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Knee osteoarthritis (OA) is a chronic disease that considerably reduces patients’ quality of

life. Preventive therapies require early detection and lifetime monitoring of OA progression.

In the clinical environment, the severity of OA is classified by the Kellgren and Lawrence

(KL) grading system, ranging from KL-0 to KL-4. Recently, deep learning methods were ap-

plied to OA severity assessment, to improve accuracy and efficiency. Researchers fine-tuned

convolutional neural networks (CNN) on the OA dataset and built end-to-end approaches.

However, this task is still challenging due to the ambiguity between adjacent grades, es-

pecially in early-stage OA. Low confident samples, which are less representative than the

typical ones, undermine the training process. Targeting the uncertainty in the OA dataset,

we propose a novel learning scheme that dynamically separates the data into two sets ac-

cording to their reliability. Besides, we design a hybrid loss function to help CNN learn from

the two sets accordingly. With the proposed approach, we emphasize the typical samples

and control the impacts of low confident cases. Experiments are conducted in a five-fold

manner on five-class task and early-stage OA task. Our method achieves a mean accuracy

of 70.13% on the five-class OA assessment task, which outperforms all other state-of-art

methods. Despite early-stage OA detection still benefiting from the human intervention of

lesion region selection, our approach achieves superior performance on the KL-0 vs. KL-2
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task. Moreover, we design an experiment to validate large-scale automatic data refining

during training. The result verifies the ability to characterize low confidence samples by our

approach. The dataset used in this paper was obtained from the Osteoarthritis Initiative.
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CHAPTER 1

INTRODUCTION

Knee osteoarthritis (OA) is a global chronic disease characterized by an irreversible degen-

erating process of the knee cartilage. According to the World Health Organization (WHO),

9.6% of men and 18% of women over 60 years can have symptomatic osteoarthritis (Wit-

tenauer et al., 2013). As a leading cause of adult disability (Allen and Golightly, 2015),

OA will affect at least 130 million people due to the aging population (Maiese, 2016). In

clinical scenarios, risk factors such as body mass index, age, and sex (Kellgren and Lawrence,

1957) can be used to assess OA. However, as symptoms may not appear in the early stages

of OA (Palazzo et al., 2016), doctors depend on medical imaging modalities for diagnosis.

In particular, X-ray imaging is the most common technique due to its affordability and

accessibility.

Based on the radio-graphical evidence such as osteophyte and narrow joint space, Kell-

gren and Lawrence proposed a grading system in 1957 (Kellgren and Lawrence, 1957) as

indicated in Kellgren-Lawrence (KL) grading is the most commonly used classification sys-

tem, which categorizes OA severity into five levels. Early-stage (KL-1 or KL-2) patients

can take preventive measures, including exercises and weight control, to manage the degen-

eration process (Ryan, 2020). In late stages (KL-4), the only treatment is artificial joint

replacement (van der Woude et al., 2016). Thus, it is critical to diagnose OA in early stages

and to monitor the severity through the patients’ life. Considering the potential demand for

OA assessment, past studies developed automatic OA assessment methods to promote the

efficiency of OA diagnosis and reduction of labor cost.

Part of this chapter is reprinted from © 2021 IEEE. Reprinted, with permission, from Y. Wang et
al., ”Learning from Highly Confident Samples for Automatic Knee Osteoarthritis Severity Assessment:
Data from the Osteoarthritis Initiative,” in IEEE Journal of Biomedical and Health Informatics, doi:
10.1109/JBHI.2021.3102090.
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Table 1.1: Definition of Kellgren-Lawrence Grading System

Grade Remarks
KL-0 No evidence of osteophyte
KL-1 Doubtful osteophyte
KL-2 Definite osteophyte; possible Joint Space Narrow (JSN)
KL-3 Moderate osteophytes, definite JSN, some sclerosis and possible deformity

of bone ends
KL-4 Large osteophytes, definite JSN, sclerosis, and deformity of bone ends

The automatic OA severity assessment is challenging for two reasons: 1) The lesion

area occupies a small portion of the X-ray image. The irrelevant parts like clothes, tissues,

or muscles overwhelm the cartilage status and mislead final decisions. 2) As bones differ

in shape and density from one to another, it is challenging to establish standard diagnostic

criteria. A well-trained radiologist assesses the severity of OA based on personal experiences,

which are difficult to be incorporated into the computer-aided system.

Recent machine learning-based research introduced two stages shown in Figure. 1.1 for

automatic OA diagnosis: 1) The region of interest (ROI) segmentation, which suppresses

noises by removing the background and irrelevant parts. 2) The machine learning-based

OA severity classification, which standardizes and simplifies complicated diagnostic crite-

ria. Knee segmentation is a challenging task, as OA lesion areas usually occupy a small

portion in the original X-ray image. Shamir et al. (2008) successfully built a two-stage

framework, including template matching for knee joints detection and a nearest neighbor

classifier for severity estimation. To elaborate, the authors slid a window over the X-ray

image and calculated the Euclidean distance between the pixels within the window and 20

pre-determined templates. The smallest distance determined the region of interest (ROI).

Based on the pixel statics and digital signal transformations of the ROI, the nearest neigh-

bor classifier distinguished samples of different KL levels. Later studies followed the same

paradigm. Antony et al. (2016) introduced a support vector machine (SVM) to improve

2



Figure 1.1: Computer-aided OA diagnosis pipeline. The entire process consists of two stages,
including knee segmentation and OA severity classification. Typically, the knee segmentation
depends on human efforts or manually selected features. Then, a machine learning model,
like CNN, is trained to classify the knees based on the OA severity grades.

the accuracy of ROI detection. Other researchers used SVM (Sharma et al., 2016), neural

network (Christodoulou et al., 2019), and random forest (Aprilliani and Rustam, 2018) to

enhance the severity classification performance.

In the light of deep learning, the convolutional neural network (CNN) has been success-

fully applied to the medical imaging field for segmentation and classification (Yamashita

et al., 2018; Lundervold and Lundervold, 2019). Recent studies of OA severity assessment

proposed end-to-end approaches based on deep CNNs that improved both feature extraction

efficiency and classification accuracy. Antony et al. (2017) proposed a method involving
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two CNNs. The first CNN detected the knees’ contour, and the second CNN used contents

therein as inputs for classification. To segment knee joint areas, later studies(Chen et al.,

2019) and (Suresha et al., 2018) employed the object detection CNNs like YOLO (Redmon

and Farhadi, 2017) and RCNN(Ren et al., 2015). To extract better features, researchers pro-

posed different learning tasks. For example, Tiulpin et al. (2018) proposed a Deep Siamese

Network that learned the features from lateral and medial sides separately and fused them

together for classification. The authors also extracted features from non-image data, includ-

ing the health records of patients (Tiulpin et al., 2019). Nasser et al. (2020) used a deep

auto-encoder with a discriminative regularization term in loss function, which helped the

encoder maximize the distances between early-stage OA samples in the feature space.

However, OA severity assessment is still challenging for deep learning models. As shown

in Table 1.1, the KL grading system is semi-quantitative. Suppose an image has significant

evidence as listed all annotators will give a consistent KL grade, which indicates a high

confidence in such a sample. Otherwise, when two or more different KL grades are assigned

to the same image by each annotator, these samples and their labels are less confident.

Culvenor et al. (2015) used two statistical measurements to describe the uncertainty in the

KL grading system, including inter-observer and intra-observer reliability. Inter-observer

reliability is to measure the agreement of ratings given by different annotators, while the

intra-observer reliability measures the agreement of ratings given by the same person. For

the KL grading, the inter-observer reliability is low (0.67), which confirms the existence of

low confidence samples, whereas the intra-observer reliability is high (0.97), indicating the

annotators’ reliance personal experiences to make decisions. The Osteoarthritis Initiative

(OAI) resolved this issue by introducing a third independent annotator. However, deep

learning models treat all images and labels as equally confident in plain training. To some

extent, deep CNNs are robust against data uncertainty (Drory et al., 2018). However, the

uncertainty in the dataset can affect the later training epochs(Ma et al., 2018). Further,

4



when training on the typical data, CNNs will not memorize the training samples(Arpit

et al., 2017). The aforesaid empirical studies indicate that if focusing on the OA samples

with high confidence labels, CNNs can grain better generalization capability on unseen data.

Noticing the label uncertainty, the authors used the Mean Squared Error (MSE) as the loss

function to simulate the transition of KL levels (Antony et al., 2016). Chen et al. (2019)

and Nasser et al. (2020) focused on discriminating the ambiguous samples by re-weighting

the loss function. These studies do not refine the dataset regrading the confidence level of

samples.

Uncertainty of labels and samples is one of the significant difficulties in the medical imag-

ing field (Karimi et al., 2020). Intuitively, highly confident data can improve deep learning

model performance. This strategy has been employed by recent studies when learning from

uncertain annotations. Xue et al. (2019) used a label suppression approach for skin lesion

classification. Samples with high loss values in each mini batch were considered uncertain

and they were discarded during the back-propagation. Mirikharaji et al. (2019) prepared

a small clean dataset for pre-training when handling the skin lesion segmentation task, so

that the pre-trained model can generate an optimal pixel-level weight map, which helps with

the training on the large-scale uncertain dataset. Their approach enhances the robustness

of segmentation.

In this paper, we follow the two-step scheme for OA severity assessment by employing an

object detection CNN to segment knee joint areas. Notably, we focus on the label uncertainty

and propose a novel approach that helps the model to learn from the highly confident samples.

Our contributions can be summarized as follows:

• We propose an integrated learning scheme which fuses label confidence estimation to

characterize highly confident samples. The whole training process is self-boosting and

entirely data-driven.
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• We propose a hybrid loss function that emphasizes the importance of highly confident

samples. To reduce the impact of empirical errors, we do not discard the low confident

samples but control their impacts with a weight parameter.

