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Speaker diarization is an unsupervised task that determines "who spoke and when" within

input audio stream. It consists of four sub-systems: (i) speech activity detection (SAD);

(ii) speaker segmentation and modeling; (iii) speaker clustering and (iv) re-segmentation.

Previous diarization systems have addressed telephone and/or meeting recordings in cleaner,

but fail in naturalistic audio streams. Naturalistic audio such as CRSS-PLTL corpus consists

of short-speaker turns and distortions including noise, reverberation, overlapped speech,

and other miscellaneous human non-speech vocalizations. These factors pose challenge for

speaker diarization in naturalistic audio. This dissertation formulates several systems to

enhance speaker diarization, resulting in four contributions. The first contribution advances

SAD based on frequency-dependent kernel (FDK-SAD) features and three alternate decision

backends, namely: (i) Variable model-size GMM (VMGMM), (ii) Hartigan dip test based

robust feature clustering (DipSAD), and (iii) Cumulative density based linear curve (D-SAD).

Evaluations employ open-source corpora such as NIST OpenSAD-2015, NIST OpenSAT-2017,

redDots and CRSS-PLTL corpus. CRSS-PLTL contains multi-stream audio recordings from

UTDallas student-led STEM teaching model . Second, novel architectures are developed

based on SincNet convolutional neural network for speaker identification and diarization.

Proposed models generalize well with smaller training data, hence an attractive choice for

vii



transfer learning (TL). The standard SincNet architecture is expanded by introducing both

additive margin (AM)-Softmax and Center loss, which leads to four novel architectures

namely (i) standard SincNet, (ii) AM-SincNet, (iii) AM-CL-SincNet, and (iv) CL-SincNet for

speaker diarization. We leverage transfer learning (TL) for training SincNet models on two

training datasets: (1) TIMIT, (2) Librispeech corpus. Diarization evaluations are conducted

on UT Dallas CRSS-PLTL and AMI meeting corpora. Thirdly, three novel algorithms are

proposed for speaker clustering: (i) Mixture of von Mises-Fisher distributions (movMF); (ii)

Normalized Fuzzy C-means clustering (NFCM); and (iii) Toeplitz Inverse Covariance-based

speaker clustering (TIC). While TIC is computationally complex than movMF and NFCM, it

out-performs both movMF and NCFM. Finally, speech systems are proposed for knowledge

extraction and interaction analysis using unsupervised or pre-trained models, using Peer-Led

Team Learning (PLTL) sessions. We leverage CRSS Speech Profiler for detecting four low-

level attributes namely: (i) Emotion recognition; (ii) Lombard effect; (iii) Whisper detection;

and (iv) Physical task stress. These low-level attributes are used for unsupervised PLTL

interaction analysis aimed at assessing student engagement. The resulting evaluations of

both publically available corpora, as well as UT Dallas PLTL data, confirm the impact of

the proposed algorithmic advancements for diarization in naturalistic audio streams. Taken

collectively, the resulting dissertation contributions advance a number of processing sub-tasks

to achieve effective robust speaker diarization in naturalistic streams.
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CHAPTER 1

INTRODUCTION

1.1 Dissertation Motivation

The task of speaker diarization addresses the basic question "who spoke and when" within an

audio stream (Anguera et al., 2012; Tranter and Reynolds, 2006). Speaker recognition, which

tries to identify speakers from a closed set. Both tasks are equivalent except for two differences:

(i) diarization involves speaker clustering (unsupervised) while recognition is a classification

task (supervised); (ii) speaker recognition assumes the availability of enrollment data for

each speaker, unlike diarization which has no enrollment data (Hansen and Hasan, 2015).

Speaker recognition and diarization are important tasks for practical audio stream applications

such as voice authentication, multi-speaker speech recognition, interaction analysis, meeting

annotations, or audio retrieval. Commercial voice assistants such as Microsoft Cortana,

Apple Siri, Amazon Alexa, and Google Home employ speaker diarization and recognition for

delivering personalized voice and speech services. Speaker diarization can in general be used

as a front-end for analysis of meeting conversations such as the AMI corpus (Carletta et al.,

2005). Alternatively,another multi-subject audio corpus is derived from Peer-Lead Team

Learning (PLTL) which is a student-led STEM education model popular in US universities.

It is a structured program where a team leader facilitates collaborative problem solving

among a small-group of students. Another important application of speaker diarization is

interaction analysis, such as exploring individual student engagement within PLTL sessions.

PLTL sessions have been shown to improve student learning that lead to improvement in their

grades (Snyder et al., 2016). A traditional teaching model lacks an assessment of one-to-one

interaction and peer-feedback unlike PLTL. Peer leaders are expected to provide helpful hints

and comments during students’ discussion, but not reveal solutions, in contrast to traditional

teaching models (Cracolice and Deming, 2001).
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Figure 1.1. Systems view of speaker diarization pipeline for practical applications. It consists
of four main steps: (i) speech activity detection (SAD), (ii) segmentation, (iii) speaker
embedding extraction, (iv) speaker clustering, and (v) re-segmentation. The diarization
output is used for backend tasks such as automatic speech recognition (ASR), interaction
analysis etc.

Fig. 1.1 summarizes the core components of a general speaker diarization system used in

several practical applications. Speaker diarization is an unsupervised/semi-supervised task,

which consists of four sub-systems: (i) speech activity detection (SAD), (ii) segmentation and

speaker embedding extraction, (iii) speaker clustering; and (iv) frame-level re-segmentation

which can be optional. In earlier studies, researchers have found that each of these sub-systems

can be studied independently (Sinclair and King, 2013). Even after several years of research

on diarization techniques, state-of-the-art methods do not perform well on naturalistic audio

streams. This dissertation leverages recent advancements in deep learning and model-based

clustering for improving speaker diarization applied to naturalistic audio streams. We also
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Figure 1.2. Overall view of dissertation scope. The primary focus is on improving SAD and
speaker diarization. Secondary emphasis is on knowledge extraction and interaction analysis
for small-group (6-10 participant) conversations. For the secondary goal, several approaches
are investigated for extracting behavioral characteristic in PLTL sessions.

study speaker recognition based on training advanced speaker embedding (model) extractors.

This dissertation presents research advancements on all sub-systems within the speaker

diarization pipeline.

1.2 Dissertation Scope

Most state-of-the-art diarization techniques aim to address the two-speaker diarization

problem (e.g., 2-person telephone conversations, broadcast news interviews). These are more

structured and significantly simpler as compared to collaborative small-group discussions with

8-10 individuals. Furthermore, most state-of-the-art techniques are developed for telephone

speech which is both cleaner/noise-free and a simpler conversation structure for speech

processing versus free-form multi-speaker PLTL-type naturalistic audio. This dissertation

primarily focuses on improving speaker diarization for naturalistic audio streams. Specifically,

we investigate SAD, speaker recognition, and speaker modeling with deep neural network

techniques, and speaker clustering. A secondary level focus is on knowledge extraction for

interaction analysis of small-group conversations. Interaction analysis of PLTL session is a

target application for knowledge extraction. Fig. 1.2 presents a high-level overview of the

dissertation scope, based on multi-speaker PLTL conversational interactions, multi-stream

audio capture, SAD, speaker clustering and recognition, followed by probe analysis of students

engagement.

3



Given the unavailability of annotated data with speech/non-speech labels for general

diarization tasks, we propose to formulate effective unsupervised SAD technique using novel

features and three decisions backends. We model the raw waveform using a recently developed

SincNet (Ravanelli and Bengio, 2018) convolutional neural architecture. We improve SincNet

by proposing discriminative loss functions based on Center Loss (CL) and additive margin

(AM)-softmax. We replace the Softmax loss function in the standard SincNet by our AM-

Softmax to obtain AM-SincNet; also, the joint CL and Softmax to obtain our CL-SincNet,

and the joint CL and AM-Softmax to obtain AM-CL-Softmax. These SincNet models are

trained using TIMIT and Librispeech corpora. We also employ supervised transfer learning

(STL) where the SincNet is trained first on TIMIT, and later re-trained on Librispeech.

These resulting SincNet models are trained for frame-level speaker recognition. Once trained,

we leverage these models for speaker embeddings extraction for speaker diarization. We

propose novel neural architecture for speaker recognition and diarization. After considering

the two tasks of SAD and speaker recognition, we move on to investigate three model-based

approaches for speaker clustering: (i) mixture of von Mises-Fisher distributions (movMF);

(ii) Normalized Fuzzy C-means (NFCM); and (iii) Toeplitz Inverse Covariance (TIC). This

completes the intended dissertation scope for advancing diarization. A secondary level focus

is also considered for knowledge extraction after speaker diarization is completed. Here, we

consider speech features for a probe investigation of individual speaker engagement. We

leverage the CRSS Speaker Profiler system for knowledge extraction using the following

four speech/speaker attributes: (1) physical task stress, (2) whisper detection, (3) emotion

recognition, and (4) Lombard effect. This completes the scope for secondary level probe

investigation.
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1.3 Dissertation Contributions

The main objective of this dissertation is to advance speaker diarization for naturalistic audio

streams. In addition, we also improve speaker recognition using novel variations of the SincNet

architecture and discriminative loss functions. This study included a formal data collection of

CRSS-PLTL corpora that contains recordings of small-group student learning conversations in

naturalistic scenarios. The goal of this dissertation it to design new algorithms for improving

each sub-system in diarization pipeline. The specific contributions of this dissertations are as

follows:

1. Frequency-Dependent Kernel (FDK) features for Robust SAD

We propose FDK features as a novel way of decomposing the speech signal such that

distinct frequency-dependent kernels are used for analyzing different frequency bins.

We employ frequency-dependent Gaussian kernels where the width of each kernel is

inversely proportional to frequency bin. In this manner, we have narrow kernels are

available for smaller frequency bins and wider ones for higher frequency bins. FDK

features aim to provide a generalized decomposition of the speech energies across time-

frequency locations. Here, eight statistical descriptors are derived from the logarithm

of the absolute value of the FDK feature vector corresponding to each frame. These

statistical descriptors are mean and variance normalized and later processed with

principal component analysis (PCA). The first principal component is chosen as the

final FDK-SAD feature. This feature is leveraged with three proposed decisions backends

for achieving unsupervised/semi-supervised SAD.

2. SAD Decision Backends: (i) VMGMM; (ii) DipSAD, and (iii) D-SAD

Three decision backends are proposed for SAD: (i) Variable Model Size Gaussian Mixture

Model (VMGMM); (ii) Hartigan Dip test for robust feature clustering (DipSAD), (iii)

Density-SAD (D-SAD) which fits a linear curve for the cumulative distribution of
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SAD features to derive an overall decision threshold. We combine these three decision

backends with the FDK-SAD feature to obtain three unsupervised/semi-supervised SAD

systems. Comparative evaluation experiments are used to highlight the competitive

strength of the proposed SAD techniques over current state-of-the-art approaches.

3. Speaker Modeling:(i)SincNet,(ii)AM-SincNet,(iii)CL-SincNet, and(iv)AM-CL-SincNet

Raw waveform modeling with a SincNet convolutional neural network is used to develop

an advanced speaker modeling structure. This architecture is trained for frame-level

(10ms) speaker recognition. We incorporate discriminative loss functions, additive

margin (AM)-Softmax, and Center Loss (CL), to formulate advanced SincNets which

are used for speaker recognition. These SincNet models are trained using out-of-domain

data such as TIMIT and Librispeech corpora. The trained SincNet is adopted for

unsupervised vanilla transfer learning (VTL) in order to extract frame-level speaker

embeddings from in-domain CRSS-PLTL and AMI data. Experiments are performed

with supervised transfer learning (STL) for data efficient training of SincNet. STL

approach first uses TIMIT where the output layer is discarded and two new layers

are added for training on new unseen Librispeech corpus. The hyper-parameters are

optimized, with subsequent discussion to highlight the importance in achieving robust

diarization performance. SincNet and its variants extract speaker embeddings from

short speech frames of 100-200ms with a subsequent 10ms skip rate between frames.

This approach eliminates any need for speaker change detection. SincNet embeddings

are found to be superior than i-Vectors, since i-Vectors do not perform well for short

duration utterances. The proposed novel SincNet architectures also converge faster

that traditional SincNet. Neural speaker modeling using SincNet architecture performs

significantly better than an i-Vector baseline. Initial work also considers unsupervised

denoising autoencoder (DAE) for a meeting-specific speaker embedding extractor and

an HMM for joint segmentation and speaker clustering.
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4. Speaker Clustering: (i) movMF, (ii) NFCM, and (iii) TIC

In this area, three model-based approaches are proposed for speaker clustering. A

mixture of von Mises-Fisher distributions (movMF) is proposed for length-normalized

speaker embeddings from a meeting recording. In this case, each component in mixture

model represents one speaker. Standard expectation maximization (EM) is used

for iterative speaker clustering which alternates between cluster assignment and re-

estimation of the movMF model parameters. The second approach is based on a

normalized Fuzzy C-means (NFCM) speaker clustering solution which is suitable for

length-normalized speaker embedding. This leverages recent developments on Fuzzy C-

means for soft-clustering using length-normalized data. Soft speaker clustering provides

the possibility of a more flexible decision making process. The third approach attempts

to learn a Markov Random Field (MRF) correlation network for each speaker. This

method quantifies each speaker using a Toeplitz Inverse Covariance matrix (TIC),

hence the name TIC speaker clustering. It is based on a dynamic programming (DP)

strategy as well as optimizing a Toeplitz graphical lasso optimization problem. A set of

comparison experiments is performed for different combinations of speaker embeddings

and clustering approaches. It is noted that a cosine K-means approach is adopted as

the baseline for speaker clustering.

5. Knowledge Extraction and Interaction Analysis

This represents a secondary probe focus which begins with the diarization output, with

probe analysis to extract knowledge relating to behavioral metrics for small-group

PLTL conversations. We consider several metrics to assess subject engagement in

multi-speaker PLTL learning spaces.

In addition to these algorithmic advancements, we established the CRSS-PLTL corpus for

audio-based analysis of PLTL sessions (Dubey et al., 2016). Significant effort is dedicated
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in effective corpora development, annotation and data preparation for conducting research

studies reported in this dissertation.

1.4 Dissertation Outline

This dissertation is organized into seven chapters which are described as follows. A separate

list of abbreviations, figures and tables are included before Chapter 1, to help in navigating

this dissertation.

• Chapter 2, Background and Tools:

In Chapter 2, we provide relevant background material in understanding the later

chapters of this dissertation. First, Peer-Led Team Learning (PLTL) is introduced and

the need for speech-based interaction analysis in PLTL is summarized. We review the

literature in speech activity detection (SAD) and speaker diarization. Secondly, we

establish the CRSS corpora used in this research study. We utilized CRSS-PLTL and

AMI corpora for speaker diarization. Thirdly, we present CRSS-LDNN corpora that

contains recordings of multi-layer noise in naturalistic scenarios. Along with CRSS

corpora, we also summarize standard public corpora such as NIST-OpenSAD-2015,

NIST-OpenSAT2017 and RedDots corpora. This chapter ends by defining the evaluation

metrics for SAD and speaker diarization.

• Chapter 3, Speech Activity Detection:

In Chapter 3, we present the proposed methods for SAD. Specifically, we propose

novel frequency-dependent kernel (FDK) features that discriminate speech from non-

speech. Next, we propose three decision backends for generating SAD labels from an

input feature stream, that include: (i) Variable Model-size Gaussian Mixture Model

(VMGMM); (ii) DipSAD that is a robust feature clustering based on Hartigan Dip

test; (iii) Density-SAD (D-SAD) that derives a decision threshold by fitting a straight
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line to the cumulative feature distribution. We compare these proposed methods with

several state-of-the-art SAD techniques. Our SAD evaluation includes CRSS corpora

and standard public available corpora. This chapter ends with a discussion results

obtained with highlights of advancements for SAD in naturalistic audio streams.

• Chapter 4, SincNets based Speaker Recognition and Diarization:

In Chapter 4, we start by covering state-of-the-art speaker embeddings from deep neural

networks (DNNs). We propose vanilla transfer learning (VTL) based on SincNet for

extracting speaker embedding. SincNet is convolutional DNN architecture for efficient

modeling of raw waveform speech. We also proposed Center Loss (CL) for SincNet, and

combine center loss with softmax and additive margin softmax (AM-Softmax) to obtain

variants of SincNets namely, AM-SincNet, CL-SincNet, AM-CL-SincNet. CL-SincNet

and AM-CL-SincNet for speaker recognition. We discuss results on CRSS-PLTL and

AMI corpora on speaker diarization task and TIMIT and Librispeech data for speaker

recognition. We further leverage transfer learning (TL) for efficient training of SincNets

using multiple datasets.

• Chapter 5, Robust Speaker Clustering :

In Chapter 5, we describe the proposed methods for speaker clustering which is the most

important component in speaker diarization. First, we present past state-of-the-art

methods followed by three new proposed approaches: (i) mixture of von Mises-Fisher

distributions (movMF), (iii) Normalized Fuzzy C-means (NFCM), and (iii) Toeplitz

Inverse Covariance (TIC) speaker clustering. We perform experiments to benchmark

these methods over naturalistic corpora such as CRSS-PLTL and AMI meeting corpus.

We report Diarization Error Rate (DER) % performance for all experiments.

• Chapter 6, Knowledge Extraction for PLTL Interaction Analysis:

In Chapter 6, we present a probe study for extracting knowledge metrics related to
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small-group conversations. This section builds on availability of diarization output from

PLTL recordings. Specifically, we consider three components namely: (i) Unsupervised

dominance score (DS); (ii) Pitch-based approach for detection of Question inflections;

(iii) Energy and pitch-based approach for emphasis detection. Next, we present an idea

for measuring engagement based on a separately developed multi-speaker style CRSS

Speaker Profiler. The Speaker Profiler system detects four speaker-style attributes

namely, (1) Emotion; (ii) Lombard effect; (iii) Physical Task stress; and (iv) Whisper.

