.

Vertical boundary {0} × [1 : M ]. With h = 0, δ∗n(0, l) and δ∗n(0, l + 1) are not defined as no

upgrades can be offered with no premium product. We have δ∗n(1, l+ 1) ≤ δ∗n(1, l) and there

are 3 possible cases similar to Cases 1, 2 and 4 in the interior.

Case 1: δ∗n(1, l + 1) ≤ δ∗n(1, l) ≤ 0.

Vn(0, l + 1) = (1− λl)Vn+1(0, l + 1) + λl[pl + Vn+1(0, l)],

Vn(0, l) = (1− λl)Vn+1(0, l) + λl[pl + Vn+1(0, l − 1)],

Vn(1, l + 1) = (1− λh − λl)Vn+1(1, l + 1) + λh[ph + Vn+1(0, l + 1)] + λl[pl + Vn+1(1, l)],

Vn(1, l) = (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)].
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∆l
n(0, l + 1) = (1− λl)∆l

n+1(0, l + 1) + λl∆l
n+1(0, l)

= (1− λh − λl)∆l
n+1(0, l + 1) + λl∆l

n+1(0, l) + λh∆l
n+1(0, l + 1),

∆l
n(1, l + 1) = (1− λh − λl)∆l

n+1(1, l + 1) + λl∆l
n+1(1, l) + λh∆l

n+1(0, l + 1).

Due to the submodularity in period n+1, we have (1−λh−λl)∆l
n+1(0, l+1)+λh∆l

n+1(0, l) ≥

(1− λh − λl)∆l
n+1(1, l + 1) + λh∆l

n+1(1, l). Thus ∆l
n(0, l + 1) ≥ ∆l

n(1, l + 1).

Case 2: δ∗n(1, l + 1) ≤ 0 < δ∗n(1, l).

Vn(0, l + 1) = (1− λl)Vn+1(0, l + 1) + λl[pl + Vn+1(0, l)],

Vn(0, l) = (1− λl)Vn+1(0, l) + λl[pl + Vn+1(0, l − 1)],

Vn(1, l + 1) = (1− λh − λl)Vn+1(1, l + 1) + λh[ph + Vn+1(0, l + 1)] + λl[pl + Vn+1(1, l)],

Vn(1, l) = (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)]

+Cλδ∗n(1, l)

≥ (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)],

where the last inequality is due to δ∗n(1, l) > 0.

∆l
n(0, l + 1) = (1− λl)∆l

n+1(0, l + 1) + λl∆l
n+1(0, l)

= (1− λh − λl)∆l
n+1(0, l + 1) + λl∆l

n+1(0, l) + λh∆l
n+1(0, l + 1),

∆l
n(1, l + 1) ≤ (1− λh − λl)∆l

n+1(1, l + 1) + λl∆l
n+1(1, l) + λh∆l

n+1(0, l + 1).

Due to the submodularity in period n+1, we have (1−λh−λl)∆l
n+1(0, l+1)+λh∆l

n+1(0, l) ≥

(1− λh − λl)∆l
n+1(1, l + 1) + λh∆l

n+1(1, l). Thus ∆l
n(0, l + 1) ≥ ∆l

n(1, l + 1).

Case 3: 0 < δ∗n(1, l + 1) ≤ δ∗n(1, l).

Vn(0, l + 1) = (1− λl)Vn+1(0, l + 1) + λl[pl + Vn+1(0, l)],

Vn(0, l) = (1− λl)Vn+1(0, l) + λl[pl + Vn+1(0, l − 1)],

Vn(1, l + 1) = (1− λh − λl)Vn+1(1, l + 1) + λh[ph + Vn+1(0, l + 1)] + λl[pl + Vn+1(1, l)]

+Cλδ∗n(1, l + 1),
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Vn(1, l) = (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)]

+Cλδ∗n(1, l).

∆l
n(0, l + 1) = (1− λl)∆l

n+1(0, l + 1) + λl∆l
n+1(0, l)

= (1− λh − λl)∆l
n+1(0, l + 1) + λl∆l

n+1(0, l) + λh∆l
n+1(0, l + 1),

∆l
n(1, l + 1) = (1− λh − λl)∆l

n+1(1, l + 1) + λl∆l
n+1(1, l) + λh∆l

n+1(0, l + 1)

+Cλ[δ∗n(1, l + 1)− δ∗n(1, l)]

≤ (1− λh − λl)∆l
n+1(1, l + 1) + λl∆l

n+1(1, l) + λh∆l
n+1(0, l + 1).

The last inequality is from δ∗n(1, l+1)−δ∗n(1, l) ≤ 0. Due to the submodularity in period n+1,

we have (1−λh−λl)∆l
n+1(0, l+1)+λh∆l

n+1(0, l) ≥ (1−λh−λl)∆l
n+1(1, l+1)+λh∆l

n+1(1, l).

Thus ∆l
n(0, l + 1) ≥ ∆l

n(1, l + 1).

Corner (0, 0). There are 3 possible cases similar to the vertical boundary.

Case 1: δ∗n(1, 1) ≤ δ∗n(1, 0) ≤ 0.

Vn(0, 1) = (1− λh − λl)Vn+1(0, 1) + λh[0 + Vn+1(0, 1)] + λl[pl + Vn+1(0, 0)],

Vn(0, 0) = (1− λh − λl)Vn+1(0, 0) + λh[0 + Vn+1(0, 0)] + λl[0 + Vn+1(0, 0)],

Vn(1, 1) = (1− λh − λl)Vn+1(1, 1) + λh[ph + Vn+1(0, 1)] + λl[pl + Vn+1(1, 0)],

Vn(1, 0) = (1− λh − λl)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)] + λl[0 + Vn+1(1, 0)].

∆l
n(0, 1) = (1− λh − λl)∆l

n+1(0, 1) + λh∆l
n+1(0, 1) + λlpl,

∆l
n(1, 1) = (1− λh − λl)∆l

n+1(1, 1) + λh∆l
n+1(0, 1) + λlpl.

Due to the submodularity in period n+1, we have ∆l
n(0, 1) ≥ ∆l

n(1, 1) through term-by-term

comparisons.

Case 2: δ∗n(1, 1) ≤ 0 < δ∗n(1, 0).

Vn(0, 1) = (1− λh − λl)Vn+1(0, 1) + λh[0 + Vn+1(0, 1)] + λl[pl + Vn+1(0, 0)],

Vn(0, 0) = (1− λh − λl)Vn+1(0, 0) + λh[0 + Vn+1(0, 0)] + λl[0 + Vn+1(0, 0)],

Vn(1, 1) = (1− λh − λl)Vn+1(1, 1) + λh[ph + Vn+1(0, 1)] + λl[pl + Vn+1(1, 0)],
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Vn(1, 0) = (1− λh − λl)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)] + λl[0 + Vn+1(1, 0)]

+Cλδ∗n(1, 0).

∆l
n(0, 1) = (1− λh − λl)∆l

n+1(0, 1) + λh∆l
n+1(0, 1) + λlpl,

∆l
n(1, 1) = (1− λh − λl)∆l

n+1(1, 1) + λh∆l
n+1(0, 1) + λlpl − Cλδ∗n(1, 0)

≤ (1− λh − λl)∆l
n+1(1, 1) + λh∆l

n+1(0, 1) + λlpl.

The last inequality is from δ∗n(1, 0) > 0. Due to the submodularity in period n+ 1, we have

∆l
n(0, 1) ≥ ∆l

n(1, 1) through term-by-term comparisons.

Case 3: 0 < δ∗n(1, 1) ≤ δ∗n(1, 0).

Vn(0, 1) = (1− λh − λl)Vn+1(0, 1) + λh[0 + Vn+1(0, 1)] + λl[pl + Vn+1(0, 0)],

Vn(0, 0) = (1− λh − λl)Vn+1(0, 0) + λh[0 + Vn+1(0, 0)] + λl[0 + Vn+1(0, 0)],

Vn(1, 1) = (1− λh − λl)Vn+1(1, 1) + λh[ph + Vn+1(0, 1)] + λl[pl + Vn+1(1, 0)] + Cλδ∗n(1, 1),

Vn(1, 0) = (1− λh − λl)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)] + λl[0 + Vn+1(1, 0)] + Cλδ∗n(1, 0).

∆l
n(0, 1) = (1− λh − λl)∆l

n+1(0, 1) + λh∆l
n+1(0, 1) + λlpl,

∆l
n(1, 1) = (1− λh − λl)∆l

n+1(1, 1) + λh∆l
n+1(0, 1) + λlpl + Cλ[δ∗n(1, 1)− δ∗n(1, 0)]

≤ (1− λh − λl)∆l
n+1(1, 1) + λh∆l

n+1(0, 1) + λlpl.

The last inequality is from δ∗n(1, 1) ≤ δ∗n(1, 0). Due to the submodularity in period n+ 1, we

have ∆l
n(0, 1) ≥ ∆l

n(1, 1) through term-by-term comparisons.

Proof of property b): [1 : H − 1]× [0 : M ] is partitioned into the interior [2 : H − 1]× [1 :

M ], the horizontal boundary [2 : H − 1] × {0}, the vertical boundary {1} × [1 : M ] and

the corner (1, 0). The proof is customized for each region. The DH-modularity at state

(h, l) ∈ [1 : H − 1]× [0 : M ] in period n can be equivalently expressed as

Vn(h− 1, l + 1)− Vn(h, l) ≤ Vn(h, l + 1)− Vn(h+ 1, l),

100



∆n(h, l) ≤ ∆n(h+ 1, l),

Vn(h+ 1, l)− Vn(h, l) ≤ Vn(h, l + 1)− Vn(h− 1, l + 1),

∆h
n(h+ 1, l) ≤ ∆h

n(h, l + 1).

We focus on the last two expressions since they are more convenient to prove. These in-

equalities involve states (h+ 1, l), (h, l), (h, l+ 1) and (h− 1, l+ 1). Specializing inequalities

(A.1) for these states, we obtain

p∗h−1,l+1 ≥ p∗h,l+1 ≥ p∗h,l ≥ p∗h+1,l and δ∗n(h− 1, l + 1) ≤ δ∗n(h, l + 1) ≤ δ∗n(h, l) ≤ δ∗n(h+ 1, l).

Shifting 0 from the right-hand side of the last inequality to its left-hand side, we construct

cases for each region.

Interior [2 : H − 1]× [1 : M ]. There are 5 possible cases.

Case 1: δ∗n(h− 1, l + 1) ≤ δ∗n(h, l + 1) ≤ δ∗n(h, l) ≤ δ∗n(h+ 1, l) ≤ 0.

Vn(h− 1, l + 1)

= (1− λh − λl)Vn+1(h− 1, l + 1) + λh[ph + Vn+1(h− 2, l + 1)] + λl[pl + Vn+1(h− 1, l)],

Vn(h, l)

= (1− λh − λl)Vn+1(h, l) + λh[ph + Vn+1(h− 1, l)] + λl[pl + Vn+1(h, l − 1)],

Vn(h, l + 1)

= (1− λh − λl)Vn+1(h, l + 1) + λh[ph + Vn+1(h− 1, l + 1)] + λl[pl + Vn+1(h, l)],

Vn(h+ 1, l)

= (1− λh − λl)Vn+1(h+ 1, l) + λh[ph + Vn+1(h, l)] + λl[pl + Vn+1(h+ 1, l − 1)].

Due to the DH-modularity in period n + 1, we have Vn(h + 1, l)− Vn(h, l) ≤ Vn(h, l + 1)−

Vn(h− 1, l + 1) or ∆h
n(h+ 1, l) ≤ ∆h

n(h, l + 1) through term-by-term comparisons.
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Case 2: δ∗n(h− 1, l + 1) ≤ δ∗n(h, l + 1) ≤ δ∗n(h, l) ≤ 0 < δ∗n(h+ 1, l).

Vn(h− 1, l + 1) = Ψ[Vn+1(h− 1, l + 1)],

Vn(h, l) = Ψ[Vn+1(h, l)] ≥ Ψ[Vn+1(h, l)] + Cλδ∗n(h, l)

≥ Ψ[Vn+1(h, l)] + Cλα(p∗h+1,l)[p
∗
h+1,l + Vn+1(h− 1, l + 1)− Vn+1(h, l)],

where the first inequality is due to δ∗n(h, l) ≤ 0 and the second inequality follows from the

fact that p∗h+1,l is not the optimal fee for δn(p, h, l).

Vn(h, l + 1) = Ψ[Vn+1(h, l + 1)],

Vn(h+ 1, l) = Ψ[Vn+1(h+ 1, l)] + Cλδ∗n(h+ 1, l)

= Ψ[Vn+1(h+ 1, l)] + Cλα(p∗h+1,l)[p
∗
h+1,l + Vn+1(h, l + 1)− Vn+1(h+ 1, l)].

Using the three equalities and one inequality from above,

∆h
n(h+ 1, l)

≤ (1− λh − λl)∆h
n+1(h+ 1, l) + λh∆h

n+1(h, l) + λl∆h
n+1(h+ 1, l − 1)

+Cλα(p∗h+1,l)[Vn+1(h, l + 1)− Vn+1(h− 1, l + 1) + Vn+1(h, l)− Vn+1(h+ 1, l)]

= [1− λh − λl − Cλα(p∗h+1,l)]∆
h
n+1(h+ 1, l) + λh∆h

n+1(h, l) + λl∆h
n+1(h+ 1, l − 1)

+Cλα(p∗h+1,l)∆
h
n+1(h, l + 1).

∆h
n(h, l + 1)

= (1− λh − λl)∆h
n+1(h, l + 1) + λh∆h

n+1(h− 1, l + 1) + λl∆h
n+1(h, l).

Application of the DH-modularity in period n+ 1 shows λh∆h
n+1(h, l) ≤ λh∆h

n+1(h− 1, l+ 1)

and λl∆h
n+1(h + 1, l − 1) ≤ λl∆h

n+1(h, l). Hence, for ∆h
n(h + 1, l) ≤ ∆h

n+1(h, l + 1), it is

sufficient to prove

[1− λh − λl − Cλα(p∗h+1,l)]∆
h
n+1(h+ 1, l) + Cλα(p∗h+1,l)∆

h
n+1(h, l + 1)

≤ (1− λh − λl)∆h
n+1(h, l + 1).
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This also follows from the DH-modularity in period n+1: [1−λh−λl−Cλα(p∗h+1,l)]∆
h
n+1(h+

1, l) ≤ (1− λh − λl − Cλα(p∗h+1,l))∆
h
n+1(h, l + 1). Hence, ∆h

n(h + 1, l) ≤ ∆h
n+1(h, l + 1) and

the proof for this case is complete.

Case 3: δ∗n(h− 1, l + 1) ≤ δ∗n(h, l + 1) ≤ 0 < δ∗n(h, l) ≤ δ∗n(h+ 1, l).

Vn(h− 1, l + 1) = Ψ[Vn+1(h− 1, l + 1)],

Vn(h, l) = Ψ[Vn+1(h, l)] + Cλδ∗n(h, l)

≥ Ψ[Vn+1(h, l)] + Cλα(p∗h+1,l)[p
∗
h+1,l + Vn+1(h− 1, l + 1)− Vn+1(h, l)],

Vn(h, l + 1) = Ψ[Vn+1(h, l + 1)],

Vn(h+ 1, l) = Ψ[Vn+1(h+ 1, l) + Cλα(p∗h+1,l)[p
∗
h+1,l + Vn+1(h, l + 1)− Vn+1(h+ 1, l)].

We further have

∆h
n(h+ 1, l)

≤ (1− λh − λl)∆h
n+1(h+ 1, l) + λh∆h

n+1(h, l) + λl∆h
n+1(h+ 1, l − 1)

+Cλα(p∗h+1,l)[Vn+1(h, l + 1)− Vn+1(h− 1, l + 1) + Vn+1(h, l)− Vn+1(h+ 1, l)]

= [1− λh − λl − Cλα(p∗h+1,l)]∆
h
n+1(h+ 1, l) + λh∆h

n+1(h, l) + λl∆h
n+1(h+ 1, l − 1)

+Cλα(p∗h+1,l)∆
h
n+1(h, l + 1),

∆h
n(h, l + 1)

= (1− λh − λl)∆h
n+1(h, l + 1) + λh∆h

n+1(h− 1, l + 1) + λl∆h
n+1(h, l).

Then the proof of ∆h
n(h+ 1, l) ≤ ∆h

n+1(h, l + 1) is identical to that of Case 2.

Case 4: δ∗n(h− 1, l + 1) ≤ 0 < δ∗n(h, l + 1) ≤ δ∗n(h, l) ≤ δ∗n(h+ 1, l).

Vn(h− 1, l + 1) = Ψ[Vn+1(h− 1, l + 1)],

Vn(h, l) = Ψ[Vn+1(h, l)] + Cλδ∗n(h, l)

≥ Ψ[Vn+1(h, l)] + Cλα(p∗h+1,l)[p
∗
h+1,l + Vn+1(h− 1, l + 1)− Vn+1(h, l)],
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Vn(h, l + 1) = Ψ[Vn+1(h, l + 1)] + Cλδ∗n(h, l + 1)

≥ Ψ[Vn+1(h, l + 1)],

Vn(h+ 1, l) = Ψ[Vn+1(h+ 1, l)] + Cλα(p∗h+1,l)[p
∗
h+1,l + Vn+1(h, l + 1)− Vn+1(h+ 1, l)].

The second inequality is from δ∗n(h, l + 1) > 0. Then,

∆h
n(h+ 1, l) ≤ [1− λh − λl − Cλα(p∗h+1,l)]∆

h
n+1(h+ 1, l) + λh∆h

n+1(h, l)

+λl∆h
n+1(h+ 1, l − 1) + Cλα(p∗h+1,l)∆

h
n+1(h, l + 1),

∆h
n(h, l + 1) ≥ (1− λh − λl)∆h

n+1(h, l + 1) + λh∆h
n+1(h− 1, l + 1) + λl∆h

n+1(h, l).

Then the proof of ∆h
n(h+ 1, l) ≤ ∆h

n+1(h, l + 1) is identical to that of Case 2.

Case 5: 0 < δ∗n(h− 1, l + 1) ≤ δ∗n(h, l + 1) ≤ δ∗n(h, l) ≤ δ∗n(h+ 1, l).

Vn(h− 1, l + 1) = Ψ[Vn+1(h− 1, l + 1)] + Cλδ∗n(h− 1, l + 1),

Vn(h, l) = Ψ[Vn+1(h, l)] + Cλδ∗n(h, l)

≥ Ψ[Vn+1(h, l)] + Cλα(p∗h+1,l)[p
∗
h+1,l + Vn+1(h− 1, l + 1)− Vn+1(h, l)],

Vn(h, l + 1) = Ψ[Vn+1(h, l + 1)] + Cλδ∗n(h, l + 1),

Vn(h+ 1, l) = Ψ[Vn+1(h+ 1, l)] + Cλα(p∗h+1,l)[p
∗
h+1,l + Vn+1(h, l + 1)− Vn+1(h+ 1, l)].

∆h
n(h+ 1, l) ≤ [1− λh − λl − Cλα(p∗h+1,l)]∆

h
n+1(h+ 1, l) + λh∆h

n+1(h, l)

+λl∆h
n+1(h+ 1, l − 1) + Cλα(p∗h+1,l)∆

h
n+1(h, l + 1),

∆h
n(h, l + 1) = (1− λh − λl)∆h

n+1(h, l + 1) + λh∆h
n+1(h− 1, l + 1) + λl∆h

n+1(h, l)

+Cλ[δ∗n(h, l + 1)− δ∗n(h− 1, l + 1)]

≥ (1− λh − λl)∆h
n+1(h, l + 1) + λh∆h

n+1(h− 1, l + 1) + λl∆h
n+1(h, l).

The last inequality is from δ∗n(h, l + 1) ≥ δ∗n(h− 1, l + 1). Then the proof of ∆h
n(h + 1, l) ≤

∆h
n+1(h, l + 1) is identical to that of Case 2.
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Horizontal boundary [2 : H − 1]× {0}. Exactly the same 5 cases of the interior are used.

Case 1: δ∗n(h− 1, 1) ≤ δ∗n(h, 1) ≤ δ∗n(h, 0) ≤ δ∗n(h+ 1, 0) ≤ 0.

Vn(h− 1, 1) = (1− λh − λl)Vn+1(h− 1, 1) + λh[ph + Vn+1(h− 2, 1)]

+λl[pl + Vn+1(h− 1, 0)],

Vn(h, 0) = (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)],

Vn(h, 1) = (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)],

Vn(h+ 1, 0) = (1− λh)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)].

∆h
n(h+ 1, 0) = (1− λh)∆h

n+1(h+ 1, 0) + λh∆h
n+1(h, 0),

∆h
n(h, 1) = (1− λh − λl)∆h

n+1(h, 1) + λh∆h
n+1(h− 1, 1) + λl∆h

n+1(h, 0)

= (1− λh)∆h
n+1(h, 1) + λh∆h

n+1(h− 1, 1) + λl[∆h
n+1(h, 0)−∆h

n+1(h, 1)]

≥ (1− λh)∆h
n+1(h, 1) + λh∆h

n+1(h− 1, 1).

The inequality is from the submodularity in period n + 1: ∆h
n+1(h, 0) ≥ ∆h

n+1(h, 1). Due

to DH-modularity in period n + 1, we have ∆h
n(h + 1, 0) ≤ ∆h

n(h, 1) through term-by-term

comparisons.

Case 2: δ∗n(h− 1, 1) ≤ δ∗n(h, 1) ≤ δ∗n(h, 0) ≤ 0 < δ∗n(h+ 1, 0).

Vn(h− 1, 1) = (1− λh − λl)Vn+1(h− 1, 1) + λh[ph + Vn+1(h− 2, 1)]

+λl[pl + Vn+1(h− 1, 0)],

Vn(h, 0) = (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)]

≥ (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)] + Cλδ∗n(h, 0)

≥ (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)]

+Cλα(p∗h+1,0)[p∗h+1,0 + Vn+1(h− 1, 1)− Vn+1(h, 0)],
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where the first inequality is due to δ∗n(h, 0) ≤ 0 and the second inequality follows from the

fact that p∗h+1,0 is not the optimal fee for δn(p, h, 0).

Vn(h, 1) = (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)],

Vn(h+ 1, 0) = (1− λh)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)] + Cλδ∗n(h+ 1, 0)

= (1− λh)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)]

+Cλα(p∗h+1,0)[p∗h+1,0 + Vn+1(h, 1)− Vn+1(h+ 1, 0)],

Then

∆h
n(h+ 1, 0) ≤ (1− λh)∆h

n+1(h+ 1, 0) + λh∆h
n+1(h, 0)

+Cλα(p∗h+1,0)[Vn+1(h, 1)− Vn+1(h− 1, 1) + Vn+1(h, 0)− Vn+1(h+ 1, 0)]

= [1− λh − Cλα(p∗h+1,0)]∆h
n+1(h+ 1, 0) + λh∆h

n+1(h, 0)

+Cλα(p∗h+1,0)[∆h
n+1(h, 1),

∆h
n(h, 1) = (1− λh − λl)∆h

n+1(h, 1) + λh∆h
n+1(h− 1, 1) + λl∆h

n+1(h, 0)

= (1− λh)∆h
n+1(h, 1) + λh∆h

n+1(h− 1, 1) + λl[∆h
n+1(h, 0)−∆h

n+1(h, 1)]

≥ (1− λh)∆h
n+1(h, 1) + λh∆h

n+1(h− 1, 1).

The second inequality is from the submodularity in period n + 1: ∆h
n+1(h, 0) ≥ ∆h

n+1(h, 1).

Application of the DH-modularity in period n + 1 yields λh∆h
n+1(h, 0) ≤ λh∆h

n+1(h − 1, 1).

Hence, it is sufficient to prove

[1− λh − Cλα(p∗h+1,0)]∆h
n+1(h+ 1, 0) + Cλα(p∗h+1,0)∆h

n+1(h, 1) ≤ (1− λh)∆h
n+1(h, 1).

This also follows from the DH-modularity in period n+ 1: [1− λh − Cλα(p∗h+1,0)]∆h
n+1(h+

1, 0) ≤ (1− λh − Cλα(p∗h+1,0))∆h
n+1(h, 1). Hence, ∆h

n(h+ 1, 0) ≤ ∆h
n(h, 1) and the proof for

this case is complete.
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Case 3: δ∗n(h− 1, 1) ≤ δ∗n(h, 1) ≤ 0 < δ∗n(h, 0) ≤ δ∗n(h+ 1, 0).

Vn(h− 1, 1) = (1− λh − λl)Vn+1(h− 1, 1) + λh[ph + Vn+1(h− 2, 1)]

+λl[pl + Vn+1(h− 1, 0)],

Vn(h, 0) = (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)] + Cλδ∗n(h, 0)

≥ (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)]

+Cλα(p∗h+1,0)[p∗h+1,0 + Vn+1(h− 1, 1)− Vn+1(h, 0)],

Vn(h, 1) = (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)],

Vn(h+ 1, 0) = (1− λh)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)] + Cλδ∗n(h+ 1, 0)

= (1− λh)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)]

+Cλα(p∗h+1,0)[p∗h+1,0 + Vn+1(h, 1)− Vn+1(h+ 1, 0)].

Then the proof of ∆h
n(h+ 1, 0) ≤ ∆h

n(h, 1) is identical to that of Case 2.

Case 4: δ∗n(h− 1, 1) ≤ 0 < δ∗n(h, 1) ≤ δ∗n(h, 0) ≤ δ∗n(h+ 1, 0).

