
ENHANCING POINT CLOUD GENERATION FROM VARIOUS INFORMATION

SOURCES BY APPLYING GEOMETRY-AWARE FOLDING OPERATION

by

Yu Lin

APPROVED BY SUPERVISORY COMMITTEE:

Latifur Khan, Chair

Ding-Zhu Du

Nicholas Ruozzi

Vito D’Orazio

Copyright © 2022

Yu Lin

All rights reserved

To my parents, Mr.Lin and Mrs.Gao

To the moonlight, stars and cosmos

Long may the sun shine

ENHANCING POINT CLOUD GENERATION FROM VARIOUS INFORMATION

SOURCES BY APPLYING GEOMETRY-AWARE FOLDING OPERATION

by

YU LIN, BS

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

May 2022

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Latifur Khan, for the great support, guidance and

patience during my PhD career. He continuously provided insightful suggestions and is willing

and enthusiastic to assist in any way he could throughout the research projects.

I would like to extend my gratitude to my dissertation committee members, Dr. Vito

D’Orazio, Dr. Nicholas Ruozzi, and Dr. Ding-Zhu Du, for their effective guidance and

valuable comments on my papers.

I also need to thank my fellow lab mates, Bo, Hemeng, Jinghui, Yang, Yibo, Yifan, Yigong,

Zhuoyi, and my oversea friends, Bonian, Wenxiong, Xiaoqiang, Xiaoyi for their great assistance

in my life and research work.

To my family, thank you for encouraging me in all of my pursuits. In particular, I would like

to express my deepest love and thanks to my father, Mr. Lin, and my mother, Mrs. Gao, I

could not finish this journey without your support and encouragement. Thank you.

Finally, the research reported herein was supported in part by NSF awards DMS-1737978,

DGE-2039542, OAC-1828467, OAC-1931541, DGE-1906630; and an IBM faculty award

(Research).

March 2022

v

ENHANCING POINT CLOUD GENERATION FROM VARIOUS INFORMATION

SOURCES BY APPLYING GEOMETRY-AWARE FOLDING OPERATION

Yu Lin, PhD
The University of Texas at Dallas, 2022

Supervising Professor: Latifur Khan, Chair

A plethora of cutting-edge computer vision and graphic applications, such as Augmented

Reality (AR), Virtual Reality (VR), automatic vehicles, and robotics, require rapid creation

and access to abundant 3D data. Among various 3D data representations, e.g., RGB images,

depth images, or voxel grids, point cloud attracts considerable attention from the research

community because it offers additional geometric, shape, and scale information in comparison

with 2D images and demands less computational resource to process in contrast to other 3D

representations, e.g., voxel grids, octree, or triangle meshes. Unfortunately, even with the

increasing availability of 3D sensors, the size and variety of 3D point clouds datasets pale

when compared to the vast size datasets of other representations. Therefore, it will benefit

many applications if we can generate point clouds from other information sources.

Point cloud generation is a sub-field of 3D reconstruction, which aims to generate a complete

3D object from other information sources. Conventional methods generally focus on 2D

images and heavily rely on the knowledge of multi-view geometry, while multiple 2D views of

a target 3D object usually are inaccessible in many real-world scenarios. On the contrary,

recent deep learning approaches either dedicate to 3D representations with regular structures,

such as voxel grids and octrees, and thus suffer from resolution and scalability issues, or

unconsciously ignore the crucial 3D prior knowledge and lead to sub-optimal solutions.

vi

To address the aforementioned drawbacks, we explore the possibilities to improve the point

cloud generation by developing advanced folding operations and geometry-aware (3D-prior-

aware) reconstruction networks in this dissertation. Specifically, we start with a novel point

cloud generation framework TDPNet that reconstructs complete point clouds by employing

a hierarchical manifold decoder and a collection of latent 3D prototypes. Later, we find

that applying vanilla folding operation is insufficient for a realistic reconstruction, and using

KMeans centroids as the prototype features is unstable and lacks interpretability. Inspired

by these observations, we further introduce a novel framework equipped with a collection of

Learnable Shape Primitives (L-SHAP), which encode the crucial 3D prior knowledge from

training data through an additional folding operation. On the other hand, it’s beneficial to

many applications if point clouds can be generated in a few-shot scenario. We tackle this

problem by a novel few-shot generation framework FSPG, which simultaneously considers

class-agnostic and class-specific 3D priors during the generation process. Finally, we observe

that conventional folding operations are implemented by a simple shared-MLP, which increases

training difficulty and limits the network’s modeling capability. In order to solve this problem,

we incorporate the popular Transformer architecture into a novel attentional folding decoder

AttnFold and introduce a Local Semantic Consistency (LSC) regularizer to further boost the

model’s capability.

Based on our research, we demonstrate that learning flexible data-driven 3D priors and

adopting advanced folding operations are effective for point cloud generation under different

problem settings.

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF FIGURES . xii

LIST OF TABLES . xvi

CHAPTER 1 INTRODUCTION . 1

1.1 3D Reconstruction . 3

1.1.1 Point Cloud Reconstruction and Generation 4

1.1.2 Point Cloud Generation with Explicit 3D Prior 5

1.1.3 Few-shot Point Cloud Generation . 6

1.1.4 Advanced Folding Operation . 6

1.2 Contribution of this dissertation . 7

1.2.1 Point Cloud Generation with 3D Prototypes 7

1.2.2 Point Cloud Generation with Learnable Shape Primitives 8

1.2.3 Few-shot Point Cloud Generation . 8

1.2.4 Advanced Folding Operation . 8

1.3 Outline of this dissertation . 9

CHAPTER 2 BACKGROUND . 10

2.1 Point Cloud Representation Learning . 10

2.1.1 Point Analysis Methods . 11

2.1.2 Neighborhood Analysis Methods . 13

2.2 Deep Point Cloud Generation . 15

2.3 Few Shot Learning in Point Cloud . 16

CHAPTER 3 POINT CLOUD GENERATION VIA UNIFIED 3D PROTOTYPE . 18

3.1 Approach . 18

3.1.1 Framework Overview . 18

3.1.2 Dynamic 3D Prototypes . 22

3.1.3 Hierarchical Manifold Decoder . 24

3.1.4 Implementation . 26

viii

3.2 Evaluation . 29

3.2.1 Experiment Setting . 29

3.2.2 Single Category Point Cloud Generation 31

3.2.3 Multiple Category Point Cloud Generation 31

3.2.4 Generating Multiple Plausible Point Clouds 34

3.3 Ablation Studies and Discussion . 35

3.3.1 Contribution of Prototypes and Decoders 36

3.3.2 Frozen-Finetune Training . 37

3.3.3 Discussion . 38

CHAPTER 4 POINT CLOUD GENERATION VIA LEARNABLE 3D PRIORS . . 40

4.1 Approach . 40

4.1.1 Framework Overview . 40

4.1.2 Learnable 3D Priors . 44

4.1.3 Architecture and Training Strategy 45

4.2 Evaluation . 47

4.2.1 Experiment Setting . 48

4.2.2 Single Category Point Cloud Generation 49

4.2.3 Multiple Category Point Cloud Generation 51

4.2.4 Generating Dense Point Clouds . 55

4.3 Ablation Studies and Discussion . 55

4.3.1 Continuous and Discrete Primitives 56

4.3.2 Contribution of Shape Primitives . 56

4.3.3 High-Dimensional Shape Primitives 59

4.3.4 Discussion . 59

CHAPTER 5 GENERATING POINT CLOUD FROM SINGLE IMAGE IN THE FEW
SHOT SCENARIO . 60

5.1 Approach . 60

5.1.1 Framework Overview . 62

5.1.2 Class-specific and Class-agnostic 3D Shape Priors 65

ix

5.1.3 Intra-Support Episodic Training . 69

5.2 Evaluation . 71

5.2.1 Experiment Setting . 71

5.2.2 Baselines . 72

5.2.3 Novel Classes Reconstruction . 73

5.2.4 Base Classes Reconstruction . 78

5.3 Ablation Studies and Discussion . 79

5.3.1 Contribution of Components . 80

5.3.2 Discussion . 80

CHAPTER 6 ATTENTIONAL FOLDING-BASED POINT CLOUD GENERATION
WITH LOCAL SEMANTIC CONSISTENCY . 81

6.1 Approach . 81

6.1.1 Preliminary . 83

6.1.2 Framework Overview . 84

6.1.3 Attentional Folding Module . 85

6.1.4 Local Semantic Consistency . 89

6.2 Evaluation . 89

6.2.1 Datasets and Baselines . 90

6.2.2 Point Cloud Self-Reconstruction . 90

6.2.3 Single-View Point Cloud Reconstruction 92

6.3 Ablation Studies and Discussion . 95

6.3.1 Network Architectures . 95

6.3.2 Impact of Hyper-parameters . 96

6.3.3 Failure Cases and Limitations . 96

6.3.4 Discussion . 97

CHAPTER 7 CONCLUSION AND FUTURE WORK 98

7.1 Point Cloud Generation with Explicit 3D Priors 98

7.2 Point Cloud Generation with Learnable 3D Priors 99

7.3 Few-shot Point Cloud Generation . 100

x

7.4 Advanced Folding Operation . 101

REFERENCES . 102

BIOGRAPHICAL SKETCH . 111

CURRICULUM VITAE

xi

LIST OF FIGURES

1.1 An example of 3D data and its different 2D and 3D representations. This CAD
model is sampled from ShapeNet (Chang et al., 2015) dataset. 2

3.1 Combining 2D image features and 3D prototypes. 19

3.2 Approach overview: A two-phase single-view point cloud reconstruction solution.
a) We firstly warm-up the network by solving a point cloud self reconstruction
problem. Namely, we trained a point cloud autoencoder in this phase. b) We build
the actual image-to-point-cloud network in the 2nd phase. K prototype features
are computed using the trained point cloud encoder and KMeans clustering. Notice
that it can be extended to a multi-class version by repeating this operation every
class. We then infuse the image feature and prototypes with random 2D grids and
feed them to a hierarchical decoder to construct the final point cloud. The decoder
has K MLP clusters and each contains P one-patch decoders (K = 3, P = 3 in
this figure). 21

3.3 Comparison of four SOTA image-to-point-cloud decoders. PointNet and PointSet-
Net both use a single image feature and have no surface assumption, while
PointSetNet is able to generate multiple plausible shapes thanks to the deconv
branch and MoN loss function. The AtlasNet tries to deform multiple 2D grids
onto local 2-manifold but they still stay on the single image feature. Our TDPNet
is capable of fusing 2D and 3D information (K prototype features). Each pro-
totype controls an MLP cluster and every cluster contains P MLP components,
each of which can fold a distinct 2D grid onto a specific local point set. 27

3.4 Overview of the PointNet point cloud encoder architecture. The input X is a
batch point clouds with shape Batch× 2048× 3 and the output is a feature tensor
with shape Batch× 1024. ReLu is the activation function for all Conv1D layers. 28

3.5 Examples of qualitative comparison (ModelNet) among different method. From
left to right: Input image, PointFlow, PointSetNet, AtlasNet, TDPNet (Ours)
and Ground Truth. 34

3.6 Examples of qualitative comparison (ShapeNet) among different method. From
left to right: Input image, PointFlow, PointSetNet, AtlasNet, TDPNet (Ours)
and Ground Truth. 35

3.7 Multiple predictions for a single input image. Note that the input view can be a
2D projection from a different angle, while we can still reconstruct the 3D shape
correctly. 37

3.8 Sampled prototypes on ModelNet-bathtub. Left are the initial centroids and Right
are the finetuned prototypes. 38

4.1 Learning shape primitives to encode 3D prior knowledge from dataset. After that,
they are incorporated with a given image to reconstruct the target point cloud. . 41

xii

4.2 Framework overview. For a given image Ii, we first compute its latent representa-
tion f(Ii) through an image encoder. K shape primitives are employed to encode
the geometric information of shape components. Each contains an initial point set
Einit, e.g., points sampled from unit square, and a transformation function ψ(·).
Later, we endow primitives with f(Ii) and decode them onto the final point cloud
Ŝi. Chamfer distance between ground truth Si and synthesization Ŝi is computed
to update the network during training. 42

4.3 Comparison of four point cloud decoders. PSGN directly maps an image feature to
a point cloud Ŝ with M points. The rest methods generate M points by repeating
the showing architecture T times, each handles M/T points (T = 1 in this plot
for simplicity). AtlasNet replicates image feature M times and concatenates them
with randomly sampled points from a 2D square. TDPNet extends the pipeline of
AtlasNet by adding a 3D prototype feature. In contrast, our method encodes 3D
shape information into learnable shape primitive and samples M points from it
during inference. Furthermore, our approach is capable of handling various initial
point sets (e.g., 3D Gaussian). 46

4.4 Qualitative comparison of competing methods on ModelNet. From left to right:
Input image, PSGN, FoldingNet, AtlasNet P32, TDPNet K8, Our method and
Ground Truth. 53

4.5 Visualization of dense generation and sampled sparse point clouds. From left to
right: Input image, dense generation (10240 pts) and three sampled sparse point
clouds (2048 pts). 54

4.6 More qualitative results generated by our method. From top left to bottom right:
Airplane, Bathtub, Table and Chair. 55

4.7 Visualizations of learned shape primitives (5 out of 8) for “airplane”. TOP:
primitives learned from ModelNet airplane. Bottom: primitives learned from all
classes of ModelNet. 57

4.8 Contribution of shape primitives to the generated point cloud. Top: contribution
of single-category primitives. Bottom: contribution of multi-category primitives. 58

5.1 A high-level comparison between the classical problem setting (abundant training
pairs) and the few-shot setting (insufficient training instances). 61

5.2 Overview of our framework. For a given query image Ii that belongs to class c′ (c′ is
airplane in this figure), we first compute its latent representation through an image
encoder Encimg. In the middle branch, we compute a class-specific shape prior
vector by averaging the 3D features of support point clouds. The class-agnostic
shape prior is presented by a shape primitive, which is a transformed complex
point distribution. Finally, we jointly decode the latent image representation,
“class-specific” shape vector and “class-agnostic” shape primitive onto the target
point cloud Ŝ with Decpc. Chamfer distance between Ŝi and corresponding ground
truth Si is computed during the training. 64

xiii

5.3 Comparison of three different “class-specific” shape priors. (a) Due to the ir-
regularity of point clouds, all support point clouds are combined into a dense
one in the original Euclidean space. (b) CGCE defines N learnable codebooks
and compute the attentional sum of them for each class. (c) The shape prior is
computed by averaging the hidden features of support point clouds. By separating
two types of shape priors, our method offers a more meaningful shape prior and
eliminates finetuning in the test phase. 66

5.4 Comparison of two decoding schema. Assume target shape has N points and α
is a latent vector. (a) directly maps α to a point cloud Ŝ. (b) samples N points
from a point distribution, endows each point with α (concatenate its coordinates
and α), and transforms the endowed point onto target point cloud Ŝ. 68

5.5 We employ M learnable primitives (M = 3). Decpc contains M sub-decoders

ϕm(·) and all outputs of them are collected onto Ŝ. 68

5.6 Model Performance of FPSG under different values of shots (K = 1, 4, 8, 16, 32)
measured on ModelNet. Left plot is for Chamfer Distance and right plot is for
Earth Mover Distance. 77

5.7 Model Performance of CGCE under different values of shots (K = 1, 4, 8, 16, 32)
measured on ModelNet. Left plot is for Chamfer Distance and right plot is for
Earth Mover Distance. Missing values are explained in the context. 77

5.8 Examples of generated point clouds with number of shots k = 16. Novel classes
are in the left (laptop, bowl and cup) and base classes are in the right (airplane,
bathtub and chair). For each side, from left to right are: input image, generated
point cloud, and ground truth. 78

6.1 The source surface is combined with incoming latent features and transformed onto
the target component through a folding module. Ideally, different regions of the
source 2-manifold should be deformed onto different areas of the target component.
Conventional folding module (shared-MLP) might conduct the deformation in
an undesired way because of the negligence of surfaces’ global structure. On the
other hand, the proposed operator tackles this issu by attentionally considering
such information during the generation. 82

6.2 Overview. An source encoder Esrc first extracts the latent features of input X.
Noted that X is a 2D image in this plot for demonstration purpose. These features
are feed into a point cloud decoder, which contains multiple proposed Attentional
Folding Module (AFM). We then collect all points generated by each module to
form the final output Ygen. In addition to the conventional Euclidean space point-
wise loss (CD/EMD), we further enforce a semantic consistency regularization,
Lsemantic , upon m sampled points. 86

6.3 Comparison of different point cloud decoders’ architecture. For simplicity, folding-
based methods (b and c) have 1 patch and the purple blocks in c denote different
shared-MLPs. 87

xiv

6.4 (a1, b1) Red points are ground truth and blue points are generated. (a2, b2)
The local structure around the yellow point. 89

6.5 Qualitative comparison on ModelNet self-reconstruction. From top to bottom:
Bed, Lamp, Sofa, Table, Bathtub, and Chair. 93

6.6 Qualitative comparison on ModelNet single-view reconstruction. Top: airplane.
Bottom: chair. 94

6.7 Samples of failure cases on ModelNet self-reconstruction task. Ygt and Ygen denote
ground truth and the generated point cloud, respectively. Left: plant. Right: lamp. 95

xv

LIST OF TABLES

3.1 Single-View Reconstruction (per category) for ModelNet dataset, trained on each
category. The results of each framework are reported in format “CD / EMD”.
Chamfer Distance is multiplied by 103 and Earch Mover Distance is multiplied
by 102 for better visualization. Both metrics are computed on 2048 points. Best
results are bolded. 32

3.2 Single-View Reconstruction (per category) for ShapeNet dataset, trained on each
category. The results are organized with the same format of Table 3.1. “AtlasNet
1 patch” and “TDPNet K4P4” are dropped based on their performance. 33

3.3 Single-View Reconstruction (per category) for ModelNet, trained on all categories.
The results are in format ”CD / EMD” and they are scaled by 103 and 102,
respectively. 36

3.4 JSD score of Single-View Reconstruction (per category) for ModelNet, trained on
all categories. 36

3.5 Chamfer Distance measured on ModelNet-airplane with different hyper-parameter
setting. The result are multiplied by 103 for better visualization. 36

3.6 Chamfer Distance (×103) measured on 2 ModelNet categories with different
training strategies. We adopt configuration of K = 8, P = 4 in this experiment. 37

4.1 Performance comparison between baselines and our method on ModelNet in the
single-category setting. We report the results of each framework in the format
of CD (x103) / EMD (x102). The average performance among all categories is
shown in row AVG. Both metrics are computed on point clouds with 2048 points,
and the best results are highlighted in bold. 50

4.2 Performance comparison between baselines and our method on ShapeNet in the
single-category setting. The results are organized in the same format as Table 4.1.
AtlasNet P1 and TDPNet K4 are omitted since they are surpassed by their variants. 51

4.3 Performance comparison between baselines and our method on ModelNet in the
multi-category setting. We report the results of each framework in the format
of CD (x103) / EMD (x102). The average performance among all categories is
shown in column AVG. Both metrics are computed on point clouds with 2048
points, and the best results are highlighted in bold. 52

4.4 Performance comparison between baselines and our method on ShapeNet in the
multi-category setting. The results are organized in the same format as Table 4.3. 54

4.5 Chamfer Distance (x103) measured on multi-category ModelNet with different
“initial point set (transformation)”. “2D Fix” and “3D Fix” denote fixed points
uniformly sampled from unit square and unit cube, respectively. 56

xvi

4.6 Chamfer Distance (x103) measured on the multi-category ModelNet with different
number of shape primitives K. 57

4.7 CD (x103) measured on multi-category ModelNet with shape primitives in different
dimension. 59

5.1 Few-shot single-view reconstruction (32-shots per category) for both datasets.
We report the Chamfer Distance (CD) of each framework and the values are
multiplied by 102 for better visualization. The average performance among all
categories (per dataset) is shown in row AVG. Metric is computed on 2048 points
and best results are bolded. 74

5.2 Few-shot single-view reconstruction (32-shots per category) for both datasets. We
report the Earth Mover Distance (EMD) of each framework and the values are
multiplied by 102 for better visualization. The average performance among all
categories (per dataset) is shown in row AVG. Metric is computed on 2048 points
and best results are bolded. 75

5.3 CD measured on a subset of ModelNet Cbase−test. Number of shots k = 16 and
the CDs are scaled by 102. Best results are bolded and the seconds are underlined. 79

5.4 Ablation Study on ModelNet. a check mark means the corresponding component
is activated. Number of shots k = 32 and the CDs are scaled by 102. 79

6.1 Quantitative comparison between our method and existing SOTA approaches on
ModelNet self reconstruction task. The results of each framework are in the format
of CD (x103) / EMD (x102) for better visualization. Column AVG represents the
average performance among all categories. All numbers are obtained from point
clouds with 2048 points. AttnFold P1 and AttnFold P32 denote the proposed
method trained with 1 patch and 32 patches, respectively. The best results are
highlighted in bold and the second bests are highlighted by an underline. . . . 91

6.2 Quantitative comparison between our method and existing SOTA approaches on
ShapeNet self reconstruction task. The results of each framework are in the format
of CD (x103) / EMD (x102) for better visualization. Column AVG represents the
average performance among all categories. All numbers are obtained from point
clouds with 2048 points. AttnFold P1 and AttnFold P32 denote the proposed
method trained with 1 patch and 32 patches, respectively. The best results are
highlighted in bold and the second bests are highlighted by an underline. . . . 91

6.3 Quantitative comparison between our method and existing SOTA approaches on
ScanNet self reconstruction task. The results of each framework are in the format
of CD (x103) / EMD (x102) for better visualization. Column AVG represents the
average performance among all categories. All numbers are obtained from point
clouds with 2048 points. AttnFold P1 and AttnFold P32 denote the proposed
method trained with 1 patch and 32 patches, respectively. The best results are
highlighted in bold and the second bests are highlighted by an underline. . . . 92

xvii

6.4 Quantitative comparison of single-view reconstruction on 3 categories of ModelNet.
Results are reported in the format of CD (x103) / EMD (x102). Best results are
bolded. 94

6.5 ModelNet self-reconstruction performance upon different number of patches. Re-
sults share the same format in Table 6.4 . 95

6.6 Average self-reconstruction performance on ModelNet with different values of
LSC weight factor λ (Equation 6.5). CD and EMD are multiplied by 102 and 103,
respectively. 96

6.7 Average self-reconstruction performance on ModelNet with different number of
sampling points ρ. Same format as Table 6.6 . 96

xviii

CHAPTER 1

INTRODUCTION 1 2

A plethora of cutting-edge computer vision and graphic applications, such as Augmented

Reality (AR) (de Souza Cardoso et al., 2020), Virtual Reality (VR) (Stets et al., 2017;

Blanc et al., 2020), automatic vehicles (Yue et al., 2018; Cui et al., 2021), and robotics

(Li et al., 2020), require rapid creation and access to abundant 3D data. These 3D data

can be described by various data representations where the structure and the geometric

properties vary from one representation to another. In this dissertation, we split 3D data

into two main categories based on the dimension of their structure: 2D representations and

3D representations. To be more specific, “2D representations” describe the 3D data via a set

of 2D descriptors (Wang et al., 2004; Jin et al., 2005; Lai et al., 2011; Su et al., 2015), e.g.,

RGB images, Depth images, and Multi-view images, yet “3D representations” model the 3D

data in the 3D Euclidean space, e.g., voxel grids (Wang et al., 2019), polygon meshes (Masci

et al., 2015), and point clouds (Qi et al., 2017). It’s easy to observe that 3D representations

generally provide richer geometric, shape, and scale information, thus would benefit several

applications in the real-world scenario.

Among various 3D representations, point cloud is becoming more and more popular

because of its expressiveness, compactness and homogeneousness (Ahmed et al., 2018). As

shown in Figure 1.1, point cloud is able to seamlessly describe 3D object with a much

higher resolution in comparison to voxel grids and octrees. On the other hand, point cloud

can be considered as an intermediate representation of polygon mesh because it provides

1This chapter contains material previously published as: Yu Lin, Yigong Wang, Yifan Li, Zhuoyi Wang,
Yang Gao, and Latifur Khan. “Single View Point Cloud Generation via Unified 3D Prototype”. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 35, no. 3, pp. 2064-2072. 2021

2This chapter contains material previously published as: Yu Lin, Jinghui Guo, Yang Gao, Yifan Li,
Zhuoyi Wang, and Latifur Khan. “Generating Point Cloud from Single Image in The Few Shot Scenario”. In
Proceedings of the 29th ACM International Conference on Multimedia, pp. 2834-2842. 2021

1

F
ig

u
re

1.
1.

A
n

ex
am

p
le

of
3D

d
at

a
an

d
it

s
d

iff
er

en
t

2D
an

d
3D

re
p

re
se

n
ta

ti
on

s.
T

h
is

C
A

D
m

o
d

el
is

sa
m

p
le

d
fr

om
S

h
ap

eN
et

(C
h

an
g

et
al

.,
20

15
)

d
at

as
et

.

2

similar information, and more importantly, demands less computational resource (Lin et al.,

2021). Considering these advantages, point cloud is extremely suitable for many time sensitive

applications. For instance, self-driving may benefit from a complete point cloud that describes

the surrounding environment because such a point cloud provides more information and

can be processed in a short amount of time. Nevertheless, 3D sensors that directly produce

point clouds, such as LiDARs, are still much more extravagant comparing to the traditional

cameras. Generating point cloud from other data representations, 2D images in particular,

therefore, is a demanding yet promising research direction.