• Chapter 7, Summary and Conclusions:

Finally, in Chapter 7 we summarize the research and highlight improvements over

current state-of-the-art solutions. We draw conclusions based on experimental results,

and explain reasons for effectiveness and robustness of the proposed algorithms. We

close this chapter by pointing towards directions for future work stemming from research

contributions made by this dissertation.
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CHAPTER 2

BACKGROUND AND TOOLS

In this chapter, we describe the background materials and technological tools that are needed

to understand the research proposed in this dissertation. Background material is intended to

augment the reader’s understanding of underlying problems that are solved by algorithms

discussed in later chapters.

2.1 Peer-Led Team Learning

Peer-led team learning (PLTL) is an established teaching paradigm for undergraduate STEM

courses implemented in US universities (Tien et al., 2002; Snyder and Wiles, 2015). It is

popular paradigm in undergraduate courses at many US universities and gaining attention

in other countries as well. PLTL model is extensively studied by education researchers who

found it augments the student’s classroom studies (Cracolice and Deming, 2001; Carlson

et al., 2016). Each team is assigned a peer leader who coordinate discussions among students,

and facilitate collaborative problem solving. The peer leaders have passed the same course in

earlier semester and thus they are aware of the challenges in learning the subject (Wamser,

2006). Peer leader knew the strategies that could help in mastering the technical content of

the course. Peer leaders are not supposed to tell the solutions, rather they provide helpful

hints and direction that could guide the students to collaboratively solve the problems (Lyle

and Robinson, 2003; Roh et al., 2016).

2.2 CRSS-PLTL and CRSS-PLTL-II Corpus

This section briefly describes the CRSS-PLTL corpora that motivated the research discussed

in this dissertation. We established CRSS-PLTL and CRSS-PLTL-II corpora that contains

naturalistic interactions between 8-10 speakers. In association with the UT-Dallas Student
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Figure 2.1. PLTL scenario for data recording in Student Success Center at The University of
Texas at Dallas.

Success Center, we collected two corpora namely CRSS-PLTL and CRSS-PLTL-II for as-

sessment of speech communication in PLTL sessions (Dubey et al., 2017). During PLTL

sessions, each participant wore a LENA device (with not-so-close microphone) for collecting

naturalistic audio (Hansen et al., 2018). Each student wore a wearable pouch containing

LENA digital recorder as shown in Fig. 2.1. LENA device could record audio signals for

long-duration of up to sixteen hours and had been used in a variety of human-to-human

communication research, for example adult-child interaction (Sangwan et al., 2015) etc.

CRSS-PLTL contains multi-stream audio recordings from five PLTL teams from un-

dergraduate Chemistry course over 11 week each, thus leading to 55 sessions. Similarly,

CRSS-PLTL-II collected audio recordings of five teams chosen from undergraduate Calculus-II

course leading to 55 sessions. Each PLTL session lasts for approximately 80 minute and

constitute discussions between 6-8 students plus a peer-leader. Peer leader guides the group

to arrive at correct solutions without explicitly telling the solution. Each of these corpora

had approximately 300+ hours of audio, data from weekly PLTL sessions. Short utterances

and rapid turn-taking were salient features of PLTL discussions. In this manner, we collected

multi-stream audio for each session (number of streams was same as total participants).

The salient features of this data are: (i) many segments with overlapped-speech; (ii) short

conversational-turns; (iii) multiple noise-sources; and (iv) significant reverberation. These

factors made PLTL speaker diarization challenging.
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Figure 2.2. Scenarios where CRSS-LDNN noise corpus was recorded. Most situations has
two or more noise sources active simultaneously.

2.3 Multi-layer Noise

Multi-layer noise refers to scenarios where multiple noise-sources are simultaneously active.

For instance, many situations in daily life can result into mixing of any two or more of these

noise types, namely, broadband (white Gaussian noise) is stationary noise, tonal/periodic

(harmonic noise), and impulsive noise that belong to non-stationary types. Multi-layer noise

referred to simultaneous presence of two or more noise-sources where each of such noises

could exist alone as well. The babble noise and bus-engine noise present along with occasional

impulsive-noise over long-duration is an example of such scenario.

2.4 CRSS Long-Duration Naturalistic Noise Corpus

Continuing from our discussion on multi-layer noise in Sec. 2.3, we present the CRSS long-

duration naturalistic noise (CRSS-LDNN) corpus in this section. This corpus was collected

using wearable LENA units at 16 kHz sampling rate with 16 bit precision in .wav format.
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Figure 2.3. Long-term spectrum of four noise samples of duration more than 20 minutes
chosen from CRSS-LDNN corpus. We can see the variety of prominent frequencies in these
four noise samples n1, n2, n3 and n4.

This data would be released to speech community (http://crss.utdallas.edu). During the

summer semester, a CRSS student wore a LENA device that was switched ON when multiple

noise-sources were present. Fig. 2.2 shows the scenarios where CRSS-LDNN noise corpus was

recorded. Most situations has two or more noise sources active simultaneously. In this way, the

data was collected in naturalistic scenarios with uncontrolled mixing of various noise-sources.

This corpus was supposed to provide naturalistic multi-layer noise recordings for evaluation of

robust speech algorithms. We used the CRSS-LDNN data for corrupting the PLTL evaluation

set for standalone SAD evaluations in this chapter. This corpus consisted of approximately

19 hours of noise data. The CRSS-LDNN noise data was more challenging as compared

to existing noise corpora such as NOISEX (Varga and Steeneken, 1993) containing single
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noise recordings. We collected a naturalistic noise corpus named the CRSS long-duration

naturalistic noise (CRSS-LDNN) corpus. It contains noise data collected using wearable

LENA units (Sangwan et al., 2015). The diversity in noise-sources includes construction noise,

multi-speaker babble, large-crowd noise, vehicle/bus noise on the road, home environment

noise etc. Fig. 2.3 shows the long-term spectrum of four noise samples chosen from CRSS-

LDNN corpus. Each of these noise samples has duration of more than 20 minutes. We can

clearly see the variety of prominent frequencies in these four noise samples. We would revisit

CRSS-LDNN corpus while evaluating proposed SAD algorithms in Chapter 3.

2.5 Zero-Resource Speech Processing

Zero-resource speech processing refereed to systems with almost zero linguistic resources.

It deals with unsupervised discovery of linguistic units from raw speech in an unknown

language (Versteegh et al., 2015). state-of-the-art speech systems were trained on massive

datasets with human annotations. However, such supervised methods would have language

and/or channel mismatches when used for zero-resource speech applications where manually

annotated data is either scarce or unavailable. Zero-resource speech processing explore

systems that could be developed for a new language starting from scratch. It rely on

robust unsupervised SAD for efficient processing. Such paradigms were also applicable for

technologies involving under-resourced languages and/or dialects.

2.6 Supervised SAD

Supervised speech activity detection approaches were machine learning systems trained on

annotated audio data. Such methods either focused on finding better generative features such

as bottleneck features or discriminative classifiers such as deep neural networks (Zhang and

Wu, 2013). Many SAD algorithms were developed as part of the DARPA RATS (Walker and

Strassel, 2012a) program (Ng et al., 2012; Saon et al., 2013; Thomas et al., 2015; Graciarena
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et al., 2013; Novotney et al., 2016; Karakos et al., 2016). For example, one team proposed

combining several features for supervised SAD for DARPA RATS (Graciarena et al., 2013).

Specifically Mel-frequency cepstral coefficients (MFCC), Gabor features processed with

multilayer perceptron (MLP), Combo-SAD features, sub-band autocorrelation (SAcC) with

MLP post-processing, and multi-band comb-filter F0 (MBCombF0) voicing were combined.

This combining procedure led to significant gains in SAD accuracy (Graciarena et al., 2013).

A solution for DARPA RATS phase 2 evaluation (Saon et al., 2013) consisted of multi-pass

HMM segmentation and combined features for training feed-forward and convolutional neural

networks.

Joint use of source and filter-based features was leveraged for supervised SAD (Drugman

et al., 2016). Several feature sets were used for training neural network on multi-conditioned

TIMIT data (Garofolo, 1993). The source and filter information were merged at the feature

and score level out of which the score fusion performed better (Drugman et al., 2016).

A maximum-margin clustering approach based on support vector machines (SVMs) was

adopted for unsupervised SAD (Wu and Zhang, 2011). Two features, namely multiple

observation signal-to-noise-ratio and multiple observation maximum-probability were proposed

for maximum-margin clustering (Wu and Zhang, 2011). The multiple observation likelihood

ratio test (MO-LRT) was used for robust SAD under noisy conditions. It out-performed the

single observation likelihood ratio test (SO-LRT) that required an empirically tuned hangover

scheme (Ramírez et al., 2005). MO-LRT leveraged long-term information for deriving an

optimal decision rule (Ramírez et al., 2005).

A SAD system based on Gaussian mixture models (GMMs) and multi-layer perceptron

was developed for the DARPA RATS program (Ng et al., 2012). This system leveraged a

robust front-end, feature normalization, dimensionality reduction and score normalization (Ng

et al., 2012). Researchers proposed a two-stage SAD based on an explicit model of phonetic

information (Ferrer et al., 2016). The first step consisted of training a bottleneck deep neural
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network (DNN) for predicting the senone posteriors. In the next step, activations of the

bottleneck layer were used for training another DNN for predicting speech and non-speech

posteriors. Though the proposed system led to significant improvements over a baseline single

DNN system under matched conditions, it failed to provide significant gains for mismatched

channels (Ferrer et al., 2016). The improvements in IBM SAD system for DARPA RATS

involved joint training of convolutional (CNN) and feed-forward DNNs with temporal and

spectral features. Improved CNN-DNN model led to significant gains in SAD accuracy under

matched conditions (Thomas et al., 2015).

Researchers explored fusing six SAD systems including two supervised and four unsuper-

vised for the NIST-OpenSAD-2015 data (Kinnunen et al., 2016). This study concluded that

the channel detection improved the performance on development set but failed to generalize

further (Kinnunen et al., 2016). i-Vectors are established approach for speaker and language

recognition. These were recently used for segment-level SAD derived from the generalized

likelihood ratio (GLR), Bayesian information criterion (BIC), K-means and GMM cluster-

ing (Khoury and Garland, 2016). This segment-level i-Vector SAD was found to be more

accurate than a frame-level GMM baseline on the NIST-OpenSAD-2015 data (Khoury and

Garland, 2016). The SRI NIST-OpenSAD system utilized three different development sets

derived from the provided corpus (Graciarena et al., 2016). The fusion of acoustic, voicing

and bottleneck features was used for unsupervised test-adaptive calibration. The feature

normalization had a significant impact on SAD accuracy (Graciarena et al., 2016). The

BBN OpenSAD system employed supervised, unsupervised and active learning-based model

adaptation for SAD over unseen channels (Karakos et al., 2016; Novotney et al., 2016). The

long short-term memory (LSTM) neural network SAD models were adapted for reducing

the variability between training and testing data. Unsupervised adaptation used SAD labels

automatically generated by a baseline model. Limited amounts of human annotations from

unseen channels was utilized for supervised model adaptation (Karakos et al., 2016; Novotney
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et al., 2016). Researchers further considered active learning-based supervised adaptation

where the annotations were automatically selected for maximizing the performance (Karakos

et al., 2016; Novotney et al., 2016). This approach leveraged output of SAD systems and led

to significant gains in accuracy as compared to random selection of annotations (Karakos

et al., 2016; Novotney et al., 2016).

2.7 Unsupervised SAD

Unsupervised SAD using energy based likelihood ratio tests was proposed in (Sohn et al.,

1999). Unsupervised methods were designed to work in a variety of acoustic conditions and

could sometimes better manage mis-matched conditions (Graciarena et al., 2016). In past

studies such as (Ramırez et al., 2004; Ghosh et al., 2011) the long-term speech information was

utilized for unsupervised SAD under noisy conditions. Recent work in (Sholokhov et al., 2018)

summarized the SAD developments in context of semi-supervised and unsupervised techniques.

It introduced the idea of semi-supervised learning in conventional expectation-maximization

(EM) algorithm for GMMs (Sholokhov et al., 2018).

A hard-clustering approach using sub-band log-energy features was proposed for unsu-

pervised SAD (Górriz et al., 2006). It performed better than the standard SAD systems

such as ITU-T G.729, ETSI GSM AMR and ETSI AFE on a Spanish database. Another

SAD approach used long-term temporal and spectral features in a statistical model for noise

robustness (Fukuda et al., 2010). It led to improved performance as compared to ETSI

AFE-SAD at low SNRs (Fukuda et al., 2010). A generalized Gamma distribution based

likelihood ratio test was considered for SAD in (Shin et al., 2010). It outperformed SAD

based on conventional Laplacian and Gamma distributions. A variational Bayes approach for

SAD employed two parallel classifiers for noise-only and speech-with-noise (Cournapeau et al.,

2010). Online expectation maximization was used for simultaneous adaptation of statistical

model and decision threshold (Cournapeau et al., 2010).
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2.8 NIST-OpenSAD-2015

NIST organized OpenSAD evaluation for promoting research in robust SAD for degraded

military communication channels (NIST NIST, a). This data were derived from the DARPA

RATS program (Walker and Strassel, 2012b). Six channels namely B, D, E, F, G, H and the

clean source (src) channel from the DARPA RATS were included in the training set. The data

consisted of telephonic conversations from source channel that were re-transmitted through

these channels. Thus, it included clean and noisy audio recordings from three languages

namely Levantine Arabic (alv), American English (eng) and Urdu (urd) (NIST NIST, a).

2.9 NIST-OpenSAT-2017 Public Safety Communications Corpus

NIST organized the OpenSAT pilot evaluation in spring last year. This evaluation targeted

domains that were expected to be challenging for the current state-of-the-art. We chose the

public safety communications (PSC) corpus from OpenSAT data for SAD evaluations. This

data consisted of audio logs in English language. It contained audio data from sofa super

store fire (SSSF) dispatcher that occurred on June 18, 2007 in Charleston, South Carolina. It

constituted real fire-response operational data that could not be duplicated through controlled

scientific collection (NIST NIST, b). Also, these audio recordings contained sensitive and

disturbing content such as pleas from the trapped fire fighters. This data were rich in

naturalistic distortions such as (i) land mobile radio transmission effects; (ii) speech under

cognitive and physical stress; (iii) varying background-noise types and levels (NIST NIST,

b). It had six audio recordings each of approximately five-minute duration, thus making

up a total 30 minutes of dev data. It was provided as 16-bit signed integer PCM at 8 kHz

sampling rate.
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2.10 Speaker Diarization

Speaker Diarization answer who spoke and when? in an audio stream (Yella and Stolcke,

2015; Tranter and Reynolds, 2006). It usually consists of several components such as speech

activity detection (SAD), initial-segmentation and speaker modeling, speaker clustering, and

re-segmentation (Tranter and Reynolds, 2006; Anguera et al., 2012). Automatic interaction

analysis in PLTL sessions would help education researchers to obtain insights into how learning

outcomes are impacted by individual participation, group behavior, and team dynamics.

Speaker diarization front-end is used for audio-based interaction analysis in PLTL sessions.

The challenges in speaker diarization is application-dependent. Domains involving practical

application of speaker diarization are understanding and transcription of broadcast news,

audio-recorded meetings, telephonic conversations (Huijbregts and van Leeuwen, 2012) etc.

NIST Rich Transcription evaluations focused on broadcast-news and meetings audio while

NIST SRE evaluations had summed-channel telephone data (Anguera et al., 2012). Speaker

Diarization for naturalistic interactions such as Peer-Led Team Learning (PLTL) sessions

is a challenging task. Diarization involve extracting i-Vectors/speaker features from short

speech-segments (typically one-second) unlike speaker verification where complete-utterance

is used for extracting i-Vectors.

Researchers proposed a scheme for joint segmentation and clustering for diarization (Anguera

et al., 2012). Recently, researchers combined audio and visual cues in spectro-temporal fusion

for diarization (Gebru et al., 2018). This approach is suitable for scenarios that has video

recordings of spontaneous interactions among several speakers. Practical applications of

speaker diarization (Dubey et al., 2016a) include broadcast new analysis, low-latency speaker

spotting (Patino et al., 2018) and behavioral study (Dubey et al., 2017). Given the importance

of robust clustering for speaker diarization, several approaches were developed such as agglom-

erative hierarchical clustering (AHC) (Sun et al., 2010), top-down clustering (Meignier et al.,

2006), cosine K-means clustering, and HMM-based speaker clustering (Ajmera and Wooters,
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2003) etc. In (Zhu et al., 2005), the MAP-adapted Gaussian mixture-models (GMMs) were

combined with Bayesian information criterion (BIC) for speaker diarization. A reduced

complexity clustering approach leverages modified integer linear programming (ILP) (Dupuy

et al., 2014). Recently, speaker diarization based on i-Vectors probabilistic linear discriminant

analysis (PLDA) approach was analyzed in details (Salmun et al., 2017). Weighted GMMs

were utilized for multi-speaker segmentation for DARPA Hub4 Broadcast News 1997 evalua-

tion (Huang and Hansen, 2006). Unsupervised calibration of PLDA scores was used within

i-Vector clustering framework for CALLHOME corpus (Sell and Garcia-Romero, 2014).

2.10.1 i-Vector Speaker Model

Diarization involve extracting i-Vectors from short speech-segments (typically one-second)

unlike speaker verification where complete-utterance is used for extracting i-Vectors. Numer-

ous techniques were developed for i-Vector clustering based on cosine similarity (Senoussaoui

et al., 2014; Castaldo et al., 2008). The i-Vector framework combines the speaker and channel

variability sub-spaces of linear distortion model into a total-variability space represented by

matrix T (Dehak et al., 2011; Hansen and Hasan, 2015). A speaker-and-session-dependent

GMM super-vector, S is decomposed as

S = Subm + Tw, (2.1)

where Subm is the Universal Background Model (UBM) super-vector (Dehak et al., 2011).

