
LOGIC PROGRAMMING-BASED APPROACHES IN EXPLAINABLE ARTIFICIAL

INTELLIGENCE AND NATURAL LANGUAGE UNDERSTANDING

by

Farhad Shakerin

APPROVED BY SUPERVISORY COMMITTEE:

Gopal Gupta, Chair

Farokh Bastani

Kevin W. Hamlen

Vibhav Gogate



Copyright c© 2020

Farhad Shakerin

All rights reserved



To Somayeh,

who co-suffered all along



LOGIC PROGRAMMING-BASED APPROACHES IN EXPLAINABLE ARTIFICIAL

INTELLIGENCE AND NATURAL LANGUAGE UNDERSTANDING

by

FARHAD SHAKERIN, BS, MS

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

May 2020



ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere appreciation and gratitude to my

PhD advisor Dr. Gopal Gupta for the continuous support, everlasting encouragement, and

optimism that was vital in making this dissertation a reality.

I would like to thank the members of my dissertation defense committee, Dr. Bastani, Dr.

Gogate and Dr. Hamlen (in alphabetical order), for providing valued feedback. I greatly

thank Dr. Ravi Prakash for career advice, and Dr. Bastani and Dr. Cankaya for writing

wonderful recommendation letters.

I sincerely thank Daren and Jennifer Clements for their friendship and support. I gen-

uinely thank my two amazing friends and fellow researchers Kinjal Basu and Sarat Chandra

Varanasi for the memories we shared, and for all the useful discussions. I thank my favorite

friends Masoud Ghaffarinia and Anahita Mahzari for sharing our sorrow and joy. I also

thank my best friend Ali Fakeri Tabrizi for academic and career advice.

Last but not least, I would like to thank my parents Bijan and Ladan and my brother

Bahram for their undying love and support.

This dissertation is partially funded by National Science Foundation (NSF) through NSF

Grants IIS 1718945 and IIS 1910131. Their support is greatly appreciated.

March 2020

v



LOGIC PROGRAMMING-BASED APPROACHES IN EXPLAINABLE ARTIFICIAL

INTELLIGENCE AND NATURAL LANGUAGE UNDERSTANDING

Farhad Shakerin, PhD
The University of Texas at Dallas, 2020

Supervising Professor: Gopal Gupta, Chair

Dramatic success of machine learning algorithms has led to a torrent of Artificial Intelli-

gence (AI) applications in computer vision and natural language understanding. However,

the effectiveness of these systems is limited by the machines’ current inability to explain

and justify their decisions and actions. The Explainable AI program (Gunning, 2015) aims

at creating a suite of machine learning techniques that: a) Produces explainable models

without sacrificing predictive performance b) Enables human users to understand the un-

derlying logic and diagnose the mistakes made by the AI system. Inspired by Explainable

AI program, this dissertation presents logic programming-based approaches to some of the

problems of interest in Explainable AI including learning machine learning hypotheses in the

form of default theories, counter-factual reasoning and natural language understanding. In

particular, We introduce algorithms that automate learning of default theories. We lever-

age these algorithms to capture the underlying logic of complex statistical learning models.

We also propose a fully explainable logic programming-based framework for visual question

answering and introduce a counter-factual reasoner based on Craig Interpolants and An-

swer Set Programming to come up with recommendations that respect logical, physical, and

temporal constraints.

vi



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Structure of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CHAPTER 2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Answer Set Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Default Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Inductive Logic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 9

CHAPTER 3 INDUCTIVE LEARNING OF DEFAULT THEORIES . . . . . . . . 11

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 FOLD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Numeric Extension of FOLD . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6 Non Observation Learning Using FOLD . . . . . . . . . . . . . . . . . . . . 25

3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

CHAPTER 4 INDUCTIVE LEARNING OF ASP PROGRAMS WITH MULTIPLE
STABLE MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 The XFOLD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Application: Combinatorial Problems . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vii



CHAPTER 5 INDUCTION OF NON-MONOTONIC LOGIC PROGRAMS TO EX-
PLAIN MACHINE LEARNING MODELS . . . . . . . . . . . . . . . . . . . . . . 48

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 The LIME Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 The LIME-FOLD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

CHAPTER 6 WHITE-BOX INDUCTION FROM SUPPORT VECTOR MACHINES 61

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 SHAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4 SHAP-FOIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.6 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

CHAPTER 7 INDUCTION OF LOGIC PROGRAMS FROM MACHINE LEARNING
MODELS USING HIGH-UTILITY ITEM-SET MINING . . . . . . . . . . . . . . 76

7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.2 High-Utility Itemset Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.3 SHAP-FOLD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

CHAPTER 8 CONSTRAINTS-AWARE COUNTER-FACTUAL PROPOSALS . . . 89

8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.2 Abductive Answer Set Programming . . . . . . . . . . . . . . . . . . . . . . 92

8.3 Craig Interpolants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.4 ASP-based Counterfactual Explanation Using Craig Interpolants . . . . . . . 96

8.5 Interpolating CFE Algorithm For hypotheses with arithmetic constraints . . 102

CHAPTER 9 A FULLY EXPLAINABLE FRAMEWORK TO HANDLE VISUAL QUES-
TION ANSWERING TASKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9.1 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

viii



9.2.1 YOLO - Object Detection & Localization . . . . . . . . . . . . . . . . 107

9.2.2 Stanford CoreNLP Dependency Parser . . . . . . . . . . . . . . . . . 108

9.3 The Technical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9.3.1 Preprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9.3.2 Semantic Relation Extractor (SRE) . . . . . . . . . . . . . . . . . . . 110

9.3.3 Query Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.3.4 Commonsense Knowledge . . . . . . . . . . . . . . . . . . . . . . . . 112

9.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9.4.1 A Complete Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

CHAPTER 10 FUTURE WORKS & CONCLUSION . . . . . . . . . . . . . . . . . . 118

10.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

10.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

BIOGRAPHICAL SKETCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

CURRICULUM VITAE

ix



LIST OF FIGURES

4.1 Partial interpretations as examples in graph coloring problem . . . . . . . . . . 36

4.2 Trace of XFOLD execution on the Party Example . . . . . . . . . . . . . . . . 38

5.1 Top 3 Relevant Features in Patient Diagnosis According to LIME . . . . . . . . 52

5.2 Average Number of Rules Induced by Each Different Experiment . . . . . . . . 55

5.3 XGboost Feature Importance Plot for UCI Heart . . . . . . . . . . . . . . . . . 58

6.1 Optimal sequential covering with 3 Clauses (Left), Sub-Optimal sequential cov-
ering with 4 Clauses (Right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Annotating Data Points in a 2D dataset With Most Similar Support Vector . . 65

6.3 Shap Values for A UCI Heart Prediction . . . . . . . . . . . . . . . . . . . . . . 66

6.4 Iteration #1 of Example 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.5 Iteration #2, #3 of Example 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.1 Optimal sequential covering with 3 Clauses (Left), Sub-Optimal sequential cov-
ering with 4 Clauses (Right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.2 Shap Values for A UCI Heart Prediction . . . . . . . . . . . . . . . . . . . . . . 82

8.1 Computing the Craig interpolant for two sets of inconsistent clauses using the
resolution proof tree annotations . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9.1 Example of POS tagging and dependency graph . . . . . . . . . . . . . . . . . . 108

9.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9.3 Object detection using YOLO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.4 POS tagging and dependency graph . . . . . . . . . . . . . . . . . . . . . . . . . 116

x



LIST OF TABLES

3.1 Play Tennis data-set, Numeric version . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 FOLD-R evaluation on UCI benchmarks . . . . . . . . . . . . . . . . . . . . . . 25

4.1 XFold Evaluation on UCI benchmarks and Combinatorial Problems . . . . . . . 45

5.1 Evaluation of Our Three Experiments with 10 UCI Datasets . . . . . . . . . . . 58

5.2 Average Running Time Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1 Evaluation of SHAP FOIL on UCI Datasets . . . . . . . . . . . . . . . . . . . . 72

7.1 Left: A High Utility Itemset Problem Instance. Right: Solution for minutil = 25 80

7.2 Evaluation of SHAP FOLD on UCI Datasets . . . . . . . . . . . . . . . . . . . . 87

9.1 Question type wise summarized result from various state-of-the-art neural-network
based model for CLEVR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9.2 Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xi



CHAPTER 1

INTRODUCTION

1.1 Overview

Inductive Logic Programming (ILP) (Muggleton, 1991a) is one Machine Learning technique

where the learned model is in the form of logic programming rules (Horn Clauses) that are

comprehensible to humans. It allows the background knowledge to be incrementally extended

without requiring the entire model to be re-learned. Meanwhile, the comprehensibility of

symbolic rules makes it easier for users to understand and verify induced models and even

edit them.

Despite all the success in learning a concept by generalization from a set of examples,

Inductive Logic Programming still falls short of completely simulating the human common-

sense learning. Humans resort to a special kind of reasoning known as default reasoning

(Reiter, 1980). Default reasoning gets around the probabilistic calculations by abstract-

ing away the probabilities and by performing default reasoning in the absence of complete

knowledge. In Logic Programming, the incomplete knowledge is represented using negation-

as-failure (NAF). Inductive Logic Programming however, cannot learn default theories as it

only handles Horn clauses both in the background knowledge and hypotheses. It turns out

that extending ILP with negation-as-failure is far from trivial. For one thing, any ILP algo-

rithm capable of handling negation-as-failure, must recognise stable model semantics and its

implications for the concept learning problems. Stable model semantics, and its realization

in answer set programming(ASP), provide an elegant mechanism for handling negation-as-

failure in logic programming (Gelfond and Lifschitz, 1988; Baral, 2003). Therefore, extending

ILP to handle negation-as-failure, effectively means to allow background knowledge and/or

hypotheses with multiple stable models and this is not trivial in classical ILP.

The primary contributions of this dissertation are the algorithms that automate learning

of a concept in the form of default theories. These algorithms can ingest background knowl-

1



edge in the form of answer set programs with multiple stable models and they can also learn

hypotheses in the form of answer set programs with even loops through negation-as-failure

(Baral, 2003). We show important applications for these algorithms including learning ASP

programs to solve combinatorial problems.

A major contribution and one of the most important areas that our ILP algorithms can

be applied is Explainable AI. We introduce algorithms that leverages our ILP algorithms to

capture the global behavior of any complex machine learning model (Shakerin and Gupta,

2019). Explaining the behavior of a machine learning model as default theories has number

of advantages over any other rule learning approach: (i) Introducing negation-as-failure, sig-

nificantly decreases the number of induced rules (ii) It significantly improves the performance

in terms of the classification evaluation metrics (iii) The induced default theories are easier

to understand

Counterfactual explanation is another problem in the field of Explainable AI that has

received a lot of attention recently. The EU GDPR regulations (Voigt and Bussche, 2017)

requires that machine learning models in charge of making decisions about humans, must

provide explanations about the factors that contributed to the decisions they arrive at for

any individual. On top of that, they should make recommendations as to how the decision

can change to a desired decision. The latter is known as counter-factual explanation problem

in explainable AI. For instance, if a machine learning model denies a loan application for

an individual, it should explain how that individual needs to minimally change their fea-

ture values, so that next time he/she applies, the decision becomes “approved” instead of

“denied”. All existing approaches solve an instance of optimization problem and by doing

so, they leave an important aspect of the problem out, and that is the logical constraints.

In this dissertation, we propose the first logic-based approach to the counter-factual expla-

nation problem using answer set programming and Craig-interpolation (Craig, 1957). Our

proposed approach, incorporates logical, physical and temporal constraints as part of finding

counter-factual explanations.

2



One of the areas that end-to-end machine learning approaches and in particular deep

learning architectures perform well is natural language processing and question answering.

As we will show in chapter 9, these systems can even outperform humans in certain domains

in visual question answering. In these systems, a set of features are extracted from a convo-

lutional neural network. Then, it is concatenated with a vector representation of the natural

language question’s words. Finally, the resulted vector is passed through a recurrent neural

network and the entire system is trained using time backpropagation algorithm. While the

high performance of the system, considering its simplicity and flexibility is quite surprising,

it cannot satisfy the minimum expectations of an explainable AI product. On top of that,

the system is not robust in the sense that any trivial update to the background knowledge

requires the entire system to be trained from the scratch. Moreover, it is almost impossible

to explain the answers, spot and diagnose the errors.

In contrast, as we will show in chapter 9, Logic Programming provides an elegant and

natural framework for creating a visual question answering system. This framework is fully

explainable and provides justification through an SLD resolution proof tree. In this system,

the use of machine learning is restricted to the computer vision component that extracts

information from a scene and represents them as a logic program. Also, a natural language

question is separately translated into a logical representation using a standard off-the-shelf

dependency parser. Also, if background knowledge is needed to answer a question, other

external sources such as WordNet (Fellbaum, 1998) are consulted. Finally, an answer set

programming engine named s(ASP) is used to perform the reasoning and finding the right

answer to the natural question. While the results are provably sound, any inconsistency in

the answers, whether it is due to the computer vision module, or NLP dependency parsing

errors, could be traced all the way back to the source of error. Therefore, our framework is

most suitable for visual question answering tasks, as far as the explainability is concerned.

3



1.2 Structure of the Dissertation

In this section, we provide the layout of the remaining chapters and a summary of each:

Chapter 2 provides background information necessary to understand the remainder of

the dissertation. We define the syntax and semantics of ASP programs and introduce the

Gelfond-Lifschitz method for finding answer sets. We also discuss Inductive Logic Program-

ming (ILP) problem, default reasoning, and finally, we survey some of the explainable AI

techniques that are leveraged by our ILP algorithms.

Chapter 3 introduces a heuristic-based ILP algorithm FOLD (First-Order Learner of

Default-theories) that learns a concept from examples and background knowledge in the

form of default theories. This algorithm learns stratified answer set programs (i.e., answer

set programs with one stable model)

Chapter 4 extends the FOLD algorithm to learn Answer Set Programs with multiple

stable models. We showcase applications in learning programs that would solve combinatorial

puzzles.

Chapter 5 introduces our Explainable AI (XAI) contribution, which is an extension of

FOLD algorithm to learn the underlying logic of any complex machine learning model in

terms of default theories.

Chapter 6 proposes an Explainable AI algorithm to capture the underlying logic of Sup-

port Vector Machines with different Kernels. This algorithm mostly focuses on Support

Vectors and the similarities of any given data point to Support Vector points.

Chapter 7 enhances the search for the “best” clause in LIME-FOLD algorithm and also

replaces LIME with SHAP which is a sound Explainable AI tool with foundations in game

theory. Also, instead of performing hill-climbing search using information-gain, SHAP-

FOLD algorithm incorporates a data mining technique known as High-Utility Itemset Mining

(HUIM) to find frequent patterns with high utilities.

4



Chapter 8 proposes our logic based solution to another requirement stipulated in GDPR

and Explainbale AI project known as counter-factual explanation. In this chapter we show

how using Answer Set Programming and Craig Interpolants, we can create counter-factual

explanations that respect logical, physical, and temporal constraints that are also expressed

as answer set programs.

Chapter 9 illustrates our fully explainable framework AQuA, based on answer set pro-

gramming to tackle the visual question answering task. Our AQuA framework, achieves

competitive performance results with end-to-end neural network based solutions, but unlike

those systems, AQuA is fully explainable and it can provide justification for all the answers

it finds, it requires no training beyond the computer vision component and one can diagnose

wrong answers and find the source of error and fix it.

Finally, in Chapter 10 we present some avenues for the future works and the conclusions.

5



CHAPTER 2

BACKGROUND

2.1 Overview

As most of the algorithms presented in this dissertation are based on Answer Set Program-

ming and since they address problems in Inductive Logic Programming, understanding of

both concepts is imperative to comprehend the remainder of this dissertation. In this chapter

we provide a brief overview of each topic.

2.2 Answer Set Programming

Answer Set Programming (Gelfond and Lifschitz, 1988; Baral, 2003) is a declarative logic

programming based paradigm that deals with negation-as-failure. The main distinction

between standard Logic Programming and Answer Set Programs is the interpretation of the

loops through negation-as-failure as follows:

p :- not q.

q :- not p.

This program does not have any semantics based on SLD resolution because it falls in an

infinite loop. However, in stable model semantics which is the foundation of Answer Set

Programming, this program indeed has a meaning. Next, we will describe the syntax of ASP

programs:

Definition 2.1. An atom is a predicate of the form p(x1, ..., xn), n ≥ 0, where each xi is

a constant integer or string. When n = 0 parentheses are omitted. A negated atom is an

atom that is preceded by not.

Definition 2.2. A literal is an atom or its negation.

6



Definition 2.3. A clause is of the following form:

1. l0 : − l1, ..., ln.

2. : − l0, ..., ln.

Each clause has two parts: head and body. The head and the body part could be empty. If

body is empty, the rule is called a fact. Clauses of the form (2) are headless and are called

integrity constraints. They are treated as if false is in the head. The head succeeds only if

every literal in the body succeeds. For instance, in the clause p :- not q, r., the predicate

p succeeds if not q and r both succeed.

Definition 2.4. A normal logic program is a finite set of clauses defined in Definition 2.3.

With the exception of s(ASP) system (Marple et al., 2017), all current ASP engines

require an ASP program to be grounded. Grounding is the process of eliminating variables

and replacing them with all possible combinations of constants. For example given the

following clause:

r :- p(X), q(Y).

where X and Y can each be bound to 1 and 2, grounding will result in the following set of

propositional clauses:

r :- p(1), q(1).

r :- p(1), q(2).

r :- p(2), q(1).

r :- p(2), q(2).

There are various semantics for negation-as-failure. In this dissertation, we follow the Stable

Model Semantics by (Gelfond and Lifschitz, 1988). In this semantics not p holds if we fail

7



to establish a proof for p. Therefore, the semantics of an ASP program is defined in terms of

the transformation known as Gelfond-Lifschitz Transformation or GL method for computing

the stable models of an ASP program:

Definition 2.5. Gelfond-Lifschitz Transformation For a grounded ASP program P

and a potential stable model A, a residual program R is created as follows: for each literal

L ∈ A:

1. Remove any clause in P with not L in the body.

2. Remove any negative literals from the remaining clauses’ bodies.

Let F be the least fixed-point semantics of R. If F = A, then the potential stable model

A is indeed a stable model of P .

Finding the set of stable models of an ASP program P is an NP complete problem and

therefore, the GL method based on guess and check is just about the best method to find

the set of all stable models for P .

Example 2.1. We find all stable models for the following program:

(1) p :- not q.

(2) q :- not p.

Set of all candidate stable models includes {{p},{q},{p,q},{}}.

For A = {p}, clause (2) is removed,because, according to GL method rule #1, the body

contains not p. Then, following the GL method’s rule #2, not q is removed from the body

of clause (1). The resulting residual program R’s fixed-point is the set F = {p}. Since,

F = A, therefore, the potential stable model A is indeed a stable model for the program.

Similarly, we can show that {q} is another stable model for the program. For A = {p, q},

both clauses will be removed and therefore, the fixed-point of residual program R will become

the empty set. Thus, {p, q} is not a stable model for the original program.

Headless clauses or integrity constraints in ASP are clauses of the following form:

8



:- q1, ..., qn.

which equivalently could be re-written as:

p :- q, not p.

q :- q1,...,qn.

Under the stable model semantics, q is effectively forced to be false in any stable model,

because, otherwise, if p belongs to a stable model, the entire clause will be removed, and if p

does not belong to the dataset, according to rule #2 of GL method, the only way to prevent

a contradiction by having both p and not p in the same stable model is to force q to fail.

2.3 Default Theories

Default Logic (Reiter, 1980) is a non-monotonic logic to formalize reasoning with default

assumptions. Normal logic programs provide a simple and practical formalism for express-

ing default rules. A default rule of the form α1∧...∧αm:¬βm+1,...,¬βn
γ

can be formalized as the

following normal logic program:

γ ← α1, ..., αm, not βm+1, ..., not βn

where γ, αs and βs are positive predicates.

2.4 Inductive Logic Programming

The problem that we tackle in this dissertation is an inductive non-monotonic logic pro-

gramming problem which can be formalized as follows:

Given

• a background theory B, in the form of an extended logic program, i.e, clauses of the

form h← l1, ..., lm, not lm+1, ..., not ln. where l1, ...ln are positive literals and not denotes

negation-as-failure (NAF) with stable model semantics;

9



• two disjoint sets of grounded goal predicates E+,E−, known as positive and negative

examples respectively;

• a hypothesis language of predicates L including function and atom free predicates. It

also contains a set of arithmetic constraints of the form {A ≤ h,A ≥ h} where A is a

variable and h is a real number;

• a covers(H, E ,B) function, which returns the subset of E which is extensionally implied

by the current hypothesis H given the background knowledge B;

• a score(E+, E−,H,B) function, which specifies the quality of the hypothesis H with

respect to E+, E−,B;

Find

• a theory T for which covers(T , E+,B) is just E+ and covers(T , E−,B) is ∅.

10



CHAPTER 3

INDUCTIVE LEARNING OF DEFAULT THEORIES

3.1 Overview

Predictive models produced by classical machine learning methods are not comprehensible

for humans because they are algebraic solutions to optimization problems such as risk min-

imization or data likelihood maximization. These methods do not produce any intuitive

description of the learned model. This makes it hard for users to understand and verify the

underlying rules that govern the model. As a result, these methods do not produce any jus-

tification when they are applied to a new data sample. Also, extending the prior knowledge1

in these methods requires the entire model to be re-learned. Additionally, no distinction

is made between exceptions and noisy data. Inductive Logic Programming (Muggleton,

1991b), however, is one technique where the learned model is in the form of logic program-

ming rules (Horn clauses) that are more comprehensible and that allows the background

knowledge to be incrementally extended without requiring the entire model to be relearned.

This comprehensibility of symbolic rules makes it easier for users to understand and verify

the resulting model and even edit the learned knowledge.

Given the background knowledge and a set of positive and negative examples, ILP learns

theories in the form of Horn logic programs. However, Horn clauses are not sufficiently

expressive for representation and reasoning when the background knowledge is incomplete.

Additionally, ILP is not able to handle exception to general rules: it learns rules under the

assumption that there are no exceptions to them. This results in exceptions and noise being

treated in the same manner. Often, the exceptions to the rules themselves follow a pattern,

and these exceptions can be learned as well. The resulting theory that is learned is a default

1In the rest of the chapter we will use the term background knowledge to refer to prior knowledge
(Muggleton, 1991b).

11



theory, and in most cases this theory describes the underlying model more accurately. It

should be noted that default theories closely model common sense reasoning as well (Baral,

2003). Thus, a default theory, if it can be learned, will be more intuitive and comprehensible

for humans. Default reasoning also allows us to reason in absence of information. A system

that can learn default theories can therefore learn rules that can draw conclusions based on

lack of evidence, just like humans. Other reasons that underscore the importance of inductive

learning of default theories can be found in Sakama (Sakama, 2005) who also surveys other

attempts in this direction.

As an example, suppose we want to learn the concept of flying ability of birds. We

would like to learn the default rule that birds normally fly, as well as rules that capture

exceptions, namely, penguins and ostriches are birds that do not fly. Current ILP systems

will be thrown off by the exceptions and will not discover any general rule: they will just

either enumerate all the birds that fly or cover the positive examples without caring much

about the falsely covered negative examples. Other algorithms, such as FOIL, will induce

rules that are non-constructive and thus not helpful or intuitive.

In this chapter, we present two algorithms for learning default theories (i.e., non mono-

tonic logic programs), called FOLD (First Order Learner of Default) and FOLD-R, to handle

categorical and numeric features respectively. Unlike traditional ILP systems that learn stan-

dard logic programs (i.e., no negation is allowed), our algorithms learn non monotonic logic

programs (that allow negation-as-failure). Our algorithms are an extension of the FOIL

algorithm (Quinlan, 1990a) and support both categorical and numeric features. Whenever

needed, our algorithms introduce new predicates. The language bias (Mitchell, 1980) also

contains arithmetic constraints of the form {A ≤ h,A ≥ h}. The algorithms have been

implemented and tried on variety of datasets from the UCI repository. They have shown

excellent results that are presented here as well.

The default theories that we learn using our algorithm, as well as the background knowl-

edge used, is assumed to follow the stable model semantics. Stable model semantics, and its

12



realization in answer set programming(ASP), provides an elegant mechanism for handling

negation in logic programming (Gelfond and Lifschitz, 1988). We assume that the reader is

familiar with ASP and stable model semantics (Baral, 2003).

This chapter makes the following contributions: We propose a novel concrete algorithm

to learn default theories automatically in the absence of complete information. The proposed

algorithm, unlike the existing ones, is able to handle the numeric features without discretizing

them first, and is also capable of handling non-monotonic background knowledge. We provide

both qualitative and quantitative results from standard UCI datasets to support the claim

that our algorithm discovers more accurate as well as more intuitive rules compared to the

conventional ILP systems.

3.2 Background

Our algorithm to learn default theories is an extension of the FOIL algorithm (Quinlan,

1990a). FOIL is a top-down ILP system which follows a sequential covering approach to

induce a hypothesis. The FOIL algorithm is summarized in Algorithm 1. This algorithm

repeatedly searches for clauses that score best with respect to a subset of positive and

negative examples, a current hypothesis and a heuristic called information gain (IG).