Vn(h− 1, 1) = (1− λh − λl)Vn+1(h− 1, 1) + λh[ph + Vn+1(h− 2, 1)]

+λl[pl + Vn+1(h− 1, 0)],

Vn(h, 0) = (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)] + Cλδ∗n(h, 0)

≥ (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)]

+Cλα(p∗h+1,0)[p∗h+1,0 + Vn+1(h− 1, 1)− Vn+1(h, 0)],

Vn(h, 1) = (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

+Cλδ∗n(h, 1)

≥ (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)],

Vn(h+ 1, 0) = (1− λh)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)] + Cλδ∗n(h+ 1, 0)

= (1− λh)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)]

+Cλα(p∗h+1,0)[p∗h+1,0 + Vn+1(h, 1)− Vn+1(h+ 1, 0)].
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The second inequality is due to δ∗n(h, 1) > 0. Then the proof of ∆h
n(h + 1, 0) ≤ ∆h

n(h, 1) is

identical to that of Case 2 .

Case 5: 0 < δ∗n(h− 1, 1) ≤ δ∗n(h, 1) ≤ δ∗n(h, 0) ≤ δ∗n(h+ 1, 0).

Vn(h− 1, 1) = (1− λh − λl)Vn+1(h− 1, 1) + λh[ph + Vn+1(h− 2, 1)]

+λl[pl + Vn+1(h− 1, 0)] + Cλδ∗n(h− 1, 1),

Vn(h, 0) = (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)] + Cλδ∗n(h, 0)

≥ (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)]

+Cλα(p∗h+1,0)[p∗h+1,0 + Vn+1(h− 1, 1)− Vn+1(h, 0)],

Vn(h, 1) = (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

+Cλδ∗n(h, 1),

Vn(h+ 1, 0) = (1− λh)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)] + Cλδ∗n(h+ 1, 0)

= (1− λh)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)]

+Cλα(p∗h+1,0)[p∗h+1,0 + Vn+1(h, 1)− Vn+1(h+ 1, 0)].

∆h
n(h+ 1, 0) ≤ (1− λh)∆h

n+1(h+ 1, 0) + λh∆h
n+1(h, 0)

+Cλα(p∗h+1,0)[Vn+1(h, 1)− Vn+1(h− 1, 1) + Vn+1(h, 0)− Vn+1(h+ 1, 0)]

= [1− λh − Cλα(p∗h+1,0)]∆h
n+1(h+ 1, 0) + λh∆h

n+1(h, 0)

+Cλα(p∗h+1,0)[∆h
n+1(h, 1),

∆h
n(h, 1) = (1− λh − λl)∆h

n+1(h, 1) + λh∆h
n+1(h− 1, 1) + λl∆h

n+1(h, 0)

+Cλ[δ∗n(h, 1)− δ∗n(h− 1, 1)]

= (1− λh)∆h
n+1(h, 1) + λh∆h

n+1(h− 1, 1) + λl[∆h
n+1(h, 0)−∆h

n+1(h, 1)]

+Cλ[δ∗n(h, 1)− δ∗n(h− 1, 1)]

≥ (1− λh)∆h
n+1(h, 1) + λh∆h

n+1(h− 1, 1).
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The last inequality is from the submodularity ∆h
n+1(h, 0) ≥ ∆h

n+1(h, 1)] and δ∗n(h, 1)−δ∗n(h−

1, 1) ≥ 0. Then the proof of ∆h
n(h+ 1, 0) ≤ ∆h

n(h, 1) is identical to that of Case 2.

Vertical boundary {1} × [1 : M ]. When h − 1 = 0, δ∗n(h − 1, l + 1) is not defined as there

is no premium products to offer upgrades. There are 4 possible cases similar to the first 4

cases in the interior. In addition to the DH-modularity and submodularity properties, the

arguments also need Lemma 2. Lemma 2 and the submodularity property together imply

∆h
n+1(1, l) ≤ ph.

Case 1: δ∗n(1, l + 1) ≤ δ∗n(1, l) ≤ δ∗n(2, l) ≤ 0.

Vn(0, l + 1) = (1− λl)Vn+1(0, l + 1) + λl[pl + Vn+1(0, l)]

= (1− λh − λl)Vn+1(0, l + 1) + λhVn+1(0, l + 1) + λl[pl + Vn+1(0, l)],

Vn(1, l) = (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)],

Vn(1, l + 1) = (1− λh − λl)Vn+1(1, l + 1) + λh[ph + Vn+1(0, l + 1)] + λl[pl + Vn+1(1, l)],

Vn(2, l) = (1− λh − λl)Vn+1(2, l) + λh[ph + Vn+1(1, l)] + λl[pl + Vn+1(2, l − 1)].

∆h
n(2, l) = (1− λh − λl)∆h

n+1(2, l) + λh∆h
n+1(1, l) + λl∆h

n+1(2, l − 1),

∆h
n(1, l + 1) = (1− λh − λl)∆h

n+1(1, l + 1) + λhph + λl∆h
n+1(1, l).

From the DH-modularity in period n+1 and ∆h
n+1(1, l) ≤ ph, we have ∆h

n(2, l) ≤ ∆h
n(1, l+1)

through term-by-term comparisons.
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Case 2: δ∗n(1, l + 1) ≤ δ∗n(1, l) ≤ 0 < δ∗n(2, l).

Vn(0, l + 1) = (1− λl)Vn+1(0, l + 1) + λl[pl + Vn+1(0, l)]

= (1− λh − λl)Vn+1(0, l + 1) + λhVn+1(0, l + 1) + λl[pl + Vn+1(0, l)],

Vn(1, l) = Ψ[Vn+1(1, l)]

≥ Ψ[Vn+1(1, l)] + Cλδ∗n(1, l)

≥ Ψ[Vn+1(1, l)] + Cλα(p∗2,l)[p
∗
2,l + Vn+1(0, l + 1)− Vn+1(1, l)],

Vn(1, l + 1) = (1− λh − λl)Vn+1(1, l + 1) + λh[ph + Vn+1(0, l + 1)] + λl[pl + Vn+1(1, l)],

Vn(2, l) = Ψ[Vn+1(2, l)] + Cλδ∗n(2, l)

= Ψ[Vn+1(2, l)] + Cλα(p∗2,l)[p
∗
2,l + Vn+1(1, l + 1)− Vn+1(2, l)].

The first inequality is due to δ∗n(1, l) ≤ 0 and the second inequality follows from the fact that

p∗2,l is not the optimal fee for δn(p, 1, l).

∆h
n(2, l) ≤ (1− λh − λl)∆h

n+1(2, l) + λh∆h
n+1(1, l) + λl∆h

n+1(2, l − 1)

+Cλα(p∗2,l)[Vn+1(1, l + 1)− Vn+1(0, l + 1) + Vn+1(1, l)]− Vn+1(2, l)]

= [1− λh − λl − Cλα(p∗2,1)]∆h
n+1(2, l) + λh∆h

n+1(1, l) + λl∆h
n+1(2, l − 1)

+Cλα(p∗2,l)∆
h
n+1(1, l + 1),

∆h
n(1, l + 1) = (1− λh − λl)∆h

n+1(1, l + 1) + λhph + λl∆h
n+1(1, l).

Application of the DH-modularity in period n+ 1 to the multiplier of λl and ∆h
n+1(1, l) ≤ ph

show that it is sufficient to prove

[1− λh − λl − Cλα(p∗2,1)]∆h
n+1(2, l) + Cλα(p∗2,l)∆

h
n+1(1, l + 1)

≤ (1− λh − λl)∆h
n+1(1, l + 1).

This also follows from the DH-modularity in period n+ 1:

[1− λh − λl − Cλα(p∗2,1)]∆h
n+1(2, l) ≤ [1− λh − λl − Cλα(p∗2,1)]∆h

n+1(1, l + 1).
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Hence, ∆h
n(2, l) ≤ ∆h

n(1, l + 1) and the proof for this case is complete.

Case 3: δ∗n(1, l + 1) ≤ 0 < δ∗n(1, l) ≤ δ∗n(2, l).

Vn(0, l + 1) = (1− λl)Vn+1(0, l + 1) + λl[pl + Vn+1(0, l)]

= (1− λh − λl)Vn+1(0, l + 1) + λhVn+1(0, l + 1) + λl[pl + Vn+1(0, l)],

Vn(1, l) = Ψ[Vn+1(1, l)] + Cλδ∗n(1, l)

≥ Ψ[Vn+1(1, l)] + Cλα(p∗2,l)[p
∗
2,l + Vn+1(0, l + 1)− Vn+1(1, l)],

Vn(1, l + 1) = (1− λh − λl)Vn+1(1, l + 1) + λh[ph + Vn+1(0, l + 1)] + λl[pl + Vn+1(1, l)],

Vn(2, l) = Ψ[Vn+1(2, l)] + Cλδ∗n(2, l)

= Ψ[Vn+1(2, l)] + Cλα(p∗2,l)[p
∗
2,l + Vn+1(1, l + 1)− Vn+1(2, l)].

Then the proof of ∆h
n(2, l) ≤ ∆h

n(1, l + 1) is identical to that of Case 2.

Case 4: 0 < δ∗n(1, l + 1) ≤ δ∗n(1, l) ≤ δ∗n(2, l).

Vn(0, l + 1) = (1− λl)Vn+1(0, l + 1) + λl[pl + Vn+1(0, l)]

= (1− λh − λl)Vn+1(0, l + 1) + λhVn+1(0, l + 1) + λl[pl + Vn+1(0, l)],

Vn(1, l) = Ψ[Vn+1(1, l)] + Cλδ∗n(1, l)

≥ Ψ[Vn+1(1, l)] + Cλα(p∗2,l)[p
∗
2,l + Vn+1(0, l + 1)− Vn+1(1, l)],

Vn(1, l + 1) = (1− λh − λl)Vn+1(1, l + 1) + λh[ph + Vn+1(0, l + 1)] + λl[pl + Vn+1(1, l)]

+Cλδ∗n(1, l + 1)

≥ (1− λh − λl)Vn+1(1, l + 1) + λh[ph + Vn+1(0, l + 1)] + λl[pl + Vn+1(1, l)],

Vn(2, l) = Ψ[Vn+1(2, l)] + Cλδ∗n(2, l)

= Ψ[Vn+1(2, l)] + Cλα(p∗2,l)[p
∗
2,l + Vn+1(1, l + 1)− Vn+1(2, l)].

Then the proof of ∆h
n(2, l) ≤ ∆h

n(1, l + 1) is identical to that of Case 2.
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Corner (1, 0). There are 4 possible cases similar to the 4 cases in the vertical boundary.

δ∗n(0, 1) is not defined, since upgrades cannot be offered when there is no premium product.

In addition to the DH-modularity and submodularity, the arguments also need Lemma 2.

Case 1: δ∗n(1, 1) ≤ δ∗n(1, 0) ≤ δ∗n(2, 0) ≤ 0.

Vn(0, 1) = (1− λl)Vn+1(0, 1) + λl[pl + Vn+1(0, 0)]

= (1− λh)Vn+1(0, 1) + λhVn+1(0, 1) + λl[pl − Vn+1(0, 1) + Vn+1(0, 0)],

Vn(1, 0) = (1− λh)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)],

Vn(1, 1) = (1− λh − λl)Vn+1(1, 1) + λh[ph + Vn+1(0, 1)] + λl[pl + Vn+1(1, 0)]

= (1− λh)Vn+1(1, 1) + λh[ph + Vn+1(0, 1)] + λl[pl − Vn+1(1, 1) + Vn+1(1, 0)],

Vn(2, 0) = (1− λh)Vn+1(2, 0) + λh[ph + Vn+1(1, 0)].

∆h
n(2, 0) = (1− λh)∆h

n+1(2, 0) + λh∆h
n+1(1, 0),

∆h
n(1, 1) = (1− λh)∆h

n+1(1, 1) + λhph + λl[∆l
n+1(0, 1)−∆l

n+1(1, 1)]

≥ (1− λh)∆h
n+1(1, 1) + λhph,

where the last inequality is from the submodularity ∆l
n+1(0, 1) ≥ ∆l

n+1(1, 1). Then, ∆h
n(2, 0) ≤

∆h
n(1, 1) is implied by ∆h

n+1(1, 0) ≤ ph through term-by-term comparisons.
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Case 2: δ∗n(1, 1) ≤ δ∗n(1, 0) ≤ 0 < δ∗n(2, 0).

Vn(0, 1) = (1− λh)Vn+1(0, 1) + λhVn+1(0, 1) + λl[pl − Vn+1(0, 1) + Vn+1(0, 0)],

Vn(1, 0) = (1− λh)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)]

≥ (1− λh)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)] + Cλδ∗n(1, 0)

≥ (1− λh)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)]

+Cλα(p∗2,0)[p∗2,0 + Vn+1(0, 1)− Vn+1(1, 0)],

Vn(1, 1) = (1− λh)Vn+1(1, 1) + λh[ph + Vn+1(0, 1)] + λl[pl − Vn+1(1, 1) + Vn+1(1, 0)],

Vn(2, 0) = (1− λh)Vn+1(2, 0) + λh[ph + Vn+1(1, 0)] + Cλδ∗n(2, 0)

= (1− λh)Vn+1(2, 0) + λh[ph + Vn+1(1, 0)]

+Cλα(p∗2,0)[p∗2,0 + Vn+1(1, 1)− Vn+1(2, 0)].

The first inequality is due to δ∗n(1, 0) ≤ 0 and the second inequality follows from the fact

that p∗2,0 is not the optimal fee for δn(p, 1, 0).

∆h
n(2, 0) ≤ (1− λh)∆h

n+1(2, 0) + λh∆h
n+1(1, 0)

+Cλα(p∗2,0)[Vn+1(1, 1)− Vn+1(0, 1) + Vn+1(1, 0)− Vn+1(2, 0)]

= [1− λh − Cλα(p∗2,0)]∆h
n+1(2, 0) + λh∆h

n+1(1, 0) + Cλα(p∗2,0)∆h
n+1(1, 1),

∆h
n(1, 1) = (1− λh)∆h

n+1(1, 1) + λhph + λl[∆l
n+1(0, 1)−∆l

n+1(1, 1)]

≥ (1− λh)∆h
n+1(1, 1) + λhph,

where the last inequality is from the submodularity ∆l
n+1(0, 1) ≥ ∆l

n+1(1, 1). ∆h
n+1(1, 0) ≤ ph

shows that it is sufficient to prove

[1− λh − Cλα(p∗2,0)]∆h
n+1(2, 0) + Cλα(p∗2,0)∆h

n+1(1, 1) ≤ (1− λh)∆h
n+1(1, 1).

This follows from the DH-modularity in period n+ 1:

[1− λh − Cλα(p∗2,0)]∆h
n+1(2, 0) ≤ [1− λh − Cλα(p∗2,0)]∆h

n+1(1, 1)..
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Hence, ∆h
n(2, 0) ≤ ∆h

n(1, 1) and the proof for this case is complete.

Case 3: δ∗n(1, 1) ≤ 0 < δ∗n(1, 0) ≤ δ∗n(2, 0).

Vn(0, 1) = (1− λh)Vn+1(0, 1) + λhVn+1(0, 1) + λl[pl − Vn+1(0, 1) + Vn+1(0, 0)],

Vn(1, 0) = (1− λh)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)] + Cλδ∗n(1, 0)

≥ (1− λh)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)]

+Cλα(p∗2,0)[p∗2,0 + Vn+1(0, 1)− Vn+1(1, 0)],

Vn(1, 1) = (1− λh)Vn+1(1, 1) + λh[ph + Vn+1(0, 1)] + λl[pl − Vn+1(1, 1) + Vn+1(1, 0)],

Vn(2, 0) = (1− λh)Vn+1(2, 0) + λh[ph + Vn+1(1, 0)]

+Cλα(p∗2,0)[p∗2,0 + Vn+1(1, 1)− Vn+1(2, 0)].

Then the proof of ∆h
n(2, 0) ≤ ∆h

n(1, 1) is identical to that of Case 2.

Case 4: 0 < δ∗n(1, 1) ≤ δ∗n(1, 0) ≤ δ∗n(2, 0).

Vn(0, 1) = (1− λh)Vn+1(0, 1) + λhVn+1(0, 1) + λl[pl − Vn+1(0, 1) + Vn+1(0, 0)],

Vn(1, 0) ≥ (1− λh)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)]

+Cλα(p∗2,0)[p∗2,0 + Vn+1(0, 1)− Vn+1(1, 0)],

Vn(1, 1) = (1− λh − λl)Vn+1(1, 1) + λh[ph + Vn+1(0, 1)] + λl[pl + Vn+1(1, 0)] + Cλδ∗n(1, 1)

≥ (1− λh)Vn+1(1, 1) + λh[ph + Vn+1(0, 1)] + λl[pl − Vn+1(1, 1) + Vn+1(1, 0)],

Vn(2, 0) = (1− λh)Vn+1(2, 0) + λh[ph + Vn+1(1, 0)]

+Cλα(p∗2,0)[p∗2,0 + Vn+1(1, 1)− Vn+1(2, 0)].

Then the proof of ∆h
n(2, 0) ≤ ∆h

n(1, 1) is identical to that of Case 2.

Proof of property c): [1 : H]×[0 : M−1] is partitioned into the interior [2 : H]×[1 : M−1],

the horizontal boundary [2 : H]×{0}, the vertical boundary {1}× [1 : M−1] and the corner

114



(1, 0). The DV-modularity at state (h, l) ∈ [1 : H]×[0 : M−1] in period n can be equivalently

expressed as

Vn(h− 1, l + 1)− Vn(h, l) ≥ Vn(h− 1, l + 2)− Vn(h, l + 1),

∆n(h, l) ≥ ∆n(h, l + 1),

Vn(h, l + 1)− Vn(h, l) ≥ Vn(h− 1, l + 2)− Vn(h− 1, l + 1),

∆l
n(h, l + 1) ≥ ∆l

n(h− 1, l + 2).

We focus on the last two expressions since they are more convenient to prove. These inequal-

ities involve states (h, l), (h, l + 1), (h− 1, l + 1) and (h− 1, l + 2). Specializing inequalities

(A.1) for these states, we obtain

p∗h−1,l+2 ≥ p∗h−1,l+1 ≥ p∗h,l+1 ≥ p∗h,l,

δ∗n(h− 1, l + 2) ≤ δ∗n(h− 1, l + 1) ≤ δ∗n(h, l + 1) ≤ δ∗n(h, l).

Cases are constructed by shifting 0 from the right-hand side of the last inequality to its

left-hand side.

Interior [2 : H]× [1 : M − 1]. There are 5 cases.

Case 1: δ∗n(h− 1, l + 2) ≤ δ∗n(h− 1, l + 1) ≤ δ∗n(h, l + 1) ≤ δ∗n(h, l) ≤ 0.

Vn(h, l) = (1− λh − λl)Vn+1(h, l) + λh[ph + Vn+1(h− 1, l)] + λl[pl + Vn+1(h, l − 1)],

Vn(h, l + 1) = (1− λh − λl)Vn+1(h, l + 1) + λh[ph + Vn+1(h− 1, l + 1)]

+λl[pl + Vn+1(h, l)],

Vn(h− 1, l + 1) = (1− λh − λl)Vn+1(h− 1, l + 1) + λh[ph + Vn+1(h− 2, l + 1)]

+λl[pl + Vn+1(h− 1, l)],

Vn(h− 1, l + 2) = (1− λh − λl)Vn+1(h− 1, l + 2) + λh[ph + Vn+1(h− 2, l + 2)]

+λl[pl + Vn+1(h− 1, l + 1)].
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From DV-modularity in period n + 1 and through term-by-term comparisons, we have

Vn(h, l+ 1)− Vn(h, l) ≥ Vn(h− 1, l+ 2)− Vn(h− 1, l+ 1) or ∆l
n(h, l+ 1) ≥ ∆l

n(h− 1, l+ 2).

Case 2: δ∗n(h− 1, l + 2) ≤ δ∗n(h− 1, l + 1) ≤ δ∗n(h, l + 1) ≤ 0 < δ∗n(h, l).

Vn(h, l) = Ψ[Vn+1(h, l)] + Cλδ∗n(h, l)

= Ψ[Vn+1(h, l)] + Cλα(p∗h,l)[p
∗
h,l + Vn+1(h− 1, l + 1)− Vn+1(h, l)],

Vn(h, l + 1) = Ψ[Vn+1(h, l + 1)] ≥ Ψ[Vn+1(h, l + 1)] + Cλδ∗n(h, l + 1)

≥ Ψ[Vn+1(h, l + 1)] + Cλα(p∗h,l)[p
∗
h,l + Vn+1(h− 1, l + 2)− Vn+1(h, l + 1)],

Vn(h− 1, l + 1) = Ψ[Vn+1(h− 1, l + 1)],

Vn(h− 1, l + 2) = Ψ[Vn+1(h− 1, l + 2)],

where the first inequality is due to δ∗n(h, l + 1) ≤ 0 and the second inequality follows from

the fact that p∗h,l is not the optimal fee for δn(p, h, l + 1). Then,

∆l
n(h, l + 1)

≥ (1− λh − λl)∆l
n+1(h, l + 1) + λh∆l

n+1(h− 1, l + 1) + λl∆l
n+1(h, l)

+Cλα(p∗h,l)[Vn+1(h− 1, l + 2)− Vn+1(h− 1, l + 1) + Vn+1(h, l)− Vn+1(h, l + 1)]

= [1− λh − λl − Cλα(p∗h,l)]∆
l
n+1(h, l + 1) + λh∆l

n+1(h− 1, l + 1) + λl∆l
n+1(h, l)

+Cλα(p∗h,l)∆
l
n+1(h− 1, l + 2),

∆l
n(h− 1, l + 2)

= (1− λh − λl)∆l
n+1(h− 1, l + 2) + λh∆l

n(h− 2, l + 2) + λl∆l
n+1(h− 1, l + 1).

Application of the DV-modularity in period n+1 to the terms multiplied by λh and λl shows

that it is sufficient to prove

[1− λh − λl − Cλα(p∗h,l)]∆
l
n+1(h, l + 1) + Cλα(p∗h,l)∆

l
n+1(h− 1, l + 2)

≥ (1− λh − λl)∆l
n+1(h− 1, l + 2).
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This also follows from the DV-modularity in period n+1: [1−λh−λl−Cλα(p∗h,l)]∆
l
n+1(h, l+

1) ≥ [1− λh − λl −Cλα(p∗h,l)]∆
l
n+1(h− 1, l+ 2). Hence, ∆l

n(h, l+ 1) ≥ ∆l
n(h− 1, l+ 2) and

the proof for this case is complete.

Case 3: δ∗n(h− 1, l + 2) ≤ δ∗n(h− 1, l + 1) ≤ 0 < δ∗n(h, l + 1) ≤ δ∗n(h, l).

Vn(h, l) = Ψ[Vn+1(h, l)] + Cλδ∗n(h, l)

= Ψ[Vn+1(h, l)] + Cλα(p∗h,l)[p
∗
h,l + Vn+1(h− 1, l + 1)− Vn+1(h, l)],

Vn(h, l + 1) = Ψ[Vn+1(h, l + 1)] + Cλδ∗n(h, l + 1)

≥ Ψ[Vn+1(h, l + 1] + Cλα(p∗h,l)[p
∗
h,l + Vn+1(h− 1, l + 2)− Vn+1(h, l + 1)],

Vn(h− 1, l + 1) = Ψ[Vn+1(h− 1, l + 1)],

Vn(h− 1, l + 2) = Ψ[Vn+1(h− 1, l + 2)].

Then the proof of ∆l
n(h, l + 1) ≥ ∆l

n(h− 1, l + 2) is identical to that of Case 2.

Case 4: δ∗n(h− 1, l + 2) ≤ 0 < δ∗n(h− 1, l + 1) ≤ δ∗n(h, l + 1) ≤ δ∗n(h, l).

Vn(h, l) = Ψ[Vn+1(h, l)] + Cλα(p∗h,l)[p
∗
h,l + Vn+1(h− 1, l + 1)− Vn+1(h, l)],

Vn(h, l + 1) = Ψ[Vn+1(h, l + 1)] + Cλδ∗n(h, l + 1)

≥ Ψ[Vn+1(h, l + 1)] + Cλα(p∗h,l)[p
∗
h,l + Vn+1(h− 1, l + 2)− Vn+1(h, l + 1)],

Vn(h− 1, l + 1) = Ψ[Vn+1(h− 1, l + 1) + Cλδ∗n(h− 1, l + 1)

≥ Ψ[Vn+1(h− 1, l + 1)],

Vn(h− 1, l + 2) = Ψ[Vn+1(h− 1, l + 2)].

The second inequality is from δ∗n(h − 1, l + 1) > 0. Then the proof of ∆l
n(h, l + 1) ≥

∆l
n(h− 1, l + 2) is identical to that of Case 2.

Case 5: 0 < δ∗n(h− 1, l + 2) ≤ δ∗n(h− 1, l + 1) ≤ δ∗n(h, l + 1) ≤ δ∗n(h, l).

Vn(h, l) = Ψ[Vn+1(h, l)] + Cλα(p∗h,l)[p
∗
h,l + Vn+1(h− 1, l + 1)− Vn+1(h, l)],

Vn(h, l + 1) = Ψ[Vn+1(h, l + 1)] + Cλδ∗n(h, l + 1)

≥ Ψ[Vn+1(h, l + 1)] + Cλα(p∗h,l)[p
∗
h,l + Vn+1(h− 1, l + 2)− Vn+1(h, l + 1)],
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Vn(h− 1, l + 1) = Ψ[Vn+1(h− 1, l + 1)] + Cλδ∗n(h− 1, l + 1),

Vn(h− 1, l + 2) = Ψ[Vn+1(h− 1, l + 2)] + Cλδ∗n(h− 1, l + 2).

∆l
n(h, l + 1) ≥ [1− λh − λl − Cλα(p∗h,l)]∆

l
n+1(h, l + 1) + λh∆l

n+1(h− 1, l + 1)

+λl∆l
n+1(h, l) + Cλα(p∗h,l)∆

l
n+1(h− 1, l + 2),

∆l
n(h− 1, l + 2) = (1− λh − λl)∆l

n+1(h− 1, l + 2) + λh∆l
n+1(h− 2, l + 2)

+λl∆l
n+1(h− 1, l + 1) + Cλ[δ∗n(h− 1, l + 2)− δ∗n(h− 1, l + 1)]

≤ (1− λh − λl)∆l
n+1(h− 1, l + 2) + λh∆l

n(h− 2, l + 2)

+λl∆l
n+1(h− 1, l + 1).