The latent variables, w are i-Vectors. The total-variability matrix T is a low-rank projection

matrix that maps high-dimensional speaker super-vectors to low-dimensional total-variability

space (Dehak et al., 2011; Hansen and Hasan, 2015). We use frame-level 20-MFCC features

extracted from 40ms windows at 10ms skip-rate. A UBM with 512 components is trained for

i-Vector extraction (Dehak et al., 2011). Given the short speaker-turns in PLTL, we choose

the i-Vector dimension as 75. We post-processed the segment-level i-Vectors with PCA for
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Figure 2.4. Scenario for data recording in AMI meeting corpus with four speaker discussing a
project.

dimensionality reduction followed by length-normalization (Garcia-Romero and Espy-Wilson,

2011).

2.10.2 Baseline Diarization System

In this dissertation, we chose a speaker diarization baseline that consists of i-Vectors and Cosine

K-means clustering (Zhong, 2005). The cosine similarity was previously used for comparing

length-normalized i-Vectors in K-means and mean-shift clustering paradigms (Dehak et al.,

2011; Castaldo et al., 2008; Senoussaoui et al., 2014). Cosine K-means projects the estimated

cluster-centroids onto the unit hypersphere at the end of each maximization-step unlike the

conventional K-means. It is a widely used approach for i-Vector based speaker clustering.

2.11 AMI Corpus

Augmented Multi-party Interaction (AMI) corpus provides speaker annotated multi-modal

data from meeting scenarios (see Fig. 2.4). The audio data was provided with reference

speaker annotations. We choose 6 meetings from AMI corpus as evaluation set for speaker
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Table 2.1. Details of 12 meeting subset chosen from AMI corpus (McCowan et al., 2005).
Duration is rounded off to next integer value.

Meeting ID Audio Duration (min) Speaker Count
IS1000a 27 4
IS1001a 16 4
IS1001b 36 4
IS1001c 25 4
IS1003b 28 4
IS1003d 36 4
IS1006b 37 4
IS1006d 31 4
IS1008a 16 4
IS1008b 30 4
IS1008c 26 4
IS1008d 25 4

diarization experiments reported in this dissertation. The audio duration and number of

speakers in 12 meetings set of AMI is shown in Table 2.1. We used mixed headset audio

for experiments reported in this dissertation. Our AMI evaluation set consists of sessions:

IS1006d (31 min.), IS1003d (36 min.), IS1001a (16 min.), IS1000a (27 min.), IS1003b (27

min.) and IS1008d (25 min.). Each of the three meetings has four speakers discussing a

project such as design of a new remote control device.

2.12 RedDots Corpus for Text-Dependent Speaker Verification

A smartphone app was used for crowd-sourcing the RedDots data collection. The audio

was recorded by the individuals using different handsets under variable acoustic conditions.

Native as well as non-native English speakers with diverse accents participated in data

collection across the globe. We chose the Q4 release of RedDots corpus (Lee et al., 2015) for

text-dependent speaker verification experiments reported in this chapter. We selected part 1

(fixed pass-phrase task) male subset from the corpus. In this subset, the speakers pronounce

a set of fixed pass-phrases identical for all speakers. The male subset of part 1 was used as it

had more number of trails than the female subset.

23



2.13 LibriSpeech

LibriSpeech is a open-source corpus of approximately 1000 hours read English speech sampled

at 16kHz (Panayotov et al., 2015). This data is derived from read audiobooks from the

LibriVox project, and has been carefully segmented and aligned (Panayotov et al., 2015). It is

an ASR corpus extracted from public domain audio books from the LibriVox project. Recently,

it was used in speaker recognition studies (Ravanelli and Bengio, 2018). We leveraged this

corpus as out-of-domain data for training speaker recognition models.

2.14 Evaluation Metrics

In this section, we describe three evaluation metrics: (i) Detection Cost Function (DCF) for

SAD; and (ii) Diarization Error Rate (DER) for diarization; and (iii) Mutual Information

(MI) for diarization.

2.14.1 SAD Detection Cost Function (DCF)

NIST DCF is a metric used for benchmarking the SAD systems. It is defined as:

DCF = w ∗ Pfa + (1− w) ∗ Pmiss (2.2)

where Pfa and Pmiss are probabilities of false alarm and miss rate respectively, and w is a

weight chosen from interval [0,1]. Since the focus of this dissertation is on PLTL speaker

diarization where false alarms and miss rate are equally important we chose, w=0.5 for SAD

experiments involving PLTL data.

2.14.2 Diarization Error Rate (DER)

Diarization error rate (DER) was used for scoring the systems with respect to ground-truth

annotations. It was introduced in the NIST Rich Transcription Spring 2003 evaluation
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(RT-03S). It is defined as the total percentage of reference time that is not correctly attributed

to a speaker. Mathematically, DER is given as:

DER =
Φfa + Φmiss + Φspk

Φtotal

, (2.3)

where Φtotal is the total time of all reference segments, Φfa is the system speaker-time not

attributed to the reference speaker, Φmiss is the total reference speaker-time not attributed to

a system speaker, and Φspk is the total reference speaker-time attributed to a wrong speaker.

2.14.3 Mutual Information (MI)

Similar to DER, frame-level mutual information (MI) is used for scoring the system-output

with respect to reference speaker segmentation. MI quantifies the statistical-similarity between

frame-level system-output and ground-truth. First of all, both ground-truth and system-

output are converted to 10ms frame-level labels. Then, the frame-level MI (in bits) between

system-output and ground-truth is mathematically defined as:

MI =
R∑
i=1

S∑
j=1

nij
N

log2

nijN

risj
, (2.4)

where R, S are the number of reference and system clusters, respectively; nij is the number

of frames assigned to i-th reference and j-th system cluster; ri, sj are the number of frames

assigned to i-th reference, and j-th system cluster, respectively; and N is the total number

of frames. We compute MI values using the scoring scripts from First DIHARD Challenge

Evaluation (Ryant et al., 2018).

2.15 Summary

This chapter reviews the background material needed to disseminate the research discussed

in this dissertation. It can serve as a reference for tools used later in this dissertation. We

covered the PLTL paradigm, CRSS corpora, standard tasks of SAD and speaker diarization.
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In the end, we presented the evaluation metric for benchmarking the SAD and speaker

diarization algorithms.
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CHAPTER 3

SPEECH ACTIVITY DETECTION 1

3.1 Introduction

Speech activity detection (SAD) is a key front-end in most speech systems (e.g., speaker

verification, speech recognition, speaker diarization). Speech activity detection (SAD) systems

discriminate between speech and non-speech segments within an input stream. Interest in

robust SAD over degraded channels have existed for several years (Ramírez et al., 2005;

Zhang and Wu, 2013; Shin et al., 2010; Sadjadi and Hansen, 2013). Two broad classes of SAD

algorithms are: (1) supervised; (2) unsupervised. While supervised techniques require training

on massive amounts of annotated data, unsupervised approaches do not require training

on labeled data (Sohn et al., 1999). Supervised methods perform poorly on mismatched

train and test conditions (Sholokhov et al., 2018; Sohn et al., 1999; Ramírez et al., 2005;

Ferrer et al., 2016). In one major area, the DARPA RATS program supported SAD research

in multiple phases leading to advanced developments (Ng et al., 2012; Saon et al., 2013;

Thomas et al., 2015; Graciarena et al., 2013; Sadjadi and Hansen, 2013; Novotney et al., 2016).

Despite several decades of research efforts, unsupervised SAD remains a challenging task

for adverse acoustic conditions. Supervised SAD typically leverages acoustics models, and

more recently machine learning models, trained on annotated data. For applications such as

zero-resource speech processing and the NIST-OpenSAT-2017 public safety communications

task, it might not be feasible to collect SAD annotations. Furthermore, SAD is challenging

for naturalistic human engaging audio streams that contains multiple noise-sources that are

active simultaneously.

1©2018 IEEE. Portions Adapted, with permission, from H. Dubey, A. Sangwan, J. H. L. Hansen,
"Leveraging Frequency-Dependent Kernel and DIP-Based Clustering for Robust Speech Activity Detection in
Naturalistic Audio Streams," IEEE/ACM Transactions on Audio, Speech, and Language Processing. 2018
Nov;26(11):2056-71.
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In this chapter, we propose novel frequency-dependent kernel (FDK) based SAD features.

FDK provides an enhanced spectral decomposition from which several statistical descriptors

are derived. These statistical descriptors are combined by principal component analysis

into one-dimensional FDK-SAD features. For leveraging the FDK-SAD features for efficient

SAD, we propose two decision backends: (i) Variable Model-size Gaussian mixture model

(VMGMM) ; and (ii) Hartigan dip-based robust feature clustering (DipSAD). While VMGMM

is a model based approach, the DipSAD is non-parametric. We use both backends for

comparative evaluations in two phases: (1) standalone SAD performance; (2) effect of SAD

on text-dependent speaker verification using RedDots data. The NIST-OpenSAD-2015,

NIST-OpenSAT-2017 and CRSS-PLTL corpora are used for standalone SAD evaluations. We

also perform comparative studies of the proposed approaches with multiple baselines including

SohnSAD, rSAD, Semi-Supervised Gaussian Mixture Model (SSGMM) , and Gammatone

spectrogram features.

The core contributions of this chapter are:

• propose a set of novel FDK-SAD features.

• propose two alternative decision backends for SAD, namely VMGMM and DipSAD.

• evaluate the proposed SAD systems for two tasks: (1) standalone SAD, and (2) effect

of SAD on text-dependent speaker verification using RedDots data.

3.2 Speech Activity Detection

Speech activity detection (SAD) systems discriminate between speech and non-speech seg-

ments in an audio signal. The interest in robust SAD over degraded channels have existed

for several years (Ramírez et al., 2005; Zhang and Wu, 2013; Shin et al., 2010; Górriz et al.,

2006). Two broad classes of SAD algorithms are: (1)supervised; (2)unsupervised. While

supervised techniques require training on massive amount of annotated data, the unsupervised
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approaches do not require training on labeled data (Sohn et al., 1999). Supervised methods

perform poorly on mismatched train and test conditions (Sholokhov et al., 2018; Sohn et al.,

1999; Sarikaya and Hansen, 1998; Ziaei et al., 2014; Ramírez et al., 2005; Ferrer et al., 2016).

DARPA RATS program supported the SAD research in multiple phases leading to advanced

developments (Ng et al., 2012; Saon et al., 2013; Thomas et al., 2015; Graciarena et al., 2013;

Novotney et al., 2016; Graciarena et al., 2016). Despite several decades of research efforts,

unsupervised SAD remained challenging for adverse acoustic conditions.

Before describing the proposed solutions, we considered the scenarios that require unsuper-

vised SAD. In light of applications such as zero-resource speech processing and low-resource

languages, it is impractical to annotate massive audio data for training supervised systems.

Such applications demand developments of robust unsupervised or semi-supervised techniques.

NIST-OpenSAT-2017 public safety communications (PSC) task had limited development data

(approx. 30 minutes) acquired from real-world sensitive scenario that could not be duplicated

through controlled scientific collection unlike DARPA RATS. Thus, it is impractical to

obtain matched training data for PSC scenarios. Zero-resource speech processing demands

no linguistic resource that rules out the possibility to train or adapt a supervised SAD.

The remainder of this chapter is organized as follows. We highlight the motivation

and background work on SAD under different naturalistic scenarios in Sec. 3.3. Sec. 3.4

presents baseline methods for our subsequent experiments. Sec. 3.5 outlines the algorithmic

development of FDK-SAD features. Sec. 3.6 develops the VMGMM backend. Sec. 3.7

describes the robust clustering approach in the second backend based DipSAD solution.

Sec. 3.9 specifies the experimental setup reported in this chapter. Finally, we discuss the

results from conducted experiments in Sec. 3.10.1. Lastly, we summarize our findings while

pointing out the strengths and weaknesses of the propose approaches in Sec. 3.11.
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3.3 Motivation and Background

Before addressing the formulation of the proposed solutions, it is important to understand

the scenarios where unsupervised SAD is the right choice. In light of applications such as

zero-resource speech processing and low-resource languages, it is impractical to annotate

massive audio data for training supervised systems. Such applications demand developments

of robust unsupervised or semi-supervised techniques. The NIST-OpenSAT-2017 (NIST NIST,

b) public safety communications (PSC) task contains limited development data (approx. 30

minutes) acquired from real-world sensitive scenarios that could not be duplicated through

controlled scientific collections, unlike the DARPA RATS corpus (Walker and Strassel, 2012a).

Thus, it is impractical to obtain matched training data for some real-world scenarios. Zero-

resource speech processing demands no linguistic resource that rules out the possibility to

train or adapt a supervised SAD.

It is important to note that the PLTL data has (see section 2.6 for a description of the Peer-

Led Team Learning corpus developments) : (1) a not-so-close body worn microphone; and (2)

small physical movement of students, such as moving to white board and writing something.

These issues can also make SAD a challenging task for human interactive conversations. In

addition, significant reverberation and noise corrupt the speech data further.

3.3.1 Multi-layer noise

Multi-layer noise refers to scenarios with multiple noise-sources are simultaneously active

in an audio stream. For this study, we collected a naturalistic noise corpus named CRSS

long-duration naturalistic noise (CRSS-LDNN) corpus. It contains noise data collected using

wearable LENA units (Hansen et al., 2017, 2016). Diverse noise sources include outdoor

building construction noise, multi-speaker babble noise, large-crowd noise, vehicle/bus noise

on the road, home environment noise etc. More details are presented in section 2.6.
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3.3.2 Zero-resource speech processing

Zero-resource speech processing refers to systems which require almost zero linguistic resources.

It deals with unsupervised discovery of linguistic units from raw speech in an unknown

language (Versteegh et al., 2015). Current state-of-the-art speech systems are trained on

massive datasets with extensive human annotations. However, such supervised methods

experience language and/or channel mismatch when used for zero-resource speech applications

where manually annotated data is either scarce or unavailable. Zero-resource speech processing

explores systems that could be developed for a new language starting from scratch. This

relies on robust unsupervised SAD for efficient processing. Such paradigms are also applicable

for technologies involving under-resourced languages and/or dialects.

3.3.3 Supervised SAD

Supervised speech activity detection approaches historically relied on acoustic models such

as Hidden Markov Model (HMM) (Saon et al., 2013), Gaussian mixture model (GMM)

(Sadjadi and Hansen, 2013) etc. More recently, machine learning systems have emerged

that are trained on large annotated audio data. Such methods either focus on finding

better generative features such as bottleneck features or discriminatively trained classifiers

such as deep neural networks (DNNs) (Zhang and Wu, 2013). Many such algorithms

were developed as part of the DARPA RATS (Walker and Strassel, 2012a) program (Ng

et al., 2012; Saon et al., 2013; Thomas et al., 2015; Graciarena et al., 2013; Novotney et al.,

2016; Karakos et al., 2016). For example, one team propose combining several features for

supervised SAD for DARPA RATS (Graciarena et al., 2013). Specifically, Mel-frequency

cepstral coefficients (MFCC), Gabor features processed with multilayer perceptron (MLP),

Combo features (Sadjadi and Hansen, 2013), sub-band autocorrelation (SAcC) with MLP

post-processing, and multi-band comb-filter F0 (MBCombF0) voicing were combined. This

combining procedure led to significant gains in SAD accuracy (Graciarena et al., 2013). A
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solution for DARPA RATS phase 2 evaluation (Saon et al., 2013) consisted of multi-pass

Hidden Markov Model (HMM) segmentation and combined features for training feed-forward

and convolutional neural network (CNN).

The joint use of source and filter-based features has also been leveraged for supervised

SAD (Drugman et al., 2016). Several feature sets were also used for training neural network on

multi-conditioned TIMIT data (Garofolo, 1993). The source and filter information were then

merged at the feature and score level out of which the score fusion performed better (Drugman

et al., 2016). A maximum-margin clustering approach based on support vector machine (SVM)

was adopted for unsupervised SAD (Wu and Zhang, 2011). Two features, namely multiple

observation signal to noise ratio (SNR) and multiple observation maximum-probability were

propose for maximum-margin clustering (Wu and Zhang, 2011). The multiple observation

likelihood ratio test (MO-LRT) was used for robust SAD under noisy conditions. It out-

performed the single observation likelihood ratio test (SO-LRT) that require an empirically

tuned hangover scheme (Ramírez et al., 2005). MO-LRT leveraged long-term information for

deriving an optimal decision rule (Ramírez et al., 2005).

A SAD system based on Gaussian mixture models (GMMs) and multi-layer perceptron was

also developed for the DARPA RATS program (Ng et al., 2012). This system leverages a robust

front-end, feature normalization, dimensionality reduction and score normalization (Ng et al.,

2012). In another study, a two-stage SAD based on an explicit model of phonetic information

was proposed (Ferrer et al., 2016). The first step consisted of training a bottleneck deep

neural network (DNN) for predicting the senone posteriors. In the next step, activations of

the bottleneck layer were used for training another DNN for predicting speech and non-speech

posteriors. Though the propose system led to significant improvements over a baseline single

DNN system under matched conditions, it failed to provide significant gains for mismatched

channels (Ferrer et al., 2016). The improvements in the IBM SAD system for DARPA RATS

involved joint training of convolutional (CNN) and feed-forward DNNs with temporal and
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spectral features. An improved CNN-DNN model led to significant gains in SAD accuracy

under matched conditions (Thomas et al., 2015).