The inner loop searches for a clause with the highest information gain using a general-to-

specific hill-climbing search. To specialize a given clause c, a refinement operator ρ under θ-

subsumption (Plotkin, 1971) is employed. The most general clause is p(X1, ..., Xn)← true.

where the predicate p/n is the predicate being learned and each Xi is a variable. The

refinement operator specializes the current clause h← b1, ...bn. This is realized by adding a

new literal l to the clause yielding h← b1, ...bn, l. The heuristic based search uses information

gain. In FOIL, information gain for a given clause is calculated as follows (Mitchell, 1997):

IG(L,R) = t

(
log2

p1
p1 + n1

− log2
p0

p0 + n0

)
(3.1)

13



Algorithm 1 Summarizing the FOIL algorithm

Input: goal,B, E+, E−
Output: Initialize H ← ∅
1: while (stopping criterion) do
2: c← (goal :- true.)
3: while (stopping criterion) do
4: for all c′ ∈ ρ(c) do
5: compute score(E+, E−,H ∪ {c′},B)
6: end for
7: let ĉ be the c′ ∈ ρ(c) with the best score
8: end while
9: add ĉ to H
10: E+ ← E+ \ covers(ĉ, E+)
11: end while

where L is the candidate literal to add to rule R, p0 is the number of positive bindings of R,

n0 is the number of negative bindings of R, p1 is the number of positive bindings of R + L,

n1 is the number of negative bindings of R+L, t is the number of positive bindings of R also

covered by R+L. FOIL handles negated literals in a naive way by adding the literal not L to

the set of specialization candidate literals for any existing candidate L. This approach leads

to learning predicates that do not capture the concept accurately as shown in the following

example.

Example 3.1. B, E+ are background knowledge and positive examples respectively with CWA

and the concept to be learned is fly.

B : bird(X)← penguin(X).

bird(tweety). bird(et).

cat(kitty). penguin(polly).

E+ : fly(tweety). f ly(et).

The FOIL algorithm would learn the following rule:

fly(X) :- not cat(X), not penguin(X).

14



which does not yield a constructive definition even though it covers all the positives (tweety

and et are not penguins and cats resp.) and no negatives (neither cats nor penguins do not

fly). In fact, the correct theory in this example is as follows: ”Only birds fly but, among

them there are exceptional ones who do not fly”. It translates to the following Prolog rule:

fly(X) :- bird(X), not penguin(X).

which FOIL fails to discover.

3.3 FOLD Algorithm

The idea of our FOLD algorithm is to learn a concept as a default and possibly multiple

exceptions. In that sense, FOLD tries first to learn the default by specializing a general rule of

the form goal(V1, ..., Vn)← true. with positive literals. As in FOIL, each specialization must

rule out some already covered negative examples without decreasing the number of positive

examples covered significantly. Unlike FOIL, no negative literal is used at this stage. Once

the IG becomes zero, this process stops. At this point, if some negative examples are still

covered, they must be either noisy data samples or exceptions to the so far learned rule.

As (Srinivasan et al., 1996) discuss, there is no pattern distinguishable in noise, whereas,

in exceptions, there may exist a pattern that can be described using the same language

bias. This can be viewed as a subproblem to (recursively) find the rules governing a bunch

of negative examples. To achieve that aim, FOLD swaps the current positive and negative

examples and recursively calls the FOLD algorithm to learn the exception rule(s). Each time

a rule is discovered for exceptions, a new predicate ab(V1, ..., Vn) is introduced. To avoid

name collision, FOLD appends a unique number at the end of the string ab to guarantee the

uniqueness of the invented predicates.

In case of noisy data or in the presence of uncertainty due to the lack of information, it

turns out that there is no pattern to learn. In such cases, FOLD enumerates the positive

15



examples for two purposes: first, this is essential for the training algorithm to converge,

second, it helps to detect noisy data samples.

Algorithm 2 shows a high level implementation of the FOLD algorithm. In lines

1-8, function FOLD, serves as the FOIL outer loop. In line 3, FOLD starts with the

most general clause (e.g fly(X) ← true.). In line 4, this clause is refined by calling

the function SPECIALIZE. In lines 5-6, set of positive examples and set of discov-

ered clauses are updated to reflect the newly discovered clause. In lines 9-29, the function

SPECIALIZE is shown. It serves as the FOIL inner loop. In line 12, by calling the func-

tion ADD BEST LITERAL the ”best” positive literal is chosen and the best IG as well as

the corresponding clause is returned. In lines 13-24, depending on the IG value, either the

positive literal is accepted or the EXCEPTION function is called. If, at the very first itera-

tion, IG becomes zero, then a clause that just enumerates the positive examples is produced.

A flag called just started handles this checking. In lines 26-27, the sets of positive and

negative examples are updated to reflect the changes of the current clause. In line 19, the

EXCEPTION function is called while swapping the E+, E−.

In line 31, we find the ”best” positive literal that covers more positive examples and

fewer negative examples. Again, note the current positive examples are really the negative

examples and in EXCEPTION function, we try to find the rule(s) governing the exception.

In line 33, FOLD is recursively called to extract this rule(s). In line 34, a new ab predicate

is introduced and in lines 35-36 it is associated with the body of the rule(s) found by the

recurring FOLD function call in line 33. Finally, in line 38, default and exception are attached

together to form a single clause.

The FOLD algorithm, once applied to Example 3.1 yields the following clauses:

fly(X) :- bird(X), not ab0(X).

ab0(X) :- penguin(X).

16



Algorithm 2 FOLD Algorithm

Input: goal,B, E+, E−
1: function FOLD(E+, E−)
2: while (size(E+) > 0) do
3: c← (goal :- true.)
4: ĉ← specialize(c, E+, E−)
5: E+ ← E+ \ covers(ĉ, E+)
6: D ← D ∪ {ĉ}
7: end while
8: end function
9: function SPECIALIZE(c, E+, E−)
10: just started← true
11: while (size(E−) > 0) do
12: (cdef , ˆIG)← add best literal(c, E+, E−)
13: if ˆIG > 0 then
14: ĉ← cdef
15: else
16: if just started then
17: ĉ← enumerate(c, E+)
18: else
19: ĉ← exception(c, E−, E+)
20: if ĉ = null then
21: ĉ← enumerate(c, E+)
22: end if
23: end if
24: end if
25: just started← false
26: E− ← E− \ covers(ĉ, E−)
27: end while
28: end function
29: function EXCEPTION(cdef , E+, E−)
30: ˆIG← add best literal(c, E+, E−)
31: if ˆIG > 0 then
32: c set← FOLD(E+, E−)
33: c ab← generate next ab predicate()
34: for each c ∈ c set do
35: AB ← AB ∪ {c ab:- bodyof(c)}
36: end for
37: ĉ← (headof(cdef ):- bodyof(c),not(c ab))
38: else
39: ĉ← null
40: end if
41: end function

17



Now, we illustrate how FOLD discovers the above set of clauses given E+ = {tweety, et}

and E− = {polly, kitty} and the goal fly(X). By calling FOLD, in line 2 ”while”, the clause

fly(X)← true. is specialized. In SPECIALIZE function, in line 12, the literal bird(X) is

picked to add to the current clause, to get the clause ĉ = fly(X)← bird(X) which happened

to have the greatest IG among {bird, penguin, cat}. Then, in line 26-27 the following updates

are performed: E+ = {},E− = {polly}. A negative example polly, a penguin is still covered.

In the next iteration, SPECIALIZE fails to introduce a positive literal to rule it out since

the best IG in this case is zero. Therefore, the EXCEPTION function is called by swapping

the E+, E−. Now, FOLD is recursively called to learn a rule for E+ = {polly}, E− = {}. The

recursive call (line 33), returns fly(X) ← penguin(X) as the exception. In line 34 a new

predicate ab0 is introduced and in line 35-37 the clause ab0(X) ← penguin(X) is created

and added to the set of invented abnormalities namely, AB. In line 38, the negated exception

(i.e not ab0(X)) and the default rule’s body (i.e bird(X)) are compiled together to form the

clause fly(X)← bird(X), not ab0(X).

Note, in two different cases enumerate is called. First, at very first iteration of special-

ization if IG is zero for all the positive literals. Second, when the Exception routine fails to

find a rule governing the negative examples. Whichever is the case, corresponding samples

are considered as noise. The following example shows the learned logic program in presence

of noise.

Example 3.2. Similar to Example 2.1, plus we have an extra positive example fly(jet) with-

out any further information:

B : bird(X)← penguin(X).

bird(tweety). bird(et).

cat(kitty). penguin(polly).

E+ : fly(tweety). f ly(jet). f ly(et).

FOLD algorithm on the Example 3.2 yields the following clauses:

18



fly(X) :- bird(X), not ab0(X).

fly(X) :- member(X,[jet]).

ab0(X) :- penguin(X).

FOLD recognizes jet as a noisy data. member/2 is a built-in predicate in SWI-Prolog to

test the membership of an atom in a list.

Sometimes, there are nested levels of exceptions. The following example shows how

FOLD manages to learn the correct theory in presence of nested exceptions.

Example 3.3. Birds and planes normally fly, except penguins and damaged planes that

can’t. There are super penguins who can, exceptionally, fly.

B : bird(X)← penguin(X).

penguin(X)← superpenguin(X).

bird(a). bird(b). penguin(c). penguin(d).

superpenguin(e). superpenguin(f). cat(c1).

plane(g). plane(h). plane(k). plane(m).

damaged(k). damaged(m).

E+ : fly(a). f ly(b). f ly(e).

f ly(f). f ly(g). f ly(h).

FOLD algorithm learns the following theory:

fly(X) :- plane(X), not ab0(X).

fly(X) :- bird(X), not ab1(X).

fly(X) :- superpenguin(X).

ab0(X) :- damaged(X).

ab1(X) :- penguin(X).

Theorem 3.1. The FOLD algorithm terminates on any finite set of examples.

19



Proof. It suffices to show that the size of E+ on every iteration of FOLD function decreases

(at line 5) and since E+ is a finite set, it will eventually becomes empty and the while

loop terminates. Equivalently, we can show that every time the SPECIALIZE function is

called, it terminates and a clause ĉ that covers a non-empty subset of E+ is returned. Inside

SPECIALIZE function, if E− is empty, then the function returns its input clause and the

theorem trivially holds. Otherwise, two cases might happen: First, it produces a clause

which enumerates E+ and covers no negative example, returns immediately and again the

theorem trivially holds. Second, it calls the EXCEPTION function which may lead to a

chain of recursive calls on FOLD function. In this case it suffices to show that on a chain of

recursive calls on FOLD, the size of function argument i.e. E+ decreases each time. That’s

indeed the case because every time a literal is added to the current clause in line 12, it

decreases the size of covered negative examples from E−, which in turn becomes the new

E+ as the EXCEPTION function and subsequently the FOLD function is called. Therefore,

on consecutive calls to FOLD function, the size of input argument E+ is decreased hence it

eventually terminates.

3.4 Numeric Extension of FOLD

ILP systems have limited application to data sets containing a mix of categorical and nu-

merical features. A common way to deal with numerical features is to discretize the data

to qualitative values. This approach leads to accuracy loss and requires domain expertise.

Instead, we adapt the approach taken in the well-known C4.5 algorithm (Quinlan, 1993).

This algorithm is ranked no. 1 in the survey paper ”Top 10 algorithms in datamining”, (Wu

et al., 2007). For a numeric feature A, constraints such as {A ≤ h,A > h} have to be consid-

ered where the threshold h is found by sorting the values of A and choosing the split between

successive values that maximizes the information gain. In our FOLD-R algorithm that we

propose and describe next, we perform the same method for a set of operators {<,≤} and

20



pick the operator and threshold which maximizes the information gain. Also, we need to

extend the ILP language bias to support the arithmetic constraints.

Unlike the categorical features for which we use propositionalization (Kramer et al., 2000)

,for numeric features we define a predicate that contains an extra variable which always pairs

with a constraint. For example to extend the language bias for a numeric quantity ”age” we

could define predicates of the form age(a, b) in the background knowledge, and the candidate

to specialize a clause might be as follows: age(X,N), N ≤ 5. However, the predicate age/2

never appears without the corresponding constraint.

Algorithm 3 illustrates the high level changes made to FOLD, in order to obtain the

FOLD-R algorithm. The function test categorical, as before, chooses the best categorical

literal to specialize the current clause. The function test numeric chooses the best numeric

literal as well as the best arithmetic constraint and threshold with the highest IG. In line 5, if

neither one leads to a positive IG, exception is tried. If exception also fails, then enumerate

is called. Otherwise, IGs are compared and whichever is greater, the corresponding clause

is chosen as the specialized clause of the current iteration.

Example 3.4. Table ?? adapted from (Quinlan, 1993) is a dataset with numeric features

”temperature” and ”humidity”. ”Outlook” and ”Windy” are categorical features. Our FOLD-

R algorithm, for the goal play(X), and positive examples shown as records with label ”Play”,

and negative examples shown as records with label ”Don’t Play” outputs the following clauses:

play(X) :- overcast(X).

play(X) :- temperature(X, A), A <= 75, not ab0(X).

ab0(X) :- windy(X), rainy(X).

ab0(X) :- humidity(X, A), A >= 95, sunny(X).

FOLD-R results suggest an abnormal day to play is either a rainy and windy day or a sunny

day with above 95% humidity.

21



Algorithm 3 FOLD-R Algorithm, Specialize function. The rest of the functions remain
unchanged

1: function SPECIALIZE(c, E+, E−)
2: while (size(E−) > 0) do
3: (ĉ1, ˆIG1)← test categorical(c, E+, E−)
4: (ĉ2, ˆIG2)← test numeric(c, E+, E−)
5: if ˆIG1 = 0 & ˆIG2 = 0 then
6: ĉ← exception(c, E−, E+)
7: if ĉ = null then
8: ĉ← enumerate(c, E+)
9: end if
10: else
11: if ˆIG1 ≥ ˆIG2 then
12: ĉ← ĉ1
13: else
14: ĉ← ĉ2
15: end if
16: end if
17: E− ← E− \ covers(ĉ, E−)
18: end while
19: end function

Table 3.1: Play Tennis data-set, Numeric version

Outlook Temperature Humidity Wind PlayTennis

sunny 75 70 true Play
sunny 80 90 true Don’t Play
sunny 85 85 false Don’t Play
sunny 72 95 false Don’t Play
sunny 69 70 false Play

overcast 72 90 true Play
overcast 83 78 false Play
overcast 83 65 true Play
overcast 81 75 false Play

rain 71 80 true Don’t Play
rain 65 70 true Don’t Play
rain 75 80 false Play
rain 68 80 false Play
rain 70 96 false Play

22



3.5 Experiments and Results

This section presents the results obtained with FOLD-R algorithm on some of the standard

UCI datasets. To conduct the following experiments, we implemented the algorithm in Java.

We used Prolog queries to process the background knowledge (the background knowledge

is assumed to be represented as a standard Prolog program). For performing information

gain computations and CWA generation of negative examples, we made use of the JPL

library (Singleton and Dushin, 2003) which interfaces SWI-Prolog (Wielemaker et al.,

2012) with Java. Our intention here is to investigate the quality of discovered rules both in

terms of their accuracy and the degree to which they are consistent with the common sense

understanding from the underlying concepts. To measure the accuracy, we implemented

10-fold cross-validation on each dataset and the mean of calculated accuracy is represented

while the standard deviation for all the datasets were 5 percent or lower. At present, we are

not greatly interested in the running time and/or space complexity of the algorithm: this

will be subject of future research. All the learning tasks were preformed using a PC with

Intel(R) Core(TM) i7-4700HQ CPU @ 2.40GHz and 8.00 GB RAM and the execution time

is just a matter of minutes if not seconds. The bottleneck is the function that sorts the

numeric values to pick the best threshold and operator. There are solutions to get around

this such as (Catlett, 1991).

Labor Relations: The data includes a set of contracts which depending on their features

(16 features) are classified as good or bad contracts. The following set of clauses for a good

contract are discovered by FOLD-R:

good_cont(X) :- wage_inc_f(X,A), A > 2, not ab0(X).

good_cont(X) :- holidays(X,A), A > 11.

good_cont(X) :- hplan_half(X), pension(X).

ab0(X) :- no_long_disability_help(X).

ab0(X) :- no_pension(X).

23



According to the first rule, a contract with 2 percent wage increase (default) is a good

contract except when the employer does not contribute in a possible long-term disability

and a pension plan. According to the second rule, a contract with holidays above 11 days is

also good. And finally, if employer contributes in half of the health plan and entire pension

plan, the contract is good.

Mushroom: This dataset includes descriptions of different species of mushrooms and their

features which are used to classify whether they are poisonous or edible. The following set

of clauses for a poisonous mushroom is discovered by FOLD:

poisonous(X) :- ring_type_none(X).

poisonous(X) :- spore_print_color_green(X).

poisonous(X) :- gill_size_narrow(X), not ab2(X).

poisonous(X) :- odor_foul(X).

ab0(X) :- population_clustered(X).

ab0(X) :- stalk_surface_below_ring_scaly(X).

ab1(X) :- stalk_shape_enlarging(X).

ab2(X) :- gill_spacing_crowded(X),not ab1(X).

ab2(X) :- odor_none(X), not ab0(X).

Note, the induced theory has nested exceptions. This nesting happens as a result of finding

patterns for negative examples, which makes the FOLD algorithm perform more recursions

until no covered negative example is left.

Table 3.2 compares the accuracy of FOLD-R algorithm against that of ALEPH (Srinivasan,

2001). The examples have been picked from well-known standard datasets for some of which

ALEPH exhibits low test accuracy. In most cases, FOLD-R accuracy outperforms ALEPH.

The experiments suggest when absence of a particular feature value plays a crucial role

in classification, our algorithm shows a meaningful higher accuracy. This comes from the

24



Table 3.2: FOLD-R evaluation on UCI benchmarks

dataset size ALEPH accuracy(%) FOLD-R accuracy(%)

Credit-au 690 82 83
Credit-j 125 53 81
Credit-g 1000 70.9 78

Iris 150 85.9 95
Ecoli 336 91 90

Bridges 108 89 90
Labor 57 89 94

Acute(1) 34 100 100
Acute(2) 34 100 100

Mushroom 7724 100 100

fact that the classical ILP algorithms only make use of existent information as opposed

to negation-as-failure in which a decision is made based on the absence of information.

As an example, in the credit-j dataset, our algorithm generates 4 rules with abnormality

predicates. These rules cover positive examples which without abnormality predicates would

have remained uncovered. However, in Bridges and Ecoli where no abnormality predicate

is introduced by our algorithm, both ALEPH and FOLD-R end-up with almost the same

accuracy.

Even in cases where no improvement over accuracy is achieved, our default theory ap-

proach leads to simpler and more intuitive rules. As an example, in case of Mushroom, other

ILP systems, including ALEPH and FOIL, would produce 9 rules with 2 literals each in the

body to cover all the positives, while our FOLD algorithm, produces 3 single-literal rules

and 1 rule with 2 literals in which the second literal takes care of the exceptions.

3.6 Non Observation Learning Using FOLD

In usual machine learning setting of “Observation Predicate Learning” (OPL), examples

and hypotheses define the same predicate. In contrast, non-OPL setting allows to have

examples other than the ground target predicate. Non-OPL setting is natural for many

25



problems (Muggleton and Bryant, 2000). Therefore, a natural extension of FOLD would be

to include non-OPL setting. Intuitively, non-OPL requires to obtain how each non-target

example impacts the correct hypothesis in terms of target ground atoms. The following

example shows how a non-target ground predicate could be expressed in terms of positive

and negative examples of the target predicate.

Example 3.5. Consider the following Background knowledge. Given the positive example

set E+ = {p(a), r(c)}, E− = {p(d)}, we want to learn the target r(X).

(1) p(X) :- s(X), not r(X). (3) q(a,b).

(2) s(X) :- q(X,Y), r(Y). (4) s(d).

Since B ∪ H must imply p(a), from rule (1) we get s(a) must hold and r(a) should not.

For s(a) to hold, from rule (2) we get q(a, Y ), r(Y ) must hold. Such Y indeed exists from

fact (3). Therefore, r(b) must hold too. p(a) requires r(b) and not r(a). Therefore, p(a)

can be replaced by new examples, i.e., r(b) a new positive example, and r(a), a new negative

example. The impact of p(d) as a negative example is to force r(d) not to hold, because, from

(4) we get s(d) holds, therefore, r(d) must not. Hence, r(d) is a new negative example and

replaces p(d).

The computation performed in Example 3.5 to replace non-target examples with target

examples is realized using abduction in a goal-directed answer set programming system

called s(ASP) (Marple et al., 2017; Gupta, 2017). The s(ASP) system takes an answer

set program P and a query goal Q as inputs and enumerates all answer sets that contain

the propositions/predicates in Q. This enumeration employs co-inductive SLD resolution

to systematically compute elements of the greatest fixed point (GFP) of a program via

backtracking. The advantage of s(ASP) over other answer set solvers is that it would lift the

restriction that answer set programs must be finitely groundable. In order to process a query

Q, s(ASP) would produce a set called the “partial answer set” containing the elements that

26



are necessary to establish Q. The s(ASP) system also allows a query to run abductively, by

first defining a set of predicates as abducible. By doing so, if success of a query Q depends

on assuming a fact that belongs to the set of abducibles, Q abductively succeeds and the

abducibles are added to the set of partial answer set associated with Q.

Algorithm 4 shows the required steps in order to solve a non-OPL ILP problem using

FOLD. In case of Example 3.5, p(a) is a non-target example. By running s(ASP) and defining

Algorithm 4 Non-OPL Version of FOLD Algorithm

Input: target, B,E+, E−

Output: Hypothesis H
1: abduced+, abduced− = { }
2: Let Q be the query: ?− E+, not E−

3: Run Q on s(ASP) 〈B,#abducibles = {target}〉 . Run s(ASP) with B as input
4: Let P = partial answer set associated with Q
5: for each p ∈ P s.tpred(p) == target do
6: if sign(p) == + then
7: abduced+ ← abduced+ ∪ {p}
8: else
9: abduced− ← abduced− ∪ {p}
10: end if
11: end for
12: E+ ← E+ ∪ abduced+

13: E− ← E− ∪ abduced−

14: Run FOLD〈B,E+, E−, target〉

#abducible r(X), the following partial answer set is produced by s(ASP) on the following

query: ?- p(a).

{p(a), q(a,b), r(b), s(a), not r(a)}

r(b) and r(a) are added to the set of positive and negative examples, respectively. It should

be noted that the above set of predicates are relevant to establish the query ?- p(a). In

practice, this is a small subset of the original stable model. The fact that s(ASP) does

not ground the answer set program, makes this approach scalable comparing to SAT based

answer set solvers.

27



3.7 Related Work

Sakama in (Sakama, 2005) discusses the necessity of having a non-monotonic language bias

to perform induction for default reasoning. It surveys some of the proposals directly adapted

from ILP, like inverse resolution (Muggleton and Buntine, 1988) and inverse entailment

(Muggleton, 1995a) then he explains why these are not applicable to the non-monotonic

logic programs. Sakama then introduces an algorithm to induce rules from answer sets

which generalizes a rule from specific grounded rules in a bottom-up fashion. His approach

in some cases yields premature generalizations that produces redundant negative literals in

the body of the rule and therefore over-fitted to the “training data”. The following example

illustrates what Sakama’s algorithm would produce:

Example 3.6.

B : bird(X)← penguin(X).

bird(tweety). bird(et).

bear(teddy). crippled(et).

cat(kitty). penguin(polly).

E+ : fly(tweety).

and the algorithm outputs the following rule:

fly(X) :- bird(X), not cat(X), not penguin(X), not bear(X), not crippled(X).

in which some of the literals including not cat(X) and not bear(X) are redundant.

Additionally, since ASP systems have to ground the predicates to produce the answer

set, introducing numeric data in background knowledge and also in the language bias is pro-

hibited. Similarly, (Inoue and Kudoh, 1997) proposes a bottom-up algorithm in two phases:

First, producing monotonic rules by a Horn ILP, then specializing them by introducing

negated literals to the body of the rule.

28



In a different line of research (Dimopoulos and Kakas, 1995), describes an algorithm to

learn exception using the patterns in the negative examples. However, they don’t make any

use of NAF as the core notion of reasoning in the absence of complete information and instead

their algorithm learns a hierarchical logic program including classical negation in which the

order of rules prioritize their application and therefore it’s not naturally compatible with

standard Prolog.

The idea of swapping positive and negative examples to learn patterns from negative

examples has first been discussed in (Srinivasan et al., 1996) where a bottom-up ILP algo-

rithm is proposed to specialize a clause after it has already been generalized and still covers

negative examples. In contrast, we believe our FOLD algorithm with a top-down approach

is a better fit thanks to its support for numeric features and better scalability, lack of both

are inherent problems in bottom-up ILP methods.

ALEPH (Srinivasan, 2001) is one of the most widely used ILP systems that uses a

bottom-up generalization search to induce theories that covers the maximum possible positive

examples. However, since the induced theory might be overly generalized, there is an option

to refine the theory by introducing abnormality predicates that rule out negative examples

by specializing an overly generalized rule. This specialization step is manual and unlike our

algorithm, no automation is offered by ALEPH. Also, ALEPH does not support numeric

features.

One of the advantages of our FOLD-R algorithm over the existing systems is the ability to

handle non-monotonic background knowledge. The conventional ILP systems use standard

Prolog to handle the background whereas, FOLD-R once integrated with a top down answer

set programming system like s(ASP) (Marple and Gupta, 2012), queries the background

knowledge instead of producing the entire answer set and hence is scalable and applicable

to a non-monotonic background knowledge. Further improvement on the accuracy of model

predictions using boosting techniques and providing the justification when ensemble methods

29



are performed, is subject to more research. Future work also includes applying our algorithms

to real world problems with large datasets.