The last inequality is from δ∗n(h− 1, l+ 2)− δ∗n(h− 1, l+ 1) ≤ 0 in Inequalities (A.1). Then

the proof of ∆l
n(h, l + 1) ≥ ∆l

n(h− 1, l + 2) is identical to that of Case 2.

Horizontal boundary [2 : H]× {0}. Exactly the same 5 cases of the interior are used. In

addition to DV-modularity in period n + 1, the arguments also need ∆l
n+1(h − 1, 1) ≤ pl,

which can be derived from the submodularity property in c) and Lemma 2.

Case 1: δ∗n(h− 1, 2) ≤ δ∗n(h− 1, 1) ≤ δ∗n(h, 1) ≤ δ∗n(h, 0) ≤ 0.

Vn(h, 0) = (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)]

= (1− λh − λl)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)] + λlVn+1(h, 0),

Vn(h, 1) = (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)],

Vn(h− 1, 1) = (1− λh − λl)Vn+1(h− 1, 1) + λh[ph + Vn+1(h− 2, 1)]

+λl[pl + Vn+1(h− 1, 0)],

Vn(h− 1, 2) = (1− λh − λl)Vn+1(h− 1, 2) + λh[ph + Vn+1(h− 2, 2)]

+λl[pl + Vn+1(h− 1, 1)].

∆l
n(h, 1) = (1− λh − λl)∆l

n+1(h, 1) + λh∆l
n+1(h− 1, 1) + λlpl,

∆l
n(h− 1, 2) = (1− λh − λl)∆l

n+1(h− 1, 2) + λh∆l
n+1(h− 2, 1) + λl∆l

n+1(h− 1, 1).
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From DV-modularity in period n+1 and pl ≥ ∆l
n+1(h−1, 1), we have ∆l

n(h, 1) ≥ ∆l
n(h−1, 2)

through term-by-term comparisons.

Case 2: δ∗n(h− 1, 2) ≤ δ∗n(h− 1, 1) ≤ δ∗n(h, 1) ≤ 0 < δ∗n(h, 0).

Vn(h, 0) = (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)] + Cλδ∗n(h, 0)

= (1− λh − λl)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)] + λlVn+1(h, 0)

+Cλα(p∗h,0)[p∗h,0 + Vn+1(h− 1, 1)− Vn+1(h, 0)],

Vn(h, 1) = (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

≥ (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

+Cλδ∗n(h, 1)

≥ (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

+Cλα(p∗h,0)[p∗h,0 + Vn+1(h− 1, 2)− Vn+1(h, 1)],

Vn(h− 1, 1) = (1− λh − λl)Vn+1(h− 1, 1) + λh[ph + Vn+1(h− 2, 1)]

+λl[pl + Vn+1(h− 1, 0)],

Vn(h− 1, 2) = (1− λh − λl)Vn+1(h− 1, 2) + λh[ph + Vn+1(h− 2, 2)]

+λl[pl + Vn+1(h− 1, 1)],

where the first inequality is due to δ∗n(h, 1) ≤ 0 and the second inequality follows from the

fact that p∗h,0 is not the optimal fee for δn(p, h, 1). Then,

∆l
n(h, 1) = (1− λh − λl)∆l

n+1(h, 1) + λh∆l
n+1(h− 1, 1) + λlpl

+Cλα(p∗h,0)[Vn+1(h− 1, 2)− Vn+1(h− 1, 1) + Vn+1(h, 0)− Vn+1(h, 1)]

= [1− λh − λl − Cλα(p∗h,0)]∆l
n+1(h, 1) + λh∆l

n+1(h− 1, 1) + λlpl

+Cλα(p∗h,0)∆l
n+1(h− 1, 2),

∆l
n(h− 1, 2) = (1− λh − λl)∆l

n+1(h− 1, 2) + λh∆l
n+1(h− 2, 2) + λl∆l

n+1(h− 1, 1).
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Application of the DV-modularity in period n + 1 to the term multiplied by λh gives

λh∆l
n+1(h− 1, 1) ≥ λh∆l

n+1(h− 2, 2). We also have pl ≥ ∆l
n+1(h− 1, 1). Then, we only need

to prove

[1− λh − λl − Cλα(p∗h,0)]∆l
n+1(h, 1) + Cλα(p∗h,0)∆l

n+1(h− 1, 2)

≥ (1− λh − λl)∆l
n+1(h− 1, 2).

This also follows from the DV-modularity in period n+1: [1−λh−λl−Cλα(p∗h,0)]∆l
n+1(h, 1) ≥

[1 − λh − λl − Cλα(p∗h,0)]∆l
n+1(h − 1, 2). Hence, ∆l

n(h, 1) ≥ ∆l
n(h − 1, 2) and the proof for

this case is complete.

Case 3: δ∗n(h− 1, 2) ≤ δ∗n(h− 1, 1) ≤ 0 < δ∗n(h, 1) ≤ δ∗n(h, 0).

Vn(h, 0) = (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)] + Cλδ∗n(h, 0)

= (1− λh − λl)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)] + λlVn+1(h, 0)

+Cλα(p∗h,0)[p∗h,0 + Vn+1(h− 1, 1)− Vn+1(h, 0)],

Vn(h, 1) = (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

+Cλδ∗n(h, 1)

≥ (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

+Cλα(p∗h,0)[p∗h,0 + Vn+1(h− 1, 2)− Vn+1(h, 1)],

Vn(h− 1, 1) = (1− λh − λl)Vn+1(h− 1, 1) + λh[ph + Vn+1(h− 2, 1)]

+λl[pl + Vn+1(h− 1, 0)],

Vn(h− 1, 2) = (1− λh − λl)Vn+1(h− 1, 2) + λh[ph + Vn+1(h− 2, 2)]

+λl[pl + Vn+1(h− 1, 1)].

Then the proof of ∆l
n(h, 1) ≥ ∆l

n(h− 1, 2) is identical to that of Case 2.
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Case 4: δ∗n(h− 1, 2) < 0 ≤ δ∗n(h− 1, 1) ≤ δ∗n(h, 1) ≤ δ∗n(h, 0).

Vn(h, 0) = (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)] + Cλδ∗n(h, 0)

= (1− λh − λl)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)] + λlVn+1(h, 0)

+Cλα(p∗h,0)[p∗h,0 + Vn+1(h− 1, 1)− Vn+1(h, 0)],

Vn(h, 1) = (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

+Cλδ∗n(h, 1)

≥ (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

+Cλα(p∗h,0)[p∗h,0 + Vn+1(h− 1, 2)− Vn+1(h, 1)],

Vn(h− 1, 1) = (1− λh − λl)Vn+1(h− 1, 1) + λh[ph + Vn+1(h− 2, 1)]

+λl[pl + Vn+1(h− 1, 0)] + Cλδ∗n(h− 1, 1)

≥ (1− λh − λl)Vn+1(h− 1, 1) + λh[ph + Vn+1(h− 2, 1)]

+λl[pl + Vn+1(h− 1, 0)],

Vn(h− 1, 2) = (1− λh − λl)Vn+1(h− 1, 2) + λh[ph + Vn+1(h− 2, 2)]

+λl[pl + Vn+1(h− 1, 1)].

The second inequality is from δ∗n(h− 1, 1) > 0. Then the proof of ∆l
n(h, 1) ≥ ∆l

n(h− 1, 2) is

identical to that of Case 2.

Case 5: 0 < δ∗n(h− 1, 2) ≤ δ∗n(h− 1, 1) ≤ δ∗n(h, 1) ≤ δ∗n(h, 0).

Vn(h, 0) = (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)] + Cλδ∗n(h, 0)

= (1− λh − λl)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)] + λlVn+1(h, 0)

+Cλα(p∗h,0)[p∗h,0 + Vn+1(h− 1, 1)− Vn+1(h, 0)],

Vn(h, 1) = (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

+Cλδ∗n(h, 1)

≥ (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

+Cλα(p∗h,0)[p∗h,0 + Vn+1(h− 1, 2)− Vn+1(h, 1)],
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Vn(h− 1, 1) = (1− λh − λl)Vn+1(h− 1, 1) + λh[ph + Vn+1(h− 2, 1)]

+λl[pl + Vn+1(h− 1, 0)] + Cλδ∗n(h− 1, 1),

Vn(h− 1, 2) = (1− λh − λl)Vn+1(h− 1, 2) + λh[ph + Vn+1(h− 2, 2)]

+λl[pl + Vn+1(h− 1, 1)] + Cλδ∗n(h− 1, 2),

where the first inequality follows from the fact that p∗h,0 is not the optimal fee for δn(p, h, 1).

Then,

∆l
n(h, 1) ≥ (1− λh − λl)∆l

n+1(h, 1) + λh∆l
n+1(h− 1, 1) + λlpl

+Cλα(p∗h,0)[Vn+1(h− 1, 2)− Vn+1(h− 1, 1) + Vn+1(h, 0)− Vn+1(h, 1)]

= [1− λh − λl − Cλα(p∗h,0)]∆l
n+1(h, 1) + λh∆l

n+1(h− 1, 1)

+λlpl + Cλα(p∗h,0)∆l
n+1(h− 1, 2),

∆l
n(h− 1, 2) = (1− λh − λl)∆l

n+1(h− 1, 2) + λh∆l
n+1(h− 2, 2) + λl∆l

n+1(h− 1, 1)

+Cλ[δ∗n(h− 1, 2)− δ∗n(h− 1, 1)]

≤ (1− λh − λl)∆l
n+1(h− 1, 2) + λh∆l

n+1(h− 2, 2) + λl∆l
n+1(h− 1, 1).

The last inequality is from δ∗n(h − 1, 2) − δ∗n(h − 1, 1) ≤ 0 in Inequalities (A.1). Then the

proof of ∆l
n(h, 1) ≥ ∆l

n(h− 1, 2) is identical to that of Case 2.

Vertical boundary {1} × [1 : M − 1]. With h− 1 = 0, neither δ∗n(h− 1, 2) nor δ∗n(h− 1, 1) is

defined as there is no premium product to offer upgrades. Remaining two δ∗n values satisfy

δ∗n(h, l + 1) ≤ δ∗n(h, l). Hence, we have 3 cases that are similar to the first 3 cases in the

interior. Arguments need the DV-modularity and the submodularity in period n+ 1.
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Case 1: δ∗n(h, l + 1) ≤ δ∗n(h, l) ≤ 0.

Vn(1, l) = (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)]

= (1− λl)Vn+1(1, l) + λl[pl + Vn+1(1, l − 1)] + λh[ph + Vn+1(0, l)− Vn+1(1, l)],

Vn(1, l + 1) = (1− λh − λl)Vn+1(1, l + 1) + λh[ph + Vn+1(0, l + 1)] + λl[pl + Vn+1(1, l)]

= (1− λl)Vn+1(1, l + 1) + λl[pl + Vn+1(1, l)]

+λh[ph + Vn+1(0, l + 1)− Vn+1(1, l + 1)],

Vn(0, l + 1) = (1− λl)Vn+1(0, l + 1) + λl[pl + Vn+1(0, l)],

Vn(0, l + 2) = (1− λl)Vn+1(0, l + 2) + λl[pl + Vn+1(0, l + 1)].

∆l
n(1, l + 1) = (1− λl)∆l

n+1(1, l + 1) + λl∆l
n+1(1, l) + λh[∆h

n+1(1, l)−∆h
n+1(1, l + 1)]

≥ (1− λl)∆l
n+1(1, l + 1) + λl∆l

n+1(1, l),

∆l
n(0, l + 2) = (1− λl)∆l

n+1(0, l + 2) + λl∆l
n+1(0, l + 1).

The inequality is from the submodularity property ∆h
n+1(1, l) ≥ ∆h

n+1(1, l + 1). Due to

DV-modularity in period n + 1, we have ∆l
n(1, l + 1) ≥ ∆l

n(0, l + 2) through term-by-term

comparisons.

123



Case 2: δ∗n(h, l + 1) ≤ 0 < δ∗n(h, l).

Vn(1, l) = (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)]

+Cλδ∗n(1, l)

= (1− λl)Vn+1(1, l) + λl[pl + Vn+1(1, l − 1)] + λh[ph + Vn+1(0, l)− Vn+1(1, l)]

+Cλα(p∗1,l)[p
∗
1,l + Vn+1(0, l + 1)− Vn+1(1, l)],

Vn(1, l + 1) = (1− λh − λl)Vn+1(1, l + 1) + λh[ph + Vn+1(0, l + 1)] + λl[pl + Vn+1(1, l)]

≥ (1− λl)Vn+1(1, l + 1) + λl[pl + Vn+1(1, l)]

+λh[ph + Vn+1(0, l + 1)− Vn+1(1, l + 1)] + Cλδ∗n(1, l + 1)

≥ (1− λl)Vn+1(1, l + 1) + λl[pl + Vn+1(1, l)]

+λh[ph + Vn+1(0, l + 1)− Vn+1(1, l + 1)]

+Cλα(p∗1,l)[p
∗
1,l + Vn+1(0, l + 2)− Vn+1(1, l + 1)],

Vn(0, l + 1) = (1− λl)Vn+1(0, l + 1) + λl[pl + Vn+1(0, l)],

Vn(0, l + 2) = (1− λl)Vn+1(0, l + 2) + λl[pl + Vn+1(0, l + 1)],

where the first inequality is due to δ∗n(1, l + 1) ≤ 0 and the second inequality follows from

the fact that p∗1,l is not the optimal fee for δn(p, 1, l + 1). Then,

∆l
n(1, l + 1) ≥ (1− λl)∆l

n+1(1, l + 1) + λl∆l
n+1(1, l) + λh[∆h

n+1(1, l)−∆h
n+1(1, l + 1)]

+Cλα(p∗1,l)[Vn+1(0, l + 2)− Vn+1(0, l + 1) + Vn+1(1, l)− Vn+1(1, l + 1)]

≥ [1− λl − Cλα(p∗1,l)]∆
l
n+1(1, l + 1) + λl∆l

n+1(1, l) + Cλα(p∗1,l)∆
l
n+1(0, l + 2),

∆l
n(0, l + 2) = (1− λl)∆l

n+1(0, l + 2) + λl∆l
n+1(0, l + 1).

The second inequality is from the submodularity property ∆h
n+1(1, l) ≥ ∆h

n+1(1, l+1). Appli-

cation of the DV-modularity in period n+1 to the term multiplied by λl gives λl∆l
n+1(1, l) ≥

λl∆l
n+1(0, l + 1). Then, we only need to prove

[1− λl − Cλα(p∗1,l)]∆
l
n+1(1, l + 1) + Cλα(p∗1,l)∆

l
n+1(0, l + 2) ≥ (1− λl)∆l

n+1(0, l + 2).
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This also follows from the DV-modularity in period n+1: [1−λl−Cλα(p∗1,l)]∆
l
n+1(1, l+1) ≥

[1− λl − Cλα(p∗1,l)]∆
l
n+1(0, l + 2). Hence, ∆l

n(1, l + 1) ≥ ∆l
n(0, l + 2) and the proof for this

case is complete.

Case 3: 0 < δ∗n(h, l + 1) ≤ δ∗n(h, l).

Vn(1, l) = (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)]

+Cλδ∗n(1, l)

= (1− λl)Vn+1(1, l) + λl[pl + Vn+1(1, l − 1)] + λh[ph + Vn+1(0, l)− Vn+1(1, l)]

+Cλα(p∗1,l)[p
∗
1,l + Vn+1(0, l + 1)− Vn+1(1, l)],

Vn(1, l + 1) = (1− λl)Vn+1(1, l + 1) + λl[pl + Vn+1(1, l)]

+λh[ph + Vn+1(0, l + 1)− Vn+1(1, l + 1)] + Cλδ∗n(1, l + 1)

≥ (1− λl)Vn+1(1, l + 1) + λl[pl + Vn+1(1, l)]

+λh[ph + Vn+1(0, l + 1)− Vn+1(1, l + 1)]

+Cλα(p∗1,l)[p
∗
1,l + Vn+1(0, l + 2)− Vn+1(1, l + 1)],

Vn(0, l + 1) = (1− λl)Vn+1(0, l + 1) + λl[pl + Vn+1(0, l)],

Vn(0, l + 2) = (1− λl)Vn+1(0, l + 2) + λl[pl + Vn+1(0, l + 1)].

Then the proof of ∆l
n(1, l + 1) ≥ ∆l

n(0, l + 2) is identical to that of Case 2.

Corner (1, 0). There are 3 cases, which are the same as those in the vertical boundary. The

proof uses Lemma 2, the DV-modularity and submodularity.
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Case 1: δ∗n(1, 1) ≤ δ∗n(1, 0) ≤ 0.

Vn(1, 0) = (1− λh)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)]

= (1− λl)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)− Vn+1(1, 0)] + λlVn+1(1, 0),

Vn(1, 1) = (1− λh − λl)Vn+1(1, 1) + λh[ph + Vn+1(0, 1)] + λl[pl + Vn+1(1, 0)]

= (1− λl)Vn+1(1, 1) + λh[ph + Vn+1(0, 1)− Vn+1(1, 1)] + λl[pl + Vn+1(1, 0)],

Vn(0, 1) = (1− λl)Vn+1(0, 1) + λl[pl + Vn+1(0, 0)],

Vn(0, 2) = (1− λl)Vn+1(0, 2) + λl[pl + Vn+1(0, 1)].

∆l
n(1, 1) = (1− λl)∆l

n+1(1, 1) + λlpl + λh[∆h
n+1(1, 0)−∆h

n+1(1, 1)]

≥ (1− λl)∆l
n+1(1, 1) + λlpl,

∆l
n(0, 2) = (1− λl)∆l

n+1(0, 2) + λl∆l
n+1(0, 1).

The inequality follows from submodularity property c) ∆h
n+1(1, 0) ≥ ∆h

n+1(1, 1). Due to DV-

modularity in period n+1 and Lemma 2, we have ∆l
n(1, 1) ≥ ∆l

n(0, 2) through term-by-term

comparisons.

Case 2: δ∗n(1, 1) ≤ 0 < δ∗n(1, 0).

Vn(1, 0) = (1− λh)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)] + Cλδ∗n(1, 0)

= (1− λl)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)− Vn+1(1, 0)] + λlVn+1(1, 0)

+Cλα(p∗1,0)[p∗1,0 + Vn+1(0, 1)− Vn+1(1, 0)],

Vn(1, 1) = (1− λh − λl)Vn+1(1, 1) + λh[ph + Vn+1(0, 1)] + λl[pl + Vn+1(1, 0)]

≥ (1− λh − λl)Vn+1(1, 1) + λh[ph + Vn+1(0, 1)] + λl[pl + Vn+1(1, 0)] + Cλδ∗n(1, 1)

≥ (1− λl)Vn+1(1, 1) + λh[ph + Vn+1(0, 1)− Vn+1(1, 1)] + λl[pl + Vn+1(1, 0)]

+Cλα(p∗1,0)[p∗1,0 + Vn+1(0, 2)− Vn+1(1, 1)],

Vn(0, 1) = (1− λl)Vn+1(0, 1) + λl[pl + Vn+1(0, 0)],

Vn(0, 2) = (1− λl)Vn+1(0, 2) + λl[pl + Vn+1(0, 1)],
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where the first inequality is due to δ∗n(1, 1) ≤ 0 and the second inequality follows from the

fact that p∗1,0 is not the optimal fee for δn(p, 1, 1). Then,

∆l
n(1, 1) ≥ (1− λl)∆l

n+1(1, 1) + λlpl + λh[∆h
n+1(1, 0)−∆h

n+1(1, 1)]

+Cλα(p∗1,0)[Vn+1(0, 2)− Vn+1(0, 1) + Vn+1(1, 0)− Vn+1(1, 1)]

≥ [1− λl − Cλα(p∗1,0)]∆l
n+1(1, 1) + λlpl + Cλα(p∗1,0)∆l

n+1(0, 2)

∆l
n(0, 2) = (1− λl)∆l

n+1(0, 2) + λl∆l
n+1(0, 1).

The inequality is from the submodularity property ∆h
n+1(1, 0) ≥ ∆h

n+1(1, 1). Due to Lemma

2, we also have λlpl ≥ λl∆l
n+1(0, 1). Then, we only need to prove

[1− λl − Cλα(p∗1,0)]∆l
n+1(1, 1) + Cλα(p∗1,0)∆l

n+1(0, 2) ≥ (1− λl)∆l
n+1(0, 2).

This also follows from the DV-modularity in period n+ 1: [1− λl −Cλα(p∗1,0)]∆l
n+1(1, 1) ≥

[1 − λl − Cλα(p∗1,0)]∆l
n+1(0, 2). Hence, ∆l

n(1, 1) ≥ ∆l
n(0, 2) and the proof for this case is

complete.

Case 3: 0 < δ∗n(1, 1) ≤ δ∗n(1, 0).

Vn(1, 0) = (1− λh)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)] + Cλδ∗n(1, 0)

= (1− λl)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)− Vn+1(1, 0)] + λlVn+1(1, 0)

+Cλα(p∗1,0)[p∗1,0 + Vn+1(0, 1)− Vn+1(1, 0)],

Vn(1, 1) = (1− λh − λl)Vn+1(1, 1) + λh[ph + Vn+1(0, 1)] + λl[pl + Vn+1(1, 0)] + Cλδ∗n(1, 1)

≥ (1− λl)Vn+1(1, 1) + λh[ph + Vn+1(0, 1)− Vn+1(1, 1)] + λl[pl + Vn+1(1, 0)]

+Cλα(p∗1,0)[p∗1,0 + Vn+1(0, 2)− Vn+1(1, 1)],

Vn(0, 1) = (1− λl)Vn+1(0, 1) + λl[pl + Vn+1(0, 0)],

Vn(0, 2) = (1− λl)Vn+1(0, 2) + λl[pl + Vn+1(0, 1)].

Then the proof of ∆l
n(1, 1) ≥ ∆l

n(0, 2) is identical to that of Case 2.
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Proof of property d): [1 : H]×[0 : M+1] is partitioned into the interior [2 : H]×[1 : M+1],

the horizontal boundary [2 : H]×{0}, the vertical boundary {1}× [1 : M+1] and the corner

point (1, 0). H-concavity in period n is Vn(h + 1, l) − Vn(h, l) ≤ Vn(h, l) − Vn(h − 1, l)

or ∆h
n(h + 1, l) ≤ ∆h

n(h, l). This inequality involves states (h + 1, l), (h, l) and (h − 1, l).

Specializing Inequalities (A.1) for these states, we obtain p∗h+1,l ≤ p∗h,l ≤ p∗h−1,l and δ∗n(h −

1, l) ≤ δ∗n(h, l) ≤ δ∗n(h + 1, l). Cases are constructed by shifting 0 from the right-hand side

of the second inequality to its left-hand side.

Interior [2 : H]× [1 : M + 1]. There are 4 possible cases.

Case 1: δ∗n(h− 1, l) ≤ δ∗n(h, l) ≤ δ∗n(h+ 1, l) ≤ 0.

Vn(h+ 1, l) = (1− λh − λl)Vn+1(h+ 1, l) + λh[ph + Vn+1(h, l)]

+λl[pl + Vn+1(h+ 1, l − 1)],

Vn(h, l) = (1− λh − λl)Vn+1(h, l) + λh[ph + Vn+1(h− 1, l)] + λl[pl + Vn+1(h, l − 1)],

Vn(h− 1, l) = (1− λh − λl)Vn+1(h− 1, l) + λh[ph + Vn+1(h− 2, l)]

+λl[pl + Vn+1(h− 1, l − 1)].

The H-concavity in period n+1 and term-by-term comparisons of the value functions above

yield ∆h
n(h+ 1, l) ≤ ∆h

n(h, l).

Case 2: δ∗n(h− 1, l) ≤ δ∗n(h, l) ≤ 0 < δ∗n(h+ 1, l).

Vn(h+ 1, l) = Ψ[Vn+1(h+ 1, l)] + Cλδ∗n(h+ 1, l)

= Ψ[Vn+1(h+ 1, l)] + Cλα(p∗h+1,l)[p
∗
h+1,l + Vn+1(h, l + 1)− Vn+1(h+ 1, l)],

Vn(h, l) = Ψ[Vn+1(h, l)]

≥ Ψ[Vn+1(h, l)] + Cλδ∗n(h, l)

≥ Ψ[Vn+1(h, l)] + Cλα(p∗h+1,l)[p
∗
h+1,l + Vn+1(h− 1, l + 1)− Vn+1(h, l)],

Vn(h− 1, l) = Ψ[Vn+1(h− 1, l)],
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where the first inequality is from δ∗n(h, l) ≤ 0 and the second is from the non-optimality of

p∗h+1,l for δn(p, h, l). Then,

∆h
n(h+ 1, l)

≤ (1− λh − λl)∆h
n+1(h+ 1, l) + λh∆h

n+1(h, l) + λl∆h
n+1(h+ 1, l − 1)

+Cλα(p∗h+1,l)[Vn+1(h, l + 1)− Vn+1(h− 1, l + 1) + Vn+1(h, l)− Vn+1(h+ 1, l)]

= [1− λh − λl − Cλα(p∗h+1,l)]∆
h
n+1(h+ 1, l) + λh∆h

n+1(h, l) + λl∆h
n+1(h+ 1, l − 1)

+Cλα(p∗h+1,l)∆
h
n+1(h, l + 1),

∆h
n(h, l)

= [1− λh − λl − Cλα(p∗h+1,l)]∆
h
n+1(h, l) + λh∆h

n+1(h− 1, l) + λl∆h
n+1(h, l − 1)

+Cλα(p∗h+1,l)∆
h
n+1(h, l).

Using submodularity in period n + 1 on the terms multiplied by Cλα(p∗h+1,l) and the H-

concavity in period n+ 1 on the other terms, we obtain ∆h
n(h+ 1, l) ≤ ∆h

n(h, l).