Another study explored fusing six SAD systems including two supervised and four

unsupervised for the NIST-OpenSAD-2015 data (Kinnunen et al., 2016). This study concluded

that channel detection improves performance on the development set, but failed to generalize

further (Kinnunen et al., 2016). In speech modeling, i-Vectors have been an established

approach for speaker and language recognition. These have been used for segment-level SAD

derived from the generalized likelihood ratio (GLR) , Bayesian information criterion (BIC) ,

K-means and GMM clustering (Khoury and Garland, 2016). This segment-level i-Vector SAD

was found to be more accurate than a frame-level GMM baseline on the NIST-OpenSAD-2015

data (Khoury and Garland, 2016). The SRI NIST-OpenSAD system utilized three different

development sets derived from the provided corpus (Graciarena et al., 2016). The fusion of

acoustic, voicing and bottleneck features was used for unsupervised test-adaptive calibration.

In this case, feature normalization had a significant impact on SAD accuracy (Graciarena et al.,

2016). The BBN OpenSAD system employed supervised, unsupervised and active learning-

based model adaptation for SAD over unseen channels (Karakos et al., 2016; Novotney

et al., 2016). Long short-term memory (LSTM) neural network SAD models have also

been adapted for reducing the variability between training and testing data. Unsupervised

adaptation used SAD labels automatically generated by a baseline model. Limited amounts of

human annotations from unseen channels have been successfully utilized for supervised model

adaptation (Karakos et al., 2016; Novotney et al., 2016). Further, an active learning-based

supervised adaptation was considered where the annotations were automatically selected for

maximizing the performance (Karakos et al., 2016; Novotney et al., 2016). This approach

leveraged the output of SAD systems and led to significant gains in accuracy as compared to

random selection of annotations (Karakos et al., 2016; Novotney et al., 2016).
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3.3.4 Unsupervised SAD

Unsupervised SAD using energy based likelihood ratio tests was propose in (Sohn et al.,

1999). Unsupervised methods are designed to work in a variety of acoustic conditions and

could sometimes better manage mis-matched conditions (Graciarena et al., 2016). In previous

studies such as (Ramırez et al., 2004; Ghosh et al., 2011), the long-term speech information

was utilized for unsupervised SAD under noisy conditions. Recent work in (Sholokhov et al.,

2018) summarizes SAD developments in the context of semi-supervised and unsupervised

techniques. This introduced the idea of semi-supervised learning in conventional expectation

maximization (EM) algorithm for GMMs (Sholokhov et al., 2018).

A hard-clustering approach using sub-band log-energy features was propose by (Górriz

et al., 2006) for unsupervised SAD. It performed better than standard SAD systems such

as ITU-T G.729, ETSI GSM AMR and ETSI AFE on a Spanish database. Another SAD

approach used long-term temporal and spectral features in a statistical model for noise

robustness (Fukuda et al., 2010). It led to improved performance as compared to ETSI

AFE-SAD at low SNRs (Fukuda et al., 2010). A generalized Gamma distribution based

likelihood ratio test was considered for SAD in (Shin et al., 2010). It outperformed SAD

based on conventional Laplacian and Gamma distributions. A variational Bayes approach for

SAD employed two parallel classifiers for noise-only and speech-with-noise (Cournapeau et al.,

2010). Online expectation maximization was used for simultaneous adaptation of statistical

model and decision threshold (Cournapeau et al., 2010).

3.4 Baseline SAD approaches

3.4.1 Combo Feature, Combo-SAD Unsupervised SAD

The Combo-SAD feature (Sadjadi and Hansen, 2013) was developed for unsupervised SAD

on the DARPA RATS corpus. The handcrafted five-dimensional features were introduced
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in (Sadjadi and Hansen, 2013). The Combo-SAD refers to a five-dimensional feature system

using harmonicity, clarity, prediction gain, periodicity and spectral flux (Sadjadi and Hansen,

2013). These five features are projected into a single feature using principal component

analysis (PCA). The final one-dimensional feature named Combo is later leveraged for

unsupervised SAD with a two-component GMM. The Combo features projected into a 1-D

feature is modeled with a two-component GMM where SAD threshold is a convex combination

of GMM means. The weights for convex combination can be varied to obtain the minimum

detection cost function (DCF) for a given dataset (Sadjadi and Hansen, 2013). In this study,

we used one-dimensional Combo features and Combo-SAD for comparative studies performed

in this chapter.

3.4.2 SSGMM

The semi-supervised GMM (SSGMM) is a method that sits between supervised and unsuper-

vised GMMs (Sholokhov et al., 2018). If all training data are labeled, the SSGMM would be

the same as training independent class-specific GMMs for speech and non-speech (Kinnunen

and Rajan, 2013). GMMs could be used in a supervised or unsupervised setup for SAD (Alam

et al., 2014). SSGMM trains two GMMs using features from an utterance, where one GMM

represents the speech and another non-speech. The study by (Kinnunen and Rajan, 2013)

considered higher energy frames as speech and lower energy frames as non-speech where only

a fraction of the highest and lowest energy frames were chosen. Thus, SSGMM required

some labels that could be obtained either from human annotators or using a simpler SAD.

These initial SAD labels were later used for supervised training of speech and non-speech

GMMs. The core of SSGMM was generative training of separate GMMs for speech and

non-speech where the initial labels were expected to be accurate for good performance under

noisy conditions. This method assumes availability of reliable SAD labels for a sufficient

amount of stable training data for both speech and non-speech (Sholokhov et al., 2018).
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3.4.3 SohnSAD

SohnSAD was based on a robust decision rule derived from the generalized likelihood ratio

test that considered the geometric mean of likelihood ratios over all frequency bins (Sohn

et al., 1999). The noise statistics are obtained from the estimated noise spectrum. It used an

effective hang-over scheme by considering a first-order Markov process model of the previous

speech frames. The study (Sohn et al., 1999) performed experiments under low SNRs and

vehicular noise where SohnSAD outperformed the G.729B speech activity detector.

3.4.4 rSAD

The rSAD was chosen as a third baseline SAD in this chapter (Tan and Lindberg, 2010). Its

main features include: (i) effective frame selection based on a-posteriori signal-to-noise ratio

(SNR) ; (ii) use of an efficient energy distance instead of standard cepstral distance. This

method was found to be effective at low SNRs as a result of built-in speech enhancement.

Initially, the audio undergoes a high-pass filtering step followed by selection of the high-energy

frames based on a-posteriori SNR weighted energy-difference. Next, the pitch values are

computed for each frame. The high-energy frames without a pitch value in a reasonable

range are taken as non-speech. This process generated the enhanced signal by setting the

high-energy invalid pitch frames to zero. The modified version of the minimum statistics

method is used for estimating the noise spectrum. In the last step, the a-posteriori SNR

weighted energy-difference is extracted from the enhanced signal and frames with valid pitch

are detected and labeled as speech.

3.4.5 USC Neural Network SAD

This is a supervised SAD system trained on DARPA RATS data (Van Segbroeck, Tsiartas, and

Narayanan, Van Segbroeck et al.). The Gammatone, Gabor, long-term spectral variability

and voicing features were combined together and used for training the neural network.
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Figure 3.1. Block diagram of frequency-dependent kernel (FDK) feature extraction. These
are frame-level features to be used with proposed SAD backends: (1) variable model-size
Gaussian mixture model(VMGMM); (2) dip-based robust clustering (DipSAD).

The extracted features used speech characteristics such as spectral shape, spectro-temporal

modulations, periodicity (pitch harmonics), and long-term spectral variability. The features

used long context-windows to obtain a combined feature vector. These features were used for

training a neural network (Van Segbroeck, Tsiartas, and Narayanan, Van Segbroeck et al.).

The evaluation on the DARPA RATS corpus showed effective results, thus validating the

applicability of developed SAD system as a useful comparison system. We adapt this system

as supervised SAD baseline.

3.5 Frequency-dependent kernel features

Coming back to our discussions on multi-layer noise from Sec. 3.3.1, we knew that under

adverse noisy conditions, there could potentially be many noisy processes contributing to

utterance-level speech and non-speech statistics. These processes lead to the creation of

noisy audio were likely to be more Gaussian than that in clean audio in accordance with the
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central limit theorem (Rosenblatt, 1956). This motivated us to leverage frequency-dependent

Gaussian kernels (FDGKs) for audio spectral decomposition. The choice of a Gaussian

kernel was advantageous over other possible kernels due to its compact time-frequency

spectrum. For Gaussian kernels, the product of uncertainty in time and frequency domains is

minimum (Harris, 1969) according to the uncertainty principle. Keeping naturalistic audio

streams with multi-layer noise as our target application, we settled on evaluating Gaussian

kernels for SAD. There was another motivation for frequency dependence in choosing Gaussian

kernels. The human hearing system is more sensitive to low frequency spectral resolutions

versus higher frequency regions.

The Mel-scale was designed to loosely mimic frequency sensitivity of the human auditory

system. Mel-frequency cepstral coefficients (MFCCs) based on a Mel-scale filter bank have

been used in various speech systems (Davis and Mermelstein, 1980; Sahidullah and Saha,

2012). High sensitivity of the human auditory system towards low frequencies help motivate

a frequency-dependent width for the analyzing Gaussian kernels.

Next, we describe the extraction of the proposed FDK-SAD features derived from post-

processing of the FDK spectrum. Using Frequency-dependent Gaussian Kernels (FDGKs),

we had alternate windows for filtering various frequency-bins of an input audio-frame. The

Gaussian kernels have a frequency-dependent variance. We first establish the mathematical

definition of the FDK spectrum denoted by D(τ, f, θ). Let us assume that s(t) is the

time-domain audio signal. Next, its FDK spectrum, D(τ, f, θ) is defined as,

D(τ, f, θ) =

∫
s(t)w(τ − t, f, θ) exp(−j2πft)dt, (3.1)

where θ is the shape parameter of the FDK and w(τ − t, f, θ) is the frequency-dependent

kernel. For consistency, this kernel should satisfy:∫
w(τ − t, f, θ)dτ = 1. (3.2)
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Eq. 3.2 ensures that by averaging the D(τ, f, θ) over all time-shifts, τ produces the traditional

Fourier transform spectrum. We leverage here the Gaussian kernels whose width (standard

deviation) was inversely proportional to the frequency. The proposed FDGK used in this

chapter is defined as:

wGauss(τ − t, f, σ) =
|f |√
2πσ

exp(−f
2(τ − t)2

2σ2
). (3.3)

Using the proposed FDGK from Eq. 3.3 in Eq. 3.1, we obtain a frequency-dependent spectrum

for each audio-frame. The variable τ in Eq. 3.1 represents the skip-rate vector from the

windowing process (i.e., start-time for each overlapping frame). In this study, we use a 10ms

skip-rate, so τ = [0.01, 0.02, 0.03, .., T ] where T is the total duration of the audio signal s(t)

(in seconds). We estimate the FDK spectrum defined by Eq. 3.1 at discrete frequencies

with a reasonable separation between successive frequency-bins. In this study, we considered

analyzing the frequency vector set of fvec = [40, 60, 80, .., 4000]. Thus, we have steps of

20Hz that save computation time. We re-sampled the audio signal to 8kHz before FDK

decomposition. In Eqs. 3.1, 3.2 and 3.3, the variable t refers to time (in seconds). For each

32ms analysis time-window with a 10ms skip-rate, we have two time-variables, ti and tf

representing the start-time and end-time for the i-th window, given as:

ti = τi,

tf = τi +Wsize,

(3.4)

where Wsize is the analysis window-size. For this study, the window size, Wsize is fixed to

32ms which corresponded to 256 samples at an 8 kHz sampling rate. We define the new

time-variables as follows:

t′i = ti − τi,

t′f = tf − τi.
(3.5)
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Using Eq. 3.4 in Eq. 3.5, we have

t′i = 0,

t′f = Wsize.

(3.6)

Thus, the new start-time and end-time variable, t′i and t′f respectively are constant for each

time-window. After substituting σ = 1, we re-write Eq. 3.3 as:

P2 = wGauss(t
′, fvec) =

fvec√
2π

exp

(
−fvec ·2 ×t′·2

2

)
, (3.7)

where t′ = 0 : 1/Fs : 32ms is constant for all time-windows (audio frames) where Fs is the

8kHz sample rate. In Eq. 3.7, t′ is the t − τ vector that was specifically defined over the

interval [t′i, t′f ]. Here, P2 is used to represent the product-term-2 that will be used later for

computation of the FDK spectrum. The square operation in Eq. 3.7 is applied element-wise,

i.e., (fvec·2 stands for element-wise square of fvec and similarly t′·2 is element-wise square of

t′). Also, × represents matrix multiplication between vector fvec·2 of say, dimension M x 1

and vector t′·2 of say, dimension 1 x N. Thus, wGauss is a matrix with size dimensions of M x

N.

Using Eq. 3.7, we can pre-compute wGauss(t
′, fvec) and store in memory to save compu-

tational resources during processing. From Eq. 3.1, we can also see that the second term,

w(τ − t, f, θ) can also be pre-computed using Eq. 3.7 and does not need to be computed for

each time-window. The remaining two terms in Eq. 3.1 correspond to the audio signal s(t)

(first term) and exp(−j2πft) (third term). We represent the product-term-3 corresponding

to exp(−j2πft) for the i-th window as P3i defined as,

P3i =



exp(−j2πfvecτi)

exp(−j2πfvecτi)

· · ·

· · ·

exp(−j2πfvecτi)


(3.8)
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Thus, P3i is a vector of dimension size M x Wsize that can also be pre-computed using

Eq. 3.8. For the purposes of discussion, suppose P3 is an array containing all such matrices

from each time-windows where P3i is for the i-th audio frame. We window the audio signal

s(t) with a rectangular window of size Wsize using τ as the skip-vector. Given this scenario,

the product-term-1 corresponding to audio signal s(t) for the i-th window denoted as P1i is

defined as,

P1i =



s(τ(i)) s(τ(i) + 1) · · · s(τ(i) +Wsize)

s(τ(i)) s(τ(i) + 1) · · · s(τ(i) +Wsize)

· · · · · · · · · · · ·

s(τ(i)) s(τ(i) + 1) · · · s(τ(i) +Wsize)


(3.9)

where the subscript i denote the i-th window starting at time, τ(i) and ending at time

τ(i) + Wsize. P1i will therefore be a matrix of size M x Wsize. If we let P1 be an array

containing all matrices, then P1i will correspond to all audio-frames indexed by i.

It is clear from Eq. 3.9, that P1i can be efficiently computed from the audio signal.

Thus, for efficient computation of the FDK spectrum as given by Eq. 3.1, we perform pre-

computation of Eqs. 3.7, 3.8 and 3.9. For each frame of the signal s(t), the left hand side

in Eq. 3.1 will end up being a vector as explained below. Taking an element-wise matrix

product of all three terms defined by Eqs. 3.7, 3.8 and 3.9 we obtain,

Ci = P1i �P2�P3i (3.10)

where Ci is a matrix of dimension M x Wsize and � denote an element-wise matrix multipli-

cation. Next, we sum Ci over the second dimension to obtain a sum-vector of size M x 1.

The resulting sum-vector of dimension M x 1 will be the i-th column of matrix, D as given

by Eq. 3.1. Thus, for each audio-frame, we have a corresponding column in matrix D. In

this way, for an audio signal s(t) with Nw number of frames, we obtain the FDK spectrum

D of dimension size Nw x M where M is the length of the frequency-vector fvec. Next, we
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post-process the FDK spectrum D to obtain the frame-level FDK-SAD features as explained

below. We first take the absolute magnitude followed by an element-wise logarithm of the

FDK spectrum to obtain the log-magnitude spectrum denoted by matrix E given as:

E = 20 log 10(|D|), (3.11)

where | · | is the magnitude operator. The log operator reduces the dynamic range leading

to a more compact representation that is useful for subsequent processing steps. Taking

the magnitude and logarithm is a common practice in many spectral techniques related

to speech and other areas. We derive eight statistical descriptors from the log-magnitude

spectrum E, here in this study. There are two reasons for deriving these features: (i) first,

the statistical descriptors quantify the variations in the log-magnitude spectrum; and (ii) the

eight features have lower dimensions than the original log-spectral vectors for each frame.

The eight statistical features derived from E are denoted as ft1, ft2,. . . , ft8. The first, ft1

is defined as,

fti1 =
1√
M

M∑
m=1

E(i,m), (3.12)

where fti1 is the first feature for the i-th frame, and M is the dimension size of the frequency

vector, fvec. The other features are defined as:

fti2 = mean(E(i, 1 : M)), (3.13)

fti3 = std(E(i, 1 : M)), (3.14)

fti4 = geo-mean(|(E(i, 1 : M))|), (3.15)

fti5 = trim-mean(E(i, 1 : M)), (3.16)

fti6 = median(E(i, 1 : M)), (3.17)

fti7 = max(E(i, 1 : M)), (3.18)

fti8 = min(E(i, 1 : M)), (3.19)
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where "mean", "std", "geo-mean", "trim-mean", "median", "max" and "min" represent the

functions mean, standard deviation, geometric-mean, "trim-mean" which is the mean of the

data excluding the top 5% and bottom 5% of the values (trim-mean was robust to outliers)

, median, maximum and minimum, respectively. These features lie in different numerical

ranges that necessitate both mean and variance normalization for each feature dimension.

The normalized features are then combined via PCA to obtain a resulting one-dimensional

feature named FDK-SAD. Again, Fig. 3.1 shows the overall block diagram of FDK-SAD

feature extraction.

3.6 Variable model-size GMM backend

In this section, we formulate the variable model-size Gaussian mixture model (VMGMM)

approach for unsupervised SAD. As previously mentioned in Sec. 3.4.1, the Combo-SAD

features (Sadjadi and Hansen, 2013) were originally modeled with an output two-component

GMM. Under adverse acoustic conditions such as multi-layer noise, Combo-SAD features may

not always remain bimodal. For naturalistic audio streams with multiple noise-sources (such

as tonal noise and non-stationary noise), assuming a bimodal distribution for Combo-SAD

features represents a restriction that can potentially lead to poor performance. Instead

of modeling Combo-SAD or FDK-SAD features as two-component GMMs, the VMGMM

approach uses the Akaike information criterion (AIC) for estimating the model-order (Boz-

dogan, 2000; Akaike, 1981). Thus, the VMGMM approach estimates the model-order in an

unsupervised manner without requiring SAD annotations. AIC for a given data and model is

given as,

AIC = −2 logL(θ̂|y) + 2k, (3.20)

where L represents the likelihood function, θ̂ the maximum likelihood (ML) estimate of the

model parameters, k the number of estimated parameters, and y the data (SAD features).