30



CHAPTER 4

INDUCTIVE LEARNING OF ASP PROGRAMS WITH MULTIPLE

STABLE MODELS

4.1 Overview

ILP learns theories in the form of Horn clause logic programs. Extending Horn clauses with

negation as failure (NAF) results in more powerful applications becoming possible as infer-

ences can be made even in absence of information. This extension of Horn clauses with NAF

where the meaning is computed using the stable model semantics (Gelfond and Lifschitz,

1988)—called Answer Set Programming 1—has many powerful applications. Generalizing

ILP to learning answer set programs also makes ILP more powerful. For a complete discus-

sion on the necessity of NAF in ILP, we refer the reader to (Sakama, 2005).

Once NAF semantics is allowed into ILP systems, they should be able to deal with

multiple stable models which arise due to presence of mutually recursive rules involving

negation (called even cycles) (Gelfond and Lifschitz, 1988) such as:

p :- not q.

q :- not p.

XHAIL (Ray, 2009), ASPAL (Corapi et al., 2012), ILASP (Law et al., 2014) are among

the recently emerged systems capable of learning non-monotonic logic programs. However,

they all resort to an exhaustive search for the hypothesis. The exhaustive search is not

scalable on practical datasets. For instance, (all versions of) ILASP training procedure

times-out after couple of hours on “Moral Reasoner” a dataset from the UCI repository.

This is a small dataset containing roughly 200 examples and 50 candidate predicates in

language bias.

1We use the term answer set programming in a generic sense to refer to normal logic programs, i.e., logic
programs extended with NAF, whose semantics is given in terms of stable models (Gelfond and Kahl, 2014).

31



In contrast, traditional ILP systems (that only learn Horn clauses), use heuristics to guide

their search. Use of heuristics allows them to avoid an exhaustive search. These systems

usually start with the most general clauses and then specialize them. They are better suited

for large-scale data-sets with noise, since the search can be easily guided by heuristics. FOIL

(Quinlan, 1990a) is a representative of such algorithms. However, handling negation in FOIL

is somewhat problematic as we discuss in (Shakerin et al., 2017). Also, FOIL cannot handle

background knowledge with multiple stable models, nor it can induce answer set programs.

In chapter 3 we presented the FOLD a algorithm (Shakerin et al., 2017) to automate

inductive learning of default theories represented as stratified answer set programs. FOLD

(First Order Learner of Default rules) extends the FOIL algorithm and is able to learn an-

swer set programs that represent the underlying knowledge very succinctly. However, FOLD

is only limited to dealing with stratified answer set programs, i.e., mutually recursive rules

through negation are not allowed in the background knowledge or the hypothesis. Thus,

FOLD is incapable of handling cases where the background knowledge or the hypothesis

admits multiple stable models. In this chapter, we extend the FOLD algorithm to allow

both the background knowledge and the hypothesis to have multiple stable models. The

extended FOLD algorithm—called the XFOLD algorithm—is much more general than pre-

viously proposed methods.

4.2 The XFOLD Algorithm

In this section we extend our FOLD algorithm to learn normal logic programs that potentially

have multiple stable models. The significance of Answer Set Programming paradigm is that

it provides a declarative semantics under which each stable model is associated with one

(alternative) solution to the problem described by the program. Typical problems of this

kind are combinatorial problems, e.g., graph coloring and N-queens. In graph coloring, one

should find different ways of coloring nodes of a graph without coloring two nodes connected

32



by an edge with the same color. N-queen is the problem of placing N queens in a chessboard

of size N ×N so that no two queens attack each other.

In order to inductively learn such programs, the ILP problem definition needs to be

revisited. In the new scenario, positive examples e ∈ E+, may not hold in every model.

Therefore, the ILP problem described in the background section would only allow learning

of predicates that hold in all answer sets. This is too restrictive. Brave induction (Sakama

and Inoue, 2009), in contrast, allows examples to hold only in some stable models of B ∪H.

However, as stated in (Law et al., 2014), and we will show using examples, this is not enough

when it comes to learning global constraints (i.e, rules with empty head)2. Learning global

constraints is essential because certain combinations may have to be excluded from all answer

sets.

When B ∪H has multiple stable models, there will be some instances of target predicate

that would hold in all, none, or some of the stable models. Brave induction is not able

to express situations in which a predicate should hold in all or none of the stable models.

An example is a graph in which node 1 is colored red. In such a case, none of node 1’s

neighbors should be colored red. If node 1 happens to have node 2 as a neighbor, brave

induction is not able to express the fact that if the atom red(1) appears in any stable model

of B ∪ H, red(2) should not. In (Law et al., 2014), the authors propose a new paradigm

called learning from partial answer sets that overcomes these limitations. We also adopt this

paradigm in this work. Next, we present our XFOLD algorithm.

Definition 4.1. A partial interpretation E is a pair E = 〈Einc, Eexc〉 of sets of ground atoms

called inclusions and exclusions, respectively. Let A ∈ AS(B ∪H) denote a stable model of

B ∪H. A extends 〈Einc, Eexc〉 if and only if (Einc ⊆ A) ∧ (Eexc ∩ A = ∅).

2Recall that in answer set programming, a constraint is expressed as a headless rule of the form
:- B.

which states that B must be false. A headless rule is really a short-form of rules of the form (called odd
loops over negation (Gelfond and Kahl, 2014)):
p :- B, not p.

33



Example 4.1. Consider the following background knowledge about a group of friends some of

whom are in conflict with others. The individuals in conflict will not attend a party together.

Also, they cannot attend a party if they work at the time the party is held. We want our ILP

algorithm to discover the rule(s) that will determine who will go to the party based on the set

of partial interpretations provided.

B : conflict(X,Y) :- person(X), person(Y), conflict(Y,X).

works(X) :- person(X), not off(X).

off(X) :- person(X), not works(X).

person(p1). person(p2). conflict(p1,p4).

person(p3). person(p4). person(p5). conflict(p2,p3).

Some of the partial interpretations are as follows:

The predicates g,w,o abbreviate goesToParty, works, off respectively:

E1 = {〈g(p1), g(p2), o(p1), o(p2), w(p3), o(p4), w(p5)〉, 〈g(p3), g(p4), g(p5)〉}

E2 = {〈g(p3), g(p4), g(p5), o(p1), o(p2), o(p3), o(p4), o(p5)〉, 〈g(p1), g(p2)〉}

E3 = {〈g(p1), g(p3), g(p5), o(p1), o(p2), o(p3), w(p4), o(p5)〉, 〈g(p2), g(p4)〉}

E4 = {〈g(p2), g(p5), g(p5), w(p1), o(p2), w(p3), w(p4), o(p5)〉, 〈g(p1), g(p3), g(p4)〉}

In the above example, each Ei for i = 1,2,3,4 is a partial interpretation and should be

extended by at least one stable model of B ∪ H for a learned hypothesis H. For instance,

let’s consider the hypothesis H1 = {goesToParty(X) :- off(X)} for learning the target

predicate goesToParty(X). By plugging the background knowledge, the non-target predi-

cates in E1, and the hypothesis H1 into an ASP solver (CLASP (Gebser et al., 2012) in our

case), the stable model returned by the solver would contain the following:

{goesToParty(p1),goesToParty(p2),goesToParty(p4)}.

It does not extend E1. Although, Einc
1 ⊆ AS(B ∪H1) but AS(B ∪H1)∩Eexc

1 6= ∅. It should

be noted that non-target predicates are treated as background knowledge upon calling ASP

solver to compute the stable model of B ∪H.

34



Definition 4.2. An XFOLD problem is defined as a tuple P = 〈B,L,E+, E−, T 〉. B is a

answer set program with potentially multiple stable models called the background knowledge.

L is the language-bias such that L = 〈Mh,Mb〉, where Mh (resp. Mb) are called the head

(resp. body) mode declarations (Muggleton, 1995b).

Each mode declaration mh ∈Mh (resp. mb ∈Mb) is a literal whose abstracted arguments

are either variable v or constant c. Type of a variable is a predicate defined in B. The domain

of each constant should be defined separately. Hypothesis h is said to be compatible with

a mode declaration m if each instance of variable in m is replaced by a variable, and every

constant takes a value from the associated domain. The set of candidate predicates in the

greedy search algorithm are selected from Mb ∪Mh.

XFOLD is extended with mode declaration to make sure that every clause generated

is safe for the ASP solver CLASP as it needs to ground the program. To obtain a finite

grounded program, CLASP must ensure that every variable is safe. A variable in head is

safe if it occurs in a positive literal of body. XFOLD adds predicates required to ensure

safety, but to keep our examples simple, we omit safety predicates. E+ and E− are sets of

partial interpretations called positive and negative examples, respectively. T ∈ Mh is the

target predicate’s name. Each XFOLD run learns a single target predicate. A hypothesis

h ∈ L is an inductive solution of T if and only if:

1. ∀e+ ∈ E+∃A ∈ AS(B ∪H) such that A extends e+

2. ∀e− ∈ E− 6 ∃A ∈ AS(B ∪H) such that A extends e−

The above definition adopted from (Law et al., 2014) subsumes brave and cautious in-

duction semantics (Sakama and Inoue, 2009). Positive examples should be extended by at

least one stable model of B ∪ H (brave induction). In contrast, no stable model of B ∪ H

extends negative examples (cautious induction). The generate and test problems such as

35



Figure 4.1: Partial interpretations as examples in graph coloring problem

N-queen and graph coloring could be induced using our XFOLD algorithm. It suffices to use

positive examples for learning the generate part and negative examples for learning the test

part.

Figure 4.1 represents the input to the XFOLD algorithm for learning an answer set

program for graph coloring. Every positive example states if a node is colored red, then

that node cannot be painted blue or green. Likewise for blue and green. However, this is

not enough to learn the constraint that two nodes connected by an edge cannot have the

same color. To learn this constraint, negative examples are needed. For instance, E−1 , states

that if any stable model of B ∪H contains {red(1)}, in order not to extend E−1 , it should

contain {not red(2)} or equivalently, it should not contain {red(2)}. Intuitively, XFOLD

is similar to FOLD and FOIL: To specialize a clause cl, for every positive example e ∈ E+,

the background knowledge B, all non-target predicates in einc and cl are passed to the ASP

solver as inputs. The resulting answer set is compared with the target predicates in einc

and eexc to compute a partial score. Next, by summing up all partial scores, total score of

that clause is computed. Among all candidate clauses, the one with highest total score is

selected. Once for all e ∈ E+ no target predicate in eexc is covered, the internal loop finishes

and the discovered rule(s) are added to the learned theory. Just like FOLD, if no literal

with positive score exists, swapping occurs on each remaining partial interpretation and the

XFOLD algorithm is recursively called. In this case, instead of introducing abnormality

36



Algorithm 5 The XFOLD Algorithm

Input: target, B, {e = (einc, eexc)|e ∈ E+)}
Output: Hypothesis H

function SPECIALIZE(cl, B,E+) . Other functions remain unchanged as in FOLD
while ∃e ∈ E+ such that eexc! = ∅ do

for each c ∈ ρ(cl) do . FOIL inner loop (refinement)
for each ei ∈ E+ do

compute partial score[i][c] . partial score for each clause
end for
total score[c] =

∑
ei∈E+ partial score[i][c]

end for
Let c best, max score, be the clause with the highest score and its associated score
if max score > 0 then

cl ← c best
H ← H ∪ {cl}

else
E swapped+ = Swap(E+)
XFold(B,E swapped+,−target)

end if
update E+

end while
end function

predicates, the negation symbol, ”-”, is prefixed to the current target predicate to indicate

that the algorithm is now trying to learn the negation of concept being learned. It should

also be noted that swapping examples is performed slightly differently due to the existence

of partial interpretations. For each e ∈ E+ the following operations are performed upon

swapping:

1. ∀t ∈ einc, where t is an old target atom already covered and removed, t is restored

2. ∀t ∈ einc, where t is an old target atom, −t is added to eexc

3. ∀t ∈ eexc, where t is an old target atom, −t is added to einc

4. T ← −T . (Target predicate T now becomes its negation, -T)

37



Figure 4.2: Trace of XFOLD execution on the Party Example

Figure 4.2 shows execution of XFOLD on Example 4.1. At the end of first iteration, the

predicate off(X) gets the highest score. E4 will be removed as it is already covered by

the current hypothesis. In the second iteration, all candidate literals fail to get a positive

score. Therefore, swapping of positive and negative examples occurs and algorithm tries to

learn the predicate -goesToParty(X). Since the new target predicate is -goesToParty(X),

all ground atoms of goesToParty in Einc are restored back. The old target atoms in Eexc

are transformed to negated version and become members of Einc. In Figure 4.2, after one

iteration E4 is removed because all target atoms in Einc are already covered and targets

atoms in Eexc are already excluded. After swapping, XFOLD is recursively called to learn

-goesToParty. After 2 iterations, all examples are covered and the algorithm terminates.

In Example 4.1, we haven’t introduced any explicit negative example. Nevertheless, the

algorithm was able to successfully find the cases in which the original target predicate does

38



not hold (via learning -goesToParty(X) predicate). In general, it is not always feasible for

the algorithm to figure out prohibited patterns without getting to see a very large number

of positive examples.

4.3 Application: Combinatorial Problems

A well-known methodology for declarative problem solving is the generate and test method-

ology, whereby possible solutions to a problem are generated first, and then non-solutions

are eliminated by testing. In Answer Set Programming, the generate part is encoded by

enumerating the possibilities by introducing even cycles. The test part is realized by having

constraints that would eliminate answer sets that violate the test conditions. ASP syntax

allows rules of the form l{h1, ..., hk}u such that 0 ≤ l ≤ u ≤ k and ∀i ∈ [1, k], hi ∈ L, where

L is the language bias. This syntactic sugar for combination of even cycles and constraints

is called choice rule in the literature (Gelfond and Kahl, 2014).

ILASP (Law et al., 2014) directly searches for choice rules by including them in the search

space. XFOLD, on the other hand, performs the search based on θ-subsumption (Plotkin,

1971) and hence disallows search for choice rule hypotheses. Instead, it directly learns even

cycles as well as constraints. This is advantageous as it allows for more sophisticated and

flexible language bias.

It turns out that inducing the generate part in a combinatorial problem such as graph-

coloring requires an extra step compared to the FOLD algorithm. For instance, red(X)

predicate has the following clause:

red(X):- not blue(X), not green(X).

To enable XFOLD to induce such a rule, we adopted the “Mathews Correlation Coeffi-

cient” (MCC) (Zeng et al., 2014) measure to perform the task of feature selection. MCC is

calculated as: MCC = TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

39



This measure takes into account all the four terms TP (true positive), TN (true negative),

FP (false positive) and FN (false negative) in the confusion matrix and is able to fairly assess

the quality of classification even when the ratio of positive tuples to the negative tuples is

not close to 1. The MCC values range from -1 to +1. A coefficient of +1 represents a

perfect classification, 0 represents a classification that is no better than a random classifier,

and -1 indicates total disagreement between the predicted and the actual labels. MCC

cannot replace XFOLD heuristic score, i.e, information gain, because the latter tries to

maximize the coverage of positive examples, while the former only maximally discriminates

between the positives and negatives. Nevertheless, for the purpose of feature extraction

among the negated literals which are disallowed in XFOLD algorithm, MCC can be applied

quite effectively. For that matter, before running XFOLD algorithm, the MCC score of all

candidate literals are computed. If a predicate scores “close” to +1, the predicate itself is

added to the language bias. If it scores “close” to -1, its negation is added to the language

bias. For example, in case of learning red(X), after running the feature extraction on the

graph given in Figure 4.1, XFOLD computes the scores -0.7, -0.5 for green(X) and blue(X),

respectively. Therefore, {not green(X),not blue(X)} are appended to the list of candidate

predicates. Now, after running the XFOLD algorithm, after two iterations of the inner loop,

it would produce the following rule:

red(X) :- not green(X), not blue(X).

Corresponding rules for green(X) and blue(X) are learned in a similar manner. This essen-

tially takes care of the generate part of the combinatorial algorithm. In order to learn the

test part for graph coloring, we need the negative examples shown in Figure 4.1. It should

be noted that in order to learn a constraint, we first learn a new target predicate which is

the negation of the original one. Then we shift the negated predicate from the head to the

body inverting its sign in the process. That is, we first learn a clause of the form {-T :- b1,

40



b2 . . . bn.} which is then transformed into the following constraint: {:- b1, b2 . . . bn,

T.} Thus, the following steps should be taken to learn constraints from negative examples:

1. Add rule(s) induced for generate part to B.

2. ∀e+ ∈ E+, e− ∈ E−, if e−inc ⊆ e+inc:

• if e−exc is of the form (not p(V1, ...Vm)) then e+inc ← e+inc ∪ {−p(V1, ...Vm)}

• else e+exc ← e+exc ∪ {−p(V1, ...Vm)}

3. compute the contrapositive form of the rule(s) learned in generate part and remove

the body predicates from the list of candidate predicates

4. run XFOLD to learn p

5. shift -p from the head to the body for each rule returned by XFOLD

The contrapositive form of a clause is computed by negating the head and applying the De

Morgan’s law to the body. The resulting disjunctions are resolved by separating them into

new clauses. For instance, the contrapositive of {red(X) :- not green(X), not blue(X)}

is obtained as follows:

{-red(X) :- green(X)},{-red(X) :- blue(X)}. Without step 3, XFOLD would learn

these trivial clauses. However, as soon as those trivial choices are removed from search

space, XFOLD algorithm comes up with the next best hypothesis which is as follows:

-red(X) :- edge(X,Y), red(Y).

Shifting -red(X) to the body yields the following constraint:

:- red(X),edge(X,Y),red(Y).

In graph coloring problem, Mh = {red(X), green(X), blue(X)}. Once similar examples

for green(X) and blue(X) are provided, XFOLD is able to learn the complete solution as

shown below:

41



red(X) :- not green(X), not blue(X).

green(X) :- not blue(X), not red(X).

blue(X) :- not green(X), not red(X).

:- red(X), edge(X,Y), red(Y).

:- blue(X), edge(X,Y), blue(Y).

:- green(X), edge(X,Y), green(Y).

Algorithm 3 shows how XFOLD induces a generate and test hypothesis.

42



Example 4.2. Learning an answer set program for the 4-queen problem. The following

items are assumed: Background knowledge B including predicates describing a 4 × 4 board,

rules describing different ways through which two queens attack each other and examples of

the following form:

B: attack r(R1,C1,R2,C2):-q(R1,C1),q(R2,C2),C1! = C2, R1 = R2.

attack c(R1,C1,R2,C2):-q(R1,C1),q(R2,C2),R1! = R2, C1 = C2.

attack d(R1,C1,R2,C2):-q(R1,C1),q(R2,C2),R1! = R2,R1 − C1 = R2 − C2.

attack d(R1,C1,R2,C2):-q(R1,C1),q(R2,C2),R1! = R2,R1 + C1 = R2 + C2.

E: E+
1 = {〈q(2, 1), q(4, 2), q(1, 3), q(3, 4)〉, 〈q(1, 1), q(1, 2), ..., q(4, 4)〉}

...

E−1 = {〈q(2, 1)〉, 〈not q(2, 2)〉}

E−2 = {〈q(2, 1)〉, 〈not q(2, 3)〉}

E−3 = {〈q(4, 2)〉, 〈not q(1, 2)〉}

E−4 = {〈q(4, 2)〉, 〈not q(2, 3)〉}

As far as the generate part is concerned, XFOLD algorithm learns the following program:

q(X,Y) :- not -q(X,Y).

-q(X,Y) :- not q(X,Y).

The predicate -q(X,Y) is introduced by XFOLD algorithm as a result of swapping the ex-

amples and calling itself recursively. After computing the contrapositive form, q(X,Y),

-q(X,Y) are removed from the list of candidate predicates. Then based on the examples

provided in Example 4.2, XFOLD would learn the following rules:

-q(V1,V2) :- attack r(V1,V2,V3,V4).

-q(V1,V2) :- attack c(V1,V2,V3,V4).

-q(V1,V2) :- attack d(V1,V2,V3,V4).

After shifting the predicate -q(V1,V2) to the body, we get the following constraint:

43



:- q(V1,V2), attack r(V1,V2,V3,V4).

:- q(V1,V2), attack c(V1,V2,V3,V4).

:- q(V1,V2), attack d(V1,V2,V3,V4).

It should be noted that, since XFOLD is a sequential covering algorithm like FOIL, it takes

three iterations before it can cover all examples which in turn becomes three constraints as

shown above.

4.4 Experiments and Results

Table 3.2 reports the classification accuracy using 10-fold cross-validation and running time

measurements of Aleph, FOLD and XFOLD on a number of UCI datasets (Lichman, 2013a)

and combinatorial problems discussed in this chapter. In (Shakerin et al., 2017) we compare

our FOLD algorithm with Aleph which is a state-of-the-art ILP system. However, Aleph

(Srinivasan, 2001) does not support multiple stable model ILP. Therefore, we can only com-

pare our results with that of ILASP. In case of UCI datasets, the “Size” column denotes

the number of data samples, whereas, in graph-coloring (N-queen) it denotes the number of

nodes(board size) respectively. We have also examined the application of statistical feature

selection on the performance of our XFOLD algorithm. We report a significant improvement

due to the application of a scalable feature-selection method, i.e., xgboost, prior to invoking

the learning algorithm. Exclusion of low ranked features and the use of negation-as-failure

results in a significant improvement over the accuracy of learned hypotheses.

“Extreme Gradient Boosting” (xgboost) (Chen and Guestrin, 2016) is a scalable and

powerful ensemble classifier based on decision trees that provides a feature importance score.

Since, in ILP we deal with propositions, it makes sense to discretize numeric features first

using MDL method (Fayyad and Irani, 1993a). In this method, for each numeric feature

categories are defined such that the overall information gain is maximized.

44



Table 4.1: XFold Evaluation on UCI benchmarks and Combinatorial Problems

Accuracy (%) Running Time (s)
Dataset Size Aleph Fold XFold ILASP XFold ILASP
breast-cancer 286 70 82 88 — 4.1 timed-out
moral 202 96 96 100 — 4.8 timed-out
diabetes 768 73 86 89 — 27.2 timed-out
graph-coloring 4 — — 100 100 8 4.5
graph-coloring 8 — — 100 100 8.9 3.5
N-queen 4 × 4 — — 100 100 9.5 5
N-queen 8 × 8 — — 100 100 9.9 6.2

Next, a dataset that now contains only categorical features is propositionalized. That is,

every value belonging to the domain of a categorical feature turns into a new binary feature.

This is called one hot encoding. One hot encoding makes the feature selection more fine

grained. This is because, in this technique instead of measuring the contribution of a feature

as a whole, the importance of every value from the domain of that feature is measured. Then

the data set is fed into xgboost which ranks each binary feature based on its importance in

the classification. From the xgboost’s output, the M lower ranked features are filtered out

of the XFOLD language bias. The optimal M should be computed via cross-validation.

In small problems such as graph coloring, ILASP slightly outperforms our XFOLD algo-

rithm due to embedding the learning algorithm in the ASP solver engine. In a larger data

set such as Moral reasoner with 202 examples and 50 predicates, there are potentially 350

different hypotheses to choose from. This is because, for each predicate it can either be

included positively, included negatively or excluded. In this case, ILASP times out after

couple of hours.

4.5 Related Work

A survey of extending Horn clause based ILP to non-monotonic logics can be found in

(Sakama, 2005). “Stable ILP” (Seitzer, 1997) was the first effort to explore the expressiveness

of background knowledge with multiple stable models. In (Sakama, 2005), Sakama introduces

45



algorithms to induce a categorical logic program3 given the answer set of the background

knowledge and either positive or negative examples. Essentially, given a single answer set,

Sakama tries to induce a program that has that answer set as a stable model. In (Sakama

and Inoue, 2009), Sakama and Inoue extend their work to learn from multiple answer sets.

They introduce brave induction, where the learned hypothesis H is such that some of the

answer sets of B ∪ H cover the positive examples. The limitation of this work is that it

accepts only one positive example as a conjunction of atoms. It does not take into account

negative examples at all. Cautious induction, the counterpart of brave induction, is also too

restricted as it can only induce atoms in the intersection of all stable models. Thus, neither

brave induction nor cautious induction are able to express situations where something should

hold in all or none of the stable models. An example of this limitation arises in the graph

coloring problem where the following should hold in all answer sets: no two neighboring

nodes in a graph should be painted the same color.

ASPAL (Corapi et al., 2012) is the first ILP system to learn answer set programs by

encoding ILP problems as ASP programs and having an ASP solver find the hypothesis.

Its successor ILASP (Law et al., 2014), is a pioneering ILP system capable of inducing

hypotheses expressed as answer set programs too. ILASP defines a framework that subsumes

brave/cautious induction and allows much broader class of problems relating to learning

answer set programs to be handled by ILP. However, the algorithm exhaustively searches

the space of possible clauses to find one that is consistent with all examples and background

knowledge. The Exhaustive search is a weaknesses that limits the applicability of ILASP

to many useful situations. Our research presented in this chapter does not suffer from this

issue.

XHAIL (Ray, 2009) is another ILP system capable of learning non-monotonic logic pro-

grams. It heavily incorporates abductive logic programming to search for hypotheses. It

3A categorical logic program is an answer set program with at most one stable model.

46



uses a similar language-bias as ILASP does, and thus suffers from the limitations similar to

ILASP. It also does not support the notion of inducing answer set programs from partial

answer sets.