• The experiment results show that we achieve a state-of-art performance on the five-

class OA assessment task. Without human intervention, our method is competitive

with the semi-automatic approach to early-stage OA detection task. We also verify the

low confidence sample characterization by the case study and manual noise interference

experiment.

This paper is organized as follows. Firstly, we introduce the related fields of our work,

which consists three aspects. Chapter 2 summarizes the recent development of deep learning

models the image classification and the object detection, which are the techniques used in

the automatic knee OA assessment. Chapter 3 introduces the semi-supervised learning, es-

pecially the proxy-label training. Semi-supervised learning is the foundation of the proposed

training scheme. Chapter 4 describes the label confidence theory, which provides the theo-

retical support to the proposed method. Then, Chapter 5 gives the details of the proposed

method, including Chapter 5.1 for estimating label confidence, Chapter 5.2 for interactive

training, and Chapter 5.3 for the proposed hybrid loss function. Next, Chapter 6 introduces

the dataset preprocessing and experiment setup, including the data collection (Chapter 6.1),

knee joint segmentation (Chapter 6.2), training scheme implementation (Chapter 6.3), and

performance evaluation metrics (Chapter 6.4). Especially, as we used object detection in the

preprocessing, the verification of the preprocessing is also included in Chapter 6. Finally,

Chapter 7 shows the comprehensive results of the proposed training scheme in three aspects.

Chapter 7.1 demonstrates the classification performance of the proposed method. Chap-

ter 7.2 examines the label confidence characterization process. Chapter 7.3 is the ablation

study of the hyper-parameters in the proposed scheme. To the end of this paper, we draw

the conclusion in Chapter 8.
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CHAPTER 2

DEEP LEARNING METHODS ON MEDICAL IMAGE ANALYSIS TASKS

2.1 Introduction

Imaging analysis is a vital technique used in the clinical environment. Common medi-

cal imaging modalities includes computed tomography (CT), magnetic resonance imaging

(MRI), positron-emission tomography (PET), X-ray, and ultrasound imaging (UI). Medical

imaging analysis tasks varies due to the diversity of medical imaging modalities and the de-

sired output. However, fundamental medical image analysis tasks can be summarized from

the following aspects (Zhou et al., 2021).

• Medical image reconstruction produces a visual representation for analysis from the

electric or radio signals (Ahishakiye et al., 2021). For example, computerized tomogra-

phy (CT) employs X-ray to reveal the details of vessels, bones, and soft tissues inside

the body. Scanning results are converted into a plain image for analysis.

• Medical Image enhancement is to adjust images for specific visualization purposes.

By improving image quality, clinicians can make better diagnosis and treatment plan

decisions. For example, researchers developed histogram algorithms (Salem et al.,

2019) to improve the contrast of X-ray images. Thus, doctors can have a clear view of

the bone shapes.

• Medical image segmentation (Wang et al., 2020) is to highlight the target object or

lesion areas. There are two segmentation categories, including the object level and pixel

level. Object-level segmentation gives the bounding box of a target, while pixel-level

segmentation aims to find all target pixels.

Part of this section is reprinted from © 2021 Y Wang et al. “An Automatic Knee Osteoarthritis
Diagnosis Method Based on Deep Learning: Data from the Osteoarthritis Initiative”, Journal of Healthcare
Engineering, vol. 2021. https://doi.org/10.1155/2021/5586529.
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• Medical image registration (Oliveira and Tavares, 2014) aligns the images obtained

from various sources with the same coordinate system. In clinical, image deformation

comes from different sources. On the one hand, medical image data taken for the same

person involves different sensors, depths, and viewpoints. On the other hand, body

movement like breath results in the deformation of exam outcomes. Registration helps

integrate data from different sources and suppress the deformation.

Manually analyzing medical images requires intense human efforts and a large amount of

time. To improve the efficiency and reduce the human intervention, researchers developed an

automatic method to assist the medical image processing. However, developing a universal

method for automatic medical image processing remains challenging for the following reasons.

• Modality diversity. Medical images are generated by different mechanisms such as CT

and MRI, which causes the modality diversity. Handling different modalities requires

human intervention and application-specific algorithms.

• Resolution density. Medical images have a high density in resolutions. For example,

CT has the spatial resolution of millimeter level, resulting in an image of tens of

million pixels. In addition, MRI images usually store the grayscale data in 12-bit to

preserve a high dynamic range. On the other hand, typical computer images use 8-bit

pixels. High-resolution density leads to extra computing burdens to traditional image

processing methods.

• Standard variance. Due to the lack of a universal standard, existing medical images

from different sources or equipment follow different protocols. Integrating the medical

data of multiple standards requests numerous efforts to develop a preprocessing pipeline

to bring all images to the same condition.
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• Disease patterns. Evidence shown in medial images follows a long-tail distribution

(Zou et al., 2004). While doctors can depend on personal experiences, it is hard to

establish a golden standard for computer-aided analysis algorithms.

• Label absence and noise. Due to the high cost of manually labeling, large potions of

medical images remain unlabeled. Alternatively, the labels given by crowd workers or

the coarse machine learning models contain mistakes and errors, which increases the

noise level. Thus, efficient noise suppression is essential before developing an automatic

medical image method.

Recently, high level applications like computer aided diagnosis takes advantage of deep

learning to overcome the above problems. This chapter gives a review of two related aspects

where the deep learning methods significantly influence the computer aided diagnosis. Sec-

tion 2.2 reviews the automatic diagnosis based on images, which is usually considered as a

classification tasks. Section 2.3 reviews the lesion segmentation tasks, which is an essential

preprocessing step before diagnosing.

2.2 Deep Learning Methods for Image Classification

Typically, researchers consider the diagnosis problem as a classification task. In the light of

deep learning, CNNs are becoming a prevalent image classification technique. While there

are several early implementations of convolution neural networks (CNN) (LeCun et al., 1998),

the AlexNet (Krizhevsky et al., 2012) demonstrates the common computational components

and hardware training schedule of modern deep learning models. On the one hand, AlexNet

is trained on GPUs which showed the computational power impact on modern machine

learning field. On the other hand, it builds up the common architecture, including a stack

of convolutional blocks for feature extraction and several dense layers for classification tasks

as shown in Figure. 2.1. Each convolution block has three categories of layers including

9



Figure 2.1: Architecture of Alex Net. There are three major components in this architecture,
convolution layer, pooling layer, and the dense layer. In this figure, the convolution and its
following nonlinear(activation) are shown in the blue box. One or more convolution layers
and a pooling layer can be grouped together as the a convolutional block, which is the basic
unit in later CNN architectures.
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convolution layers, activation layers, and a pooling layer. A convolution layer performs 2-D

convolution as shown in Equation 2.1

y[m,n] =
H∑

h=0

W∑
w=0

k[h,w]x[m− h, n− w] (2.1)

, where m,n are the location of inputs and outputs, and H,W are the height and width of

convolution kernel. Weights of the convolution kernels are learned during the training.

Followed each convolution layer, a activation layer applies an nonlinear function to the

convolution outputs. The idea of activation function roots in the neural network where it

provides the nonlinear mapping between inputs and outputs. Typical activation functions

include the sigmoid function (Equation 2.2) and tanh function.

σ(x) =
1

1 + exp−x
(2.2)

Recent researches propose several new activation functions to improve the training efficiency

of large-scale deep network. For example, Agarap (2018) proposed ReLU function as shown

in Equation 2.3.

f(x) =


x for x ≥ 0

0 otherwise

(2.3)

Similarly, other researches proposed ELU(Clevert et al., 2015), CELU (Barron, 2017), and

SELU(Klambauer et al., 2017).

The pooling layer performs a 2-D reduction operation as in Equation 2.4.

y[m,n] = Pool(x[m− h, n− w]), h ∈ [0, Hp], w ∈ [0,Wp] (2.4)

Usually, the Pool function is either maximizing or averaging. Pooling layer aggregates the

information of each window as shown in Figure. 2.2b. The convolutional blocks transforms

and extracts features from the original image. Those features are embedded in a multi-

dimensional tensor.
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(a) 2D convolution with a 3× 3 kernel (b) 2D Pooling with the pool size as 2 and stride
of 2

Figure 2.2: 2-D Convolution and Pooling Operation. As shown in Figure. 2.2a, a convolution
layer uses a window to slide over the entire image and computes the outputs based on inputs
and a kernel in each position. The kernel is a learnable weight matrix that is determined
through training. Figure. 2.2b shows the pooling operation. Similar to the convolution, a
pooling layer also uses a sliding window. However, there are no learnable parameters; and
the output is computed from inputs only using maximizing or averaging.

Dense layers are conventional multi-layer neuron networks which take the feature embed-

dings as inputs and gives the classification results. A dense layer performs the dot product

between inputs and learnable weights. Similar to the neuron networks, each dense layer also

has a corresponding nonlinear activation layer.

The deep convolution neuron network show superior performance on image classification

tasks. While the increasing depth improves the modeling capability, it also brings difficulty

to the training, such as gradients vanishing. To exploits the power of network depth, fol-

lowing researches focused on enhance the computation stability and network architecture.

Regarding the computational stability, Ioffe and Szegedy (2015) proposed the batch normal-

ization technique, which is widely used in the CNN to accelerate the training. In term of
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Figure 2.3: Resnet block architecture. In each resnet block, inputs has two paths. One goes
through a stack of convolution, activation and normalization layers. The other one bypasses
the above layers. At the end of each resnet block, two paths are merged by addition.
Following the two-path fashion, Resnet block has many variants (He et al., 2016b). In this
figure, the skip connection is marked as ghe green line.

network architecture, Resnet (He et al., 2016a) introduces the skip connection to the con-

volution blocks as shown in Figure. 2.3. The skip connection adds a second path of the

information. At the end of each convolutional block, two branches are merged by addition

operation. Follow the similarly idea, DenseNet (Huang et al., 2017) exploits the power of skip

connection by merging the information from different convolutional layers as in Figure. 2.4.