The AIC values for each model are estimated for the given data and model with an overall
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minimum AIC value chosen as the best model. AIC (Akaike, 1981) is used for selecting a

fixed model-order for each language-channel combination of the NIST-OpenSAD-2015 corpus

selected by majority-voting among model-size for each utterance. For the NIST-OpenSAD-

2015 corpus, a model-order in the range of two, three or four was found to be good choices.

For some channels, there are multiple noise sources such as tonal noise, non-stationary noise,

harmonic noise ; leading to a tri-modal or quad-modal distribution for the SAD features.

Once the model order m is estimated, we model SAD features from an utterance using

an m-component GMM. This leads to an m dimensional mean-vector for the Gaussian

components. Here, let µ1, µ2, µ3, · · · , µm be the means of the m Gaussian components,

respectively. Next, the decision threshold for SAD is computed using a convex combination

of m Gaussian means. The weights used for this convex combination are chosen within the

range [0.1,0.9]. We use weights in steps of 0.1 in this range, thus the possible weights are

from the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. If w1, w2, w3, · · · , wm are the chosen

(developer-decided) weights for the convex combination of Gaussian means, the decision

threshold is given as,

τmGMM = w1µ1 + w2µ2 + · · ·+ wmµm, (3.21)

where the chosen weights satisfy the following constraint, (i.e., the weights must sum to one),

w1 + w2 + · · ·+ wm = 1. (3.22)

The weights, wi in Eq. 3.21 represent the relative contribution of the corresponding individual

GMM mean, µi in the overall decision threshold. Theoretically, we could chose any value

between 0 and 1 for each wi.However, by varying the chosen weights in Eq. 3.21 we can

obtain different decision thresholds and hence detection cost function (DCF) values, one

for each combination of weights. The minimum among all DCF values is chosen as the

NIST-OpenSAD-2015 minDCF value.
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This resulting proposed VMGMM is a powerful modeling technique which results in

superior performance as will be discussed in Sec. 3.10.1. There were two reasons that suggest

both flexibility and robustness to VMGMM modeling: (i) firstly, the model-size can be chosen

for each corpora on-the-fly; and (ii) the weights used for convex combination of GMM means

can be independently optimized. While the model-size is estimated only using the features,

optimizing the weights requires SAD transcripts for determining the optimized set of weights

leading to minimum DCF.

Thus, superior performance of VMGMM will be shown to be partly due to transcript

availability for weight optimization. In scenarios such as zero-resource speech processing,

SAD transcripts might not be available and it is possible that a sub-optimal VMGMM

solution results based on random weights. For zero-resource speech processing or other similar

applications demanding unsupervised SAD with no further optimizations, we will show an

alternate DipSAD solution. In the next Section, we present DipSAD which recursively

segments the feature space into speech and non-speech modes using the Hartigan dip test.

This is a non-parametric approach that neither makes any assumptions about the feature

distribution unlike VMGMM, nor needs any parameter optimization.

3.7 Dip-based robust feature clustering

In this section, we present the alternate DipSAD solution that leverages recursions based

on the Hartigan dip test (Hartigan and Hartigan, 1985) for unsupervised SAD. This is a

non-parametric approach that needs no parameter optimization unlike weight optimization for

VMGMMs. DipSAD is suitable for applications such as zero-resource speech processing where

SAD transcripts may not be available for optimization of model weights. Also, this method

makes no assumption on the feature distribution as well. It iteratively searches for a local

maxima in the statistical dips of the feature distribution. DipSAD is a dip-based clustering
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Algorithm 1 computeDip
Input: speech features sorted in ascending order i.e., o=[o1, o2,...,oN ] where
o1 ≤ o2 ≤ ... ≤ oN .
Output: primary modal interval [oL, oU ], DIP and p-value, p.

Step 1: Initialize lower point oL= o1, upper point oU= oN and D = 0. Let F be the
empirical cumulative distribution of features.
Step 2: Compute minorant G and majorant H of empirical distribution F in interval
[oL, oU ] (Hartigan, 1985). Let the points of contact with F are respectively, g1, g2, .., gk
(for G) and h1, h2, .., hm (for H).
Step 3: Let d= max |G(gi) - H(gi)| > max |G(hj) - H(hj)| and the maximum occurs at
hj ≤ gi ≤ hj+1. Then, define o0

L= gi, o0
U= hj+1.

Step 4: Let d= max |G(hj) - H(hj)| ≥ max |G(gi) - H(gi)| and the maximum occurs at
gi ≤ hj ≤ gi+1. Then, define o0

L= gi, o0
U= hj.

Step 5: If d ≤ D, Stop and set DIP= D
2
.

Step 6: If d > D, set D= max {

sup
oL≤o≤o0L

|G(o)− F (o)|, sup
oU≤o≤o0U

|H(o)− F (o)|

}, where sup is the supremum.
Step 7: Set oL = o0

L, oU = o0
U . Go to Step 2.

approach that leverages dip-based recursions on the feature stream from one utterance at a

time in order to generate the corresponding SAD decisions.

Thus, it performs an utterance-level unsupervised SAD. Before presenting the DipSAD

backend, we will revisit the Hartigan dip test in the following sub-section.

3.7.1 Hartigan dip test

This is a statistical test for hypothesizing the modality of a distribution (Hartigan and

Hartigan, 1985). The dip test is based on the geometry of the corresponding feature

distribution. In this context, "unimodality" is defined as follows: a feature distribution

is unimodal if its cumulative distribution is of convex type up to its modal interval and

concave after that. The dip test tries to fit a piecewise linear function that is convex, then
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concave, to the cumulative distribution. The degree of unimodality is then decided on

the basis of goodness of this piecewise linear fit (Hartigan, 1985). The DipSAD solution

was motivated by recent success in applying Hartigan test for clustering extremely noisy

data from other domains (Maurus and Plant, 2016). Application to speech processing,

particularly unsupervised SAD, is novel contribution for this chapter. By comparing SAD

feature dip statistics with that of a suitable reference unimodal distribution (i.e., null

distribution) , a p-value can be set for the null hypodissertation. Using the significance

level, α = 0.05, we might reject or favor the null hypodissertation (unimodality) against

the alternative hypodissertation (multi-modality). In this way, the dip test quantifies the

empirical cumulative distribution’s departure from the unimodality. Importantly, the dip (see

Algorithm 1 computeDip) communicates the modal interval [oL,oU ], the p-value and the DIP.

We now present the algorithmic aspects of the dip test. The DipSAD clustering is an

utterance-level approach working on all frames of an utterance. First, we sort the speech

feature vector, feats, in an increasing order. We still store the original feature vector in

memory for preserving the temporal order (time-information) of the frames. Let the sorted

features (observations) be o = o1, o2,...,oN with o1 ≤ o2 ≤...≤ oN where N is the length of

the feature vector (number of frames). All speech and non-speech modal intervals, (oi, oj) in

the feature space would be pairs of values from o. If N is the length of o, the total number of

possible modal intervals would be
(
N
2

)
= N(N−1)

2
(i.e., combinations obtained by choosing two

values out of o vector ). Next, for each modal interval (oi, oj), we compute greatest convex

minorant, G of empirical distribution, F in (-∞, oi) and the least concave majorant, H of

empirical distribution, F in (oj,∞). Let dij be the maximum distance between F and the

curves G, H in the modal interval (oi, oj). With this, the DIP is given as

DIP =
1

2
min{dij}, (3.23)
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Figure 3.2. Illustration of the dip-based clustering technique on synthetic data with five
classes, identified with R1 to R5 where three regions R3, R4 and R5 lie close to each other in
the feature space.

over all modal interval (oi,oj) such that the line segment from [oi, F (oi) + 1
2
dij] to [oj,

F (oj)− 1
2
dij] lies in the set defined by;

{o, y|oi ≤ o ≤ oj, F (o)− 1

2
dij ≤ y ≤ F (o) +

1

2
dij}. (3.24)

The Eq. 3.24 ensures that the greatest convex minorant, modal segment, and the least concave

majorant together form a unimodal distribution. The Algorithm 1 computeDip returns the

DIP value, modal interval, and p-value, p from significance test for an utterance-level feature

stream.
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Algorithm 2 DipSAD
Input: speech features from an utterance
Output: speech non-speech labels

Step 1: Sort the features in ascending order and let o=[o1, o2,...,oN ] be the ordered
vector, where o1 ≤ o2 ≤ ... ≤ oN . Set significance level, α =0.05.
Step 2: {oL, oU , p}← computeDip(o)
Step 3: If p >α, then the detected primary modal interval is [oL, oU ]. Else, [o1, oN ] is
primary modal interval.
Step 4: Recurse into the modal interval to find the list Imid of the modal intervals within
detected primary mode.
Step 5: Now, we check to the right and left of the modal interval recursively and extract
additional modes if found.
Step 6: {u}← min

oU∈Imid
(oU) , {l}← max

oL∈Imid
(oL) .

Step 7: pl ← computeDip( ∀oj : oj ≤ u) , pu ← computeDip( ∀oj : oj ≥ l) .
Step 8: Il ← If pl ≤ α, then ∀oj : oj < oL forms a multi-mode segment. We recurse into
this interval and return all modal intervals found. Else return φ i.e., an empty set.
Step 9: Ir ← If pu ≤ α, then ∀oj : oj > oU forms a multi-mode segment. We recurse
into this interval and return all modal intervals found. Else return φ i.e., an empty set.
Step 10: The final set of all modal interval is Il

⋃
Imid

⋃
Ir.

Step 11: The detected clusters were assigned to speech and non-speech classes auto-
matically using average feature value for each cluster. As the Combo and FDK-SAD
features had high positive values for speech and low values for different noises, the cluster
with highest average feature value was taken as speech and rest clusters were considered
non-speech. In some instances, where two prominent noise sources were present such as
non-stationary background noise and occasional tonal noise, DipSAD approach created
three clusters.

3.7.2 Dip-based clustering

We use the dip test recursively to locate modal intervals corresponding to speech and/or

non-speech. We explain the propose clustering approach by considering Fig. 3.2 and traversing

Algorithm 2 DipSAD. Fig. 3.2 illustrates a simulated scenario showing five categories in

the feature space. Top sub-figure shows the histogram of features, while the bottom one

shows the empirical cumulative distribution and depicts the dip-based segmentation. It is

clear from the Fig. 3.2 that regions R3, R4 and R5 lie close to each other. Applying the

approach described in Algorithm 2 DipSAD, the first detected modal interval consists of R3,
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R4 and R5 (Step 3 in DipSAD). After recursing again in this interval for each oj such that

oL ≤ oj ≤ oU , we obtain the three regions R3, R4 and R5 that form Imid (i.e., set of middle

modal intervals (Step 4)). Next, we recurse from right and left sides of the primary interval

to find if other segments exist (Step 5). While recursing to the left and right, we include

the nearest detected modes from the respective left or right region, (i.e., for left recursion

region R3 was included in the search region while for right recursion region R5 was included

(Step 6)). Thus, the upper limit (u) for the left search would be the minimum among all

detected upper limits, (i.e., upper limit of region R3). On the other hand, the lower limit (l)

for the right search is chosen as the maximum among all detected lower limits, (i.e., lower

limit of R5 (Step 6)). This strategy ensures that the left and right searches would either be

unimodal (implies same region extended in that direction such as R5 extended till the end

of right region); or have multi-modalities (implies different modes in that direction such as

R1 and R2 in the left). This is done in Step 6 of Algorithm 2 DipSAD. After we obtain the

upper limit, u and lower limit, l for the left and right searches respectively, we recursively

use Algorithm 1 computeDip on both regions to obtain the corresponding p-values, pl and pu

(Step 7). From the p-values, we conclude unimodality if pl > α and return the empty set φ.

If pl ≤ α, we find the corresponding modal intervals and add this to Il such that it is the set

of modal intervals in the left region (Step 8). Similarly, we perform the right search (Step 9)

to obtain Ir which is the set of modal intervals in the right region. The union of the middle

set Imid, left set Il and the right set Ir is the final set of all clustered modal intervals. Fig. 3.2

highlights this illustration. For SAD at the end of DipSAD clustering, we typically obtain two,

three, or sometimes four clusters. If there were multiple noise sources in an utterance such as

non-stationary background noise, occasional impulsive noise etc., each non-speech region will

correspond to a noise-type as a separate clustered centroid. Such a scenario could be referred

to as having "multi-layer noise" representing different sources appeared as separate regions

in the feature space. The Combo-SAD and FDK-SAD features have large positive values
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Table 3.1. Components of five propose methods for unsupervised speech activity detection.
System Features Decision Backend

Combo-VMGMM Combo Variable model-size GMM
FDK-VMGMM FDK-SAD Variable model-size GMM
Combo-DipSAD Combo DipSAD
FDK-DipSAD FDK-SAD DipSAD
FDK-DSAD FDK-SAD D-SAD
Combo-DSAD Combo-SAD D-SAD

Gamma-VMGMM Gamma-SAD Variable model-size GMM

Table 3.2. NIST-OpenSAD-2015 DCF (%) for all channels of Levantine Arabic (alv) with
two-second collar around each speech region.

DCF alv-src alv-B alv-D alv-E alv-F alv-G alv-H
SSGMM 1.71 5.87 4.79 3.15 2.20 3.28 3.78
rSAD 3.70 4.58 4.03 4.32 4.03 3.97 5.13

SohnSAD 3.06 4.55 4.28 2.96 2.73 3.01 3.93
Combo-VMGMM 2.01 8.31 5.25 4.66 3.23 1.11 2.82
FDK-VMGMM 0.98 5.12 4.67 4.13 2.67 0.54 2.68
Combo-DipSAD 2.68 13.21 6.40 5.83 4.19 1.34 3.63
FDK-DipSAD 2.63 9.61 9.73 5.35 4.46 2.95 3.06

Gamma-VMGMM 11.13 3.49 9.38 4.21 15.71 10.42 8.64

for speech and small positive or negative values when noise is present. We leverage this fact

in automatic assignment of clusters to speech and non-speech classes. So, the cluster with

highest average sample value is assigned to speech and remaining clusters are considered as

non-speech. In the study by in (Graciarena et al., 2016), they also noticed that SAD features

for NIST-OpenSAD-2015 data were significantly tri-modal on some channels and tri-modal

GMMs helped in obtaining better performance (see section 6.4.1) in (Graciarena et al., 2016).

3.8 D-SAD: Cumulative Distribution based SAD

This approach is faster than VMGMM and DipSAD. It do not require development data

unlike VGMM. It is based on a simple idea. We fit a straight line between first and last

data point in cumulative distribution curve (CDC). This straight line interests the CDC at a
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Table 3.3. NIST-OpenSAD-2015 DCF (%) for all channels of American English (eng) with
two-second collar around each speech region.

DCF eng-src eng-B eng-D eng-E eng-F eng-G eng-H
SSGMM 2.39 7.38 7.61 3.88 2.10 1.94 4.49
rSAD 2.61 3.84 3.61 3.46 2.71 2.22 5.32

SohnSAD 3.95 7.15 7.97 3.78 3.10 3.18 5.20
Combo-VMGMM 2.76 9.65 9.25 5.74 3.42 1.76 3.18
FDK-VMGMM 0.76 6.38 8.34 4.31 2.72 0.42 3.59
Combo-DipSAD 6.87 10.68 8.18 5.12 2.96 9.30 4.11
FDK-DipSAD 2.17 4.02 9.80 5.74 4.56 1.62 3.79

Gamma-VMGMM 11.85 3.13 7.68 4.15 15.69 11.62 11.19

Table 3.4. NIST-OpenSAD-2015 DCF (%) for all channels of Urdu (urd) with two-second
collar around each speech region.

DCF urd-src urd-B urd-D urd-E urd-F urd-G urd-H
SSGMM 1.78 5.95 4.12 2.70 1.98 1.73 3.83
rSAD 2.24 3.18 3.26 3.88 3.92 4.00 6.03

SohnSAD 4.63 7.15 6.05 4.32 3.68 3.63 6.09
Combo-VMGMM 2.20 7.61 5.62 4.67 4.06 0.72 2.92
FDK-VMGMM 1.40 7.00 5.80 4.69 3.78 0.42 3.28
Combo-DipSAD 4.22 5.85 5.51 5.30 5.26 3.67 4.78
FDK-DipSAD 2.19 6.56 7.75 4.32 5.32 1.21 4.04

Gamma-VMGMM 14.31 3.96 9.74 2.65 15.87 10.93 10.75

Table 3.5. Channel description for NIST-OpenSAD-2015 training data.
Channel Freq. Band Modulation Type

B UHF Narrow-band FM
D HF Single side-band AM
E VHF Narrow-band FM
F UHF Frequency-hopping spread-spectrum
G UHF Wide-band FM
H HF AM

unique point, which defines our threshold. Cumulative Distribution based SAD (D-SAD) is

parameter free approach. D-SAD fits a straight line between first and last point in cumulative

distribution curve (CDC). Lets say, featsmin and featsmax are minimum and maximum value

of SAD features as extracted from CDC. We compute the slope of straight line connecting

the points (featsmin, 0) (first point in CDC) and (featsmax, 1) (last point in CDC). We now
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Figure 3.3. Illustrating the D-SAD decision backend. Top sub-figure shows the smoothed
histogram of FDK-SAD features extracted from 80 min audio from CRSS-PLTL corpus.
Bottom sub-figure shows the corresponding cumulative distribution curve (CDC). When we
fit a straight line between the first point in CDC i.e., (featsmin, 0) and last point in CDC,
i.e., (featsmax, 1). This line intersects the CDC at a unique point marked by red star. This
point corresponds to a SAD decision threshold, featth given by corresponding co-ordinate on
x-axis i.e., feature axis. Thus, D-SAD is computationally simple and yet effective decision
backend.

fit a straight line between these two points as given by

y =
x− featsmin

(featsmax − featsmin)
, (3.25)

where x is independent variable representing the SAD features and y is the dependent variable

representing the corresponding value on CDC curve. Now, we use Eq. 3.25 for computing

y for each values in range [featsmin, featsmax ]. The straight line represented by Eq. 3.25

intersects the CDC curves at a point featth which is the SAD threshold. At this point,

CDC(featth) = y(featth), i.e. values of CDC and y are same. SAD features greater than

featth (decision threshold) are detected as speech and rest frames are classified as non-speech.