47



CHAPTER 5

INDUCTION OF NON-MONOTONIC LOGIC PROGRAMS TO EXPLAIN

MACHINE LEARNING MODELS

5.1 Overview

The ILP learning problem can be regarded as a search problem for a set of clauses that

deduce the training examples. The search is performed either top down or bottom-up. A

bottom-up approach builds most-specific clauses from the training examples and searches

the hypothesis space by using generalization. This approach is not applicable to large-

scale datasets, nor it can incorporate Negation-As-Failure into the hypotheses. A survey of

bottom-up ILP systems and their shortcomings can be found at (Sakama, 2005). In contrast,

top-down approach starts with the most general clauses and then specializes them. A top-

down algorithm guided by heuristics is better suited for large-scale and/or noisy datasets

(Zeng et al., 2014).

The FOIL algorithm by Quinlan (Quinlan, 1990b) is a popular top-down algorithm.

FOIL uses heuristics from information theory called weighted information gain. The use of

a greedy heuristic allows FOIL to run much faster than bottom-up approaches and scale up

much better. For instance, the QuickFOIL system (Zeng et al., 2014) can deal with millions

of training examples in a reasonable time. However, scalability comes at the expense of losing

accuracy if the algorithm is stuck in local optima and/or when the number of examples is

insufficient. The former is an inherent problem in hill climbing search and the latter is due to

the shrinking of examples during clause specialization. Also, elimination of already covered

examples from the training set (to guarantee the termination of FOIL) causes a similar impact

on the quality of heuristic search for the best clause. Therefore, the predicates picked-up by

FOIL are not always globally optimal with respect to the concept being learned. Based on

our research, we believe that a successful ILP algorithm must satisfy the following criteria:

48



• It must employ heuristic-based search for clauses for the sake of scalability.

• It should be able to figure out relevant features, regardless of the number of current

training examples.

• It should be able to learn from incomplete data, as well as be able to distinguish

between noise and exceptions.

Unlike top-down ILP algorithms, statistical machine learning methods are bound to find

the relevant features because they optimize an objective function with respect to global

constraints. This results in models that are inherently complex and cannot explain what

features account for a classification decision on any given data sample.

Recently, some solutions have been proposed by researchers to explain black-box classi-

fiers’ predictions locally. LIME (Ribeiro et al., 2016) is a novel model-agnostic system that

explains the classification decisions made by any classifier on any given data sample. The

idea comes from the fact that explaining classifier’s behavior in a local region around any

data turns out to be easier than explaining its global behavior. Each local explanation is a

set of feature-value pairs that would determine what features and how strongly each feature,

relative to other features, contributes to the classification decision.

In order to capture model’s global behavior, we propose an algorithm called LIME-FOLD,

to learn concise logic programs from a transformed data set that is generated by storing the

explanations provided by LIME. The LIME system takes as input a black-box model (such

as a Neural Network, Random Forest, etc.) and a data sample. For any given data sample,

it outputs a list of (weighted) features that contribute most to the classification decision. By

repeating the same process for all training samples, we can generate a transformed version

of the original data set that only contains the relevant features for each data sample.

The LIME-FOLD algorithm learns a non-monotonic logic program from the transformed

data set. This logic program explains the global behavior of the model. Our experiments

49



on 10 UCI standard benchmark suggests that the hypotheses generated by LIME-FOLD

algorithm are very concise and outperform the baseline ALEPH system (Srinivasan, 2001).

It also outperforms ALEPH once ALEPH is given the transformed dataset (i.e., ALEPH

is extended with the LIME technique). Performance is measured in terms of classification

evaluation scores, number of generated clauses and running time.

Although LIME is model-agnostic, in this research we incorporate the XGBoost algo-

rithm to train our statistical models. XGBoost (Chen and Guestrin, 2016) is a scalable

tree boosting machine learning algorithm that is widely used by data scientists to achieve

state-of-the-art results on many challenges. In essence, the hypotheses (a nonmonotonic

logic program) that our LIME-FOLD algorithm induces, explain the behavior of XGBoost

models.

This chapter makes the following novel contribution: We present a new ILP algorithm

capable of learning non-monotonic logic programs from local explanations of boosted tree

models provided by LIME. We call this new algorithm LIME-FOLD. The LIME-FOLD

algorithm is a scalable heuristic-based algorithm that explains the behavior of boosted tree

models globally and outperforms ALEPH in terms of classification evalutation metrics as well

as in providing more concise explanations measured in terms of number of clauses induced.

5.2 The LIME Technique

LIME (Ribeiro et al., 2016) is a novel technique that finds easy to understand explanations

for the predictions of any complex black-box classifier in a faithful manner. LIME constructs

a linear model by sampling N instances around any given data sample x. Every instance x′

represents a perturbed version of x where perturbations are realized by sampling uniformly

at random for each feature of x. LIME stores the classifier decision f(x′) and the kernel

π(x, x′). The π function measures how similar the original and perturbed sample are and

it is then used as the associated weight of x′ in fitting a locally weighted linear regression

50



(LWR) curve around x. The K greatest learned weights of this linear model are interpreted

as top K contributing features into the decision made by the black-box classifier. Algorithm

6 illustrates how a locally linear model is created around x to explain a classifier’s decision.

Algorithm 6 Linear Model Generation by LIME

Input: f : Classifier
Input: N : Number of samples, K : length of explanation,
Input: x : sample to explain, π : similarity kernel
Output: w : fitted curve’s weights
1: Z ← {}
2: for i ∈ {1, 2, 3, ..., N} do
3: // x′i is generated by perturbing features of x
4: x′i ← sample around(x)
5: Z ← Z ∪ 〈x′i, f(x′i), π(x′i, x)〉
6: end for
7: // Fit a line to (weighted) points in Z
8: w ← LWR(Z, K)
9: return w

The interpretation language should be understandable by humans. Therefore, LIME requires

the user to provide some interpretation language as well. In case of tabular data, it boils

down to specifying the valid range of each table column. In particular, if the data column

is a numeric variable (as opposed to categorical), the user must specify the intervals or a

discretization strategy to allow LIME to create intervals that are used later on to explain

the classification decision.

Example 5.1. The UCI heart dataset contains features such as patient’s blood pressure,

chest pain, thallium test results, number of major vessels blocked, etc. The classification task

is to predict whether the subject suffers from heart disease or not. Figure 5.1 shows how

LIME would explain a model’s prediction over a data sample.

In this example, LIME is called to explain why the model predicts heart disease. In

response, LIME returns the top features along with their importance weight. According to

LIME, the model predicts “heart disease” because of high serum cholesterol level, and having

51



Figure 5.1: Top 3 Relevant Features in Patient Diagnosis According to LIME

a chest pain of type 4 (i.e., asymptomatic). In this dataset, chest pain level is a categorical

variable with 4 different values.

The categorical variables should be binarized before a statistical model can be applied.

Binarization is the process of transforming each categorical variable with domain of cardi-

nality n, into n new binary features. The feature “thallium test” is a categorical feature too.

However, in this case LIME reports that the feature “thal 7” which is a new feature that

resulted from binarization and has the value “false”, would have made the model predict

“healthy”. The value 7 for thallium test in this dataset indicates reversible defect which is

a strong indication of heart disease. It should be noted that the feature “serum cholesterol”

is discretized with respect to the training examples’ label. Discretization aims to reduce the

number of values a continuous variable takes by grouping them into intervals. Discretization

method should maximize the interdependence between the variable values and the class la-

bels. One of the most practiced methods for discretizing continuous data is the MDL method

(Fayyad and Irani, 1993b) which uses mutual information to recursively define the best bins.

In this research, we discretize all numeric features using the MDL method.

5.3 The LIME-FOLD Algorithm

In this section we introduce the LIME-FOLD algorithm by integrating FOLD and LIME.

This yields a powerful ILP algorithm capable of learning very concise logic programs from a

transformed dataset. The new algorithm outperforms FOLD and ALEPH (Srinivasan, 2001)

which is a state-of-the-art ILP system.

52



There are two major issues with the sequential covering algorithms such as FOIL (and

FOLD): 1) As number of examples decreases during specialization loop, probability of intro-

ducing an irrelevant predicate that accidentally splits a particular set of examples increases.

2) elimination of positive examples that are covered in previous iterations, impacts the pre-

cision of heuristic scoring. By filtering out the irrelevant features of each training example,

the greedy clause search procedure is forced to pick up predicates only from a relevant subset

of features to cover training examples. Relevant features for each training example is found

by LIME once it is given an accurate classifier.

For instance in Figure 5.1, for a particular training example with 13 features, LIME

returns only 3 as relevant to the underlying concept of heart disease on that particular data

sample. This helps the FOLD algorithm to always pick up the relevant features regardless

of the number of examples left.

The success of this approach highly depends on the choice of statistical algorithm as

well as tuning its parameters to make sure that the model makes the fewest errors in its

predictions. In this research we conducted all experiments using the “Extreme Gradient

Boosting” (XGBoost) algorithm (Chen and Guestrin, 2016). XGBoost is an implementation

of the Gradient Boosted Decision Tree algorithm. Although LIME is model agnostic, in the

experiments presented in this chapter, XGBoost happened to always lead to better results.

Algorithm 7 shows how a standard tabular dataset is transformed into an ILP problem

instance for the FOLD algorithm. This algorithm takes a dataset DS, a target predicate

t, and a classifier model M that takes a feature vector and returns a binary classification

value from the set {’+’,’-’}. For all data rows r in DS, there is an identifier that is de-

noted by r.id. The numeric features once discretized are sorted based on the produced

intervals and the interval index in the sorted list is used as the second argument of such

features in generating the background knowledge. For instance let a numeric feature such

as blood pressure be discretized first and stored as a sorted list of intervals as follows:

53



{(−∞, 97), [97, 120), [120, 153), [153, 170), [170,+∞)}. The corresponding predicate for the

datarow r with r.id = 135 and blood pressure value 130 is blood pressure(135,2) because

135 ∈ [120, 153) whose index in the above list is 2.

Algorithm 7 Dataset Transformation with LIME

Input: t : target predicate,DS : Dataset
Input: M : trained classifier
Output: BK : background knowledge
Output: E+,E− : positive and negative examples
1: propositionalize categorical features
2: discretize numeric features
3: for each DataRow r ∈ DS do
4: if M(r) =’+’ then
5: E+ = E+ ∪ {t(r.id)}
6: else
7: E− = E− ∪ {t(r.id)}
8: end if
9: explanation = LIME(M,r)
10: for each pair(e, w) ∈ explanation do
11: if e is the nth discretized interval feature f then
12: BK = BK ∪ {f(r.id, n)}
13: end if
14: if e is an equality expr. of the form fv = 0 then
15: // ‘-’ denotes classical negation
16: BK = BK ∪ {-f(r.id, v)}
17: end if
18: if e is an equality expr. of the form fv = 1 then
19: BK = BK ∪ {f(r.id, v)}
20: end if
21: end for
22: end for

In Algorithm 7, explanation pairs with negative weights are retrieved too. These are

the features that would turn the classification decision into the opposite of concept we are

learning. For instance in Example 5.1, a healthy subject may happen to have a high level

“serum cholesterol”. Therefore, if LIME-FOLD algorithm picks up this feature to cover some

positive examples, the healthy subjects—which are negative examples—are also covered.

54



Figure 5.2: Average Number of Rules Induced by Each Different Experiment

The LIME-FOLD algorithm is able to rule these negative examples out by introducing an

abnormality predicate that would make use of these negative weighted features. These are

the features that led the XGBoost model to predict those subjects as healthy.

5.4 Experiments

In this section, we present our experiments on UCI standard benchmarks (Lichman, 2013b).

The ALEPH system (Srinivasan, 2001) is used as the baseline. ALEPH is a state-of-the-

art ILP system that has been widely used in prior work. To find a rule, ALEPH starts

by building the most specific clause, which is called the “bottom clause”, that entails a

seed example. Then, it uses a branch-and-bound algorithm to perform a general-to-specific

heuristic search for a subset of literals from the bottom clause to form a more general rule. We

set ALEPH to use the heuristic enumeration strategy, and the maximum number of branch

nodes to be explored in a branch-and-bound search to 500K. We use the standard metrics

including precision, recall, accuracy and F1 score to measure the quality of the results. We

separately report the running time comparison as well. We conduct three different sets of

experiments as follows: First, we run ALEPH on 10 different datasets using 5-fold cross-

validation setting. Second, each dataset is transformed as explained in Algorithm 7. Then

55



the LIME-FOLD algorithm is run on a 5-fold cross-validated setting, and the classification

metrics are reported. Third, ALEPH is run on the same datasets produced in the second

experiment. We call this approach LIME-ALEPH.

Figure 5.2 compares the average number of clauses generated by standard ALEPH, LIME-

ALEPH and LIME-FOLD on 10 UCI datasets. With the exception of “breast-w” and “wine”,

in all other datasets, LIME-FOLD discovers fewer number of clauses. However, in “breast-

w” and “wine” the F1 score of LIME-FOLD is higher than two other approaches. Also,

it is worth noting that LIME-ALEPH in most cases generates fewer clauses than ALEPH.

However, incorporating Negation-As-Failure in LIME-FOLD algorithm as well as learning

the clauses in terms of defaults and exceptions allows the algorithm to cover all positive

examples with fewer number of clauses.

Another observation that explains the advantage of LIME-ALEPH over ALEPH, is that

LIME is capable of explaining propositionalized categorical variables in both affirmative and

negative ways. For instance, in the “UCI heart” dataset, the thallium-201 stress scintigraphy

test is a categorical feature with three possible values in the set {3,6,7}, indicating normal,

fixed defect and reversible defect in that order. The covering approach incorporated in

ALEPH, would come up with two clauses corresponding to 6, 7, whereas, in both LIME-

ALEPH and LIME-FOLD a negated feature f 6= 3 is introduced and stored in the transformed

dataset.

The following logic program is induced by LIME-FOLD algorithm (using the entire data

set):

(1) heart_disease(A):- chest_pain(A,4), -thal(A,3).

(2) heart_disease(A):- slope(A,2), major_vessels(A,1).

(3) heart_disease(A):- chest_pain(A,4), sex(A,1),

not ab0(A).

(4) heart_disease(A):- blood_pressure(A,5), sex(A,1).

56



(5) heart_disease(A):- slope(A,2), blood_pressure(A,5).

(6) heart_disease(A):- slope(A,2), major_vessels(A,3),

serum_cholestoral(A,3).

ab0(A):-major_vessels(A,3).

The induced program can be understood as follows: In clause (1), chest pain(A,4) in-

dicates an asymptomatic type of chest pain. While thal(A,3) would indicate a thallium test

with normal results, the classically negated predicate -thal(A,3) indicates a proof that the

thallium test is abnormal. In clause (2) slope(A,2) indicates the slope of the peak exercise

relative to rest is flat, which is an indication of heart disease. major vessels(A,N) indicates

a patient with N (range: 0-3) colored major vessels during a Fluoroscopy test. The higher

the number, the less narrowed major vessels. Clause (3) introduces an abnormality predicate

which stipulates that an asymptomatic chest pain is an indication of heart disease unless

there are no narrowed major vessels. High cholestrol and High blood pressure are specified

in discretized intervals represented by their index. For instance serum cholestoral(A,3)

denotes the cholesterol range between 245 mg/dl and 400 mg/dl in this dataset. Similarly,

blood pressure(A,5) indicates systolic range between 15.7 and 18.6.

Figure 5.3 shows the “feature importance” plot calculated by xgboost algorithm. Gen-

erally, importance provides a score that indicates how useful or valuable each feature was in

the construction of the boosted decision trees within the model. The more an attribute is

used to make key decisions with decision trees, the higher its relative importance. Impor-

tance is calculated for a single decision tree by the amount that each attribute split point

improves the performance measure, weighted by the number of observations the node is re-

sponsible for. The LIME-FOLD approach, prefers the more “important” features over less

“important” ones, because the weighted information gain heuristic scores clauses with more

frequently used features higher. ALEPH induces 18 clauses on the same data. Some of the

57



Figure 5.3: XGboost Feature Importance Plot for UCI Heart

Table 5.1: Evaluation of Our Three Experiments with 10 UCI Datasets
Algorithm

Data Set Aleph Aleph+Lime Fold+Lime
Prec. Recall Acc. F1 Prec. Recall Acc. F1 Prec. Recall Acc. F1

credit-j 0.78 0.72 0.78 0.75 0.89 0.69 0.82 0.77 0.86 0.90 0.89 0.88
breast-w 0.92 0.87 0.93 0.89 0.98 0.65 0.87 0.76 0.94 0.92 0.95 0.92
ecoli 0.85 0.75 0.84 0.80 0.95 0.84 0.92 0.89 0.95 0.88 0.93 0.91
kidney 0.96 0.92 0.93 0.94 0.99 0.95 0.96 0.97 0.93 0.95 0.93 0.94
voting 0.97 0.94 0.95 0.95 0.98 0.95 0.96 0.96 0.98 0.96 0.97 0.97
autism 0.73 0.43 0.79 0.53 0.88 0.38 0.81 0.52 0.84 0.88 0.91 0.86
ionosphere 0.89 0.87 0.85 0.88 0.92 0.85 0.86 0.88 0.91 0.86 0.86 0.89
sonar 0.74 0.56 0.66 0.64 0.81 0.72 0.74 0.76 0.87 0.75 0.78 0.80
heart 0.76 0.75 0.78 0.75 0.79 0.70 0.79 0.74 0.82 0.74 0.82 0.78
wine 0.94 0.86 0.93 0.89 0.91 0.85 0.92 0.88 0.98 0.85 0.93 0.91

Average 0.86 0.79 0.85 0.82 0.9 0.77 0.87 0.82 0.92 0.87 0.91 0.89

58



Table 5.2: Average Running Time Comparison

Running Time (s)
Data Set size ALEPH LIME-FOLD
credit-j 125 1680 15
breast-w 699 83 7.8
ecoli 336 132 3
kidney 400 24 0.6
voting 435 252 1.8
autism 704 480 10.8
ionosphere 351 1080 4.8
sonar 208 834 9.6
heart 270 277 18.6
wine 178 18 1.8

features that the plot reports as rarely used by xgboost to split a node are introduced by

ALEPH which makes the theory less relevant compared to what LIME-FOLD induces.

Table 5.2 compares the average running time of ALEPH against LIME-FOLD. For all 10

datasets, FOLD algorithm terminates in less than one minute. All experiments were run on

an Intel Core i7 CPU @ 2.7GHz with 16 GB RAM and a 64-bit Windows 10. The FOLD

algorithm is a Java application that uses JPL library to connect to SWI prolog. ALEPH v.5

has been ported into SWI-Prolog by (Riguzzi, 2016).

Table 5.1 presents the comparison of classification metrics on each of the 10 UCI datasets.

The best performer is highlighted with boldface font. In 9 cases, the LIME-FOLD produces

a classifier with higher F1 score. However, in case of “kidney”, LIME-ALEPH produces the

highest F1 score although, it generates almost twice as many clauses as LIME-FOLD does

in this dataset.

5.5 Related Work

A survey of ILP can be found in (Muggleton et al., 2012). Rule extraction from statistical Ma-

chine Learning models has been a long-standing goal of the community. The rule extraction

algorithms from machine learning models are classified into two categories: 1) Pedagogical

59



(i.e., learning symbolic rules from black-box classifiers without opening them) 2) Decomposi-

tional (i.e., to open the classifier and look into the internals). TREPAN (Craven and Shavlik,

1995) is a successful pedagogical algorithm that learns decision trees from neural networks.

SVM+Prototypes (Núñez et al., 2002) is a decompositional rule extraction algorithm that

makes use of KMeans clustering to extract rules from SVM classifiers by focusing on support

vectors. Another rule extraction technique that is gaining attention recently is “RuleFit”

(Friedman et al., 2008). RuleFit learns a set of weighted rules from ensemble of shallow de-

cision trees combined with original features. In ILP community also, researchers have tried

to combine statistical methods with ILP techniques. Support Vector ILP (Muggleton et al.,

2005) uses ILP hypotheses as kernel in dual form of the SVM algorithm. kFOIL (Landwehr

et al., 2006) learns an incremental kernel for SVM algorithm using a FOIL style specializa-

tion. nFOIL (Landwehr et al., 2005) integrates the Naive-Bayes algorithm with FOIL. The

advantage of our research over all of the above mentioned research work is that, first it is

model agnostic, second it is scalable thanks to the greedy nature of our clause search.

60



CHAPTER 6

WHITE-BOX INDUCTION FROM SUPPORT VECTOR MACHINES

6.1 Overview

The ILP learning problem can be regarded as a search problem for a set of clauses that

deduce the training examples. The search is performed either top down or bottom-up. A

bottom-up approach builds most-specific clauses from the training examples and searches

the hypothesis space by using generalization. This approach is not applicable to large-scale

datasets, nor it can incorporate negation-as-failure (Baral, 2003) into the hypotheses. A

survey of bottom-up ILP systems and their shortcomings can be found at (Sakama, 2005).

In contrast, top-down approach starts with the most general clauses and then specializes

them. A top-down algorithm guided by heuristics is better suited for large-scale and/or

noisy datasets (Zeng et al., 2014).

The FOIL algorithm by Quinlan (Quinlan, 1990b) is a popular top-down algorithm.

FOIL uses heuristics from information theory called weighted information gain. The use of

a greedy heuristic allows FOIL to run much faster than bottom-up approaches and scale up

much better. However, scalability comes at the expense of losing accuracy if the algorithm

is stuck in a local optima and/or when the number of examples is insufficient. The former

is an inherent problem in hill climbing search and the latter is due to the shrinking of

examples during clause specialization. Figure 6.1 demonstrates how the local optima results

in discovering sub-optimal rules that do necessarily coincide with the real sub-concepts they

are supposed to capture.

Unlike top-down ILP algorithms, Support Vector Machine (SVM) (Cortes and Vapnik,

1995) is a globally optimal learning method that generalizes very well and comes with test

error upper-bound in terms of the number of support vectors and size of training input.

However, this unique property is overshadowed by the black-box nature of SVM models.

61



Figure 6.1: Optimal sequential covering with 3 Clauses (Left), Sub-Optimal sequential cov-
ering with 4 Clauses (Right)

Explaining the behavior of black-box models has motivated a long line of research in Rule

Induction from SVM models. As we argue in more detail in section 4.5, all proposed Rule

Extraction techniques either treat the model as black-box (Huysmans et al., 2008, 2006), or

are limited to certain type of kernels (Fung et al., 2005), or are too complex to interpret

(Nuñez et al., 2002). A survey of existing Rule Extraction techniques can be found in

(Diederich, 2008).

Our new approach is based on the idea that each data sample is measurably simi-

lar/dissimilar to each support vector. Therefore, each support vector represents a subset

of data samples. Now, if a set of features discriminate a support vector well, they would

discriminate data samples similar to that support vector too. In order to measure the simi-

larity and to pick up the support vector that is most similar to each data sample, we define

a quantity based on the kernel value and each support vector’s α parameter. To discover the

most relevant features, our algorithm incorporates the SHAP technique. SHAP (Lundberg

and Lee, 2017) is an example specific model interpreter that takes a model and an individual

example and returns the contribution of each feature value in model’s classification decision.

6.2 Support Vector Machines

Given a training dataset of m data points ~xi ∈ IRn and m corresponding labels yi ∈ {1,−1},

the linear support vector machine is defined as the following optimization problem:

62



min
~w,b,ξi≥0

1

2
‖~w‖22 + C

m∑
i=1

ξi (6.1)

such that: yi(~w.~xi− b) + ξi ≥ 1 where ξi is the slack error to potentially allow some points to

be misclassified, ~w is the perpendicular vector to the separating hyper-plane, b is the offset of

that hyper-plane, C is a hyperparameter and determines the degree to which misclassification

is allowed to avoid over-fitting.

An equivalent yet more efficient form of SVM problem known as dual formulation is

defined as follows:

max
αi

−1

2

m∑
i=1

yiyj~xi~xjαiαj +
m∑
i=1

αi (6.2)

such that
∑m

i=1 αiyi = 0 and 0 ≤ αi ≤ C

The dot product in dual formulation can be replaced with any kernel function (i.e., a function

that maps data into higher dimensions). For non-linearly separable data, Kernels map the

data into a higher dimensional feature space where data becomes separable. Equation 6.2 is

a special case for the following general dual formulation:

max
αi

−1

2

m∑
i=1

yiyjK(~xi, ~xj)αiαj +
m∑
i=1

αi (6.3)

such that
∑m

i=1 αiyi = 0 and 0 ≤ αi ≤ C

After solving the above problem using quadratic programming, the αi and b are used to

classify a new data sample ~x as follows:

f(x) = sign

[ m∑
i=1

αiyiK(~xi, ~x) + b

]
(6.4)

It turns out that α is a sparse vector and only few αi come back with non-zero values

from the quadratic solver package. They are called the support vectors and as Equation 6.4

suggests, proportionate to their respective αi value, support vectors are the only influential

data points in classification decision of any new data sample.

63



While the kernel function is meant to map data points into a higher dimension efficiently,

one can also interpret the kernel value K(~xi, ~xj) as a similarity measure between points ~xi

and ~xj. For instance, in case of the Gaussian radial basis kernel (rbf):

K(~xi, ~xj) = e−γ‖~xi−~xj‖
2
2 (6.5)

where γ is a hyper parameter. If ~xi and ~xj are similar, the kernel value would be close to

1. Otherwise, it would be close to 0. This can be naturally used to quantify similarity.

However, it should be noted from Equation 6.4 that the magnitude of αi also contributes to

the influence and similarity. Therefore, we define the similarity of data point ~x and the ith

support vector ~xi as follows:

simi(~x) = αiyiK(~xi, ~x) (6.6)

For any new data sample ~x the support vector with highest sim value is the one that

contributes most to the prediction of ~x. Figure 6.2 demonstrates an SVM model with rbf

kernel trained on the same dataset from Figure 6.1. In this figure, support vectors are the

dots located on the dashed lines. They are labeled with an integer identifier. Every other

data point is annotated with the identifier of the most similar support vector calculated using

Equation 6.6. Since the similarity is measured with respect to the concept being learned,

the most similar support vector does not necessarily accord with the Euclidean distance.