Towards this goal, this dissertation addresses the challenges in point cloud generation from

several aspects. We start with a single-view point cloud generation problem by considering

explicit 3D shape priors. The first two works adopt a folding-based neural network as

the point cloud generator and encode crucial 3D priors information, in a hard-coded and

data-driven way, respectively. In the third work, we utilize the aforementioned techniques

to simultaneously model the class-specific and class-agnostic 3D shape priors and solve

a challenging few-shot generation problem. Finally, we improve the folding-based point

cloud generator by introducing a local semantic consistency regularizer and employing a

Transformer-like (Vaswani et al., 2017) attention mechanism, which allows the network to

aware the manifolds’ global context and generate a more realistic point cloud.

1.1 3D Reconstruction

3D reconstruction aims to generate complete 3D data (profile) that describe the shape and

appearance of objects, either real or artificial, from various information sources. For example,

stereo vision takes multiple images as the information source and obtains the geometric

information of the target object by following the vision mechanism of human (Cardenas-

Garcia et al., 1995). Before the deep learning era, traditional 3D reconstruction methods

mathematically reverse the 2D-3D projection process and heavily rely on the availability

3

of multiple images, from either one (Zhang et al., 1999; Cheung et al., 2003; Lobay and

Forsyth, 2006) or multiple (Esteban and Schmitt, 2002; Geiger et al., 2011; Schmid et al.,

2012) viewpoints. Even though these methods have achieved promising performance, they

are limited by the coverage of images.

Inspired by the success of deep learning techniques in the image domain, several state-of-

the-art frameworks leverage deep neural networks to learn a 3D shape from images (Choy

et al., 2016; Rezende et al., 2016; Gadelha et al., 2017; Tulsiani et al., 2017). These methods

avoid the complex stereo correspondence and camera calibration by solving the problem from

a different perspective. Specifically, they reformulate the 3D reconstruction problem into

a recognition problem and learn the 3D prior knowledge through neural networks (Abedin

et al., 2006; Lavee et al., 2007; Han et al., 2019). In conclusion, the exciting and promising

results provided by these methods demonstrate the effectiveness of deep learning on 3D

reconstruction.

1.1.1 Point Cloud Reconstruction and Generation

As a sub-field of 3D reconstruction, point cloud generation chooses point cloud as the output

representation of 3D shapes. Literally, point cloud describe 3D objects through a collection

of points, each denotes a 3D coordinate and optional attributes, such as normal, color, and

texture. Compared to voxel grids and polygon meshes that require exceeding computational

resources, point clouds can be processed through a relatively simple network. Nevertheless,

it’s not trivial to extend deep learning techniques to the point cloud domain because of their

irregular structure.

On the other hand, point clouds are practically captured from the object’s surface,

therefore, any surface reconstruction framework (Gotsman et al., 2003; Praun and Hoppe,

2003; Sheffer et al., 2007; Monti et al., 2017; Wang et al., 2018; Pontes et al., 2018; Groueix

et al., 2018) applies to this task. To be more specific, we can first reconstruct the object’s

4

surface through aforementioned methods and conduct random sampling to generate a point

cloud. Such a pipeline, however, inevitably requires more computational resources due to the

connectivity of the surface and thus is less efficient compared to the point-based methods

(Fan et al., 2017; Jiang et al., 2018; Gadelha et al., 2018; Lin et al., 2018). Even great progress

has been made, the aforementioned methods do not explicitly consider the 3D shape prior

and assume the neural network will learn the information implicitly. Conversely, employing

explicit and flexible 3D shape prior and designing the network architecture carefully would

lead to a better reconstruction (Lin et al., 2021).

1.1.2 Point Cloud Generation with Explicit 3D Prior

Predicting a complete 3D shape from other information sources, especially images, is a long-

standing conundrum in the computer vision community. This problem is ill-posed, and prior

knowledge is mandatory because an RGB image (or multi-view images, partial point cloud)

contains deficient information for a complex 3D model (Fan et al., 2017; Kato and Harada,

2019). As we discussed in the previous section, state-of-the-art deep learning frameworks

generally assume the neural network will learn the shape prior information implicitly and

treat other information sources and 3D shapes equally. For example, representative image-

to-point-cloud frameworks (Fan et al., 2017; Groueix et al., 2018; Yang et al., 2018) adopt

a classical auto-encoder architecture, which computes the latent representation of an input

image and decodes it into a point cloud by using this latent representation only.

To address these limitations, we first propose a framework named Three Dimensional

Prototype Network (TDPNet) (Lin et al., 2021). This method utilizes a set of latent 3D

prototype features obtained from an external point cloud dataset, which explicitly encodes

the 3D shape prior information. Moreover, we introduce a hierarchical manifold decoder

that encourages diverse reconstruction and avoids mode collapse by decoding each prototype

separately. Although the proposed method achieves promising results, we observed that

5

defining the 3D prototype features with KMeans centroids of external point cloud dataset

is unstable and lacks interpretability. Therefore, we further introduce an advanced point

cloud generation framework with Learnable Shape Primitives (L-SHAP), which explicitly

encodes the 3D shape prior information from training data through an additional folding

operation. Our experiments show that both proposed methods can effectively obtain superior

performance compared to the existing methods, on the famous ModelNet and ShapeNet

datasets.

1.1.3 Few-shot Point Cloud Generation

In many real-world scenarios, there exist copious 2D images with no corresponding 3D point

cloud. As a consequence, it would be extremely valuable if we are able to generate point

clouds merely from a single RGB image. Following the idea of explicit 3D shape priors,

we argue that point clouds can be reconstructed from a single image with a class-specific

prototype feature obtained from limited support samples (point clouds) and class-agnostic

shape primitives learned from training data. However, previous state-of-the-art few-shot

generation methods (Wallace and Hariharan, 2019; Michalkiewicz et al., 2020) focus on the

regular voxel representation and can not be extended to the point cloud domain easily. To this

end, we propose a novel few-shot single-view point cloud generation framework accompanied

with a novel episodic training strategy. The results of experiments on ModelNet and ShapeNet

demonstrated that our method outperforms state-of-the-art approaches by a large margin.

1.1.4 Advanced Folding Operation

Recent deep point cloud generation approaches generally follow the architecture of auto-

encoder. Considerable representation learning frameworks on various domains haven been

proposed, yet the design of decoder also plays a crucial role for a realistic point cloud

generation. Pioneers (Fan et al., 2017; Achlioptas et al., 2018) in this direction adopt simple

6

fully connected layers to generate a coarse point clouds, which inevitably suffer from the

scalability issue due to the magnitude of network parameters and convergence speed. More

recently, several folding-based methods (Groueix et al., 2018; Yang et al., 2018; Lin et al.,

2021) embrace the idea of manifold deformation and deform one or multiple canonical 2D grids

onto the target surface. It’s worth noting that these methods approximate the deformation

function through a shared MLP, thus ignored the spatial interactions between each point

during the generation process, leading to undesired over-complicated components. To address

this issue, we propose an attentional point cloud decoder that applies the self-attention

mechanism to aggregate latent features and global context of source surfaces. The evaluation

results on both PointDA and ShapeNet datasets show the significantly improved effectiveness

compared with baselines.

1.2 Contribution of this dissertation

In summary, the contribution of this dissertation is as follows:

1.2.1 Point Cloud Generation with 3D Prototypes

• We propose a deep learning framework, TDPNet, to solve the image-to-point-cloud

generation problem. It compensates the missing information of images by combining

2D image features and 3D prototype features in the hidden space.

• The proposed TDPNet adopts a unified 3D prototype schema to efficiently utilize the

rich structural 3D information.

• We conduct extensive experiments to verify the effectiveness of our method, both

quantitatively and qualitatively.

7

1.2.2 Point Cloud Generation with Learnable Shape Primitives

• To the best of our knowledge, we are the first that bring learnable shape primitives

(3D priors), L-SHAP, into the single-view point cloud reconstruction scenario.

• Based on the task requirement (e.g., dense point cloud generation) and the initial

point set’s topology, we introduce two alternative shape primitives: continuous shape

primitives and discrete shape primitives.

• We empirically demonstrate the superiority of L-SHAP over existing state-of-the-art

solutions on two typical benchmarks including Modelnet and ShapeNet.

1.2.3 Few-shot Point Cloud Generation

• To the best of our knowledge, FSPG is the first deep learning framework that tackles

the challenging few-shot single-view reconstruction problem in the point cloud domain.

• We introduce a novel network architecture that learns class-specific and class-agnostic

shape priors simultaneously, and train the network with an advanced episodic training

strategy.

• The proposed episodic training strategy successfully avoids the expensive finetuning

process on unseen novel classes, therefore significantly boost the model’s efficiency.

1.2.4 Advanced Folding Operation

• We are the first to present an attentional folding-based point cloud generation framework,

which considers the spatial interaction between points sampled from the source surfaces.

• In addition to the traditional point-wise loss function, we introduce a novel semantic

consistency regularizer to further improve the generation performance.

8

1.3 Outline of this dissertation

The rest of the dissertation is organized as follows. Chapter 2 provides the background of

baseline approaches and evaluation protocol in this dissertation. Chapter 3 discusses the

framework that adopts 3D prototype features from existing point cloud datasets. Chapter

4 presents our solution for integrating flexible 3D shape prior knowledge into point cloud

generation. Chapter 5 describes the few-shot point cloud generation framework. Chapter 6

introduces a novel attentional folding-based operation. Chapter 7 summarizes this dissertation

and discusses the future work.

9

CHAPTER 2

BACKGROUND 1 2

In this chapter, we present relevant background information of existing and previous point

cloud learning/generation methods.

2.1 Point Cloud Representation Learning

Mathematically, a point cloud S can be formulated as a set of points S = {pi}Ni=1, where N

denotes its cardinality and pi = (xi, yi, zi, a
(1)
i , a

(2)
i , . . . , a

(k)
i) is a point in the 3D Euclidean

space with coordinate (xi, yi, zi) and k optional attributes (a
(1)
i , a

(2)
i , . . . , a

(k)
i) (e.g., color and

normal). Representation learning is crucial to understanding and utilizing point clouds in

deep learning since most deep learning techniques cannot consume “set” objects directly. For

instance, a 2D image is usually denoted by a C×H×W pixel matrix, where C is the number

of channels (e.g., C=3 for RGB images), H and W are the height and width of the image.

Such well-ordered data structures are amenable to many famous deep learning methods, such

as Convolutional Neural Network (CNN) (Breen et al., 2002; LeCun et al., 2015), and lead to

promising results. On the other hand, these famous techniques may not be applicable in the

point cloud domain due to the permutation invariant property of set, which means that the

order of elements should not affect the output. Let f(·) be a trained deep learning model,

X = {x1, . . . , xn} be the input set, and π be a permutation. Permutation invariant property

can be formally described by:

1This chapter contains material previously published as: Yu Lin, Yigong Wang, Yifan Li, Zhuoyi Wang,
Yang Gao, and Latifur Khan. “Single View Point Cloud Generation via Unified 3D Prototype”. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 35, no. 3, pp. 2064-2072. 2021

2This chapter contains material previously published as: Yu Lin, Jinghui Guo, Yang Gao, Yifan Li,
Zhuoyi Wang, and Latifur Khan. “Generating Point Cloud from Single Image in The Few Shot Scenario”. In
Proceedings of the 29th ACM International Conference on Multimedia, pp. 2834-2842. 2021

10

∀π, f({x1, . . . , xn}) = f({xπ(1), . . . , xπ(n)}) (2.1)

Several state-of-the-art frameworks are proposed to tackle this problem on point cloud

domain by following the DeepSet (Zaheer et al., 2017) paradigm, which theoretically demon-

strates the requirements of permutation invariant network. Specifically, a set function, f(·),

learnt by a neural network, is invariant to the permutation of elements in the input set X, iff

it can be decomposed in the form ρ(
∑

x∈X ϕ(x)), for suitable transformations ρ and ϕ.

Point analysis and neighborhood analysis are the two main categories in the deep point

cloud representation learning. The former schema treats each point independently and

aggregates the information of all points with a pooling function, whereas the second schema

considers the ambient signal of each point by locally applying convolution operations. We

will then briefly describe some representative approaches of each category.

2.1.1 Point Analysis Methods

Point analysis methods generally compute the feature of each point separately and aggregate

their information by applying some permutation invariant pooling function, e.g., max(·).

The feature extractor part is shared by all points, thus satisfies the permutation invariant

requirement and lead to efficient and effective representation computation.

PointNet (Qi et al., 2017)

PointNet is the first point analysis approach, which learns the shape descriptors of point

cloud via a collection of shared nonlinear functions (implemented by a simple 3-Layer MLP)

and a symmetric aggregation function. Instead of sorting the input points into a canonical

order or training a RNN with all possible permutation sequences, PointNet inspiringly adopts

a simple symmetric function to efficiently aggregate the information from each point.

11

Specifically, let S ∈ RN×3 be an input point cloud, PointNet first applies an input

transformation (implemented by a mini-PointNet that outputs a 3× 3 affine transformation

matrix) and projects it into a feature space, Sfeat ∈ RN×64. A feature transformation

(implemented by a mini-PointNet that outputs a 64 × 64 affine transformation matrix)

follows and the transformed feature matrix is further projected into another feature space,

Sfeat′ ∈ RN×1024. Finally, a max pool layer is applied to get the global feature of input point

cloud, Sg ∈ R1024.

PointNet++ (Qi et al., 2017)

PointNet++ is an advanced version of PointNet that hierarchically extracts point features by

sampling the point cloud in different granularities. To be concrete, PointNet++ is a sequence

of set abstraction components, each has a sampling layer, a grouping layer, and a small

PointNet layer. The sampling layer conducts Farthest Point Sampling (FPS) to generate a

higher-granularity point set, e.g., applying FPS on a point set S ∈ RN×d results in S ′ ∈ RM×d,

where d is the feature dimension of each point and M < N . Later, K Nearest Neighborhood

(KNN) is applied on the original point set S by using S ′ as the centriods, leading to a

N ×K × d data matrix. This data matrix is handled by the followed PointNet layer, which

extracts the local information of each centroid by applying a shared PointNet among all M

centroids. Output data size is now M × d′, where d′ is the new feature dimension.

Therefore, the shape information of a point cloud in different granularities (e.g., from

coarse to smooth) is captured by different set abstraction block. By repeating this set

abstraction process multiple times and applying a max pool operation, the global feature of

input point cloud can be finally obtained, Sg ∈ R1024.

12

2.1.2 Neighborhood Analysis Methods

Although aforementioned point analysis methods achieve amazing results, they generally

ignore the ambient signal of each point and are surpassed by the neighborhood analysis

methods.

ECC (Simonovsky and Komodakis, 2017)

This Edge-Conditioned Convolutional neural network (ECC) considers the input point cloud

S as a graph G = (V,E), where V denotes all points p ∈ S and E is a set of directed edges

built by connecting each vertex (point) i to all vertices j in its spatial neighborhood (e.g.,

ball query or KNN). The label for each edge is represented by a 6D label vector:

L(j, i) = (δx, δy, δz, ∥δ∥, arccos
δz
∥δ∥

, arctan
δy
δx

) (2.2)

where δ = pj − pi. Let l ∈ {0, . . . , lmax} be the layer index in a graph neural network.

X l : V → Rdl assigns labels to each vertex and L : E → Rs assigns labels to each edge.

X0 simply is the original input point cloud G. Recall that the coordinate information is

captured by the label of edge, the label of point pi, X
0(i), would be its optional attributes,

(a
(1)
i , a

(2)
i , . . . , a

(k)
i), or 0 if there is no available attribute. The filtered signal of a vertex i at

layer l is defined as

X l(i) =
1

∥N(i)∥
∑

j∈N(i)

F l(L(j, i);wl)X l−1(j) + bl (2.3)

where N(i) denotes the neighbors of vertex i and F l(L(j, i);wl) computes the weight factor

of X l−1(j) by considering the information of edge (i, j). The final point cloud representation

is obtained by applying a max pooling operation after layer lmax. Such network architecture

allows the model to effectively consider the local information of each point, leading to a better

representation.

13

Pointwise CNN (Hua et al., 2018)

Instead of creating a large graph for the whole point cloud, this framework directly applies

the convolution operation on the input point clouds. A ball query is first conducted on each

point to find its neighborhood and sort them into different quadrants. For a specific network

layer l, the activation of point i can be formulated as:

X l(i) =
∑
k

wk
1

∥Ωi(k)∥
∑

j∈Ωi(k)

X l−1(j) (2.4)

where k iterates over all sub-domains (quadrants) in the kernel support. Ωi(k) denotes the

k-th quadrant of kernel centered at point i and j is a point in that quadrant. Moreover, the

max pool layer is no longer required since the point cloud is first sorted into a canonical

order.

DGCNN (Wang et al., 2019)

More recently, this Dynamic Graph CNN (DGCNN) is proposed to efficiently exploit local

geometric structures of point cloud by constructing a local neighborhood graph and applying

a convolution operation named as EdgeConv. Not like ECC (Simonovsky and Komodakis,

2017), such framework avoids the artificial label of edges and learns the edge information

through a trainable function.

Specifically, this method first constructs the KNN graph, including self-loop, for each

point at each network layer. For a given network layer l, the edge feature between two vertices

(points), i and j, is defined as El
(i,j) = hlΘ(X l(i), X l(j)) and hlΘ(·, ·) is a trainable function. The

EdgeConv operation is a channel-wise symmetric aggregation operation Υ, e.g., summation or

maximization, and the output of EdgeConv at i-th vertex is X(i) = Υj∈N(i)hΘ(X(i), X(j)),

where N(i) denotes set of points that connect to point i. In conclusion, DGCNN computes

the global representation of a given point cloud by sending the input to several EdgeConv

blocks, concatenating the output of each block, and passing them to a max pool layer.

14

2.2 Deep Point Cloud Generation

In opposite to point cloud representation learning that is trying to learn a hidden representation

of a given point cloud, researchers on point cloud generation area are focusing on re-generate

a complete point cloud from other information resources (most of them can be considered as

a latent vector). Here we list some representative approaches.

PSGN (Fan et al., 2017)

This Point Set Generation Network (PSGN) combines an MoN loss and a powerful two-

branch decoder architecture to restore point clouds from one image. Specifically, a CNN is

adopted as the image feature extractor to compute the latent representation of a given image.

The resulting image representation is then consumed by the MLP-branch of the decoder

to generate point set S1 and the intermediate CNN activation values are consumed by the

Deconv-branch to generate another point set S2. The final output point cloud is just the

union of S1 and S2.

Moreover, to address the ambiguous 3D shape caused by the information loss of 2D images,

the Min-of-N (MoN) loss is introduced to better model such uncertainty. For a given image

I, the point cloud decoder G(·) generate n predictions by perturbing the input pixels with n

random vectors rj. The MoN loss is formally defined as:

LMoN = min
rj∼N(0,1),1≤j≤n

{d(G(I, rj), S
gt)} (2.5)

where d(·, ·) is a predefined pointwise distance metric and Sgt means the ground truth point

cloud. The intuition behind this loss function is that the minimum of the n distances between

each prediction and the ground truth must be small.

15

FoldingNet (Yang et al., 2018)

In opposite to PSGN, which directly maps a latent vector to a point cloud, FoldingNet tackles

this problem from a different perspective. It deforms a canonical 2D grid onto the underlying

3D object surface of a point cloud and the deform function is approximable by MLPs.

After obtaining the latent representation, e ∈ Rd, of an information source, e.g., point

cloud or RGB image, by using a pretrained feature extractor, FoldingNet replicates this

representation N times and concatenates them with N point coordinates sampled from an

unit square, [0, 1]2. The output data now has size N × (d+ 2) and will be consumed by a

shared-MLP to generate a N × 3 point cloud. The intuition behind this operation is that

any 3D object surface could be transformed into a 2D plane, and the inverse procedure will

map a 2D plane back to the 3D object surface. Moreover, FoldingNet actually applies this

operation twice to further boost the framework’s modeling capability.

AtlasNet (Groueix et al., 2018)

Without loss of generality, AtlasNet shares the same idea of FoldingNet: generating a point

cloud can be considered as generating a surface of a 3D shape.

However, AtlasNet can be considered as an advanced version of FoldingNet since FoldingNet

restricts itself to one manifold (2D unit square) and AtlasNet deforms multiple 2D grids with

MLPs. Nevertheless, AtlasNet only conducts the folding operation once rather than twice in

FoldingNet, which results in limited shape modeling capability if utilizing only one 2D unit

square.

2.3 Few Shot Learning in Point Cloud

Since we are going to talk about the application of point cloud generation in the few-shot

configuration, we further provide some background of few-shot learning. Existing Few-Shot

16

Learning (FSL) aims to endow a model with strong adaptation ability through episodic

training (Vinyals et al., 2016; Snell et al., 2017; Wang et al., 2020), and produce a generalizable

result on novel classes with only a few labeled samples. FSL (Wang et al., 2020; Sharma and

Kaul, 2020) can be roughly divided into three perspectives: metric-based, model-based and

optimization-based. This dissertation focuses on the metric-based approaches which learn the

metric space by computing Euclidean distances to prototypical representations of each class.

A class-specific prototypical representation is ideal to encode the 3D shape prior of that

class, this idea has been explored by two representative few-shot 3D reconstruction approaches.

More specifically, Wallace et al. (Wallace and Hariharan, 2019) propose to generate target

voxel grids by refining a template voxel computed from support set, which is considered as a

class-specific shape prior, with 2D image features. CGCE (Michalkiewicz et al., 2020) invent

a hierarchical shape prior model, where each class-specific shape prior is built from a set of

learnable parameters. The trained network will be finetuned on the novel classes to obtain

corresponding class-specific shape prior and generate point cloud from it. These two methods,

however, are limited to the voxel grid domain and consider only the class-specific shape

prior. To overcome these limitations, we propose a powerful architecture that considering

both class-specific and class-agnostic shape prior for the purpose of few-shot point cloud

generation.

17

CHAPTER 3

POINT CLOUD GENERATION VIA UNIFIED 3D PROTOTYPE 1

3.1 Approach

In this chapter, we assume the information source of target point cloud is one of its 2D

views (RGB images) and focus on designing a novel architecture that allows efficient image-

to-point-cloud generation and closes the gap between 2D and 3D features. Specifically, our

solution is a unified point cloud generation framework based on 3D prototypes, named as

Three Dimensional Prototype Network (TDPNet).

Figure 3.1 demonstrates the intuition of our method. Instead of generating point clouds

merely from 2D images, our method aims to generate point clouds by combining 2D image

features and class-specific prototypes that encode 3D prior knowledge. Noted that most

of the existing approaches generally follow the autoencoder (AE) architecture and replace

the encoder part with an image encoder. Nevertheless, a 2D image, as the projection of

corresponding 3D shape, naturally contains limited information comparing to a complete

point cloud. Inspired by the observation that many shapes from a specific category generally

have similar 3D structures, e.g., airplane wings and cabins, we suggest to compensate the

information loss by adopting corresponding class-specific prototypes.

3.1.1 Framework Overview

Problem Setting

The objective of our framework is to reconstruct a complete point cloud from a single 2D

projection, with the aids from existing point cloud datasets. A point cloud is presented as

1This chapter contains material previously published as: Yu Lin, Yigong Wang, Yifan Li, Zhuoyi Wang,
Yang Gao, and Latifur Khan. “Single View Point Cloud Generation via Unified 3D Prototype”. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 35, no. 3, pp. 2064-2072. 2021

18

Figure 3.1. Combining 2D image features and 3D prototypes.

S = {pi}Ni=1, where N denotes its cardinality and pi is a point in the 3D Euclidean space

with coordinate (xi, yi, zi). Based on our observation and existing literature, we found that

N = 2048 is sufficient to preserve the major structure of a given 3D object (Chang et al.,

2015; Achlioptas et al., 2018).

A view image can be considered as a 2D projection of a 3D shape, while it contains

limited information about its source. Apparently, such missing information is crucial for a

successful reconstruction. We introduce a set of 3D prototype features T =
⋃

c∈C{t
(c)
i }Ki=1 to

compensate the information loss. Here, C is the set of classes, K is the set size, and ti is a

prototype feature derived from a point cloud dataset. Note that we use the same point cloud

dataset both phases for simplicity in Fig 3.2, while a comprehensive external resource, like

ShapeNet (Wu et al., 2015), is also applicable in the 1st phase. Let I be the input image and

f(·) be the predefined image feature extractor, e.g., VGG-16 or ResNet-18. Our goal is to

learn a neural network G(·∥θ) such that the distance between the synthesized point cloud

and the ground truth is minimized. The objective is formulated as:

19

arg min
θ
D(S,G(f(I)⊕ T∥θ)) (3.1)

where θ = {ϕ, ρ} denotes network parameter: ϕ is the parameter of the feature extractor

and ρ belongs to the manifold decoders. D(·, ·) is the distance function and two common

choices of this distance metric are Chamfer Distance (CD) and Earth Mover Distance (EMD).

Mathematically speaking, CD and EMD between two sets of points are formulated as following:

dCD(S1, S2) =
∑
x∈S1

min
y∈S2

∥x− y∥22 +
∑
y∈S2

min
x∈S1

∥x− y∥22 (3.2)

dEMD(S1, S2) = min
ϕ:S1→S2

∑
x∈S1

∥x− ϕ(x)∥2 (3.3)

where ϕ : S1 → S2 is a bijection. Although these two metrics are widely used by different

frameworks, each of them has its own concentration during the generating process, thus leads

to different 3D shapes when being used as loss function. EMD favors the shapes close to the

“mean-shape” of the given category (Fan et al., 2017). Consider a set of airplanes, the model

always outputs a cabin will get a better score. In contrast, CD tends to cover all components

while leading to a splashy shape that blurs the object’s geometric structure. Noted that the

sum term in both equations, such computation is expensive and is another hint we should

keep the number of points, N , reasonable in practice.