The core learnable components for feature extraction component in CNN are the convo-

lution layers. However, spatially distant feature extraction is challenging for a traditional

CNN(Wu et al., 2020), of which convolutional filters only receive the information from a lo-

cal region. For example, according to clinical experiences, primary evidences of OA, like the

joint space narrowing, appear on both sides of a knee. As a result, the extracted feature maps

do not address the relationship between different local regions. Researchers designed new

convolution operators in the computer vision domain; for example, Yu and Koltun (2015)

proposed the dilated convolution. For OA diagnosis, Tiulpin et al. (2018) divided the knee
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Figure 2.4: Densenet block architecture. The densenet block exploits the shortcut connec-
tion. The outputs of one convolutional layer are sent to all following convolutional layers
within the same block as inputs. When joining multiple paths, densenet block uses con-
catenation instead of addition. In Figure. 2.4, skip connections from different convolutional
layers are marked as green, yellow and blue lines, correspondingly.

joint areas into the left and right sides. Then, the authors used two CNNs to extract the

features separately and fused them for classification.

Recently, Dosovitskiy et al. (2020) proposed the visual transformer, which takes advan-

tage of relations between different local regions to boost the performance on multiple visual

tasks. Transformer Vaswani et al. (2017) was first applied to the natural language proces-

sion (NLP) field based on the self-attention mechanism. In the implementation, inputs are

first encoded into three components: the query, the key, and the value. Then the value is

weighted by a mask calculated from the query and the key as in Eq. 2.5

Attention(Q,K, V ) = softmax(
Q ·KT

√
dk

) · V (2.5)

, where the Q,K, and V denotes the query, key, and value components. And dk is the

dimension of key components. For an NLP task, Q,K, and V are the sequences of feature
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vectors extracted from each word in a sentence. The dot product of Q and K calculates

the correlations between each pair of words in the sentence. Then, the softmax function

normalizes the correlation and applies it to V as attention weights. In this case, only the

features of the highly related words are emphasized. For a visual task, Dosovitskiy et al.

(2020) took advantage of the self-attention mechanism and proposed the visual transformer.

Images were divided into patches and reorganized into a sequence. Eq. 2.5 uncovers the

relationship between each pair of patches by calculating the correlation, even if the two

patches are distant in the original image. Additionally, Vaswani et al. (2017) and Dosovitskiy

et al. (2020) applied the “multi-head” to the self-attention mechanism. The multi-head

technique contains multiple parallel self-attention layers, enhancing the capability to exploit

more specific locations simultaneously.

In medical field, enormous research applied the image classification by deep CNN into

disease diagnosis especially when a large-scale dataset is available. Moreover,

2.3 Deep Learning Methods for Object Detection

In recent years, object detection CNNs help with locating and recognizing ROIs in plain

images. Well-known object detection networks include faster R-CNN (Girshick, 2015), mask

R-CNN(He et al., 2017), and YOLO(Redmon et al., 2016). Generally, object detection CNN

includes a CNN backbone and two separate branches to determine the object class and

location. CNN backbone can be implemented as the architectures mentioned in Chapter 2.2

without the last dense layers. Both the classification and the location branches are the

small sub-network which utilize the features extracted by the CNN backbone to predict the

class label and object coordinates. A common technique shared by all three approaches is

bounding box regression (Girshick, 2015)(Redmon et al., 2016), which handles the object’s

location and size separately. The bounding box is a rectangle which tightly covers one

object. Each object’s location and size are determined by the center coordinates of its
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bounding box, denoting as xobj, yobj, and the bounding box height and width, denoting as

hobj, wobj. In general, CNNs do not directly predict location and size but retrieve them

through a decoding process from the outputs. For example, the YOLO model relies on two

additional information to decode its outputs for locations and sizes, respectively. For object

locations, Redmon et al. (2016) introduced a reference grid system, which evenly divide

entire image into small squared regions. Each grid has corresponding outputs xout and yout

from the YOLO model. The predicted object center coordinates xpred and ypred are retrieved

from Equation 2.6 
xpred = σ(xout)× lgrid + xgrid

ypred = σ(yout)× lgrid + ygrid

(2.6)

, where σ is the sigmoid function, lgrid is the grid edge length, and xgrid, ygrid are the top left

corner coordinates of one grid. As the sigmoid function in Equation 2.6 restricts outputs

to the range of (0, 1), a grid only predicts the objects within the region. However, YOLO

model detects an object at arbitrary location by applying Equation 2.6 to all grids. Regarding

object sizes, the YOLO outputs are decoded referring to the “anchors”. Anchors are the

prior knowledge of the object size determined by clustering the sizes of all training objects.

In practice, the YOLO model used cluster centroids as the expected shapes of an object. The

outputs of YOLO, denoting as wout and hout, calibrate the anchors to retrieve the predicted

size wpred and hpred using Equation 2.7
wpred = wanchor × exp(wout)

hpred = hanchor × exp(hout)

(2.7)

, where the wanchor and hanchor are the width and height of the anchor. With Equation 2.6

and Equation 2.7, the YOLO model solves the detection problem as a regression task. Equa-
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tion 2.8 computes the regression errors as follows.

xerr = (xobj − xpred)
2

yerr = (yobj − ypred)
2

werr = (
√
wobj −

√
wpred)

2

herr = (
√
hobj −

√
hpred)

2

(2.8)

Notably, the errors in Equation 2.8 only account for the grids which contains ground truth

object. To distinguish the objects from background, the YOLO model is also trained by a

confidence error as in Equation 2.9

conferr = LBCE(σ(pout), pobj) (2.9)

, where LBCE is the binary cross entropy loss function, pout is the confidence output of each

grid, and pobj is an indicator of object existence. Particularly, if a grid covers at least one

object center, the corresponding pobj is set to 1. Otherwise, pobj is set to be 0.
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CHAPTER 3

SEMI-SUPERVISED LEARNING

3.1 Introduction

While the deep learning architectures have evolved in recent years, training a model with

supervised learning methods is still challenging given limited labeled data and high label

noise level. Semi-supervised learning refers to a training strategy for deep learning models.

Unlike supervised learning, dataset for semi-supervised learning (SSL) contains both labeled

data and unlabeled data for training. SSL leverage the difficulty caused by limited labeled

samples. The motivation of SSL is to take advantage of information in unlabeled samples

and improve the model performance. Typically, the semi-supervised learning contains several

stages. Firstly, the model is trained on the labeled samples. Then, the trained model

generates the labels for the unlabeled data. Next, a new model is trained on both given

labels and generated label. The entire training procedure can be iterative until the above

second and third stages converge.

The success of semi-supervised learning methods is based on several important assump-

tions (Ouali et al., 2020) that are summarized as follows.

• The smooth assumption, which means if two samples are close to each other in the

input space of a model, the corresponding outputs should belong to the same cluster.

• The cluster assumption, which means if two samples (or their corresponding repre-

sentations in feature space) are in the same cluster, they are likely to have the same

label.

• The manifold assumption, which means the samples of high-dimensional representa-

tions can be roughly mapped to a low-dimensional manifold.
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The above assumptions given the confidence of the confidence of the generated labels. Per

application, the above assumptions are not always held for the dataset. Therefore it is

necessary to analyze the application and the dataset before performing SSL.

Taking advantage of the unlabeled data, the SSL has been successfully applied in a wide

range of practical applications. Especially, when labels are costly to obtain, the SSL provides

a self-boost way to improve the model performance. The majority aspects of the applications

are summarized as follows.

• Active Learning (Settles, 2009). The motivation of active is the let the model select

the training sample for learning. In this paradigm, model training launches on a small

potion of label data. Then the unlabeled sample are automatically evaluated by the

information. In this case, the demand of new labels can be fulfilled by only annotating

the most informative samples.

• Domain Adaption (Weiss et al., 2016). For a new application, the dataset may contains

an extreme small number of labeled samples, which cannot support training complex

models. If a related problem already has a large-scale labeled dataset, SSL helps with

transfer the model from one to another efficiently.

• Weakly-Supervised Learning (Ratner et al., 2019). In the weakly-supervised scenario,

labels are of large-scale but low-quality, such as the medical dataset annotated by

crowed workers. The target of weakly-supervised learning is the same as supervised

learning. However, in this case, the confidence of labels is unknown. The SSL helps

with examining, refining the labels as well as training a high performance models.

As summarized above, weakly-supervised learning can be easily extended to noisy label

learning. As mentioned in the last chapter, the sources of the label noise include the am-

biguity of samples and the mistakes made by annotators. The label noise can be modeled
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Figure 3.1: Self-training through proxy-labeling. Self-training is self-boost training scheme.
In the first epoch, a model t0 is trained on the labeled samples. Then t0 predicts the labels
on the unlabeled samples. The predictions are carefully selected in which the reliable ones
are used for training in the following epoch. In each epoch, a model learns from all available
labels including the given labels and the proxy-labels.

as the confidence level from the statistical view. The SSL can help characterize the high

confidence samples and regularize the deep learning models.

Several methods to implement SSL include regularizing consistency, generative models,

and graph-based models (Ouali et al., 2020). In the following section, we reviewed a method

called proxy-labeling, closely related to handling the label noise problem.
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3.2 Proxy-label Training

The proxy-label method takes advantage of the unlabeled data by two iterative stages in one

training epoch. In the first stage, a deep learning model, the teacher model, is trained on

the labeled data as normal. Then the trained model annotates the unlabeled data, which

is called a proxy label. In the second stage, a student model learns both the given and the

proxy label. Even though the proxy labels are weak and noisy, they provide extra information

beyond the original labeled data. Based on behaviors of the above stage, the proxy-label

method has two major training paradigms.

• Self-training. In a self-training scheme, the dataset is shared between training stages.