6.3 SHAP

SHAP (Lundberg and Lee, 2017) (SHapley Additive exPlanations) is a unified approach

with foundations in game theory to explain the output of any machine learning model in

terms of its features’ contributions. To compute each feature i’s contribution, SHAP requires

retraining the model on all feature subsets S ⊆ F , where F is the set of all features. For any

feature i, a model fS∪{i} is trained with the feature i present, and another model fS is trained

with feature i eliminated. Then, the difference between predictions is computed as follows:

64



Figure 6.2: Annotating Data Points in a 2D dataset With Most Similar Support Vector

fS∪{i}(xS∪{i})− fS(xS), where xS represents sample’s feature values in S. Since the effect of

withholding a feature depends on other features in the model, the above differences are com-

puted for all possible subsets of S ⊆ F \ {i} and their average taken. The weighted average

of all possible differences (a.k.a Shapley value) is used as feature importance. Equation 6.7

shows how Shapley value associated with each feature value is computed:

φi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!

[
fS∪{i}(xS∪{i})− fS(xS)

]
(6.7)

Given a dataset and a trained model, SHAP outputs a matrix with the shape

(#samples,#features) representing the Shapley value of each feature for each data sample.

Each row sums to the difference between the model output for that sample and the expected

value of the model output. This difference explains why the model is inclined on predicting

a specific class outcome.

Example 6.1. The UCI heart dataset contains features such as patient’s blood pressure,

chest pain, thallium test results, number of major vessels blocked, etc. The classification task

is to predict whether the subject suffers from heart disease or not. Figure 6.3 shows how

SHAP would explain a model’s prediction over a data sample.

For this individual, SHAP explains why the model predicts heart disease by returning the

top features along with their Shapley values (importance weight). According to SHAP, the

65



model predicts “heart disease” because of the values of “thalium test” and “maximum heart

rate achieved” which push the prediction from the base (expected) value of 0.44 towards a

positive prediction (heart disease). On the other hand, the feature “chest pain” would have

pushed the prediction towards negative (healthy), but it is not strong enough to turn the

prediction.

Figure 6.3: Shap Values for A UCI Heart Prediction

The categorical features should be binarized before an SVM model can be trained. Bina-

rization (aka one-hot encoding) is the process of transforming each categorical feature with

domain of cardinality n, into n new binary predicates (features).In Example 6.1, chest pain

level is a categorical feature with 4 different values in the set {1, 2, 3, 4}. Type 4 chest pain

indicates asymptomatic pain and is a serious indication of a heart condition. In this case,

binarization results in 4 different predicates. The “thalium test” is also a categorical feature

with outcomes in the set {3,6,7}. Any outcome other than 3, indicates a defect (6 for fixed

and reversible for 7).

In case of Example 6.1, SHAP determines that the feature “thal 7” with outcome of

1 (True), pushes the prediction towards heart disease. To reflect this fact in our ILP al-

gorithm, for any person X, the predicate thal(X,7) is introduced. Also, SHAP indicates

that the binary feature “chest pain 4” with value 0 (False), pushes the prediction towards

healthy. In our ILP algorithm this is represented by negation-as-failure (Baral, 2003) as not

chest pain(X,4).

66



6.4 SHAP-FOIL

In this section we introduce SHAP FOIL, an algorithm capable of learning non-monotonic

logic programs based on the global behavior of an SVM model.

There are two major issues with the sequential covering algorithms such as FOIL: 1) As

number of examples decreases during specialization loop, probability of introducing an irrel-

evant predicate that accidentally splits a particular set of examples increases. 2) The greedy

nature of hill-climbing search in clause specialization, sometimes results in introduction of

wrong predicates that would cover more examples at a certain moment, but eventually leads

to inducing a clause that does not perfectly represent sub-concepts as shown in Example

6.1. This is known as Local Optima problem in hill-climbing search. Determining the sub-

concepts requires a global view which could only happen via a global optimization process

such as an SVM model. However, finding the best separating hyperplane in a higher dimen-

sion does not explain the contributing features in any classification decision made by the

model.

SHAP is able to quantitatively explain the features that would push the model towards

predicting a specific outcome. In particular, for each support vector, SHAP determines a

subset of feature value pairs that would make the model arrive at a certain decision. It

turns out that just by having the Shapley values of support vectors, our algorithm can learn

the global underlying behavior of SVM model. This is mathematically justified as follows:

From Equation 6.4, every new data sample is interpreted in terms of similarity to support

vectors. The internal points are not relevant (because their corresponding αi parameter is

0). Among support vectors, only the ones that are closely “similar” to the given point are

relevant (because, for dissimilar support vectors the kernel value of Equation 6.5 is close to

0).

The intuition behind Shap-FOIL algorithm is as follows: If a subset of feature-values

explains the decision on a particular support vector, it explains the decision on data points

67



that are “similar” to that support vector too. Similarity is measured using Equation 6.6. In

the context of sequential covering scheme, SHAP FOIL would find the support vector that

pulls the greatest number of data points in terms of Equation 6.6. Then, it would specialize

a clause by introducing predicates that are determined by SHAP for that support vector.

Then, the algorithm removes the data points that are covered by that rule. It also removes

the support vector. This process is repeated for the remaining data points. Since there are

only finite number of support vectors, the algorithm is guaranteed to terminate.

Unlike most ILP algorithms, SHAP FOIL does not require discretization of numerical

features in advance. During the specialization of a clause, if a numeric feature happens

to have the highest Shapley number for a support vector, a real arithmetic constraint is

introduced by the algorithm. The end-points of this interval is determined by looking into

the respective values of all data points that are most similar to that support vector.

Algorithm 8 summarizes the SHAP FOIL algorithm. The algorithm inputs are as fol-

lows: 1) Set D of cardinality m representing m training data points. 2) SHAP matrix of a

trained SVM model on D. 3) A threshold Θ to determine minimum acceptable accuracy of

each induced clause. 4) Set SV that are True Positive (TP) support vectors (i.e., support

vectors with label 1, also predicted 1 by the SVM model). The model outputs a hypothesis

comprising a set of induced clauses. The While loop in line 2, iterates until all support

vectors are considered. (termination condition). In line 3, by calling the function ANNO-

TATE SAMPLES, all remaining datapoints are annotated with a support vector among the

remaining support vectors. This support vector must have the highest similarity value to

that data point. In line 4, the algorithm chooses sv, the support vector which pulled the

greatest number of data points from annotation. This allows to discover the more inclusive

rules first. In lines 5 and 6, similar to the FOIL algorithm, specialization from the most

general clause (i.e., target :- true.) is conducted. To specialize a clause, predicates de-

termined by the Shapley value of sv are added to the body in the order of their Shapley

68



Algorithm 8 Summarizing the SHAP FOIL algorithm

Input: D = {(~x1, y1), ..., (~xm, ym)}
Input: SHAP matrix (m,#features),Θ
Input: S = {sv | sv is a support vector and sv is TP}
Output: Hypothesis H = {}
1: function Shap FOIL(S,D)
2: while (S 6= ∅) do
3: sim map = annotate samples(S,D)
4: sv = argmaxs∈S len(sim map[s])
5: c← (target :- true.)
6: ĉ← Specialize c using SHAP[sv]
7: if ĉ’s accuracy on D ≥ Θ then
8: H ← H ∪ {ĉ}
9: D ← D − {~xi |~xi ∈ D ∧ ĉ |= yi}
10: end if
11: S ← S − {sv}
12: end while
13: return H
14: end function
15: function annotate samples(S,D)
16: Let sim map be a map of type : S 7→ List
17: for each sv ∈ S do
18: sim map[sv] = [ ]
19: end for
20: for each ~xi ∈ D do
21: sv = argmaxs∈S sim(s, ~xi)
22: sim map[sv].append(~xi)
23: end for
24: return sim map
25: end function

value magnitude. To add numeric features, our algorithm creates an interval by finding the

smallest and largest values in the list of data samples associated with sv. The specialized

clause is named ĉ. In line 7, the accuracy of ĉ is tested against a threshold Θ. If it is higher

than Θ, ĉ is added to the current hypothesis H in line 8. In line 9, similar to FOIL, the set

of data points covered by ĉ are removed from D (sequential covering). If ĉ achieves lower

accuracy than Θ, it is discarded. Regardless of the case, in line 11, sv is removed from the

set of support vectors. This serves two purposes: 1) It guarantees the termination. 2) More

69



importantly, if in some iteration, a support vector pulls greatest number of similar points

but it does not yield an above Θ accurate clause, to make progress possible, this support

vector will be removed from consideration. We will clarify this more in Example 6.3.

Example 6.2. Figure 6.1 illustrates the local optima issue of FOIL. In Figure 6.2, an SVM

model is shown for the same dataset with two features f1 and f2 and two classes of red and

blue.The SHAP FOIL algorithm learns the following logic program on this dataset:

red(X):- f1(X,F1), 12.02 =< F1 <= 17.97,

f2(X,F2), 12.25 =< F2 <= 16.1 .

red(X):- f1(X,F1), 5.82 =< F1 <= 8.22,

f2(X,F2), 4.8 =< F2 <= 6.45 .

red(X):- f1(X,F1), 23.62 =< F1 <= 26.72,

f2(X,F2), 4.6 =< F2 <= 6.85 .

Example 6.3. To add numeric features, our algorithm creates an interval by finding the

smallest and largest values in the list of data samples associated with a support vector sv.

This approach sometimes results in too coarse-grained intervals that cover too many False

Positives (FP) to tolerate. As explained earlier, to handle this case, SHAP FOIL, removes sv

and tries to break the region into smaller sub-regions. Each smaller region is then covered by

other support vectors. Figure 6.4, illustrates this with a dataset of two features on which an

SVM model is trained. At iteration 1, after annotating the data samples, the support vector 3,

pulls the majority of data samples. According to SHAP, both numeric features contribute to

the classification decision. However, after creating the intervals for both features, the clause

shown as a green box, ends-up covering significant number of False Positives. This is shown

in Figure 6.4. Therefore, the clause is discarded and the support vector 3, is removed from

consideration. As shown in Figure 6.5, on iteration 2, the support vector 8 pulls the highest

number of data samples. It yields an accurate clause. Thus, it is added to the hypothesis.

70



Figure 6.4: Iteration #1 of Example 6.3

Figure 6.5: Iteration #2, #3 of Example 6.3

On iteration 3, the support vector 2 pulls the rest of data samples and once again, it results

in an accurate clause.

71



Table 6.1: Evaluation of SHAP FOIL on UCI Datasets
Algorithm

SVM Aleph SHAP-FOIL
Data Set Kernel Prec. Recall Acc. F1 Prec. Recall Acc. F1 Prec. Recall Acc. F1
credit-j rbf 0.84 0.84 0.84 0.84 0.78 0.72 0.78 0.75 0.83 0.76 0.83 0.80
breast-w Poly 0.97 0.96 0.96 0.96 0.92 0.87 0.93 0.89 0.97 0.89 0.95 0.93
ecoli rbf 0.96 0.96 0.96 0.96 0.85 0.75 0.84 0.80 0.86 0.94 0.89 0.90
kidney poly 0.99 0.99 0.99 0.99 0.96 0.92 0.93 0.94 0.97 0.97 0.97 0.97
voting rbf 0.95 0.94 0.94 0.94 0.97 0.94 0.95 0.95 0.92 0.94 0.91 0.93
autism rbf 1.00 1.00 1.00 1.00 0.73 0.43 0.79 0.53 0.94 0.86 0.94 0.88
ionosphere rbf 0.95 0.95 0.94 0.95 0.89 0.87 0.85 0.88 0.92 0.90 0.90 0.91
heart poly 0.81 0.80 0.80 0.80 0.76 0.75 0.78 0.75 0.90 0.86 0.90 0.88

6.5 Experiments

In this section, we present our experiments on UCI standard benchmarks (Lichman, 2013b).

The ALEPH system (Srinivasan, 2001) is used as the baseline. ALEPH is a state-of-the-art

ILP system that has been widely used in prior work. To find a rule, ALEPH starts by building

the most specific clause, which is called the “bottom clause”, that entails a seed example.

Then, it uses a branch-and-bound algorithm to perform a general-to-specific heuristic search

for a subset of literals from the bottom clause to form a more general rule. We set ALEPH

to use the heuristic enumeration strategy, and the maximum number of branch nodes to

be explored in a branch-and-bound search to 500K. We use the standard metrics including

precision, recall, accuracy and F1 score to measure the quality of the results.

The sequential-covering based algorithms - including ALEPH and FOIL - tend to learn

too many rules in presence of noisy data. Both algorithms induce more accurate clauses at

the expense of covering fewer examples by each clause. In our SHAP FOIL algorithm, spe-

cialization is stopped once the purity of a clause reaches the threshold Θ while the maximum

coverage is guaranteed by SHAP because the specialization is performed in the order of fea-

tures Shapley number. For instance, While ALEPH discovers 15 clauses for UCI heart, the

following logic program comprised of only 6 clauses is induced by the SHAP FOIL algorithm:

(1) heart_disease(X) :-

thallium_test(X,7),

72



chest_pain(X,4),

exercise_induced_angina(X).

(2) heart_disease(X) :-

maximum_heart_rate_achieved(X,F1),

106 =< F1, F1 =< 154,

not major_vessels(X,0),

oldpeak(X,F2),

1 =< F2, F2 =< 4.

(3) heart_disease(X) :-

not major_vessels(X,0),

thallium_test(X,7),

chest_pain(X,4).

(4) heart_disease(X) :-

thallium_test(X,7),

age(X,F1),

35 =< F1, F1 =< 52,

chest_pain(X,4).

(5) heart_disease(X) :-

maximum_heart_rate_achieved(X,F1),

120 =< F1, F1 =< 147,

exercise_induced_angina(X),

chest_pain(X,4).

(6) heart_disease(X) :-

not major_vessels(X,0),

chest_pain(X,4),

73



male(X).

The induced program can be understood as follows: In clause (1), thallium test(X,7)

indicates a thallium test with reversible defect, while chest pain(X,4) indicates an asymp-

tomatic type of chest pain. According to clause (1), these two conditions, conjoined with

angina revealed in an exercise test indicate the existence of heart disease. In clause (2), if

maximum heart rate achieved and during exercise test falls in the discovered range 106-154

and ST depression induced by exercise relative to rest falls in the range 1-4 and there are

signs of blockage in major vessels (indicated by negation-as-failure), the combination means

heart disease. The rest of the clauses are read similarly.

Table 6.1 presents the comparison between ALEPH and SHAP FOIL on classification

evaluation of each UCI dataset. The best performer is highlighted with boldface font. With

the exception of congressional voting dataset where the SVM performance is lower than

ALEPH, the SHAP FOIL algorithm always achieves higher score compared to ALEPH. Note

that our SHAP FOIL algorithm not only does better than ALEPH in classification evaluation

measures, it also produces much smaller number of rules. In many cases, ALEPH produces

an order of magnitude more rules than the SHAP FOIL algorithm. Smaller number of rules

are more readily understood by the user. They can be manually revised by the user much

more easily as well (to better capture the learned knowledge) based on user’s background

knowledge about the problem.

6.6 Related Works

A survey of ILP can be found in (Muggleton et al., 2012). Rule extraction from statistical Ma-

chine Learning models has been a long-standing goal of the community. The rule extraction

algorithms from machine learning models are classified into two categories: 1) Pedagogical

(i.e., learning symbolic rules from black-box classifiers without opening them) 2) Decom-

positional (i.e., to open the classifier and look into the internals). TREPAN (Craven and

74



Shavlik, 1995) is a successful pedagogical algorithm that learns decision trees from neural

networks. Minerva (Huysmans et al., 2008) and Iter (Huysmans et al., 2006) are pedagogical

approaches to extract rules from SVM models. There is also a broader pedagogical approach

to rule extraction where an SVM model is trained first, then the entire training data is

re-labeled using the predictions of the SVM model, and finally a rule learning method (e.g.,

C4.5, ID3, CART etc.) is applied. It should be noted that this approach suffers from the

very issue of local optima discussed in Figure 6.1.

SVM+Prototypes (Núñez et al., 2002) is a decompositional rule extraction algorithm

that makes use of KMeans clustering to extract rules from SVM classifiers by focusing on

support vectors. The main drawback of this approach is that all extracted rules contain

all possible input variables in its conditions, making the approach too complex to interpret

for large input dimensions. Fung (Fung et al., 2005) is another decompositional SVM rule

extraction technique to extract propositional rules which is limited to linear kernels. The

advantage of our SHAP FOIL algorithm is that it can handle all kernels and the induced

hypotheses are expressed in terms of the original features.

75



CHAPTER 7

INDUCTION OF LOGIC PROGRAMS FROM MACHINE LEARNING

MODELS USING HIGH-UTILITY ITEM-SET MINING

7.1 Overview

The ILP learning problem can be regarded as a search problem for a set of clauses that deduce

the training examples. The search is performed either top down or bottom-up. A bottom-up

approach builds most-specific clauses from the training examples and searches the hypothesis

space by using generalization. This approach is not applicable to large-scale datasets, nor it

can incorporate negation-as-failure into the hypotheses. A survey of bottom-up ILP systems

and their shortcomings can be found at (Sakama, 2005). In contrast, top-down approach

starts with the most general clause and then specializes it. A top-down algorithm guided by

heuristics is better suited for large-scale and/or noisy datasets (Zeng et al., 2014).

The FOIL algorithm by Quinlan (Quinlan, 1990b) is a popular top-down algorithm.

FOIL uses heuristics from information theory called weighted information gain. The use of

a greedy heuristic allows FOIL to run much faster than bottom-up approaches and scale up

much better. However, scalability comes at the expense of losing accuracy if the algorithm

is stuck in a local optima and/or when the number of examples is insufficient. Figure

7.1 demonstrates how the local optima results in discovering sub-optimal rules that does

not necessarily coincide with the real underlying sub-concepts of the data. Additionally,

since the objective is to learn pure clauses (i.e., clauses with zero or few negative example

coverage) the FOIL algorithm often discovers too many clauses each of which only cover a

few examples. Discovery of a huge number of clauses reduces the interpretability and also it

does not generalize well on the test data.

Unlike top-down ILP algorithms, statistical machine learning algorithms are bound to

find the relevant features because they optimize an objective function with respect to global

76



Figure 7.1: Optimal sequential covering with 3 Clauses (Left), Sub-Optimal sequential cov-
ering with 4 Clauses (Right)

constraints. This results in models that are inherently complex and cannot explain what

features account for a classification decision on any given data sample. The Explainable AI

techniques such as LIME (Ribeiro et al., 2016) and SHAP (Lundberg and Lee, 2017) have

been proposed that provide explanations for any given data sample. Each explanation is a

set of feature-value pairs that would locally determine what features and how strongly each

feature, relative to other features, contributes to the classification decision. To capture the

global behavior of a black-box model, however, an algorithm needs to group similar data

samples (i.e., data samples for which the same set of feature values are responsible for the

choice of classification) and cover them with the same clause. While in FOIL, the search

for a clause is guided by heuristics, in our novel approach, we adapt High Utility Item-set

Mining (HUIM) (Gan et al., 2018) — a popular technique from data mining — to find

clauses. We call this algorithm SHAP-FOLD from here on. The advantage of SHAP-FOLD

over heuristics-based algorithms such as FOIL is that:

1. SHAP-FOLD does not get stuck in a local optima

2. SHAP-FOLD distinguishes exceptional cases from noisy samples

3. SHAP-FOLD learns a reasonable number of non-monotonic rules in the form of default

theories that would understandably capture the global behavior of any black-box model

4. SHAP-FOLD is fast and scalable compared to conventional ILP algorithms

77



This chapter makes the following novel contribution: We present a new ILP algorithm capa-

ble of learning non-monotonic logic programs from local explanations of black-box models

provided by SHAP. Our experiments on UCI standard benchmark data sets suggest that

SHAP-FOLD outperforms ALEPH (Srinivasan, 2001) in terms of classification evaluation

metrics, running time, and providing more concise explanations measured in terms of number

of clauses induced.

7.2 High-Utility Itemset Mining

The problem of High-Utility Itemset Mining (HUIM) is an extension of an older problem

in data mining known as frequent pattern mining (Aggarwal and Han, 2014). Frequent

pattern mining is meant to find frequent patterns in transaction databases. A transaction

database is a set of records (transactions) indicating the items purchased by customers at

different times. A frequent itemset is a group of items that appear in many transactions.

For instance, {noodles, spicy sauce} being a frequent itemset, can be used to take marketing

decisions such as co-promoting noodles with spicy sauce. Finding frequent itemsets is a well-

studied problem with an efficient algorithm named Apriori (Agrawal and Srikant, 1994).

However, in some applications frequency is not always the objective. For example, the

pattern {milk,bread} may be highly frequent, but it may yield a low profit. On the other

hand, a pattern such as {caviar, champagne} may not be frequent but may yield a high

profit. Hence, to find interesting patterns in data, other aspects such as profitability is

considered.

Mining high utility itemsets can be viewd as a generalization of the frequent itemset

mining where each item in each transaction has a utility (importance) associated with it

and the goal is to find itemsets that generate high profit when for instance, they are sold

together. The user has to provide a value for a threshold called minimum utility. A high

78



utility itemset mining algorithm outputs all the high-utility itemsets with at least minimum

utility profit. The HUIM problem is formally defined as follows:

• I = {i1, i2, ..., im} is a set of items.

• D = {T1, T2, ..., Tn} be a transaction database where each transaction Ti ∈ D is a

subset of I.

• u(ip, Tq) denotes the utility (profit) for item ip in transaction Tq. For example u(b, T0) =

10 in Example from Table 7.1.

• u(X,Tq), utility of an itemset X is defined as
∑

ip∈X u(ip, Tq), where X = {i1, i2, ..., iK}

is a k-itemset, X ⊆ Tq and 1 ≤ K ≤ m.

• u(X), utility of an itemset X is defined as
∑

Tq∈D∧X⊆Tq u(X,Tq).

An itemset X is a high utility itemset if u(X) ≥ ε, where X ⊆ I and ε is the minimum util-

ity threshold, otherwise, it is a low utility itemset. Table 7.1 shows a transaction database

consisting of 5 transactions. Left columns shows the transaction Identifier. Middle column

contains the items included in each transaction and right column contains each item’s re-

spective profit. If the ε is set to 25, the result of a high utility itemset mining algorithm is

shown in the right table in Table 7.1.

Several high utility itemset mining algorithms have been proposed (e.g., UMining, Two-

Phase, IHUP, UP-Growth, etc). A complete survey of these algorithms can be found in

(Fournier-Viger et al., 2019). The differences between these algorithms lies in the data

structures, strategies that are employed for searching high utility itemsets (DFS vs. BFS),

and how they prune the unpromising paths.

The downside of this approach is that it requires the decision maker to choose a minimum

utility threshold value for discovering interesting itemsets. This is quite challenging as too

low a choice of ε results in too many itemsets and too high a choice of ε results in too

79



Table 7.1: Left: A High Utility Itemset Problem Instance. Right: Solution for minutil = 25

Transactions Items Profits
T0 a b c d e 5 10 1 6 3
T1 b c d e 8 3 6 3
T2 a c d 5 1 2
T3 a c e 10 6 6
T4 b c e 4 2 3

High Utility Itemsets
{a, c}: 28 {a, c, e}: 31
{a, b, c, d, e}: 25 {b, c}: 28
{b, c, d}: 34 {b, c, d, e}: 40
{b, c, e}: 37 {b, d}: 30
{b, d, e}: 36 {b, e}: 31
{c, e}: 27

few itemsets. In order to address this issue, Top-K High Utility Itemset (THUI) mining

problem was introduced (Tseng et al., 2016), where the user wants to discover the k itemsets

having the highest utility. A top-k high-utility itemset mining algorithm works as follows:

It initially sets an internal ε threshold to 0, and starts to explore the search space. Then, as

soon as k high utility itemsets are found, the internal ε is raised to the utility of the pattern

having the lowest utility among the current top-k patterns. Then, the search continues and

for each high utility itemset found, the set of the current top-k pattern is updated as well

as the internal ε. When the algorithm terminates, it returns the set of the top-k high utility

itemsets.

7.3 SHAP-FOLD Algorithm

In this section we present the SHAP-FOLD algorithm. SHAP-FOLD learns a concept in

terms of a default theory (Shakerin et al., 2017). A default theory is a non-monotonic logic

theory to formalize reasoning with default assumptions in absence of complete information.

In Logic Programming, default theories are represented using negation-as-failure (NAF)

semantics (Baral, 2003).

Example 7.1. The following default theory “Normally, birds fly except penguins which do

not”, is represented as:

flies(X) :- bird(X), not ab_bird(X).

ab_bird(X) :- penguin(X).

80



This default theory is read as: “For every object X, X flies if X is a bird and is not abnormal.

For every object X, X is an abnormal bird if it is a penguin”.

The SHAP-FOLD algorithm adapts the FOIL style sequential covering scheme. There-

fore, it iteratively learns single clauses, until all positive examples are covered. To learn one

clause, SHAP-FOLD first finds common patterns among positive examples. If the resulted

clause (default) covers a significant number of negative examples, SHAP-FOLD swaps the

current positive and negative examples and recursively calls the algorithm to learn common

patterns in negative examples (exceptions). As shown in Example 7.1, the exceptions are

ruled out using negation-as-failure. Learning exceptions allow our SHAP-FOLD algorithm

to distinguish between noisy samples and exceptional cases.