Workflow

Our framework, TDPNet, has two training phases as illustrated in Fig 3.2. The goal of such

design is to prepare the point cloud encoder for prototype extraction and to help the decoder

gain the ability to reconstruct point clouds from an isolated 3D feature in the 1st phase. We

later build the actual image-to-point-cloud pipeline in the 2nd phase, where the real image

features and 3D prototypes are combined and decoded.

To be concrete, we train a point cloud autoencoder in the first step. The encoder may

either be a pointwise MLP or a convolution-based network (We adopt PointNet (Qi et al.,

20

Figure 3.2. Approach overview: A two-phase single-view point cloud reconstruction solution.
a) We firstly warm-up the network by solving a point cloud self reconstruction problem.
Namely, we trained a point cloud autoencoder in this phase. b) We build the actual image-
to-point-cloud network in the 2nd phase. K prototype features are computed using the
trained point cloud encoder and KMeans clustering. Notice that it can be extended to a
multi-class version by repeating this operation every class. We then infuse the image feature
and prototypes with random 2D grids and feed them to a hierarchical decoder to construct
the final point cloud. The decoder has K MLP clusters and each contains P one-patch
decoders (K = 3, P = 3 in this figure).

21

2017) in this work). The one-patch decoder is a simple MLP (1538-512-256-128) comprised of

ReLU non-linearities on the first three layers and tanh on the last output layer. This decoder

will be later used to initialize our hierarchical decoder. Finally, since the image feature Ifeat

is not available in the current stage, we mask out that part with an all-zero tensor. The loss

function of this autoencoder may either be CD or EMD.

For the 2nd phase, let’s start from a simple scenario, where all inputs are from the same

category, e.g., airplane. We need to generate K prototype features with the trained point

cloud encoder. A clustering algorithm, such as KMeans, is applied to obtain K clusters.

We then initialize the prototype features by the centroid of each cluster. Notice that we

need to repeat this operation for every category when facing a general multi-class problem

setting. The clustering strategy is suitable mainly because the embeddings are informative

and discriminative across categories (Khan and McLeod, 2000; Awad et al., 2008; Nessa et al.,

2008). Nevertheless, the centroids are insufficient for a realistic reconstruction, we will apply

a Froze-Finetune training strategy on those prototypes, which is explained later.

Our hierarchical decoder contains K MLP clusters and every cluster has P one-patch

decoders. We used K = 3, P = 3 in Figure 3.2. We concatenate the image feature Ifeat with

corresponding 3D prototypes T (c) = {t(c)i }Ki=1 to obtain K fused vectors. Recall that there are

K MLP clusters and each of them will handle one fused vector. Each fused vector is replicated

P times and endowed with randomly sampled 2D grids. With this configuration, we allow

each prototype to contribute to the final result democratically and dedicated to different

local regions. In the end, all the K × P patches produced by the decoder are collected onto

the final point cloud. The pseudocode for both training phases are presented in Algorithm 1

and Algorithm 2, respectively.

3.1.2 Dynamic 3D Prototypes

In this section, we demonstrate how we generate the 3D prototype and why it’s important to

use a frozen-finetune training schema.

22

Algorithm 1: Phase 1 Training

input :A point cloud dataset S∗ = {Si}mi=1

1 for Number of training epochs do
2 for batch← 1 to ⌊m/batch size⌋ do
3 Compute 3D features for S{batch} ;
4 Concatenate 3D features with dummy image features and random 2D grids ;

5 Generate Ŝ{batch} from the fused vector;

6 Compute dCD(Ŝ{batch}, S{batch}) ;
7 Update the network ;

8 end

9 end

Algorithm 2: Phase 2 Training

input :A paired image & point cloud dataset D = {Ii, Si}ni=1

1 Generate K prototypes with KMeans;
2 Initialize all MLPs with the 1st phase decoder;

3 for Number of training epochs do
4 if epoch < frozen period then
5 Froze the prototype
6 else
7 Activate prototype tuning
8 end

9 for batch← 1 to ⌊n/batch size⌋ do
10 Compute 2D features from I{batch} ;
11 Concatenate 2D features with 3D prototypes and 2D random grids ;

12 Generate Ŝ{batch} from the fused vector ;

13 Compute dCD(Ŝ{batch}, S{batch}) ;
14 Update the network ;

15 end

16 end

We initialize the 3D prototypes, T =
⋃

c∈C{t
(c)
i }Ki=1, by the KMeans centroids of a collection

of point cloud features. Recall that we trained a point cloud AE in the 1st phase and initialized

our hierarchical decoder with the one-patch decoder. Indeed, a multiple-patches decoder is

acceptable in the point cloud AE, whereas the performance won’t be impaired heavily and it

could cause negative effects to the initialization. To reduce the requirement of computational

23

resources and minimize the training time, we stay with the one-patch decoder. Since the

clustering algorithm won’t change the feature space, we conclude that the centroid captured

meaningful information and can be decoded by the one-patch decoder. Examples of extracted

prototypes are presented in the experiment section. The one-patch decoder is capable of

reconstructing a complete point cloud without any image feature. In other words, the network

learns the mechanism to incorporate the 2D features with 3D prototypes in the 2nd phase.

The prototypes seem to be random noise and lead to model collapse provided that 1st phase

does not exist (Tu et al., 2008; Mejjati et al., 2018), yet it’s also not advisable to keep the

prototype untouched during the training. For example, an external dataset provides rich

shape information while its underlying distribution may not be consistent with the prototype

distribution of the 2nd phase.

To overcome aforementioned problems, we propose to froze the prototypes for first few

epochs. UAGAN (Mejjati et al., 2018) embraced this strategy to balance the generator and

the discriminator in a GAN. The idea behind this operation is general and intuitive: mode

collapse is caused by the joint training of one or more auxiliary components. The alleviation

of it is allowing update parameters for only one component in the early stage. With the same

idea, We froze the prototype for the first 30 epochs and allow them to be fine-tuned in the

rest epochs, thus they can capture the correct information in the target dataset.

3.1.3 Hierarchical Manifold Decoder

Following the AtlasNet (Groueix et al., 2018) convention, generating a point cloud can be

considered as generating a surface of a 3D shape. The surface (shape) of a 3D object is a

differentiable 2-manifold that embedded in the ambient 3D Euclidean space: M2 ∈ R3. A

point cloud is considered as a sampled discrete subset of the surface S = {pi ∈M2 ∩ R3}.

Before we dive into the reconstruction process, let us first start with some basic concepts

(Zhao et al., 2019):

24

Definition 1. Diffeomorphism is an invertible, differentiable map between two differentiable

surfaces.

Definition 2. Consider an open set U ∈ R2. A chart C is a diffeomorphism C : M2 →

U ∈ R2 that maps an open neighborhood in 3D space to its 2D embedding.

Definition 3. Given a chart C, let Ψ ≡ C−1 : R2 →M2 be the inverse of this chart. Ψ is

called a parameterization.

Definition 4. A set of charts with images covering the 2-manifold is called an atlas:

A = ∪iCi(pi)

With these definitions, we conclude that a 2D point set can be deformed to a surface

with a parameterization Ψ. In the other words, we are not learning an exact mapping

from the hidden vector to a point set Ŝ, but trying to find function(s) Ψ(U |ρ) to generate

the 2-manifold, such that Ψ(U |ρ) ≈ S. ρ is a lower-dimensional parameterization of these

functions such that |ρ| < |S|.

It has been proved that “Given that C−1 exists, arbitrary 3D surfaces can be reconstructed

if ψ is approximated by a 3-layer MLP” (Groueix et al., 2018). Based on this theorem and

the universal approximation theorem (Csáji et al., 2001), we are able to state that a point

cloud S can be universally reconstructed up to a precision ϵ via an MLP with H hidden units.

With these definitions and theorems, previous point cloud decoder networks can be

categorized based on their architecture. As presented in Figure 3.3, PointNet (Qi et al., 2017)

could be extended to an image-to-point-cloud network naturally by swapping the point cloud

encoder with an image feature extractor, and replace the FC-layer with an MLP decoder.

PointSetNet (Fan et al., 2017) introduces a MoN loss and improves this architecture by adding

a deconvolutional branch and hierarchically combining the output from FC-branch into the

final result. However, both of them lack the grid structure and their decode functions depend

upon a single latent feature. In other words, these two frameworks have the assumption

25

U = ∅. AtlasNet (Groueix et al., 2018) is an advanced version of FoldingNet (Yang et al.,

2018). They shared the same intuition of manifold deformation, whereas FoldingNet restricts

itself to one manifold, and AtlasNet deforms multiple 2D grids with MLPs.

Although AtlasNet performs very well in the point cloud self-reconstruction task, it

assumes that 2D features and 3D features have the same impact on the result point cloud,

which is not true in practice. Our framework addresses this problem by combining 2D features

and 3D prototypes together. Therefore, our framework is a generalization of AtlasNet, which

can be obtained by setting all the prototypes to zero (T = ∅). Noted that our framework

contains one MLP cluster per prototype, thus a prototype can affect several regions if desired.

3.1.4 Implementation

We used a PointNet (Qi et al., 2017) as our point cloud encoder, which is presented in Fig

3.4. Generally speaking, it contains two Conv1D blocks, one for 3D transformation (orange

block) and one for hidden space transformation (blue block).

The one-patch point cloud decoder is an MLP (1538-512-256-128) and the first three

layers share ReLU non-linearities and the last output layer uses tanh (Groueix et al., 2018).

Note that the MLP decoders are implemented using Conv1D layer for efficiency.

Our image feature encoder is just a VGG-16 with batch normalization layer. In order to

adjust the network for better performance, we fine-tuned the network by fixing the first few

Conv2D layers and allowing only last three Conv2D layers to be updated during the training.

For the hierarchical decoder, which contains K MLP clusters and each cluster contains P

one-patch decoders. Assuming we are trying to generate a point cloud with N = 2048 points,

each one-patch decoder handles 2048/(K × P) points.

For the 1st phase training, we used an ADAM optimizer with an initial learning rate of

1e-3, β = (0.5, 0.999) and a batch size of 32. We still use the same ADAM optimizer in the

second phase but set the initial learning rate as 1e-4. Moreover, we applied a step learning

26

F
ig

u
re

3.
3.

C
om

p
ar

is
on

of
fo

u
r

S
O

T
A

im
ag

e-
to

-p
oi

n
t-

cl
ou

d
d

ec
o
d

er
s.

P
oi

n
tN

et
an

d
P

oi
n
tS

et
N

et
b

ot
h

u
se

a
si

n
gl

e
im

ag
e

fe
at

u
re

an
d

h
av

e
n

o
su

rf
ac

e
as

su
m

p
ti

on
,

w
h

il
e

P
oi

n
tS

et
N

et
is

ab
le

to
ge

n
er

at
e

m
u

lt
ip

le
p

la
u

si
b

le
sh

ap
es

th
an

k
s

to
th

e
d

ec
on

v
b

ra
n

ch
an

d
M

oN
lo

ss
fu

n
ct

io
n

.
T

h
e

A
tl

as
N

et
tr

ie
s

to
d

ef
or

m
m

u
lt

ip
le

2D
gr

id
s

on
to

lo
ca

l
2-

m
an

if
ol

d
b

u
t

th
ey

st
il

l
st

ay
on

th
e

si
n

gl
e

im
ag

e
fe

at
u

re
.

O
u

r
T

D
P

N
et

is
ca

p
ab

le
of

fu
si

n
g

2D
an

d
3D

in
fo

rm
at

io
n

(K
p

ro
to

ty
p

e
fe

at
u

re
s)

.
E

ac
h

p
ro

to
ty

p
e

co
n
tr

ol
s

an
M

L
P

cl
u

st
er

an
d

ev
er

y
cl

u
st

er
co

n
ta

in
s
P

M
L

P
co

m
p

on
en

ts
,

ea
ch

of
w

h
ic

h
ca

n
fo

ld
a

d
is

ti
n

ct
2D

gr
id

on
to

a
sp

ec
ifi

c
lo

ca
l

p
oi

n
t

se
t.

27

Figure 3.4. Overview of the PointNet point cloud encoder architecture. The input X is a
batch point clouds with shape Batch× 2048× 3 and the output is a feature tensor with shape
Batch× 1024. ReLu is the activation function for all Conv1D layers.

28

rate scheduler to further stabilize the training process, which decrease the learning rate at

30, 60, 90 epochs with γ = 0.5. We arranged 100 epochs per training stage and froze the

prototype for 30 epochs.

3.2 Evaluation

We evaluate our method quantitatively and qualitatively on different challenging tasks, such

as single category image-to-point-cloud generation, multiple category image-to-point-cloud

generation, and multiple plausible shapes generation.

3.2.1 Experiment Setting

Two datasets are used for the evaluation of this method: ModelNet (Wu et al., 2015), and

ShapeNet (Chang et al., 2015). For the ModelNet dataset, we borrow the processed data from

MVCNN (Su et al., 2015), which contains 4,899 CAD models across 10 categories and each

model is accompanied by 12 2D projections. Regarding ShapeNet, we sampled 13 categories,

which totally contains 21,439 CAD models. We then render 12 views of each 3D shape based

on the Blinn-Phong shading formula with a black environmental map (Blinn, 1977). The

single RGB image of each CAD model in both datasets is chosen from corresponding 12 2D

projections randomly. Both datasets are divided into a 80/20 train/test split randomly.

Assume each dataset is denoted as {vi, Si}Ni=1, where vi represents the single-view image

and Si represents the corresponding point cloud. Before the training, the input point clouds

are aligned to a common ground plane and size normalized. Specifically, we need to apply a

rotation matrix to the point cloud based on each category. If the number of points in the

source file is larger than 2048, a random sampling process is applied. For data augmenation,

we adopted a rotation matrix with random small angles, θ ∈ [0, π/120] , and a random jitter

matrix in [0, 0.02] to the calibrated point cloud.

29

As mentioned above, we randomly chose one image from the 12 2D projections as the

training sing-view image. Based on the image size and data source, we center cropped the

image to 550 × 550 and resized it to 224 × 224 for all ModelNet categories; All ShapeNet

images are first center cropped to 256× 256 and then resized to 224× 224.

We compare the proposed TDPNet with three SOTA frameworks. PointSetNet (Fan et al.,

2017), AtlasNet (Groueix et al., 2018) and PointFlow (Yang et al., 2019). Only the first two

methods claim that they have the capacity to generate the point cloud from a single image.

Nevertheless, PointFlow solved the point cloud reconstruction task from the perspective of

statistics and achieved promising numerical results. Thus, we include this method to study

its capacity for the image-to-point-cloud task. For a fair comparison, all the images features

are extracted by a VGG-16 and we provide an additional run of AtlasNet with 32 patches,

which is equal to the maximum number of MLP decoders in our framework, K = 8, P = 4.

All quantitative results are the average of 10 runs.

We evaluated the synthesized point cloud by comparing it to ground truth shapes using

two criteria: Chamfer Distance and Earth Mover Distance. Formulas and physical meanings

of these two criteria are presented in Equation 3.2 and 3.3, respectively. As we will show in

later sections, although these two numerical metrics have certain limitations, they unveil

different insights to the performance of all models (Yang et al., 2019). In addition, we evaluate

the model performance through Jensen-Shannon Divergence (JSD) (Achlioptas et al., 2018)

suggested in PointFlow. Noted that previous research suggest Coverage (COV) and Minimum

Matching Distance (MMD) as the performance criteria as well, but they are inadequate in

our problem setting as the correspondences between images and cloud points are already

known. Let Sg be the set of generated point clouds and Sr be the set of ground truth point

clouds with |Sr| = |Sg|, the JSD are computed between two marginal point distributions:

JSD(Pg, Pr) =
1

2
DKL(Pr∥M) +

1

2
DKL(Pg∥M)

30

where M = 1
2
(Pr + Pg). Pr and Pg are marginal distributions of points in the ground truth

and generated sets.

3.2.2 Single Category Point Cloud Generation

Recall that our method requires label information to arrange correct 3D prototypes for

the generation purpose. To conduct a fair comparison with baselines, we did two sets of

experiments to justify the effectiveness of our method. We first evaluate all methods in a

single category setting. Namely, the training data and test data are from the same class, so

the label offers no extra information. Table 3.1 and Table 3.2 show the results in such setting.

It shows that for single view reconstruction, the proposed method consistently achieves better

CD and competitive EMD in every categories. Additionally, we can see that our approach is

significantly better than AtlasNet with the same number of decoders.

PointSetNet and PointFlow are two extremes in this task. PointSetNet performs moder-

ately in CD but has intolerable EMDs. PointFlow achieves amazing EMDs with unstable CD.

Considering the visualization in Figure 3.5 and Figure 3.6, the results reveal the shortcomings

of these two metrics. CD favors a splashy result that covers more regions, whereas EMD

prefers a ”mean-shape” that roughly matches every instance in a given category (Fan et al.,

2017; Yang et al., 2019). Based on these observations and previous literatures, we suggest that

“a model is better if it has better CDs and moderate EMDs”. Adequate EMD guarantees that

the result is in the right category and small CD make sure all regions are recovered properly

to the correct shape.

3.2.3 Multiple Category Point Cloud Generation

Our framework is capable of solving a more general multiple-class problem. We evaluate all

methods in an all categories setting, which means the training set and test set contain data

with mixed labels. Table 3.3 presents the result in this setting. Although the performance of

31

T
ab

le
3.

1.
S

in
gl

e-
V

ie
w

R
ec

on
st

ru
ct

io
n

(p
er

ca
te

go
ry

)
fo

r
M

o
d

el
N

et
d

at
as

et
,

tr
ai

n
ed

on
ea

ch
ca

te
go

ry
.

T
h

e
re

su
lt

s
of

ea
ch

fr
am

ew
or

k
ar

e
re

p
or

te
d

in
fo

rm
at

“C
D

/
E

M
D

”.
C

h
am

fe
r

D
is

ta
n

ce
is

m
u

lt
ip

li
ed

b
y

10
3

an
d

E
ar

ch
M

ov
er

D
is

ta
n

ce
is

m
u

lt
ip

li
ed

b
y

10
2

fo
r

b
et

te
r

v
is

u
al

iz
at

io
n

.
B

ot
h

m
et

ri
cs

ar
e

co
m

p
u

te
d

on
20

48
p

oi
n
ts

.
B

es
t

re
su

lt
s

ar
e

b
ol

d
ed

.
P

oi
n
tS

et
N

et
P

oi
n
tF

lo
w

A
tl

as
N

et
1

P
at

ch
A

tl
as

N
et

32
P

at
ch

es
T

D
P

N
et

K
4P

4
T

D
P

N
et

K
8P

4

A
ir

p
la

n
e

6.
48

/
36

.6
3

7.
96

/
1
4
.4
7

6.
38

/
21

.3
3

5.
94

/
21

.2
2

5
.4
0

/
19

.4
2

5.
44

/
17

.1
3

B
at

h
tu

b
13

.1
6

/
53

.3
5

33
.3

4
/

21
.1

8
11

.3
6

/
20

.5
5

12
.0

6
/

14
.9

4
10

.6
4

/
14

.9
3

9
.5
4

/
1
4
.9
6

B
ed

11
.8

0
/

42
.4

9
10

.0
7

/
15

.0
9

10
.1

4
/

19
.2

8
9.

16
/

32
.8

7
7.

80
/

13
.3

9
7
.2
7

/
1
3
.4
5

C
h

ai
r

14
.8

1
/

42
.1

4
11

.1
6

/
1
5
.3
5

11
.0

3
/

22
.1

6
9.

47
/

16
.9

2
9.

86
/

17
.4

3
8
.7
4

/
17

.5
5

D
es

k
18

.7
5

/
47

.4
3

28
.8

3
/
2
3
.6
3

21
.1

4
/

32
.8

7
21

.6
7

/
34

.8
7

1
6
.1
8

/
27

.3
2

18
.5

9
/

31
.0

4
D

re
ss

er
18

.8
9

/
55

.8
8

12
.1

5
/

15
.5

2
13

.1
1

/
17

.5
8

10
.3

5
/

14
.3

9
9
.8
8

/
1
4
.2
7

10
.1

8
/

14
.7

1
M

on
it

or
16

.4
9

/
43

.9
1

10
.8

8
/
1
4
.8
2

12
.8

8
/

21
.5

9
11

.3
8

/
18

.3
3

10
.5

1
/

16
.0

6
1
0
.0
5

/
16

.4
1

S
of

a
12

.5
6

/
45

.5
6

9.
56

/
14

.8
6

8.
66

/
17

.0
3

8.
09

/
16

.2
6

7
.5
9

/
1
4
.3
6

8.
11

/
15

.1
0

T
ab

le
15

.4
6

/
43

.6
9

9.
72

/
1
4
.9
4

10
.4

9
/

18
.4

5
8.

06
/

16
.5

4
7.

97
/

15
.9

1
7
.4
8

/
16

.1
1

T
oi

le
t

13
.8

8
/

45
.8

5
12

.7
8

/
1
6
.1
2

9.
87

/
19

.8
9

9.
39

/
21

.3
8

8
.9
2

/
19

.3
6

9.
12

/
20

.0
2

32

Table 3.2. Single-View Reconstruction (per category) for ShapeNet dataset, trained on each
category. The results are organized with the same format of Table 3.1. “AtlasNet 1 patch”
and “TDPNet K4P4” are dropped based on their performance.

PointSetNet PointFlow AtlasNet P32 TDPNet K8P4
Airplane 3.36 / 34.71 4.12 / 12.17 2.82 / 11.39 2.34 / 13.85

Bowl 37.70 / 50.86 22.38 / 14.99 17.80 / 15.89 15.59 / 15.45
Camera 34.27 / 46.08 29.16 / 22.94 21.41 / 32.63 16.96 / 29.30

Car 8.63 / 52.39 8.42 / 11.50 4.42 / 11.39 4.20 / 11.18
Cellphone 6.87 / 39.90 5.77 / 9.54 4.25 / 11.36 3.71 / 9.68

Chair 6.35 / 45.15 8.95 / 14.72 6.67 / 13.81 6.32 / 14.87
Clock 24.89 / 58.15 17.34 / 18.04 12.46 / 18.57 11.06 / 16.03
Faucet 24.32 / 47.56 12.12 / 16.96 8.49 / 29.22 6.99 / 28.44

Jar 44.03 / 53.44 14.00 / 15.75 11.56 / 16.76 10.90 / 16.83
Monitor 14.75 / 39.56 8.11 / 14.37 6.74 / 13.65 6.13 / 13.48

Mug 15.78 / 60.05 13.58 / 13. 25 9.46 / 14.18 10.03 / 13.85
Printer 28.88 / 40.08 20.72 / 19.50 17.31 / 19.87 16.03 / 19.34
Rocket 7.14 / 32.48 8.52 / 14.47 3.94 / 13.54 2.64 / 12.39

our method downgrade slightly comparing to the single-category tests, we still achieve better

scores in most categories. Moreover, by incorporating the label information and enjoying the

copious training data, our model gets improved EMD scores, which outperforms all competing

methods. An interesting observation here is that some classes, e.g., sofa and dresser, got

better results compared with its single-category version. We suggest that it is because of the

insufficient training data in the single-category setting.

In addition, we provide the results regrading JSD of each category in this multiple category

setting in Table 3.4. JSD score measures the divergence of the marginal point distribution

between reconstruction ground truth. Lower JSD indicates that the two distributions are

closer and the synthesization is more realistic. Our approach shows its robust performance

and outperforms all baselines in most categories. Based on these experimental performance,

we conclude that point cloud generation quality can be significantly improved by incorporating

label information and latent 3D prototypes.

33

Figure 3.5. Examples of qualitative comparison (ModelNet) among different method. From
left to right: Input image, PointFlow, PointSetNet, AtlasNet, TDPNet (Ours) and Ground
Truth.

3.2.4 Generating Multiple Plausible Point Clouds

Due to the information loss introduced by the projection, multiple reconstructions are

expected for a single image. Given the same input image, the random sampled coordinates

from the 2-manifold naturally allows prediction of different shapes. This model behavior is

very valuable because of the ambiguous behavior of 2D to 3D construction (Sung et al., 2018).

34

Figure 3.6. Examples of qualitative comparison (ShapeNet) among different method. From
left to right: Input image, PointFlow, PointSetNet, AtlasNet, TDPNet (Ours) and Ground
Truth.

Figure 3.7 shows examples of a collection of predictions given one image. We observed that

our network can reveal its uncertainty about the shape or the ambiguity in the input.

3.3 Ablation Studies and Discussion

In this section, we will further investigate the impact of different network components and

discuss the limitation of the proposed method.

35

Table 3.3. Single-View Reconstruction (per category) for ModelNet, trained on all categories.
The results are in format ”CD / EMD” and they are scaled by 103 and 102, respectively.

PointSetNet PointFlow AtlasNet P32 TDPNet K8P4
Airplane 20.92 / 42.54 14.28 / 24.52 8.03 / 33.56 5.68 / 21.74
Bathtub 44.83 / 53.05 21.11 / 20.25 16.17 / 37.27 8.73 / 18.17

Bed 18.77 / 49.82 12.37 / 17.65 8.11 / 15.08 7.50 / 17.90
Chair 23.12 / 44.99 17.54 / 27.41 14.10 / 27.52 9.52 / 23.85
Desk 27.79 / 49.06 31.72 / 27.97 21.32 / 41.49 16.61 / 27.84

Dresser 54.45 / 56.65 12.15 / 15.52 17.64 / 22.37 9.74 / 20.35
Monitor 31.83 / 50.88 15.05 / 24.22 13.08 / 20.76 9.09 / 20.01

Sofa 16.59 / 50.19 14.09 / 18.97 10.10 / 16.88 7.64 / 20.30
Table 22.45 / 47.88 10.91 / 20.77 9.23 / 25.74 7.03 / 18.36
Toilet 23.29 / 49.67 17.14 / 27.28 9.89 / 30.17 8.96 / 27.75

Table 3.4. JSD score of Single-View Reconstruction (per category) for ModelNet, trained on
all categories.