As shown in Figure. 3.1, the proxy labels are the target for both teacher and student

models. A self-training scheme is a self-boosting procedure. The proxy label’s errors

and bias in any stage affect the following training. To prevent the bias brought by

the proxy labels, the self-training scheme only adds the most confident labels to the

training set of the next epoch. Self-training scheme is straightforward to implement

and has been successfully applied to the real problems.

• Multi-view training. In a multi-view training scheme, labeled samples are split into

subsets, or “views”, where any view contains sufficient information for model training.

Each model in the multi-view training learns from one view of the dataset. In this case,

the training of the models runs in parallel. Then each model annotates the unlabeled

samples independently. In this case, each unlabeled sample has multiple proxy labels,

which helps elect and refine.

The proposed method in this paper estimates the proxy labels but does not directly

apply the proxy labels into training. Specifically, the proposed method exploits the proxy

label probabilities to estimate the uncertainty in the dataset, which is introduced in the next

chapter.
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CHAPTER 4

CONFIDENCE LEARNING THEORY

4.1 Introduction

Nowadays, large-scale datasets with label noise are becoming increasingly common. For

medical datasets, labeling issues are even worse when the golden assessment standards are

missing. While doctors diagnose disease according to personal experiences, the ambiguity

of labels causes difficulty in training a deep learning model. Confidence learning (Northcutt

et al., 2021) is proposed to solve the issues of label uncertainty issue. The goal of confidence

learning is to build a data-driven approach to learning theoretically and experimentally from

uncertain data.

Early studies (Elkan, 2001; Forman, 2005) of label noise started with the binary clas-

sification. To analyze the noise ratios, the authors estimated the false positive and false

negative rates. Forman (2008) introduced the threshold technique against the epistemic er-

ror of predictions. Regarding the learning process, the re-weighting loss function (Natarajan

et al., 2013) addressed the issues of random classification noise. In general, the studies in the

confidence learning field proposed three effective principles to tackle the label uncertainty as

follows.

• Finding label errors with pruning or threshold (Chen et al., 2019).

• Re-weighting the loss function during training to prevent the error-propagation (Natara-

jan et al., 2017).

• Ranking the sample by order of confidence level to establish a robust learning process

(Jiang et al., 2018).

The latest confidence learning studies integrate all the above principles to characterize the

label uncertainty in the dataset, which are shown in the next section.
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4.2 Theorems and for Confident Learning

The theoretical support of our work is based on the analysis of Northcutt et al. (2021). Past

observations showed that the label uncertainty follows the class-conditional process assump-

tion (Angluin and Laird, 1988). The class-conditional assumption states that certain class

i ∈ L may be independently labeled as class j ∈ L, where L is the class label set. Consider-

ing the labels as random variables, we can build a joint distribution to model the mislabeling

from the possibility theory. Confident learning aims to estimate the joint distribution Qȳ,y∗

then filter out the uncertain labels with Qȳ,y∗ , where ȳ denotes the noisy label and y∗ denotes

the true but unknown label. There are three steps in the confident learning procedure.

• Step 1: Estimate the Q̂ȳ,y∗ to characterize the label confidence level, where Q̂ȳ,y∗ is a

constant estimator of Qȳ,y∗ .

• Step 2: Characterize the low confident samples with the information in Q̂ȳ,y∗ .

• Step 3: Re-weight each class in the learning process after the noisy labels are removed.

Notably, in the first step, Q̂ȳ,y∗ replaces Qȳ,y∗ because y∗ is unknown such that we can only

find an estimator during the learning process.

Estimating Q̂ȳ,y∗ requires the prediction probability matrix P̂k,i of each sample, where

the k-th sample is predicted as class i with the probability of p̂k,i. Usually, P̂k,i is given

by a CNN model M after the warm-up training. To estimate Q̂ȳ,y∗ , we count the samples

according to the probability of predicted label it belongs to. In this case, noisy samples

are grouped by their latent label y∗. A 2-D confident joint matrix Ĉȳ,y∗ sums the counting

results according to ȳ and y∗. For example, Cȳ=0,y∗=1 = 5 means 5 samples are given label

0 but should be labeled as 1. Establishing the confident joint is based on Equation 4.2

Cȳ,y∗ := |X̂ȳ=i,y∗=j| where

X̂ȳ=i,y∗=j :=
{
x ∈ Xȳ=i : p̂(ỹ = j;x,M) ≥ tj, j = argmax

l∈L:p̂(ỹ=l,x,M)≥tl

p̂(ỹ = l, x,M)
}
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, where Xȳ=j is the samples in the dataset X with given label j. A vital threshold in

Equation 4.2 is tj defined in Equation 4.1.

tj =
1

|Xȳ=j|

∑
x∈Xȳ=j

p̂(ỹ = j;x,M) (4.1)

tj is called “self-confidence”, which is closely related to the model M. Instead of the max-

imal predicted probability, “self-confidence” in Equation 4.2 improves the label confidence

estimation robustness in a imbalanced class environment. With Cȳ,y∗ , the estimated joint

distribution Q̂ȳ,y∗ is calculated from Equation 4.2

Q̂ȳ=i,y∗=j =

Cȳ=i,y∗=j∑
j Cȳ=i,y∗=j

· |Xȳ=i|∑
i,j(

Cȳ=i,y∗=j∑
j Cȳ=i,y∗=j

· |Xȳ=i|)
(4.2)

, where i, j ∈ L are the class labels. Q̂ȳ=i,y∗=j shows the tendency of label shifting within

the dataset.

There are two approaches to characterize the low confidence samples according to Q̂ȳ,y∗ .

The first approach considers Ni samples in class i with the lowest self-confidence as the

uncertain samples, where Ni is defined in Equation 4.3.

Ni = N ·
∑

j∈L,j ̸=i

(Q̂ȳ=i,y∗=j[i]) (4.3)

In Equation 4.3, N denotes the size of the entire dataset. The second approach ranks the

samples with the confidence margin defined in Equation 4.4.

M = p̂x,ȳ=j − p̂x,ȳ=i (4.4)

For each off-diagonal entry of Q̂ȳ,y∗ , we select Ni,j samples with maximal M as the uncertain

samples, where Ni,j is defined as follows.

Ni,j = N · Q̂ȳ=i,y∗=j (4.5)

Beside, it is also possible to jointly apply the above two approaches to characterizing the

low confident samples.
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After low confident samples are removed, learning process re-weights each class for train-

ing. The class i is comprised by wi defined in Equation 4.6.

wi =
1

p̂ȳ=i|y∗=i

=
Q̂y∗ [i]

Q̂ȳ, y∗[i][i]
(4.6)

Equation 4.6 indicates that the samples from class with lower label confidence are assigned

to a higher weight. Reweighting remedies the dataset size shrinking due to removing the

noisy samples.

Our work is based on the label confidence estimation theory. In addition, the proposed

method establishes a dynamically way to estimate the label confidence during training. For

medical dataset, directly removing samples may cause information loss. Therefore, we also

re-design the loss function to incorporated the low confidence samples.
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CHAPTER 5

LABEL CONFIDENCE ASSISTED MODEL TRAINING

FOR OA ASSESSMENT

The proposed approach uses the label confidence information to enhance CNN’s performance

in OA assessment tasks, which includes two interactive stages. At the training stage, our

approach characterizes the low and high confidence samples from each mini-batch as shown

in Figure. 5.1. The hybrid loss function calculates the errors accordingly based on the

samples’ confidence information. In the validation stage, we estimate the label confidence

which provides the references for the training stage to separate low and high samples. We

introduce the label confidence estimation in Chapter 5.1, which lays the foundation for

our approach. The details of the training stage and the hybrid loss function are discussed in

Chapter 5.2 and Chapter 5.3, respectively. Symbols commonly used in this paper are defined

in Table 5.1.

5.1 Estimating Label Confidence

Modeling the label uncertainty has been studied for decades (Angluin and Laird, 1988; For-

man, 2005; Natarajan et al., 2013; Van Rooyen et al., 2015). In a recent research, Northcutt

et al. (2021) use the probability theory to model the relationship between multiple labels

in a dataset, called label confidence. Mainly, labels assigned to individual samples are not

considered deterministic but generated by a distribution. For example, given a “doubtful”

OA sample x belonging to the KL-1 class, multiple annotators can also assign KL-0 or KL-2

to it. In this case, the given label Y is defined as a random variable, which follows a con-

ditional distribution pY |x. To estimate pY |x, we can count the assessments from different

Part of this chapter is reprinted from © 2021 IEEE. Reprinted, with permission, from Y. Wang et
al., ”Learning from Highly Confident Samples for Automatic Knee Osteoarthritis Severity Assessment:
Data from the Osteoarthritis Initiative,” in IEEE Journal of Biomedical and Health Informatics, doi:
10.1109/JBHI.2021.3102090.
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Table 5.1: Symbols Commonly Used in This Paper

Symbol Remarks
K the set of all KL grades
T labels obtained from the OAI
Y labels assessed by individual annotator

Ŷ labels predicted by CNN
D the dataset obtained from the OAI
T the training set, T ⊂ D
V the validation set, V ⊂ D

annotators. There are two properties of this distribution. 1) pY |x is non-categorical. As a

comparison, we usually construct a categorical distribution pT |x from the true label T and

use it as the target in classification tasks. 2) pY |x is not uniform but skews to T . This

property can also be illustrated in the above example. Annotators are not likely to assign

KL-4 to a KL-1 sample because radio-graphic evidence of late-stage OA is absent. The

second property indicates that samples of the same class share a similar distribution. Thus,

γm,n = pY |T (Y = m|T = n),∀m,n ∈ K describes the label uncertainty from the view of the

entire dataset, which represents the probability that samples of class n are labeled as class

m.

In our scheme, we incorporate the label confidence as a dynamic part in our scheme by

performing the estimation on the validation set. Further, we focus on the γk = pY |T (Y =

k|T = k),∀k ∈ K which is the probability of samples of class k being correctly labeled.