Fig. 3.3 illustrates the D-SAD decision backend with FDK-SAD features extracted from 80
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min PLTL session. Thus, we see that D-SAD backend is a computationally simple approach

for computing the decision threshold using one-dimensional SAD features.

3.9 SAD Experiments

3.9.1 Gammatone filterbank as an alternative to FDK

The frequency-dependent kernel (FDK) could be viewed as an alternative to spectral tech-

niques such as the Gammatone filterbank. FDK can be viewed as a class of methods such

as cochlear filters (Li and Huang, 2011), Gammatone filters for large vocabulary speech

recognition (Schluter et al., 2007), and auditory Infinite impulse response (IIR) filters de-

veloped for acoustic signal processing (Chi, 2003). Gammatone filters linearly approximate

the human auditory processing. In this chapter, we leverage the fast estimation of Gamma-

tone spectrum that is based on weighting the Fourier transform spectrogram. We use the

Gammatone spectrogram for extracting SAD features similar to FDK-SAD extracted from

the FDK decomposition (see Eq. 3.1). Here, we replace the FDK decomposition defined in

Eq. 3.1 by the Gammatone spectrogram and remaining FDK pipeline remains the same. This

experiment explains the benefit of FDK over Gammatone spectrogram for unsupervised SAD.

It is important to note that the use of statistical descriptors extracted from the Gammatone

spectrogram for SAD is novel contribution. Earlier, Gammatone filters have been used

for speech recognition (Shao et al., 2009), speaker verification (Shao and Wang, 2008; Li

et al., 2013) and language identification (Van Segbroeck et al., 2014). Using the Gammatone

spectrogram instead of FDK in the FDK-SAD pipeline generates new features which we

name Gamma-SAD . Prior to feature extraction, audio stream is downsampled to 8kHz.

After pre-emphasizing, Hanning windowing, and framing into 32ms windows with a 10 ms

skip-rate, the Fourier spectrum is obtained. We post-process the Fourier spectrogram with 64

Gammatone filters. The Gammatone spectrogram is further post-processed by a cubed-root
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compression and temporal smoothing based on second-order autoregressive moving-average

(ARMA filter). Finally, statistical descriptors are computed followed by mean and variance

normalization before PCA processing as explained in Sec. 3.5. The final one-dimensional

features extracted from the Gammatone spectrogram in the FDK pipeline are named as

Gamma-SAD.

3.9.2 NIST-OpenSAD-2015 experiments

We use the NIST-OpenSAD-2015 training set for experiments reported in this chapter as

techniques being evaluated were unsupervised. All seven channels from the training set

are included in the experiments. Various modulation schemes such as narrow-band FM,

wide-band FM, AM, frequency-hopping spread-spectrum and SSB and frequency bands such

as HF, UHF and VHF were salient features of this data. We summarized the frequency bands

and modulation types for OpenSAD communication channels in Table 3.5. This data was

originally provided at 16 kHz sampling rate with 16 bit resolution. We downsampled it to

8 kHz for feature extraction and further processing. We evaluate the propose and baseline

SAD methods on all channels of three languages namely Levantine Arabic (alv) , American

English (eng) and Urdu (urd). We use 32ms analysis windows with 10ms skip-rate for

extracting the SAD features that were later use in unsupervised decision backends. Table 3.1

shows the front-end features and backends for the proposed SAD systems: Combo-VMGMM,

FDK-VMGMM, Combo-DipSAD, FDK-DipSAD, Gamma-VMGMM. We will discuss these

results in Sec. 3.10.1. In accordance with the NIST OpenSAD protocol, we also allow for

a two-second collar around each speech region. This collar region was excluded from the

scoring process.

3.9.3 NIST-OpenSAT-2017 experiments

The NIST dev set was included with the ground-truth SAD annotations in the original corpus

release, and therefore used here. According to ground-truth, this data contains an overall
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41.85% speech content by duration. This data accounts for a total of 30 minutes of audio data.

We considered three options: (i) no collar, (ii) a half-second collar, and (iii) a two-second

collar at the beginning and end of each speech region that was accounted as collar and is

not included in scoring process. This data was provided at an 8 kHz sample rate, thereby

eliminating the need for re-sampling. We apply all SAD algorithms to the NIST OpenSAD

corpus, so these experiments will serve as comparative studies.

3.9.4 CRSS-PLTL-II experiments

For the standalone SAD evaluations on the CRSS-PLTL-II corpus, we chose the evaluation

data corresponding to a PLTL session with approximately 80-minute duration (maths course).

The channel corresponding to the team lead was chosen for experiments reported in this

chapter. CRSS-UTDallas human transcribers annotated the audio by hand into four classes

of acoustic events described as follows. Speech: when just one person is speaking. Non-

speech: when no human vocalizations are present (e.g., silences, noise, background sounds,

writing-on-board sound etc.) Overlap: when two or more persons are speaking at the same

time. Misc: human vocalizations that were neither speech nor overlap such as laughter, cough,

lip smacks etc. Thus, the miscellaneous ("Misc") category includes everything not covered by

Speech, Non-speech or Overlap events. On the basis of ground-truth annotations, we find that

the total time-duration of Speech and Non-speech were the same, with both approximately

being 40%. On the other hand, both Misc and Overlap events accounted for approximately

10% each of the total audio duration. The complete audio was processed individually by each

SAD algorithms that include both feature extraction and decision backend. We ignore the

Overlap and Misc category during the scoring phase of SAD evaluations. Thus, only speech

and non-speech segments according to ground-truth were incorporated for DCF computation.

Since we perform speaker diarization and behavioral speech processing in the PLTL down-

stream processing, the miss-rate and false-alarms are equally important. Consequently, a 0.5
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weight was given to both Pfa and Pmiss for PLTL DCF computation defined as:

DCFPLTL(τ) = 0.5 ∗ Pmiss(τ) + 0.5 ∗ Pfa(τ) (3.26)

3.9.5 RedDots experiments: text-dependent speaker verification

We chose text-dependent speaker verification as downstream application for studying the

effect of SAD on system performance. We use a subset of the RedDots corpus as described in

Sec. 2.12.

3.9.6 Feature extraction

We use MFCC features extracted from 20ms overlapping windows with a 10ms skip-rate

for all speaker verification experiments. We discard the DC coefficients (e.g., C0)in MFCC

output from 20 Mel filter-banks. The remaining 19 MFCC coefficients are processed with

RASTA filtering in order to reduce the linear, slowly-varying channel effects (Hermansky and

Morgan, 1994). Next, we append MFCC features with delta and double-delta coefficients

computed over a super-window of three frames. Thus, the final feature vector size is 57

dimensional frame-level features. Finally, we use SAD for discarding the non-speech frames.

This is followed by mean and variance normalization (MVN) along each feature dimension

as per Eq. 3.27. Normalized features are used for training the UBM model and for MAP

adaptation of the GMM-UBM speaker models.

fnorm =
(f − µf )

σf

(3.27)

In Eq. 3.27, fnorm is normalized feature after MVN, f is original figure, µf is mean vector and

σf is variance. MVN helps in reducing the channel mis-match that improves the recognition

accuracy.
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3.9.7 Speaker modeling

Our text-dependent speaker verification system is based on state-of-the-art Gaussian mixture

model (GMM) with a universal background model (GMM-UBM) (Delgado et al., 2016;

Reynolds et al., 2000) for RedDots data. For this corpora, the GMM-UBM was found to

perform better than methods using i-Vectors and Hidden Markov Models (HMMs) (Zeinali

et al., 2016). A UBM with 512 Gaussians with diagonal covariances is trained using male

data from the TIMIT train and test sets. TIMIT is a good choice for UBM training as

TIMIT data is available at 16 kHz which is the sampling rate of RedDots corpus. The target

speaker models, GMMs are generated by maximum-a-posteriori (MAP) adaptation of the

UBM means using the enrollment data of each speaker. Let X = {xn|n ∈ 1, 2, ..., T} is set of

feature vectors from enrollment data of the s-th speaker. We are provided with the trained

UBM and enrollment feature vectors, X. Next, the feature vectors are aligned with respect

to UBM components as:

γn(g) = p(g|xn, λ0) (3.28)

where λ0 represents the UBM (Hansen and Hasan, 2015). These γn(g) are combined into a

factor, Ns(g) known as the zeroth order Baum-Welch statistics given as:

Ns(g) =
T∑
n=1

γn(g) (3.29)

Next, the mean update of GMM-UBM speaker model is done according to following equation:

µ̂g = αg · Eg[xn|x] + (1− αg)µg (3.30)

Here, αg is defined as

αg =
Ns(g)

Ns(g) + r
(3.31)

where r is known as the relevance factor. This parameter controls the influence of speaker’s

enrollment data on the MAP-adapted UBM-GMM speaker model. We perform only mean

adaptation since it is most effective among three parameters namely weights, means and

variances. We used the relevance factor of 4 for results presented in this chapter.
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Table 3.6. PLTL DCF with 0.5 weight given to both Pfa and Pmiss for CRSS-PLTL-II
evaluation set (approx. 80 minutes). The PLTL data was corrupted at 5dB SNR with Noise
n1 and n2 from CRSS-LDNN corpus. "Overlapped" speech and "Misc" were included in
feature extraction and SAD decision making but excluded in scoring. N/A refers to not
available. We skip experiments of D-SAD on PLTL with added noise as we found that all
algorithms has almost similar performance on noise added to PLTL as that on original PLTL
data.

System PLTL Noise n1 Noise n2

Combo-VMGMM 1.97 1.99 2.35
FDK-VMGMM 2.01 2.16 2.17
Combo-DipSAD 2.84 2.96 2.76
FDK-DipSAD 7.23 7.50 7.12
Combo-DSAD 17.68 N/A N/A
FDK-DSAD 15.29 N/A N/A
SohnSAD 28.20 28.51 28.71
rSAD 49.57 49.57 49.65

SSGMM 28.95 29.13 30.58

3.10 Results and Discussions

The algorithms developed in this study are aimed to provide robust unsupervised SAD for

naturalistic distortions such as multi-layer noise and reverberation. In this section, we discuss

the results from various experiments conducted using the proposed and baseline approaches.

3.10.1 Phase I evaluations: standalone SAD results

We five propose SAD systems as given in Table 3.1 namely Combo-VMGMM, FDK-VMGMM,

Combo-DipSAD, FDK-DipSAD, Gamma-VMGMM. For standalone SAD experiments, we

use OpenSAD, OpenSAT and CRSS-PLTL-II data corrupted with noise samples from CRSS-

LDNN corpus.

3.10.2 NIST-OpenSAD-2015 results

We will discuss the performance of the proposed methods as compared to baseline systems

namely SohnSAD, rSAD and SSGMM (as described in Sec. 3.4). NIST OpenSAD evaluation
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considered missing a short speech-segment worse than introducing more false-alarms. NIST

OpenSAD detection cost function (DCF) was defined as:

DCFopen(τ) = 0.75 ∗ Pmiss(τ) + 0.25 ∗ Pfa(τ) (3.32)

where Pmiss(τ) and Pfa(τ) were respectively the miss probability and probability of false-

alarms. Both quantities depend on the threshold τ chosen for SAD decisions. We compute

DCFopen(τ) for different values of the threshold τ and finally pick the minimum value

referred to as minDCFopen. In this way, for each language-channel combination we obtain

a minDCFopen. The DCF values are computed for each audio file and averaged to obtain

the DCF for the given language-channel combination. As per the NIST OpenSAD protocol,

we incorporate a two-second collar around each speech region that was excluded during

scoring (Dubey et al., 2018). Tables 3.2, 3.3 and 3.4 show the minDCF for the proposed

and baseline methods for each channel-language combination. The FDK-SAD features show

superiority over Combo-SAD and other features leading to significant improvements in DCF

for many language-channel combinations. In some cases, the DipSAD backend performs better

than the VMGMM backend even though the VMGMM has flexibility to chose a model-order

and GMM weights. This shows that DipSAD is an important technique for scenarios that

lack SAD transcripts and require robust SAD. As the VMGMM backend has flexibility to

choose both model-order and weights, it performs better than the DipSAD in general. The

DipSAD backend does not have tunable parameters for further optimization. On the other

hand, VMGMM is a model-based approach with the possibility to tune parameters for a given

corpus/scenario. Table 3.2, Table 3.3 and Table 3.4 show the comparison of results obtained

with Gamma-VMGMM and other baselines. The Gamma-VMGMM fails on most channels

including the clean source channel unlike other methods. Gamma-VMGMM works reasonably

for only channel B and E among all channels. This could be understood by reviewing

Table 3.5 which list both B and E channels as having ultra or very high frequency bands with
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narrow-band FM modulation. This suggests that Gamma-SAD features would work better for

narrow-band FM than other modulation types. Poor performance of Gamma-VMGMM on the

clean source channel and other noisy channels disprove the applicability of Gamma-VMGMM

for practical SAD scenarios unless we have narrow-band FM modulation in high frequency

bands. All methods other than Gamma-VMGMM achieve good performance on the clean

source (src) channel and have some level of degraded performance on the other channels.

SSGMM being a semi-supervised technique is competitive on many channels across the three

languages. The rSAD approach is based on a in-built speech enhancement and fundamental

frequency (F0) estimate, making it more effective than simply SohnSAD. In general, the

DipSAD performs worse on all channels as compared to the corresponding VMGMM using

the same features.

3.10.3 NIST-OpenSAT-2017 results

Table 3.7 shows the NIST DCF values (defined by Eq. 3.32) averaged for six audio recordings

including PSC SSSF data dev with (i) no collar, (ii) a half-second collar, and (iii) two-second

collar. As the quantity of actual speech data is small (i.e., 30 minute of audio ) we considered

different collar sizes for a comparative performance assessment of the various SAD approaches.

Clearly, rSAD gives the best performance for this data, possibly due to accurate F0 estimates.

SSGMM being a semi-supervised techniques performs well due to availability of reliable labels

from simpler SAD. The propose FDK-VMGMM always performed better than SohnSAD

due to sophisticated feature modeling using FDK-SAD and the flexible VMGMM decision

backend. Once again, the VMGMM backend performed relatively better than DipSAD on

both FDK-SAD and Combo-SAD features.

3.10.4 CRSS-PLTL-II results

The CRSS-PLTL-II class learning speech data is rich in non-linear distortions that are not

easily quantified in terms of SNR. Particularly, it has high levels of reverberation that led
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Table 3.7. DCF with no collar (DCF0) , DCF with 0.5s collar (DCF1) and DCF with 2s
collar (DCF4) for NIST-OpenSAT-2017 PSC SSSF dev data.

System DCF0 (%) [NC] DCF1(%) [0.5 sec] DCF4(%) [2.0 sec]
Combo-VMGMM 7.46 6.07 4.5
Combo-DipSAD 7.17 5.57 4.00
FDK-VMGMM 7.48 5.76 3.35
FDK-DipSAD 8.45 7.27 5.20
SohnSAD 8.66 6.38 3.48
rSAD 3.92 2.66 1.88

SSGMM 6.34 4.69 3.14

Figure 3.4. Distribution of speech-to-reverberation modulation energy ratio (SRMR) for
ten-second segments of PLTL evaluation data described in Sec. 3.9.4.

to poor performance by baseline SAD methods as reported in Table 3.6. We computed the

speech-to-reverberation modulation energy ratio (SRMR) (Falk et al., 2010) for ten-second

segments to quantify the reverberation levels. SRMR was previously use in the REVERB

Challenge (Kinoshita et al., 2016) as an objective measure of speech quality and intelligibility.

It is derived from the modulation spectral components of the speech signal. Fig. 3.4 shows the

smoothed histogram of the corresponding SRMR values. Here, a majority of the segments have

low SRMR scores (less than 8) which show significant reverberation. Table 3.6 shows DCF

values for PLTL evaluation data and PLTL data corrupted with two noise samples from CRSS-

LDNN corpus. We added two noise samples from CRSS-LDNN corpus at 5 dB SNR to PLTL

data. Two slices of long-duration (more than 20 minutes) noise were adopted from CRSS-

LDNN noise corpus and named Noise n1 and n2 (see Fig. 3.5). Both samples have at least
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Figure 3.5. Long-term spectrum of two noise samples of duration more than 20 minutes
chosen from CRSS-LDNN corpus. We can see the variety of prominent frequencies in n1 and
n2.

two noise-sources such as construction noise, vehicle noise along with background-speakers ,

acting simultaneously. Clearly, the FDK-SAD features have a significant performance gain as

compared to Combo-SAD features. Here, again VMGMM performs better than the DipSAD

backend due to flexible modeling in VMGMM. As expected, D-SAD performance is worse

than DipSAD and VMGMM. D-SAD is proposed as a computational simple decision backend

that works significantly better than all state-of-the-art approaches. The performance of rSAD

is dependent on fundamental frequency (F0) estimates. Due to reverberation and multi-layer

noise, F0 estimates are unreliable for PLTL data leading to poor performance by rSAD. The
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Table 3.8. Text-dependent speaker verification performance in terms of EER (%) on RedDots
data using no SAD and different SAD approaches.