PointSetNet PointFlow AtlasNet P32 TDPNet K8P4
Airplane 0.8863 0.2204 0.2378 0.2039
Bathtub 0.8712 0.1623 0.1721 0.0796

Bed 0.8591 0.0539 0.1727 0.0988
Chair 0.8839 0.2142 0.2106 0.1953
Desk 0.8614 0.1545 0.1721 0.1684

Dresser 0.8885 0.1669 0.1185 0.0901
Monitor 0.9022 0.3785 0.1323 0.0942

Sofa 0.8491 0.1236 0.1212 0.0943
Table 0.8551 0.1582 0.1084 0.0941
Toilet 0.8706 0.1405 0.1936 0.2066

Table 3.5. Chamfer Distance measured on ModelNet-airplane with different hyper-parameter
setting. The result are multiplied by 103 for better visualization.

P=1 P=2 P=4 P=8

K=2 6.41 6.28 5.70 5.63
K=4 6.15 6.09 5.40 5.66
K=8 6.08 5.82 5.44 5.41
K=16 5.73 5.41 5.25 5.07

3.3.1 Contribution of Prototypes and Decoders

We report the result of different combination of K and P in Table 3.5. Notice how our

approach generally improves as we increase the number of prototypes and MLP decoders.

36

Figure 3.7. Multiple predictions for a single input image. Note that the input view can be a
2D projection from a different angle, while we can still reconstruct the 3D shape correctly.

Table 3.6. Chamfer Distance (×103) measured on 2 ModelNet categories with different
training strategies. We adopt configuration of K = 8, P = 4 in this experiment.

Froze Finetune Froze-Finetune

Airplane 6.12 5.76 5.44
Bathtub 11.37 10.84 9.54

Another interesting observation is that our approach usually gains more benefits from the

increase of prototypes compared to the increase of MLP decoders. In other words, the

3D prototypes provide more valuable information compared with the stacking of decoders.

Our approach consistently outperforms AtlasNet when the number of decoders is equal

(K × P = 32), which further justified the effectiveness of combining 2D and 3D features.

Finally, we observed that adding extravagant decoders doesn’t necessarily improve the model

performance.

3.3.2 Frozen-Finetune Training

In this section, we evaluate the effectiveness of the Frozen-Finetune training. Table 3.6 shows

the quantitative results. The performance of Frozen and Finetune are approximately the

same since the network may recognize the former one as constants and the finetuned version

37

Figure 3.8. Sampled prototypes on ModelNet-bathtub. Left are the initial centroids and
Right are the finetuned prototypes.

as random noise. On the other hand, our approach is capable of avoiding mode collapse and

utilizing the 3D shape information.

Figure 3.8 visualizes two samples of prototypes. We combine the prototype with a dummy

image feature and feed it to the 1st phase decoder. Although this may not be the optimal

visualization because we trained the prototype features to incorporate with “real” image

features, we can still find that the finetuned prototype looks closer to the category mean-shape,

whereas the frozen version tends to be more sparse in the space.

3.3.3 Discussion

Our results have limitations that lead to many open questions and perspectives for future work.

First of all, we adopted KMeans as the prototype aggregate strategy. Although it performs

well in our experiment, it would be interesting to study the behavior of different clustering

methods or different generation methods, such as the prototypical network (Snell et al., 2017).

Second, we are focusing on the object-centered point cloud synthesization, yet extending to

entire real scene point clouds is very attractive. Third, the infusion strategy we used for

the 2D image feature and 3D prototypes is straightforward. Even we achieved a realistic

38

reconstruction, it would be interesting to see some sophisticated feature infusion methods. For

instance, attention mechanism (Guo et al., 2020) and GAN-based metric learning (Musgrave

et al., 2020). Finally, an open question is how to define a good performance metric that is

consistent with humans’ observation. As we can see in this chapter, PointFlow (Yang et al.,

2019) achieves extraordinary EMD scores, whereas the qualitative results are not promising.

It would be an interesting future direction to solve these problems.

39

CHAPTER 4

POINT CLOUD GENERATION VIA LEARNABLE 3D PRIORS

4.1 Approach

Our previous method, TDPNet (Lin et al., 2021), incorporates 3D prior knowledge by using

a collection of latent prototype features. Although it achieves promising results, we found

that using KMeans centroids as the prototype features is unstable and sensitive to the

hyper-parameters, e.g., K. To address these issues, we further propose a novel single-view

point cloud generation framework with Learnable SHApe Primitive (L-SHAP), which learns

the 3D shape prior information from data and avoids the unstable clustering process. In

this chapter, we focus on designing a general framework for the point cloud generation tasks

that allow efficient shape primitives learning. Specifically, as shown in Figure 4.1, 3D objects

are decomposed into coarse components, whose geometric information is captured by the

proposed learnable shape primitives.

This chapter is organized as follows. We will first walk through the whole framework and

describe two alternative learnable shape primitives in detail. In the evaluation section, the

effectiveness of the proposed method is justified upon two popular benchmarks. Finally, we

conduct some ablation studies to investigate the impact of different network components and

discuss the limitations of our method.

4.1.1 Framework Overview

We aim to learn a set of shape primitives, as 3D shape priors, to help generate a complete point

cloud from a single RGB image. Let D = {(Ii, Si)}Ni=1 be a collection of image-point-cloud

pairs, where N denotes the cardinality of this dataset, Ii and Si indicate i-th RGB image

and point cloud, respectively. Moreover, a point cloud S with M points is formulated as

S = {pj}Mj=1 and each point pj is represented by its coordinates (xj, yj, zj) in a 3D Euclidean

40

Figure 4.1. Learning shape primitives to encode 3D prior knowledge from dataset. After
that, they are incorporated with a given image to reconstruct the target point cloud.

space. Although a point cloud can conceptually have infinite points, we follow the previous

chapter and choose M = 2048 to balance between the expressiveness and the computational

cost (Wu et al., 2015; Lin et al., 2021).

In this work, we consider a point cloud generated from images is formed by a set of

adjusted shape primitives. Because of the variety and complexity of 3D shapes, manually

defining the structure of shape primitives (Schnabel et al., 2007, 2009; Li et al., 2011; Debnath

et al., 2018; Kaiser et al., 2019) impairs their expressiveness, especially for reconstruction

tasks. On the contrary, automatically learning the shape primitives from data provides a

better representation (Genova et al., 2019). Specifically, we consider each shape primitive

as a set of points that encodes the geometric information of a 3D point cloud component.

To make the primitive trainable, we follow the convention of AtlasNet (Groueix et al., 2018)

and assume that the complex point set is transformable from a simpler one, Einit, via a

41

F
ig

u
re

4.
2.

F
ra

m
ew

or
k

ov
er

v
ie

w
.

F
or

a
gi

ve
n

im
ag

e
I i

,
w

e
fi

rs
t

co
m

p
u

te
it

s
la

te
n
t

re
p

re
se

n
ta

ti
on

f
(I

i)
th

ro
u

gh
an

im
ag

e
en

co
d

er
.
K

sh
ap

e
p

ri
m

it
iv

es
ar

e
em

p
lo

y
ed

to
en

co
d

e
th

e
ge

om
et

ri
c

in
fo

rm
at

io
n

of
sh

ap
e

co
m

p
on

en
ts

.
E

ac
h

co
n
ta

in
s

an
in

it
ia

l
p

oi
n
t

se
t
E

in
it
,

e.
g.

,
p

oi
n
ts

sa
m

p
le

d
fr

om
u

n
it

sq
u

ar
e,

an
d

a
tr

an
sf

or
m

at
io

n
fu

n
ct

io
n
ψ

(·)
.

L
at

er
,

w
e

en
d

ow
p

ri
m

it
iv

es
w

it
h
f

(I
i)

an
d

d
ec

o
d

e
th

em
on

to
th

e
fi

n
al

p
oi

n
t

cl
ou

d
Ŝ
i.

C
h

am
fe

r
d

is
ta

n
ce

b
et

w
ee

n
gr

ou
n

d
tr

u
th

S
i

an
d

sy
n
th

es
iz

at
io

n
Ŝ
i

is
co

m
p

u
te

d
to

u
p

d
at

e
th

e
n

et
w

or
k

d
u

ri
n

g
tr

ai
n

in
g.

42

transformation function ψ(·). Formally, the k-th shape primitives E
(k)
prim is presented as:

E
(k)
prim = ψk(E

(k)
init) (4.1)

The detail of this transformation will be described in Section 4.1.2. After learning the

transformations, we can apply these shape primitives to generate a point cloud from a single

image. More specific, we consider the process of reconstructing a point cloud from an image

as an image-guided primitive transformation process. Let P = {E(k)
prim}K be the set of learned

shape primitives, a point cloud Ŝi is generated from corresponding image Ii by:

Ŝi =
⋃
K

ϕk(f(Ii)⊕ E(k)
prim) (4.2)

where f(·) is a predefined image feature encoder, e.g., ResNet-18, ⊕ denotes the endow

operation (See Figure 4.3), and ϕk(·) is a primitive-specific transformation function that maps

the feature endowed shape primitive to a specific part of the target object. The intuition

behind our approach is that if shape primitives are indeed 3D priors, it would be easier for

ϕk(·) to combine 2D information and 3D priors for improving the point cloud generation

quality. It’s worthy of noting that if the shape primitives were 2D squares, our approach

degrades into an AtlasNet (Groueix et al., 2018), and if the shape primitives were KMeans

centroids of a point cloud dataset, this equation is identical to TDPNet (Lin et al., 2021).

Our objective is to build a 3D-aware model that learns a collection of parameterized

shape primitives and utilizes them to generate a synthesized point cloud Ŝ, such that the

distance between Ŝ and corresponding ground truth S is minimized. Recall that two famous

distance metrics between point clouds are Chamfer Distance (CD) and Earth Mover Distance

(EMD). Mathematically, CD and EMD between two point clouds S1 and S2 are formulated

as following:

dCD(S1, S2) =
∑
x∈S1

min
y∈S2

∥x− y∥22 +
∑
y∈S2

min
x∈S1

∥x− y∥22 (4.3)

dEMD(S1, S2) = min
g:S1→S2

∑
x∈S1

∥x− g(x)∥2 (4.4)

43

where g : S1 → S2 is a bijective function. Each metric contributes differently to the final

output. EMD favors the shapes close to the “mean-shape” of the given category (Fan et al.,

2017). In contrast, CD tends to cover all components while leading to a splashy shape that

blurs the object’s geometric structure. As suggested by previous literature (Masud et al.,

2009; Groueix et al., 2018; Lin et al., 2021), we choose CD as our loss function and evaluate

the performance with both metrics.

4.1.2 Learnable 3D Priors

An RGB image solely contains deficient information for a complex 3D shape, therefore 3D

priors are crucial for a realistic single-view point cloud reconstruction. Prior works have

shown that a complex 3D shape can be abstracted by simple, yet geometrically informative,

volumetric primitives (cuboids) (Masud et al., 2010; Tulsiani et al., 2017; Zou et al., 2017).

Inspired by these approaches, we try to learn good primitives for point clouds. Nevertheless,

it’s not a trivial task to extend cuboids (or other predefined shape primitives) to point cloud

domains because cuboids are low-level representations which do not contain shape-specific

information. Here, we introduce two types of shape primitives to close the gap.

Continuous Shape Primitives

Analogously to manifold-based methods (Yang et al., 2018; Groueix et al., 2018; Lin et al.,

2021), we first assume that each shape primitive has a continuous structure. Specifically,

we assume the initial point set E
(k)
init is a simple continuous point distribution and the

transformation ψ(k)(·) maps it into a complex point distribution. These two components

jointly encode the crucial 3D prior information from training data.

Further, the aforementioned methods unanimously assume that the initial point sets are

differentiable 2-manifolds (surface) and the transformation approximates a diffeomorphism.

We can observe that they are a special case of continuous shape primitives, where the initial

44

point set represents a 2D unit square. By extending the geometric structure from a simple 2D

surface to any kind of continuous topological object, we can better capture the information of

complex 3D shapes. In addition, the transformed point sets preserve the continuous property,

thus any number of points can be sampled from it. In other words, these kind of shape

primitives open the gate to dense point cloud reconstruction.

Discrete Shape Primitives

Continuous primitives enable dense point cloud generation, yet they cannot change the

topology of the initial structure – this drawback dramatically limits their application for

complex shapes. Based on this observation and previous work (Yang et al., 2018), we propose

a more flexible “discrete shape primitive”.

Concretely, we remove the continuous assumption and model each point set merely as

a discrete distribution of points. Without the continuous neighborhood constraint, the

transformation function is able to freely adjust the location of output points. Such flexibility

significantly boosts the expressiveness of the learnt primitives, yet dense point cloud generation

is no longer supported as we dropped the continuous structure.

4.1.3 Architecture and Training Strategy

We now describe the architecture of our framework in detail. As presented in Figure 4.2,

our 3D-ware framework adds a shape primitive component to the classical encoder-decoder

network structure. To avoid the discrepancy caused by different image encoders, all image

encoders in baselines and our method are replaced by a pretrained VGG-16. Note that all

layers except the last three convolutional layers in VGG-16 are freezed during training.

Each shape primitive transformation function ψ(·) is implemented by a D-128-128-3 MLP,

where D is the dimension of the initial structure (e.g., D = 2 if the initial structure is a unit

square). For the activation function, we adopts ReLU non-linearities on the first two layers and

45

Figure 4.3. Comparison of four point cloud decoders. PSGN directly maps an image feature
to a point cloud Ŝ with M points. The rest methods generate M points by repeating the
showing architecture T times, each handles M/T points (T = 1 in this plot for simplicity).
AtlasNet replicates image feature M times and concatenates them with randomly sampled
points from a 2D square. TDPNet extends the pipeline of AtlasNet by adding a 3D prototype
feature. In contrast, our method encodes 3D shape information into learnable shape primitive
and samples M points from it during inference. Furthermore, our approach is capable of
handling various initial point sets (e.g., 3D Gaussian).

tanh on the last output layer. In addition, we tried a shallow 3-layer DGCNN by replacing the

FC-layers in MLP with EdgeConv block (Wang et al., 2019) This type of networks explicitly

considers the local ambient information of each point during the transformation. Interestingly,

both implementations lead to similar performance in the experiments.

For fair comparison, we adopt the hierarchical decoder proposed by TDPNet to decode

each endowed shape primitive to a small point set. That is, every ϕ(·) is implemented by 4

parallel MLPs (515-515-256-128-3) with ReLU activation in the first three layers and tanh in

46

Algorithm 3: L-SHAP Training and Inference

input :Dataset D = {(Ii, Si)}Ni=1, number of points per point cloud M , number of
shape primitives K.

1 for Training epochs do
2 for i← 1 to N do
3 Compute Ii’s latent representation f(Ii);

4 Ŝ = ∅ ;
5 for j ← 1 to K do

6 Sample M/K points from E
(j)
init

7 Q← RAND(E
(j)
init,M/K) ;

8 Transform points with ψj (Eq. 4.1)
9 Q′ ← ψj(Q) ;

10 Concat Q′ with f(Ii) (Eq. 4.2)
11 Q′′ = Q′ ⊕ f(Ii);

12 Transform endowed primitive Ŝ = Ŝ ∪ ϕj(Q
′′)

13 end

14 Calculate dCD(Ŝ, Si) ;
15 Update the network ;
16 # NO update during the inference ;

17 end

18 end

the last layer. With this configuration, each shape primitive is able to encodes more complex

shape component and contributes to the final output democratically. At last, we collect all

the points produced by the decoder to form the final point cloud. Algorithm 3 presents the

pseudocode for the training and inference process (batch size = 1).

4.2 Evaluation

In this section, we quantitatively and qualitatively evaluate our approach on three tasks: 1)

single category single-view reconstruction, 2) multiple category single-view reconstruction,

and 3) dense point cloud generation. Then, we provide the visualizations and contributions

of the shape primitives, perform ablation study on different framework components, and

investigate the influence of high-dimensional shape primitives in Section 4.3.

47

4.2.1 Experiment Setting

Follow the same evaluation protocol of TDPNet (Lin et al., 2021), we evaluate our framework

on two popular benchmark datasets:

• ModelNet (Wu et al., 2015): We select a 10-category subset of ModelNet with 4899

CAD models (3977/922 train/test split). For each 3D model, we create 12 rendered

views by uniformly placing 12 virtual cameras around it. We randomly chose one

view as the input RGB image. The ground truth (GT) point clouds are generated via

Farthest Point Sampling (FPS) (Qi et al., 2017).

• ShapeNet (Chang et al., 2015): We sampled 3 categories with 14355 3D models

(11537/2818 train/test split). Instead of using FPS, each GT point cloud is uniformly

sampled from the surface of corresponding CAD model. Input images are generated by

the same procedure described above.

We compare our framework with two categories of models: image-only models and

3D-aware models.

• PSGN (Image-only): This is the first learning-based image-point-cloud reconstruction

framework. It has no 3D prior and uses a hybrid decoder to generate the point cloud

output.

• AtlasNet (3D-aware): It’s a pioneer approach that embraces the manifold assumption.

It deforms multiple feature-endowed patches onto the target’s surface.

• FoldingNet (3D-aware): It generates the output point cloud by deforming an endowed

2D patch twice, which allows the change of topology.

• TDPNet (3D-aware): This is a state-of-the-art 3D-aware method, which generates point

clouds by combining the image feature with predefined 3D prototypes. Its decoder is a

hierarchical AtlasNet decoder.

48

For a fair comparison, we choose both Chamfer Distance (Equation 4.3) and Earth Mover

Distance (Equation 4.4) to quantitatively evaluate the performance of all methods.

The implementation of our framework is based on Python 3.6 and PyTorch 1.2.0. All

experiments are conducted with a Intel i9-9980XE CPU @ 3.00GHz and two Nvidia Quadro

RTX 8000 GPU cards. Each input point cloud is aligned to a common plane and normalized

into a unit ball. Data augmentation techniques such as random rotation and jitter are applied

in the experiment. We center crop and resize all RGB images to a resolution of 224× 224.

Our model is trained in 200 epochs using an ADAM optimizer with an initial learning rate

of 10−3 and β = {0.9, 0.999}. If not noted, our method adopts 8 shape primitives, surface

transformation and unit square initial structures.

4.2.2 Single Category Point Cloud Generation

Recall that the shape primitives lie at the heart of our approach. They tend to be more

shape-specific when facing a single-category scenario and might be more general when dealing

with shapes from all categories. To conduct a thorough comparison with baselines, we perform

two sets of experiments to verify the effectiveness of our method.

We first evaluate all methods in a single category setting, which means the training

data and test data are from the same class. Table 4.1 and Table 4.2 present the results on

ModelNet and ShapeNet, respectively. Please note that “AtlasNet P1” is an AtlasNet with

an one-patch decoder, while “AtlasNet P32” denotes an AtlasNet with 32 one-patch decoders.

“K4” and “K8” in TDPNet indicate the number of 3D prototypical features, each prototypical

feature is handled by 4 one-patch decoders. For a fair comparison, our framework adopts 8

shape primitives and utilizes the same decoder architecture as TDPNet. Such configuration

minimizes the discrepancy between the decoders of “AtlasNet P32”, “TDPNet K8”, and our

method.

First and foremost, please notice how the results are generally improved as we go from

PSGN to our method. Such improvement demonstrates the importance of adopting flexible

49

T
ab

le
4.

1.
P

er
fo

rm
an

ce
co

m
p

ar
is

on
b

et
w

ee
n

b
as

el
in

es
an

d
ou

r
m

et
h

o
d

on
M

o
d

el
N

et
in

th
e

si
n

gl
e-

ca
te

go
ry

se
tt

in
g.

W
e

re
p

or
t

th
e

re
su

lt
s

of
ea

ch
fr

am
ew

or
k

in
th

e
fo

rm
at

of
C

D
(x

10
3
)

/
E

M
D

(x
10

2
).

T
h

e
av

er
ag

e
p

er
fo

rm
an

ce
am

on
g

al
l

ca
te

go
ri

es
is

sh
ow

n
in

ro
w

A
V
G

.
B

ot
h

m
et

ri
cs

ar
e

co
m

p
u

te
d

on
p

oi
n
t

cl
ou

d
s

w
it

h
20

48
p

oi
n
ts

,
an

d
th

e
b

es
t

re
su

lt
s

ar
e

h
ig

h
li

gh
te

d
in

b
ol

d
.

P
S

G
N

F
ol

d
in

gN
et

A
tl

as
N

et
P

32
T

D
P

N
et

K
8

L
-S

H
A

P
(O

u
rs

)

A
ir

p
la

n
e

6.
48

/
36

.6
3

6.
03

/
24

.5
9

5.
94

/
21

.2
2

5.
44

/
1
7
.1
3

5
.1
4

/
18

.4
3

B
at

h
tu

b
13

.1
6

/
53

.3
5

15
.9

1
/

41
.5

3
12

.0
6

/
14

.9
4

9
.5
4

/
1
4
.9
6

10
.3

3
/

15
.2

1
B

ed
11

.8
0

/
42

.4
9

10
.0

8
/

18
.6

9
9.

16
/

32
.8

7
7
.2
7

/
13

.4
5

7.
73

/
1
3
.1
6

C
h

ai
r

14
.8

1
/

42
.1

4
10

.2
5

/
24

.3
2

9.
47

/
16

.9
2

8.
74

/
17

.5
5

8
.2
6

/
1
6
.4
5

D
es

k
18

.7
5

/
47

.4
3

27
.4

7
/

41
.8

8
21

.6
7

/
34

.8
7

18
.5

9
/

31
.0

4
1
6
.4
5

/
2
7
.0
6

D
re

ss
er

18
.8

9
/

55
.8

8
12

.4
7

/
28

.2
2

10
.3

5
/

14
.3

9
10

.1
8

/
14

.7
1

9
.4
7

/
1
4
.1
5

M
on

it
or

16
.4

9
/

43
.9

1
12

.3
8

/
31

.6
4

11
.3

8
/

18
.3

3
10

.0
5

/
1
6
.4
1

9
.5
2

/
17

.3
4

S
of

a
12

.5
6

/
45

.3
6

9.
75

/
15

.9
7

8.
09

/
16

.2
6

8.
11

/
15

.1
0

6
.8
7

/
1
3
.9
6

T
ab

le
15

.4
6

/
43

.6
9

9.
19

/
21

.7
1

8.
06

/
16

.5
4

7.
48

/
16

.1
1

6
.3
2

/
1
4
.0
7

T
oi

le
t

13
.8

8
/

45
.8

5
11

.5
8

/
22

.4
4

9.
39

/
21

.3
8

9.
12

/
20

.0
2

7
.5
8

/
1
6
.3
4

A
V
G
.

14
.1

5
/

45
.0

9
12

.0
9

/
26

.0
6

10
.3

1
/

20
.9

7
9.

29
/

17
.6

4
8
.5
2

/
1
6
.5
8

50

Table 4.2. Performance comparison between baselines and our method on ShapeNet in the
single-category setting. The results are organized in the same format as Table 4.1. AtlasNet
P1 and TDPNet K4 are omitted since they are surpassed by their variants.

Airplane Chair Car AVG.

PGSN 3.36 / 34.71 6.35 / 45.15 8.63 / 52.39 6.08 / 44.01
FoldingNet 2.79 / 11.47 9.10 / 29.65 5.05 / 12.41 6.26 / 20.05

AtlasNet P32 2.82 / 11.39 6.67 / 13.81 4.42 / 11.39 4.99 / 12.50
TDPNet K8 2.34 / 13.85 6.32 / 14.87 4.20 / 11.18 4.64 / 13.63

L-SHAP (Ours) 2.06 / 10.75 5.08 / 11.25 4.07 / 10.97 3.96 / 11.03

3D priors. Moreover, it is also observed that the proposed method consistently achieves better

CD and EMD in almost every category for single-view reconstruction. Most importantly, our

approach, on average, provides a better performance than TDPNet, which demonstrates the

effectiveness of employing learnable shape primitives.

4.2.3 Multiple Category Point Cloud Generation

As an advanced version of TDPNet, our framework is also capable of solving a more general

multiple-category problem. In this section, we evaluate all methods in such a setting, where

the training set contains shapes from multiple classes. Table 4.3 shows the performance of

competing methods on ModelNet and Table 4.4 shows the performance on ShapeNet. We

found that our method outperforms all baselines. Particularly, our model acquires significant

improvement on EMD without directly optimize it.

Moreover, compared to TDPNet, which relies on the label of each shape to retrieve correct

prototype features, our method achieves better results without using any label information.

This observation further demonstrates the superiority of the learnable shape primitives.

Visualizations of the generated point clouds are shown in Figure 4.4 and Figure 4.6. Our

method generates much more realistic and smoother point clouds (e.g., airplane cabin and

chair arm) compared to baselines. Based on these observations, we conclude that the quality

51

T
ab

le
4.

3.
P

er
fo

rm
an

ce
co

m
p

ar
is

on
b

et
w

ee
n

b
as

el
in

es
an

d
ou

r
m

et
h

o
d

on
M

o
d

el
N

et
in

th
e

m
u

lt
i-

ca
te

go
ry

se
tt

in
g.

W
e

re
p

or
t

th
e

re
su

lt
s

of
ea

ch
fr

am
ew

or
k

in
th

e
fo

rm
at

of
C

D
(x

10
3
)

/
E

M
D

(x
10

2
).

T
h

e
av

er
ag

e
p

er
fo

rm
an

ce
am

on
g

al
l

ca
te

go
ri

es
is

sh
ow

n
in

co
lu

m
n
A
V
G

.
B

ot
h

m
et

ri
cs

ar
e

co
m

p
u

te
d

on
p

oi
n
t

cl
ou

d
s

w
it

h
20

48
p

oi
n
ts

,
an

d
th

e
b

es
t

re
su

lt
s

ar
e

h
ig

h
li

gh
te

d
in

b
ol

d
.