Given a CNN, the estimation process follows Northcutt et al. (2021). Firstly, we preserve

the predicted label distribution pŶ |x of all the samples in V . Secondly, we calculate the

self-confidence of each class as defined in Equation 5.1

ϵk =
1

|Vk|
∑
x∈Vk

pŶ |x(Ŷ = k|x), ∀k ∈ K (5.1)
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, where Vk is the set of samples with label k in V . Thirdly, ϵk is used as the threshold to

separate the samples in V . The set of highly confident samples is defined as Equation 5.2.

Ck =
{
x ∈ Vk : pŶ |x(Ŷ = k|x) > ϵk

}
, ∀k ∈ K (5.2)

At the same time, the low confidence set is defined as Equation 5.3.

C̄k =
{
x ∈ V \ Vk : pŶ |x(Ŷ = k|x) > ϵk

}
, ∀k ∈ K (5.3)

Finally, the estimated label confidence is defined in Equation 5.4.

γ̂k =
|Ck|

|Ck|+ |C̄k|
(5.4)

The effectiveness of Equation 5.1-Equation 5.4 requires the pŶ |x to be predicted by a

model with a strong learning capability, which is stated as “error-free” condition (Northcutt

et al., 2021). The “error-free” model can fit the pY |x remarkably such that it behaves like

a human annotator. Mistakes made by the “error-free” model are due to the divergence

between pY |x and pT |x. Theoretical analysis by Northcutt et al. (2021) shows that γ̂k obtained

by the “error-free” model is a consistent estimator of γk. In practice, directly pursuing an

“error-free” model is intractable, because information of Y is missing when we get the dataset

from the OAI. However, CNN can approximate the “error-free” condition after a warm-up

training, as it can learn the dominant pattern from initial epochs (Ma et al., 2018; Arpit

et al., 2017). Through an average of all γ̂k, γ̄ represents the ratio of high confidence samples

whose labels are correctly assigned.

Unlike [34], which estimates the label confidence on the entire dataset, the proposed

method only depends on the validation set. Statistically, V and T share the same label

confidence, because they are independently sampled from one dataset D. A benefit flowing

from our adaption is that it does not affect the model learning by preventing data leakage.

Such that we can embed the label confidence estimation into the standard training cycles.

Further, we introduce an interactive training scheme and propose a hybrid loss function to

enhance the label confidence estimation in the following sections.
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Figure 5.2: The interaction between the training and validation stages. Besides the model
selection, the validation stage in our scheme estimates label confidence. The validation stage
employs the peer models to obtain the aggregated predictions pŶ |x. In turn, the training stage
depends on the estimated γ̂k and γ̄ to characterize low and high confidence and calculating
the errors. In the figure, the green boxes indicate the process of estimating label confidence.

5.2 Interactive Training with Label Confidence Information

The proposed scheme contains a training stage and a validation stage. During training, we

maintain two peer models, which behave differently at each stage.

In the training stage, as shown in Figure. 5.1, peer models characterize the highly con-

fident samples independently. For example, M1 characterizes the high confidence samples

from each mini-batch as defined in Equation 5.5

H(M1) =
{
x ∈ D(batch) : Ord(R(x)) ≤ ⌊|D(batch)| × γ̄⌋

}
(5.5)

, where D(batch) denotes a mini batch, R is a criterion function applied to each sample, and

Ord(R(x)) indicates the ordinal number of x’s criterion in the mini batch. R(x) reflects
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the confidence level of the sample x. In the proposed method, R(x) is implemented as the

cross-entropy function as we define the OA severity assessment as a classification problem.

For each sample, R(x) is calculated from the CNN’s outputs Ŷ and ground truth label T .

Then the whole batch is ranked in ascending order. According to γ̄, samples with smaller

R(x) are characterized as high confidence samples. At the same time, the remaining samples

compose the low confidence set as Equation 5.6.

L(M1) = D(batch) \H(M1) (5.6)

M2, H
(M2) and L(M2) are defined in the same way. The training stage is similar to “co-

teaching” (Han et al., 2018), which is featured by exchanging the loss values of samples

between the peer models to learn from a noisy dataset. However, our implementation does

not depend on the pre-determined threshold to filter the low confidence samples as we plug

in the estimated γ̄. Further, the criterion function in our scheme is different from the loss

function.

At the validation stage, peer models are ensembled through the “bagging” method

(Breiman, 1996). “Bagging” is an ensemble method which aggregates the results from mul-

tiple models to reduce the prediction variance. Usually, people need to sample independent

sets from the original dataset and train multiple models before the model ensemble. As

discussed earlier, two peer models separate the high and low confidence sets independently.

After exchanging the characterization results, two models are trained on different subsets.

Thus, the training stage assumes the role of independent sampling. When estimating label

confidence, pŶ |T used in Chapter 5.1 is obtained by Equation 5.7. Bagging the results reduces

the variance of predictions, which stabilizes label confidence estimation.

pŶ |x =
1

2

(
p
(M1)

Ŷ |x + p
(M2)

Ŷ |x

)
(5.7)

Through the peer models and label confidence, two stages interact with each other.

After the previous training epoch, the updated models estimate the label confidence at the
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validation stage. At the end of the validation stage, γ̂k and γ̄ are fed back to the next

training epoch. To this end, the proposed method is fully automatic and data-driven.

5.3 Hybrid Loss Function

As discussed in previous sections, our approach models the label uncertainty by label con-

fidence and separates the high confidence samples during training. Further, we proposed a

hybrid loss function targeting the empirical errors during the separation, which provides a

second dimension for learning from high confidence samples. Empirical errors refer to the

mistakes made by a machine learning model when generalizing on the unseen data. In the

proposed approach, γ̂k is estimated on the validation set. Such empirical errors are inevitable

when applying the γ̂k to the training set. As γ̂k is approaching γk, the empirical errors be-

come a minor factor for the characterization of low and high samples, such that we can

directly prune the low confidence set. However, the proposed hybrid loss function provides

a flexible way to handle the low confidence sets.

Taking M1 for example, the proposed loss function consists of two terms. The first term

is the weighted cross-entropy loss function as Equation 5.8, which is applied to H(M2).

JwCE(pT |x, p
(M1)

Ŷ |x ) =
K∑
k

1

γ̂k
pT |x(T = k|x) log(p̂(M1)

Ŷ |x (Ŷ = k|x)), x ∈ H(M2) (5.8)

For L(M2), the categorical target distribution pT |x is converted to a “smoothed” p̃T |x as

Equation 5.9

p̃T |x =


γ̂T k = T

0.5(1− γ̂T ) k = adjacent classes of T

0 otherwise

(5.9)

, where γ̂T is the estimated label confidence of T . Design of p̃T |x is based on the prior

knowledge that the distribution of Y skews on T . When T has only one adjacent class, we
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(a) No spread of label uncertainty

(b) Unconstrained spread of label uncertainty

(c) Constrained spread of label uncertainty

Figure 5.3: Comparisons of categorical distribution (Figure. 5.3a), “smooth loss” distribution
(Figure. 5.3b), and the proposed target distribution (Figure. 5.3c). Given T =KL-2, we
smooth the categorical distribution but limit the spreading within the adjacent level of the
ground-truth.

set the probability of T as 0.5(1+ γ̂T ). As shown in , p̃T |x is similar to “smooth loss”(Berrada

et al., 2018) but it restricts the distribution within the adjacent classes of k. To measure

the difference between p
(M1)

Ŷ |x and p̃T |x, we use the Kullback-Leibler divergence as the loss

function for L(M2) as in Equation 5.10.

JKL(p̃T |x, p
(M1)

Ŷ |x ) =
K∑
k

p̃T |x(T = k|x) log
( p̃T |x(T = k|x)
p
(M1)

Ŷ |x (Ŷ = k|x)

)
, x ∈ L(M2) (5.10)

If provided with more knowledge about the tendency of labeling, p̃T |x can be designed to be

asymmetric. However, this is not the principal topic of this paper. Combining the above

two items as well as a hyper-parameter λ to control the impact of low confidence samples,
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the proposed loss function is as in Equation 5.11

J
(M1)
hybrid =

1

|H(M2)|
∑

x∈H(M2)

JwCE +
λ

|L(M2)|
∑

x∈L(M2)

JKL (5.11)

, where the targets and model outputs are eliminated for clearance. The hybrid loss function

helps with learning the high confidence samples by controlling the impact of empirical errors.

Hyperparameter λ copes with the samples of different confidence levels. Loss function for

M2 shares the same form as Equation 5.11, but uses the sample confidence information

provided by M1.
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CHAPTER 6

DATA PREPROCESSING AND EXPERIMENT SETUP

6.1 The OAI Public Dataset

The dataset used in this work is obtained from the OAI database. The OAI is a multi-

center, longitudinal, prospective observational study of knee OA. It has established and

maintained a comprehensive database including clinical evaluation data, radiological image,

and a biospecimen repository. There are 4796 participants aged between 45 and 79 in the

study of OAI. We used the X-ray screen data collected from the first visit of participants in

our research. Specifically, we retrieved 4472 samples from 0.C.2 and 0.E.1 versions of the

dataset.

6.2 Knee Joint Area Segmentation

The dataset obtained from the OAI contains the X-ray screening data and KL assess-

ments. To prepare for classification tasks, we convert the screening data from DICOM1

format to plain images and then segment the knee ROI. Plain images are extracted us-

ing Pydicom(Mason, 2011), during which we scale the 12-bit pixels to 8-bit. We use the

YOLOv2(Redmon and Farhadi, 2017) to segment knee ROI. Firstly, we randomly select

200 images from the OAI dataset as the training set. Radiologists from Huashan Hospital,

Fundan University annotate bounding boxes of knees in these images. Then we follow the

Part of this chapter is reprinted from © 2021 IEEE. Reprinted, with permission, from Y. Wang et
al., ”Learning from Highly Confident Samples for Automatic Knee Osteoarthritis Severity Assessment:
Data from the Osteoarthritis Initiative,” in IEEE Journal of Biomedical and Health Informatics, doi:
10.1109/JBHI.2021.3102090.