Case 3: δ∗n(h− 1, l) ≤ 0 < δ∗n(h, l) ≤ δ∗n(h+ 1, l).

Vn(h+ 1, l) = Ψ[Vn+1(h+ 1, l)] + Cλα(p∗h+1,l)[p
∗
h+1,l + Vn+1(h, l + 1)− Vn+1(h+ 1, l)],

Vn(h, l) = Ψ[Vn+1(h, l) + Cλδ∗n(h, l)

≥ Ψ[Vn+1(h, l)] + Cλα(p∗h+1,l)[p
∗
h+1,l + Vn+1(h− 1, l + 1)− Vn+1(h, l)],

Vn(h, l) ≥ Ψ[Vn+1(h, l)],

Vn(h− 1, l) = Ψ[Vn+1(h− 1, l)].

Note that two lower bounds are given for Vn(h, l); the first is used to find an upper bound

for ∆h
n(h+1, l) and the second for a lower bound for ∆h

n(h, l). By following the arguments of

Case 2, we can show that the upper bound of ∆h
n(h+ 1, l) is not more than the lower bound

of ∆h
n(h, l), so ∆h

n(h+ 1, l) ≤ ∆h
n(h, l).
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Case 4: 0 < δ∗n(h− 1, l) ≤ δ∗n(h, l) ≤ δ∗n(h+ 1, l).

Vn(h+ 1, l) = Ψ[Vn+1(h+ 1, l)] + Cλα(p∗h+1,l)[p
∗
h+1,l + Vn+1(h, l + 1)− Vn+1(h+ 1, l)],

Vn(h, l) = Ψ[Vn+1(h, l)] + Cλδ∗n(h, l)

≥ Ψ[Vn+1(h, l)] + Cλα(p∗h+1,l)[p
∗
h+1,l + Vn+1(h− 1, l + 1)− Vn+1(h, l)],

Vn(h− 1, l) = Ψ[Vn+1(h− 1, l)] + Cλδ∗n(h− 1, l).

∆h
n(h+ 1, l)

≤ (1− λh − λl)∆h
n+1(h+ 1, l) + λh∆h

n+1(h, l) + λl∆h
n+1(h+ 1, l − 1)

+Cλα(p∗h+1,l)[Vn+1(h, l + 1)− Vn+1(h− 1, l + 1) + Vn+1(h, l)− Vn+1(h+ 1, l)]

= [1− λh − λl − Cλα(p∗h+1,l)]∆
h
n+1(h+ 1, l) + λh∆h

n+1(h, l)

+λl∆h
n+1(h+ 1, l − 1) + Cλα(p∗h+1,l)∆

h
n+1(h, l + 1),

∆h
n(h, l)

= (1− λh − λl)∆h
n+1(h, l) + λh∆h

n+1(h− 1, l) + λl∆h
n+1(h, l − 1)

+Cλ[δ∗n(h, l)− δ∗n(h− 1, l)]

≥ (1− λh − λl)∆h
n+1(h, l) + λh∆h

n+1(h− 1, l) + λl∆h
n+1(h, l − 1)

= [1− λh − λl − Cλα(p∗h+1,l)]∆
h
n+1(h, l) + λh∆h

n+1(h− 1, l)

+λl∆h
n+1(h, l − 1) + Cλα(p∗h+1,l)∆

h
n+1(h, l),

where the last inequality is from δ∗n(h, l)− δ∗n(h− 1, l) ≥ 0. Then the proof of ∆h
n(h+ 1, l) ≤

∆h
n(h, l) is finished as in Case 2.

Horizontal boundary [2 : H]× {0}. There are 4 cases.

Case 1: δ∗n(h− 1, 0) ≤ δ∗n(h, 0) ≤ δ∗n(h+ 1, 0) ≤ 0.

Vn(h+ 1, 0) = (1− λh)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)],

Vn(h, 0) = (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)],

Vn(h− 1, 0) = (1− λh)Vn+1(h− 1, 0) + λh[ph + Vn+1(h− 2, 0)].
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The H-concavity in period n is inherited from that in period n+ 1.

Case 2: δ∗n(h− 1, 0) ≤ δ∗n(h, 0) ≤ 0 < δ∗n(h+ 1, 0).

Vn(h+ 1, 0) = (1− λh)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)] + Cλδ∗n(h+ 1, 0)

= (1− λh)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)]

+Cλα(p∗h+1,0)[p∗h+1,0 + Vn+1(h, 1)− Vn+1(h+ 1, 0)],

Vn(h, 0) = (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)]

≥ (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)] + Cλδ∗n(h, 0)

≥ (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)]

+Cλα(p∗h+1,0)[p∗h+1,0 + Vn+1(h− 1, 1)− Vn+1(h, 0)],

Vn(h− 1, 0) = (1− λh)Vn+1(h− 1, 0) + λh[ph + Vn+1(h− 2, 0)],

where the first inequality is from δ∗n(h, 0) ≤ 0 and the second is from the non-optimality of

p∗h+1,0 for δn(p, h, 0). Then,

∆h
n(h+ 1, 0) ≤ (1− λh)∆h

n+1(h+ 1, 0) + λh∆h
n+1(h, l)

+Cλα(p∗h+1,0)[Vn+1(h, 1)− Vn+1(h− 1, 1) + Vn+1(h, 0)− Vn+1(h+ 1, 0)]

= [1− λh − Cλα(p∗h+1,0)]∆h
n+1(h+ 1, 0) + λh∆h

n+1(h, 0)

+Cλα(p∗h+1,0)∆h
n+1(h, 1),

∆h
n(h, 0) = [1− λh − Cλα(p∗h+1,0)]∆h

n+1(h, 0) + λh∆h
n+1(h− 1, 0)

+Cλα(p∗h+1,0)∆h
n+1(h, 0).

Using submodularity in period n + 1 on the terms multiplied by Cλα(p∗h+1,0) and the H-

concavity in period n+ 1 on the other terms, we obtain ∆h
n(h+ 1, 0) ≤ ∆h

n(h, 0).
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Case 3: δ∗n(h− 1, 0) ≤ 0 < δ∗n(h, 0) ≤ δ∗n(h+ 1, 0).

Vn(h+ 1, 0) = (1− λh)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)] + Cλδ∗n(h+ 1, 0)

= (1− λh)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)]

+Cλα(p∗h+1,0)[p∗h+1,0 + Vn+1(h, 1)− Vn+1(h+ 1, 0)],

Vn(h, 0) = (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)] + Cλδ∗n(h, 0)

≥ (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)]

+Cλα(p∗h+1,0)[p∗h+1,0 + Vn+1(h− 1, 1)− Vn+1(h, 0)],

Vn(h, 0) ≥ (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)],

Vn(h− 1, 0) = (1− λh)Vn+1(h− 1, 0) + λh[ph + Vn+1(h− 2, 0)].

Note that two lower bounds are given for Vn(h, 0); the first is used to find an upper bound

for ∆h
n(h+ 1, 0) and the second for a lower bound for ∆h

n(h, 0). By following the arguments

of Case 2, we can show that the upper bound of ∆h
n(h + 1, 0) is not more than the lower

bound of ∆h
n(h, 0), so ∆h

n(h+ 1, 0) ≤ ∆h
n(h, 0).

Case 4: 0 < δ∗n(h− 1, 0) ≤ δ∗n(h, 0) ≤ δ∗n(h+ 1, 0).

Vn(h+ 1, 0) = (1− λh)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)] + Cλδ∗n(h+ 1, 0)

= (1− λh)Vn+1(h+ 1, 0) + λh[ph + Vn+1(h, 0)]

+Cλα(p∗h+1,0)[p∗h+1,0 + Vn+1(h, 1)− Vn+1(h+ 1, 0)],

Vn(h, 0) = (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)] + Cλδ∗n(h, 0)

≥ (1− λh)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)]

+Cλα(p∗h+1,0)[p∗h+1,0 + Vn+1(h− 1, 1)− Vn+1(h, 0)],

Vn(h− 1, 0) = (1− λh)Vn+1(h− 1, 0) + λh[ph + Vn+1(h− 2, 0)] + Cλδ∗n(h− 1, 0).
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∆h
n(h+ 1, 0)

≤ (1− λh)∆h
n+1(h+ 1, 0) + λh∆h

n+1(h, l)

+Cλα(p∗h+1,0)[Vn+1(h, 1)− Vn+1(h− 1, 1) + Vn+1(h, 0)− Vn+1(h+ 1, 0)]

= [1− λh − Cλα(p∗h+1,0)]∆h
n+1(h+ 1, 0) + λh∆h

n+1(h, 0)

+Cλα(p∗h+1,0)∆h
n+1(h, 1),

∆h
n(h, 0)

= (1− λh)∆h
n+1(h, 0) + +λh∆h

n+1(h− 1, 0) + Cλ[δ∗n(h, 0)− δ∗n(h− 1, 0)]

≥ [1− λh − Cλα(p∗h+1,0)]∆h
n+1(h, 0) + λh∆h

n+1(h− 1, 0) + Cλα(p∗h+1,0)∆h
n+1(h, 0),

where the last inequality is from δ∗n(h, 0)−δ∗n(h−1, 0) ≥ 0. Then the proof of ∆h
n(h+1, 0) ≤

∆h
n(h, 0) is finished as in Case 2.

Vertical boundary {1} × [1 : M + 1]. Since h − 1 = 0, δ∗n(h − 1, l) is not defined. We have

δ∗n(1, l) ≤ δ∗n(2, l) and 3 cases similar to the first three in the interior. Proofs require sub-

modularity, H-concavity in period n + 1 and ∆h
n+1(1, l) ≤ ph, which is from Lemma 2 and

submodularity. We prove the H-concavity in Case 1.

Case 1: δ∗n(1, l) ≤ δ∗n(2, l) ≤ 0.

Vn(2, l) = (1− λh − λl)Vn+1(2, l) + λh[ph + Vn+1(1, l)] + λl[pl + Vn+1(2, l − 1)],

Vn(1, l) = (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)],

Vn(0, l) = (1− λh − λl)Vn+1(0, l) + λhVn+1(0, l) + λl[pl + Vn+1(0, l − 1)].

∆h
n(2, l) = (1− λh − λl)∆h

n+1(2, l) + λh∆h
n+1(1, l) + λl∆h

n+1(2, l − 1),

∆h
n(1, l) = (1− λh − λl)∆h

n+1(1, l) + λhph + λl∆h
n+1(1, l − 1),

H-concavity in period n+ 1 and ∆h
n+1(1, l) ≤ ph imply ∆h

n(2, l) ≤ ∆h
n(1, l).
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Case 2: δ∗n(1, l) ≤ 0 < δ∗n(2, l).

Vn(2, l) = (1− λh − λl)Vn+1(2, l) + λh[ph + Vn+1(1, l)] + λl[pl + Vn+1(2, l − 1)]

+Cλδ∗n(2, l)

= (1− λh − λl)Vn+1(2, l) + λh[ph + Vn+1(1, l)] + λl[pl + Vn+1(2, l − 1)]

+Cλα(p∗2,l)[p
∗
2,l + Vn+1(1, l + 1)− Vn+1(2, l)],

Vn(1, l) = (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)]

≥ (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)]

+Cλδ∗n(1, l)

≥ (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)]

+Cλα(p∗2,l)[p
∗
2,l + Vn+1(0, l + 1)− Vn+1(1, l)],

Vn(0, l) = (1− λh − λl)Vn+1(0, l) + λhVn+1(0, l) + λl[pl + Vn+1(0, l − 1)],

where the first inequality is from δ∗n(1, l) ≤ 0 and the second is from the non-optimality of

p∗2,l for δn(p, 1, l). Then,

∆h
n(2, l) ≤ (1− λh − λl)∆h

n+1(2, l) + λh∆h
n+1(1, l) + λl∆h

n+1(2, l − 1)

+Cλα(p∗2,l)[Vn+1(1, l + 1)− Vn+1(0, l + 1) + Vn+1(1, l)− Vn+1(2, l)]

= [1− λh − λl − Cλα(p∗2,l)]∆
h
n+1(2, l) + λh∆h

n+1(1, l) + λl∆h
n+1(2, l − 1)

+Cλα(p∗2,l)∆
h
n+1(1, l + 1),

∆h
n(1, l) = [1− λh − λl − Cλα(p∗2,l)]∆

h
n+1(1, l) + λhph + λl∆h

n+1(1, l − 1)

+Cλα(p∗2,l)∆
h
n+1(1, l).

Using submodularity in period n + 1 on the terms multiplied by Cλα(p∗2,l), Lemma 2 and

submodularity in period n+ 1 on the terms multiplied by λh, and the H-concavity in period

n+ 1 on the other terms, we obtain ∆h
n(2, l) ≤ ∆h

n(1, l).
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Case 3: 0 < δ∗n(1, l) ≤ δ∗n(2, l).

Vn(2, l) = (1− λh − λl)Vn+1(2, l) + λh[ph + Vn+1(1, l)] + λl[pl + Vn+1(2, l − 1)]

+Cλδ∗n(2, l)

= (1− λh − λl)Vn+1(2, l) + λh[ph + Vn+1(1, l)] + λl[pl + Vn+1(2, l − 1)]

+Cλα(p∗2,l)[p
∗
2,l + Vn+1(1, l + 1)− Vn+1(2, l)],

Vn(1, l) = (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)]

+Cλδ∗n(1, l)

≥ (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)]

+Cλα(p∗2,l)[p
∗
2,l + Vn+1(0, l + 1)− Vn+1(1, l)],

Vn(1, l) ≥ (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)],

Vn(0, l) = (1− λh − λl)Vn+1(0, l) + λhVn+1(0, l) + λl[pl + Vn+1(0, l − 1)].

Note that two lower bounds are given for Vn(1, l); the first is used to find an upper bound

for ∆h
n(2, l) and the second for a lower bound for ∆h

n(1, l). By following the arguments of

Case 2, we can show that the upper bound of ∆h
n(2, l) is not more than the lower bound of

∆h
n(1, l), so ∆h

n(2, l) ≤ ∆h
n(1, l).

Corner (1, 0). There are 3 cases and proofs require submodularity, ∆h
n+1(1, l) ≤ ph and

H-concavity as in the vertical boundary. We prove Case 1.

Case 1: δ∗n(1, 0) ≤ δ∗n(2, 0) ≤ 0.

Vn(2, 0) = (1− λh)Vn+1(2, 0) + λh[ph + Vn+1(1, 0)],

Vn(1, 0) = (1− λh)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)],

Vn(0, 0) = (1− λh)Vn+1(0, 0) + λhVn+1(0, 0).

∆h
n(2, 0) = (1− λh)∆h

n+1(2, 0) + λh∆h
n+1(1, 0),

∆h
n(1, 0) = (1− λh)∆h

n+1(1, 0) + λhph.
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H-concavity in period n+ 1 and Lemma 2 yield ∆h
n(2, 0) ≤ ∆h

n(1, 0).

Case 2: δ∗n(1, 0) ≤ 0 < δ∗n(2, 0).

Vn(2, 0) = (1− λh)Vn+1(2, 0) + λh[ph + Vn+1(1, 0)] + Cλδ∗n(2, 0)

= (1− λh)Vn+1(2, 0) + λh[ph + Vn+1(1, 0)]

+Cλα(p∗2,0)[p∗2,0 + Vn+1(1, 1)− Vn+1(2, 0)],

Vn(1, 0) = (1− λh)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)]

≥ (1− λh)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)] + Cλδ∗n(1, 0)

≥ (1− λh)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)]

+Cλα(p∗2,0)[p∗2,0 + Vn+1(0, 1)− Vn+1(1, 0)],

Vn(0, 0) = (1− λh)Vn+1(0, 0) + λhVn+1(0, 0),

where the first inequality is from δ∗n(1, 0) ≤ 0 and the second is from the non-optimality of

p∗2,0 for δn(p, 1, 0). Then,

∆h
n(2, 0) = (1− λh)∆h

n+1(2, 0) + λh∆h
n+1(1, 0)

+Cλα(p∗2,0)[Vn+1(1, 1)− Vn+1(0, 1) + Vn+1(1, 0)− Vn+1(2, 0)]

= [1− λh − λl − Cλα(p∗2,0)]∆h
n+1(2, 0) + λh∆h

n+1(1, 0) + Cλα(p∗2,0)∆h
n+1(1, 1),

∆h
n(1, 0) = [1− λh − Cλα(p∗2,0)]∆h

n+1(1, 0) + λhph + Cλα(p∗2,0)∆h
n+1(1, 0).

Using submodularity in period n + 1 on the terms multiplied by Cλα(p∗2,0), Lemma 2 in

period n+1 on the terms multiplied by λh, and the H-concavity in period n+1 on the other

terms, we obtain ∆h
n(2, 0) ≤ ∆h

n(1, 0).
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Case 3: 0 < δ∗n(1, 0) ≤ δ∗n(2, 0).

Vn(2, 0) = (1− λh)Vn+1(2, 0) + λh[ph + Vn+1(1, 0)] + Cλδ∗n(2, 0)

= (1− λh)Vn+1(2, 0) + λh[ph + Vn+1(1, 0)]

+Cλα(p∗2,0)[p∗2,0 + Vn+1(1, 1)− Vn+1(2, 0)],

Vn(1, 0) = (1− λh)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)] + Cλδ∗n(1, 0)

≥ (1− λh)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)]

+Cλα(p∗2,0)[p∗2,0 + Vn+1(0, 1)− Vn+1(1, 0)],

Vn(1, 0) ≥ (1− λh)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)],

Vn(0, 0) = (1− λh)Vn+1(0, 0) + λhVn+1(0, 0).

Note that two lower bounds are given for Vn(1, 0); the first is used to find an upper bound

for ∆h
n(2, 0) and the second for a lower bound for ∆h

n(1, 0). By following the arguments of

Case 2, we can show that the upper bound of ∆h
n(2, 0) is not more than the lower bound of

∆h
n(1, 0), so ∆h

n(2, 0) ≤ ∆h
n(1, 0).

Proof of property e): [0 : H] × [1 : M ] is partitioned into the interior [1 : H] × [2 : M ],

the horizontal boundary [1 : H] × {1}, the vertical boundary {0} × [2 : M ] and the corner

(0, 1). The V -concavity in period n is Vn(h, l) − Vn(h, l − 1) ≥ Vn(h, l + 1) − Vn(h, l) or

∆l
n(h, l) ≥ ∆l

n(h, l + 1). This inequality involves states (h, l − 1), (h, l) and (h, l + 1). Spe-

cializing Inequalities (A.1) for these states, we have p∗h,l−1 ≤ p∗h,l ≤ p∗h,l+1 and δ∗n(h, l + 1) ≤

δ∗n(h, l) ≤ δ∗n(h, l − 1), which is used to construct the cases below.

Interior [0 : H]× [1 : M ]. There are 4 possible cases.
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Case 1: δ∗n(h, l + 1) ≤ δ∗n(h, l) ≤ δ∗n(h, l − 1) ≤ 0.

Vn(h, l − 1) = (1− λh − λl)Vn+1(h, l − 1) + λh[ph + Vn+1(h− 1, l − 1)]

+λl[pl + Vn+1(h, l − 2)],

Vn(h, l) = (1− λh − λl)Vn+1(h, l) + λh[ph + Vn+1(h− 1, l)] + λl[pl + Vn+1(h, l − 1)],

Vn(h, l + 1) = (1− λh − λl)Vn+1(h, l + 1) + λh[ph + Vn+1(h− 1, l + 1)]

+λl[pl + Vn+1(h, l)].

V -concavity in period n+1 and term-by-term comparisons of the value functions above yield

∆l
n(h, l) ≥ ∆l

n(h, l + 1).

Case 2: δ∗n(h, l + 1) ≤ δ∗n(h, l) ≤ 0 < δ∗n(h, l − 1).

Vn(h, l − 1) = Ψ[Vn+1(h, l − 1)] + Cλδ∗n(h, l − 1)

= Ψ[Vn+1(h, l − 1)] + Cλα(p∗h,l−1)[p∗h,l−1 + Vn+1(h− 1, l)− Vn+1(h, l − 1)],

Vn(h, l) = Ψ[Vn+1(h, l)]

≥ Ψ[Vn+1(h, l)] + Cλδ∗n(h, l)

≥ Ψ[Vn+1(h, l)] + Cλα(p∗h,l−1)[p∗h,l−1 + Vn+1(h− 1, l + 1)− Vn+1(h, l)],

Vn(h, l + 1) = Ψ[Vn+1(h, l + 1)],

where the first inequality is from δ∗n(h, l) ≤ 0 and the second is from the non-optimality of

p∗h,l−1 for δn(p, h, l). Then,

∆l
n(h, l) ≥ (1− λh − λl)∆l

n+1(h, l) + λh∆l
n+1(h− 1, l) + λl∆l

n+1(h, l − 1)

+Cλα(p∗h,l−1)[Vn+1(h− 1, l + 1)− Vn+1(h− 1, l) + Vn+1(h, l − 1)− Vn+1(h, l)]

= (1− λh − λl − Cλα(p∗h,l−1))∆l
n+1(h, l) + λh∆l

n+1(h− 1, l) + λl∆l
n+1(h, l − 1)

+Cλα(p∗h,l−1)∆l
n+1(h− 1, l + 1),
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∆l
n(h, l + 1) = (1− λh − λl)∆l

n+1(h, l + 1) + λh∆l
n+1(h− 1, l + 1) + λl∆l

n+1(h, l)

= (1− λh − λl − Cλα(p∗h,l−1))∆l
n+1(h, l + 1) + λh∆l

n+1(h− 1, l + 1)

+λl∆l
n+1(h, l) + Cλα(p∗h,l−1)∆l

n+1(h, l + 1).

Using submodularity in period n+1 on the terms multiplied by Cλα(p∗h,l−1) and V -concavity

in period n+ 1 on the other terms, we obtain ∆l
n(h, l) ≥ ∆l

n(h, l + 1).

Case 3: δ∗n(h, l + 1) ≤ 0 < δ∗n(h, l) ≤ δ∗n(h, l − 1).

Vn(h, l − 1) = Ψ[Vn+1(h, l − 1)] + Cλα(p∗h,l−1)[p∗h,l−1 + Vn+1(h− 1, l)− Vn+1(h, l − 1)],

Vn(h, l) = Ψ[Vn+1(h, l)] + Cλδ∗n(h, l)

≥ Ψ[Vn+1(h, l)] + Cλα(p∗h,l−1)[p∗h,l−1 + Vn+1(h− 1, l + 1)− Vn+1(h, l)],

Vn(h, l) ≥ Ψ[Vn+1(h, l)],

Vn(h, l + 1) = Ψ[Vn+1(h, l + 1].

Note that two lower bounds are given for Vn(h, l); the first is used to find a lower bound for

∆l
n(h, l) and the second for an upper bound for ∆l

n(h, l+ 1). By following the arguments of

Case 2, we can show that the upper bound of ∆l
n(h, l+ 1) is not more than the lower bound

of ∆l
n(h, l), so ∆l

n(h, l + 1) ≤ ∆l
n(h, l).

Case 4: 0 < δ∗n(h, l + 1) ≤ δ∗n(h, l) ≤ δ∗n(h, l − 1).

Vn(h, l − 1) = Ψ[Vn+1(h, l − 1)] + Cλα(p∗h,l−1)[p∗h,l−1 + Vn+1(h− 1, l)− Vn+1(h, l − 1)],

Vn(h, l) = Ψ[Vn+1(h, l)] + Cλδ∗n(h, l)

≥ Ψ[Vn+1(h, l)] + Cλα(p∗h,l−1)[p∗h,l−1 + Vn+1(h− 1, l + 1)− Vn+1(h, l)],

Vn(h, l + 1) = Ψ[Vn+1(h, l + 1)] + Cλδ∗n(h, l + 1).
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∆l
n(h, l)

≥ (1− λh − λl)∆l
n+1(h, l) + λh∆l

n+1(h− 1, l) + λl∆l
n+1(h, l − 1)

+Cλα(p∗h,l−1)[Vn+1(h− 1, l + 1)− Vn+1(h− 1, l) + Vn+1(h, l − 1)− Vn+1(h, l)]

= (1− λh − λl − Cλα(p∗h,l−1))∆l
n+1(h, l) + λh∆l

n+1(h− 1, l) + λl∆l
n+1(h, l − 1)

+Cλα(p∗h,l−1)∆l
n+1(h− 1, l + 1),

∆l
n(h, l + 1)

= (1− λh − λl)∆l
n+1(h, l + 1) + λh∆l

n+1(h− 1, l + 1) + λl∆l
n+1(h, l)

+Cλ[δ∗n(h, l + 1)− δ∗n(h, l)],

≤ (1− λh − λl)∆l
n+1(h, l + 1) + λh∆l

n+1(h− 1, l + 1) + λl∆l
n+1(h, l)

= (1− λh − λl − Cλα(p∗h,l−1))∆l
n+1(h, l + 1) + λh∆l

n+1(h− 1, l + 1) + λl∆l
n+1(h, l)

+Cλα(p∗h,l−1)∆l
n+1(h, l + 1),

where the last inequality is from δ∗n(h, l + 1) − δ∗n(h, l) ≤ 0. Then the proof of ∆l
n(h, l) ≥

∆l
n(h, l + 1) is finished as in Case 2.

Horizontal boundary [1 : H]× {1}. There are 4 cases similar to the interior. Proofs require

submodularity, V -concavity in period n + 1 and Vn+1(h, 1) − Vn+1(h, 0) ≤ pl, which can be

derived from Lemma 2 and the submodularity.

Case 1: δ∗n(h, 2) ≤ δ∗n(h, 1) ≤ δ∗n(h, 0) ≤ 0.

Vn(h, 0) = (1− λh − λl)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)] + λlVn+1(h, 0),

Vn(h, 1) = (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)],

Vn(h, 2) = (1− λh − λl)Vn+1(h, 2) + λh[ph + Vn+1(h− 1, 2)] + λl[pl + Vn+1(h, 1)].