To search for “best” clause, SHAP-FOLD tightly integrates the High Utility Itemset

Mining (HUIM) and the SHAP technique. In this novel approach, the SHAP system is

employed to find relevant features as well as their importance.

Example 7.2. The UCI heart dataset contains features such as patient’s blood pressure,

chest pain, thallium test results, number of major vessels blocked, etc. The classification task

is to predict whether the subject suffers from heart disease or not. Figure 7.2 shows how

SHAP would explain a model’s prediction over a data sample.

For this individual, SHAP explains why the model predicts heart disease by returning the

top features along with their Shapley values (importance weight). According to SHAP, the

model predicts “heart disease” because of the values of “thalium test” and “maximum heart

rate achieved” which push the prediction from the base (expected) value of 0.44 towards a

positive prediction (heart disease). On the other hand, the feature “chest pain” would have

pushed the prediction towards negative (healthy), but it is not strong enough to turn the

prediction.

81



Figure 7.2: Shap Values for A UCI Heart Prediction

The categorical features should be binarized before any model is trained. Binarization

(a.k.a one-hot encoding) is the process of transforming each categorical feature with domain

of cardinality N , into N new binary predicates (features).In Example 7.2, chest pain level

is a categorical feature with 4 different values in the set {1, 2, 3, 4}. Type 4 chest pain

indicates asymptomatic pain and is a serious indication of a heart condition. In this case,

binarization results in 4 different predicates. The “thalium test” is also a categorical feature

with outcomes in the set {3,6,7}. Any outcome other than 3, indicates a defect (6 for fixed

and reversible for 7). In case of Example 5.1, SHAP determines that the feature “thal 7”

with outcome of 1 (True), pushes the prediction towards heart disease. To reflect this fact in

our ILP algorithm, for any person X, the predicate thal(X,7) is introduced. Also, SHAP

indicates that the binary feature “chest pain 4” with value 0 (False), pushes the prediction

towards healthy.

To find the “best” clause SHAP-FOLD creates instances of HUIM problem. Each in-

stance, contains a subset of examples represented as a set of “transactions” as shown in

Table 7.1. Each “transaction” contains a subset of feature values along with their cor-

responding utility (i.e., feature importance). The feature importance φi ∈ [0, 1] for all i

distinct feature values. Therefore, a high-utility itemset in any set of “transactions” repre-

sents strongest features that would contribute to the classification of a significant number

of examples, because, otherwise, that itemset would not have been selected as a high-utility

itemset. To find the itemset with highest utility, the HUIM algorithm Top-K (Tseng et al.,

2016) is invoked with K set to 1.

82



SHAP-FOLD takes a target predicate name (G), a tabular dataset (D) with m rows and

two different labels +1 and −1 for positive examples and negative examples respectively. E+

and E− represent these examples in the form of target atoms. It also takes a “transaction”

database. Each row of T contains a subset of an example’s feature-values (~zi) along with

their Shapley values (~φi). This “transaction” database is passed along to create HUIM

instance and find the itemset with highest utility every time Top-K algorithm is invoked.

The summary of SHAP-FOLD’s pseudo-code is shown in Algorithm 9.

In the function FOIL (lines 1-8), sequential covering loop to cover positive examples is

realized. On every iteration, a default clause (and possibly multiple exceptions) - denoted

by Cdef+exc - is learned and added to the hypothesis. Then, the covered examples are

removed from the remaining examples. In the function LEARN ONE RULE (lines 9-17),

Top-K algorithm with k = 1 is invoked and a high-utility itemset (i.e., a subset of features-

values and their corresponding Shapley values) is retrieved. These subset of features create

the default part of a new clause. Next, if the default clause covers false positives, the

current positive and negative examples are swapped to learn exceptions. In the function

LEARN EXCEPTIONS (lines 18 - 25), the algorithm recursively calls itself to learn clauses

that would cover exceptional patterns. When the recursive call returns, for all learned

clauses, their head is replaced by an abnormality predicate. To manufacture the complete

default theory, the abnormality predicate preceded by negation-as-failure (not) is added to

the default part. The following example shows how SHAP-FOLD learns a concise non-

monotonic logic program from an XGBoost trained model.

kir

Example 7.3. The “UCI Cars” dataset has the information about evaluating 1728 different

cars and their acceptability based on features such as buying price, maintenance cost, trunk

size, capacity, number of doors, and safety. SHAP-FOLD generates the following program

from a trained XGBoost model:

83



Algorithm 9 Summary of SHAP-FOLD Algorithm

Input: G: Target Predicate to Learn
B: Background Knowledge
D = { (~x1, y1), ..., (~xm, ym)} : yi ∈ {−1,+1}
E+ = { ~xi | ~xi ∈ D ∧ yi = 1} : Positive Examples
E− = { ~xi | ~xi ∈ D ∧ yi = −1}: Negative Examples

T = { (~zi, ~φi) | ~zi ⊆ ~xi ∧ ~xi ∈ D ∧ ~φi is ~zi’s Shapley values }
Output: D = { C1, ..., Cn} . default clauses

AB = { ab1, ..., abm} . exceptions/abnormal clauses
1: function FOIL(E+, E−)
2: while (|E+| > 0) do
3: Cdef+exc ← Learn One Rule(E+,E−)
4: E+ ← E+ \ covers(Cdef+exc, E+, B)
5: D ← D ∪ {Cdef+exc}
6: end while
7: return D,AB . returns sets of defaults and exceptions
8: end function
9: function Learn One Rule(E+, E−)
10: - let Item-Set be {(f1, ...fn), (φ1, ..., φn)} ← Top-K(K=1,E+,T) . Call to HUIM

algorithm
11: Cdef ← (G :- f1, ..., fn)
12: FP ← covers(Cdef , E

−) . FP denotes False Positives
13: if FP > 0 then
14: Cdef+exc ← LEARN EXCEPTIONS(Cdef , E

−, E+)
15: end if
16: return Cdef+exc
17: end function
18: function LEARN EXCEPTIONS(Cdef , E

+, E−)
19: {C1, ..., Ck} ← FOIL(E+, E−) . Recursive Call After Swapping
20: ab index← GENERATE UNIQUE AB INDEX()
21: for i← 1 to k do
22: AB ← AB ∪ {abab index :- bodyof(Ci)}
23: end for
24: return Cdef+exc ← (headof(Cdef ) :- bodyof(Cdef ), not(abab index))
25: end function

84



DEF(1):

acceptable(A):- safety(A,high),

not ab0(A).

EXCEPTIONS(1):

ab0(A):- persons(A,2).

ab0(A):- maintenance(A,very_high).

DEF(2):

acceptable(A):- persons(A,4),

safety(A,medium),

not ab1(A).

EXCEPTIONS(2):

ab1(A):- price(A,very_high),

trunk(A,small).

ab1(A):- price(A,high),

maintenance(A,very_high).

DEF(3):

acceptable(A):- trunk(A,big),

safety(A,medium),

persons(A,>5).

On first iteration, the clause DEF(1) (i.e., acceptable(A) :- safety(A,high) is gener-

ated. Since it covers a significant number of negative examples, E+ and E− are swapped and

algorithm recursively calls itself. Inside LEARN EXCEPTIONS, the recursive call returns

with EXCEPTIONS(1) clauses. The head predicate ab0 replaces their head and finally in

line 24, the negation of abnormality is appended to the default to create a complete default

clause. According to the discovered default clause, a car is considered acceptable if its safety

85



is high, unless it can only fit two person (too small) or its maintenance cost is high. Sim-

ilarly, the DEF(2) clause states that a car is acceptable if it can fit 4 person and its safety

is medium, unless its price is too high and its trunk is small. Another exceptional case is

established by high price and very high maintenance. The third clause default part does not

cover any false positives, hence no exception clause is learned.

There are some technicalities that should be pointed out: (1) The numeric features

should be discretized (i.e., by splitting them into fixed number of intervals). This restriction

is imposed by SHAP technique. (2) Inspired by FOIL implementation, the “if statement”

in line 13 of the algorithm is realized in terms of an empirical accuracy (e.g., % 85) to avoid

over-fitting. This would allow some noise error after learning the exceptions.

7.4 Experiments

In this section, we present our experiments on UCI standard benchmarks (Lichman, 2013b).

SHAP-FOLD implementation is available at: https://github.com/fxs130430/SHAP{_}FOLD

The ALEPH system (Srinivasan, 2001) is used as a baseline. ALEPH is a state-of-the-art

ILP system that has been widely used in prior work. To find a rule, ALEPH starts by building

the most specific clause, which is called the “bottom clause”, that entails a seed example.

Then, it uses a branch-and-bound algorithm to perform a general-to-specific heuristic search

for a subset of literals from the bottom clause to form a more general rule. We set ALEPH

to use the heuristic enumeration strategy, and the maximum number of branch nodes to be

explored in a branch-and-bound search to 500K. We also configured ALEPH to allow up to

50 false examples covered by each clause while each clause should be at least 80 % accurate.

We use the standard metrics including precision, recall, accuracy and F1 score to measure

the quality of the results.

The SHAP-FOLD requires a statistical model as input to the SHAP technique. While

computing the Shapley values is slow, there is a fast and exact implementation called Tree-

86

https://github.com/fxs130430/SHAP{_}FOLD


Table 7.2: Evaluation of SHAP FOLD on UCI Datasets
Algorithm

Aleph SHAP-FOLD
Data Set Shape Precision Recall Accuracy F1 Time (s) Precision Recall Accuracy F1 Time (s)
cars (1728, 6) 0.83 0.63 0.85 0.72 73 0.84 0.94 0.93 0.89 5
credit-a (690, 15) 0.78 0.72 0.78 0.75 180 0.90 0.74 0.84 0.81 7
breast-w (699, 9) 0.92 0.87 0.93 0.89 10 0.92 0.95 0.95 0.93 2
kidney (400, 24) 0.96 0.92 0.93 0.94 5 0.93 0.95 0.93 0.94 1
voting (435, 16) 0.97 0.94 0.95 0.95 25 0.98 0.98 0.95 0.96 1
autism (704, 17) 0.73 0.43 0.79 0.53 476 0.96 0.83 0.95 0.89 2
ionosphere (351, 34) 0.89 0.87 0.85 0.88 113 0.87 0.91 0.85 0.89 2
heart (270, 13) 0.76 0.75 0.78 0.75 28 0.76 0.83 0.81 0.80 1
kr vs. kp (3196, 36) 0.92 0.99 0.95 0.95 836 0.92 0.99 0.95 0.95 8

Explainer (Lundberg et al., 2018) for ensemble tree models. XGBoost (Chen and Guestrin,

2016) is a powerful ensemble tree model that perfectly works with TreeExplainer. Thus, we

trained an XGBoost model for each of the reported experiments in this chapter. Table 7.2

presents the comparison between ALEPH and SHAP-FOLD on classification evaluation of

each UCI dataset. The best performer is highlighted with boldface font. In terms of the

running time, SHAP-FOLD scales up much better. In case of “King-Rook vs. King-Pawn”,

while ALEPH discovers 283 clauses in 836 seconds, SHAP-FOLD does much better. It fin-

ishes in 8 seconds discovering only 3 clauses that cover the knowledge underlying the model.

Similarly, in case of “UCI kidney”, SHAP-FOLD finds significantly fewer clauses.Thus, not

only SHAP-FOLD’s performance is much better, it discovers more succinct programs. Also,

scalability is a major problem in ILP, that our SHAP-FOLD algorithm solves: its execution

performance is orders of magnitude better.

SHAP-FOLD almost always achieves a higher Recall score.This suggests that the proper

use of negation-as-failure leads to better coverage. The absence of negation from ALEPH

hypothesis space forces the algorithm to create too specific clauses which leaves many positive

examples uncovered. In contrast, our SHAP-FOLD algorithm emphasizes on better coverage

via finding high-utility patterns of important features first. If the result turns out to cover

too many negative examples to tolerate, by learning exceptions and ruling them out (via the

87



same algorithm applied recursively), SHAP-FOLD maintains the same coverage as it rules

out exceptional negative examples.

SHAP-FOLD is a Java application that interfaces SWI-Prolog (Wielemaker et al., 2012)

using JPL library. The HUIM instances are solved by calling TKU from the SPMF Data

mining library (Fournier-Viger et al., 2016).

88



CHAPTER 8

CONSTRAINTS-AWARE COUNTER-FACTUAL PROPOSALS

8.1 Overview

The EU’s General Data Protection Regulation (GDPR) recognizes the “right to explanation”

for the decisions made by algorithms about humans. The “right to explanation” protects

individuals through (1) helping them understand why an algorithm arrives at a decision (2)

providing grounds to challenge the decision (3) informing the individual about what could

be changed to receive a desirable decision in the future assuming that the same algorithm

will be used. The latter is known as counterfactual explanation problem.

A counterfactual explanation describes a causal situation in the form “if X had resp.,(had

not) the property P, event Y would resp., (wouldn’t) have happened. For instance, if John,

a bank customer, had an income salary greater than 100,000 $ per year, his loan application

would have been approved. Alternatively, if John had 7 open accounts, his loan application

would have been approved. If John’s current salary is 98,000 $, a counterfactual proposal

based on a 2000 $ raise in annual salary is a feasible change. However, if John’s current

salary is 65,000 $, a raise of 35,000 $ seems unrealistic. On the other hand, if he already

has 6 open accounts, opening another account does not require too much effort on his side.

As the example suggests, a solution to counterfactual explanation should always incur a

minimum change made to the original feature values.

Definition 8.1. Given an input feature vector x ∈ X, where X is the set of all possible input

feature vectors and a binary classifier f : X → {0, 1} which is a function that maps an input

feature vector into a decision y ∈ {0, 1}, a counterfactual space CFf (x) of x is defined as

follows:

CFf (x) = {x̂ ∈ X | f(x) 6= f(x̂)}.

89



For multi-class predictors, we can always break down the problem into a binary classifi-

cation instance using one-versus-rest approach. In this approach, instances from the class of

interest are relabeled as “1” and instances of other classes are relabeled as “0”.

Next we will characterize the Minimality property based on Definition 8.1 of counterfac-

tual space.

Definition 8.2. The nearest counterfactual explanation for a data sample x and a binary

classifier f on a given domain X is defined as follows:

x̂∗ = argmin
x̂ ∈ CFf (x)

d(x, x̂)

where d is a distance function that determines how “similar” its given arguments are.

In other words, the nearest counterfactual explanation is a data point from the space

of all counterfactual explanations of the data sample x characterized by CFf (x), such that

it is the “closest” to the original data sample. A naive solution to generate counterfactual

explanations is a trial and error search. In this approach, the entire space of counterfactual

explanations (i.e., CFf ) is generated by labeling the entire set of X using function f . After

that, the point with smallest distance to the original data sample is picked up as the nearest

counterfactual explanation. This approach obviously does not scale up and is of no use.

Recent proposed solutions treat this problem as an optimisation problem (Wachter et al.,

2017; Looveren and Klaise, 2019). The authors of (Wachter et al., 2017) suggest to minimize

the following loss function:

L(x, x′, y′, λ) = λ.(f(x′)− y′)2 + d(x, x′)

In this loss function, the first term pushes the prediction f(x′) towards the intended outcome

y′ while the second term tries to minimize the distance of a counterfactual explanation x′

from the original data sample x. The choice of λ parameter puts smaller or greater emphasis

90



on the proximity to the desired output prediction. A higher λ prefers counter-factuals that

have very close desired outcome, where as, a small value of λ, prefers counter-factuals that

are quite similar to the original data sample. Since choosing the λ is tricky, the authors

suggest to add another constraint ε as the tolerance for how far away the prediction of the

counterfactual is allowed to be from the desired output. This extra constraint is defined as

follows:

|f(x′)− y′| ≤ ε

To minimize the loss function for a given data sample x and a desired output y′ and a

tolerance parameter ε, first the smallest x′ is found then it solves for the largest λ parameter

that yields the smallest ε, hence it solves the following optimisation objective:

argmin
x′

max
λ

L(x, x′, y′, λ)

In (Laugel et al., 2018), authors propose an enhanced search based on growing a sphere

around the given data sample and check whether any of the randomly generated data samples

in the sphere fall into the boundaries of the desired class or not. If no such data point is

found, the sphere grows and the same operation is repeated.

The main disadvantage of all the above approaches is that they are completely oblivious

of the logical, physical and temporal constraints. For instance, if age is among the fea-

tures, nothing can stop the counterfactual generation algorithm to make recommendations

based on increasing / decreasing the age. Even if it does rule out some of the infeasible

recommendations, the results are not guaranteed to be minimally close to the original data

sample.

In this chapter, we will propose an approach based on an enhanced form of abductive

Answer Set Programming that would fully respect the constraints that logic, physics and time

would impose to the domain of interest and is defined as part of the background knowledge

in the process of generating counter factual explanations.

91



8.2 Abductive Answer Set Programming

In Chapter 3, Section 3.6 we introduced abduction as a way of adding pieces of knowledge

that are deemed necessary to make a certain clause hold. Adding a directive #abducible in

s(ASP) followed by a predicate lets s(ASP) engine assume the correctness of all abductively

stated predicates as it encounters them during the top down execution a query. Consider

Example 8.1 and a data sample with the following set of facts:

safety(car12,low). doors(car12,4).

trunk_size(car12,big). maintenance_cost(car12,low).

price(car12,very_high) capacity(car12, 4).

Example 8.1. The following clauses are part of the rules that were induced from UCI Car

Evaluation dataset by SHAP FOLD algorithm. UCI Car Evaluation represents the quality

of different cars given their safety level, capacity, buying price, maintenance cost, trunk size

and the number of doors. This is a classification task of determining whether a car has

acceptable quality based on the above features.

(1) acceptable(A):- safety(A,high), not ab0(A).

(2) acceptable(A):- capacity(A,4), safety(A,medium), not ab2(A).

ab0(A):- capacity(A,2), maintenance_cost(A,high).

ab0(A):- maintenance_cost(A,very_high).

The query ?- acceptable(car12). will fail, because, safety(car12,high) from clause

(1) and safety(car12,high) from clause (2) fails as car12 has safety(car12,low). By

adding #abducible safety(X,high). to the source file and running the same query again,

this time it succeeds with the following Answer set:

{ acceptable(car12), safety(car12,high), not ab0(car12),

not capacity(car12,2), not maintenance_cost(car12,very_high)}

92



In this example, although safety(car12,high) does not belong to the set of facts around

car12, but through introducing #abducible safety(X,high), the s(ASP) engine assumes

that it holds and therefore, includes it in the partial Answer Set shown above. It should

be noted that #abducible safety(X,high) is a syntactic sugar for an even loop through

negation and could be replaced with the following set of clauses:

safety(X,high) :- not q(X).

q(X) :- not safety(X,high).

where q(X) serves as a dummy predicate. As a result, our solution is not bound by the choice

of Answer Set Programming engine, although, the partial answer set generated by s(ASP),

only contains the relevant literals that are used in GL method to establish the correctness

of the query. Other Answer Set Programming engines such as Clingo always ground the

program first, and then output the entire least Herbrand Universe of the program. As a

result they tend to be less scalable when dealing with a giant knowledge base.

Abduction almost solves the problem by recommending the facts that are missing from

the body of a clause.These are the facts that would make the left hand side of the clause

hold, However, in case of abnormality predicates, if the left hand side of a clause does not

hold, abduction mechanism cannot help, as it can only find the missing facts, but in case of

abnormalities, something holds that should not have. For clarification, consider the following

example from another car instance in UCI Car Evaluation domain:

safety(car14,low). doors(car14,4).

trunk_size(car14,big). maintenance_cost(car14,very_high).

price(car14,very_high) capacity(car14, 4).

In this case, abduction cannot satisfy clause (1).

This is because, maintenance cost(car14,very high) satisfies the exception clause ab0.

The only way to satisfy clause (1) is to remove maintenance cost(car14,very high) from

93



the set of facts. Therefore, to handle both addition and subtraction of facts, a stronger

mechanism is needed. One that is capable of (a) finding the missing facts (b) removing the

facts that through negation-as-failure make the left hand side of the target clause false (c)

being able to handle arithmetic constraints and inequalities. This mechanism leverages the

Craig Interpolants and will be discussed in the next section.

8.3 Craig Interpolants

Craig’s interpolation theorem (Craig, 1957) in mathematical logic states that if A =⇒ C is

a valid (closed) implication in first-order logic, then there is a Craig interpolant I such that

A =⇒ I and I =⇒ C are valid and every non-logical symbol of I occurs in both A and

C. “Non-logical” symbols are variables and uninterpreted functions and so on. There is a

reverse form of this theorem with important applications in model checking that is defined

below:

Definition 8.3. For two subsets of clauses (A,B) such that A ∧B is unsatisfiable, there is

a reverse interpolant I such that A =⇒ I and B =⇒ ¬I and every “non-logical” symbol

of I occurs in both A and B.

Reverse interpolant for A ∧ B is identical with ordinary interpolant for A =⇒ ¬B.

Hence, from this point and onward, whenever interpolants come up, we really mean the

reverse interpolants. In Definition 8.3, a clause is a disjunction of zero or more positive or

negative propositional variables that are not tautological. In other words, no clause contains

a variable and its negation. Given two clauses of the form c1 = p ∨ A and c2 = ¬p ∨ B, a

resolvent of c1 and c2 is the clause A ∨B as long as A ∨B is not a tautology.

Definition 8.4. A proof of unsatisfiability P for a pair of clauses C is a DAG (directed

acyclic graph) with (Vp, Ep) where Vp is a set of clauses, such that for every vertex c ∈ Vp:

94



• c is a leaf and c ∈ C

• c is the resolvent of exactly two parents C1 and C2

• c is the empty clause (as a result of resolving p ∧ ¬p

Mcmillan in (McMillan, 2003) proposed a systematic way of computing interpolants for

two pairs of inconsistent clause sets (A,B) using the resolution proof of unsatisfiability P of

A ∪ B. A literal is global if it occurs in both A and B, and it is local otherwise. For any

clause c, g(c) (l(c)) denotes a disjunction of all its global (local) literals respectively.

Example 8.2. For the pair of clause sets (A,B) such that A = {b̄, ā∨ b∨ c, a} , B = {ā∨ c̄}

we have g(b̄) = ⊥ because the variable b is not global (only occurs in A). Also, we have

g(ā ∨ b ∨ c) = ā ∨ c.

Definition 8.5. Let (A,B) be a pair of clause sets and P be a proof of unsatisfiability of

A ∪ B, with the root (bottom) vertex r. For all vertices c ∈ Vp let pc be a boolean formula

named a partial interpolant such that:

• if c is a leaf, then

– if c ∈ A then p(c) = g(c),

– else p(c) is constant True

• else, let c1, c2 be the predecessors of c and let v be the resolved variable

– if v is local, then p(c) = p(c1) ∨ p(c2),

– else p(c) = p(c1) ∧ p(c2)

The interpolant of two inconsistent clause sets (A,B) is pr where r is the root of the proof

DAG (bottom clause). Interpolant is denoted by ITP (A,B).

Figure 8.1 shows the annotated resolution proof tree of the pair of clauses sets from

Example 8.2. The ITP (A,B) is the corresponding partial interpolant of bottom clause.

95



Figure 8.1: Computing the Craig interpolant for two sets of inconsistent clauses using the
resolution proof tree annotations

8.4 ASP-based Counterfactual Explanation Using Craig Interpolants

In Section 8.2 We showed how by defining a predicate as #abducible (or alternatively, by

introducing an even loop though negation-as-failure) the ASP engine can fill out the missing

facts as it encounters them. In simple terms, every #abducible creates two worlds. In one

world, the abduced predicate is considered to hold and in the other world it is considered

to be false. Therefore, if all the body predicates of our hypothesis are defined as abducible

predicates, s(ASP) engine will systematically create all possible paths in the program to

satisfy the hypothesis. s(ASP) will represent each of these paths using a partial answer set

that contains all relevant abductive facts necessary to satisfy the hypothesis using that path.

On the other hand, we have a set of facts representing a data sample’s feature values. In the

context of counter-factual explanation the assumption is that none of the paths to satisfy

the hypothesis are consistent, because otherwise, the data sample would not need a counter-

96



factual explanation on the first place. Therefore, each of the paths to satisfy the hypothesis,

that is, each of the answer sets generated by s(ASP) engine, provide a proposal from CFf

space to counter-factually explain the current data sample. Since each answer set is a set of

formulae, that are inconsistent with the set of facts from our data sample, Craig interpolant

of the two sets can be computed. The interpolant explains what makes the hypothesis and

a given data sample inconsistent. Hence, it determines what needs to change in the original

data sample to satisfy the hypothesis. By repeating the same process for each possible path,

a counter-factual proposal is created. It should be noted that every path provides a data

point from the counter-factual explanation space, however, to find the nearest one to the

original data sample, we still need to define an appropriate distance function that compares

each counter-factual proposal with the original data sample and picks up the “closest” one.

Example 8.3. Listing 1 shows a partial set of clauses that were learned from the UCI Car

Evaluation data set in the previous chapters. The following shows some of the partial answer

sets generated by s(ASP):

{ acceptable(id,1), safety(id,high), not ab0(id), not capacity(id,2),

not maintenance_cost(id,very_high) }

This partial answer set shows that one way of satisfying the first clause

(i.e., acceptable(id,1)) is to establish safety(id,high) while making sure that both ab0

clauses fail. This is established via not capacity(id,2) from the first clause of ab0 and

not maintenance cost(id,very high) from the second clause of ab0.