SAD Method EER (%)
No SAD 7.90
SohnSAD 6.32

Combo-VMGMM 6.97
Combo-DipSAD 10.12
FDK-VMGMM 6.29
FDK-DipSAD 9.48

rSAD 6.58
SSGMM 7.37

SSGMM is based on SAD labels with models initialized on the highest and lowest energy

frames. Since the highest and lowest energy frames are not a good representative of speech

and non-speech in this case, SSGMM performs similar to simple baseline SohnSAD. The

SohnSAD is based on signal energy and an associated hangover scheme. Both SSGMM and

SohnSAD are still much better than rSAD which fails enormously due to ineffective speech

enhancement and unreliable F0 estimates.

3.10.5 Phase II evaluation: text-dependent speaker verification on RedDots

The pipeline for Universal Background Model (UBM) training is based on SohnSAD and

stayed the same for all experiments. Only enrollment and test trails use different SAD for

comparative studies. There are a total of 35 speakers in the enrollment set. The test trails

consists of 3,242 target and 120,086 non-target trails. Table 3.8 shows the effect of various

SAD methods on speaker verification EER (%) for male data from RedDots part 01. The

"No SAD" case refers to use of all frames in enrollment and test trails without discarding

non-speech as the case with various SAD methods. FDK-VMGMM has the best performance,

which is slightly better than SohnSAD. The rSAD, SohnSAD and Combo-VMGMM have

comparable performances. These experiments show the superiority of FDK-SAD features

and VMGMM backend for real-world data collected using mobile phones as the case with

RedDots.
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3.11 Summary and Conclusions

In this chapter, we introduced the CRSS long-duration naturalistic noise (CRSS-LDNN)

corpus containing long-duration audio recordings of multi-layer noise. We propose frequency-

dependent kernel based SAD features (FDK-SAD) and two decisions backends: (i) Vari-

able model-size Gaussian mixture model(VMGMM) ; (ii) Dip-based robust feature cluster-

ing(DipSAD). These three advancements target different aspect of robust SAD for naturalistic

audio streams. VMGMM provided a flexible decision backend. First, it modeled SAD fea-

tures with a GMM whose model-size was automatically chosen based on Akaike information

criterion (AIC). Secondly, SAD decision threshold was computed by a convex combination

of GMM means where the weights for combining could be chosen to achieve a minimum

detection cost function (minDCF). Importantly, while the choice of GMM model-order was

done only using SAD features, choosing the optimum weights for minDCF assumes transcript

availability. On the other hand, the DipSAD solution provides a non-parametric approach for

clustering SAD features. Detected clusters were assigned to speech and non-speech classes

according to the average feature value for each cluster. Unlike VMGMM, this approach did

not assume any model for feature distribution and hence useful for novel acoustic scenarios

with no SAD transcripts.

We studied the comparative performance of propose FDK-SAD feature and VMGMM,

DipSAD decision backends with respect to state-of-the-art approaches namely SohnSAD,

rSAD and SSGMM in two evaluation phases: (1) standalone SAD assessment; (2) effect of

SAD on text-dependent speaker verification for RedDots data. In addition, we incorporated

the Gammatone spectrogram in FDK pipeline for deriving the Gamma-SAD features. Three

corpora were use for standalone SAD evaluations namely NIST-OpenSAD-2015 training set,

NIST-OpenSAT-2017 public safety communications (PSC) corpus and CRSS-PLTL-II data

corrupted with naturalistic noise from CRSS-LDNN corpus. We use the RedDots quarter Q4

data for studying the effect of SAD on text-dependent speaker verification. We also used the
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detection cost function (DCF) metric for standalone SAD and equal error rate (EER) for

text-dependent speaker verification evaluations.

During the evaluation phase I (standalone SAD assessment), SAD performance was found

to be domain dependent. While FDK features had high gains for naturalistic CRSS-PLTL-II

data, the improvements on NIST-OpenSAT-2017 and NIST-OpenSAD-2015 were relatively

lower. The huge gap in comparative performance on CRSS-PTLT data could be understood

in terms of speech features and decision models employed by various SAD methods. For the

NIST-OpenSAD standalone SAD evaluation with two-second collar, the main takeaways

were (i) VMGMM was consistently better than DipSAD for both FDK-SAD and Combo

features. It was due to VMGMM’s flexibility in choosing model-order and optimized decision

thresholds. (ii) FDK-SAD features were consistently better than Combo features with both

backends, VMGMM and DipSAD. This showed robustness of FDK-SAD features for accurate

quantification of speech non-speech statistics. (iii) SSGMM being a semi-supervised approach

performed worse on noisy channels than source channel. This was due to unreliable labels

obtained from simpler SAD for training speech and non-speech GMMs. (iv) rSAD had

the worst performance on Channel H as compared to its performance on other channels.

Channel H had amplitude modulation in high frequency bands. Its performance depended

to a large extent on accuracy of estimated fundamental frequency (F0). Possibly, channel

H noise distorted the audio signals causing inaccurate F0 estimates. (v) SohnSAD had

better performance on channel F and G as compared to the other channels. Its performance

depended on signal energy and hangover scheme; (vi) Gamma-SAD features had the worst

performance among all approaches. Relatively, it was better on channel B and E both having

narrow-band frequency modulation.

We evaluated the NIST-OpenSAT data with (i) no collar, (ii) one-half second collar,

and (iii) two-second collar. On NIST-OpenSAT the main takeaways were: (i) FDK-VMGMM

was better than all other propose combinations i.e., FDK-DipSAD, Combo-DipSAD and
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Combo-VMGMM. (ii) rSAD had best performance among all methods. Its performance

depended on accurate F0 estimates that was achievable for this data. (iii) SSGMM had

relatively better performance than SohnSAD as it could get reliable SAD labels for initializing

the GMM models. (iv) SohnSAD had worst performance as it depended only on audio energy

and hangover scheme. With unique kind of distortions in OpenSAT PSC data, the energy

was not an appropriate SAD feature.

Finally, the SAD evaluations on CRSS-PLTL-II data had completely different

takeaways. Before we disclose the takeaways, lets note salient differences between CRSS-

PLTL-II data and NIST corpora. The CRSS-PLTL data was naturalistic with significant

reverberation and multi-layer noise in addition to overlapped speech and "Misc" vocalizations.

The speech-to-reverberation modulation energy ratio (SRMR) was less than 5 for majority

of the segments showing significant reverberation. NIST-OpenSAD corpus was derived

from DARPA RATS data consisting of re-transmitted telephonic conversations from source

channel. Thus, the DARPA RATS data had controlled channel distortions unlike naturalistic

distortions in PLTL. The OpenSAD data was not reverberant unlike PLTL. The PLTL data

was collected using not-so-close wearable microphones (LENA units) creating far-field SAD

scenarios. Telephonic conversations in DARPA RATS had negligible overlapped speech unlike

spontaneous conversations in CRSS-PLTL leading to approximately 10% overlapped speech

(according to ground-truth). This overlapped speech was present in audio stream processed by

each SAD algorithm. After getting SAD labels for complete audio, we ignored the overlapped

frames during DCF computation. Both false-alarms and miss-rate were equally bad for PLTL

corpus given the downstream analysis consisted of speaker diarization and behavioral speech

processing. PLTL DCF considered 0.5 weight for both Pfa and Pmiss. On the other hand,

the OpenSAD assumed miss-rate to be more serious problem than false-alarms leading to 0.75

weight given to Pmiss, while Pfa was assigned 0.25. Main takeaways from SAD evaluations

on PLTL data were as follows. (i) There were three evaluation sets derived from the PLTL
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data- original PLTL, PLTL data corrupted with 5 dB noise n1 from CRSS-LDNN corpus

and PLTL data corrupted with 5 dB noise n2 from CRSS-LDNN corpus. Performance of

all SAD algorithms degraded when we moved from original PLTL data to corrupted PLTL

data. (ii) Due to significant overlapped speech, state-of-the-art methods such as SohnSAD,

SSGMM and rSAD broke as their performance depended on speech energy and fundamental

frequency (F0) estimates. Among chosen baselines, SohnSAD and SSGMM were still doing

better than rSAD on PLTL data. This was due to F0 dependence in rSAD. In the presence of

reverberation, multi-layer noise and overlapped speech, it was challenging to obtain accurate

F0 estimates. Furthermore, rSAD performance depended on inbuilt speech enhancement

that computed noise spectrum from non-speech segments. The reverberant PLTL data cause

inaccurate speech enhancement leading to worst performance. (iii) SohnSAD was dependent

on speech energy and hangover scheme. Similarly, SSGMM trained speech and non-speech

GMM models on highest and lowest energy frames. As such, both methods had similar

performance. (iv) Proposed VMGMM backend was better than DipSAD with both Combo

and FDK-SAD features. (v) FDK-SAD features were robust to both noise n1 and n2 leading

to good performance on three datasets derived from PLTL and CRSS-LDNN corpora. (vi)

DipSAD solution was non-parametric with no model assumptions unlike VMGMM. Even

then, it performed much better than state-of-the-art SohnSAD, rSAD and SSGMM. It showed

the effectiveness of DipSAD for zero-resource naturalistic audio streams. In this way, the

results on PLTL data validated the efficacy of propose FDK-SAD features and VMGMM,

DipSAD backend for robust SAD for naturalistic audio streams. D-SAD is a computational

simple decision backend that works significantly better than all state-of-the-art approaches.

As expected, D-SAD performance is worse than DipSAD and VMGMM as it lacks flexibility

to optimize weights unlike VMGMM. Unlike DipSAD where recursions helps in refining

the SAD output, D-SAD is parameter free and work in single iteration. It is worth noting

that even if D-SAD is computationally simple, it significantly out-performs state-of-the-art

approaches.
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Now, we summarize the takeaways from text-dependent speaker verification ex-

periments using propose and baseline SAD approaches. We considered "No SAD" in this

pipeline. We use SohnSAD during training of UBM model that was fixed for all experiments.

During enrollment and test trials for each speaker, the corresponding SAD was use. In

principle, we could have use different SAD for UBM training to be more accurate however

we did not choose to do that for reducing the experimental overhead. EER metric was use

for comparative studies involving GMM-UBM speaker models. The main observations on

these experiments were as follows. (i) VMGMM was better than DipSAD thus following the

same trend as in standalone SAD evaluations. (ii) FDK-VMGMM had best performance

supporting accurate modeling of short audio using FDK-VMGMM pipeline. (iii) SSGMM had

worst performance given the short audio recordings having insignificant labels for training

GMM models. (iv) rSAD was poorer than VMGMM and SohnSAD, however still better than

"No SAD" case. Thus, rSAD had reasonable performance on RedDots as it did not need

labels for training GMM models unlike SSGMM. Speech enhancement in rSAD made it a

competitive SAD for RedDots.

Overall, the results on standalone SAD evaluations showed that the propose FDK-SAD

features and VMGMM, DipSAD back-ends were robust for naturalistic distortions. For

naturalistic CRSS-PLTL corpus, the propose approaches were significantly better than the

baseline methods.
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CHAPTER 4

SINCNETS BASED SPEAKER RECOGNITION AND DIARIZATION 1

4.1 Introduction

Speaker Diarization is front-end for multi-subject speech technologies. It provides solution

for who spoke and when? (Yella and Stolcke, 2015). It is in general an unsupervised/semi-

supervised system. It consists of sub-systems: (i) speech activity detection (SAD); (ii) speaker

change detection; (iii) clustering; (iv) re-segmentation where step (iv) is optional. Some

approaches combined step (ii) and (iii) into joint segmentation and clustering (Anguera et al.,

2012). Recently, researchers combined audio and visual cues in spectro-temporal fusion for

diarization (Gebru et al., 2018). This approach suits for challenging scenarios where several

speakers are engaged in interaction and assumes availability of video. Practical applications

of speaker diarization (Dubey et al., 2016a) include broadcast new analysis, low-latency

speaker spotting (Patino et al., 2018) and behavioral study (Dubey et al., 2017) .

State-of-the-art diarization systems use i-Vectors in speaker clustering. Recently, neural

network embeddings (d-vectors) were benchmarked for diarization task. A three layer network

with one LSTM layer and final linear layer was used for speaker diarization (Zhang et al.,

2018). However, most deep neural network based speaker embedding extractor are trained

on significantly large amount of data which is not always available (Snyder et al., 2018).

Recently, CNNs were explored for deriving speech representations for a variety of tasks.

Such approaches use magnitude spectrum for speech feature learning. The idea of exploring

a first layer with parameterized Gaussian filters in a deep neural network was explored

for speech recognition (Seki et al., 2017). It was trained at frame-level using spectrogram

features (Seki et al., 2017). Some studies evaluated custom layer consisting of Gabor filters

1©2019 IEEE. Portions Adapted, with permission, from H. Dubey, A. Sangwan, and J. H. L. Hansen,
"Transfer Learning Using Raw Waveform SincNet for Robust Speaker Diarization," In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6296-6300, 2019.
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using power-normalized spectrum as input for speech recognition (Chang and Morgan, 2014).

More recently, using raw waveform for training neural network is an emerging trend. This

approach is advantageous as it eliminate the feature extraction pipeline. Learning from

time-domain signal showed good results for tasks such as speech recognition (Sainath et al.,

2015), emotion identification (Trigeorgis et al., 2016), speaker verification (Ravanelli and

Bengio, 2018) and speech syndissertation (Van Den Oord et al., 2016).

In this chapter, we investigate SincNet for speaker diarization where the first layer consists

of sinc filters. Sinc-Layer learns compact band-pass filters suitable for speaker modeling. It is

parameterized by cut-off frequencies of these band-pass filters. The gain of sinc filters is learned

by later (convolutional and fully connected) layers in SincNet architecture (see Fig. 4.1).

SincNet was developed for speaker recognition in practical scenario where small training

data (few seconds/speaker) was available while the test utterance were very short (Ravanelli

and Bengio, 2018). We leverage efficient SincNet in a vanilla transfer learning (VTL) setup

where the SincNet was trained for frame-level speaker recognition on out-of-domain data

and later trained SincNet-VTL was used for extracting speaker embeddings from in-domain

data (see Fig. 4.2). We investigated several possibilities for extracting features, namely

F1, F2 and F3 that were later pooled to fh segment-level speaker models. We employed

length-normalized SincNet-VTL embeddings in a diarization pipeline that uses ground-truth

speaker segmentation and cosine K-means clustering.

4.2 SincNet Architecture

Recently, SincNet was developed as an efficient architecture for processing raw speech

waveform for speaker recognition (Ravanelli and Bengio, 2018). Fig. 4.1 shows the SincNet

architecture that consists of six hidden layers, namely, Sinc-Layer, two 1D convolutional layer,

and three fully connected layer. Sinc-Layer performs sinc-based convolutions on overlapping

frames (200ms with 10ms skip rate) of time-domain signal. After the first Sinc-Layer, standard
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Figure 4.1. The architecture of waveform SincNet (Ravanelli and Bengio, 2018). Sinc-Layer
performs time-domain convolutions on raw speech. Next, two 1D convolutional layers and
three fully connected layers filter the input. Final soft-max layer perform speaker classification.
Next, Convolutional and fully-connected layer are trained along with sinc layer for frame-level
(200ms frames with 10ms skip-rate) speaker classification.

CNN pipeline (pooling, batch normalization, ReLU activations, dropout) were employed. As

shown in Fig. 4.2, Sinc-Layer, CNN1 and CNN2 were followed by fully connected layers FC1,

FC2 and FC3. Sinc-Layer has 80 sinc filters each with a length of 251 and max pooling over

3. Both CNN1 and CNN2 layers had 60 filters each with length 5 and max pooling over 3.

Sinc-Layer, CNN1 and CNN2 employs layer normalization (Ba et al., 2016) and leaky ReLU

activations. Three fully connected layers namely FC1, FC2 and F3 had same configuration

i.e., 2048 nodes, batch normalization (Ioffe and Szegedy, 2015) and leaky ReLU activations.

Final soft-max layer has number of nodes equal to speaker count in training data. This

architecture takes raw speech from 200ms time-windows (frames) with 10ms skip rate and

trained for speaker recognition at frame-level.

Sinc-Layer learns the formants and pitch trajectory that facilitate efficient speaker model-

ing (Ravanelli and Bengio, 2018) and results in compact representation. Unlike fully connected

layers, convolutional ones focus on local regions of the input and extract shift-invariant fea-

tures that enhances overall recognition performance. Sinc-Layer consists of parametrized sinc

functions that acts as band-pass filters in spectral domain. Discrete-time sinc filters can be

represented as:

h[m, f1, f2] = 2f2 · sinc(2πf2m)− 2f1 · sinc(2πf1m) (4.1)
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The sinc(·) functions in above equation is defined as

sinc(x) = sin(x)/x. (4.2)

Thus, the Sinc-Layer tries to learn lower and upper cut-off frequencies for filters parametrized

by its nodes. For results discussed in this chapter, we initialized these with the cutoff

frequencies of the Mel filter-bank. Such initialization is preferred as it has more filters in

lower frequency spectrum that quantifies speaker characteristics. There are two constraints

in Eqn. 4.1 that need to be satisfied: f1 ≥ 0 and f2 ≥ f1. In fact, Eqn. 4.1 is employed with

the following cut-off frequencies:

f ′1 = |f1|

f ′2 = |f1|+ |f2 − f1|
(4.3)

From above equations, we see that Sinc-Layer tried to learn only the cut-off frequencies.