Part of this section is reprinted from ©2021 Y Wang et al. “An Automatic Knee Osteoarthritis Di-
agnosis Method Based on Deep Learning: Data from the Osteoarthritis Initiative”, Journal of Healthcare
Engineering, vol. 2021. https://doi.org/10.1155/2021/5586529.

1Digital Imaging and Communications in Medicine
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Figure 6.1: The IOU score for each batch (iteration) during training. The moving average
value of 50 batches is marked as “50-Batch Ave. IOU” to show the general trend.

same settings as Redmon and Farhadi (2017) to finetune the YOLOv2 except that we set

the number of class as 1 for our task. Meanwhile, we monitor the intersection over the union

(IOU) score defined in Eq. 6.1

IOU =
A ∩B

A ∪B
(6.1)

, where A denotes the predicted bounding box and B denotes the ground truth. Once the

IOU scores converge, the training is terminated to avoid over-fitting. Figure. 6.1 shows the

IOU score of each training batch. The moving average IOU scores over 50 batches were used

as the indicator of convergences. After training, the IOU score on the annotated 200 samples

reached 0.82.
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After the finetuning, the YOLOv2 is further used to segment the remaining 4272 images.

However, the IOU score is unsuitable for verifying knee detection because the remaining

samples do not have annotations. To validate the segmentation results, we proposed four

statistical forms of measurements.

• Detection count per image. Thanks to the consistency of the OAI dataset, all collected

screen data consists of two knees. Therefore, two detections per image are expected.

• Detection size. The sizes of the knee are similar for humans. However, knee detection

varies due to the scale of the X-ray image. From the statistical view, the detections

are expected to tend to cluster.

• Detection location. A proper pair of knee joint detections should be located on the

same height vertically and on both sides of the image horizontally.

• Object Confidence. As all images contain the knee joints, a reliable model should give

a high confidence score on its detection.

From the four aspects mentioned above, we evaluate the detection results from the testing

images. Firstly, Figure. 6.2 shows the distribution of detection per image. 98.22% of images

in the dataset have two detections corresponding to the left and right legs. The YOLO model

successfully detects two knees in most images.

Secondly, Figure. 6.3a and Figure. 6.3b show the distributions of height and width for

both original X-ray images and cropped ROIs. As shown in Figure. 6.3a, the sizes of the

original X-ray images are separated into two clusters. The centroids of the two clusters are

located near (600, 500) and (1100, 850). Correspondingly, Figure. 6.3b shows two clusters

regarding the sizes of the cropped ROIs, whose centroids are near (150, 125) and (250, 200).

The clustering of cropped ROIs can be explained by the scale of original X-ray images, as

the knees area is in proportion to the X-ray image size. Therefore, the sizes of detected ROIs
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Figure 6.2: Detection count per image. In total, 4426 images have 2 detections, which
account for 98.22% of the whole dataset.

are comparable. Moreover, the results also demonstrate that the trained YOLO model is

robust to different X-ray image sizes.

Thirdly, Figure. 6.4 shows the locations of all detected knees, which are represented by

the top-left corner’s coordinates. We observe two groups of detections marked as “X” and

“Y”. The centroids of group “X” lie near (150, 200) and (400, 200). Regarding the ROIs

in group “Y”, their y-coordinates range between 280 and 400, and their x-coordinates are

near 200 and 600. Vertically, all detections appear in the middle region of the X-ray image.

Horizontally, the clusters distribute on the left and right sides.
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(a) X-ray images size distribution

(b) Knee segmentation size distribution

Figure 6.3: Size of the original images and detections. (a) shows the size of original image.
The OAI dataset has two clusters of shapes, as indicated in the red and blue colors. (b)
shows the knee segmentation widths and heights. Two clusters regarding the size of the
bounding box are marked by red and blue, respectively.
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Figure 6.4: Locations of knee detections. Vertically, all detections appear in the middle
region of the image except for outliers. Horizontally, two pairs of clusters are labeled as “X”
and “Y” according to the positions. The clusters are caused by different X-ray image sizes
and the knee alignment. Cluster “X” has only one pair of centroids. While cluster “Y” is
split into 3 subgroups. Each subgroup on the right has its counterpart on the left.

Finally, Figure. 6.5 shows the confidence score distribution and the Kernel density esti-

mation line based on the scores given by the YOLO. The center of the score distribution is

roughly 85%. It indicates that the trained model has high confidence in its prediction.

Based on the above four measurements, we can conclude that segmentations on the whole

dataset are accurate and valid. Furthermore, to mitigate the influence of invalid detections,

we use the confidence score of 0.75 as a threshold to filter the ROIs referring to the predicted

confidence score. In this way, we preserve 95% of ROIs, and their label distribution is shown

in Table 6.1. Examples of detected knee join as well as YOLO’s object scores are shown in
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Figure 6.5: Object confidence score distribution (by YOLO model). The distribution of
confidence scores is centered at 85. The density of low confidence detection (below 75) is
nearly zero. The confidence score distribution indicates that the majority of detections are
reliable.
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(a) (b)

(c) (d)

Figure 6.6: Knee joint areas located by the fine tuned YOLOv2 model. Figure. 6.6a, Fig-
ure. 6.6b, and Figure. 6.6c shows the proper bounding boxes, which give the knee joint areas
a high object confidence score. Figure. 6.6d is a failed example due to the misalignment and
low contrast. YOLOv2 scores 29.53% for this detection. To obtain segmentation, we need
to crop the images referring to these bounding boxes and then resize the cropped ROIs. The
segmentation details are described in Chapter 6.2.

Figure. 6.6. For the following classification process, we resize all cropped ROI into 224x224.

KL assessments are assigned to each ROI according to the patient ID and the side of the leg.
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Table 6.1: Label Distribution of the Cropped ROI

KL-0 KL-1 KL-2 KL-3 KL-4
Total ROI 3234 1475 2186 1141 266
Training Set 2264 1033 1531 799 187
Validation Set 323 147 218 114 26
Test Set 647 295 437 228 53

6.3 Training Scheme Implementation

We apply the proposed method to two CNN architectures in the experiments, viz., resnet34

(He et al., 2016a) and densenet121 (Huang et al., 2017). Deep learning models are imple-

mented with Pytorch(Paszke et al., 2019). We integrate the CleanLab (Northcutt et al.,

2021) into our training framework to estimate the label confidence at the training stage. As

the baseline, ”network-based”(Tan et al., 2018) transfer learning (denoted as “trans.”) is

compared for both tasks. Motivated by Chen et al. (2019) and Tiulpin et al. (2018), ini-

tial weights of CNN are obtained from the pre-training on the ImageNet(Deng et al., 2009)

dataset to alleviate the difficulty of insufficient training data. We replaced CNN’s last layer

to adapt to the 5-class OA assessment. And we did not freeze any layers during training. We

use an augmentation method similar to Chen et al. (2019) by randomly adjusting the image’s

brightness and contrast. The CNNs are finetuned for 12 epochs to ensure the optimization

is converged. We use Adam optimizer with learning rate of 0.0001 and with weight decay

of 1e-8. Besides the baseline, we compare our method with the published research, which

shall be discussed in the next section. All experiments are run on Intel(R) Xeon(R) CPU

E5-2698 v4 @ 2.20GHz CPU. We use Nvidia Tesla V100 GPU to speed up training.

6.4 Model Performance Evaluation

We evaluate the performance on two tasks related to OA assessment, five-stage assessment

task and early-stage assessment task. The five-stage assessment performance is evaluated
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on all KL grades. We use accuracy score and Matthews Correlation Coefficients (MCC) as

metrics. The MCC is widely used in the field of bioinformatics as a metric of imbalanced

dataset. While MCC was firstly proposed for binary classification tasks, Jurman et al.

(2012) extended it to multi-class scenarios. Let P denote the prediction indicator matrix

where Pik = 1 if i-th sample is predicted as k and let G denote the ground truth indicator

matrix where Gik = 1 if i-th label is k. The MCC is defined as Equation 6.2

MCC =
cov(P,G)√

cov(P, P )cov(G,G)
cov(P,G) =

1

N

N∑
i=1

∑
k∈K

(Pik − P̄k)(Gik − Ḡk) (6.2)

, where N is the size of dataset and P̄k, Ḡk are the column-wise mean of P,G. The MCC

ranges from -1 to 1 where 1 is for perfect classifier, and 0 is for random guess. The early-stage

assessment includes KL-0 vs. KL-1, KL-1 vs. KL-2, and KL-0 vs. KL-2 classifications. We

use accuracy score and F1-score as metrics for early-stage assessment task.

To simulate the varying label confidence levels in the dataset, our experiment is conducted

in a 5-fold manner. The ROIs obtained are split into five folds using the stratified sampling

by the KL-grade. In each step, we hold out one fold for testing. The other four folds are

further split into training set and validation set in the ratio of 7:1. The validation set is used

for model selection and label confidence estimation. The metric used for model selection is

the accuracy score for all tasks. Notably, the KL label distributions are the same for all five

folds as shown in Table 6.1, but experiments are independent of each other. We evaluate

the performance separately and report the average results. Such a setup is similar to Nasser

et al. (2020), which uses ten folds, we apply five folds to leave more testing data.
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CHAPTER 7

RESULTS AND DISCUSSIONS

7.1 OA Severity Assessment

7.1.1 The Five-stage Task

Accuracy scores on the five-stage task are compared with recently published researches in

Table 7.1. Results of different studies are grouped by the classification CNN architecture.

For the reported accuracy, we carefully examine these studies from two aspects for a fair

comparison, including the data source and preprocessing method. First, results reported

in Table 7.1 are evaluated on the same OAI dataset as ours. Particularly, Tiulpin et al.