{ acceptable(id,1), capacity(id,2), safety(id,high), not ab0(id),

not maintenance_cost(id,high), not maintenance_cost(id,very_high) }

This partial answer set allows capacity(id,2) to hold, instead, it fails the ab0 goal by

including not maintenance cost(id,2) in the partial answer set.

97



Listing 1 UCI Car Evaluation First Two Clauses

% second argument is used to determine which rule is being used

acceptable(A,1):- safety(A,high), not ab0(A).

acceptable(A,2):- capacity(A,4), safety(A,medium), not ab2(A).

ab0(A):- capacity(A,2), maintenance_cost(A,high).

ab0(A):- maintenance_cost(A,very_high).

ab2(A):- price(A,very_high), trunk_size(A,small).

ab2(A):- price(A,high), maintenance_cost(A,very_high).

ab2(A):- maintenance_cost(A,very_high), price(A,very_high).

ab2(A):- price(A,very_high), maintenance_cost(A,high).

ab2(A):- price(A,high), trunk_size(A,small).

#abducible safety(A,X).

#abducible capacity(A,X).

#abducible maintenance_cost(A,X).

#abducible trunk_size(A,X).

#abducible price(A,X).

#abducible doors(A,X).

% Compute All Answer sets with switch 0

#compute 0 {acceptable(id,N)}.

{ acceptable(id,2), capacity(id,4), safety(id,med), not ab2(id),

not price(id,high), not price(id,very_high),

not maintenance_cost(id,very_high) }

This partial answer set shows one way of satisfying the second clause. Each of the negated

literals contribute to the failure of one of ab2 clauses.

After generating all partial answer sets, Craig-interpolant is leveraged to create counter-

factual proposals. To achieve this, a pair (A,B) of clause sets is created with the partial

answer set as A and the set of facts from a given data sample as B. However, it should be

noted that for categorical features, one-hot encoding is performed first, and for each feature

value with value 0, a negated fact is also added to the set B. As an example we have the facts

98



related to car12 along with the first partial answer that s(ASP) generates for the hypothesis

in Listing 1.

A = { acceptable(car12,1), safety(car12,high), not capacity(car12,2),

not maintenance_cost(car12,very_high) }

B = { safety(car12,low), doors(car12,4), trunk_size(car12,big),

maintenance_cost(car12,low), price(car12,very_high),

capacity(car12, 4), not capacity(car12, more_than_5),

not capacity(car12,2), not maintenance_cost(car12, high),

not maintenance_cost(car12,very_high), not doors(car12,2),

not doors(car12,3), not trunk_size(car12,small),

not trunk_size(car12,medium), not safety(car12, low),

not safety(car12, medium), not price(car12,high),

not price(car12,medium), not price(car12,low)}

The Craig interpolant for the pair (A,B) is as follows:

ITP (A,B) = not capacity(car12,2) AND not maintenance cost(car12,very high)

To make the interpolant affirmative instead of prohibitive, each negated literal can be

replaced by the disjunction of the rest of possible values. In case of Example 8.3, the counter-

factual proposal after removing the negated literals looks like the following:

1. capacity ∈ {4, more than4} ∧ maintenance cost ∈ {high, low}

2. maintenance cost = low

The rest of counter-factual proposals are generated using the second clause, that is

acceptable(id, 2) as follows:

1. price ∈ {low,medium}∧ maintenance cost ∈ {high, low}∧ safety = medium

99



2. price ∈ {low,medium}∧ capacity = 4 ∧ safety = medium

3. price = high ∧ capacity = 4 ∧ safety = medium ∧ maintenance cost ∈ {low, high}

4. capacity = 4 ∧ maintenance cost = low ∧ safety = medium

5. price = high ∧ capacity = 4 ∧ maintenance cost = low ∧ safety = medium

Algorithm 10 summarizes the logic-based approach presented in this chapter to find the

constraint-aware counter-factual explanation proposals. In this algorithm, all the constraints

are presented as part of the background knowledge and contribute to the abductive answer

sets that are produced. In Algorithm 10, ITP (as, x) denotes the process of computing Craig

interpolant by having as as A and the set of facts around the data sample x as B. Also,

the function apply on line 10, creates a new copy of the data sample with all the facts from

interpolant applied to the original data sample to create the counter-factual proposal x′.

Next, we prove that our Interpolating CFE algorithm’s proposals always result in flipping

the classification decision (soundness).

Theorem 8.1. The Interpolating CFE algorithm is sound.

Proof. By contradiction: Assume for the sake of contradiction that CFE algorithm is not

sound. Thus, it generates at least one counter-factual proposal c for data sample x that does

not belong to the desirable class. Without loss of generality, we assume that a path p with

the answer set AS was used to generate c. Since c does not belong to the desirable class, it

follows that c is not implied by the path p, hence, the answer set AS and c are inconsistent.

This contradicts the definition of an interpolant, because, AS must imply the interpolant,

that is, AS =⇒ c.

Next, we prove that if a counter-factual proposal exists, our interpolating CFE algorithm

will find it (completeness)

100



Algorithm 10 Summary of Interpolating CFE Algorithm

Input: D = { C1, ..., Cn} . default clauses
AB = { ab1, ..., abm} . exceptions’ clauses
B: Background Knowledge
x: Set of facts around data sample x

Output: E = { e1, ..., ep} . Counter-factual proposals
1: function find counter factuals(x)
2: for each ci ∈ D do
3: for each pj ∈ ci do
4: Define pi as #abducible
5: end for
6: end for
7: Run s(ASP) on the program D ∪ AB ∪B to get set AS of answer sets
8: for each as ∈ AS do
9: ip = ITP (as, x)
10: x′ = apply(ip, x)
11: E = E ∪ {x′}
12: end for
13: return E
14: end function

Theorem 8.2. The Interpolating CFE algorithm is complete.

Proof. By contradiction: for the sake of contradiction, we assume that there is a path p

through a clause cl that is not covered by our Interpolating CFE algorithm. By defining

every predicate pr on the bodies of hypothesis’s clauses, for each predicate, an even loop

through negation-as-failure is created as follows:

pr :- not q.

q :- not pr.

where q is a dummy predicate. According to the GL method, this produces two branching

factor, one with predicate pr and one without it. Equivalently, this abductive definition

yields two answer sets: The first answer set includes pr and the second answer set includes

not pr. If the path p is not satisfied, there exists a predicate pr for which neither the

101



predicate nor its negation was used. This contradicts the GL method in the sense that

either pr or its negation must always appear in all answer sets.

To compute the Craig interpolants, Princess SMT solver (Rümmer, 2008) is used. Mcmil-

lan in his seminal work (McMillan, 2004) extends the interpolants from the proofs of unsat-

isfiability. In particular he proposes annotation systems to compute interpolants for theories

with real numbers, inequality constraints and uninterpreted functions. In the next section,

we also extend our Interpolating CFE algorithm over hypotheses with inequality constraint

over real numbers.

8.5 Interpolating CFE Algorithm For hypotheses with arithmetic constraints

Abductive answer set programming cannot handle arithmetic constraints. Therefore, we

first need to transform them into an ASP friendly representation. Arithmetic constraints

are usually of the following form in logic programming:

feature value(ID,N), N op φ

where ID is the identifier variable with a feature value N that N must be constrained by

operator op to the threshold φ and op ∈ {<,>, ≤, ≥, ==}.

Example 8.4. Inspired by the UCI Car Evaluation dataset and Example 8.1, we assume

that a car mileage irrespective of other features should be always less than or equal 10,000

miles. Listing 2 reflects the necessary changes made to the hypothesis from Listing 1 in order

to add mileage constraint to the hypothesis.

In this example, mileage(A,1000,ste) denotes the constraint that mileage of a car with

id equals A should be smaller than or equal (i.e., ste) 10000.

Once the normal arithmetic constraints are replaced by the transformed predicates, they

can be treated using the same process by our Interpolating CFE Algorithm. However, in

102



Listing 2 UCI Car Evaluation First Two Clauses

% second argument is used to determine which rule is being used

acceptable(A,1):- mileage(A,1000,ste), safety(A,high), not ab0(A).

acceptable(A,2):- mileage(A,1000,ste), capacity(A,4), safety(A,medium),

not ab2(A).

ab0(A):- capacity(A,2), maintenance_cost(A,high).

ab0(A):- maintenance_cost(A,very_high).

ab2(A):- price(A,very_high), trunk_size(A,small).

ab2(A):- price(A,high), maintenance_cost(A,very_high).

ab2(A):- maintenance_cost(A,very_high), price(A,very_high).

ab2(A):- price(A,very_high), maintenance_cost(A,high).

ab2(A):- price(A,high), trunk_size(A,small).

#abducible safety(A,X).

#abducible capacity(A,X).

#abducible maintenance_cost(A,X).

#abducible trunk_size(A,X).

#abducible price(A,X).

#abducible doors(A,X).

#abducible mileage(A,X,OP).

% Compute All Answer sets with switch 0

#compute 0 {acceptable(id,N)}.

order to compute the interpolant from the answer set, all the transformed predicates are

converted back to their normal form. The Listing 3 shows the Princess SMT code in order

to compute the interpolant for the following answer set generated by the first clause of the

program from Listing 2 for car12 with mileage 11000.

{ acceptable(id,1), mileage(id,10000,ste), safety(id,high), not ab0(id),

not capacity(id,2), not maintenance_cost(id,very_high) }

103



Listing 3 Princess Code for Computing Craig Interpolant

\functions {

bool trunk_small, buying_medium, doors_morethan4, trunk_medium, safety_low;

bool price_high, price_very_high, safety_high, capacity_4, capacity_2, doors_4;

bool maintenance_cost_very_high, doors_2, doors_3, trunk_big;

bool capacity_morethan4, maintenance_cost_low, price_low;

bool safety_medium, maintenance_cost_high;

int mileage;

}

\problem {

\part[left] ( mileage <= 10000 & safety_high &

!capacity_2 & !maintenance_cost_very_high) &

\part[right] ( price_very_high & !price_high & !price_medium &

!price_low & maintenance_cost_very_high &

!maintenance_cost_low & !maintenance_cost_high & doors_3 &

!doors_2 & !doors_4 & !doors_morethan4 & capacity_2 &

!capacity_4 & !capacity_morethan4 & trunk_big &

!trunk_small & !trunk_medium & safety_high &

!safety_low & !safety_medium & mileage = 11000)

-> false

}

\interpolant {left; right}

104



CHAPTER 9

A FULLY EXPLAINABLE FRAMEWORK TO HANDLE VISUAL

QUESTION ANSWERING TASKS

9.1 Acknowledgement

The paper (Basu et al., 2020) which forms the basis for this chapter was co-authored by

Kinjal Basu, myself, and Dr. Gopal Gupta. Initially, I came up with the idea of proposing

a framework that extracts the knowledge by neural networks, transforms the questions into

ASP programs, and finally, performs ASP based reasoning to come up with an answer. I

also, developed the neural network component. However, the implementation of NLP and

reasoning components are due to Kinjal. The published paper was recognised as the second

best paper in the PADL 2020 conference. We would not have got this far, if it was not for

the hard work and dedication of Kinjal.

9.2 Overview

Visual Question Answering is the task of answering a question given in natural language

about an image that is also given as input. Visual Question Answering has been a long

standing goal of research in Artificial Intelligence. In recent years, there has been a surge

in Visual Question Answering (VQA) systems based on different Neural Network archi-

tectures. For example, Stacked Attention Networks (CNN + LSTM + SA) (Yang et al.,

2015), Relation Networks (CNN + LSTM + RN) (Santor et al., 2017), and Feature-wise

Linear Modulation (CNN + GRU + FiLM) (Perez et al., 2018) combine the CNN-extracted

image features with LSTM-extracted question features and pass them through multi-layer

perceptron network. N2NMN (Hu et al., 2017), Dependency Tree (Cao et al., 2018) and

TbD+reg+hres (Mascharka et al., 2018) assemble a graph of trained neural modules on

the fly, each responsible for performing a single unit of computation to answer a question.

105



IEP (Johnson et al., 2017), DDRprog (Suarez et al., 2018) and NS-VQA (Yi et al., 2018)

construct intermediate functional units that unlike N2NMN are handcrafted programs. The

latter incorporates segmentation techniques to achieve more accurate vision results. MAC

(Hudson and Manning, 2018) proposes differentiable reasoning units of recurrent neural net-

work that would decompose the reasoning task to multiple small steps. While in some tasks,

many of these systems have been very competitive in terms of their ability to find the correct

answer, they suffer from fundamental deficiencies that dramatically restricts their applicabil-

ity: The end-to-end architectures based on convolutional Neural Networks and (Long Short

Term Memory) LSTMS are not explainable, they are notoriously hard to train, there is no

way to incorporate any form of common-sense background knowledge in these networks, any

expansion of knowledge requires the entire system to be re-engineered and trained from the

scratch, and last but not the least, end-to-end neural networks work completely based on

pattern-matching,whereas, we are more interested in a truly intelligent system that under-

stands the question and finds the answer based on a chain of reasoning.

In this chapter, we propose a AQuA,a framework based on answer set programming to

handle the Visual Question Answering (VQA) task. AQuA incorporates an off the shelf

natural language dependency parser (Stanford CoreNLP) to transform a question into an

answer set program. This program, along with a set of facts and relations that are extracted

from an image using a neural network model offers a natural way of solving the visual

question answering task. In this approach, the use of machine learning is restricted to the

task of computer vision and understanding the question and reasoning about it is achieved

through the logic programming engine.

To develop Visual Question Answering machine learning models, a numerous datasets

has been created (Gao et al., 2015; Krishna et al., 2017; Malinowski and Fritz, 2014; Yu

et al., 2015; Ren et al., 2015; Shah et al., 2019). However, as Johnson et. al. describes

in (Johnson et al., 2017), machine learning models tends to develop “cheating” methods

106



by exploiting the correlations between word occurrences, rather than truly understanding

the semantics behind the question. CLEVR (Johnson et al., 2017) on the other hand,

is a data set of complex questions over the spatial relationships between the rendered 3d

objects in an image. The complexity and diversity of questions, keeps machine learning

models from developing cheating capabilities to answer questions. While the recognition and

localization of objects has been made possible thanks to the advancements in convolutional

neural networks, to truly understand and reason about the relationships among the objects,

an intelligent system needs to leverage logic and to perform complex chain of reasoning. This

latter issue, motivated us to pick up CLEVR data set and implement our AQuA framework

using it.

9.2.1 YOLO - Object Detection & Localization

The YOLO architecture proposed by Redmon et. al. (Redmon et al., 2016) was a turning

point in the sense that it made the near real-time detection and localization of objects in an

image possible. Prior to YOLO, all neural network-based object detection and localization

worked based on sliding a window over the entire image and getting the network to predict

the portions of image that was surrounded by the sliding window. At the end, the windows

with the highest prediction probabilities would be selected. The problem with this approach

was that it would result in a huge number of sliding windows and would potentially take a

long time before the final result could be extracted.

In contrast, YOLO combines the classification and regression tasks together by only using

the extracted features from deep convolutional layers to solve the regression task of finding

object boundaries in a single step. To scale up the naive sliding window approach, YOLO

divides the image to a grid of N ×N cells. Each cell has a number of predetermined boxes

with different sizes (anchor boxes). During the network training through back-propagation,

only the promising anchor boxes are used in minimizing the loss objective. These are the

boxes with an acceptable overlap with the ground truth boxes.

107



9.2.2 Stanford CoreNLP Dependency Parser

Stanford CoreNLP is an off-the-shelf set of Natural Language Processing tools (Manning

et al., 2014). In this work, we primarily use the Parts of Speech (POS) tagger and the

dependency parser. Once the POS tagger tags each word in the sentence, the dependency

parser finds the syntactical relationships between different words. The figure 9.1

Figure 9.1: Example of POS tagging and dependency graph

9.3 The Technical Approach

The AQuA framework consists of 5 modules to perform the following tasks:

1. Object Detection and feature extraction using YOLO model

2. pre-processing of the natural language question

3. semantic relation extraction from the question

4. ASP Query generation based on semantic analysis

5. common-sense knowledge representation

Figure 9.2 summarizes the AQuA architecture. The 5 aforementioned modules are as follows:

YOLO model, Preprocessor, Semantic Relation Extractor (SRE), ASP Query Genrator, and

Common-sense knowledge.

108



Figure 9.2: System Architecture

9.3.1 Preprocessor

Using the parts-of-speech tags, word lemmas and the dependency graph pf the sentence,

AQuA translates a question into a sequence of predicates that would form an ASP query.

Additionally, preprocessor determines the question type. This is important because, the

answer type depends on the question type. For instance, the answer of a “how many”

question is a numeric, the answer of an “is there / are there” question is a boolean an so on.

The output of preprocessor module will be consumed by the Semantic Relation Extractor

(SRE) module and the Query Generator module.

Translation of a Natural Language Question to an ASP query in AQuA is inspired by

Neo-Davidsonian formalism (Davidson, 2001), where every verb is recognised as a unique

event whose occurrence is assigned a unique identifier. Every word in the sentence has an

identifier identical to their positional index. Therefore, even if the queried object and the

referenced object have the same name, they are distinguishable. For instance, in the

question “How many matte blocks are behind the red block?”, the queried object and the

referenced object are not the same.

109



9.3.2 Semantic Relation Extractor (SRE)

Semantic Relation labeling is the task of assigning a relationship label to two different phrases

in a sentence based on the context. AQuA, primarily introduces the following two types of

semantic relationships:

• Quantification: AQuA, treats all existential questions as a special type of numeric

comparison. For example, quantification(1,cube 4) where 4 is the identifier of the

word cube from the sentence), is extracted from the question “Are there any cubes?”.

Although, it is beyond the scope of question asked in CLEVR dataset, it helps to

answer a question such as “Are there more than five objects?”. To answer a question,

the number argument from the quantification predicate is compared against the number

of objects in a list that is passed through a list of criteria extracted from the question.

• Property: In CLEVR domain, objects are preceded with none, one or many attribute

values. Their parts-of-speech tag is adjective. These adjectives effectively create filters

for the set of objects in an image. Therefore, to capture these criteria from the ques-

tions, AQuA, represents them as property(value, object) predicate. For example,

in the sentence “Is there a big red ball?”, AQuA extracts property(big 4, ball 6)

and property(red 5, ball 6) semantic relations and adds them to the knowledge

base.

9.3.3 Query Generator

For a given question, AQuA generates a list of ASP clauses that once executed using the

s(ASP) engine, it will find the answer. There are two types of single-word response questions:

(i) yes / no questions (ii) attribute/value questions. CLEVR question set has yes/no ques-

tions in the form of existential questions (e.g., “Is there a red ball?”) and value comparison

questions (e.g., “Is the ball same color as the cube?”). The attribute/value questions are in

110



the form of counting objects (e.g., “How many red balls are there?”) and querying object

attributes (e.g., “What is the color of the shiny cylinder?”). To handle each type of question,

AQuA generates a set of ASP clauses. For instance, to answer the yes/no question “Is there

a big ball?”, the following set of clauses are generated:

1) query(Q,A) :- question(Q), answer(A).

2) answer('is there a big ball?',yes):- find_ans('is there a big ball?').

3) answer('is there a big ball?',no):- not find_ans('is there a big ball?').

4) find_ans(Q):- question(Q), find_all_filters(ball,5,L),

list_object(L, Ids), list_length(Ids, C),

quantification(N, ball_5), gte(C, N).

5) question(‘is there a big ball ?’).

In this code snippet, clause (1) stores the answer to the question Q in variable A. If clause

(2) succeeds, the answer to the question is yes, otherwise, as specified in clause (3), if the

predicate find ans fails, the answer is no. If all the sub-goals stated in the body of clause

(4) succeed, then the predicate find ans succeeds. Finally, fact (5) represents the natural

language question.

For the attribute/value questions the following set of clauses are generated for the ques-

tion “What color is the cube?”:

1) query(Q, A) :- question(Q), answer(Q, A).

2) answer(‘what color is the cube ?’, A) :-

find_ans(‘what color is the cube ?’, A).

3) find_ans(Q, A) :- question(Q), find_all_filters(cube, 5, L),

list_object(L, Ids), get_att_val(Ids, color, A).

4) question(‘what color is the cube ?’).

111



clause (1) and (4) are similar to the clauses (1) and (5) for yes/no questions template above.

Clause (2) stores the answer in variable A and carries it around to clause (1). In clause (3)

filters are applied to the list of images in the scene and stores the answer in variable A.

9.3.4 Commonsense Knowledge

AQuA requires the common-sense knowledge about features (e.g., color, size, material),

spatial relationships (e.g., left, front, behind), and shapes (e.g., sphere, cube, cylinder). It

also needs to know for instance that, red is a color, cube is a shape, metal is a material and

so on. Also, a deeper common-sense knowledge is required to infer from “shiny object” a

reference to metal.

The following types of common-sense knowledge is added along with the questions:

• Common-sense Facts: CLEVR incorporates two types of facts: (i) attribute values

(e.g., red is a color, cube is a shape) which are represented as is property(V, A) as

in is property(red, color) and (ii) term similarities (e.g., block is similar to cube)

which are represented as is similar(X1,X2) as in is similar(big, large)

• Common-sense Rules: These are the rules that would perform common sub-tasks

such as list union, numeric comparison, list element counting and so on. The following

code snippet shows an the set of clauses to filter a list of objects that match a specific

attribute / value pair. The code is a typical recursive iteration over a list:

(1) filter(_, _, [], []).

(2) filter(Att, Val, [Id | T1], [Id | T2]) :- property(Id, Att, Val),

filter(Att, Val, T1, T2).

(3) filter(Att, Val, [Id | T1], T2) :- not property(Id, Att, Val),

filter(Att, Val, T1, T2).

112



Table 9.1: Question type wise summarized result from various state-of-the-art neural-network
based model for CLEVR

Method Count Exist Compare
Num-
ber

Compare
At-
tribute

Query
Attribute

Overall

Humans (Johnson et al., 2017) 86.7 96.6 86.4 96.0 95.0 92.6
CNN+LSTM+SAN 59.7 77.9 75.1 70.8 80.9 73.2
N2NMN 68.5 85.7 84.9 88.7 90.0 83.7
Dependency Tree 81.4 94.2 81.6 97.1 90.5 89.3
CNN+LSTM+RN 90.1 97.8 93.6 97.1 97.9 95.5
IEP 92.7 97.1 98.7 98.9 98.1 96.9
CNN+GRU+FiLM 94.5 99.2 93.8 99.0 99.2 97.6
DDRprog 96.5 98.8 98.4 99.0 99.1 98.3
MAC 97.1 99.5 99.1 99.5 99.5 98.9
TbD+reg+hres 97.6 99.2 99.4 99.6 99.5 99.1
NS-VQA 99.7 99.9 99.9 99.8 99.8 99.8

9.4 Experiments and Results

Unlike deep-learning based approaches, AQuA is always bound to find the correct answer,

as long as the information coming from various sources, including the YOLO object detec-

tion and localization module, and dependency parser are correct. While, AQuA achieves

competitive results compared to the human base-line performance(i.e., 92.6 %), there are

neural-network based approaches that achieve results with 99 percent accuracy. Table 9.1

summarizes the performance of some of these neural-based end-to-end systems.

The main advantages of the AQuA approach, over neural, end-to-end learning is that

one can always pin-point the error source and fully explain why AQuA arrives at a certain

answer for a given question. Not to mention that there is no training as far as the inference

and translating of the textual question into logic are concerned. We ran AQuA on 45,157

questions that satisfy the selection criteria imposed (e.g., questions with 15 words or less) to

generate ASP queries. An accuracy of 93.7 % was achieved with 42,314 correct answers. This

performance is beyond the average human accuracy (Johnson et al., 2017). We validated

our AQuA framework using the validation data portion of CLEVR that contains 149991

113



Table 9.2: Performance Results

Question Type Accuracy (%)
Exist 96
Count 91.7

Compare Value

Shape 87.42

92.89
Color 94.32
Size 92.17

Material 96.14

Compare Integer

Less Than 97.7

98.05
Greater Than 98.6

Equal NA 1

Query Attribute

Shape 94.01

94.39
Color 94.87
Size 93.82

Material 94.75

questions over 15000 images. While theoretically, we could cover the entire set of questions,

we simplified the process by limiting the question length to 15 words.

We have extensively studied the 2,843 questions that produced erroneous results. 2,092

questions out of 2,843 do not match the correct answer and other 751 questions throw ASP

exceptions. Our manual analysis showed that mismatch happens mostly because of errors

caused by the YOLO module: failing to detect a partially visible object, wrongly detecting

a shadow as an object, wrongly detecting two overlapping objects as one, etc. Eliminating

these errors through manual intervention resulted in another 2,626 questions out of the

2,843 questions being answered correctly. Only 217 incorrectly answered questions remained.

Further analysis indicated that these could be attributed to wrong parsing or oversimplified

spatial reasoning. As an example of parsing error, block sometime is parsed as a verb instead

of a noun. With respect to oversimplification of spatial reasoning, note that objects in

CLEVR have 3D shapes, but we only considered X and Y coordinates to calculate relative

positioning of referenced objects (e.g., for behind the block concept). Pinpointing the source

of errors is an advantage of AQuA over all end-to-end approaches, as one could mitigate the

1Equality questions are minuscule in number so currently ignored

114



errors once their exact source is realized. For instance, instead of using a single dependency

parser, we can have a triple redundant architecture with three different parsers and go by

majority vote. Quantitative results for each question type are summarized in Table 9.2.

In next section we will discuss a complete example and illustrate how AQuA will find the

answer through transforming a natural language question, image features and common-sense

knowledge into an ASP program that is queried in s(ASP) to find the answer.