P
S

G
N

F
ol

d
in

gN
et

A
tl

as
N

et
P

32
T

D
P

N
et

K
8

L
-S

H
A

P
(O

u
rs

)

A
ir

p
la

n
e

20
.9

2
/

42
.5

4
5.

90
/

27
.6

7
8.

03
/

33
.5

6
5.

68
/

21
.7

4
5
.5
6

/
1
4
.8
3

B
at

h
tu

b
44

.8
3

/
53

.0
5

9.
44

/
28

.4
5

16
.1

7
/

37
.2

7
8.

73
/

18
.1

7
7
.2
3

/
1
2
.9
9

B
ed

18
.7

7
/

49
.8

2
7.

51
/

22
.0

9
8.

11
/

15
.0

8
7.

50
/

17
.9

0
6
.3
3

/
1
2
.9
8

C
h

ai
r

23
.1

2
/

44
.9

9
8.

84
/

32
.2

8
14

.1
0

/
27

.5
2

9.
52

/
23

.8
5

7
.3
2

/
1
5
.7
4

D
es

k
27

.7
9

/
49

.0
6

17
.5

0
/

35
.3

2
21

.3
2

/
41

.4
9

1
6
.6
1

/
27

.8
4

16
.7

8
/
2
0
.5
2

D
re

ss
er

54
.4

5
/

56
.6

5
10

.3
8

/
26

.6
9

17
.6

4
/

22
.3

7
9.

74
/

20
.3

5
9
.4
3

/
1
5
.1
9

M
on

it
or

31
.8

3
/

50
.8

8
9.

93
/

26
.2

9
13

.0
8

/
20

.7
6

9.
09

/
20

.0
1

7
.9
1

/
1
5
.3
1

S
of

a
16

.5
9

/
50

.1
9

7.
07

/
23

.9
2

10
.1

0
/

16
.8

8
7.

64
/

20
.3

0
6
.1
1

/
1
2
.9
3

T
ab

le
22

.4
5

/
47

.8
8

7.
41

.
25

.5
1

9.
23

/
25

.7
4

7.
03

/
18

.3
6

5
.9
9

/
1
3
.5
5

T
oi

le
t

23
.2

9
/

49
.6

7
9.

88
/

31
.3

4
9.

89
/

30
.1

7
8.

96
/

27
.7

5
8
.0
4

/
1
6
.5
4

A
V
G
.

27
.1

4
/

49
.1

7
9.

22
/

27
.7

8
12

.3
8

/
26

.3
8

8.
94

/
21

.7
4

7
.9
7

/
1
5
.0
8

52

Figure 4.4. Qualitative comparison of competing methods on ModelNet. From left to right:
Input image, PSGN, FoldingNet, AtlasNet P32, TDPNet K8, Our method and Ground Truth.

53

Table 4.4. Performance comparison between baselines and our method on ShapeNet in the
multi-category setting. The results are organized in the same format as Table 4.3.

Airplane Chair Car AVG.

PGSN 17.85 / 36.99 24.08 / 43.96 20.83 / 48.06 21.47 / 43.01
FoldingNet 2.81 / 12.07 9.15 / 23.91 4.86 / 13.59 6.19 / 17.78

AtlasNet P32 2.81 / 13.46 8.72 / 32.69 5.10 / 12.62 6.11 / 22.07
TDPNet K8 2.51 / 11.43 8.59 / 20.01 5.41 / 12.23 6.04 / 15.57

L-SHAP (Ours) 2.43 / 11.33 8.25 / 19.86 4.51 / 11.96 5.54 / 15.44

Figure 4.5. Visualization of dense generation and sampled sparse point clouds. From left
to right: Input image, dense generation (10240 pts) and three sampled sparse point clouds
(2048 pts).

54

Figure 4.6. More qualitative results generated by our method. From top left to bottom right:
Airplane, Bathtub, Table and Chair.

of single-view point cloud reconstruction can be significantly improved by incorporating the

proposed learnable shape primitives.

4.2.4 Generating Dense Point Clouds

By incorporating continuous shape primitives, we gain the ability to generate dense point

clouds. In addition, instead of using a complex model like VAE (Kingma and Welling, 2013),

uniformly sampling points from the generated dense point cloud inherently offers multiple

sparse point clouds. This is a valuable property because of the ambiguity in single-view 3D

shape perception (Wu et al., 2018). Some examples of generated dense point cloud and a few

corresponding sparse point clouds are shown in Figure 4.5. Noted the difference between the

sparse point clouds, our method can generate multiple plausible point clouds from a single

image.

4.3 Ablation Studies and Discussion

In this section, we conduct more experiments to exam the effect of different types of shape prim-

itives, study the contribution of each primitive, and advise a more general high-dimensional

shape primitive.

55

Table 4.5. Chamfer Distance (x103) measured on multi-category ModelNet with different
“initial point set (transformation)”. “2D Fix” and “3D Fix” denote fixed points uniformly
sampled from unit square and unit cube, respectively.

Airplane Bathtub Chair AVG.

2D Square (Continuous) 5.56 7.23 7.32 7.97
2D Fix (Discrete) 5.47 7.42 7.45 7.73

3D Sphere (Continuous) 5.69 7.85 7.89 8.09
3D Gaussian (Continuous) 5.69 7.82 7.85 8.11

3D Fix (Discrete) 5.54 7.29 7.37 7.89

4.3.1 Continuous and Discrete Primitives

To investigate the influence of two proposed shape primitive transformations, we conduct

ablation experiments on ModelNet with different primitive configurations. The results are

reported in Table 4.5 and we observed that “2D Fix” and “3D Fix” surpass their competitors

in the same dimension. Therefore, discrete shape primitives would be a good choice if dense

point cloud reconstruction is not our primary goal. Interestingly, we found that increasing

the dimension of the initial point sets may even hrut the performance. One potential cause of

the downgraded performance is the property of the initial point set. Let’s consider a 3D E3d
init

(spherical surface) and a 2D E2d
init (unit square). E3d

init actually contains extra “curvature”

information, which might not be the desired one. Thus, maybe the neural network uses its

first layer to remove such curvature information and uses the rest layers to encode useful 3D

prior information. AtlasNet (Groueix et al., 2018) also observed the same phenomenon when

it trying to generate a high-resolution mesh: “The output quality depends on how well the

underlying surface can be represented by a sphere”.

4.3.2 Contribution of Shape Primitives

We then study how shape primitives contribute to the final results and Figure 4.8 visualizes

the primitives learned under the single category setting (Top) and the multiple category

setting (Bottom). Although it is hard for humans to interpolate what exactly do these

56

Figure 4.7. Visualizations of learned shape primitives (5 out of 8) for “airplane”. TOP:
primitives learned from ModelNet airplane. Bottom: primitives learned from all classes of
ModelNet.

Table 4.6. Chamfer Distance (x103) measured on the multi-category ModelNet with different
number of shape primitives K.

Airplane Bathtub Chair AVG.

K = 2 5.11 7.64 7.67 8.09
K = 4 5.10 7.47 7.52 8.05
K = 8 5.56 7.23 7.32 7.97
K = 16 5.52 7.19 7.27 7.92

primitives learned from the data, we observed that the multi-category shape primitives tend

to be more compact and diverse comparing to the single-category version. Potentially, this

might be the reason we got better performance in the ModelNet multi-category generation.

Please note that, the same shape primitive always contributes to the same component in the

output (e.g., cabin and tail), which indicates that they actually learned useful 3D information.

Finally, we examine how the number of primitives affects the performance and report the

results in Table 4.6. Notice how our approach generally improves as we increase the number

of shape primitives.

57

F
ig

u
re

4.
8.

C
on

tr
ib

u
ti

on
of

sh
ap

e
p

ri
m

it
iv

es
to

th
e

ge
n

er
at

ed
p

oi
n
t

cl
ou

d
.

T
op

:
co

n
tr

ib
u

ti
on

of
si

n
gl

e-
ca

te
go

ry
p

ri
m

it
iv

es
.

B
ot

to
m

:
co

n
tr

ib
u

ti
on

of
m

u
lt

i-
ca

te
go

ry
p

ri
m

it
iv

es
.

58

Table 4.7. CD (x103) measured on multi-category ModelNet with shape primitives in different
dimension.

Airplane Bathtub Chair AVG

D = 3 5.56 7.23 7.32 7.97
D = 10 5.40 7.06 6.98 7.84
D = 20 5.14 7.53 7.28 7.81

4.3.3 High-Dimensional Shape Primitives

Shape primitives are combined with image features to generate the final point clouds. There-

fore, they can be conceptually in a high-dimensional space as a trade-off between performance

and interpretability. Table 4.7 shows the performance of shape primitives in dimension 3,

10, and 20. In opposition to the initial point sets, we achieve better generation performance

by increasing the dimensionality. This observation suggests that higher-dimensional primi-

tives encode more complex 3D information and thus should be adopted for complex shapes.

Nevertheless, it’s noteworthy that this improvement diminishes for higher-dimensional space.

4.3.4 Discussion

In this chapter, we introduced a 3D-aware framework that generates point clouds from

an image through shape primitives. Instead of manually defining the structures of shape

primitives, our shape primitives are learned from data. Extensive experiments with different

configurations on different datasets demonstrate that our model outperforms other state-of-the-

art methods regarding quantitative metrics and visual quality. Moreover, we empirically study

the effect of high-dimensional primitives and different primitive transformations. Overall,

these observations demonstrate the effectiveness of our method and investigating the impact

of different parameterization of shape primitives could be an interesting research direction in

the future.

59

CHAPTER 5

GENERATING POINT CLOUD FROM SINGLE IMAGE IN THE

FEW SHOT SCENARIO 1

5.1 Approach

Previous point cloud generation frameworks (Fan et al., 2017; Yang et al., 2018; Groueix

et al., 2018; Lin et al., 2021) generally require heavy supervisions and thus less applicable by

considering the size and variety of point cloud datasets. As shown in Figure 5.1, abundant

training pairs are practically inaccessible, thus successfully generating point cloud in a few-shot

configuration is amenable to many real-world applications.

Interestinlgy, humans are able to solve this 3D reconstruction problem seamlessly. The

main reason is that people can accumulate and utilize prior knowledge about 3D shapes, even

from limited demonstrations. Based on these observations and recent advances of few-shot

learning (Vinyals et al., 2016; Snell et al., 2017), we suggest that single-view point cloud

reconstruction is of particular interest under the few-shot learning. To be more concrete, we

argue that point clouds can be reconstructed from a single image by considering a class-specific

prototype extracted from limited support samples, and class-agnostic shape primitives learned

from the training data.

In this chapter, we propose a novel few-shot single-view point cloud generation network

accompanied with a new training strategy, namely “episodic training”, to assist learning

from scarce data. We first assume that the 3D shape prior can be divided into two parts:

1) class-specific and 2) class-agnostic shape priors. The intuition behind this assumption is

straightforward: a 3D shape generally consists of class-specific shape elements (e.g., wings of

airplanes) and class-agnostic shape elements (e.g., legs of chairs and tables). Specifically, we

1This chapter contains material previously published as: Yu Lin, Jinghui Guo, Yang Gao, Yifan Li,
Zhuoyi Wang, and Latifur Khan. “Generating Point Cloud from Single Image in The Few Shot Scenario”. In
Proceedings of the 29th ACM International Conference on Multimedia, pp. 2834-2842. 2021

60

Figure 5.1. A high-level comparison between the classical problem setting (abundant training
pairs) and the few-shot setting (insufficient training instances).

model the class-specific shape prior as a latent vector computed from limited point clouds

of same class. Inspired by AtlasNet and its variants(Groueix et al., 2018; Deprelle et al.,

2019), we employ a collection of shape primitives, learned from the training data, to represent

class-agnostic shape priors. We then fuse the information from incoming images with both

shape priors to guide the point cloud generation process.

When it comes to novel classes, our model computes their class-specific shape priors “at

runtime” and utilizes the trained shape primitives, as class-agnostic shape priors, to reconstruct

the point clouds without additional retraining. We show that this boost reconstruction

performance significantly over state-of-the-art single-view point cloud reconstruction methods.

Comparing with conventional episodic training in the few-shot classification/segmentation,

61

our episodes are created in a “1-way-k-shot” fashion. We additionally introduce a novel “intra-

support” training procedure for each episode. Namely, the reconstruction loss is computed

on both the query and support sets. We empirically demonstrate that this operation would

benefit point cloud reconstructions, especially when the data is limited.

5.1.1 Framework Overview

Problem Setting

Let D =
⋃

c∈C{I
(c)
i , S

(c)
i }

Nc
i=1 be a collection of image-point-cloud pairs, where C is the set

of all classes, Nc denotes the number of image-point-cloud pairs belongs to class c, I
(c)
i and

S
(c)
i indicate the i-th image and point cloud in class c, respectively. A point cloud S is a

set of points {pj}Mj=1, where M means its cardinality and pi is a point in the 3D Euclidean

space with coordinate (xj, yj, zj). Follow the same protocol of previous chapters, we choose

M = 2048 in our experiments as it’s sufficient to preserve the major structure of a given 3D

object and requires reasonable computational resource (Awad and Khan, 2007; Chang et al.,

2015).

Our objective is to use D to train a model that consumes a view of 3D object and a set of

support point clouds to generate a point cloud of that 3D object. Following the convention

of FSL (Wallace and Hariharan, 2019), we split D into two disjoint sets Dbase and Dnovel,

Cbase and Cnovel are the classes in each set. The network are trained on Dbase and tested on

Dnovel. Please note that Cbase ∪ Cnovel = C and Cbase ∩ Cnovel = ∅. We further assume that

Dbase has abundant image-point-cloud pairs, whereas the number of paired data in Dnovel is

much smaller.

During the test phase, the model encounters image I(c
′) from novel classes c′ ∈ Cnovel

and builds class-specific shape prior from a minor support set. Our goal is to minimize

the distance between the synthesizations and corresponding ground truths measured by the

following famous metrics: Chamfer Distance (CD) and Earth Mover Distance (EMD). Recall

62

that their formulas are presented in Equation 3.2 and Equation 3.3, respectively. EMD favors

the shapes close to the ”mean-shape” of the given category (Fan et al., 2017). In contrast,

CD tends to cover all components while leading to a splashy shape that blurs the object’s

geometric structure.

Workflow

We employ a conventional encoder-decoder architecture with three different branches. As

Figure 5.2 presented, our framework contains four major components: a point cloud encoder

Encpc, a point cloud decoder Decpc, an image encoder Encimg, and a learnable shape primitive

(a transformable complex point distribution).

The image encoder Encimg, a VGG-16 pretrained model in this paper, takes a 2D image as

input and produces an informative latent representation. Following the “1-way-K-shot” FSL

configuration, we require K support point clouds {Si}Ki=1 to compute the class-specific shape

prior vector ζcs. Noted that we omitted the indicator of class, (c), because of the 1-way setting

and notation simplicity. We first use a pretrained point cloud encoder Encpc, e.g., PointNet

(Qi et al., 2017) or DGCNN (Wang et al., 2019), to compute the embedding of support point

clouds, {ei}K = {Encpc(Si)}K . We then apply a simple element-wise average operation on

these embeddings to get a “class-specific” shape prior vector. It’s worth highlighting that

such a shape prior is valuable in the few-shot reconstruction scenario because it preserves the

3D shape information from scarce novel class objects.

Nevertheless, a class-specific shape prior is insufficient for a realistic reconstruction. A

good generation framework should take both class-specific and class-agnostic shape priors

into consideration. Several manifold-based frameworks (Groueix et al., 2018; Yang et al.,

2018; Deprelle et al., 2019) model the shape information by transforming a simple distribution

to a complex and semantic meaningful distribution. Follow the same idea, we use the same

technique previously proposed in L-SHAP (see Chapter 4) and model the class-agnostic shape

63

F
ig

u
re

5.
2.

O
ve

rv
ie

w
of

ou
r

fr
am

ew
or

k
.

F
or

a
gi

ve
n

q
u

er
y

im
ag

e
I i

th
at

b
el

on
gs

to
cl

as
s
c′

(c
′

is
ai

rp
la

n
e

in
th

is
fi

gu
re

),
w

e
fi

rs
t

co
m

p
u

te
it

s
la

te
n
t

re
p

re
se

n
ta

ti
on

th
ro

u
gh

an
im

ag
e

en
co

d
er
E
n
c i
m
g
.

In
th

e
m

id
d

le
b

ra
n

ch
,

w
e

co
m

p
u

te
a

cl
a
ss
-s
pe
ci
fi
c

sh
ap

e
p

ri
or

ve
ct

or
b
y

av
er

ag
in

g
th

e
3D

fe
at

u
re

s
of

su
p

p
or

t
p

oi
n
t

cl
ou

d
s.

T
h

e
cl
a
ss
-a
gn

o
st
ic

sh
ap

e
p

ri
or

is
p

re
se

n
te

d
b
y

a
sh

ap
e

p
ri

m
it

iv
e,

w
h

ic
h

is
a

tr
an

sf
or

m
ed

co
m

p
le

x
p

oi
n
t

d
is

tr
ib

u
ti

on
.

F
in

al
ly

,
w

e
jo

in
tl

y
d

ec
o
d

e
th

e
la

te
n
t

im
ag

e
re

p
re

se
n
ta

ti
on

,
“c

la
ss

-s
p

ec
ifi

c”
sh

ap
e

ve
ct

or
an

d
“c

la
ss

-a
gn

os
ti

c”
sh

ap
e

p
ri

m
it

iv
e

on
to

th
e

ta
rg

et
p

oi
n
t

cl
ou

d
Ŝ

w
it

h
D
ec

p
c
.

C
h

am
fe

r
d

is
ta

n
ce

b
et

w
ee

n
Ŝ
i

an
d

co
rr

es
p

on
d

in
g

gr
ou

n
d

tr
u

th
S
i

is
co

m
p

u
te

d
d

u
ri

n
g

th
e

tr
ai

n
in

g.

64

prior by a complex point distribution. More precisely, we represent the shape prior by a pair

of initial point distribution O and a transformation function ψ(·) that maps O to a more

complex distribution. To the opposite of class-specific shape prior that is computed from

a set of support point clouds, the learnable shape primitive learns the common geometry

information across classes during the training.

Finally, a point cloud decoder, Decpc, consumes the image features, class-specific shape

priors and class-agnostic shape priors to generate a reconstructed 3D shape in the form of a

point cloud, Ŝi:

Ŝi = Decpc((Encimg(Ii)⊕ Vcs)⊙ ψ(O)) (5.1)

where ⊕ denotes the concatenation and ⊙ means the point endowment operation. We will

thoroughly discuss this operation in Section 5.1.2. Conceptually, the whole network can

be trained using either Eq 3.2 or 3.3 between reconstrcuted 3D shape Ŝ and corresponding

ground truth S.

This triple-branch architecture enjoys several advantages: (1) Retraining is not required

in the test phase because class-specific shape prior is computed from the support set. (2)

There is no schematic difference between the training (base classes) and the testing (novel

classes) (Masud et al., 2015; Michalkiewicz et al., 2020). Class-specific shape priors are

directly computed from the support set. (3) The performance of generation are significantly

improved by explicitly considering both class-specific and class-agnostic shape priors.

5.1.2 Class-specific and Class-agnostic 3D Shape Priors

In the section, we will introduce class-specific and class-agnostic shape priors in detail.

Class-specific Shape Priors

An RGB image solely contains deficient information for a complex 3D shape, especially in

an FSL scenario. To tackle this issue, 3D priors are introduced to compensate for such

65

F
ig

u
re

5.
3.

C
om

p
ar

is
on

of
th

re
e

d
iff

er
en

t
“c

la
ss

-s
p

ec
ifi

c”
sh

ap
e

p
ri

or
s.

(a
)

D
u

e
to

th
e

ir
re

gu
la

ri
ty

of
p

oi
n
t

cl
ou

d
s,

al
l

su
p

p
or

t
p

oi
n
t

cl
ou

d
s

ar
e

co
m

b
in

ed
in

to
a

d
en

se
on

e
in

th
e

or
ig

in
al

E
u

cl
id

ea
n

sp
ac

e.
(b

)
C

G
C

E
d

efi
n

es
N

le
ar

n
ab

le
co

d
eb

o
ok

s
an

d
co

m
p

u
te

th
e

at
te

n
ti

on
al

su
m

of
th

em
fo

r
ea

ch
cl

as
s.

(c
)

T
h

e
sh

ap
e

p
ri

or
is

co
m

p
u

te
d

b
y

av
er

ag
in

g
th

e
h

id
d

en
fe

at
u

re
s

of
su

p
p

or
t

p
oi

n
t

cl
ou

d
s.

B
y

se
p

ar
at

in
g

tw
o

ty
p

es
of

sh
ap

e
p

ri
or

s,
ou

r
m

et
h

o
d

off
er

s
a

m
or

e
m

ea
n

in
gf

u
l

sh
ap

e
p

ri
or

an
d

el
im

in
at

es
fi

n
et

u
n

in
g

in
th

e
te

st
p

h
as

e.

66

information loss. Preceding works (Wallace and Hariharan, 2019) show that a single “mean

shape” of several complex 3D shapes is a good approximation of the 3D shape prior. However,

this “mean shape” approach is infeasible in the point cloud domain because of the irregularity

of point cloud. Unlike voxel that a common template can be used to describe a shape (e.g., a

643 voxel grids), there is no point correspondence across different point clouds. Alternatively,

CGCE (Michalkiewicz et al., 2020) learns a few codebooks and build class-specific shape

prior via a SparseMax (Martins and Astudillo, 2016) attention layer. Disadvantages of this

approach are obvious: 1) the proposed codebooks lack interpretability, and 2) finetuning

on novel classes is mandatory, which is unacceptable in many applications. To mitigate

these issues, we propose to build the shape prior in a latent space and Figure 5.3 provides

the high-level comparison among these methods. It’s worth noting that an“mean-shape”

prior of point cloud (Wallace and Hariharan, 2019) in the original 3D Euclidean space is not

applicable due to the non-Euclidean property, thus we compute the element-wise average

of Epc as the class-specific shape prior, which is also known as class prototype (Snell et al.,

2017). Let {Si}K be the set of support entities, the class-specific shape prior vector Vcs is

formulated as:

Vcs =
1

K

K∑
i=1

ei =
1

K

K∑
i=1

Encpc(Si) (5.2)

Class-agnostic Shape Priors

Before diving into the class-agnostic shape prior, let’s first revisit two popular point cloud

decoder architectures in Figure 5.4. Most previous approaches (Abrol and Khan, 2010a; Fan

et al., 2017; Mandikal et al., 2018; Achlioptas et al., 2018; Chibane et al., 2020; Liu et al.,

2019) and two FSL methods (Wallace and Hariharan, 2019; Michalkiewicz et al., 2020) follow

the first schema, although the implementation of the decoder varies (e.g., MLP and GCN).

The major disadvantage of this approach is that the generated point cloud has a certain

amount of points, which suffers when more points are required. On the other hand, the point

67

Figure 5.4. Comparison of two decoding schema. Assume target shape has N points and α is
a latent vector. (a) directly maps α to a point cloud Ŝ. (b) samples N points from a point
distribution, endows each point with α (concatenate its coordinates and α), and transforms
the endowed point onto target point cloud Ŝ.

Figure 5.5. We employ M learnable primitives (M = 3). Decpc contains M sub-decoders

ϕm(·) and all outputs of them are collected onto Ŝ.

transformation methods (Yang et al., 2018; Groueix et al., 2018; Deprelle et al., 2019) are

able to generate as many points as demanded by sampling more points from the distribution.

Our decoder follows the second schema because of its flexibility and superior performance.

Moreover, we modified its architecture to store class-agnostic shape priors. Inspired by

68

FoldingNet (Yang et al., 2018) and AtlasNet (Groueix et al., 2018), we propose to encode

the shape prior by a set of learnable shape primitives (see Figure 5.5), each primitive is a

complex point distribution transformed from a simple one: {(x, y)|x ∼ U(0, 1), y ∼ U(0, 1)}.

With this configuration, each shape primitive stores part of the “class-agnostic” shape

information during the training and democratically contributes to the final output. Formally,

the generation process can be written as:

Ŝi = Decpc(α) =
M⋃

m=1

⋃
p∈Om

ϕm(ψm(p)⊕ α) (5.3)

where α is the concatenation of image feature and class-specific shape vector. ψm(·) and

ϕm(·) denote the transformation function and decode function for point distribution Om,

respectively.

5.1.3 Intra-Support Episodic Training

We start by showing how to build an episode and then discuss the benefits provided by this

training strategy. The episodes are built in a “1-way-k-shot” fashion (Fei-Fei et al., 2006).

We uniformly sample K and Q image-point-cloud pairs, without replacement, as the support

set and query set, respectively.

We choose episodic training due to the following reasons: (1) It guarantees the consistency

between the training phase and testing phase, which encourages the proposed framework

learning to extract discriminative information in a few-shot setting. Noted that previous

methods (Wallace and Hariharan, 2019; Michalkiewicz et al., 2020) assume plentiful training

data are available and compute shape prior from the whole training set, which introduce a

discrepancy between training and testing environments. (2) Since the episodes are randomly

sampled from data with significantly different configuration of support and query sets (e.g.,

data forming these sets vary from iteration to iteration), it requires the network to capture the

underlying shape concepts that are common among different episodes and different classes.