(2018) use an additional dataset (Multicenter Osteoarthritis Study, MOST (Multicenter

Osteoarthritis Study: https://most.ucsf.edu/) for training. Second, these researches

employ a semi-automatic or fully automatic preprocessing method. Besides the baseline, we

compare our work to “ordinal loss”(Chen et al., 2019) and “label smooth”(Berrada et al.,

2018), which handle the label uncertainty through loss functions. Their results are obtained

from our preprocessed data. We use the same weights for “ordinal loss” provided by Chen

et al. (2019). For “label smooth,” we set the smooth parameter as 0.1, which results in the

best performance according to Berrada et al. (2018). For our method, we use λ = 0.01 in

the proposed hybrid loss function. Warm-up epoch is 2 for resnet34 and 3 for densenet121.

Hyper-parameters’ effects are analyzed in the last section. As there are two models in our

scheme, we also ensemble their results by Equation 5.7, which are marked as ”bagging”.

As shown in Table 7.1, our approach outperforms the previous methods and the baseline

on the five-class tasks. The proposed method achieves an improvement of 4.76% (resnet34)

Part of this chapter is reprinted from © 2021 IEEE. Reprinted, with permission, from Y. Wang et
al., ”Learning from Highly Confident Samples for Automatic Knee Osteoarthritis Severity Assessment:
Data from the Osteoarthritis Initiative,” in IEEE Journal of Biomedical and Health Informatics, doi:
10.1109/JBHI.2021.3102090.
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Table 7.1: Accuracy of the five-class task

Method Backbone Accuracy

Antony et al. (2017) VGG-like CNN 61.90%
Górriz et al. (2019) VGG-16 64.30%

Tiulpin et al. (2018) resnet34 66.71%
“Ordinal loss” (Chen et al., 2019) resnet34 63.56%
“Label smooth” (Berrada et al., 2018) resnet34 65.74%
transfer learning resnet34 65.91%
Ours (single) resnet34 67.98%
Ours (bagging) resnet34 68.32%

“Ordinal loss” (Chen et al., 2019) densenet121 66.34%
“Label smooth” (Berrada et al., 2018) densenet121 67.00%
transfer learning densenet121 67.59%
Ours (single) densenet121 69.25%
Ours (bagging) densenet121 70.13%

and 3.79% (densenet121) in terms of accuracy score, compared to “ordinal loss” (Chen et al.,

2019). For “label smoothing”, the improvement is 2.58% (resnet34) and 3.13% (densenet121).

We observe that ensembling the peer models yields slightly better results. However, the single

model makes the main progress. The comparisons to Chen et al. (2019) and Berrada et al.

(2018) suggest that the proposed method exploits the high confidence samples. The “ordinal

loss” and “label smoothing” solve the label uncertainty by adjusting the loss functions. Chen

et al. (2019) apply a weight matrix to the starndard cross-entropy loss. Berrada et al. (2018)

adjust the target distributions. However, all samples are still considered equally confident.

During training, CNN tries to memorize the low confidence samples, given its powerful

representation capability (Han et al., 2018). Such memorization will not contribute to the

models’ generalization on unseen data. A step forward enabled by our approach is that

we separate the high and low confidence samples. In addition, the hybrid loss function

handles samples accordingly. By focusing on the high confidence samples, we achieve higher

performance.
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(a) Accuracy on each fold

(b) MCC on each fold

Figure 7.1: Metrics of 5-class task on each fold. We group the results by the CNN architec-
ture.
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To examine the performance of each fold, we show the accuracy and MCC scores in

Figure. 7.1. Results shown in Figure. 7.1 suggest that our scheme adapts to different folds

automatically. Chen et al. (2019) and Berrada et al. (2018) show competitive results on a

certain single fold. For example, the best accuracy scores achieved on one single fold by Chen

et al. (2019) are 67.6% (resnet34) and 68.50% (densenet121). For Berrada et al. (2018), best

accuracy scores achieved are 67.11% (resnet34) and 68.01% (densenet121). However, the

lowest accuracy scores for both Chen et al. (2019) and Berrada et al. (2018) are bellow the

transfer learning baselines. In previous methods, the training depends on the pre-determined

parameters in the loss function. When evaluated on different folds, our data-driven method

shows superior performance on every fold. The MCC scores follow the same trends as

accuracy regarding our method. Improvement of MCC shows that our method does not

favor any specific class, but gains better performance in all classes.

In Figure. 7.2, we use GradCAM(Selvaraju et al., 2017) to illustrate the activated regions

of densenet121’s classification result. The second row of Figure. 7.2 shows that our training

scheme drives the model to extract features from both sides of the knee joint areas. As shown

in the green boxes of Figure. 7.2, the comprehensive features obtained from both the lateral

side and the medial side lead to a correct prediction. Despite the fact that our method could

over-estimate the severity as shown in the red boxes, the overall accuracy is improved.

7.1.2 The early-stage tasks

Due to the demands from the clinical environment, we examine our method on the early-

stage tasks. For a fair comparison, experiments ran under two conditions. On the one

hand, Antony et al. (2016) evaluated the performance using all early stage samples, which

maintained an imbalance class distribution. On the other hand, Nasser et al. (2020) re-

sampled the data of KL-0, KL-1 and KL2 to obtain a balancing subset. Correspondingly,

we also re-sample the data and compare the results under two conditions as in Table 7.2.
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Table 7.2: Comparison of the accuracy on early-stage tasks

Method Task Accuracy

*evaluated on all OAI early-stage samples
Antony et al. (2016) KL-0 vs. KL-1 64.70%
transfer learning (resnet34) KL-0 vs. KL-1 70.55%
transfer learning (densenet121) KL-0 vs. KL-1 71.37%
ours(resnet34) KL-0 vs. KL-1 72.12%
ours(densenet121) KL-0 vs. KL-1 73.50%

Antony et al. (2016) KL-0 vs. KL-2 77.60%
transfer learning (resnet34) KL-0 vs. KL-2 83.93%
transfer learning (densenet121) KL-0 vs. KL-2 85.55%
ours(resnet34) KL-0 vs. KL-2 85.99%
ours(densenet121) KL-0 vs. KL-2 87.42%

Antony et al. (2016) KL-1 vs. KL-2 65.80%
transfer learning (resnet34) KL-1 vs. KL-2 69.65%
transfer learning (densenet121) KL-1 vs. KL-2 69.73%
ours (resnet34) KL-1 vs. KL-2 70.69%
ours (densenet121) KL-1 vs. KL-2 71.78%

**evaluated on the resampled balancing data
Nasser et al. (2020) KL-0 vs. KL-1 69.83%
ours (resnet34) KL-0 vs. KL-1 65.50%
ours (densenet121) KL-0 vs. KL-1 65.50%

Nasser et al. (2020) KL-0 vs. KL-2 82.53%
ours (resnet34) KL-0 vs. KL-2 83.19%
ours (densenet121) KL-0 vs. KL-2 84.66%

Nasser et al. (2020) KL-1 vs. KL-2 77.05%
ours (resnet34) KL-1 vs. KL-2 70.96%
ours (densenet121) KL-1 vs. KL-2 72.77%
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(a) KL-0 vs. KL-1 metrics on each fold

(b) KL-0 vs. KL-2 metrics on each fold

(c) KL-1 vs. KL-2 metrics on each fold

Figure 7.3: Metrics of different methods on each fold (evaluated on all early-stage samples)
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The hyper-parameters are the same as Chapter 7.1.1. For our method, we list the average

ensembled results of all five folds. Notably, Nasser et al. (2020) explored multiple categories

of classifiers followed by the discriminative regularization auto-encoder (DRAE). For each

image, the authors extracted five ROIs and trained the corresponding DRAE and classifiers.

The single decision of each image aggregated predictions from five ROIs through the max-

voting strategy. Among the classifiers reported in Nasser et al. (2020), SVM-RBF achieved

the best performance, which are listed in Table 7.2.

Compared to Antony et al. (2016), the accuracy improves on all three binary classification

tasks. We also outperform the transfer learning baseline on these three tasks. In terms of

each fold’s performance, Figure. 7.3 shows similar trends as five-stage tasks.

On the other hand, we observe that on the KL-0 vs. KL-1 and KL-1 vs. KL-2 tasks,

Nasser et al. (2020) reaches higher accuracy than our work. Table 7.2 shows that the classi-

fication performance benefits from prior expert knowledge. However, applying the method

of Nasser et al. (2020) to a clinical environment is difficult due to the intensive human inter-

vention. The ROI extraction is based on the manually annotated tibial edge, which requires

an expert to check every image in the dataset. The advantage of the proposed method is the

fully automatic end-to-end procedure for OA assessment. Notably, the experiments in this

work are based on the automatic knee segmentation by the YOLO model.

7.2 Label Confidence Estimation

7.2.1 Low Confidence Sample Characterization

Characterizing low confidence samples is the foundation of estimating label confidence. We

verify the characterized low confidence samples from two aspects.

First, we present the low confidence samples characterized by the densenet121 from the

validation set to radiologists to re-examine the KL grade. In Figure. 7.4, we show the
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ambiguous samples considered by radiologists, who highlighted the suspicious lesions which

may affect the decision. The case study confirms the existence of low confidence samples

which do not have significant evidence of their KL grade. If treated similar to the high

confidence samples, CNN could memorize these samples instead of learning general patterns.

Second, due to the difficulty of verifying large-scale low confidence samples, we use the

label-shifting of early-stage samples to simulate the errors made by individual annotators.

Particularly, we randomly shift the KL-0, KL-1, and KL-2 labels to its adjacent class. The

ratios of label-shifting are 5% and 10% for the training and validation set respectively.

Then, we use the densenet121 to verify our method’s awareness of label confidence level

change. Meanwhile, we keep track of the label-shifting samples to check whether they were

characterized during training. The transfer learning method is used as a baseline here.