9.4.1 A Complete Example

In this section, a complete Visual Question Answering example and the entire data pipeline

and inference steps are discussed. Figure 9.3 shows a scene with 3 different objects. The

boundary boxes and all characteristics that are extracted by YOLO algorithm are also shown.

The number at the end is the confidence score of our neural network about the detected

object.

Object Representation: For each object, extracted information are also encoded as ASP

facts in the following form where every object has an identifier, shape, color, material, size

and coordinates in that order:

object(1, cylinder, cyan, rubber, small, 246, 185).

object(2, cube, red, metal, small, 270, 130).

object(3, cube, gray, metal, small, 79, 191).

Question: Is there a matte thing in front of the metallic thing behind the gray cube?

Figure 9.4 shows the parts-of-speech tagging and the dependency parser’s output.

Semantic Relations: The following semantic relations are extracted from the dependency

graph using default ASP rules.

quantification(1, thing_5).

property(matte_4, thing_5).

115



Figure 9.3: Object detection using YOLO.

Figure 9.4: POS tagging and dependency graph

property(metallic_10, thing_11).

property(gray_14, cube_15).

Each word’s lemma is followed by its positional index. The lemma “thing” occurs twice in

the question where each occurrence represents a different object.

Common-sense Knowledge The following set of facts are required to understand this

question:

is_property(cube, shape).

is_property(cylinder, shape).

is_property(metal, material).

is_property(rubber, material).

is_property(small, size).

is_property(red, color).

116



is_property(cyan, color).

is_property(gray, color).

is_similar(matte, rubber).

Query: To answer this question, a human would start from the last object (i.e., cube) and

make her way back to the beginning. Similarly, AQuA, starts from the cube.

find all filters(cube, 15, L2) computes a list of all properties of a cube as it follows:

L2 = [(shape, cube),(color,gray)]

filter all(L2,L1,[H0|T0]) finds a list of objects with such properties. This is the refer-

enced object. The predicate get behind list(H0,L3) stores all objects behind the reference

object in L3. Next, the objects that are in front of the object(s) in L3 are found and stored in

L5. Next, all their properties are stored in L6. It should be noted that “thing 5” represents

a different object from “thing 11”. Finally, Ids represents the list of objects that satisfy all

the criteria, and since this is an existential yes/no question, since the length of this list is

greater equal to 1 the predicate find ans(Q) succeeds.

117



CHAPTER 10

FUTURE WORKS & CONCLUSION

10.1 Future Works

Our heuristics-based algorithms to induce default theories has opened several new avenues

for the future work:

1. Handling large datasets using methods similar to QuickFoil (Zeng et al., 2014). In

QuickFoil, all the operations of FOIL are performed in a database engine. Such an

implementation, along with pruning techniques and query optimization tricks can make

FOLD training much faster

2. FOLD learns only function-free answer set programs. We are planning to investigate

extending the language bias towards accommodating functions.

3. extending abductive logic programming with abducing rules (as opposed to just ground

atoms)

4. LIME-FOLD algorithm in its current form only learns from single table dataset. We

are planning to extend LIME-FOLD to support multi-relational features.

5. An alternative approach is to regard the ILP problem as an optimization problem where

objective is to maximize the coverage of positive examples and minimize the coverage

of negative examples with the least number of clauses possible. Gradient-descent and

back-propagation are two very common solutions to the optimization problems in ma-

chine learning. The latter is a recursive algorithm that is used to train neural networks.

A key strength of neural networks is that they are robust to noise and mislabeled data,

something that most ILP systems suffer from. This has motivated some recent work

on combining the ILP and neural networks (Evans and Grefenstette, 2018). However,

118



the negation-As-Failure (NAF) semantics is absent in this work. We will explore how

this differentiable learning can be extended to learn answer set programs.

10.2 Conclusions

In this dissertation, we presented algorithms to induce hypotheses in the form of default

theories. To the best of our knowledge, FOLD algorithm presented in our work, is the first

heuristics-based ILP algorithm capable of learning non-monotonic logic programs. Extensive

experiments suggest that our FOLD algorithm and its extensions, outperform the state-of-

the-art ILP systems in terms of the classification evaluation and also the number of induced

rules. The most important contributions of this dissertation to the field of Explainable

AI is an extension of FOLD algorithm (i.e., LIME-FOLD) to capture the underlying logic

of black-box machine learning models also using default theories. Another contribution to

Explainable AI is our answer set programming (ASP)-based approach to counter-factual

explanation. To the best of our knowledge, this approach is the only solution that respects

the logical, physical and temporal constraints during the search for a counter-factual case.

Finally, we introduced AQuA, a fully explainable framework based on logic programming to

tackle the task of visual question answering. Our framework, that restricts the application

of neural networks to the computer vision, is capable of explaining its answers using the

resolution proof tree, and unlike any deep-learning-based system, is able to trace all the

mistakes made by the system back to the source of the error.

119



REFERENCES

Aggarwal, C. C. and J. Han (2014). Frequent Pattern Mining. Springer Publishing Company,
Incorporated.

Agrawal, R. and R. Srikant (1994). Fast algorithms for mining association rules in large
databases. In Proc. of 20th International Conference on Very Large Data Bases, VLDB
’94, CA, USA, pp. 487–499. Morgan Kaufmann Publishers Inc.

Baral, C. (2003). Knowledge representation, reasoning and declarative problem solving. Cam-
bridge, New York, Melbourne: Cambridge University Press.

Basu, K., F. Shakerin, and G. Gupta (2020). Aqua: Asp-based visual question answer-
ing. In E. Komendantskaya and Y. A. Liu (Eds.), Practical Aspects of Declarative Lan-
guages - 22nd International Symposium, PADL 2020, New Orleans, LA, USA, January
20-21, 2020, Proceedings, Volume 12007 of Lecture Notes in Computer Science, pp. 57–72.
Springer.

Cao, Q., X. Liang, B. Li, G. Li, and L. Lin (2018). Visual question reasoning on general
dependency tree. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 7249–7257.

Catlett, J. (1991). Megainduction: A test flight, proceedings of the eighth international work-
shop (ml91),northwestern university, evanston, illinois,. In L. Birnbaum and G. Collins
(Eds.), Proceedings of the Eighth International Workshop (ML91), Northwestern Univer-
sity, Evanston, Illinois, USA, pp. 596–599. Morgan Kaufmann.

Chen, T. and C. Guestrin (2016). Xgboost: A scalable tree boosting system. In Proceedings
of the 22Nd ACM SIGKDD, KDD ’16, pp. 785–794.

Corapi, D., A. Russo, and E. Lupu (2012). Inductive Logic Programming in Answer Set
Programming, pp. 91–97. Berlin, Heidelberg: Springer Berlin Heidelberg.

Cortes, C. and V. Vapnik (1995, September). Support-vector networks. Mach. Learn. 20 (3),
273–297.

Craig, W. (1957). Linear reasoning: A new formof the herbrand-gentzen theorem. Journal
of Symbolic Logic 22(3), 250–268.

Craven, M. W. and J. W. Shavlik (1995). Extracting tree-structured representations of
trained networks. In Proceedings of the 8th International Conference on Neural Informa-
tion Processing Systems, NIPS’95, Cambridge, MA, USA, pp. 24–30. MIT Press.

Davidson, D. (2001). Inquiries into truth and interpretation: Philosophical essays, Volume 2.
Oxford University Press.

120



Diederich, J. (2008). Rule extraction from support vector machines: An introduction. In
Rule extraction from support vector machines, pp. 3–31. Springer.

Dimopoulos, Y. and A. C. Kakas (1995). Learning non-monotonic logic programs: Learn-
ing exceptions. In N. Lavrac and S. Wrobel (Eds.), Machine Learning: ECML-95, 8th
European Conference on Machine Learning, Heraclion, Crete, Greece, April 25-27, 1995,
Proceedings, Volume 912 of Lecture Notes in Computer Science, pp. 122–137. Springer.

Evans, R. and E. Grefenstette (2018, January). Learning explanatory rules from noisy data.
J. Artif. Int. Res. 61 (1), 1–64.

Fayyad, U. M. and K. B. Irani (1993a). Multi-interval discretization of continuous-valued
attributes for classification learning. In IJCAI, pp. 1022–1029.

Fayyad, U. M. and K. B. Irani (1993b). Multi-interval discretization of continuous-valued
attributes for classification learning. In IJCAI, pp. 1022–1029.

Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. Bradford Books.

Fournier-Viger, P., J. Chun-Wei Lin, T. Truong-Chi, and R. Nkambou (2019). A Survey of
High Utility Itemset Mining, pp. 1–45. Springer International Publishing.

Fournier-Viger, P., J. C. Lin, A. Gomariz, T. Gueniche, A. Soltani, Z. Deng, and H. T.
Lam (2016). The SPMF open-source data mining library version 2. In ECML/PKDD (3),
Volume 9853 of LNCS, pp. 36–40. Springer.

Friedman, J. H., B. E. Popescu, et al. (2008). Predictive learning via rule ensembles. The
Annals of Applied Statistics 2 (3), 916–954.

Fung, G., S. Sandilya, and R. B. Rao (2005). Rule extraction from linear support vec-
tor machines. In Proceedings of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining, pp. 32–40. ACM.

Gan, W., J. C. Lin, P. Fournier-Viger, H. Chao, T. Hong, and H. Fujita (2018). A survey
of incremental high-utility itemset mining. Wiley Interdiscip. Rev. Data Min. Knowl.
Discov. 8 (2).

Gao, H., J. Mao, J. Zhou, Z. Huang, L. Wang, and W. Xu (2015). Are you talking to a
machine? dataset and methods for multilingual image question. In NIPS’15, pp. 2296–
2304.

Gebser, M., B. Kaufmann, and T. Schaub (2012). Conflict-driven answer set solving: From
theory to practice. Artificial Intelligence 187-188, 52–89.

Gelfond, M. and Y. Kahl (2014). Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The ASP Approach. Cambridge University Press.

121



Gelfond, M. and V. Lifschitz (1988). The stable model semantics for logic programming.
In R. A. Kowalski and K. A. Bowen (Eds.), Logic Programming, Proceedings of the Fifth
International Conference and Symposium, Seattle, Washington, August 15-19, 1988 (2
Volumes), pp. 1070–1080. MIT Press.

Gunning, D. (2015). Explainable artificial intelligence (xai).

Gupta, G. (2017). A case for query-driven predicate asp. In ARCADE’17,1st Int. Workshop
on Automated Reasoning,Sweden,2017, pp. 64–68.

Hu, R., J. Andreas, M. Rohrbach, T. Darrell, and K. Saenko (2017). Learning to reason:
End-to-end module networks for visual question answering. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 804–813.

Hudson, D. A. and C. D. Manning (2018). Compositional attention networks for machine
reasoning. arXiv preprint arXiv:1803.03067 1, –.

Huysmans, J., B. Baesens, and J. Vanthienen (2006). Iter: an algorithm for predictive regres-
sion rule extraction. In International Conference on Data Warehousing and Knowledge
Discovery, pp. 270–279. Springer.

Huysmans, J., R. Setiono, B. Baesens, and J. Vanthienen (2008). Minerva: Sequential
covering for rule extraction. IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics) 38 (2), 299–309.

Inoue, K. and Y. Kudoh (1997). Learning extended logic programs. In Proceedings of the
15th International Joint Conference on Artifical Intelligence - Volume 1, IJCAI’97, San
Francisco, CA, USA, pp. 176–181. Morgan Kaufmann Publishers Inc.

Johnson, J. et al. (2017). Inferring and executing programs for visual reasoning. In Proceed-
ings of the IEEE International Conference on Computer Vision, pp. 2989–2998.

Johnson, J., B. Hariharan, L. van der Maaten, L. Fei-Fei, C. Lawrence Zitnick, and R. Gir-
shick (2017). Clevr: A diagnostic dataset for compositional language and elementary
visual reasoning. In IEEE CVPR’17, pp. 2901–2910.

Kramer, S., N. Lavrač, and P. Flach (2000). Relational data mining. In S. Dĕzeroski
(Ed.), Relational Data Mining, Chapter Propositionalization Approaches to Relational
Data Mining, pp. 262–286. New York, NY, USA: Springer-Verlag New York, Inc.

Krishna, R., Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalantidis, L.-J.
Li, D. A. Shamma, et al. (2017). Visual genome: Connecting language and vision using
crowdsourced dense image annotations. International Journal of Computer Vision 123 (1),
32–73.

122



Landwehr, N., K. Kersting, and L. D. Raedt (2005). nFOIL: Integrating näıve bayes and
FOIL. In Proceedings, The Twentieth National Conference on Artificial Intelligence and
the Seventeenth Innovative Applications of Artificial Intelligence Conference, July 9-13,
2005, Pittsburgh, Pennsylvania, USA, pp. 795–800.

Landwehr, N., A. Passerini, L. D. Raedt, and P. Frasconi (2006). kFOIL: Learning simple
relational kernels. In Proceedings, The Twenty-First National Conference on Artificial In-
telligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference,
July 16-20, 2006, MA, USA, pp. 389–394.

Laugel, T., M.-J. Lesot, C. Marsala, X. Renard, and M. Detyniecki (2018). Comparison-based
inverse classification for interpretability in machine learning. In Information Processing
and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations,
Cham, pp. 100–111. Springer International Publishing.

Law, M., A. Russo, and K. Broda (2014). Inductive learning of answer set programs. In
Logics in Artificial Intelligence - 14th European Conference, JELIA.

Lichman, M. (2013a). UCI,ml repository, http://archive.ics.uci.edu/ml.

Lichman, M. (2013b). UCI,ml repository, http://archive.ics.uci.edu/ml.

Looveren, A. V. and J. Klaise (2019). Interpretable counterfactual explanations guided by
prototypes. In CoRR, Volume abs/1907.02584.

Lundberg, S. M., G. G. Erion, and S.-I. Lee (2018). Consistent individualized feature attri-
bution for tree ensembles. arXiv preprint arXiv:1802.03888 .

Lundberg, S. M. and S.-I. Lee (2017). A unified approach to interpreting model predictions.
In Advances in Neural Information Processing Systems, pp. 4765–4774.

Malinowski, M. and M. Fritz (2014). A multi-world approach to question answering about
real-world scenes based on uncertain input. In NIPS’14, pp. 1682–1690.

Manning, C. D., M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. McClosky (2014).
The Stanford CoreNLP natural language processing toolkit. In ACL System Demonstra-
tions, pp. 55–60.

Marple, K. and G. Gupta (2012). Galliwasp: A goal-directed answer set solver. In E. Albert
(Ed.), Logic-Based Program Synthesis and Transformation, 22nd International Sympo-
sium, LOPSTR 2012, Leuven, Belgium, September 18-20, 2012, Revised Selected Papers,
Volume 7844 of Lecture Notes in Computer Science, pp. 122–136. Springer.

Marple, K., E. Salazar, and G. Gupta (2017). Computing stable models of normal logic
programs without grounding. In arXiv.

123

 http://archive.ics.uci.edu/ml


Mascharka, D., P. Tran, R. Soklaski, and A. Majumdar (2018). Transparency by design:
Closing the gap between performance and interpretability in visual reasoning. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pp. 4942–4950.

McMillan, K. L. (2003). Interpolation and sat-based model checking. In W. A. H. Jr. and
F. Somenzi (Eds.), Computer Aided Verification, 15th International Conference, CAV
2003, Boulder, CO, USA, July 8-12, 2003, Proceedings, Volume 2725 of Lecture Notes in
Computer Science, pp. 1–13. Springer.

McMillan, K. L. (2004). An interpolating theorem prover. In K. Jensen and A. Podel-
ski (Eds.), Tools and Algorithms for the Construction and Analysis of Systems, Berlin,
Heidelberg, pp. 16–30. Springer Berlin Heidelberg.

Mitchell, T. M. (1980). The need for biases in learning generalizations. In J. W. Shavlik and
T. G. Dietterich (Eds.), Readings in Machine Learning, pp. 184–191. Morgan Kauffman.
Book published in 1990.

Mitchell, T. M. (1997). Machine learning. McGraw Hill series in computer science. McGraw-
Hill.

Muggleton, S. (1991a, February). Inductive logic programming. New Gen. Comput. 8 (4), –.

Muggleton, S. (1991b). Inductive logic programming. New Generation Comput. 8 (4), 295–
318.

Muggleton, S. (1995a). Inverse entailment and progol. New Generation Comput. 13 (3&4),
245–286.

Muggleton, S. (1995b, Dec). Inverse entailment and progol. New Generation Comput-
ing 13 (3), 245–286.

Muggleton, S. and W. L. Buntine (1988). Machine invention of first order predicates by
inverting resolution. In J. E. Laird (Ed.), Machine Learning, Proceedings of the Fifth
International Conference on Machine Learning, Ann Arbor, Michigan, USA, June 12-14,
1988, pp. 339–352. Morgan Kaufmann.

Muggleton, S., H. Lodhi, A. Amini, and M. J. E. Sternberg (2005). Support vector inductive
logic programming. In A. Hoffmann, H. Motoda, and T. Scheffer (Eds.), Discovery Science,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Muggleton, S., L. Raedt, D. Poole, I. Bratko, P. Flach, K. Inoue, and A. Srinivasan (2012,
January). Ilp turns 20. Mach. Learn. 86 (1), 3–23.

Muggleton, S. H. and C. H. Bryant (2000). Theory completion using inverse entailment. In
J. Cussens and A. Frisch (Eds.), ILP, pp. 130–146. Springer Berlin Heidelberg.

124



Nuñez, H., C. Angulo, and A. Català (2002, 01). Rule extraction from svm. In Proc. The
European Symposium on Artificial Neural Networks, pp. 107–112.

Núñez, H., C. Angulo, and A. Català (2002). Rule extraction from support vector machines.
In In Proceedings of European Symposium on Artificial Neural Networks, pp. 107–112.

Perez, E. et al. (2018). Film: Visual reasoning with a general conditioning layer. In AAAI’18.

Plotkin, G. D. (1971). A further note on inductive generalization, in machine intelligence,
volume 6, pages 101-124.

Quinlan, J. R. (1990a). Learning logical definitions from relations. Machine Learning 5,
239–266.

Quinlan, J. R. (1990b). Learning logical definitions from relations. Machine Learning 5,
239–266.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann.

Ray, O. (2009). Nonmonotonic abductive inductive learning. Journal of Applied Logic 7 (3),
329 – 340. Special Issue: Abduction and Induction in AI.

Redmon, J., S. K. Divvala, R. B. Girshick, and A. Farhadi (2016). You only look once:
Unified, real-time object detection. In CVPR, pp. 779–788. IEEE Computer Society.

Reiter, R. (1980). A logic for default reasoning. Artif. Intell. 13 (1-2), 81–132.

Ren, M., R. Kiros, and R. Zemel (2015). Exploring models and data for image question
answering. In NIPS’15, pp. 2953–2961.

Ribeiro, M. T., S. Singh, and C. Guestrin (2016). ”why should I trust you?”: Explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD 2016, pp.
1135–1144.

Riguzzi, F. (2016). ALEPH in SWI-Prolog , https: // github. com/ friguzzi/ aleph . -.

Rümmer, P. (2008). A constraint sequent calculus for first-order logic with linear integer
arithmetic. In Proceedings, 15th International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, Volume 5330 of LNCS, pp. 274–289. Springer.

Sakama, C. (2005). Induction from answer sets in nonmonotonic logic programs. ACM
Trans. Comput. Log. 6 (2), 203–231.

Sakama, C. and K. Inoue (2009). Brave induction: a logical framework for learning from
incomplete information. Machine Learning 76 (1), 3–35.

125

https://github.com/friguzzi/aleph


Santor, A. et al. (2017). A simple neural network module for relational reasoning. In NIPS’17,
pp. 4967–4976.

Seitzer, J. (1997). Stable ilp : Exploring the added expressivity of negation in the background
knowledge. In IJCAI-97 Workshop on Frontiers of ILP.

Shah, S., A. Mishra, N. Yadati, and P. P. Talukdar (2019). Kvqa: Knowledge-aware visual
question answering. In AAAI.

Shakerin, F. and G. Gupta (2019). Induction of non-monotonic logic programs to explain
boosted tree models using lime. In Proceedings of the AAAI Conference on Artificial
Intelligence, Volume 33, pp. 3052–3059.

Shakerin, F., E. Salazar, and G. Gupta (2017). A new algorithm to automate inductive
learning of default theories. TPLP 17 (5-6), 1010–1026.

Singleton, P. and F. Dushin (2003). Jpl a java interface to prolog. http://www.swi-
prolog.org/packages/jpl/java api.

Srinivasan, A. (2001). The Aleph Manual. -. http://web.comlab.ox.ac.uk/oucl/research/
areas/machlearn/Aleph/.

Srinivasan, A., S. Muggleton, and M. Bain (1996). Distinguishing exceptions from noise
in non-monotonic learning,in s. muggleton and k. furukawa, editors, second international
inductive logic programming workshop (ilp92).

Suarez, J., J. Johnson, and F.-F. Li (2018). Ddrprog: A clevr differentiable dynamic reason-
ing programmer. In -.

Tseng, V. S., C.-W. Wu, P. Fournier-Viger, and S. Y. Philip (2016). Efficient algorithms for
mining top-k high utility itemsets. IEEE Transactions on Knowledge and data engineer-
ing 28 (1), 54–67.

Voigt, P. and A. v. d. Bussche (2017). The EU General Data Protection Regulation (GDPR):
A Practical Guide (1st ed.). Springer Publishing Company, Incorporated.

Wachter, S., B. Mittelstadt, and C. Russell (2017). Counterfactual explanations without
opening the black box: Automated decisions and the gdpr. Harv. JL & Tech. 31, 841.

Wielemaker, J., T. Schrijvers, M. Triska, and T. Lager (2012). SWI-Prolog. Theory and
Practice of Logic Programming 12 (1-2), 67–96.

Wu, X., V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan,
A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg (2007,
December). Top 10 algorithms in data mining. Knowl. Inf. Syst. 14 (1), 1–37.

126



Yang, Z., X. He, J. Gao, L. Deng, and A. J. Smola (2015). Stacked attention networks for
image question answering. CVPR’16 1, 21–29.

Yi, K. et al. (2018). Neural-symbolic VQA: Disentangling reasoning from vision and language
understanding. In NIPS’18, pp. 1031–1042.

Yu, L., E. Park, A. C. Berg, and T. L. Berg (2015). Visual madlibs: Fill in the blank image
generation and question answering. In arXiv.

Zeng, Q., J. M. Patel, and D. Page (2014, November). Quickfoil: Scalable inductive logic
programming. Proc. VLDB Endow. 8 (3), 197–208.

127



BIOGRAPHICAL SKETCH

Farhad Shakerin was born on April 10, 1983, in Tehran, Iran. He received his Bachelor of

Science in Computer Engineering - Software from Iran University of Science & Technology

in October 2006. He started his professional career at Maharan Engineering Corp. in April

2008 as a C++ embedded software engineer. He became an expert in developing safety-

critical systems in railway signaling industry. In April 2012, he got promoted to director of

the software department at Maharan Engineering Corp., until August 2014 when he decided

to join graduate school to further study software verification and formal methods. In the

very first semester, he took a course on “Advanced Programming Languages Semantics”

under Dr. Gupta and it was then when he first fell in love with Logic Programming and

never looked back. He has since been working on symbolic machine learning and explainable

AI and has published several papers on the topic.

128



CURRICULUM VITAE

Farhad Shakerin
March 08, 2020

Contact Information:

Department of Computer Science
The University of Texas at Dallas
800 W. Campbell Rd.
Richardson, TX 75080-3021, U.S.A.

Email: farhad.shakerin@utdallas.edu

Educational History:

B.S., Computer Engineering - Software, Iran University of Science & Technology, 2005
M.S., Computer Science, University of Texas at Dallas, 2016

Employment History:

Software Engineer, Maharan Engineering Corp., April 2008 – August 2014


	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Overview
	Structure of the Dissertation

	Background
	Overview
	Answer Set Programming
	Default Theories
	Inductive Logic Programming

	Inductive Learning of Default Theories
	Overview
	Background
	FOLD Algorithm
	Numeric Extension of FOLD
	Experiments and Results
	Non Observation Learning Using FOLD
	Related Work

	Inductive Learning of ASP programs with Multiple Stable Models
	Overview
	The XFOLD Algorithm
	Application: Combinatorial Problems
	Experiments and Results
	Related Work

	Induction of Non-monotonic Logic Programs To Explain Machine Learning Models
	Overview
	The LIME Technique
	The LIME-FOLD Algorithm
	Experiments
	Related Work

	White-box Induction From Support Vector Machines
	Overview
	Support Vector Machines
	SHAP
	SHAP-FOIL
	Experiments
	Related Works

	Induction of Logic Programs From Machine Learning Models Using High-Utility Item-set Mining
	Overview
	High-Utility Itemset Mining
	SHAP-FOLD Algorithm
	Experiments

	Constraints-Aware Counter-factual Proposals
	Overview
	Abductive Answer Set Programming
	Craig Interpolants
	ASP-based Counterfactual Explanation Using Craig Interpolants
	Interpolating CFE Algorithm For hypotheses with arithmetic constraints

	A Fully Explainable Framework To Handle Visual Question Answering Tasks
	Acknowledgement
	Overview
	YOLO - Object Detection & Localization
	Stanford CoreNLP Dependency Parser

	The Technical Approach
	Preprocessor
	Semantic Relation Extractor (SRE)
	Query Generator
	Commonsense Knowledge

	Experiments and Results
	A Complete Example


	Future Works & Conclusion
	Future Works
	Conclusions

	References
	Biographical Sketch
	Curriculum Vitae