69

Algorithm 4: Episodic Training

input :A set of image-point-cloud pairs Dbase

1 for Number of training epochs do
2 for Number of training episodes do
3 Sample a training class from Cbase

4 C ← RANDOMSAMPLE(Cbase);
5 Sample K instances from class C
6 Sup← RANDOMSAMPLE(Dbase, C,K);
7 Sample Q instances from class C
8 Que← RANDOMSAMPLE(Dbase, C,Q);

9 Generate Ŝ for K +Q images with Equation 5.1;
10 Compute reconstruction loss with Equation 5.4;
11 Backward and update the network ;

12 end

13 end

We further introduce a novel intra-support augmentation to boost the training performance

by reconstructing point clouds in the support set. To be concrete, instead of computing the

reconstruction loss merely on the query instances, we expand the query set to includes images

from the support set, results in K +Q training pairs. The insight behind this operation is

straightforward yet intuitive. We should be able to reconstruct a complete 3D point cloud

from its own 3D feature and 2D projections by using our framework. This operation is highly

useful, especially when the support set and query set are small. Let Sup and Que be the

support and query set respectively, d(·, ·) denotes the distance function (Equation 3.2 or

Equation 3.3) and λ be the weight factor, our final objective is formulated as:

L = LQue + λLSup =
∑
Que

d(Ŝ, S) + λ
∑
Sup

d(Ŝ, S) (5.4)

The overall training procedure is illustrated in Algorithm 4.

70

5.2 Evaluation

The performance of the proposed method is evaluated both quantitatively and qualitatively.

We provide the results for both base classes and novel classes simultaneously. We also report

the model performance with different sizes of the support set. Moreover, ablation studies are

performed to analyze the contribution of each individual module to the model performance.

5.2.1 Experiment Setting

Two datasets, a subset of ModelNet (Wu et al., 2015) and a subset of ShapeNet (Chang et al.,

2015), are adopted for evaluations in our experiments. For each dataset, we selected five

categories as novel classes, Cnovel, and the rest categories are considered as base classes, Cbase.

Both Dbase and Dnovel are further split into train/test split in a 80/20 pattern. For each 3D

shape in the datasets, we render 12 views of it based on the Blinn-Phong shading formula

with black background. For each object, a single view image is uniformly sampled from its

12 2D-projections to form the training data. As suggested in previous literature (Abrol and

Khan, 2010b; Fan et al., 2017; Achlioptas et al., 2018), we evaluate the performance of our

model with Chamfer Distance (CD) and Earth Mover Distance (EMD).

We adapt a pretrained VGG-16 as the image encoder, where all layers except the last

three convolutional layers are freezed during training. The point cloud encoder has same

architecture as PointNet (Qi et al., 2017) and is trained from scratch. Our decoder contains

four learnable shape primitives. For each shape primitive, its transformation function ψ(·)

is implemented by a 2-128-128-3 MLP with ReLU non-linearities on the first two layers

and tanh on the last output layer. Each decode function ϕ(·) is implemented again by a

1539-769-384-3 MLP that uses ReLU activation in the first three layer and tanh in the last

layer. Both transformation function and decode function apply batch normalization in all

layers except the last one.

71

Before the training, we align the input point clouds to a common ground plane and

normalized all points into a unit ball. Data augmentation strategies like random rotation

and jitter are applied during the training. All the RGB images are center-cropped and resize

to 224× 224. To train our model, we use an ADAM optimizer with an initial learning rate of

10−3 and β = (0.9, 0.999). Each training epoch contains 100 episodes. A step learning rate

scheduler with γ = 0.5 is employed to decay the learning rate every 300 epochs. The model

is trained on a RTX Quardo 8000 GPU with 1000 epochs.

5.2.2 Baselines

We compare against several state-of-the-art (SOTA) baselines in the single-view point cloud

reconstruction domain. Specifically, we consider the zero-shot (ZS) and fine-tune (FT)

variants of three SOTA fully supervised single-view point cloud reconstruction methods and

two FSL 3D reconstruction methods.

• PSGN (Fully Supervised) (Fan et al., 2017): This is the first learning-based single

view point cloud reconstruction framework. It uses a hybrid decoder and is trained

with a MoN loss.

• AtlasNet (Fully Supervised) (Groueix et al., 2018): It’s a pioneer approach the

embraces the manifold assumption. It deforms multiple feature-endowed patches onto

the target’s surface.

• LMNet (Fully Supervised) (Mandikal et al., 2018): This approach applies the idea

of multi-modal fusion. It first train a point cloud auto-encoder and approximate the

trained point cloud encoder an image encoder.

• Wallece (FSL) (Wallace and Hariharan, 2019): It’s the first few-shot 3D reconstruction

framework. A shape prior (template) in the original 3D Euclidean space is obtained

from the support set and image features are used to refine the template.

72

• CGCE (FSL) (Michalkiewicz et al., 2020): This framework introduces a hierarchical

model of shape prior. The shape priors of novel classes are obtained by finetuning the

network on support instances.

To avoid the discrepancy caused by different image encoders, all image encoders in

baselines and our method are replaced by a pretrained VGG-16. Note that all layers except

the last three convolutional layers in VGG-16 are freezed during training. Moreover, since

both FSL methods target on voxel representation and use direct mapping schema, we switch

their voxel decoder with a LMNet point cloud decoder.

The ZS-baselines are solely trained on the dataset Dbase. These methods provide sorts of

performance lower bound on the novel classes since the model observes no data from novel

classes. On the other hand, the FT-baselines are pre-trained on the base classes Dbase and

fine-tuned on a small support set. Finetuning is a famous meta-learning strategy to reduce

the domain discrepancy, and we would like to study its performance in a few-shot scenario.

Compared with conventional funetine methods, FT-baselines are finetuned on an episodic

way. As we discussed in previous sections, each episode contains one test instance and a few

randomly sampled support instances. FT-baselines are finetuned on the support set and

evaluated on the query set. For a fair comparison, we choose K = 32 for the purpose of

finetuning, which is consistent with the largest number of shots in the few-shot setting.

5.2.3 Novel Classes Reconstruction

To evaluate the effectiveness of the proposed method, we first conduct the experiment with a

relatively large support set (K = 32), since the performance of ZS-baselines and FT-baselines

are nearly indistinguishable if the support set is too small. Table 5.1 and Tab 5.2 present

the Chamfer Distance (CD) and Earth Mover Distance (EMD) between the generated point

clouds and ground truth, respectively. It demonstrates that the proposed method consistently

achieves better CD in most categories for the novel classes reconstruction. It is also observed

73

T
ab

le
5.

1.
F

ew
-s

h
ot

si
n

gl
e-

v
ie

w
re

co
n

st
ru

ct
io

n
(3

2-
sh

ot
s

p
er

ca
te

go
ry

)
fo

r
b

ot
h

d
at

as
et

s.
W

e
re

p
or

t
th

e
C

h
am

fe
r

D
is

ta
n

ce
(C

D
)

of
ea

ch
fr

am
ew

or
k

an
d

th
e

va
lu

es
ar

e
m

u
lt

ip
li

ed
b
y

10
2

fo
r

b
et

te
r

v
is

u
al

iz
at

io
n

.
T

h
e

av
er

ag
e

p
er

fo
rm

an
ce

am
on

g
al

l
ca

te
go

ri
es

(p
er

d
at

as
et

)
is

sh
ow

n
in

ro
w

A
V

G
.

M
et

ri
c

is
co

m
p

u
te

d
on

20
48

p
oi

n
ts

an
d

b
es

t
re

su
lt

s
ar

e
b

ol
d

ed
.

C
a
te
g
o
ry

P
S
G
N

L
M

N
e
t

A
tl
a
sN

e
t

W
a
ll
a
ce

C
G
C
E

O
u
rs

Z
S

F
T

Z
S

F
T

Z
S

F
T

M
o
d
e
lN

e
t

B
ow

l
15

.0
6

14
.6

9
16

.5
3

15
.9

9
11

.3
3

11
.1

7
12

.9
0

2.
83

1
.9
8

C
u

p
10

.8
1

10
.6

3
9.

72
10

.2
1

7.
27

7.
44

16
.1

9
3.

10
2
.6
5

D
o
or

4.
49

4.
17

10
.9

4
9.

68
16

.6
8

10
.7

4
24

.2
9

3.
67

2
.4
1

K
ey

b
oa

rd
4.

13
3.

38
8.

84
9.

61
10

.7
7

10
.3

4
5.

56
3.

24
3
.1
8

L
ap

to
p

5.
13

4.
99

7.
88

6.
62

7.
09

6.
74

11
.8

5
1
.1
3

2.
01

A
V
G
.

7.
92

7.
57

10
.7

8
10

.4
2

10
.6

3
9.

29
14

.1
6

2.
79

2
.4
5

S
h
a
p
e
N
e
t

B
ow

l
12

.4
1

12
.7

9
5.

28
9.

19
10

.8
3

10
.8

3
8.

01
2
.6
7

4.
62

C
el

lp
h

on
e

3.
46

2.
09

8.
89

8.
70

26
.4

2
26

.1
1

12
.4

5
1.

73
1
.1
6

J
ar

13
.2

3
12

.2
5

6.
29

7.
07

16
.8

0
16

.5
9

14
.2

1
5.

81
5
.5
2

M
on

it
or

3.
52

3.
18

3.
61

6.
87

19
.6

5
19

.3
6

8.
20

3.
96

2
.4
9

M
u

g
15

.0
8

14
.0

1
3.

32
6.

96
9.

88
9.

64
11

.5
4

3.
43

2
.2
1

A
V
G
.

7.
38

6.
70

5.
26

7.
39

18
.7

7
18

.5
2

10
.6

5
3.

91
3
.1
3

74

T
ab

le
5.

2.
F

ew
-s

h
ot

si
n

gl
e-

v
ie

w
re

co
n

st
ru

ct
io

n
(3

2-
sh

ot
s

p
er

ca
te

go
ry

)
fo

r
b

ot
h

d
at

as
et

s.
W

e
re

p
or

t
th

e
E

ar
th

M
ov

er
D

is
ta

n
ce

(E
M

D
)

of
ea

ch
fr

am
ew

or
k

an
d

th
e

va
lu

es
ar

e
m

u
lt

ip
li

ed
b
y

10
2

fo
r

b
et

te
r

v
is

u
al

iz
at

io
n

.
T

h
e

av
er

ag
e

p
er

fo
rm

an
ce

am
on

g
al

l
ca

te
go

ri
es

(p
er

d
at

as
et

)
is

sh
ow

n
in

ro
w

A
V

G
.

M
et

ri
c

is
co

m
p

u
te

d
on

20
48

p
oi

n
ts

an
d

b
es

t
re

su
lt

s
ar

e
b

ol
d

ed
.

C
a
te
g
o
ry

P
S
G
N

L
M

N
e
t

A
tl
a
sN

e
t

W
a
ll
a
ce

C
G
C
E

O
u
rs

Z
S

F
T

Z
S

F
T

Z
S

F
T

M
o
d
e
lN

e
t

B
ow

l
63

.6
7

52
.1

1
8.

93
8.

51
36

.2
3

18
.3

7
8.

96
2.

95
1
.0
8

C
u

p
55

.8
7

33
.4

0
7.

46
7.

84
35

.0
3

19
.6

1
9.

79
4.

17
1
.4
2

D
o
or

53
.5

0
38

.1
1

10
.1

2
10

.1
0

38
.6

1
16

.5
3

14
.2

6
5.

84
2
.3
2

K
ey

b
oa

rd
46

.4
1

36
.6

2
7.

44
7.

69
36

.2
4

24
.1

6
7.

92
5.

36
2
.7
5

L
ap

to
p

45
.9

6
38

.6
5

5.
42

4.
53

29
.9

5
26

.1
1

7.
15

1.
99

1
.0
7

A
V
G
.

53
.0

8
39

.7
8

7.
87

7.
73

35
.2

1
20

.9
6

9.
62

4.
06

1
.7
3

S
h
a
p
e
N
e
t

B
ow

l
63

.1
4

46
.8

4
7.

91
5.

61
26

.0
1

21
.7

5
5.

08
3.

03
1
.1
0

C
el

lp
h

on
e

51
.0

3
30

.7
1

6.
49

8.
55

44
.3

0
16

.5
4

9.
70

4.
00

2
.5
7

J
ar

54
.6

2
40

.5
2

7.
42

6.
09

33
.0

4
20

.3
3

8.
94

6.
15

1
.9
3

M
on

it
or

50
.0

9
27

.9
4

6.
95

6.
69

33
.4

7
16

.4
8

6.
12

4.
44

1
.1
2

M
u

g
56

.9
9

49
.9

9
7.

33
4.

55
27

.0
5

15
.5

2
6.

31
3.

53
1
.7
9

A
V
G
.

52
.7

6
34

.4
5

7.
08

6.
62

34
.2

3
17

.7
2

7.
37

4.
62

1
.6
2

75

that the performance improvement offered by finetuning is limited in the few-shot setting.

For example, the average CD of ModelNet only reduced from 7.92 to 7.57 (10.78 to 10.42) by

finetuning the pretrained PSGN (LMNet). It shows that, on the other hand, our approach

consistently wins in a large margin.

Moreover, compared with to CGCE and our method, Wallace’s framework does not achieve

satisfying performance in these experiments, which shows that building class-specific shape

prior in the original space is not advisable in the point cloud domain. We also observed that

although both CGCE and our method build the shape priors in a latent space, our method

requires no finetuning in during the test phase and is able to achieve better scores in both

metrics. This phenomenon further demonstrates the effectiveness of separating class-specific

and class-agnostic shape priors.

We then study how the performance of our method and CGCE evolve as the support set

becomes bigger in Figure 5.6 and Figure 5.7. We observed that the average CD between the

ground truths and generated point clouds is large when the size of the support set is small,

especially when K = 1, which is known as the challenging one-shot problem. Notice how our

approach generally improves as we increase the number of support point clouds. We also

found that there is a sharp performance boost when the number of support point clouds is

increased from 1 to 4, or 4 to 8. However, the benefits offered by extra support data vanished

after 8-shots, indicated by the almost flatten lines after K = 8. Additionally, it is noteworthy

that CGCE may not work well in a low-shot scenario. For example, the one-shot CGCE got

75.83 (88.72) Chamfer Distance on bowl (door) and 42.34 (52.93) Earth Mover Distance on

cup (door), which exceed the scope of the line plots.

In contrast, our method conducts a good generation in the low-shot scenario. Additionally,

an example of qualitative result is presented in the top of Figure 5.8. It is observed that our

method can generate clear and realistic point clouds from novel classes in a few shot setting

(number of shots k = 16).

76

Figure 5.6. Model Performance of FPSG under different values of shots (K = 1, 4, 8, 16, 32)
measured on ModelNet. Left plot is for Chamfer Distance and right plot is for Earth Mover
Distance.

Figure 5.7. Model Performance of CGCE under different values of shots (K = 1, 4, 8, 16, 32)
measured on ModelNet. Left plot is for Chamfer Distance and right plot is for Earth Mover
Distance. Missing values are explained in the context.

77

Figure 5.8. Examples of generated point clouds with number of shots k = 16. Novel classes
are in the left (laptop, bowl and cup) and base classes are in the right (airplane, bathtub and
chair). For each side, from left to right are: input image, generated point cloud, and ground
truth.

Based on these experimental performances, we conclude that the quality of generated

point cloud, in the few-shot scenario, can be significantly improved by using the proposed

method.

5.2.4 Base Classes Reconstruction

Although our method focuses on the few-shot reconstruction problem, it would be ideal if

we can achieve reasonable reconstruction on the training classes comparing to the heavily

supervised methods. In this experiment, we ignore the novel classes Cnovel and focus on the

base classes Cbase. Specifically, we split the base classes into two subsets, Cbase−train and

Cbase−test, in a classical way (80/20 split). We use the same episodic training schema to train

the network on Cbase−train and tested it on the Cbase−test.

Since the training data is sufficient for the base classes, we reduce the number of shot

K from 32 to 16 in this experiment. Tab 5.3 shows the Chamfer Distance measured on a

78

Table 5.3. CD measured on a subset of ModelNet Cbase−test. Number of shots k = 16 and the
CDs are scaled by 102. Best results are bolded and the seconds are underlined.

PSGN LMNet AtlasNet Wallace CGCE Ours
Bathtub 4.48 4.34 1.62 5.59 2.53 1.96

Chair 2.31 2.64 1.41 10.43 3.15 1.70
Desk 2.78 3.73 2.13 6.46 3.36 2.51

Dressor 5.45 4.48 2.76 14.71 2.47 2.66
Sofa 1.66 2.52 1.01 3.73 1.41 1.01

Table 5.4. Ablation Study on ModelNet. a check mark means the corresponding component
is activated. Number of shots k = 32 and the CDs are scaled by 102.

intra-sup Vcs Vca Bowl Cup AVG.
V1 17.71 12.13 11.18

V2 ! 17.69 12.43 11.55

V3 ! - - -

V4 ! 10.14 7.01 8.98

V5 ! ! 3.13 4.10 3.97

V6 ! ! - - -

V7 ! ! 10.56 6.99 9.02

V8 ! ! ! 1.98 2.65 2.45

subset of the ModelNet training (base) classes. It’s worth noting that the CD scores of the

training classes is much smaller comparing to the novel classes, which proved the effectiveness

of the three fully supervised methods. Although we cannot achieve the same performance as

AtlasNet does, our method still obtain reasonable scores and outperformed other baselines.

Some qualitative examples of base classes are presented on the right of Figure 5.8. We

discover that our method is able to generate sharp-looking point clouds of base classes.

5.3 Ablation Studies and Discussion

We further conduct an ablation study on the proposed method to inspect the contribution of

each component.

79

5.3.1 Contribution of Components

Specifically, we evaluate the model performance on the same dataset by alternatively activating

network components: intra-support training, class-specific and class-agnostic shape prior

(denoted by Vcs and Vca, respectively). Table 5.4 presents the Chamfer Distance measured

on ModelNet. As expected, image-only model (V1) performs worst among these variants.

Additionally, we observed that the model will not converge if we adopt Vcs without intra-

support training. (CD is more than 200 and thus are omitted).

5.3.2 Discussion

In this chapter, we introduce a novel triple-branch framework to solve the few-shot single-view

point cloud generation problem. We address the few-shot problem by building class-specific

shape priors from the support set, modeling class-agnostic shape priors with learnable shape

primitives, and decoding the latent vector with a point transformation decoder. In addition,

we introduce an episodic training strategy equipped with intra-support augmentation, which

avoids finetuning and eliminates the schematic difference between training and testing.

Compared to previous fully-supervised methods, we empirically identify that the proposed

framework is able to generate a realistic point cloud in the few-shot configuration. Moreover,

the proposed framework could also achieve reasonable reconstruction performance in the base

classes. Finally, we conclude that combing a metric-space-based network with category-specific

shape priors could be an interesting research direction in the future.

80

CHAPTER 6

ATTENTIONAL FOLDING-BASED POINT CLOUD GENERATION WITH

LOCAL SEMANTIC CONSISTENCY

6.1 Approach

In the previous chapters, we focus on the 3D prior knowledge learning and the fusion of

features from different domains. In addition to these aspects, the design of the decoder

architecture also plays a crucial role for a realistic point cloud generation. Pioneers (Fan et al.,

2017; Achlioptas et al., 2018) in this direction adopt vanilla fully connected layers to generate

coarse point clouds. However, they inevitably suffer from the scalable issue due to the

magnitude of network parameters and convergence speed. To reduce the number of network

parameters and generate smoother and denser point clouds, several methods (Yang et al.,

2018; Groueix et al., 2018; Deprelle et al., 2019; Lin et al., 2021) embrace the idea of manifold

deformation and deform single or multiple canonical 2D grids onto the target surface. We call

these models as “folding-based” methods. Generally speaking, these methods approximate

the deform function through a shared Multi-Layer Perceptrons (MLP), which dramatically

reduces the number of network parameters. However, as shown in Figure 6.1, such design also

brings two major limitations: 1) The latent features are combined with the source surface in

a brute-force manner, e.g., concatenation, which increases the difficulty of training and thus

limits the network’s modeling capability; 2) Such network design unconsciously ignores the

spatial interactions between each point during the generation process, leading to undesired

over-complicated components.

In this chapter, we propose a novel attentional point cloud generation framework to

circumvent aforemetioned issues. We have made improvements from two aspects: point

cloud decoder and loss function. First, we design our point cloud decoder by following the

same principle of TRANSFORMER (Vaswani et al., 2017). Compared with “shared-MLP”

81

Sh
ar

ed
-M

LP

A
tte

nt
io
na

l
O
pe

ra
to
r

D
is

ta
nt

 P
oi

nt
s

Fo
ld

in
g

M
od

ul
e

Fr
on

t V
ie

w
En

d
Vi

ew

So
ur

ce
 S

ur
fa

ce

Ta
rg

et
 C

om
po

ne
nt

La
te

nt
 F

ea
tu

re
s

F
ig

u
re

6.
1.

T
h

e
so

u
rc

e
su

rf
ac

e
is

co
m

b
in

ed
w

it
h

in
co

m
in

g
la

te
n
t

fe
at

u
re

s
an

d
tr

an
sf

or
m

ed
on

to
th

e
ta

rg
et

co
m

p
on

en
t

th
ro

u
gh

a
fo

ld
in

g
m

o
d

u
le

.
Id

ea
ll

y,
d

iff
er

en
t

re
gi

on
s

of
th

e
so

u
rc

e
2-

m
an

if
ol

d
sh

ou
ld

b
e

d
ef

or
m

ed
on

to
d

iff
er

en
t

ar
ea

s
of

th
e

ta
rg

et
co

m
p

on
en

t.
C

on
ve

n
ti

on
al

fo
ld

in
g

m
o
d

u
le

(s
h

ar
ed

-M
L

P
)

m
ig

h
t

co
n

d
u

ct
th

e
d

ef
or

m
at

io
n

in
an

u
n

d
es

ir
ed

w
ay

b
ec

au
se

of
th

e
n

eg
li

ge
n

ce
of

su
rf

ac
es

’
gl

ob
al

st
ru

ct
u

re
.

O
n

th
e

ot
h

er
h

an
d

,
th

e
p

ro
p

os
ed

op
er

at
or

ta
ck

le
s

th
is

is
su

b
y

at
te

n
ti

on
al

ly
co

n
si

d
er

in
g

su
ch

in
fo

rm
at

io
n

d
u

ri
n

g
th

e
ge

n
er

at
io

n
.

82

methods that only consider limited local structure around each point, our decoder applies

the self-attention mechanism to simultaneously consider the input latent features and the

source surface’s global context.

Furthermore, we observe that existing point-wise loss function, e.g., Chamfer Distance

(CD) or Earth Mover Distance (EMD), cannot faithfully reflect the quality of the generated

point clouds (Achlioptas et al., 2018; Lin et al., 2021). We propose a semantic consistency

regularizer to address such problem. Specifically, we use a pretrained point cloud feature

extractor (e.g., PointNet++ (Qi et al., 2017) or DGCNN (Wang et al., 2019)) to compute the

latent features of each generated point and ground truth point. We then conduct an optional

sampling process on the generated point cloud to get a small set of target points. For each

sampled target point, we compute its corresponding ground truth point via CD or EMD,

and calculate the semantic distance between them. Compared to previous researches, our

approach considers the global structure of source 2-manifolds during the generation process

and avoids the semantic inconsistency induced by Euclidean distance-based loss function.

Let’s start with some preliminaries about the folding-based methods and the workflow.

We will then dive into two proposed components: 1) Attentional Folding Module, and 2)

Local Semantic Consistency in detail.

6.1.1 Preliminary

Manifold deformation provides the theoretical guarantee for folding-based methods regarding

point cloud generation. Following the convention of pioneer (Yang et al., 2018), a point cloud

can be considered as a sampled discrete subset from the target object’s surface. Folding-

based methods thus convert the problem to a surface generation problem, which is solved

by approximating a diffeomophism Ψ∗ between source surface and target surface with a

parametric transformation Ψ. Notably, state-of-the-art methods (Groueix et al., 2018; Deprelle

et al., 2019; Lin et al., 2021) further boost the performance by decomposing the 3D object

83

into a set of small surfaces, each having a separate transformation function. With such

configuration, we formulate the output point cloud Ygen as the union of all transformed point

sets.

Ygen =
K⋃
k=1

⋃
e∈Pk

Ψk(e) (6.1)

where K is the number of patches, Pk and Ψk are the k-th patch and transformation,

respectively. e ∈ Pk denotes a point sampled from patch Pk.

6.1.2 Framework Overview

In this paper, we aim to generate a complete point cloud from a given source through an

attentional folding-based operation. Let D = {X(i), Y
(i)
gt }Mi=1 be the paired dataset, where M

denotes the cardinality of this dataset, X(i) and Y
(i)
gt indicate i-th source object and point

cloud, respectively. Although a point cloud can conceptually contain infinite points, we set

∥Ygt∥ = 2048 points in this paper to balance between the expressiveness and computational

cost (Lin et al., 2021).

As shown in Figure 6.2, we first compute the latent features of a task-specific object

X. For instance, if X denotes a 2D image, the task becomes single-view generation; if X

represents a point cloud, the task becomes point cloud self-reconstruction; if X merely denotes

a partial point cloud, the task becomes point cloud completion. Assume the target point

cloud has kn points and the network equips k patches. For each patch, we feed n sampled

grids and the latent features to an AFM and collect all the output to form the final point

cloud.

The primary component of the loss function is a point-wise Euclidean distance: CD or

EMD (Achlioptas et al., 2018). Noted that we formally defined these two losses before and

revisit them here for simplicity.