∆l
n(h, 1) = (1− λh − λl)∆l

n+1(h, 1) + λh∆l
n+1(h− 1, 1) + λlpl,

∆l
n(h, 2) = (1− λh − λl)∆l

n+1(h, 2) + λh∆l
n+1(h− 1, 2) + λl∆l

n+1(h, 1).

V -concavity in period n+ 1 and pl ≥ ∆l
n+1(h, 1) imply ∆l

n(h, 1) ≥ ∆l
n(h, 2).
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Case 2: δ∗n(h, 2) ≤ δ∗n(h, 1) ≤ 0 < δ∗n(h, 0).

Vn(h, 0) = (1− λh − λl)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)] + λlVn+1(h, 0)

+Cλα(p∗h,0)[p∗h,0 + Vn+1(h− 1, 1)− Vn+1(h, 0)],

Vn(h, 1) = (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

≥ (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

+Cλδ∗n(h, 1)

≥ (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

+Cλα(p∗h,0)[p∗h,0 + Vn+1(h− 1, 2)− Vn+1(h, 1)],

Vn(h, 2) = (1− λh − λl)Vn+1(h, 2) + λh[ph + Vn+1(h− 1, 2)] + λl[pl + Vn+1(h, 1)].

∆l
n(h, 1) ≥ (1− λh − λl)∆l

n+1(h, 1) + λh∆l
n+1(h− 1, 1) + λlpl

+Cλα(p∗h,0)[Vn+1(h− 1, 2)− Vn+1(h− 1, 1) + Vn+1(h, 0)− Vn+1(h, 1)]

= [1− λh − λl − Cλα(p∗h,0)]∆l
n+1(h, 1) + λh∆l

n+1(h− 1, 1) + λlpl

+Cλα(p∗h,0)∆l
n+1(h− 1, 2),

∆l
n(h, 2) = [1− λh − λl − Cλα(p∗h,0)]∆l

n+1(h, 2) + λh∆l
n+1(h− 1, 2) + λl∆l

n+1(h, 1)

+Cλα(p∗h,0)∆l
n+1(h, 2).

Using submodularity in period n+ 1 on the terms multiplied by Cλα(p∗h,0), pl ≥ ∆l
n+1(h, 1)

on the terms multiplied by λl and V -concavity in period n+ 1 on the other terms, we obtain

∆l
n(h, 1) ≥ ∆l

n(h, 2).

Case 3: δ∗n(h, 2) ≤ 0 < δ∗n(h, 1) ≤ δ∗n(h, 0).

Vn(h, 0) = (1− λh − λl)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)] + λlVn+1(h, 0)

+Cλα(p∗h,0)[p∗h,0 + Vn+1(h− 1, 1)− Vn+1(h, 0)],
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Vn(h, 1) = (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

+Cλδ∗n(h, 1)

≥ (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

+Cλα(p∗h,0)[p∗h,0 + Vn+1(h− 1, 2)− Vn+1(h, 1)],

Vn(h, 1) ≥ (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

Vn(h, 2) = (1− λh − λl)Vn+1(h, 2) + λh[ph + Vn+1(h− 1, 2)] + λl[pl + Vn+1(h, 1)].

Note that two lower bounds are given for Vn(h, 1); the first is used to find a lower bound

for ∆l
n(h, 1) and the second for an upper bound for ∆l

n(h, 2). By following the arguments of

Case 2, we can show that the upper bound of ∆l
n(h, 2) is not more than the lower bound of

∆l
n(h, 1), so ∆l

n(h, 2) ≤ ∆l
n(h, 1).

Case 4: 0 < δ∗n(h, 2) ≤ δ∗n(h, 1) ≤ δ∗n(h, 0).

Vn(h, 0) = (1− λh − λl)Vn+1(h, 0) + λh[ph + Vn+1(h− 1, 0)] + λlVn+1(h, 0)

+Cλα(p∗h,0)[p∗h,0 + Vn+1(h− 1, 1)− Vn+1(h, 0)],

Vn(h, 1) = (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

+Cλδ∗n(h, 1)

≥ (1− λh − λl)Vn+1(h, 1) + λh[ph + Vn+1(h− 1, 1)] + λl[pl + Vn+1(h, 0)]

+Cλα(p∗h,0)[p∗h,0 + Vn+1(h− 1, 2)− Vn+1(h, 1)],

Vn(h, 2) = (1− λh − λl)Vn+1(h, 2) + λh[ph + Vn+1(h− 1, 2)] + λl[pl + Vn+1(h, 1)]

+Cλδ∗n(h, 2).

∆l
n(h, 1) ≥ (1− λh − λl)∆l

n+1(h, 1) + λh∆l
n+1(h− 1, 1) + λlpl

+Cλα(p∗h,0)[Vn+1(h− 1, 2)− Vn+1(h− 1, 1) + Vn+1(h, 0)− Vn+1(h, 1)]

= [1− λh − λl − Cλα(p∗h,0)]∆l
n+1(h, 1) + λh∆l

n+1(h− 1, 1) + λlpl

+Cλα(p∗h,0)∆l
n+1(h− 1, 2),
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∆l
n(h, 2) = (1− λh − λl)∆l

n+1(h, 2) + λh∆l
n+1(h− 1, 2) + λl∆l

n+1(h, 1)

+Cλ[δ∗n(h, 2)− δ∗n(h, 1)]

≤ (1− λh − λl)∆l
n+1(h, 2) + λh∆l

n+1(h− 1, 2) + λl∆l
n+1(h, 1)

= [1− λh − λl − Cλα(p∗h,0)]∆l
n+1(h, 2) + λh∆l

n+1(h− 1, 2) + λl∆l
n+1(h, 1)

+Cλα(p∗h,0)∆l
n+1(h, 2),

where the last inequality follows from δ∗n(h, 2)− δ∗n(h, 1) ≤ 0. Then the proof of ∆l
n(h, 1) ≥

∆l
n(h, 2) is finished as in Case 2.

Vertical boundary 0× [2 : M ]. Without a premium product, no upgrades can be offered.

Vn(0, l − 1) = (1− λl)Vn+1(0, l − 1) + λl[pl + Vn+1(0, l − 2)],

Vn(0, l) = (1− λl)Vn+1(0, l) + λl[pl + Vn+1(0, l − 1)],

Vn(0, l + 1) = (1− λl)Vn+1(0, l + 1) + λl[pl + Vn+1(0, l)].

V -concavity in period n+ 1 implies Vn(0, l)− Vn(0, l − 1) ≥ Vn(0, l + 1)− Vn(0, l).

Corner (0, 1). No upgrades can be offered as in the vertical boundary.

Vn(0, 0) = (1− λl)Vn+1(0, 0) + λlVn+1(0, 0),

Vn(0, 1) = (1− λl)Vn+1(0, 1) + λl[pl + Vn+1(0, 0)],

Vn(0, 2) = (1− λl)Vn+1(0, 2) + λl[pl + Vn+1(0, 1)].

∆l
n(0, 1) = (1− λl)∆l

n+1(0, 1) + λlpl,

∆l
n(0, 2) = (1− λl)∆l

n+1(0, 2) + λl∆l
n+1(0, 1).

V -concavity in period n+ 1 and pl ≥ ∆l
n+1(0, 1) together imply ∆l

n(0, 1) ≥ ∆l
n(0, 2). �

Proof of Proposition 3: From property a) of Proposition 2, we have Vn(h + 1, l + 1) −

Vn(h + 1, l) ≥ Vn(h + 2, l + 1) − Vn(h + 2, l). From property d) of Proposition 2, we have
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Vn(h + 1, l) − Vn(h, l) ≥ Vn(h + 2, l) − Vn(h + 1, l). Thus, Vn(h + 1, l + 1) − Vn(h, l) ≥

Vn(h+ 2, l + 1)− Vn(h+ 1, l) and property a) of Proposition 3 is true. From property a) of

Proposition 2, we have Vn(h+ 1, l)−Vn(h, l) ≥ Vn(h+ 1, l+ 1)−Vn(h, l+ 1). From property

e) of Proposition 2, we have Vn(h+ 1, l+ 1)−Vn(h+ 1, l) ≥ Vn(h+ 1, l+ 2)−Vn(h+ 1, l+ 1).

Thus, Vn(h+1, l+1)−Vn(h, l) ≥ Vn(h+1, l+2)−Vn(h, l+1) and property b) of Proposition

3 is true. �

Proof of Proposition 4: From property b) of Proposition 2, we have ∆n(h + 1, l) ≥

∆n(h, l). Then Lemma 1 implies that δ∗n(h + 1, l) ≥ δ∗n(h, l) and p∗n(h + 1, l) ≤ p∗n(h, l).

δ∗n(h+1, l) ≥ δ∗n(h, l) further leads to u∗n(h+1, l) ≥ u∗n(h, l). From property c) of Proposition

2, we have ∆n(h, l) ≥ ∆n(h, l + 1). Then Lemma 1 implies that δ∗n(h, l) ≥ δ∗n(h, l + 1) and

p∗n(h, l) ≤ p∗n(h, l + 1). δ∗n(h, l) ≥ δ∗n(h, l + 1) further leads to u∗n(h, l) ≥ u∗n(h, l + 1). Thus,

the optimal number of upgrade links is increasing in h and decreasing in l, while the optimal

upgrade fee is decreasing in h and increasing l. �

Proof of Corollary 1 The proof is identical to those of Lemma 2, Proposition 1, 2, and 4. �

Proof of Proposition 5: Property c) can be proved individually, and we prove it first.

Proof of property c): The proof is by induction. In period N+1, VN+1(0, l) = V r
N+1(0, l) =

0 for l ∈ [0 : L]. Thus VN+1(0, l+1)−VN+1(0, l) = V r
N+1(0, l+1)−V r

N+1(0, l) for l ∈ [0 : L−1].

We assume Vn+1(0, l+ 1)−Vn+1(0, l) = V r
n+1(0, l+ 1)−V r

n+1(0, l) is true, we want to validate

Vn(0, l + 1) − Vn(0, l) = V r
n (0, l + 1) − V r

n (0, l). From the dynamic program formulation on

the vertical boundary (0, l) with l ∈ [1 : L− 1], we have

Vn(0, l + 1)− Vn(0, l) = (1− λl)[Vn+1(0, l + 1)− Vn+1(0, l)] + λl[Vn+1(0, l)− Vn+1(0, l − 1)],

V r
n (0, l + 1)− V r

n (0, l) = (1− λl)[V r
n+1(0, l + 1)− V r

n+1(0, l)] + λl[V r
n+1(0, l)− V r

n+1(0, l − 1)].
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From the dynamic program formulation on the corner point (0, 0), we have

Vn(0, 1)− Vn(0, 0) = (1− λl)[Vn+1(0, 1)− Vn+1(0, 0)] + λlpl,

V r
n (0, 1)− V r

n (0, 0) = (1− λl)[V r
n+1(0, 1)− V r

n+1(0, 0)] + λlpl.

So Vn(0, l + 1) − Vn(0, l) = V r
n (0, l + 1) − V r

n (0, l) for l ∈ [0 : L − 1], which completes the

induction step.

We prove the other two properties together by induction. They are true in period N + 1,

since VN+1(h, l) = V r
N+1(h, l) = 0. As the induction hypothesis, we assume property a) and

b) are true in period n+ 1, and validate them one by one in period n. DP formulations are

different on the corner point (0, 0) and the vertical boundary (0, l) for l > 0. The proof of

each property consists of two parts corresponding to these two regions.

We define the optimal upgrade revenue per customer and optimal upgrade fee in the

restricted fee model as follows:

δr,∗n (h, l) = max
p∈[p,p]

δrn(p, h, l) = max
p∈[p,p]

α(p)[p+ V r
n+1(h− 1, l + 1)− V r

n+1(h, l)],

pr,∗n (h, l) = max{p ∈ [p, p] : δrn(p, h, l) = δr,∗n (h, l)}.

For simplicity, we use pr,∗ to represent pr,∗n (h, l) when the time period and the state are clear.

Since property a) is true in period n + 1 and p = ph − pl, δ∗n(1, l) > 0 implies δr,∗n (1, l) > 0.

If upgrade is offered in the base model in period n at state (1, l), it should also be offered in

the restricted fee model. This argument is used repeatedly to determine if upgrades should

be offered at certain states in two models. Also because of this argument, the proof for each

property in each region contains multiple cases listed in Table A.3.

Proof of property a): {1}× [0 : M ] is partitioned into the vertical boundary {1}× [1 : M ]

and the corner (1, 0). The proof is customized for each region. Property a) in period n can

be expressed as in the statement of a) or alternatively as

Vn(1, l)− V r
n (1, l) ≥ Vn(0, l + 1)− V r

n (0, l + 1) for l ∈ [0 : M ].
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Table A.3. Number of cases and the required properties for each property and region pair.
Regions

Property in period n Vertical Boundary Corner
a) Diagonal difference 3 cases 3 cases
Proof requires from period n+ 1 a), c) a), b), c)
b) Horizontal difference 3 cases 3 cases
Proof requires from period n+ 1 a), b), c) a), b), c)

We focus on the alternative expression for most of the cases for convenience. The inequality

involve states (1, l) and (0, l+1). From property a) in period n+1, we know that δ∗n(1, l) > 0

implies δr,∗n (1, l) > 0. Cases are constructed by examining whether δ∗n(1, l) and δr,∗n (1, l) are

positive or not.

Vertical boundary {1} × [1 : M ]. There are 3 possible cases.

Case 1: δ∗n(1, l) ≤ 0 and δr,∗n (1, l) ≤ 0.

Vn(0, l + 1) = (1− λh − λl)Vn+1(0, l + 1) + λhVn+1(0, l + 1) + λl[pl + Vn+1(0, l)],

V r
n (0, l + 1) = (1− λh − λl)V r

n+1(0, l + 1) + λhV r
n+1(0, l + 1) + λl[pl + V r

n+1(0, l)],

Vn(1, l) = (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)],

V r
n (1, l) = (1− λh − λl)V r

n+1(1, l) + λh[ph + V r
n+1(0, l)] + λl[pl + V r

n+1(1, l − 1)].

Due to property a) and c) in period n+1, we have Vn(1, l)−V r
n (1, l) ≥ Vn(0, l+1)−V r

n (0, l+1)

through term-by-term comparisons.

Case 2: δ∗n(1, l) ≤ 0 and 0 < δr,∗n (1, l).

Vn(1, l) = (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)]

≥ (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)]

+Cλδ∗n(1, l)

≥ (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)]

+Cλα(pr,∗)[pr,∗ + Vn+1(0, l + 1)− Vn+1(1, l)],
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V r
n (1, l) = (1− λh − λl)V r

n+1(1, l) + λh[ph + V r
n+1(0, l)] + λl[pl + V r

n+1(1, l − 1)]

+Cλδr,∗n (1, l)

= (1− λh − λl)V r
n+1(1, l) + λh[ph + V r

n+1(0, l)] + λl[pl + V r
n+1(1, l − 1)]

+Cλα(pr,∗)[pr,∗ + V r
n+1(0, l + 1)− V r

n+1(1, l)],

Vn(0, l + 1) = (1− λh − λl)Vn+1(0, l + 1) + λhVn+1(0, l + 1) + λl[pl + Vn+1(0, l)],

V r
n (0, l + 1) = (1− λh − λl)V r

n+1(0, l + 1) + λhV r
n+1(0, l + 1) + λl[pl + V r

n+1(0, l)],

where the first inequality is due to δ∗n(1, l) ≤ 0 and the second inequality follows from the

fact that pr,∗ may not be the optimal fee for δn(p, 1, l). Using the three equalities and one

inequality from above, we have

Vn(0, l + 1)− V r
n (0, l + 1)

= (1− λh − λl)[Vn+1(0, l + 1)− V r
n+1(0, l + 1)]

+λh[Vn+1(0, l + 1)− V r
n+1(0, l + 1)] + λl[Vn+1(0, l)− V r

n+1(0, l)],

Vn(1, l)− V r
n (1, l)

≥ (1− λh − λl)[Vn+1(1, l)− V r
n+1(1, l)]

+λh[Vn+1(0, l)− V r
n+1(0, l)] + λl[Vn+1(1, l − 1)− V r

n+1(1, l − 1)]

+Cλα(pr,∗)[Vn+1(0, l + 1)− V r
n+1(0, l + 1) + V r

n+1(1, l)− Vn+1(1, l)]

= [1− λh − λl − Cλα(pr,∗)][Vn+1(1, l)− V r
n+1(1, l)]

+λh[Vn+1(0, l)− V r
n+1(0, l)] + λl[Vn+1(1, l − 1)− V r

n+1(1, l − 1)]

+Cλα(pr,∗)[Vn+1(0, l + 1)− V r
n+1(0, l + 1)].

Application of property c) and a) in period n+1 shows λh[Vn+1(0, l)−V r
n+1(0, l)] = λh[Vn+1(0, l+

1)− V r
n+1(0, l+ 1)] and λl[Vn+1(1, l− 1)− V r

n+1(1, l− 1)] ≥ λl[Vn+1(0, l)− V r
n+1(0, l)]. Hence,

for Vn(1, l)− V r
n (1, l) ≥ Vn(0, l + 1)− V r

n (0, l + 1), it is sufficient to prove

[1− λh − λl − Cλα(pr,∗)][Vn+1(1, l)− V r
n+1(1, l)]

≥ (1− λh − λl)[Vn+1(0, l + 1)− V r
n+1(0, l + 1)]− Cλα(pr,∗)[Vn+1(0, l + 1)− V r

n+1(0, l + 1)].
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This also follows from property a) in period n + 1: [1 − λh − λl − Cλα(pr,∗)][Vn+1(1, l) −

V r
n+1(1, l)] ≥ [1−λh−λl−Cλα(pr,∗)][Vn+1(0, l+1)−V r

n+1(0, l+1)]. Hence, Vn(1, l)−V r
n (1, l) ≥

Vn(0, l + 1)− V r
n (0, l + 1) and the proof for this case is complete.

Case 3: 0 < δ∗n(h, l) and 0 < δr,∗n (h, l).

Vn(0, l + 1) = (1− λh − λl)Vn+1(0, l + 1) + λhVn+1(0, l + 1) + λl[pl + Vn+1(0, l)],

V r
n (0, l + 1) = (1− λh − λl)V r

n+1(0, l + 1) + λhV r
n+1(0, l + 1) + λl[pl + V r

n+1(0, l)],

Vn(1, l) = (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)]

+Cλδ∗n(1, l)

≥ (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)]

+Cλα(pr,∗)[pr,∗ + Vn+1(0, l + 1)− Vn+1(1, l)],

V r
n (1, l) = (1− λh − λl)V r

n+1(1, l) + λh[ph + V r
n+1(0, l)] + λl[pl + V r

n+1(0, l − 1)]

+Cλδr,∗n (1, l)

= (1− λh − λl)V r
n+1(1, l) + λh[ph + V r

n+1(0, l)] + λl[pl + V r
n+1(1, l − 1)]

+Cλα(pr,∗)[pr,∗ + V r
n+1(0, l + 1)− V r

n+1(1, l)].

We further have

Vn(1, l)− V r
n (1, l)

≥ (1− λh − λl)[Vn+1(1, l)− V r
n+1(1, l)]

+λh[Vn+1(0, l)− V r
n+1(0, l)] + λl[Vn+1(1, l − 1)− V r

n+1(1, l − 1)]

+Cλα(pr,∗)[Vn+1(0, l + 1)− V r
n+1(0, l + 1) + V r

n+1(1, l)− Vn+1(1, l)]

= [1− λh − λl − Cλα(pr,∗)][Vn+1(1, l)− V r
n+1(1, l)]

+λh[Vn+1(0, l)− V r
n+1(0, l)] + λl[Vn+1(1, l − 1)− V r

n+1(1, l − 1)]

+Cλα(pr,∗)[Vn+1(0, l + 1)− V r
n+1(0, l + 1)],
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Vn(0, l + 1)− V r
n (0, l + 1)

= (1− λh − λl)[Vn+1(0, l + 1)− V r
n+1(0, l + 1)]

+λh[Vn+1(0, l + 1)− V r
n+1(0, l + 1)] + λl[Vn+1(0, l)− V r

n+1(0, l)].

Then the proof of Vn(1, l)− V r
n (1, l) ≥ Vn(0, l + 1)− V r

n (0, l + 1) is identical to that of Case

2.

Corner (1, 0). Upgrades cannot be offered at state (0, 1) due to zero premium capacity.

There are 3 possible cases similar to vertical boundary.

Case 1: δ∗n(1, 0) ≤ 0 and δr,∗n (1, 0) ≤ 0.

Vn(0, 1) = (1− λh − λl)Vn+1(0, 1) + λhVn+1(0, 1) + λl[pl + Vn+1(0, 0)],

V r
n (0, 1) = (1− λh − λl)V r

n+1(0, 1) + λhV r
n+1(0, 1) + λl[pl + V r

n+1(0, 0)],

Vn(1, 0) = (1− λh − λl)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)] + λlVn+1(1, 0),

V r
n (1, 0) = (1− λh − λl)V r

n+1(1, 0) + λh[ph + V r
n+1(0, 0)] + λlV r

n+1(1, 0).

Then we have

Vn(0, 1)− V r
n (0, 1) = (1− λh − λl)[Vn+1(0, 1)− V r

n+1(0, 1)] + λh[Vn+1(0, 1)− V r
n+1(0, 1)]

+λl[Vn+1(0, 0)− V r
n+1(0, 0)],

Vn(1, 0)− V r
n (1, 0) = (1− λh − λl)[Vn+1(1, 0)− V r

n+1(1, 0)] + λh[Vn+1(0, 0)− V r
n+1(0, 0)]

+λl[Vn+1(1, 0)− V r
n+1(1, 0)].

Due to property a) in period n+ 1, we have Vn+1(0, 1)−V r
n+1(0, 1) ≤ Vn+1(1, 0)−V r

n+1(1, 0).

Due to property c) in period n+ 1, we have Vn+1(0, 1)−V r
n+1(0, 1) = Vn+1(0, 0)−V r

n+1(0, 0).

Due to property b) in period n+ 1, we have Vn+1(0, 0)−V r
n+1(0, 0) ≤ Vn+1(1, 0)−V r

n+1(1, 0).

Thus we have Vn(0, 1)− V r
n (0, 1) ≤ Vn(1, 0)− V r

n (1, 0) through term-by-term comparisons.

Case 2: δ∗n(1, 0) ≤ 0 and δr,∗n (1, 0) > 0.

Vn(0, 1) = (1− λh − λl)Vn+1(0, 1) + λhVn+1(0, 1) + λl[pl + Vn+1(0, 0)],

V r
n (0, 1) = (1− λh − λl)V r

n+1(0, 1) + λhV r
n+1(0, 1) + λl[pl + V r

n+1(0, 0)],
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Vn(1, 0) = (1− λh − λl)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)] + λlVn+1(1, 0)

≥ (1− λh − λl)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)] + λlVn+1(1, 0) + Cλδ∗n(1, 0)

≥ (1− λh − λl)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)] + λlVn+1(1, 0)

+Cλα(pr,∗)[pr,∗ + Vn+1(0, 1)− Vn+1(1, 0)],

V r
n (1, 0) = (1− λh − λl)V r

n+1(1, 0) + λh[ph + V r
n+1(0, 0)] + λlV r

n+1(1, 0) + Cλδr,∗n (1, 0)

= (1− λh − λl)V r
n+1(1, 0) + λh[ph + V r

n+1(0, 0)] + λlV r
n+1(1, 0)

+Cλα(pr,∗)[pr,∗ + V r
n+1(0, 1)− V r

n+1(1, 0)],

where the first inequality is due to δ∗n(1, 0) ≤ 0 and the second inequality follows from the

fact that pr,∗ may not be the optimal fee for δn(p, 1, 0). Using the three equalities and one

inequality from above, we have

Vn(1, 0)− V r
n (1, 0) ≥ (1− λh − λl)[Vn+1(1, 0)− V r

n+1(1, 0)]

+λh[Vn+1(0, 0)− V r
n+1(0, 0)] + λl[Vn+1(1, 0)− V r

n+1(1, 0)]

+Cλα(pr,∗)[Vn+1(0, 1)− V r
n+1(0, 1) + V r

n+1(1, 0)− Vn+1(1, 0)]

= [1− λh − λl − Cλα(pr,∗)][Vn+1(1, 0)− V r
n+1(1, 0)]

+λh[Vn+1(0, 0)− V r
n+1(0, 0)]

+λl[Vn+1(1, 0)− V r
n+1(1, 0)] + Cλα(pr,∗)[Vn+1(0, 1)− V r

n+1(0, 1)],

Vn(0, 1)− V r
n (0, 1) = (1− λh − λl)[Vn+1(0, 1)− V r

n+1(0, 1)] + λh[Vn+1(0, 1)− V r
n+1(0, 1)]

+λl[Vn+1(0, 0)− V r
n+1(0, 0)],

Application of property c) and b) in period n + 1 shows λh[Vn+1(0, 0) − V r
n+1(0, 0)] =

λh[Vn+1(0, 1)−V r
n+1(0, 1)] and λl[Vn+1(1, 0)−V r

n+1(1, 0)] ≥ λl[Vn+1(0, 0)−V r
n+1(0, 0)]. Hence,

for Vn(1, 0)− V r
n (1, 0) ≥ Vn(0, 1)− V r

n (0, 1), it is sufficient to prove

[1− λh − λl − Cλα(pr,∗)][Vn+1(1, 0)− V r
n+1(1, 0)] + Cλα(pr,∗)[Vn+1(0, 1)− V r

n+1(0, 1)]

≥ (1− λh − λl)[Vn+1(0, 1)− V r
n+1(0, 1)].

150



This also follows from property a) in period n + 1: [1 − λh − λl − Cλα(pr,∗)][Vn+1(1, 0) −

V r
n+1(1, 0)] ≥ [1− λh − λl − Cλα(pr,∗)][Vn+1(0, 1)− V r

n+1(0, 1)]. Hence, Vn(1, 0)− V r
n (1, 0) ≥

Vn(0, 1)− V r
n (0, 1) and the proof for this case is complete.