Table 7.3 shows the mean label confidence level and accuracy. As we are adding label noise

in the dataset, the accuracy of both methods decreases. However, our training scheme still

outperforms the baseline by nearly 2%. On the other hand, the estimated label confidence

level also drops from 72.6% o 69.1%, which indicates the awareness of the label noise change.

We observe that the estimated label confidence does not strictly follow the label-shifting

ratio. For example, when we add 5% label noise, the estimated label confidence drops

by 2.4%. With 5% more noise, it further drops by 1.1%. The amount of noisy samples

undermines the low confidence sample estimation result. As low confidence data becomes

dominant, the CNN cannot distinguish a normal sample from a noisy one, resulting in the

noisy samples being categorized as normal. Northcutt et al. (2021) also discuss such an issue

by assuming the correctly labeled samples dominating each class.

By tracking the manually added noisy samples, we calculate the average percentage of

those found by CNN. 74.22% of the noisy samples are detected under 5% condition and

70.54% under 10% condition. This result suggests that the label confidence estimation

is a valid method to detect low confidence samples on a large-scale dataset. Due to the
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(a) ground-truth label - KL-1 (b) ground-truth label - KL-0

(c) ground-truth label - KL-4 (d) ground-truth label - KL-4

Figure 7.4: Low confidence samples verified by individual annotator. For each image, we
show the label obtained from OAI on the bottom. Highlighted areas are annotated by the
radiologists, which may lead to a low label confidence. Evident osteophyte is indicated by
yellow circle. Sclerosis is annotated by red lines. In Figure. 7.4a and Figure. 7.4b, these
features may lead to a higher KL level assessment. In Figure. 7.4c, and Figure. 7.4d, the
joint space narrowing is asymmetrical, which is mainly located on medial side. This is the
main reason that an individual annotator may underestimate the severity.
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Table 7.3: Comparisons of the Performance under Random Label-Shifting (LS) Conditions
(five-class task, the densenet121 model)

Method Random LS
Ratio

Label Confidence (KL-
0,1,2)

Accuracy

baseline 0% - 67.59%
proposed 0% 0.726 70.13%
baseline 5% - 66.48%
proposed 5% 0.702 68.79%
baseline 10% - 66.73%
proposed 10% 0.691 67.87%

uncertainty in the original OAI dataset, our estimation does not perfectly match the manually

added noisy samples. However, it provides a good reference for our interactive training and

hybrid loss function.

7.2.2 Label Confidence Estimation Process

To unravel the interaction of model training and label confidence estimation, we show the

mean of label confidence after each epoch in Figure. 7.5. Figure. 7.5a shows the results for

the KL-0, which stands for “no OA”. Figure. 7.5b shows the results of the KL-1, which

represents the “doubtful OA”. As the label confidence estimations of KL-2, KL-3, and KL-4

are similar to the KL-0, we do not show them here.

Throughout the training, we observe a similar trend from KL-0 and KL-1, where the

label confidence level is dynamically balanced. It indicates that the training process is

consistently pushing CNN learning from the high confidence samples. Moreover, it maintains

the stability of the weights used by our hybrid loss. On the other hand, we find the label

confidence of KL-1 lower than other classes. This difference could be explained by the

fact that the radiographical evidence in KL-1 images is less determinative than others. The

similar estimation of two CNN models proves the reliability of our method. For the uncertain

data, the annotator’s personal experience influences the given label Y , which determines the

label confidence. Thus, the estimation results are model-independent. As expected, we
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(a) KL-0 label confidence

(b) KL-1 label confidence

Figure 7.5: Estimated confidence level after each epoch. The less saturated colors of the first
several bars represent the warm-up epoch. To draw this figure, we take an average over the
results of all five-fold training (with λ = 0.01 for both CNNs).
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Table 7.4: Comparisons of Different Warm-up Epoch

Model Accuracy MCC
resnet34 (epoch = 1) 67.97% 0.5552
resnet34 (epoch = 2) 68.32% 0.5561
resnet34 (epoch = 3) 67.91% 0.5555

densenet121 (epoch = 1) 69.76% 0.5815
densenet121 (epoch = 2) 69.86% 0.5826
densenet121 (epoch = 3) 70.13% 0.5864

observed no significant differences in Figure. 7.5 regarding the two CNNs, suggesting that

our method is reliable.

7.3 Effects of Hyper-parameters

In the proposed method, two hyper-parameters control the learning process. The number of

warm-up epochs determines when to apply the label confidence information. And λ in the

proposed loss function determines the weights of the low confidence set. We use the 5-class

task to examine hyper-parameter effects in this section.

7.3.1 Effects of warm-up epoch

The effects of warm-up epoch are shown in Table 7.4. It suggests that the influence or warm-

up epoch is not significant. The difference caused by the warm-up epoch is within 0.4% in

terms of accuracy and 0.001 in terms of MCC for both CNNs. Similar to Figure. 7.5, this

result suggests that the training scheme reaches a stable state after the first one or two

epochs. In this case, the final performance is not sensitive to the warm-up hyper-parameter.
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Table 7.5: Comparisons of Different λ

Model Accuracy MCC
resnet34 (λ = 0) 67.86% 0.5612
resnet34 (λ = 0.01) 68.32% 0.5561
resnet34 (λ = 0.05) 66.92% 0.5521

densenet121 (λ = 0) 69.53% 0.5774
densenet121 (λ = 0.01) 70.13% 0.5864
densenet121 (λ = 0.05) 68.97% 0.5654

7.3.2 Effects of λ in hybrid loss

Table 7.5 shows that setting λ as 0.01 yields the best performance. When λ is 0, the accuracy

scores decrease by 0.46% for resnet34 and 0.6% for densenet121. On the other hand, when

λ is 0.05, the accuracy scores also drop by 1.4% (resnet34) and 1.16% (densene121).

Results in Table 7.5 reflect the impacts of λ. When lambda is 0, it is equivalent to

discarding the low confidence set. Compared to the baselines, the resnet34’s accuracy in-

creases by 1.95%, and that of densenet121 by 1.84%. CNNs achieve the major improvement

by estimating label confidence and learning from high confidence samples. As discussed in

Chapter 5.3, machine learning models can make empirical errors on the unseen data. Results

in Table 7.5 confirm the benefit of using λ to remedy the empirical errors. However, when λ

further increases to 0.05, it overestimates the loss caused by low confidence samples. Thus,

the loss function cannot help CNN to learn from reliable samples.

To illustrate the learning process, we plot the average loss of each epoch in Figure. 7.6.

Two terms of our hybrid loss function are plotted separately, marked as “CE Loss” and “KL

Loss”. As shown in Figure. 7.6a when λ is 0.01, it suppresses the impact of “KL Loss”.

Through the training, CNNs mainly learn from the “CE Loss”, which is calculated from a

high confidence set. However, in Figure. 7.6b, when λ is 0.05, weighted “KL Loss” is near

the “CE Loss”. During training, more efforts are made to minimize the “KL Loss” compared

to Figure. 7.6a, especially in the later epochs. As shown in Table 7.5, overestimating the
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(a) Loss values during training with λ = 0.01

(b) Loss values during training with λ = 0.05

Figure 7.6: Average training loss after each epoch. The two terms in the hybrid loss function
are marked as “CE Loss” and “KL Loss”. We also plot the weighted “KL Loss” with respect
to different λ. To plot this figure, we observe the densenet121’s training process on five-class
task. And we use three epochs for the warm-up training.
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Figure 7.7: Averaged label confidence of KL-1 characterized by the densenet121 using dif-
ferent λ. The less saturated colors of the first several bars represent the warm-up epoch.
When lambda increases, the estimated label confidence is becoming unstable.

“KL Loss” leads to a significant drop of the accuracy score. Inappropriate λ also affects the

label confidence estimation. In Figure. 7.7, we show the label confidence of KL-1 under the

conditions of different λ. Compare to 0 and 0.01, using 0.05 causes the fluctuation during

the training. Although CNN manages to stabilize the trends in the later epoch, the overall

performance is corrupted. Moreover, when we use 0.1 as λ in the hybrid loss function, the

training process does not converge in the end.
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CHAPTER 8

CONCLUSION

In this paper, we propose a novel training scheme and a hybrid loss function targeting the

label uncertainty in the OA dataset. The proposed training scheme has two stages. First,

in the label confidence estimation stage, we extract the label confidence information. In

the model training stage, we use it to refine the samples. Moreover, the proposed hybrid

loss function emphasizes the high confidence samples and suppresses low confidence ones.

We conduct the experiments on two tasks to validate our approach, including five-stage OA

assessment and early-stage OA detection. To examine the effect of low confidence sample

characterization, we perform a manual case study and large-scale label noise interference

experiments. Despite the fact that KL-0 vs. KL-1 and KL-1 vs. KL-2 tasks still benefit

from the semi-automatic feature extraction, our approach reaches state-of-art performance

on five-stage and KL-0 vs. KL-2 tasks without human intervention. As an object detection

CNN is employed for the knee joint area segmentation, our method depends on the standard

procedure to collect the X-ray screen data. In a clinical environment, data collection is

affected by various factors, like the medical device and lesion area alignment. The impacts

brought by the preprocessing method are not explored. We observe that our experiments

run on the dataset from a single vendor. In future, we would like to explore the application

of the proposed method on data from multiple sources.

To our knowledge, this is the first work to enhance the OA severity assessment from the

view of sample confidence. Our work is a fully automatic and data-driven process for data

refining, which differs from the previous researches. In future, introducing label confidence

to other medical imaging problems holds promise.

Part of this chapter is reprinted from © 2021 IEEE. Reprinted, with permission, from Y. Wang et
al., ”Learning from Highly Confident Samples for Automatic Knee Osteoarthritis Severity Assessment:
Data from the Osteoarthritis Initiative,” in IEEE Journal of Biomedical and Health Informatics, doi:
10.1109/JBHI.2021.3102090.
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sector funding for the OAI is managed by the Foundation for the National Institutes of
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