LCD =
∑

x∈Ygen

min
x′∈Ygt

∥x− x′∥22 +
∑
x′∈Ygt

min
x∈Ygen

∥x′ − x∥22 (6.2)

84

LEMD = min
ϕ:Ygen→Ygt

∑
x∈Ygt

∥x− ϕ(x)∥2 (6.3)

where ϕ : Ygen → Ygt is a bijection. However, Euclidean distance-based loss alone cannot

guarantee a realistic generation (Wu et al., 2018). Therefore we propose to add a novel Local

Semantic Consistency (LSC) regularizer. Specifically, we sample m points from Ygen and find

their closet point in Ygt via the aforementioned Euclidean metrics. The latent representations

of these points are computed via a pre-trained encoder Epc and the semantic consistency is

measured by L2 distance.

LSemantic =
1

|Y ′
gen|

∑
x∈Y ′

gen

∥Epc(x)− Epc(x
′)∥22 (6.4)

where Y ′
gen ⊆ Ygen is a sampled subset of the generated point cloud Ygen. Let λ be a weighting

factor, the total loss is formulated as:

Ltotal = LCD/EMD + λ · LSemantic (6.5)

6.1.3 Attentional Folding Module

We devise the Attentional-Folding-Module (AFM) to consider the global context information

of each patch during the surface transformation process.

As shown in Figure 6.3, we can observe that the FC-based methods have no surface/grid

structure and purely depend on the latent features. In contrast, the conventional folding-

based methods adopt a shared-MLP component and merely considers limited local signal

and ignores the global structure of source surface. In contrast, our AFM is able to jointly

consider the latent features as well as surface’s global context during decoding.

Let Din = Esrc(X) be the latent features and all source surfaces {P}Ki=1 are 2D unit

squares. To generate a point cloud Ygen with N ·K points, we first uniformly sample N grids

from each patch Pi. Following the same principle in (Vaswani et al., 2017), we map Din and

85

La
te

nt
 F

ea
tu

re
s

...

...

sh
ar

ed

Po
in

t C
lo

ud
 D

ec
od

er

O
pt

io
na

l
Sa

m
pl

in
g

F
ig

u
re

6.
2.

O
ve

rv
ie

w
.

A
n

so
u

rc
e

en
co

d
er
E

sr
c

fi
rs

t
ex

tr
ac

ts
th

e
la

te
n
t

fe
at

u
re

s
of

in
p

u
t
X

.
N

ot
ed

th
at
X

is
a

2D
im

ag
e

in
th

is
p

lo
t

fo
r

d
em

on
st

ra
ti

on
p

u
rp

os
e.

T
h

es
e

fe
at

u
re

s
ar

e
fe

ed
in

to
a

p
oi

n
t

cl
ou

d
d

ec
o
d

er
,

w
h

ic
h

co
n
ta

in
s

m
u

lt
ip

le
p

ro
p

os
ed

A
tt

en
ti

on
al

F
ol

d
in

g
M

o
d

u
le

(A
F

M
).

W
e

th
en

co
ll

ec
t

al
l

p
oi

n
ts

ge
n

er
at

ed
b
y

ea
ch

m
o
d

u
le

to
fo

rm
th

e
fi

n
al

ou
tp

u
t
Y
g
en

.
In

ad
d

it
io

n
to

th
e

co
n
ve

n
ti

on
al

E
u

cl
id

ea
n

sp
ac

e
p

oi
n
t-

w
is

e
lo

ss
(C

D
/E

M
D

),
w

e
fu

rt
h

er
en

fo
rc

e
a

se
m

an
ti

c
co

n
si

st
en

cy
re

gu
la

ri
za

ti
on

,
L
se
m
a
n
ti
c

,
u

p
on

m
sa

m
p

le
d

p
oi

n
ts

.

86

Latent Features

(a) FC-based
Latent Features

(b) Shared-MLP Folding

(c) Attentional Folding

Sample pts from

Shared-MLP

Latent Features

Sample pts from

T

Source Surface

Figure 6.3. Comparison of different point cloud decoders’ architecture. For simplicity,
folding-based methods (b and c) have 1 patch and the purple blocks in c denote different
shared-MLPs.

the sampled grids into the same hidden space and sum them up as the fused features. Let

87

fi(·) and gi(·) be the i-th mapping functions of Din and sampled grids, respectively. The

combined features are computed by:

D′
i =

⋃
e∈Pi

fi(Din) + gi(e) (6.6)

where f(·) and g(·) are the mapping functions, implemented by simple MLPs, for Din and

sampled grids, respectively.

In order to leverage the global surface context and still preserve the permutation invariant

property, we adopt the self-attention mechanism to compute an attention weight of each point

during the generation. Specifically, we generate Q, K, V matrices by feeding D′
i ∈ RN×da into

different shared-Linear transformation.

Qi, Ki, Vi = D′
i · (W i

q ,W
i
k,W

i
v)

Qi, Ki ∈ RN×db , Vi ∈ RN×da

W i
q ,W

i
k ∈ Rda×db ,W i

v ∈ Rda×da

(6.7)

where W i
q,k,v are the parameter matrices for i-th patch, db and da are the dimension of the

KQ and V vectors, respectively. We then compute the attention score via:

Attn(Qi, Ki, Vi) = softmax(
QiK

T
i√

db
)Vi (6.8)

These attention scores are further combined with the input D′
i and the result matrix is

feed into another simple MLP h(i·) to generate the final point sets. Therefore, Eq 6.1 can be

expanded as:

Ygen =
K⋃
i=1

hi(Attn(Qi, Ki, Vi) +D′) (6.9)

In addition, we can conceptually stack multiple AFMs by taking the previous block’s

output as new source surface and repeatedly injecting Din. Nevertheless, the improvement

brought by stacking multiple AFMs is empirically marginal.

88

(a1) (b1)(a2) (b2)

Figure 6.4. (a1, b1) Red points are ground truth and blue points are generated. (a2, b2)
The local structure around the yellow point.

6.1.4 Local Semantic Consistency

The point-wise Euclidean distance cannot faithfully reflect the quality of the generated

point cloud (Achlioptas et al., 2018). For example, a1 and b1 in Figure 6.4 share the same

CD/EMD, yet they represent very different shapes. Therefore, optimizing the network with

only point-wise Euclidean distance may lead to sub-optimal solution that achieves good

numerical results and unsatisfactory visual quality.

We propose a LSC regularizer to tackle this problem by considering the local structure

around selected points (e.g., the yellow point in a2 and b2). Noted that the pretrained point

cloud encoder must be a convolutional one (e.g., DGCNN (Wang et al., 2019)), otherwise the

ambient signal around each point is ignored. Furthermore, we can compute the LSC upon a

subset of the point cloud by applying an optional sampling process (e.g., random sampling

and/or farthest point sampling (Fan et al., 2017)). Empirically, using more than 20% points

provides similar results and computing LSC globally may even hurt the model’s performance.

6.2 Evaluation

We quantitatively and qualitatively evaluate our approach on two challenging tasks: 1) point

cloud self-reconstruction and 2) single-view point cloud generation.

89

6.2.1 Datasets and Baselines

For the self-reconstruction task, we evaluate our method on PointDA (Qin et al., 2019)

dataset, which consists of 10 common categories among three famous datasets: ModelNet

(Wu et al., 2015), ShapeNet (Chang et al., 2015) and ScanNet (Dai et al., 2017). On the other

hand, we adopt 3 categories from the original ModelNet to conduct single-view reconstruction.

Follow the same protocol of TDPNet (Lin et al., 2021), we create 12 rendered views by

uniformly placing 12 virtual cameras around each CAD model and randomly choose one view

as the input RGB image.

All the experiments are trained for 200 epochs with a batch size of 32, using an ADAM

optimizer with an initial learning rate of 10−3 and β = {0.9, 0.999}. For a fair comparison,

we choose both Chamfer Distance and Earth Mover Distance to quantitatively evaluate the

performance of all methods.

6.2.2 Point Cloud Self-Reconstruction

We first evaluate our method through a self-reconstruction task. Following SOTA approaches

are selected as the baselines: 1) PointFCAE, a simple autoencoder with a MLP decoder;

2) FoldingNet (Yang et al., 2018), which generates point clouds via two consecutive folding

operations; 3) AtlasNet (Groueix et al., 2018), which deforms multiple 2D patches onto

the target’s surface (We adopt 32 patches in the experiment). Noted that all the methods

adopt a PointNet (Qi et al., 2017) as their point cloud encoder in this experiment. To better

compare with FoldingNet and AtlasNet, we trained our model in two configurations : 1 patch

(AttnFold P1) and 32 patches (AttnFold P32).

Table 6.1, Table 6.2, and Table 6.3 present the full results on ModelNet, ShapeNet, and

ScanNet self reconstruction, respectively. Although our method does not win every classes, we

observed that our model generally outperforms all baselines in term of average performance.

In particular, our method is more advantageous regarding EMD without even explicitly

90

Table 6.1. Quantitative comparison between our method and existing SOTA approaches
on ModelNet self reconstruction task. The results of each framework are in the format of
CD (x103) / EMD (x102) for better visualization. Column AVG represents the average
performance among all categories. All numbers are obtained from point clouds with 2048
points. AttnFold P1 and AttnFold P32 denote the proposed method trained with 1 patch
and 32 patches, respectively. The best results are highlighted in bold and the second bests
are highlighted by an underline.

PointFCAE FoldingNet AtlasNet P32 AttnFold P1 AttnFold P32
Bathtub 9.94 / 20.22 10.06 / 40.31 3.54 / 5.35 6.92 / 13.61 3.38 / 3.60

Bed 7.13 / 17.98 6.61 / 36.80 3.01 / 3.78 4.85 / 10.32 2.88 / 3.08
Bookshelf 7.77 / 16.71 6.75 / 36.23 3.92 / 4.60 5.49 / 15.06 3.94 / 3.96
Cabinet 13.38 / 18.09 11.15 / 42.61 3.95 / 5.01 8.22 / 18.81 3.75 / 3.74
Chair 10.38 / 16.65 11.80 / 32.16 3.04 / 5.04 8.22 / 15.80 3.12 / 3.14
Lamp 29.73 / 28.24 26.89 / 41.02 6.30 / 12.68 17.16 / 21.62 6.74 / 13.93

Monitor 7.88 / 20.29 9.27 / 22.04 3.09 / 4.79 5.71 / 9.49 2.99 / 3.70
Plant 10.89 / 16.25 14.08 / 26.69 5.81 / 5.98 10.37 / 14.09 5.72 / 4.42
Sofa 8.07 / 22.37 8.22 / 36.92 3.81 / 4.23 5.38 / 13.41 3.22 / 3.70

Table 11.85 / 20.90 14.06 / 38.25 2.34 / 6.12 7.32 / 15.60 2.59 / 6.38
AVG 10.18 / 18.82 10.62 / 33.87 3.68 / 5.31 7.17 / 14.14 3.59 / 4.81

Table 6.2. Quantitative comparison between our method and existing SOTA approaches
on ShapeNet self reconstruction task. The results of each framework are in the format of
CD (x103) / EMD (x102) for better visualization. Column AVG represents the average
performance among all categories. All numbers are obtained from point clouds with 2048
points. AttnFold P1 and AttnFold P32 denote the proposed method trained with 1 patch
and 32 patches, respectively. The best results are highlighted in bold and the second bests
are highlighted by an underline.

PointFCAE FoldingNet AtlasNet P32 AttnFold P1 AttnFold P32
Bathtub 6.54 / 16.46 4.27 / 9.43 3.84 / 7.98 4.06 / 8.29 2.89 / 7.87

Bed 8.17 / 15.95 5.29 / 9.46 3.06 / 6.24 5.48 / 9.50 3.60 / 7.91
Bookshelf 4.46 / 14.90 3.56 / 7.37 2.70 / 5.86 3.71 / 8.69 2.99 / 6.70
Cabinet 4.18 / 15.05 3.13 / 6.44 2.47 / 5.91 3.25 / 6.11 2.65 / 6.28
Chair 5.33 / 12.18 4.28 / 7.99 2.70 / 5.23 4.07 / 8.29 2.36 / 5.77
Lamp 6.08 / 11.88 3.80 / 8.76 2.69 / 5.54 3.80 / 8.69 2.16 / 7.24

Monitor 4.11 / 13.91 2.98 / 7.67 3.09 / 5.65 2.97 / 6.72 2.02 / 6.62
Plant 5.62 / 9.28 4.95 / 6.19 2.79 / 3.96 4.81 / 5.91 3.31 / 4.42
Sofa 5.14 / 15.38 3.62 / 8.03 2.09 / 14.01 3.50 / 7.51 2.65 / 6.36

Table 6.39 / 14.29 3.78 / 9.17 1.91 / 5.87 3.72 / 8.70 2.04 / 6.64
AVG 6.05 / 13.77 3.86 / 8.40 3.37 / 7.06 3.77 / 8.13 2.33 / 6.45

91

Table 6.3. Quantitative comparison between our method and existing SOTA approaches
on ScanNet self reconstruction task. The results of each framework are in the format of
CD (x103) / EMD (x102) for better visualization. Column AVG represents the average
performance among all categories. All numbers are obtained from point clouds with 2048
points. AttnFold P1 and AttnFold P32 denote the proposed method trained with 1 patch
and 32 patches, respectively. The best results are highlighted in bold and the second bests
are highlighted by an underline.

PointFCAE FoldingNet AtlasNet P32 AttnFold P1 AttnFold P32
Bathtub 13.54 / 31.74 30.20 / 29.79 3.21 / 17.71 8.23 / 28.71 3.40 / 11.72

Bed 12.70 / 29.86 25.88 / 29.90 3.03 / 15.29 6.43 / 24.30 3.11 / 10.15
Bookshelf 12.42 / 27.26 27.71 / 23.84 4.05 / 14.88 7.01 / 22.04 4.11 / 10.33
Cabinet 15.34 / 28.37 34.52 / 23.10 3.17 / 15.59 6.32 / 24.31 3.32 / 10.91
Chair 15.93 / 29.93 33.89 / 27.81 3.75 / 15.93 7.97 / 25.78 3.75 / 10.34
Lamp 17.83 / 32.21 38.48 / 27.71 4.31 / 17.39 9.69 / 27.72 4.68 / 12.27

Monitor 12.86 / 28.26 32.89 / 25.87 3.13 / 14.90 5.81 / 21.63 3.42 / 10.01
Plant 13.62 / 22.89 29.55 / 22.54 4.86 / 11.82 8.45 / 19.60 4.97 / 7.73
Sofa 13.46 / 22.80 26.69 / 28.89 3.63 / 15.97 7.20 / 24.77 3.69 / 10.53

Table 12.71 / 31.43 30.28 / 30.44 3.27 / 16.99 5.97 / 26.04 3.05 / 12.19
AVG 14.68 / 29.71 31.84 / 27.45 3.60 / 15.93 7.24 / 25.01 3.69 / 10.72

optimizing it. For example, we are able to reduce EMD from the second best 5.31 to 4.81 on

ModelNet dataset. Moreover, look at the performance of FoldingNet and AttnFold P1, we

further conclude that employing an attentional folding operator not only reduces model size,

but also achieves better performance.

The qualitative results in Figure 6.5 further demonstrates the perceptual advantage of our

method. In comparison, our method is able to generate more realistic and smoother point

cloud whereas other methods are prone to generate sparse and blurry results. Specifically,

PointFCAE and FoldingNet fail to generate a complete shape and AtlasNet tends to provide

round and blurry borderlines (e.g., bed head)

6.2.3 Single-View Point Cloud Reconstruction

As an advanced folding module, our framework is capable of solving a more challenging

sing-view point cloud reconstruction problem, whose input is a single 2D image. For the

92

Input
(Ground Truth) PointFCAE FoldingNet AtlasNet Ours

Figure 6.5. Qualitative comparison on ModelNet self-reconstruction. From top to bottom:
Bed, Lamp, Sofa, Table, Bathtub, and Chair.

FC-absed baselines, we replace PointFCAE with a more sophisticate framework, PSGN (Fan

et al., 2017), that achieves better reconstruction by adopting a de-convolutional branch. To

93

Table 6.4. Quantitative comparison of single-view reconstruction on 3 categories of ModelNet.
Results are reported in the format of CD (x103) / EMD (x102). Best results are bolded.

Airplane Bed Chair
PSGN 6.12 / 20.89 10.42 / 27.05 14.07 / 24.98

FoldingNet 6.03 / 11.36 8.58 / 7.74 9.30 / 23.76
AtlasNet 5.46 / 9.69 7.54 / 6.97 8.89 / 8.67

AttnFold P32 4.93 / 8.28 6.29 / 4.63 7.25 / 6.88

Input PSGN FoldingNet AtlasNet Ours GT

Figure 6.6. Qualitative comparison on ModelNet single-view reconstruction. Top: airplane.
Bottom: chair.

avoid the discrepancy caused by image encoder, a pretrained ResNet-18 (He et al., 2016) is

adopted as the feature extractor.

Table 6.4 shows the performance of competing methods on three categories of ModelNet:

airplane, bed, and chair. We found that our method outperforms all baselines regarding CD

and EMD in a large margin. Moreover, Figure 6.6 presents a visual comparison among all

competitors. It’s interesting to see that our method tends to focus on the main component

of the target shape, provides a smoother surface (e.g., airplane body and chair back), and

ignores distant fine-grain details (e.g., airplane tail). Considering the difficulty of single-view

reconstruction, we conclude that our method achieves better performance, although it’s still

far from real-world applications.

94

(a) (b)

Figure 6.7. Samples of failure cases on ModelNet self-reconstruction task. Ygt and Ygen denote
ground truth and the generated point cloud, respectively. Left: plant. Right: lamp.

Table 6.5. ModelNet self-reconstruction performance upon different number of patches.
Results share the same format in Table 6.4

Bathtub Chair Monitor Table Avg

P=1 6.92 / 13.16 8.22 / 15.80 5.71 / 9.49 7.32 / 15.60 7.17 / 14.14
P=4 4.83 / 10.58 4.87 / 8.01 4.07 / 6.91 4.13 / 8.71 4.97 / 6.92
P=8 4.20 / 7.22 4.03 / 7.94 3.68 / 5.75 3.05 / 8.40 4.31 / 6.63
P=16 3.62 / 4.55 3.36 / 5.11 3.13 / 4.74 2.75 / 7.23 3.76 / 5.36
P=32 3.38 / 3.60 3.12 / 3.14 2.99 / 3.70 2.59 / 6.38 3.59 / 4.81

6.3 Ablation Studies and Discussion

In this section, we will first verify the effectiveness of the proposed method under various

network architectures. Later, ablation experiments are conducted to investigate the impact

of LSC regularizer hyper-parameters. Finally, we will present some failure cases and discuss

the method’s limitation.

6.3.1 Network Architectures

Table 6.5 reports the ModelNet self-reconstruction performance regarding different number

of patches. As exploited in previous literatures (Groueix et al., 2018; Lin et al., 2021), we

observed the same pattern that increasing the number of patches gradually improves the

model performance and the benefits diminished on large patch numbers. Moreover, such

observation shows that the proposed method is applicable to various network architectures.

95

Table 6.6. Average self-reconstruction performance on ModelNet with different values of LSC
weight factor λ (Equation 6.5). CD and EMD are multiplied by 102 and 103, respectively.

λ = 0.0 0.1 0.5 1.0 2.0 5.0

AVG
CD 3.73 3.81 3.68 3.59 3.88 4.60

EMD 5.17 5.99 5.13 4.81 4.81 5.03

Table 6.7. Average self-reconstruction performance on ModelNet with different number of
sampling points ρ. Same format as Table 6.6

ρ = 0 200 400 800 1600 2048

AVG
CD 3.74 3.59 3.65 3.65 3.71 3.85

EMD 5.19 4.81 4.80 4.84 5.33 5.42

6.3.2 Impact of Hyper-parameters

We then study how different hyper-parameters affect the training outcome. Specifically, we

played with following hyper-parameters: 1) λ, the weight factor of LSC regularizer and 2)

ρ, the number of points to be sampled in the LSC calculation. In order to conduct a fair

comparison, we set λ = 1.0 when tuning ρ and set ρ = 200 when tuning λ.

Table 6.6 and Table 6.7 present the model performance on different λ and ρ, respectively.

Interestingly, we observed that increasing the weight of LSC does not always lead to better

results. For example, both CD and EMD start to fall after λ = 1.0. On the other hand, the

number of sampling point ρ tend to provide a more robust improvement when ρ ∈ [200, 800].

Nevertheless, adopting a very large ρ will also slightly downgrade the performance.

6.3.3 Failure Cases and Limitations

Figure 6.7 shows two typical failure cases of our method. As we can see, the proposed

method is unable to generate some shapes with asymmetric (plant) and thin structures (lamp)

correctly. We believe this phenomenon is potentially caused by the continuity of source

surfaces, which might be alleviated by using a more flexible and discrete topological object.

96

Moreover, another limitation of the proposed method is its sensitivity to the selection of

hyper-parameters. As mentioned in the previous section, hyper-parameters (e.g., λ and ρ)

have to be carefully tuned to achieve promising results. These limitations might affect the

applicability of the proposed method in real-world scenarios.

6.3.4 Discussion

In this chapter, we propose an advanced folding-based decoder that attentionally generates

point clouds from arbitrary latent features. Specifically, it generates point clouds by a

popular self-attention mechanism that weights the point from each patch in an interim

space. In addition, a semantic consistency regularizer is introduced to further improve the

framework’s modeling capability. Extensive experiments on different tasks and datasets

show that our method achieves better results than previous state-of-the-art folding-based

approaches. Moreover, we empirically investigate the impact of various hyper-parameters and

network architectures, which further demonstrates the effectiveness of the proposed method.

97

CHAPTER 7

CONCLUSION AND FUTURE WORK 1 2

In this chapter, we will draw a conclusion and discuss our future work. We will first start

with our point cloud generation frameworks, TDPNet and L-SHAP, that adopt explicit 3D

shape prior, and later focus on the FSPG and AttnFold that generates point cloud in the

few-shot setting and conducts advanced folding operation, respectively.

7.1 Point Cloud Generation with Explicit 3D Priors

In TDPNet, we introduce a unified framework for generating point clouds from arbitrary

information source (e.g., single view image). Our method achieves superior performance com-

pared to several state-of-the-art baselines both quantitatively and qualitatively. Specifically,

TDPNet is a 2-branch point cloud generation framework that simultaneously considers 3D

shape priors and other information sources. The network is trained in two stages. In the

first stage, we warm up the network by solving a point cloud self-reconstruction problem.

Noted that only point clouds are available in this stage, thus an all-zero dummy vector is

adopted as the placeholder of other information sources. In the second stage, we utilize the

pretrained point cloud feature extractor to compute the KMeans centroids of a given class as

the 3D prototype features. These 3D prototype features are then combined with incoming

features (e.g., latent image representation) and be fed into a hierarchical manifold decoder

to democratically construct the final point cloud. Therefore, our approach bridges the gap

between 2D and 3D features by introducing a flexible 3D prototype mechanism.

1This chapter contains material previously published as: Yu Lin, Yigong Wang, Yifan Li, Zhuoyi Wang,
Yang Gao, and Latifur Khan. “Single View Point Cloud Generation via Unified 3D Prototype”. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 35, no. 3, pp. 2064-2072. 2021

2This chapter contains material previously published as: Yu Lin, Jinghui Guo, Yang Gao, Yifan Li,
Zhuoyi Wang, and Latifur Khan. “Generating Point Cloud from Single Image in The Few Shot Scenario”. In
Proceedings of the 29th ACM International Conference on Multimedia, pp. 2834-2842. 2021

98

Nevertheless, KMeans is not the only clustering algorithm and its unstable behavior

might hurt the model’s performance. It would be interesting to investigate the impact

of other clustering methods (Breen et al., 2002; Awad et al., 2004; Petrushin and Khan,

2007), such as DBSCAN, OPTICS, and Gaussian Mixture, since they produce quite different

clusters compared to KMeans. Moreover, recently proposed deep clustering approaches

(Caron et al., 2018) might be a good choice because we can train the network in an end-

to-end manner, instead of a two-stage pipeline, by using such a method. In addition to

the clustering algorithm, inventing a more sophisticated feature infusion method is another

potential direction. Like what we proposed in the AttnFold, we can project other information

sources and 3D prototype features into a joint feature space and perform the element-wise

summation.

7.2 Point Cloud Generation with Learnable 3D Priors

As we observed that KMeans clustering is sensitive to the initialization seeds and produces

unstable centroids, we proposed to learn the 3D shape priors from training data in L-SHAP.

In this framework, we introduced a new component, named learnable shape primitive, to

encode the 3D shape prior information. Specifically, we consider each shape primitive as an

initial point set and a transformation function. The proposed shape primitive can either be a

continuous one or a discrete one, based on the assumption of the initial point set. Continuous

shape primitive is a good choice if dense point cloud reconstruction is needed, since arbitrary

points can be sampled from this data structure. On the other hand, discrete shape primitive is

amenable if the applications demand a more realistic yet size-fixed point cloud. Experiments

on both shape primitives demonstrate that our model outperforms other state-of-the-art

methods.

Despite its success, we observed that the learned shape primitives are not interpretable

compared with clustering centroid prototypes in TDPNet. One possible cause is that the

99

network is trained in an end-to-end manner, and the proposed shape primitives are the

intermediate results that have to incorporate with other information resources to generate

the final results (Yen et al., 2002; Goodman et al., 2010). As interpretability of deep learning

becomes more and more important, learning interpretable 3D shape priors would be a

potential direction. For example, instead of directly predicting the final point cloud, what if

we can predict the affine transformation matrix and apply it to the original point set?

7.3 Few-shot Point Cloud Generation

Inspired by TDPNet and L-SHAP, we propose a triple-branch point cloud generation frame-

work named FSPG. Following the same protocol of ProtoNet, we compute the element-wise

average of support point clouds’ latent representation as class-specific shape prior. We then

adopt the same network architecture proposed in L-SHAP to encode the class-agnostic shape

prior information across different classes. Class-specific and class-agnostic shape priors are

then incorporated with a given latent image representation to generate the final point cloud.