Case 3: δ∗n(1, 0) > 0 and δr,∗n (1, 0) > 0.

Vn(0, 1) = (1− λh − λl)Vn+1(0, 1) + λhVn+1(0, 1) + λl[pl + Vn+1(0, 0)],

V r
n (0, 1) = (1− λh − λl)V r

n+1(0, 1) + λhV r
n+1(0, 1) + λl[pl + V r

n+1(0, 0)],

Vn(1, 0) = (1− λh − λl)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)] + λlVn+1(1, 0) + Cλδ∗n(1, 0)

≥ (1− λh − λl)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)] + λlVn+1(1, 0)

+Cλα(pr,∗)[pr,∗ + Vn+1(0, 1)− Vn+1(1, 0)],

V r
n (1, 0) = (1− λh − λl)V r

n+1(1, 0) + λh[ph + V r
n+1(0, 0)] + λlV r

n+1(1, 0)

+Cλα(pr,∗)[pr,∗ + V r
n+1(0, 1)− V r

n+1(1, 0)].

Then the proof of Vn(1, 0)− V r
n (1, 0) ≥ Vn(0, 1)− V r

n (0, 1) is identical to that of Case 2.

Proof of property b): 0× [0 : M ] is partitioned into the vertical boundary {0} × [1 : M ]

and the corner (0, 0). The proof is customized for each region. Property b) in period n can be

expressed as in the statement of b) or alternatively as Vn(1, l)−V r
n (1, l) ≥ Vn(0, l)−V r

n (0, l)

for l ∈ [0 : M ]. We focus on the alternative expression for most of the cases, since it is

more convenient to prove. The inequality involve states (1, l) and (0, l). From property a) in

period n+ 1, δ∗n(1, l) > 0 implies δr,∗n (1, l) > 0. Cases are constructed by examining whether

δ∗n(1, l) and δr,∗n (1, l) are positive or not.

Vertical boundary {1} × [1 : M ]. There are 3 possible cases.

Case 1: δ∗n(1, l) ≤ 0 and δr,∗n (1, l) ≤ 0.

Vn(1, l) = (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)],

V r
n (1, l) = (1− λh − λl)V r

n+1(1, l) + λh[ph + V r
n+1(0, l)] + λl[pl + V r

n+1(1, l − 1)],

Vn(0, l) = (1− λh − λl)Vn+1(0, l) + λhVn+1(0, l) + λl[pl + Vn+1(0, l − 1)],

V r
n (0, l) = (1− λh − λl)V r

n+1(0, l) + λhV r
n+1(0, l) + λl[pl + V r

n+1(0, l − 1)].
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Due to property b) in period n+1, we have Vn(1, l)−V r
n (1, l) ≥ Vn(0, l)−V r

n (0, l) through

term-by-term comparisons.

Case 2: δ∗n(1, l) ≤ 0 and 0 < δr,∗n (1, l).

Vn(1, l) = (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)]

≥ (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)] + Cλδ∗n(1, l)

≥ (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)]

+Cλα(pr,∗)[pr,∗ + Vn+1(0, l + 1)− Vn+1(1, l)],

V r
n (1, l) = (1− λh − λl)V r

n+1(1, l) + λh[ph + V r
n+1(0, l)] + λl[pl + V r

n+1(1, l − 1)]

+Cλα(pr,∗)[pr,∗ + V r
n+1(0, l + 1)− V r

n+1(1, l)],

Vn(0, l) = (1− λh − λl)Vn+1(0, l) + λhVn+1(0, l) + λl[pl + Vn+1(0, l − 1)],

V r
n (0, l) = (1− λh − λl)V r

n+1(0, l) + λhV r
n+1(0, l) + λl[pl + V r

n+1(0, l − 1)],

where the first inequality is due to δ∗n(1, l) ≤ 0 and the second inequality follows from the

fact that pr,∗ may not be the optimal fee for δn(p, 1, l). Using the three equalities and one

inequality from above, we have

Vn(1, l)− V r
n (1, l)

≥ (1− λh − λl)[Vn+1(1, l)− V r
n+1(1, l)]

+λh[Vn+1(0, l)− V r
n+1(0, l)] + λl[Vn+1(1, l − 1)− V r

n+1(1, l − 1)]

+Cλα(pr,∗)[Vn+1(0, l + 1)− V r
n+1(0, l + 1) + V r

n+1(1, l)− Vn+1(1, l)]

= [1− λh − λl − Cλα(pr,∗)][Vn+1(1, l)− V r
n+1(1, l)] + λh[Vn+1(0, l)− V r

n+1(0, l)]

+λl[Vn+1(1, l − 1)− V r
n+1(1, l − 1)] + Cλα(pr,∗)[Vn+1(0, l + 1)− V r

n+1(0, l + 1)],

Vn(0, l)− V r
n (0, l)

= (1− λh − λl)[Vn+1(0, l)− V r
n+1(0, l)] + λh[Vn+1(0, l)− V r

n+1(0, l)]

+λl[Vn+1(0, l − 1)− V r
n+1(0, l − 1)].
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Application of property b) in period n + 1 shows λl[Vn+1(1, l − 1) − V r
n+1(1, l − 1)] ≥

λl[Vn+1(0, l − 1) − V r
n+1(0, l − 1)]. Hence, for Vn(1, l) − V r

n (1, l) ≥ Vn(0, l) − V r
n (0, l), it

is sufficient to prove

[1− λh − λl − Cλα(pr,∗)][Vn+1(1, l)− V r
n+1(1, l)]

≥ (1− λh − λl)[Vn+1(0, l)− V r
n+1(0, l)]− Cλα(pr,∗)[Vn+1(0, l + 1)− V r

n+1(0, l + 1)].

This also follows from property b) in period n + 1: Vn+1(1, l) − V r
n+1(1, l) ≥ Vn+1(0, l) −

V r
n+1(0, l) and property c) in period n+1: Vn+1(0, l+1)−V r

n+1(0, l+1) = Vn+1(0, l)−V r
n+1(0, l).

Hence, Vn(1, l)− V r
n (1, l) ≥ Vn(0, l)− V r

n (0, l) and the proof for this case is complete.

Case 3: 0 < δ∗n(1, l) and 0 < δr,∗n (1, l).

Vn(1, l) = (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)]

+Cλδ∗n(1, l)

≥ (1− λh − λl)Vn+1(1, l) + λh[ph + Vn+1(0, l)] + λl[pl + Vn+1(1, l − 1)]

+Cλα(pr,∗)[pr,∗ + Vn+1(0, l + 1)− Vn+1(1, l)],

V r
n (1, l) = (1− λh − λl)V r

n+1(1, l) + λh[ph + V r
n+1(0, l)] + λl[pl + V r

n+1(1, l − 1)]

+Cλδr,∗n (1, l)

= (1− λh − λl)V r
n+1(1, l) + λh[ph + V r

n+1(0, l)] + λl[pl + V r
n+1(1, l − 1)]

+Cλα(pr,∗)[pr,∗ + V r
n+1(0, l + 1)− V r

n+1(1, l)],

Vn(0, l) = (1− λh − λl)Vn+1(0, l) + λhVn+1(0, l) + λl[pl + Vn+1(0, l − 1)],

V r
n (0, l) = (1− λh − λl)V r

n+1(0, l) + λhV r
n+1(0, l) + λl[pl + V r

n+1(0, l − 1)].

Then the proof of Vn(1, l)− V r
n (1, l) ≥ Vn(0, l)− V r

n (0, l) is identical to that of Case 2.

Corner point {0} × {0}. Upgrades cannot be offered at state (0, 1) due to zero premium

capacity. There are 3 possible cases similar to the vertical boundary.
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Case 1: δ∗n(1, 0) ≤ 0 and δr,∗n (1, 0) ≤ 0.

Vn(1, 0) = (1− λh − λl)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)] + λlVn+1(1, 0),

V r
n (1, 0) = (1− λh − λl)V r

n+1(1, 0) + λh[ph + V r
n+1(0, 0)] + λlV r

n+1(1, 0),

Vn(0, 0) = (1− λh − λl)Vn+1(0, 0) + λhVn+1(0, 0) + λlVn+1(0, 0),

V r
n (0, 0) = (1− λh − λl)V r

n+1(0, 0) + λhV r
n+1(0, 0) + λlV r

n+1(0, 0).

Due to property b) in period n+ 1, we have Vn(1, 0)−V r
n (1, 0) ≥ Vn(0, 0)−V r

n (0, 0) through

term-by-term comparisons.

Case 2: δ∗n(1, 0) ≤ 0 and δr,∗n (1, 0) > 0.

Vn(1, 0) = (1− λh − λl)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)] + λlVn+1(1, 0)

≥ (1− λh − λl)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)] + λlVn+1(1, 0) + Cλδ∗n(1, 0)

≥ (1− λh − λl)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)] + λlVn+1(1, 0)

+Cλα(pr,∗)[pr,∗ + Vn+1(0, 1)− Vn+1(1, 0)],

V r
n (1, 0) = (1− λh − λl)V r

n+1(1, 0) + λh[ph + V r
n+1(0, 0)] + λlV r

n+1(1, 0)

+Cλα(pr,∗)[pr,∗ + V r
n+1(0, 1)− V r

n+1(1, 0)],

Vn(0, 0) = (1− λh − λl)Vn+1(0, 0) + λhVn+1(0, 0) + λlVn+1(0, 0),

V r
n (0, 0) = (1− λh − λl)V r

n+1(0, 0) + λhV r
n+1(0, 0) + λlV r

n+1(0, 0),

where the first inequality is due to δ∗n(1, 0) ≤ 0 and the second inequality follows from the

fact that pr,∗ may not be the optimal fee for δn(p, 1, 0). Using the three equalities and one

inequality from above, we have

Vn(0, 0)− V r
n (0, 0) = (1− λh − λl)[Vn+1(0, 0)− V r

n+1(0, 0)] + λh[Vn+1(0, 0)− V r
n+1(0, 0)]

+λl[Vn+1(0, 0)− V r
n+1(0, 0)],
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Vn(1, 0)− V r
n (1, 0) ≥ (1− λh − λl)[Vn+1(1, 0)− V r

n+1(1, 0)]

+λh[Vn+1(0, 0)− V r
n+1(0, 0)] + λl[Vn+1(1, 0)− V r

n+1(1, 0)]

+Cλα(pr,∗)[Vn+1(0, 1)− V r
n+1(0, 1) + V r

n+1(1, 0)− Vn+1(1, 0)]

= [1− λh − λl − Cλα(pr,∗)][Vn+1(1, 0)− V r
n+1(1, 0)]

+λh[Vn+1(0, 0)− V r
n+1(0, 0)]

+λl[Vn+1(1, 0)− V r
n+1(1, 0)] + Cλα(pr,∗)[Vn+1(0, 1)− V r

n+1(0, 1)].

Application of property b) in period n+ 1 shows λl[Vn+1(1, 0)−V r
n+1(1, 0)] ≥ λl[Vn+1(0, 0)−

V r
n+1(0, 0)]. Hence, for Vn(1, 0)− V r

n (1, 0) ≥ Vn(0, 0)− V r
n (0, 0), it is sufficient to prove

[1− λh − λl − Cλα(pr,∗)][Vn+1(1, 0)− V r
n+1(1, 0)] + Cλα(pr,∗)[Vn+1(0, 1)− V r

n+1(0, 1)]

≥ (1− λh − λl)[Vn+1(0, 0)− V r
n+1(0, 0)].

This also follows from property b) in period n + 1: Vn+1(1, 0) − V r
n+1(1, 0) ≥ Vn+1(0, 0) −

V r
n+1(0, 0) and property c) in period n+ 1: Vn+1(0, 1)− V r

n+1(0, 1) = Vn+1(0, 0)− V r
n+1(0, 0).

Hence, Vn(1, 0)− V r
n (1, 0) ≥ Vn(0, 0)− V r

n (0, 0) and the proof for this case is complete.

Case 3: δ∗n(1, 0) > 0 and δr,∗n (1, 0) > 0.

Vn(1, 0) = (1− λh − λl)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)] + λlVn+1(1, 0) + Cλδ∗n(1, 0)

≥ (1− λh − λl)Vn+1(1, 0) + λh[ph + Vn+1(0, 0)] + λlVn+1(1, 0)

+Cλα(pr,∗)[pr,∗ + Vn+1(0, 1)− Vn+1(1, 0)],

V r
n (1, 0) = (1− λh − λl)V r

n+1(1, 0) + λh[ph + V r
n+1(0, 0)] + λlV r

n+1(1, 0)

+Cλα(pr,∗)[pr,∗ + V r
n+1(0, 1)− V r

n+1(1, 0)],

Vn(0, 0) = (1− λh − λl)Vn+1(0, 0) + λhVn+1(0, 0) + λlVn+1(0, 0),

V r
n (0, 0) = (1− λh − λl)V r

n+1(0, 0) + λhV r
n+1(0, 0) + λlV r

n+1(0, 0),
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Then the proof of Vn(1, 0)− V r
n (1, 0) ≥ Vn(0, 0)− V r

n (0, 0) is identical to that of Case 2. �

Proof of Proposition 6: u∗n(1, l) > 0 implies that an optimal fee p∗n(1, l) ∈ [0, ph − pl]

makes δ∗n(1, l) = α(p∗n(1, l))[p∗n(1, l) + ∆n(1, l)] > 0. From property a) of Proposition 5, we

have ∆n(1, l) ≤ ∆r
n(1, l). Since 0 ≤ p ≤ p = ph − pl, there must exist a p ∈ [p, p] which

makes α(p)[p + ∆r
n(1, l)] > 0. Then, δr,∗n (1, l) = α(pr,∗n (1, l))[pr,∗n (1, l) + ∆r

n(1, l)] > 0. Thus,

u∗n(1, l) > 0 implies ur,∗n (1, l) > 0. �

Proof of Corollary 2 The proof is identical to that of Proposition 1. �

Proof of Proposition 7:

The comparison of the optimal substitution fee and the optimal upgrade fee requires us

to examine the optimization of the following two revenue functions:

α(f s)[f s + pl + V s
n+1(h− 1, 0)− V s

n+1(h, 0)] and α(ps)[ps + V s
n+1(h− 1, 1)− V s

n+1(h, 0)].

From Lemma 2, we know that f s,∗n (h) ≤ ps,∗n (h, 0) if pl+V s
n+1(h−1, 0)−V s

n+1(h, 0) ≥ V s
n+1(h−

1, 1)−V s
n+1(h, 0). The second inequality is equivalent to V s

n+1(h−1, 1)−V s
n+1(h−1, 0) ≤ pl; a

unit of regular capacity cannot bring more revenue than its market price. A formal induction

proof is provided as follows.

V s
N+1(h, l + 1) − V s

N+1(h, l) ≤ pl is true in period N + 1, since VN+1(h, l) = 0. As the

induction hypothesis, we assume the inequality is true in period n + 1 and validate it in

period n. DP formulations are different on the corner point (0, 0), two boundaries (0, l) for

l > 0 and (h, 0) for h > 0, and in the interior region (h, l) for h, l > 0. The proof consists of

four parts corresponding to these four regions. For brevity, we use ps,∗h,l to represent ps,∗n (h, l)

and f s,∗h to represent f s,∗n (h) when the time period is clear.

Interior [1 : H]× [1 : L]. There are 4 possible cases.
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Case 1: δs,∗n (h, l + 1) ≤ 0 and δs,∗n (h, l) ≤ 0.

V s
n (h, l + 1) = (1− λh − λl)V s

n+1(h, l + 1) + λh[ph + V s
n+1(h− 1, l + 1)]

+λl[pl + V s
n+1(h, l)],

V s
n (h, l) = (1− λh − λl)V s

n+1(h, l) + λh[ph + V s
n+1(h− 1, l)]

+λl[pl + V s
n+1(h, l − 1)].

V s
n+1(h, l + 1) − V s

n+1(h, l) ≤ pl and term-by-term comparisons of the value functions above

yield V s
n (h, l + 1)− V s

n (h, l) ≤ pl.

Case 2: δs,∗n (h, l + 1) > 0 and δs,∗n (h, l) ≤ 0.

V s
n (h, l + 1) = (1− λh − λl)V s

n+1(h, l + 1) + λh[ph + V s
n+1(h− 1, l + 1)]

+λl[pl + V s
n+1(h, l)] + Cλδs,∗n (h, l + 1)

= (1− λh − λl)V s
n+1(h, l + 1) + λh[ph + V s

n+1(h− 1, l + 1)]

+λl[pl + V s
n+1(h, l)]

+Cλα(ps,∗h,l+1)[ps,∗h,l+1 + V s
n+1(h− 1, 1 + 2)− V s

n+1(h, l + 1)],

V s
n (h, l) = (1− λh − λl)V s

n+1(h, l) + λh[ph + V s
n+1(h− 1, l)] + λl[pl + V s

n+1(h, l − 1)]

≥ (1− λh − λl)V s
n+1(h, l) + λh[ph + V s

n+1(h− 1, l)] + λl[pl + V s
n+1(h, l − 1)]

+Cλδs,∗n (h, l)

≥ (1− λh − λl)V s
n+1(h, l) + λh[ph + V s

n+1(h− 1, l)] + λl[pl + V s
n+1(h, l − 1)]

+Cλα(ps,∗h,l+1)[ps,∗h,l+1 + V s
n+1(h− 1, 1 + 1)− V s

n+1(h, l)],

where the first inequality is from δs,∗n (h, l) ≤ 0 and the second inequality is due to the non-

optimality of ps,∗h,l+1 for α(ps)[ps + V s
n+1(h − 1, l + 1) − V s

n+1(h, l)]. Then, V s
n+1(h, l + 1) −

V s
n+1(h, l) ≤ pl and term-by-term comparisons of the value functions above yield V s

n (h, l +

1)− V s
n (h, l) ≤ pl.
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Case 3: δs,∗n (h, l + 1) ≤ 0 and δs,∗n (h, l) > 0.

V s
n (h, l + 1) = (1− λh − λl)V s

n+1(h, l + 1) + λh[ph + V s
n+1(h− 1, l + 1)]

+λl[pl + V s
n+1(h, l)],

V s
n (h, l) = (1− λh − λl)V s

n+1(h, l) + λh[ph + V s
n+1(h− 1, l)] + λl[pl + V s

n+1(h, l − 1)]

+Cλδs,∗n (h, l)

> (1− λh − λl)V s
n+1(h, l) + λh[ph + V s

n+1(h− 1, l)] + λl[pl + V s
n+1(h, l − 1)],

where the inequality is from δs,∗n (h, l) > 0. Then, V s
n+1(h, l + 1) − V s

n+1(h, l) ≤ pl and term-

by-term comparisons of the value functions above yield V s
n (h, l + 1)− V s

n (h, l) ≤ pl.

Case 4: δs,∗n (h, l + 1) > 0 and δs,∗n (h, l) > 0.

V s
n (h, l + 1) = (1− λh − λl)V s

n+1(h, l + 1) + λh[ph + V s
n+1(h− 1, l + 1)]

+λl[pl + V s
n+1(h, l)] + Cλδs,∗n (h, l + 1)

= (1− λh − λl)V s
n+1(h, l + 1) + λh[ph + V s

n+1(h− 1, l + 1)]

+λl[pl + V s
n+1(h, l)]

+Cλα(ps,∗h,l+1)[ps,∗h,l+1 + V s
n+1(h− 1, 1 + 2)− V s

n+1(h, l + 1)],

V s
n (h, l) = (1− λh − λl)V s

n+1(h, l) + λh[ph + V s
n+1(h− 1, l)]

+λl[pl + V s
n+1(h, l − 1)] + Cλδs,∗n (h, l)

≥ (1− λh − λl)V s
n+1(h, l) + λh[ph + V s

n+1(h− 1, l)] + λl[pl + V s
n+1(h, l − 1)]

+Cλα(ps,∗h,l+1)[ps,∗h,l+1 + V s
n+1(h− 1, 1 + 1)− V s

n+1(h, l)],

where the inequality is due to the non-optimality of ps,∗h,l+1 for α(ps)[ps + V s
n+1(h− 1, l+ 1)−

V s
n+1(h, l)]. Then, V s

n+1(h, l+ 1)−V s
n+1(h, l) ≤ pl and term-by-term comparisons of the value

functions above yield V s
n (h, l + 1)− V s

n (h, l) ≤ pl.

Horizontal boundary [1 : H]× {1}. There are 4 cases similar to the interior.
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Case 1: δs,∗n (h, 1) ≤ 0 and δs,∗n (h, 0) ≤ 0.

V s
n (h, 1) = (1− λh − λl)V s

n+1(h, 1) + λh[ph + V s
n+1(h− 1, 1)] + λl[pl + V s

n+1(h, 0)],

V s
n (h, 0) ≥ (1− λh − λl)V s

n+1(h, 0) + λh[ph + V s
n+1(h− 1, 0)] + λlV s

n+1(h, 0).

The inequality is true because we eliminate the potential nonnegative revenue from substi-

tution. V s
n+1(h, l+ 1)− V s

n+1(h, l) ≤ pl and term-by-term comparisons of the value functions

above yield V s
n (h, 1)− V s

n (h, 0) ≤ pl.

Case 2: δs,∗n (h, 1) > 0 and δs,∗n (h, 0) ≤ 0.

V s
n (h, 1) = (1− λh − λl)V s

n+1(h, 1) + λh[ph + V s
n+1(h− 1, 1)] + λl[pl + V s

n+1(h, 0)]

+Cλδs,∗n (h, 1)

= (1− λh − λl)V s
n+1(h, 1) + λh[ph + V s

n+1(h− 1, 1)] + λl[pl + V s
n+1(h, 0)]

+Cλα(ps,∗h,1)[ps,∗h,1 + V s
n+1(h− 1, 2)− V s

n+1(h, 1)],

V s
n (h, 0) ≥ (1− λh − λl)V s

n+1(h, 0) + λh[ph + V s
n+1(h− 1, 0)] + λlV s

n+1(h, 0)

≥ (1− λh − λl)V s
n+1(h, 0) + λh[ph + V s

n+1(h− 1, 0)] + λlV s
n+1(h, 0)

+Cλδs,∗n (h, 0)

≥ (1− λh − λl)V s
n+1(h, 0) + λh[ph + V s

n+1(h− 1, 0)] + λlV s
n+1(h, 0)

+Cλα(ps,∗h,1)[ps,∗h,1 + V s
n+1(h− 1, 1)− V s

n+1(h, 0)],

where the first inequality is because of the potential substitution revenue elimination, and the

second inequality is from δs,∗n (h, 0) ≤ 0 and the third inequality is due to the non-optimality

of ps,∗h,1 for α(ps)[ps + V s
n+1(h− 1, 1)− V s

n+1(h, 0)]. Then, V s
n+1(h, l + 1)− V s

n+1(h, l) ≤ pl and

term-by-term comparisons of the value functions above yield V s
n (h, 1)− V s

n (h, 0) ≤ pl.
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Case 3: δs,∗n (h, 1) ≤ 0 and δs,∗n (h, 0) > 0.

V s
n (h, 1) = (1− λh − λl)V s

n+1(h, 1) + λh[ph + V s
n+1(h− 1, 1)] + λl[pl + V s

n+1(h, 0)],

V s
n (h, 0) ≥ (1− λh − λl)V s

n+1(h, 0) + λh[ph + V s
n+1(h− 1, 0)] + λlV s

n+1(h, 0)

+Cλδs,∗n (h, 0)

> (1− λh − λl)V s
n+1(h, 0) + λh[ph + V s

n+1(h− 1, 0)] + λlV s
n+1(h, 0),

where the first inequality is because of the potential substitution revenue elimination and

the second inequality is from δs,∗n (h, 0) > 0. Then, V s
n+1(h, l + 1) − V s

n+1(h, l) ≤ pl and

term-by-term comparisons of the value functions above yield V s
n (h, 1)− V s

n (h, 0) ≤ pl.

Case 4: δs,∗n (h, 1) > 0 and δs,∗n (h, 0) > 0.

V s
n (h, 1) = (1− λh − λl)V s

n+1(h, 1) + λh[ph + V s
n+1(h− 1, 1)] + λl[pl + V s

n+1(h, 0)]

+Cλδs,∗n (h, 1)

= (1− λh − λl)V s
n+1(h, 1) + λh[ph + V s

n+1(h− 1, 1)] + λl[pl + V s
n+1(h, 0)]

+Cλα(ps,∗h,1)[ps,∗h,1 + V s
n+1(h− 1, 2)− V s

n+1(h, 1)],

V s
n (h, 0) ≥ (1− λh − λl)V s

n+1(h, 0) + λh[ph + V s
n+1(h− 1, 0)] + λlV s

n+1(h, 0)

+Cλδs,∗n (h, 0)

≥ (1− λh − λl)V s
n+1(h, 0) + λh[ph + V s

n+1(h− 1, 0)] + λlV s
n+1(h, 0)

+Cλα(ps,∗h,1)[ps,∗h,1 + V s
n+1(h− 1, 1)− V s

n+1(h, 0)],

where the first inequality is because of the potential substitution revenue elimination and the

second inequality is from the non-optimality of ps,∗h,1 for α(ps)[ps+V s
n+1(h−1, 1)−V s

n+1(h, 0)].

Then, V s
n+1(h, l + 1)− V s

n+1(h, l) ≤ pl and term-by-term comparisons of the value functions

above yield V s
n (h, 1)− V s

n (h, 0) ≤ pl.

Vertical boundary 0× [1 : L− 1]. Without a premium product, no upgrades can be offered.

Vn(0, l + 1) = (1− λl)Vn+1(0, l + 1) + λl[pl + Vn+1(0, l)],

Vn(0, l) = (1− λl)Vn+1(0, l) + λl[pl + Vn+1(0, l − 1)].
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Term-by-term comparisons of the value functions above yield V s
n (0, l + 1)− V s

n (0, l) ≤ pl.

Corner (0, 1). No upgrades can be offered as in the vertical boundary.

Vn(0, 1) = (1− λl)Vn+1(0, 1) + λl[pl + Vn+1(0, 0)]

Vn(0, 0) = (1− λl)Vn+1(0, 0) + λlVn+1(0, 0).

V s
n+1(0, 1)−V s

n+1(0, 0) ≤ pl and term-by-term comparisons of the value functions above yield

V s
n (0, 1)− V s

n (0, 0) ≤ pl. �

A.2 A Counterexample for Failing DV-Modularity in the Substitution Model

Consider a single period problem with N = 1. The substitution reservation price distribution

is assumed to be a single-point distribution; all regular customers are willing to accept the

substitution if the corresponding fee is smaller or equal to 0.5(ph−pl). Hence, the substitution

acceptance probability is given by

αs(f s) =


1 f s ≤ 0.5(ph − pl)

0 f s > 0.5(ph − pl)
.

From the definition of the terminal value function, we have V s
2 (h, l) = 0, V s

2 (h − 1, 0) −

V s
2 (h, 0) = 0 and ∆s

2(h, l) = 0. Since the substitution opportunity cost and upgrade oppor-

tunity value are both zero, any substitution fee and any upgrade fee bring in non-negative

revenues. Thus, it is always optimal to offer substitutions and upgrades if possible in period

1. We can also argue that the optimal substitution fee is f s,∗1 = 0.5(ph − pl). The optimal

upgrade fee in period 1 is independent of (h, l) and denoted by ps,∗1 . The value of V s
1 (h, l) is:

V s
1 (0, 0) = 0,

V s
1 (0, l) = λlpl for l ∈ [1 : L]

V s
1 (h, 0) = λhph + λl[pl + 0.5(ph − pl)] + Cλα(ps,∗1 )ps,∗1 for h ∈ [1 : H],

V s
1 (h, l) = λhph + λlpl + Cλα(ps,∗1 )ps,∗1 for h ∈ [1 : H] and l ∈ [1 : M ],
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V s
1 (h, l) = λhph + λlpl for h ∈ [1 : H] and l ∈ [M + 1 : L].

Then the value of ∆s
N(h, l) is:

∆s
1(1, 0) = λlpl − λl[pl + 0.5(ph − pl)]− λhph − Cλα(ps,∗1 )ps,∗1 ,

∆s
1(1, l) = −λhph − Cλα(ps,∗1 )ps,∗1 for l ∈ [1 : M − 1],

∆s
1(h, 0) = λlpl − λl[pl + 0.5(ph − pl)] = −λl0.5(ph − pl) for h ∈ [2 : H],

∆s
1(h, l) = 0 for h ∈ [2 : H] and l ∈ [1 : M − 1],

∆s
1(h,M) = −Cλα(ps,∗1 )ps,∗1 for h ∈ [2 : H].

We have ∆s
1(h, 0) < ∆s

1(h, 1) since λl0.5(ph − pl) > 0.
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A.3 A Detailed Upgrade Pseudocode

Table A.4. Pseudocode for upgrade implementation algorithm for given H,L,N , M , and C.
The extent of reminding/reloading unresponsive customers is controlled by R.

/* c is the customer index. */
/* r(c) is the most recent period in which customer c receives an upgrade notification (upgrade recency). */
/* H contains customer index c, and L and U contain customer index c and upgrade recency r(c). */
Initialize: n = 1, h = H, l = L, H = ∅, L = ∅, U = ∅;
While n ≤ N

/* Not in the potential upgrade region. */
If h > 0 and l > M

If there is a customer c, then
If customer c is for a premium product, then
h = h− 1 and H := H ∪ {c};

ElseIf customer c is for a regular product, then
l = l − 1, r(c) = 0 and L := L ∪ {[c, r(c)]}; /* customer c has not received a upgrade notification. */

EndIf
EndIf

/* In the potential upgrade region. */
ElseIf h > 0 and l ≤M

/* Do not upgrade */
If δ∗n(h, l) ≤ 0, then
L = L ∪ U and U = ∅;
If there is a customer c, then

If customer c is for a premium product, then
h = h− 1 and H = H ∪ {c};

ElseIf customer c is for a regular product, then
l = l − 1, r(c) = 0 and L = L ∪ {[c, r(c)]};

EndIf
EndIf

/* Upgrade */
ElseIf δ∗n(h, l) > 0, then

/* Moving or reminding unresponsive upgradeable customers in U . */
For c ∈ U

If n− r(c) ≥ R, then
either move customer c: U = U \ {[c, r(c)]} and L = L ∪ {[c, r(c)]}
or remind customer c by a new notification: r(c) = n;

EndIf
EndFor
/* Loading U with new upgradeable customers. */
While |U| < C

Pick a customer c with the smallest r(c) in L and send her an upgrade notification:
L = L \ {[c, r(c)]}, r(c) = n and U = U ∪ {[c, r(c)]};

EndWhile
If there is a customer c, then

If customer c is for a premium product, then
h = h− 1 and H = H ∪ {c};

ElseIf customer c is for a regular product, then
l = l − 1, r(c) = 0 and L = L ∪ {[c, r(c)]};

ElseIf customer c is for an upgrade, then
If customer c accepts the upgrade, then
h = h− 1, l = l + 1, U = U \ {[c, r(c)]} and H = H ∪ {c};

ElseIf customer c rejects the upgrade, then
U = U \ {[c, r(c)]} and L = L ∪ {[c, r(c)]};

EndIf
EndIf

EndIf
EndIf

EndIf
n = n+ 1;

EndWhile.
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APPENDIX B

SUPPLEMENTAL MATERIALS FOR CHAPTER 3

B.1 Notations and Proofs

Table B.1. Notations for Chapter 3

Manufacturer
L : number of periods to produce common intermediate product
l : number of periods for each customization sequence
J : number of customization sequences
j : customized end product index

pm : unit shortage cost
hm : unit holding cost
yt system-wide total inventory level after ordering in period t
ytj : total inventory level of end product j in period t after the myopic allocation

dt,t+skkj : demand from retailer k for product j placed in period t for period t+ sk delivery

ot,t+nj : demand for end product j observed in period t due for t+ n

ut,t+nj : demand for end product j unobserved in period t due for t+ n
V t : total demand from period t to period t+ L− 1

W t+L
j : total demand for end product j from period t+ L to period t+ L+ l

Gj(y
t+L
j ) : expected inventory cost for end product j at the end of period t+ L+ l

yt(L, l, s1, s2) : manufacturer’s optimal base-stock level
Gm(L, l, s1, s2) : manufacturer’s optimal expected inventory cost per period
ψm(L, l, s1, s2) : manufacturer’s effective demand standard deviation during production lead time

Retailers
ck : retailer k’s cost coefficient

ckpr : retailer k’s unit shortage cost
ckhr : retailer k’s unit holding cost
Dt
kj retailer k’s end customer demand for product j in period t

ykj(sk) : retailer k’s optimal base-stock level for product j
Gk(sk) : retailer k’s optimal expected inventory cost per period
ψk(ss) : retailer k’s effective demand standard deviation during promised lead time

Supply chain
sk : retailer k’s promised lead time
αm : manufacturer’s cost of demand uncertainty
ckαr : retailer k’s cost of demand uncertainty

sCk (L, l) : optimal promised lead time for retailer k in the centralized supply chain
Uk : retailer k’s maximum acceptable inventory cost per period in the different market setting

sDk (L, l) : optimal promised lead time for retailer k in the different market setting
πDk (L, l) : optimal payment for retailer k in the different market setting

U : retailers’ maximum acceptable inventory cost per period in the same market setting
sSk (L, l) : optimal promised lead time for retailer k in the same market setting
πSk (L, l) : optimal payment for retailer k in the same market setting

M,M,M : thresholds that determine optimal promised lead times for the centralized supply chain
N,N : thresholds that determine optimal promised lead times for the same market setting
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Proof of Proposition 8: Since retailer k is operating over infinite-time horizon, he min-

imizes either the discounted cost or the long-run average cost. Veinott (1965) and Iglehart

(1963) show the optimality of the (s, S) policy under either criterion respectively. Proposition

8 is a special case of their optimality results.

Because ψk(sk) =
(∑J

j=1 σkj

)√
sk + 1, we find its first and second derivatives as follows.

dψk(sk)

dsk
=

1

2

(
J∑
j=1

σkj

)
(sk + 1)−

1
2 > 0

d2ψk(sk)

ds2
k

= −1

4

(
J∑
j=1

σkj

)
(sk + 1)−

3
2 < 0

Hence, ψk(sk) is concave increasing in sk. �

Proof of Proposition 9:

The proof of Proposition 9 is similar to the proofs in Eppen and Schrage(1981), Erkip et

al. (1990), and Özer (2003). In the main body of Chapter 3, we have made four assumptions:

1. Unit holding cost hm and penalty cost pm are the same across J end products.

2. Independent demand dt,t+skkj follows a normal distribution with mean µkj and variance

σ2
kj for k ∈ {1, 2} and j ∈ {1, ..., J}.

3. Allocation Assumption holds: the manufacturer always receives sufficient intermediate

products in period t + L, so that each customization sequence can be allocated sufficient

intermediate products to ensure the same service level (an equal fractile of the demand

distribution) across all J end products in period t+ L+ l.

4. We restrict the policy space to the class of base-stock policies with myopic allocation.

We will see later, under assumption 1, 2 and 3, the myopic allocation in the optimal

policy insures that an equal fractile of the demand distribution must be restored for each

end product j.
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At the beginning of period t, a batch of intermediate product is produced by the man-

ufacturer and brings the total system stock to yt. The system stock yt includes the on-

hand and in-transit inventory of both the intermediate product and the end products. It

will protect the system from the variation of demand over L + l + 1 periods. ot,t+nj :=

dt+n−s1,t+n1j 1I{s1>n} + dt+n−s2,t+n2j 1I{s2>n} is the observed demand of product j at period t due

for delivery in period t + n. ut,t+nj := dt+n−s1,t+n1j 1I{s1≤n} + dt+n−s2,t+n2j 1I{s2≤n} is the unob-

served demand of product j at period t due for delivery in period t + n. The summation

of ot,t+nj and ut,t+nj is the actual demand for product j due for delivery in period t + n.

V t :=
∑L−1

n=0

∑J
j=1(ot,t+nj +ut,t+nj ) represents the total demand over the intermediate product

lead time L. We define

W t+L
j :=

L+l∑
n=L

(ot,t+nj + ut,t+nj ) for j ∈ {1, 2, ..., J},

which represents the total demand of end product j from periods t + L to t + L + l. From

the definitions of dt,t+skkj , ot,t+nj , and ut,t+nj , we have

E(V t) =
L−1∑
n=0

J∑
j=1

ot,t+nj +
J∑
j=1

2∑
k=1

(L− sk)µkj1I{sk<L},

V ar(V t) =
J∑
j=1

2∑
k=1

(L− sk)σ2
kj1I{sk<L},

E(W t+L
j ) =

L+l∑
n=L

ot,t+nj +
2∑

k=1

(l + 1)µkj1I{sk<L} +
2∑

k=1

(L+ l + 1− sk)µkj1I{L≤sk≤L+l+1},

V ar(W t+L
j ) =

2∑
k=1

(l + 1)σ2
kj1I{sk<L} +

2∑
k=1

(L+ l + 1− sk)σ2
kj1I{L≤sk≤L+l+1}.

At the beginning of period t+L, the amount of end products to be finished by period t+L+l is

yt−V t. We first treat the system base-stock yt as given and focus on the allocation decisions

yt+L1 , ..., yt+LJ . To minimize the cost of myopic allocation under Allocation Assumption, we

solve the problem in (3.2) while assuming yt is an exogenous constant:

min
yt+L
1 ,...,yt+L

J

J∑
j=1

Gj(y
t+L
j ) s.t.

J∑
j=1

yt+Lj = yt − V t.
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yt+Lj represents the total amount of on-hand and in-transit inventory of end product j.

Gj(y
t+L
j := E[hm(yt+Lj − W t+L

j )+ + pm(yt+Lj − W t+L
j )−] is the expected inventory cost of

product j at the end of period t + L + l. After introducing the Lagrange multiplier λ, we

minimize the Lagrangian function. For each end product, the optimal allocation for each

product is

yt+Lj (L, l, s1, s2) = E(W t+L
j ) +

√
V ar(W t+L

j )Φ−1(
pm + λ

pm + hm
),

where Φ is the cdf of standard normal random variable. We sum yt+Lj (L, l, s1, s2) across all

end products, equate it to yt − V t and solve for Φ−1[(pm + λ)/(pm + hm)]. By substituting

Φ−1[(pm + λ)/(pm + hm)] into yt+Lj (L, l, s1, s2), we have

yt+Lj (L, l, s1, s2) = E(W t+L
j ) + [yt − V t −

J∑
j=1

E(W t+L
j )]

√
V ar(W t+L

j )∑J
j=1

√
V ar(W t+L

j )
.

Now we focus on end product j. The level of on-hand inventory of product j at the end of

period t+ L+ l is given by

yt+Lj (L, l, s1, s2)−W t+L
j

=

E(W t+L
j ) + [yt −

J∑
j=1

E(W t+L
j )]

√
V ar(W t+L

j )∑J
j=1

√
V ar(W t+L

j )


−

W t+L
j + V t

√
V ar(W t+L

j )∑J
j=1

√
V ar(W t+L

j )


= st+Lj − ξt+Lj ,

where the deterministic component st+Lj is defined as

st+Lj = E(W t+L
j ) + [yt −

J∑
j=1

E(W t+L
j )]

√
V ar(W t+L

j )∑J
j=1

√
V ar(W t+L

j )
,
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and the stochastic component ξt+Lj is defined as

ξt+Lj = W t+L
j + V t

√
V ar(W t+L

j )∑J
j=1

√
V ar(W t+L

j )
.

The corresponding expected inventory cost is

Gj(y
t+L
j (L, l, s1, s2)) = E[hm(yt+Lj (L, l, s1, s2)−W t+L

j )+ + pm(yt+Lj (L, l, s1, s2)−W t+L
j )−]

= E[hm(st+Lj − ξt+Lj )+ + pm(st+Lj − ξt+Lj )−],

where the second expectation is taken over ξt+Lj . Notice that Gj(y
t+L
j (L, l, s1, s2)) is a func-

tion of yt, since st+Lj contains yt.

Now we optimize Gj(y
t+L
j (L, l, s1, s2)) over yt and search for the optimal base stock level

yt(L, l, s1, s2). The optimizer of the function Gj(y
t+L
j (L, l, s1, s2)) is achieved by choosing yt

such that P (ξt+Lj ≤ st+Lj ) = pm/(pm + hm). From this, we have

Φ−1(
pm

pm + hm
) =

st+Lj − E(ξt+Lj )√
V ar(ξt+Lj )

.

Then the optimal base stock level is

yt(L, l, s1, s2) = E(V t) +
J∑
j=1

E(W t+L
j ) + Φ−1(

pm
pm + hm

)

√√√√V ar(V t) +

[
J∑
j=1

√
V ar(W t+L

j )

]2

.

We can observe that yt(L, l, s1, s2) is independent of j, which means that it is the optimizer

of all Gj(y
t+L
j (L, l, s1, s2)) and

∑J
j=1GjGj(y

t+L
j (L, l, s1, s2)). By plugging E(V t), V ar(V t),

E(W t+L
j ), and V ar(W t+L

j ) into yt(L, l, s1, s2), we have

yt(L, l, s1, s2) =
L+l∑
n=0

J∑
j=1

ot,t+nj +
J∑
j=1

2∑
k=1

(L+ l + 1− sk)µkj

+Φ−1

(
pm

hm + pm

)
ψm(L, l, s1, s2),
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where

ψm(L, l, s1, s2)

=

√√√√V ar(V t) +

[
J∑
j=1

√
V ar(W t+L

j )

]2

=

√√√√√√ J∑
j=1

2∑
k=1

(L− sk)σ2
kj1I{sk<L} +

 J∑
j=1

√√√√√ ∑2
k=1(l + 1)σ2

kj1I{sk<L}

+
∑2

k=1(L+ l + 1− sk)σ2
kj1I{L≤sk≤L+l+1}


2

.

Henc, the manufacturer’s minimum expected inventory cost per period is

Gm(L, l, s1, s2) =
J∑
j=1

Gj(y
t+L
j (L, l, s1, s2))|yt=yt(L,l,s1,s2)

= (hm + pm)φ

(
Φ−1

(
pm

pm + hm

)) J∑
j=1

√
V ar(ξt+Lj )

= (hm + pm)φ

(
Φ−1

(
pm

pm + hm

))
ψm(L, l, s1, s2).

�

Proof of Proposition 10: Here we only prove property a) and c) for s1. By similar

arguments, property b) and d) also hold for s2.

We first prove property a). Since ψm(L, l, s1, s2) ≥ 0, ψ2
m(L, l, s1+1, s2)−ψ2

m(L, l, s1, s2) ≤

0 is sufficient to validate the decreasing property of ψm(L, l, s1, s2) in s1. We examine two

cases: s1 < L and L ≤ s2. First, if s1 < L, then

ψ2
m(L, l, s1 + 1, s2)− ψ2

m(L, l, s1, s2) = −
J∑
j=1

σ2
1j ≤ 0.
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Second, if L ≤ s1, then

ψ2
m(L, l, s1 + 1, s2)− ψ2

m(L, l, s1, s2)

=

[
J∑
j=1

√
(L+ 1− s1)σ2

1j + (l + 1)σ2
2j1I{s2<L} + (L+ l + 1− s2)σ2

2j1I{L≤s2}

]2

−

[
J∑
j=1

√
(L+ 1 + 1− s1)σ2

1j + (l + 1)σ2
2j1I{s2<L} + (L+ l + 1− s2)σ2

2j1I{L≤s2}

]2

.

Since (L+ 1− s1)σ2
1j ≤ (L+ 1 + 1− s1)σ2

1j, we have ψ2
m(L, l, s1 + 1, s2)−ψ2

m(L, l, s1, s2) ≤ 0.

Thus ψm(L, l, s1, s2) is decreasing in s1.

Now we prove property c). Because the proof is the same for all (L, l, s2), we suppress

these variables in the function names that follow. To aid in the proof, we define two new

functions, namely,

γj(s1) :=

√√√√√ (l + 1)
[
σ2

1j1I{s1<L} + σ2
2j1I{s2<L}

]
+ (L+ l + 1− s1)σ2

1j1I{L≤s1}

+(L+ l + 1− s2)σ2
2j1I{L≤s2}

,

Ψ(s1) := [ψm(s1)]2

=

[
(L− s1)1I{s1<L}

J∑
j=1

σ2
1j + (L− s2)1I{s2<L}

J∑
j=1

σ2
2j

]
+

[
J∑
j=1

γj(s1)

]2

.

From now on in this proof, we treat ψm(s1) as a continuous function. Because property c)

in the continuous setting is equivalent to

d2ψm(s1)

ds2
1

≤ 0

and because

dψm(s1)

ds1

=
1

2
[ψm(s1)]−1

(
dΨ(s1)

ds1

)
and

d2ψm(s1)

ds2
1

=
1

2

{
−1

2
[ψm(s1)]−

3
2

[
dΨ(s1)

ds1

]2

+ [ψm(s1)]−1

[
d2Ψ(s1)

ds2
1

]}
,

property c) or the concavity property is proved if we can show

2

[
d2Ψ(s1)

ds2
1

]
Ψ(s1) ≤

[
dΨ(s1)

ds1

]2

. (B.1)
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When s1 < L, we have dΨ(s1)
ds1

= −
∑J

j=1 σ
2
1j and d2Ψ(s1)

ds21
= 0, so (B.1) holds. When L ≤ s1 ≤

L+ l + 1, we have

dγj(s1)

ds1

= −1

2
σ2

1j [γj(s1)]−1 and

d2γj(s1)

ds2
1

= −1

4
σ4

1j [γj(s1)]−3 .

We determine the first and second derivatives of Ψ(s1) as follows:

dΨ(s1)

ds1

= 2

[
J∑
j=1

γj(s1)

]
(−1

2
)

[
J∑
j=1

dγj(s1)

ds1

]
= −

[
J∑
j=1

γj(s1)

][
J∑
j=1

σ2
1j

γj(s1)

]

d2Ψ(s1)

ds2
1

=
1

2


[

J∑
j=1

σ2
1j

γj(s1)

]2

−

[
J∑
j=1

γj(s1)

][
J∑
j=1

σ4
1j

[γj(s1)]3

]
Substituting these expressions into (B.1) yields

[
(L− s2)

J∑
j=1

σ2
2j1I{s2<L}

]
[∑J

j=1

σ2
1j

γj(s1)

]2

−
[∑J

j=1 γj(s1)
] [∑J

j=1

σ4
1j

[γj(s1)]3

]


≤

[
J∑
j=1

γj(s1)

]3 [ J∑
j=1

σ4
1j

[γj(s1)]3

]
. (B.2)

It is easy to see that the sufficient condition of (B.1) is[
J∑
j=1

σ2
1j

γj(s1)

][
J∑
j=1

σ2
1j

γj(s1)

]
≤

[
J∑
j=1

γj(s1)

][
J∑
j=1

σ4
1j

[γj(s1)]3

]
. (B.3)

To proceed we adopt a term-wise comparison for items i and j. For i = j, we note that[
σ2

1j

γj(s1)

]2

= γj(s1)
σ4

1j

[γj(s1)]3
.

For i 6= j, we compare

σ2
1j

γj(s1)

σ2
1i

γi(s1)
+

σ2
1i

γi(s1)

σ2
1j

γj(s1)
(B.4)
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and

γj(s1)
σ4

1i

[γi(s1)]3
+ γi(s1)

σ4
1j

[γj(s1)]3
. (B.5)

If (B.4) is less than (B.5) for all i and j pairs, then (B.3) holds. Multiplying both (B.4) and

(B.5) by γi(s1)γj(s1) implies that (B.3) holds whenever

2σ2
1jσ

2
2j ≤ σ4

1j

(
γi(s1)

γj(s1)

)2

+ σ4
1i

(
γj(s1)

γi(s1)

)2

.

Bringing all terms to the right side and factoring shows

0 ≤
[
σ2

1j

(
γi(s1)

γj(s1)

)
− σ2

1i

(
γj(s1)

γi(s1)

)]2

,

which is certainly true. Hence (B.3) holds and condition (B.2) is met. We can also show the

left hand derivative of ψm(s1) at L is larger than the right hand derivative. Thus, ψm(s1) is

concave in s1. �

Proof of Proposition 11: To analyze the impact of promised lead time on Allocation

Assumption and compare the result with that from Eppen and Schrage (1981), we focus

on a supply chain with only one retailer. The proof can be generalized to the two-retailer

supply chain studied in the main body of Chapter 3. The optimal base stock level is given

by

yt(L, l, s) = 1I{s>1}

s−1∑
n=0

J∑
j=1

ot,t+nj + (L+ l + 1− s)
J∑
j=1

µj + Φ−1

(
p

p+ h

)
ψ(L, l, s),

where

ψ(L, l, s)

=

√√√√(L− s)1I{s<L}
J∑
j=1

σ2
j +

[
J∑
j=1

√
(l + 1)1I{s<L}σ2

j + (L+ l + 1− s)1I{L≤s≤L+l+1}σ
2
j

]2

.
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ψ(L, l, s) represents the effective standard deviation of lead time demand for the manufac-

turer. s ∈ {0, 1, ..., L+ l+ 1} is the single retailer’s promised lead time. ot,t+nj is the demand

for end product j in period t+ n observed in period t.

Allocation Assumption: In each allocation period t + L, the manufacturer receives suf-

ficient intermediate products, which were ordered L periods ago, so that each end product

can be allocated intermediate products in sufficient quantity to ensure that probability of

stock out in period t+ L+ l is the same for all end products.

When s = 0, Lemma 1 in Eppen and Schrage (1981) shows a necessary condition of

Allocation Assumption being true

J∑
j=1

dt−1
j ≥ max

j=1,..,J


J∑
i=1
i 6=j

dt+L−1
j +

(
1−

∑J
j=1 σj

σj

)
dt−L−1
j

 ,

where dtj is the demand for product j in period t. We want to find the necessary condition

of Allocation Assumption being true when the promised lead time s > 0.

When s ∈ {1, ..., L}, the proof is similar to Lemma 1 in Eppen and Schrage (1981), since

the manufacturer at the beginning of period t does not observe demand from period t + L

to t + L + l. The only difference is that when the promised lead time is positive, the base

stock level yt(L, l, s) is not stationary and depends on ot,t+nj . We assume that the inventory

on hand, plus on order, is equal to the same fractile position for each end product at period

t+ L− 1. Then inventory positions can be represented as

IP t+L−1
j = (l + 1)µj + z1

√
l + 1σj, for j = 1, ..., J.

The manufacturer satisfies demand dt+L−1
j , receives

∑J
j=1 d

t−1+s
j intermediate products pro-

duced in period t, and allocates aj units to end product j. Thus,

IP t+L
j = (l + 1)µj + z1

√
l + 1σj − dt+L−1

j + aj, for j = 1, ..., J.
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An equal fractile position can be achieved if one can find a set of aj’s such that

J∑
j=1

aj =
J∑
j=1

dt−1+s
j and aj ≥ 0

for j = 1, ...J,

and

IP t+L
j = (l + 1)µj + z2

√
l + 1σj, for j = 1, ..., J.

Thus,

aj = (z2 − z1)
√
l + 1σj + dt+L−1

j , for j = 1, ..., J,

and

J∑
j=1

aj =
J∑
j=1

dt−1+s
j = (z2 − z1)

√
l + 1

J∑
j=1

σj +
J∑
j=1

dt+L−1
j .

Solving for (z2 − z1) and substituting yields

aj =
(
∑J

j=1 d
t−1+s
j −

∑J
j=1 d

t+L−1
j )∑J

j=1 σj
σj + dt+L−1

j , for j = 1, ..., J.

Note that aj ≥ 0 if

J∑
j=1

dt−1+s
j ≥

J∑
j=1

dt+L−1
j −

∑J
j=1 σj

σj
dt+L−1
j , for j = 1, ..., J.