Moreover, due to the lack of training pairs, we further introduce a intra-support augmentation

method to incorporate with 1-way-k-shot episodic training. Compared to previous few-shot

generation methods, we empirically demonstrate the effectiveness of the proposed method in

various datasets.

During the experiment, we observed that the model cannot provide satisfying results if

the point clouds in the support set are very different from the target point cloud (Masud

et al., 2007). This phenomenon is quite common under the few-shot setting, and failing to

generate realistic point clouds might impair the usefulness of the proposed method. The

future work of FSPG will focus on solving this issue.

100

7.4 Advanced Folding Operation

In the AttnFold, we introduce an advanced folding-based decoder that adopts Transformer

architecture to attentionally generate point clouds. Specifically, we project image features

and coordinates of sampled points from 2D planes (as 3D priors) to the same latent space

and compute their sum as our latent features. These latent features are then passed to three

shared-Linear functions to compute the attention score of each pair of two points. Such

attention scores allow each point to be affected by every other point in the same 2-manifold,

which avoids the undesired over-complicated shape component. In addition to the attentional

folding decoder, we further propose a local semantic consistency regularizer that considers

the semantic discrepancy between the generated point cloud and ground truth to alleviate

the visual quality issues caused by the point-wise loss functions.

We observed that the proposed method tend to create smooth and dense major shape

component and leaves small parts blurry. Moreover, the proposed method also fails to

generate some asymmetric and thin structures correctly. Therefore, the future work of

AttnFold would be investigating a more sophisticated network architecture and trying a more

semantic regularizer rather than sticking with point-wise loss functions, such as Chamfer

Distance or Earth Mover Distance. We will work on this project in the future.

101

REFERENCES

Abedin, M., S. Nessa, L. Khan, and B. Thuraisingham (2006). Detection and resolution of
anomalies in firewall policy rules. In IFIP Annual Conference on Data and Applications
Security and Privacy, pp. 15–29. Springer.

Abrol, S. and L. Khan (2010a). Tweethood: Agglomerative clustering on fuzzy k-closest
friends with variable depth for location mining. In 2010 IEEE Second International
Conference on Social Computing, pp. 153–160. IEEE.

Abrol, S. and L. Khan (2010b). Twinner: understanding news queries with geo-content using
twitter. In Proceedings of the 6th Workshop on Geographic information Retrieval, pp. 1–8.

Achlioptas, P., O. Diamanti, I. Mitliagkas, and L. Guibas (2018). Learning representations
and generative models for 3d point clouds. In International conference on machine learning,
pp. 40–49. PMLR.

Ahmed, E., A. Saint, A. E. R. Shabayek, K. Cherenkova, R. Das, G. Gusev, D. Aouada, and
B. Ottersten (2018). A survey on deep learning advances on different 3d data representations.
arXiv preprint arXiv:1808.01462 .

Awad, M., L. Khan, F. Bastani, and I.-L. Yen (2004). An effective support vector machines
(svms) performance using hierarchical clustering. In 16th IEEE international conference
on tools with artificial intelligence, pp. 663–667. IEEE.

Awad, M., L. Khan, and B. Thuraisingham (2008). Predicting www surfing using multiple
evidence combination. The VLDB Journal 17 (3), 401–417.

Awad, M. A. and L. R. Khan (2007). Web navigation prediction using multiple evidence
combination and domain knowledge. IEEE Transactions on Systems, Man, and Cybernetics-
Part A: Systems and Humans 37 (6), 1054–1062.

Blanc, T., M. El Beheiry, C. Caporal, J.-B. Masson, and B. Hajj (2020). Genuage: visualize
and analyze multidimensional single-molecule point cloud data in virtual reality. Nature
Methods 17 (11), 1100–1102.

Blinn, J. F. (1977). Models of light reflection for computer synthesized pictures. In Proceedings
of the 4th annual conference on Computer graphics and interactive techniques, pp. 192–198.

Breen, C., L. Khan, and A. Ponnusamy (2002). Image classification using neural networks and
ontologies. In Proceedings. 13th International Workshop on Database and Expert Systems
Applications, pp. 98–102. IEEE.

Cardenas-Garcia, J., H. Yao, and S. Zheng (1995). 3d reconstruction of objects using stereo
imaging. Optics and Lasers in Engineering 22 (3), 193–213.

102

Caron, M., P. Bojanowski, A. Joulin, and M. Douze (2018). Deep clustering for unsupervised
learning of visual features. In Proceedings of the European conference on computer vision
(ECCV), pp. 132–149.

Chang, A. X., T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,
S. Song, H. Su, et al. (2015). Shapenet: An information-rich 3d model repository. arXiv
preprint arXiv:1512.03012 .

Cheung, K., S. Baker, and T. Kanade (2003). Shape-from-silhouette of articulated objects and
its use for human body kinematics estimation and motion capture. In 2003 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings.,
Volume 1, pp. I–I. IEEE.

Chibane, J., T. Alldieck, and G. Pons-Moll (2020). Implicit functions in feature space for
3d shape reconstruction and completion. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 6970–6981.

Choy, C. B., D. Xu, J. Gwak, K. Chen, and S. Savarese (2016). 3d-r2n2: A unified approach
for single and multi-view 3d object reconstruction. In European conference on computer
vision, pp. 628–644. Springer.

Csáji, B. C. et al. (2001). Approximation with artificial neural networks. Faculty of Sciences,
Etvs Lornd University, Hungary 24 (48), 7.

Cui, Y., R. Chen, W. Chu, L. Chen, D. Tian, Y. Li, and D. Cao (2021). Deep learning for
image and point cloud fusion in autonomous driving: A review. IEEE Transactions on
Intelligent Transportation Systems .

Dai, A., A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner (2017). Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 5828–5839.

de Souza Cardoso, L. F., F. C. M. Q. Mariano, and E. R. Zorzal (2020). A survey of industrial
augmented reality. Computers & Industrial Engineering 139, 106159.

Debnath, B., M. Solaimani, M. A. G. Gulzar, N. Arora, C. Lumezanu, J. Xu, B. Zong,
H. Zhang, G. Jiang, and L. Khan (2018). Loglens: A real-time log analysis system. In
2018 IEEE 38th international conference on distributed computing systems (ICDCS), pp.
1052–1062. IEEE.

Deprelle, T., T. Groueix, M. Fisher, V. Kim, B. Russell, and M. Aubry (2019). Learning
elementary structures for 3d shape generation and matching. In Advances in Neural
Information Processing Systems, pp. 7433–7443.

103

Esteban, C. H. and F. Schmitt (2002). Multi-stereo 3d object reconstruction. In Proceedings.
First International Symposium on 3D Data Processing Visualization and Transmission, pp.
159–166. IEEE.

Fan, H., H. Su, and L. J. Guibas (2017). A point set generation network for 3d object
reconstruction from a single image. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 605–613.

Fei-Fei, L., R. Fergus, and P. Perona (2006). One-shot learning of object categories. IEEE
transactions on pattern analysis and machine intelligence 28 (4), 594–611.

Gadelha, M., S. Maji, and R. Wang (2017). 3d shape induction from 2d views of multiple
objects. In 2017 International Conference on 3D Vision (3DV), pp. 402–411. IEEE.

Gadelha, M., R. Wang, and S. Maji (2018). Multiresolution tree networks for 3d point cloud
processing. In Proceedings of the European Conference on Computer Vision (ECCV), pp.
103–118.

Geiger, A., J. Ziegler, and C. Stiller (2011). Stereoscan: Dense 3d reconstruction in real-time.
In 2011 IEEE intelligent vehicles symposium (IV), pp. 963–968. Ieee.

Genova, K., F. Cole, D. Vlasic, A. Sarna, W. T. Freeman, and T. Funkhouser (2019). Learning
shape templates with structured implicit functions. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 7154–7164.

Goodman, L. A., K. F. Smyth, and V. Banyard (2010). Beyond the 50-minute hour: increasing
control, choice, and connections in the lives of low-income women. American Journal of
Orthopsychiatry 80 (1), 3.

Gotsman, C., X. Gu, and A. Sheffer (2003). Fundamentals of spherical parameterization for
3d meshes. In ACM SIGGRAPH 2003 Papers, pp. 358–363.

Groueix, T., M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry (2018). A papier-mâché
approach to learning 3d surface generation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 216–224.

Guo, J., A. Ersen, Y. Gao, Y. Lin, L. Khan, and M. Yavuz (2020). Prediction of plantar
shear stress distribution by conditional gan with attention mechanism. In International
Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 770–780.
Springer.

Han, X.-F., H. Laga, and M. Bennamoun (2019). Image-based 3d object reconstruction:
State-of-the-art and trends in the deep learning era. IEEE transactions on pattern analysis
and machine intelligence 43 (5), 1578–1604.

104

He, K., X. Zhang, S. Ren, and J. Sun (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778.

Hua, B.-S., M.-K. Tran, and S.-K. Yeung (2018). Pointwise convolutional neural networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
984–993.

Jiang, L., S. Shi, X. Qi, and J. Jia (2018). Gal: Geometric adversarial loss for single-view
3d-object reconstruction. In Proceedings of the European conference on computer vision
(ECCV), pp. 802–816.

Jin, Y., L. Khan, L. Wang, and M. Awad (2005). Image annotations by combining multiple
evidence & wordnet. In Proceedings of the 13th annual ACM international conference on
Multimedia, pp. 706–715.

Kaiser, A., J. A. Ybanez Zepeda, and T. Boubekeur (2019). A survey of simple geomet-
ric primitives detection methods for captured 3d data. In Computer Graphics Forum,
Volume 38, pp. 167–196. Wiley Online Library.

Kato, H. and T. Harada (2019). Learning view priors for single-view 3d reconstruction. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 9778–9787.

Khan, L. and D. McLeod (2000). Audio structuring and personalized retrieval using ontologies.
In Proceedings IEEE Advances in Digital Libraries 2000, pp. 116–126. IEEE.

Kingma, D. P. and M. Welling (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 .

Lai, K., L. Bo, X. Ren, and D. Fox (2011). A large-scale hierarchical multi-view rgb-d object
dataset. In 2011 IEEE international conference on robotics and automation, pp. 1817–1824.
IEEE.

Lavee, G., L. Khan, and B. Thuraisingham (2007). A framework for a video analysis tool for
suspicious event detection. Multimedia Tools and Applications 35 (1), 109–123.

LeCun, Y., Y. Bengio, and G. Hinton (2015). Deep learning. nature 521 (7553), 436–444.

Li, X., S. Du, G. Li, and H. Li (2020). Integrate point-cloud segmentation with 3d lidar
scan-matching for mobile robot localization and mapping. Sensors 20 (1), 237.

Li, Y., X. Wu, Y. Chrysathou, A. Sharf, D. Cohen-Or, and N. J. Mitra (2011). Globfit:
Consistently fitting primitives by discovering global relations. In ACM SIGGRAPH 2011
papers, pp. 1–12.

105

Lin, C.-H., C. Kong, and S. Lucey (2018). Learning efficient point cloud generation for dense
3d object reconstruction. In proceedings of the AAAI Conference on Artificial Intelligence,
Volume 32.

Lin, Y., J. Guo, Y. Gao, Y.-f. Li, Z. Wang, and L. Khan (2021). Generating point cloud
from single image in the few shot scenario. In Proceedings of the 29th ACM International
Conference on Multimedia, pp. 2834–2842.

Lin, Y., Y. Wang, Y.-F. Li, Z. Wang, Y. Gao, and L. Khan (2021). Single view point cloud
generation via unified 3d prototype. In Proceedings of the AAAI Conference on Artificial
Intelligence, Volume 35, pp. 2064–2072.

Liu, X., Z. Han, X. Wen, Y.-S. Liu, and M. Zwicker (2019). L2g auto-encoder: Understanding
point clouds by local-to-global reconstruction with hierarchical self-attention. In Proceedings
of the 27th ACM International Conference on Multimedia, pp. 989–997.

Lobay, A. and D. A. Forsyth (2006). Shape from texture without boundaries. International
Journal of Computer Vision 67 (1), 71–91.

Mandikal, P., K. Navaneet, M. Agarwal, and R. V. Babu (2018). 3d-lmnet: Latent embedding
matching for accurate and diverse 3d point cloud reconstruction from a single image. arXiv
preprint arXiv:1807.07796 .

Martins, A. and R. Astudillo (2016). From softmax to sparsemax: A sparse model of
attention and multi-label classification. In International Conference on Machine Learning,
pp. 1614–1623. PMLR.

Masci, J., D. Boscaini, M. Bronstein, and P. Vandergheynst (2015). Geodesic convolutional
neural networks on riemannian manifolds. In Proceedings of the IEEE international
conference on computer vision workshops, pp. 37–45.

Masud, M. M., J. Gao, L. Khan, J. Han, and B. Thuraisingham (2009). A multi-partition
multi-chunk ensemble technique to classify concept-drifting data streams. In Pacific-Asia
Conference on Knowledge Discovery and Data Mining, pp. 363–375. Springer.

Masud, M. M., J. Gao, L. Khan, J. Han, and B. Thuraisingham (2010). Classification and
novel class detection in data streams with active mining. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pp. 311–324. Springer.

Masud, M. M., L. Khan, and B. Thuraisingham (2007). A hybrid model to detect malicious
executables. In 2007 IEEE International Conference on Communications, pp. 1443–1448.
IEEE.

Masud, M. M., L. R. Khan, B. M. Thuraisingham, Q. Chen, J. Gao, and J. Han (2015,
October 20). Systems and methods for detecting a novel data class. US Patent 9,165,051.

106

Mejjati, Y. A., C. Richardt, J. Tompkin, D. Cosker, and K. I. Kim (2018). Unsupervised
attention-guided image-to-image translation. In Advances in Neural Information Processing
Systems, pp. 3693–3703.

Michalkiewicz, M., S. Parisot, c. S. Tsogkas, M. Baktashmotlagh, A. Eriksson, and
E. Belilovsky (2020). Few-shot single-view 3-d object reconstruction with compositional
priors. arXiv preprint arXiv:2004.06302 .

Monti, F., D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M. Bronstein (2017).
Geometric deep learning on graphs and manifolds using mixture model cnns. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 5115–5124.

Musgrave, K., S. Belongie, and S.-N. Lim (2020). Pytorch metric learning.

Nessa, S., M. Abedin, W. E. Wong, L. Khan, and Y. Qi (2008). Software fault localization
using n-gram analysis. In International Conference on Wireless Algorithms, Systems, and
Applications, pp. 548–559. Springer.

Petrushin, V. A. and L. Khan (2007). Multimedia data mining and knowledge discovery,
Volume 521. Springer.

Pontes, J. K., C. Kong, S. Sridharan, S. Lucey, A. Eriksson, and C. Fookes (2018). Image2mesh:
A learning framework for single image 3d reconstruction. In Asian Conference on Computer
Vision, pp. 365–381. Springer.

Praun, E. and H. Hoppe (2003). Spherical parametrization and remeshing. ACM Transactions
on Graphics (TOG) 22 (3), 340–349.

Qi, C. R., H. Su, K. Mo, and L. J. Guibas (2017). Pointnet: Deep learning on point sets for
3d classification and segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 652–660.

Qi, C. R., L. Yi, H. Su, and L. J. Guibas (2017). Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. In Advances in neural information processing
systems, pp. 5099–5108.

Qin, C., H. You, L. Wang, C.-C. J. Kuo, and Y. Fu (2019). Pointdan: A multi-scale 3d
domain adaption network for point cloud representation. Advances in Neural Information
Processing Systems 32.

Rezende, D. J., S. A. Eslami, S. Mohamed, P. Battaglia, M. Jaderberg, and N. Heess (2016).
Unsupervised learning of 3d structure from images. In Advances in neural information
processing systems, pp. 4996–5004.

107

Schmid, K., H. Hirschmüller, A. Dömel, I. Grixa, M. Suppa, and G. Hirzinger (2012). View
planning for multi-view stereo 3d reconstruction using an autonomous multicopter. Journal
of Intelligent & Robotic Systems 65 (1), 309–323.

Schnabel, R., P. Degener, and R. Klein (2009). Completion and reconstruction with primitive
shapes. In Computer Graphics Forum, Volume 28, pp. 503–512. Wiley Online Library.

Schnabel, R., R. Wahl, and R. Klein (2007). Efficient ransac for point-cloud shape detection.
In Computer graphics forum, Volume 26, pp. 214–226. Wiley Online Library.

Sharma, C. and M. Kaul (2020). Self-supervised few-shot learning on point clouds. NeurIPS .

Sheffer, A., E. Praun, K. Rose, et al. (2007). Mesh parameterization methods and their
applications. Foundations and Trends® in Computer Graphics and Vision 2 (2), 105–171.

Simonovsky, M. and N. Komodakis (2017). Dynamic edge-conditioned filters in convolutional
neural networks on graphs. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3693–3702.

Snell, J., K. Swersky, and R. Zemel (2017). Prototypical networks for few-shot learning. In
Advances in neural information processing systems, pp. 4077–4087.

Stets, J. D., Y. Sun, W. Corning, and S. W. Greenwald (2017). Visualization and labeling of
point clouds in virtual reality. In SIGGRAPH Asia 2017 Posters, pp. 1–2.

Su, H., S. Maji, E. Kalogerakis, and E. Learned-Miller (2015). Multi-view convolutional neural
networks for 3d shape recognition. In Proceedings of the IEEE international conference on
computer vision, pp. 945–953.

Sung, M., H. Su, R. Yu, and L. J. Guibas (2018). Deep functional dictionaries: Learning
consistent semantic structures on 3d models from functions. In Advances in Neural
Information Processing Systems, pp. 485–495.

Tu, M., P. Li, I.-L. Yen, B. M. Thuraisingham, and L. Khan (2008). Secure data objects
replication in data grid. IEEE Transactions on dependable and secure computing 7 (1),
50–64.

Tulsiani, S., H. Su, L. J. Guibas, A. A. Efros, and J. Malik (2017). Learning shape abstractions
by assembling volumetric primitives. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2635–2643.

Tulsiani, S., T. Zhou, A. A. Efros, and J. Malik (2017). Multi-view supervision for single-view
reconstruction via differentiable ray consistency. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2626–2634.

108

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin (2017). Attention is all you need. Advances in neural information processing
systems 30.

Vinyals, O., C. Blundell, T. Lillicrap, D. Wierstra, et al. (2016). Matching networks for one
shot learning. Advances in neural information processing systems 29, 3630–3638.

Wallace, B. and B. Hariharan (2019). Few-shot generalization for single-image 3d reconstruc-
tion via priors. In Proceedings of the IEEE International Conference on Computer Vision,
pp. 3818–3827.

Wang, C., M. Cheng, F. Sohel, M. Bennamoun, and J. Li (2019). Normalnet: A voxel-based
cnn for 3d object classification and retrieval. Neurocomputing 323, 139–147.

Wang, L., L. Liu, and L. Khan (2004). Automatic image annotation and retrieval using
subspace clustering algorithm. In Proceedings of the 2nd ACM international workshop on
Multimedia databases, pp. 100–108.

Wang, N., Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y.-G. Jiang (2018). Pixel2mesh: Generating
3d mesh models from single rgb images. In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 52–67.

Wang, Y., Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon (2019). Dynamic
graph cnn for learning on point clouds. Acm Transactions On Graphics (tog) 38 (5), 1–12.

Wang, Y., Q. Yao, J. T. Kwok, and L. M. Ni (2020). Generalizing from a few examples: A
survey on few-shot learning. ACM Computing Surveys (CSUR) 53 (3), 1–34.

Wu, J., C. Zhang, X. Zhang, Z. Zhang, W. T. Freeman, and J. B. Tenenbaum (2018).
Learning shape priors for single-view 3d completion and reconstruction. In Proceedings of
the European Conference on Computer Vision (ECCV), pp. 646–662.

Wu, Z., S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao (2015). 3d shapenets:
A deep representation for volumetric shapes. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 1912–1920.

Yang, G., X. Huang, Z. Hao, M.-Y. Liu, S. Belongie, and B. Hariharan (2019). Pointflow:
3d point cloud generation with continuous normalizing flows. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 4541–4550.

Yang, Y., C. Feng, Y. Shen, and D. Tian (2018). Foldingnet: Point cloud auto-encoder via
deep grid deformation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 206–215.

109

Yen, I.-L., J. Goluguri, F. Bastani, L. Khan, and J. Linn (2002). A component-based approach
for embedded software development. In Proceedings Fifth IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing. ISIRC 2002, pp. 402–410. IEEE.

Yue, X., B. Wu, S. A. Seshia, K. Keutzer, and A. L. Sangiovanni-Vincentelli (2018). A lidar
point cloud generator: from a virtual world to autonomous driving. In Proceedings of the
2018 ACM on International Conference on Multimedia Retrieval, pp. 458–464.

Zaheer, M., S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola
(2017). Deep sets. Advances in neural information processing systems 30.

Zhang, R., P.-S. Tsai, J. E. Cryer, and M. Shah (1999). Shape-from-shading: a survey. IEEE
transactions on pattern analysis and machine intelligence 21 (8), 690–706.

Zhao, Y., T. Birdal, H. Deng, and F. Tombari (2019). 3d point capsule networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 1009–1018.

Zou, C., E. Yumer, J. Yang, D. Ceylan, and D. Hoiem (2017). 3d-prnn: Generating shape
primitives with recurrent neural networks. In Proc. of ICCV.

110

BIOGRAPHICAL SKETCH

Yu Lin received his Bachelor of Engineering degree in software engineering from the University

of Electronic Science and Technology of China (UESTC) in 2016. Later that year, he decided

to engage in advanced studies to further his knowledge in machine learning and 3D computer

vision. Therefore, he joined The University of Texas at Dallas (UTD) to pursue his PhD

degree in computer science. During his PhD studies, Yu was a member of the Big Data

Analytics and Management Lab and worked as a research assistant under the supervision of

Prof. Latifur Khan. His research concentrates on machine learning, deep leanring, and 2D

and 3D data generation.

111

CURRICULUM VITAE

Yu Lin
March, 2022

Contact Information:

Department of Computer Science
The University of Texas at Dallas
800 W. Campbell Rd.
Richardson, TX 75080-3021, U.S.A.

Email: yxl163430@utdallas.edu

Educational History:

BE, Software Engineering, University of Electronic Science and Technology of China, 2016
MS, Computer Science, University of Texas at Dallas, 2022
PhD, Computer Science, University of Texas at Dallas, 2022

Enhancing Point Cloud Generation from Various Information Sources by Applying Geometry-
aware Folding Operation
PhD Dissertation
Computer Science Department, The University of Texas At Dallas
Advisors: Dr. Latifur Khan

Employment History:

Software Engineer Intern, Meta, Inc, May 2021 – August 2021
Research Assistant, The University of Texas at Dallas, June 2019 – present
Teaching Assistant, The University of Texas at Dallas, September 2018 – May 2019

Technical Skills:

Programming: Python, Java, Javascript, SQL, C/C++, PHP/Hack
Frameworks & Tools: Pytorch, Tensorflow, Django, Git, Vim
Data Visualization: Matplotlib, Open3D, Blender, PCL

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	3D Reconstruction
	Point Cloud Reconstruction and Generation
	Point Cloud Generation with Explicit 3D Prior
	Few-shot Point Cloud Generation
	Advanced Folding Operation

	Contribution of this dissertation
	Point Cloud Generation with 3D Prototypes
	Point Cloud Generation with Learnable Shape Primitives
	Few-shot Point Cloud Generation
	Advanced Folding Operation

	Outline of this dissertation

	Background
	Point Cloud Representation Learning
	Point Analysis Methods
	Neighborhood Analysis Methods

	Deep Point Cloud Generation
	Few Shot Learning in Point Cloud

	Point Cloud Generation via Unified 3D Prototype
	Approach
	Framework Overview
	Dynamic 3D Prototypes
	Hierarchical Manifold Decoder
	Implementation

	Evaluation
	Experiment Setting
	Single Category Point Cloud Generation
	Multiple Category Point Cloud Generation
	Generating Multiple Plausible Point Clouds

	Ablation Studies and Discussion
	Contribution of Prototypes and Decoders
	Frozen-Finetune Training
	Discussion

	Point Cloud Generation via Learnable 3D Priors
	Approach
	Framework Overview
	Learnable 3D Priors
	Architecture and Training Strategy

	Evaluation
	Experiment Setting
	Single Category Point Cloud Generation
	Multiple Category Point Cloud Generation
	Generating Dense Point Clouds

	Ablation Studies and Discussion
	Continuous and Discrete Primitives
	Contribution of Shape Primitives
	High-Dimensional Shape Primitives
	Discussion

	Generating Point Cloud From Single Image in The Few Shot Scenario
	Approach
	Framework Overview
	Class-specific and Class-agnostic 3D Shape Priors
	Intra-Support Episodic Training

	Evaluation
	Experiment Setting
	Baselines
	Novel Classes Reconstruction
	Base Classes Reconstruction

	Ablation Studies and Discussion
	Contribution of Components
	Discussion

	Attentional Folding-Based Point Cloud Generation with Local Semantic Consistency
	Approach
	Preliminary
	Framework Overview
	Attentional Folding Module
	Local Semantic Consistency

	Evaluation
	Datasets and Baselines
	Point Cloud Self-Reconstruction
	Single-View Point Cloud Reconstruction

	Ablation Studies and Discussion
	Network Architectures
	Impact of Hyper-parameters
	Failure Cases and Limitations
	Discussion

	Conclusion and Future Work
	Point Cloud Generation with Explicit 3D Priors
	Point Cloud Generation with Learnable 3D Priors
	Few-shot Point Cloud Generation
	Advanced Folding Operation

	References
	Biographical Sketch
	Curriculum Vitae