All aj ≥ 0 if

J∑
j=1

dt−1+s
j ≥ max

j=1,..,J


J∑
i=1
i 6=j

dt+L−1
j +

(
1−

∑J
j=1 σj

σj

)
dt+L−1
j

 .

When s ∈ {L + 1, ..., L + l + 1}, the proof is slightly different. Since s ≥ L + 1, the

manufacturer at period t can observe some future demand in and/or after period t+L. We

use otj to represent the observed demand in period t for product j. We still assume that the
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inventory on hand, plus on order, is equal to the same fractile position for each end product

at period t+ L− 1. Then inventory position can now be represented as

IP t−1+L
j =

s−L−1∑
n=0

ot−1+L+n
j + (L+ l + 1− s)µj + z1

√
L+ l + 1− sσj, for j = 1, ..., J.

The observed demand ot−1+L
j then occurs. The order of intermediate products placed at time

t which equals
∑J

j=1 d
t−1+s
j =

∑J
j=1 o

t−1+s
j arrives and the manufacturer allocates aj unites

to end product j. Thus,

IP t+L
j = 1I{s>L+1}

s−L−1∑
n=1

ot−1+L+n
j + (L+ l + 1− s)µj + z1

√
L+ l + 1− sσj + aj, for j = 1, ..., J.

An equal fractile position can be achieved if one can find a set of aj such that

J∑
j=1

aj =
J∑
j=1

dt−1+s
j =

J∑
j=1

ot−1+s
j , aj ≥ 0 for j = 1, ..., J,

and

IP t+L
j =

s−L−1∑
n=0

ot+L+n
j + (L+ l + 1− s)µj + z2

√
L+ l + 1− sσj for j = 1, ..., J.

Then,

aj = (z2 − z1)
√
L+ l − sσj +

s−L−1∑
n=0

ot+L+n
j − 1I{s>L+1}

s−L−1∑
n=1

ot−1+L+n
j

= (z2 − z1)
√
L+ l − sσj + ot−1+s

j , for j = 1, ...J,

and

J∑
j=1

aj =
J∑
j=1

ot−1+s
j = (k2 − k1)

√
L+ l − s

J∑
j=1

σj +
J∑
j=1

ot−1+s
j .

Thus k2 = k1 and aj = ot−1+s
j = dt−1+s

j > 0 for j = 1, ..., J . The manufacturer can always

restore the system to an equal fractile position after intermediate product allocation. �
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Proof of Proposition 12: Since the objective function Gm(L, l, s1, s2) + G1(s1) + G2(s2)

is concave in sk from Proposition 8 and 10, sCk (L, l) ∈ {0, L+ l + 1} for k ∈ {1, 2}.

We describe the total supply chain expected inventory cost as

Γ(L, l, s1, s2) = amψm(L, l, s1, s2) + ar [c1ψ1(s1) + c2ψ2(s2)] .

Using operator ♦ ∈ {<,6,=,>, >}, we discover the following:

Γ(L, l, 0, 0)♦Γ(L, l, 0, L+ l + 1) ⇔ am(x− y)♦arb,

Γ(L, l, 0, 0)♦Γ(L, l, L+ l + 1, 0) ⇔ am(x− z)♦ara,

Γ(L, l, 0, 0)♦Γ(L, l, L+ l + 1, L+ l + 1) ⇔ amx♦ar(a+ b),

Γ(L, l, 0, L+ l + 1)♦Γ(L, l, L+ l + 1, L+ l + 1) ⇔ amy♦ara,

Γ(L, l, L+ l + 1, 0)♦Γ(L, l, L+ l + 1, L+ l + 1) ⇔ amz♦arb.

We assume the manufacturer offers sck = L+ l+ 1 when sk = 0 and sk = L+ l+ 1 yield the

same minimum inventory cost. We find that (sC1 (L, l), sC2 (L, l)) = (0, 0) when Γ(L, l, 0, 0) <

min{Γ(L, l, 0, L+ l + 1),Γ(L, l, L+ l + 1, 0),Γ(L, l, L+ l + 1, L+ l + 1)}. It is equivalent to

αr

αm
> max

{
x
a+b

, x−z
a
, x−y

b

}
= M . Similarly, (sC1 (L, l), sC2 (L, l)) = (L + l + 1, L+ l + 1) when

Γ(L, l, L+ l+1, L+ l+1) < min{Γ(L, l, 0, L+ l+1),Γ(L, l, L+ l+1, 0),Γ(L, l, 0, 0)}, which is

equivalent to αr

αm
6M = min{ x

a+b
, y
a
, z
b
}. Suppose M < αr

αm
6M . Then (sC1 (L, l), sC2 (L, l)) =

{(0, L+ l+ 1), (L+ l+ 1, 0)}. We have (sC1 (L, l), sC2 (L, l)) = (0, L+ l+ 1) when Γ(L, l, 0, L+

l + 1) < Γ(L, l, L+ l + 1, 0), which occurs when am(y − z) < ara− arb, or equivalently,

αr
αm

>
y − z
a− b

= M.

�

Proof of Corollary 3 We can show

Γ(L, l, L+ l + 1, 0) < Γ(L, l, L+ l + 1, L+ l + 1) ⇒ Γ(L, l, 0, 0) < Γ(L, l, L+ l + 1, 0),

Γ(L, l, 0, L+ l + 1) < Γ(L, l, L+ l + 1, L+ l + 1) ⇒ Γ(L, l, 0, 0) < Γ(L, l, 0, L+ l + 1).
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Thus, (L+ l + 1, 0) and (0, L+ l + 1) can never be optimal. �

Proof of Proposition 13: We can tell that two constraints in the problem (3.4) must

be tight. So problem (3.4) is equivalent to finding s1 and s2 to minimize Gm(L, l, s1, s2) +

G1(s1)− U1 +G2(s2)− U2. Then the optimal solutions are sC1 (L, l) and sC2 (L, l). �

Before solving problem (3.5) and proving Proposition 12, we provide two lemmas to

simplify problem (3.5).

Lemma 3. For problem (3.5), any feasible solution must satisfy s1 ≤ s2 and π1 ≤ π2.

Proof of Lemma 3: For the first result, we add the constraints G1(s1)− π1 6 G1(s2)− π2

and G2(s2) − π2 6 G2(s1) − π1 to obtain G1(s1) + G2(s2) 6 G1(s2) + G2(s1). Rearrang-

ing the terms of this inequality yields G1(s1) − G1(s2) 6 G2(s1) − G2(s2), or equivalently

c1

∑J
j=1 σ1j

[√
s1 −

√
s2

]
6 c2

∑J
j=1 σ2j

[√
s1 −

√
s2

]
. Because of c1

∑J
j=1 σ1j > c2

∑J
j=1 σ2j

by assumption, the previous inequality implies s1 6 s2 at any feasible solution.

We prove the second result by contradiction. Assuming π1 > π2, we have G2(s2)− π2 >

G2(s1)− π2 > G2(s1)− π1 because of s1 6 s2. This inequality violates a constraint of (3.5).

Thus, π1 6 π2 is true for any feasible solution. �

If we fix s1 and s2, problem (3.5) degenerates into the following linear program over π1

and π2.

minimize π1 + π2

π1, π2

subject to G1(s1)− π1 ≤ U

G2(s2)− π2 ≤ U

G1(s1)− π1 ≤ G1(s2)− π2

G2(s2)− π2 ≤ G2(s1)− π1

(B.6)
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To solve the nonlinear program (3.5), we first solve for the optimal πD1 (L, l, s1, s2) and

πD2 (L, l, s1, s2) for all possible combination of (s1, s2) from problem (B.6). Lemma 3 indicates

that problem (3.5) is infeasible when s1 > s2. Thus, we only need to focus on problem

(B.6) with s1 ≤ s2. We then insert πD1 (L, l, s1, s2) and πD2 (L, l, s1, s2) back into the original

objective function in problem (3.5) and find the optimal sD1 (L, l) and sD2 (L, l) in the set

of {0, ..., L + l + 1}. The optimal solutions of problem (B.6) are given by the following

proposition.

Lemma 4. Given (s1, s2) with s1 ≤ s2, the optimal payments in problem (B.6) are

πD1 (L, l, s1, s2) = G1(s1)− U

πD2 (L, l, s1, s2) = [G1(s1)−G2(s1)] +G2(s2)− U.

Proof of Lemma 4: Problem (3.5) is a classic linear program, whose optimal solutions can

only happen at (G1(s1)− U,G1(s1)−G2(s1)] +G2(s2)− U) �

Lemma 4 gives the functional form of πD1 (L, l, s1, s2) and πD2 (L, l, s1, s2). We can further

analyze their properties with respect to s1 and s2. πD1 (L, l, s1, s2) is concave increasing in

s1 and unaffected by s2, while πD2 (L, l, s1, s2) is concave increasing in s1 and s2 respectively.

Plugging πD1 (L, l, s1, s2) and πD2 (L, l, s1, s2) into problem (3.5), we have

minimize Gm(L, l, s1, s2) + [2G1(s1)−G2(s1)] +G2(s2)− 2U

(s1, s2)

subject to s1 6 s2

s1, s2 ∈ {0, ..., L+ l + 1}

(B.7)

Proof of Proposition 14 We describe the objective function of problem (B.7) as

Γ(L, l, s1, s2) = Gm(L, l, s1, s2) + [2G1(s1)−G2(s1)] +G2(s2)− 2U,
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where (s∗1(L, l), s∗2(L, l)) minimizes Γ(L, l, s1, s2) for given (L, l). Since the objective function

Γ(L, l, s1, s2) is concave in both s1 and s2, (s∗1(L, l), s∗2(L, l)) ∈ {(0, 0), (0, L + l + 1), (L +

l + 1, L + l + 1)}. We assume the manufacturer offers sk = L + l + 1 when sk = 0

and sk = L + l + 1 yield the same result. (s∗1(L, l), s∗2(L, l)) = (0, 0) when Γ(L, l, 0, 0) <

min {Γ(L, l, 0, L+ l + 1),Γ(L, l, L+ l + 1, L+ l + 1)}. It is equivalent to

αr
αm

> max

{
x

2a
,
x− y
b

}
= N.

Similarly, (s∗1(L, l), s∗2(L, l)) = (L + l + 1, L + l + 1) when Γ(L, l, L + l + 1, L + l + 1) <

min {Γ(L, l, 0, L+ l + 1),Γ(L, l, 0, 0)}, which is equivalent to αr

αm
6 N = min

{
x
2a
, y

2a−b

}
.

When N < αr

αm
6 N . Then (s∗1(L, l), s∗2(L, l)) = (0, L+ l + 1). �

Proof of Proposition 15 To check the property of ψm(L, l, s1, s2) with respect to post-

ponement, we fix the total production time at a constant level TT . From TT = L + l,

ψm(L, TT − L, s1, s2) is a function of L, s1, and s2, where L is the postponement vari-

able. For any combination of s1 and s2, we analyze ψm(L, TT − L, s1, s2)’s counterpart

ψcm(L, TT −L, s1, s2) in the continuous interval of [0, TT ]. If ψcm(L, TT −L, s1, s2) is concave

decreasing in L in the continuous interval, ψm(L, TT−L, s1, s2) is also concave decreasing on

the discrete domain {0, 1, ..., TT}. Since the actual functional form of ψcm(L, TT − L, s1, s2)

depends on the relationship of L, s1, and s2, we prove the concave decreasing property case

by case.

Case 1: s1 = s2 = s

ψcm(L, TT − L, s1, s2)

=


√

(TT + 1− s)
(∑J

j=1

√
(σ2

1j + σ2
2j)
)2

if L 6 s√
(L− s)

∑J
j=1(σ2

1j + σ2
2j) + (TT + 1− L)

(∑J
j=1

√
(σ2

1j + σ2
2j)
)2

if L > s
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First of all, ψcm(L, TT − L, s1, s2) is continuous in [0, TT ]. When L 6 s, ψcm(L, TT −

L, s1, s2) dose not depend on L. Thus manufacturer’s effective standard deviation is unaf-

fected by postponement. When L > s,

ψcm(L, TT − L, s1, s2) =
√
a− bL,

where

a = (TT + 1)

(
J∑
j=1

√
(σ2

1j + σ2
2j)

)2

− s
J∑
j=1

(σ2
1j + σ2

2j) > 0, and

b =

( J∑
j=1

√
(σ2

1j + σ2
2j)

)2

−
J∑
j=1

(σ2
1j + σ2

2j)

 > 0.

By Lemma 1, we know ψcm(L, TT −L, s1, s2) is concave decreasing in (s, TT ]. Now we check

the concavity property around s. From

0 =
d−ψ

c
m(L, TT − L, s1, s2)

dL
|L=s

>
d+ψ

c
m(L, TT − L, s1, s2)

dL
|L=s,

ψcm(L, TT − L, s1, s2) is concave decreasing in the whole interval of [0, TT ].

Case 2: s1 6= s2

Without loss of generality, we assume s1 < s2. ψcm(L, TT − L, s1, s2) is also continuous

in [0, TT ].

When L 6 s1 < s2,

ψcm(L, TT − L, s1, s2) =

√√√√( J∑
j=1

√
(TT + 1− s1)σ2

1j + (TT + 1− s2)σ2
2j

)2

is independent of L. Thus manufacturer’s effective standard deviation is unaffected by

postponement when L 6 s1 < s2.

When s1 < L 6 s2,
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ψcm(L, TT−L, s1, s2) =

√√√√(L− s1)
J∑
j=1

σ2
1j +

(
J∑
j=1

√
(TT + 1− L)σ2

1j + (TT + 1− s2)σ2
2j

)2

.

we define two new functions

Ψ(L) ≡ [ψcm(L, TT − L, s1, s2)]2 = (L− s1)
J∑
j=1

σ2
1j +

[
J∑
j=1

rj(L)

]2

, and (B.8)

rj(L) ≡
√

(TT + 1− L)σ2
1j + (TT + 1− s2)σ2

2j,

to aid our proof. Since

∂ψcm(L, TT − L, s1, s2)

∂L
= (

1

2
) [Ψ(L)]−

1
2
∂Ψ(L)

∂L
, and (B.9)

∂2ψcm(L, TT − L, s1, s2)

∂L2
= (

1

2
)

{
−1

2
[Ψ(L)]−

3
2

[
∂Ψ(L)

∂L

]2

+ [Ψ(L)]−
1
2
∂2Ψ(L)

∂L2

}
,

concavity is proved if we can show

2
∂2Ψ(L)

∂L2
Ψ(L) 6

[
∂Ψ(L)

∂L

]2

. (B.10)

Because

∂rj(L)

∂L
= −1

2

σ2
1j

rj(L)
, and

∂2rj(L)

∂L2
= −1

4

σ4
1j

rj(L)3
,

we have the derivatives of Ψ(L) as follows.

∂Ψ(L)

∂L
=

J∑
j=1

σ2
1j + 2

[
J∑
j=1

rj(L)

][
J∑
j=1

∂rj(L)

∂L

]
(B.11)

=
J∑
j=1

σ2
1j −

[
J∑
j=1

rj(L)

][
J∑
j=1

σ2
1j

rj(L)

]
, and

∂2Ψ(L)

∂L2
= 2

[
J∑
j=1

∂rj(L)

∂L

]2

+ 2

[
J∑
j=1

rj(L)

][
J∑
j=1

∂2rj(L)

∂L2

]

=
1

2


[

J∑
j=1

σ2
1j

rj(L)

]2

−

[
J∑
j=1

rj(L)

][
J∑
j=1

σ4
1j

rj(L)3

] .
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Substituting (B.8) and (B.11) into (B.10) yields
[∑J

j=1

σ2
1j

rj(L)

]2

−
[∑J

j=1 rj(L)
] [∑J

j=1

σ4
1j

rj(L)3

]
 ·

 (L− s1)
∑J

j=1 σ
2
1j

+
[∑J

j=1 rj(L)
]2

 (B.12)

6

{
J∑
j=1

σ2
1j −

[
J∑
j=1

rj(L)

][
J∑
j=1

σ2
1j

rj(L)

]}2

.

From Lemma 2, the first term of (B.12) is negative. Thus (B.12) and (B.10) always hold.

From (B.11) and (B.9), we also know

∂ψcm(L, TT − L, s1, s2)

∂L
= (

1

2
) [Ψ(L)]−

1
2
∂Ψ(L)

∂L

= (
1

2
) [Ψ(L)]−

1
2

{
J∑
j=1

σ2
1j −

[
J∑
j=1

rj(L)

][
J∑
j=1

σ2
1j

rj(L)

]}
< 0.

Thus ψcm(L) is concave decreasing in postponement.

When s1 < s2 < L,

ψcm(L, TT − L, s1, s2)

=

√√√√(L− s1)
J∑
j=1

σ2
1j + (L− s2)

J∑
j=1

σ2
2j +

(
J∑
j=1

√
(TT + 1− L)(σ2

1j + σ2
2j)

)2

=

√√√√(L− s1)
J∑
j=1

σ2
1j + (L− s2)

J∑
j=1

σ2
2j + (TT + 1− L)

(
J∑
j=1

√
(σ2

1j + σ2
2j)

)2

=
√
a− bL,

where

a = (TT + 1)

(
J∑
j=1

√
(σ2

1j + σ2
2j)

)2

− s1

J∑
j=1

σ2
1j − s2

J∑
j=1

σ2
2j > 0, and

b =

( J∑
j=1

√
(σ2

1j + σ2
2j)

)2

−
J∑
j=1

(σ2
1j + σ2

2j)

 > 0.
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By Lemma 1, we know ψm(L, l, s1, s2) is concave decreasing in L.

Now we check the concavity property around s1 and s2. From

d−ψ
c
m(L, TT − L, s1, s2)

dL
|L=s1 >

d+ψ
c
m(L, TT − L, s1, s2)

dL
|L=s1 and

d−ψ
c
m(L, TT − L, s1, s2)

dL
|L=s2 >

d+ψ
c
m(L, TT − L, s1, s2)

dL
|L=s2 ,

ψcm(L, TT − L, s1, s2) is concave decreasing on [0, TT ]. Thus manufacturer’s effective stan-

dard deviation ψm(L, TT − L, s1, s2) is concave decreasing in L on the discrete domain

{0, 1, ..., TT} for any pair of s1 and s2. �

Proof of Proposition 16 (a) From Proposition 3, we know that x, y, and z are concave

decreasing in postponement. Thus M and N are always decreasing in postponement.

(b) From Lemma 3, we know that x− y is decreasing in postponement if∑J
j=1 σ

2
1j[∑J

j=1 σ1j

]2 >

∑J
j=1(σ2

1j + σ2
2j)[∑J

j=1

√
σ2

1j + σ2
2j

]2 ,

and that x− z is decreasing in postponement if∑J
j=1 σ

2
2j[∑J

j=1 σ2j

]2 >

∑J
j=1(σ2

1j + σ2
2j)[∑J

j=1

√
σ2

1j + σ2
2j

]2 .

Thus M is also decreasing in postponement.

(c) From Lemma 3, we know that x− y is decreasing in postponement if∑J
j=1 σ

2
1j[∑J

j=1 σ1j

]2 >

∑J
j=1(σ2

1j + σ2
2j)[∑J

j=1

√
σ2

1j + σ2
2j

]2 .

Thus N is also decreasing in postponement. �
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Proof of Corollary 4 We fix the total production time at a constant level TT . In two

product case,

x =

√
L(σ2

11 + σ2
21 + σ2

12 + σ2
22) + (TT + 1− L)

[√
σ2

11 + σ2
21 +

√
σ2

12 + σ2
22

]2

,

y =
√
L(σ2

11 + σ2
12) + (TT + 1− L)(σ11 + σ12)2, and

z =
√
L(σ2

21 + σ2
22) + (TT + 1− L)(σ21 + σ22)2.

Notice that x > 0, y > 0, z > 0, x > y and x > z are always true for any L ∈ {0, . . . , TT}.

We want to show x− y and x− z are always decreasing in postponement.

Without loss of generality, we focus on the proof of x− y.

(x− y)′ < 0⇔ c− d
C −D

<
√
f(L),

where

f(L) ≡ (TT + 1)c− (c− d)L

(TT + 1)C − (C −D)L
,

c ≡ (σ11 + σ12)2,

d ≡ (σ2
11 + σ2

12),

C ≡
[√

σ2
11 + σ2

21 +
√
σ2

12 + σ2
22

]2

, and

D ≡ (σ2
11 + σ2

21 + σ2
12 + σ2

22).

Notice that C > D, c > d, C > c, and D > d are always true. (c − d)/(C −D) <
√
f(L)

if and only if (c − d)/(C − D) is smaller than the minimum value of
√
f(L). It is easy to

show that

f(L) is


increasing if dC > Dc

constant if dC = Dc

decreasing if dC < Dc

.
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When dC > Dc, the minimum value of f(L) is achieved at 0.

dC > Dc

⇔ c−d
C−D < c

C
< 1

⇒ c−d
C−D <

√
c
C

⇒ c−d
C−D <

√
f(0)

So, (c− d)/(C −D) <
√
f(L)is true.

When dC < Dc, the minimum value of f(L) is achieved at TT .(
c−d
C−D

)2
< d

D

⇔ c−d
C−D <

√
d
D

⇒ c−d
C−D <

√
f(TT + 1)

⇒ c−d
C−D <

√
f(TT )

So, (c− d)/(C −D) <
√
f(L) is true.

Hence, x − y always decreases in postponement. Thus all four thresholds are always

decreasing in postponement. �

Lemma 5. a > 0 and b > 0, and f(L) =
√
a− bL is defined on an interval where a−bL > 0.

Then, f(L) is concave decreasing in L.

Proof. Since

∂f

∂L
= − b

2
(a− bL)−

1
2 < 0, and

∂2f

∂L2
= −b

2

4
(a− bL)−

3
2 < 0,

f(L) is concave decreasing in L.

Lemma 6. aj > 0, bj > 0 for j ∈ {1, 2, ..., J}, then(
J∑
j=1

aj
bj

)(
J∑
j=1

aj
bj

)
6

(
J∑
j=1

bj

)(
J∑
j=1

a2
j

b3
j

)
. (B.13)
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Proof. We expand both sides of the inequality and adopt a term-wise comparison. When

i = j, we note that (
aj
bj

)2

= bj

(
a2
j

b3
j

)
,

so (B.13) holds. When i 6= j, we compare

(
ai
bi

)(
aj
bj

)
+

(
aj
bj

)(
ai
bi

)
(B.14)

and

bi

(
a2
j

b3
j

)
+ bj

(
a2
i

b3
i

)
. (B.15)

Our aim is to show (B.14) is not greater than (B.15) for any combination of i 6= j. Since

0 6

(
aj
bi
bj
− ai

bj
bi

)2

⇔ 2ajai 6 a2
j

(
bi
bj

)2

+ a2
i

(
bj
bi

)2

,

dividing the later inequality by bibj implies that (B.14) is not greater than (B.15). Thus,

(B.13) holds.

Lemma 7. x− y decreases in postponement if

∑J
j=1 σ

2
1j[∑J

j=1 σ1j

]2 >

∑J
j=1(σ2

1j + σ2
2j)[∑J

j=1

√
σ2

1j + σ2
2j

]2 ,

and x− z decreases in postponement if

∑J
j=1 σ

2
2j[∑J

j=1 σ2j

]2 >

∑J
j=1(σ2

1j + σ2
2j)[∑J

j=1

√
σ2

1j + σ2
2j

]2 .
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Proof. Fixed the total production time at TT. Without loss of generality, we focus on the

proof of the first part. Define

P ≡

[
J∑
j=1

√
σ2

1j + σ2
2j

]2

,

Q ≡
J∑
j=1

(σ2
1j + σ2

2j),

p ≡

[
J∑
j=1

σ1j

]2

, and

q ≡
J∑
j=1

σ2
1j.

Then,

x =
√
LQ+ (TT + 1− L)P

=
√

(TT + 1)P − L(P −Q),

y =
√
Lq + (TT + 1− L)p

=
√

(TT + 1)p− L(p− q).

Thus,

(x− y)
′

=
1

2

[
p− q√

(TT + 1)p− L(p− q)
− P −Q√

(TT + 1)P − L(P −Q)

]
.

(x− y)
′
< 0⇔ p− q

P −Q
<
√
f(L),

where

f(L) ≡ (TT + 1)p− L(p− q)
(TT + 1)P − L(P −Q)

.
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It is easy to show that

f(L) is


increasing if q · P > Q · p

constant if q · P = Q · p

decreasing if q · P < Q · p

.

When q · P > Q · p, the minimum value of f(L) is achieved at 0.

q · P > Q · p

⇔ p−q
P−Q < p

P
< 1

⇒ c−d
C−D <

√
p
P

⇒ c−d
C−D <

√
f(0)

So, (x− y)
′
< 0 when q · P > Q · p, which is equivalent to∑J

j=1 σ
2
1j[∑J

j=1 σ1j

]2 >

∑J
j=1(σ2

1j + σ2
2j)[∑J

j=1

√
σ2

1j + σ2
2j

]2 .
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Özer, Ö., R. Phillips (Eds.). 2012. The Oxford handbook of pricing management, Oxford
University Press, Oxford, UK.

Puterman, M.L. 1994. Markov Decision Processes-Discrete Stochastic Dynamic Program-
ming, Wiley, New York, NY.

Schlosser, R. 2016. Joint stochastic dynamic pricing and advertising with time-dependent
demand. Journal of Economic Dynamics and Control 73 439–452.

Schwarz, L.B. 1989. A model for assessing the value of warehouse risk-pooling: Risk-pooling
over outside-supplier leadtimes. Management Science 35(7) 828–842.

Shumsky, R. A., F. Zhang. 2009. Dynamic capacity management with substitution. Opera-
tions Research 57(3) 671–684.

191



Simon, H. 1982. ADPULS: An advertising model with wearout and pulsation. Journal of
Marketing Research 19 352–363.

Soman, C.A., D.P. van Donk, G. Gaalman. 2004. Combined make-to-order and make-to-
stock in a food production system. International Journal of Production Economics 90(2)
223–235.
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