Next, convolutional and fully connected layers learn the gains for each sinc filter by assigning

appropriate weights. Passband ripples in Sinc filters is mitigated by Hamming windowing

that smoothen the abrupt discontinuities:

hw[m, f ′1, f
′
2] = h[m, f ′1, f

′
2] · whamming[m], (4.4)

where the Hamming window is defined as

whamming[m] = 0.54− 0.46 · cos(2πm

L
). (4.5)

The cutoff frequencies of Sinc-Layer are learned jointly with other parameters of SincNet

architecture using stochastic gradient descent. SincNet is attractive for speaker modeling

due to properties such as fast convergence, compact architecture (few parameters), and

computational efficiency (symmetric sinc functions).
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Figure 4.2. Proposed SincNet-VTL approach for extracting speaker embeddings from time-
domain speech. (a) In Stage 1, SincNet is trained for frame-level speaker identification using
out-of-domain data. (b) In Stage 2, we adopt the trained SincNet as feature extractor for
in-domain data. We max() or avg() pooled frame-level features to obtain utterance-level
embedding for getting different types of speaker embeddings. F3: output after Sinc-Layer; F2:
Output after both convolutional layers; F1: Output after three fully-connected layers. These
frame-level outputs were pooled to obtain the segment-level features for speaker diarization.
We used these speaker embeddings for comparative study involving several speaker clustering
approaches

4.3 SincNet-VTL for Speaker Modeling

This section explains the proposed approach for SincNet-based vanilla transfer learning

(SincNet-VTL) as depicted in Fig. 4.2. SincNet was trained using out-of-domain TIMIT

data (Garofolo, 1993). Pre-trained SincNet was adopted as feature extractor for in-domain

data such as CRSS-PLTL and AMI corpora. Speaker embeddings extracted from trained neu-

ral networks are emerging alternatives to i-Vectors for speaker modeling. SincNet is a recently

developed novel architecture designed for efficient processing of raw waveform (Ravanelli

and Bengio, 2018). Researchers found SincNet superior to CNN for speaker recognition and

verification tasks (Ravanelli and Bengio, 2018). We used SincNet trained on out-of-domain

data for vanilla transfer learning (VTL). We propose to leverage out-of-domain data in

speaker diarization through SincNet-VTL approach (see Fig. 4.2).
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We used TIMIT corpus (Garofolo, 1993) as out-of-domain data for training SincNets. We

ensured text-independent speaker modeling by not including utterance with same text for

all speakers, in the training data. Non-speech at the start and end of each utterance was

discarded for SincNet training. Time-domain speech signal was divided into 200ms frames

with 10ms skip-rate. SincNet was trained using raw speech waveform for frame-level speaker

recognition. Sinc-layer parameters was initialized with Mel-scale cutoff frequencies while rest

of the network was initialized with Glorot scheme (Glorot and Bengio, 2010). Final soft-max

layer implements frame-level speaker classification. The complete network was trained jointly

using RMSprop optimizer with learning rate 0.001. We trained it for 360 epochs with batch

size of 64. Trained SincNet-VTL has 462 nodes in output layer corresponding to speakers in

training data. We tuned network hyper-parameters on TIMIT corpus. During embedding

extraction on CRSS-PLTL corpus there were some segments that lasts for less than 200ms.

We repeated those segments until it becomes a segment of 1s for getting speaker embedding.

Since SincNet-VTL was trained on 200ms windows with 10ms skip-rate, we needed at-least

200ms for doing a forward pass on trained SincNet-VTL. We propose pooling frame-level

embeddings extracted using trained SincNet-VTL for getting segment-level embeddings (see

Fig. 4.2b).

4.4 Additive Margin Softmax Loss Function

In this section, we will describe the concepts related to softmax loss functions and its advanced

versions. Specifically, we focus on Additive Margin Softmax (AM-Softmax) that was originally

developed for face verification task (Wang et al., 2018). The main idea is to introduce a

margin around decision boundary to minimize the intra-class variances. AM-Softmax is simple,

intuitive, interpretable and easier to train as compared to angular Softmax (A-Softmax) (Liu

et al., 2017).
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Figure 4.3. Graphical illustration of concept underlying conventional softmax and additive
margin (AM-Softmax) (Wang et al., 2018).

Current state of the art deep neural networks (DNNs) for classification tasks are based

on softmax loss. The softmax loss optimizes the inter-class variance. However, it lacks the

capacity to reduce the intra-class variations. Several new loss functions have been studied

to minimize the intra-class variance. A study proposed to penalize the feature to center

distances by adding a regularization term to the loss function (Wen et al., 2016). Another

way to reduce the intra-class variance is by ensuring higher gradients for well-separated data

points. Researchers proposed using a scale parameter for this purpose (Liu et al., 2017;

Ranjan et al., 2017; Wang et al., 2017). The scale parameter control the temperature of the

softmax loss (Hinton et al., 2015). Another study proposed angular margin for shifting the

decision boundary towards the weight vector of the corresponding class (Liu et al., 2017).

Most of these studies were conducted for face verification task. However, these methods are

applicable for any deep neural network (DNN) based classifier.

The softmax loss function is employed at the output layer in DNNs. Since the last fully

connected (FC) layer acts as a linear classifier, the deep features of different speakers can

be distinguished by their decision boundaries. Softmax creates a linear decision boundary

for separating the feature vectors belonging to different speakers. It optimizes the decision

boundary but do not minimize the intra-class separation/distance. Conventional softmax is
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defined as:

Lsoftmax = − 1

n

n∑
i=1

log

{
eW

T
yi
fi∑C

j=1 e
WT
j fi

}
(4.6)

Eq. 4.6 can be written as:

Lsoftmax = − 1

n

n∑
i=1

log

{
e||Wyi ||·||fi||·cos(θyi )∑C
j=1 e

||Wj ||·||fi||·cos(θj)

}
(4.7)

Here, f is the input of last FC layer, Wj is the j-th column of last FC layer. W T
yi
fi is target

logit for i-th data point. The mini-batch size is n and number of speakers is C.

AM-Softmax is more interpretable and advanced version of softmax and introduces

angular margin in decision boundary. It has outperformed other competitive state-of-the-art

approaches such as A-softmax for face verification task (Wang et al., 2018). It introduces an

additive margin such that the feature vectors belonging to same class come closer to each

other and those belonging to different classes get farther from each other. Thus, it maximizes

inter-class separation and minimized intra-class separation (Wang et al., 2018). AM-Softmax

propose a specific ψ(θ) for introducing the additive margin, given as

ψ(θ) = cos(θ)−m, (4.8)

where, m is the margin parameter and usually an integer greater than 1. AM-Softmax

is implemented by normalizing the features and weights. Thus, now the input becomes

x = cos(θi) =
WT
yi]
fi

||Wyi ||·||fi||
. In this way, the forward pass require following computation:

Ψ(x) = x−m. (4.9)

Eq. 4.9 shows that we don’t need to compute gradients in back-propagation as Ψ′(x) = 1.

This significantly simplifies the computations. The use of cosine similarity for comparing

two speaker embeddings implies us to do both feature and weight normalization in the inner

product layer to build a cosine layer. For AM-Softmax, the norm of both Wi and f are

normalized to 1, i.e., ||Wyi || = 1 and ||fi|| = 1. Next, the cosine values are scaled using a
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hyper-parameter s (Liu et al., 2017; Wang et al., 2017). Now, the AM-Softmax loss function

becomes

Lams = − 1

n

n∑
i=1

log

{
es·(cos(θyi )−m)

es·(cos(θyi )−m) +
∑C

j=1,j 6=yi e
s·cos(θj)

}
, (4.10)

Eq. 4.10 can be written as

Lams = − 1

n

n∑
i=1

log

{
es·(W

T
yi
·fi−m)

es·(W
T
yi
·fi−m) +

∑C
j=1,j 6=yi e

s·WT
yi
·fi

}
, (4.11)

Even if scaling parameter, s can be learned through back-propagation, fixing the value of

s increases the training speed. Hence, we fix s =30 for all results discussed in this chapter.

Earlier, researchers found that AM-Softmax makes face recognition network to converge

quickly for any reasonable value of scaling parameter, s and margin parameter, m (Wang

et al., 2018). Thus, our AM-Softmax applies feature normalization and uses global scaling

factor, s.

Large margin parameter, m can further reduce the intra-class variance in AM-Softmax.

Also, it easily converges as compared to A-Softmax when suitable scaling parameter, s is

set (Liu et al., 2017). Thus, AM-Softmax do not require huge efforts on hyper-parameter

tuning and still bring large margin robustness to loss function. Fig. 4.3 shows geometric

illustration of conceptual difference between conventional softmax and AM-Softmax. It shows

2-D features that lie on a circle after normalization. In this case, the decision boundary of

the conventional softmax is given by a point connecting to center of the circle (origin) to

a curve joining two end of the feature values. On the other hand, AM-Softmax allows for

a margin between two different decision boundaries for both classes. In fact, the decision

boundary becomes a marginal region for AM-Softmax.

4.5 Center Loss (CL)

In this section, we aim to enhance the discriminative power of the SincNet learned speaker

embeddings by using a supervised center loss (CL). It was originally developed for face
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Figure 4.4. Showing that center loss (CL) enhances the discriminating power of deep speaker
embedding vectors.

recognition task where it performed best when combined with conventional softmax loss

function (Wen et al., 2016). It simultaneously learns a center for deep embeddings of each

speaker and penalizes the distances between deep features and their corresponding class

centers. It is easily trainable loss function. We leveraged CL jointly with conventional softmax

and AM-Softmax for training robust SincNet based speaker classifiers. There are two benefits

in this approach: (i) inter-class dispension, and (ii) intra-class compactness. Both these

factors enhances speaker recognition and diarization performance.

CL aims to improve the discriminative power of DNN based speaker embeddings by

minimizing the intra-class variance and ensuring the separability of different classes. The CL

loss function is given as

Lcenter =
1

2

n∑
i=1

||xi − cyi||22, (4.12)

where cyi ∈ Rd denotes the centroid (center) of yi class and xi is deep embedding. Eq. 4.12

effectively characterizes the intra-class variations. Ideally, the cyi need to be updated as the

deep features changes. For this to happen, we require the entire training set and average the

features of every class in each iteration. This is inefficient and impractical rendering CL to

79



be not used directly. So, the CL is used jointly with softmax as given below:

Ltotal = Lsoftmax + λLcenter, (4.13)

where λ is a real number parameter used for balancing these two loss functions. If we set

λ = 0, joint supervision loss function Ltotal becomes equal to conventional softmax loss.

Similarly, we combined center loss with AM-Softmax for SincNet to obtain AM-CL-Softmax

given by:

Ltotal = Lams + λLcenter. (4.14)

If we choose a suitable value of λ, the discriminative speaker embeddings from SincNet can

be significantly enhanced. Earlier, researchers found that deep features from CNN based on

joint supervision of CL and conventional softmax were discriminative over a wide range of

λ (Wen et al., 2016). In this study, we performed experiments with different values of λ to

optimize the network for diarization task.

In case of CL, joint loss Ltotal is necessary to achieve discriminative features. Lets say we

use only conventional softmax loss, then the speaker embeddings will have large intra-class

variance. In case, we use only CL, then the speaker embeddings and cluster centers both will

be very close to zero. Thus, singly either of them is not useful but joint loss achieves good

performance on classification tasks.

4.6 AM-SincNet, CL-SincNet and AM-CL-SincNet

Earlier in Sec. 4.2, we leveraged standard SincNet trained using Softmax loss function.

The choice of loss function is crucial for ensuring enhanced performance of deep learning

systems. Softmax is most commonly used loss function for classification tasks. However,

it is not the best choice for training SincNets for speaker identification. When we replace

the Softmax in SincNet by AM-Softmax loss function, we get the AM-SincNet architecture.

Previously, AM-SincNet was used for speaker verification experiments, in this chapter we
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Figure 4.5. We combined conventional Softmax and AM-Softmax with Center Loss (CL) to
obtain four version of SincNet: (i) standard SincNets with conventional Softmax loss; (ii)
AM-SincNet with AM-Softmax loss; (iii) CL-SincNet with weighted sum of conventional
Softmax loss and CL; (iv)AM-CL-SincNet with weighted sum of AM-Softmax loss and CL.
All the four architecture are trained on TIMIT data (462 speakers) for frame-level speaker
classification.

employ AM-SincNet in a speaker diarization task while training on out-of-domain data. The

additive margin in AM-SincNet decision boundary suits well to speaker identification task as

compared to conventional Softmax.Researchers compared AM-Softmax with Softmax loss

function for training SincNet on speaker identification task and found that AM-Softmax was

significantly better (Nunes et al., 2019) than conventional Softmax. AM-SincNet lead to

relative improvement of 40% in the Frame Error Rate (FER) when trained and tested on

TIMIT corpus. In this study, we leverage AM-SincNet for diarization task. We use both

Librispeech (Panayotov et al., 2015) and TIMIT (Garofolo, 1993) datasets for performing

experiments.

We use AM-Softmax loss function in SincNet for reducing the distance between embeddings

from same speaker which enhances the speaker recognition accuracy. Fig. 4.3 graphically

illustrates the idea of AM-Softmax as compared to conventional softmax. Clearly, AM-Softmax

makes the speaker embeddings more discriminative as compared to conventional softmax.

When CL is combined with conventional softmax in SincNet architecture, we get CL-SincNet.

When CL is combined with AM-Softmax, we get AM-CL-Softmax. Thus, we have four sinc
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Figure 4.6. Showing that center loss (CL) enhances the discriminating power of deep speaker
embedding vectors.

convolutional architecture namely: (i) SincNet, (ii) AM-SincNet, (iii) CL-SincNet, and (iv)

AM-CL-SincNet. We train these four architecture for frame-level speaker recognition using

TIMIT and Librispeech corpus. The trained networks for used in vanilla transfer learning

(VTL) setup shown in Fig. 4.2 for extracting frame-level features that are later pooled to

obtain segmental-level speaker embeddings. SincNet embeddings are combined with three

proposed clustering approaches for robust speaker diarization.

4.7 Supervised Transfer Learning (STL) with SincNets

Supervised Transfer Learning (STL) refers to use of additional source of information (from

out-of-domain source task) into an supervised classification on target domain (Pan and

Yang, 2009). Our goal in using STL setup for SincNet is to improve learning in the target

diarization task by leveraging knowledge from the source out-of-domain speaker recognition
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task. STL-SincNet proposed in this sections, transfers speaker discriminative information

from TIMIT to Librispeech corpora. Some of the benefits offered by STL approach are: (i)

better initial performance on Librispeech speaker recognition; (ii) faster speed of convergence;

(iii) better final performance on Librispeech speaker recognition; and (iv) better unsupervised

transfer to Diarization pipeline for CRSS-PLTL and AMI data.

Earlier, in Sec. 4.3, we proposed trained SincNet for extracting speaker embeddings from

in-domain CRSS-PLTL or AMI data. Here, the SincNet was trained only on TIMIT data.

In this section, we propose supervised transfer learning (STL) for proposed novel SincNet

architectures namely standard SincNet, AM-SincNet, CL-SincNet and AM-CL-SincNet. STL

approach is illustrated by Fig. 4.6. Top sub-figure shows a standard SincNet that is trained for

frame-level speaker classification using TIMIT data. After this network is trained, we adopt

it for next stage shown in bottom sub-figure. In second stage as shown in bottom sub-figure,

we discard the output layer learned in first stage. Next, we add two new layer where the

layer one is output later with 2484 nodes corresponding to 2484 speakers in Librispeech data.

Now, the new network is trained on Librispeech data for frame-level speaker classification.

In this setup, we freeze the inner layers of pre-trained network and only the last two layers

are learned using Librispeech data. This STL strategy increased the convergence speech of

our network and achieved state-of-the-art results on speaker recognition for Librispeech data.

There are two reasons behind this STL architecture. Firstly, the early layers in SincNet learn

robust, domain-invariant features. Secondly, later layers learn speaker discrimination for

speakers contained in training data. The STL-SincNet trained in this manner can be used

for extracting speaker embeddings from either last layer or second last layer. These speaker

embeddings can be used in diarization pipeline in same as the SincNet-VTL embeddings.

In this section, we first train the model on TIMIT with ground-truth SAD and later it was

trained on Librispeech without SAD. Thus, we pre-train on TIMIT data and fine-tune on

Librispeech data. We only utilized standard SincNet in this task. However, other architectures

such as AM-SincNet, CL-SincNet and AM-CL-SincNet can be similarly used in this setup.
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Figure 4.7. Standard SincNet trained on TIMIT data with no SAD. Evaluation results shown
for PLTL data. We compare i-Vector with average pooled F1, F2 and F3 embeddings. w/o
PCA means without PCA based dimensionality reduction.

Figure 4.8. Standard SincNet trained on TIMIT data with no SAD. Evaluation results on
AMI data (6 meetings). F2-avg with PCA (51 dim.) shows significant improvements over
i-Vector with PCA (51 dim).

4.8 Experiments, Results and Discussions

4.8.1 Experimental Setup

Unlike NIST RT evaluations (NIST NIST, d), no forgiveness collar was allowed during scoring

for results presented in this chapter. We adopted the NIST md-eval scoring script (version-22)
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for DER computations. We kept all audio data at 16 kHz for experiments reported in this

chapter. We trained an i-Vector extractor on TIMIT using ground-truth SAD. Since main

focus of this chapter was to develop a speaker model for diarization, we used ground-truth

speaker segmentation information. In this chapter, we adopted 75-dimensional (dim.) i-Vector

as many segments in PLTL were approximately 1s duration (or shorter). SincNet speaker

embeddings has dimensions: F1 (462), F2 (2048), F3 (6420). For all our experiments reported

here, we perform length-normalization of i-Vectors/embeddings followed by cosine K-means

clustering with cosine similarity. For some experiments, we employed principal component

analysis (PCA) for dimensionality reduction to 51.

Table 4.1. Standard SincNet trained on TIMIT data with no SAD. We show diarization
performance on CRSS-PLTL data: Effect of PCA (51 components) on DER (%) for i-Vector,
F2-avg and F2-max features.

i-Vector F2-avg F2-max
w/o PCA 15.26 13.37 43.55

PCA 15.26 12.81 14.36

4.8.2 Results and Discussions

Table 4.1 shows the effect of PCA (51 dimension) on DER (%) for three features: i-Vectors,

F2-avg and F2-max where the latter two are average and max pooled version of frame-level F2

embeddings from trained SincNet-VTL network (see Fig. 4.2). Fig. 4.7 shows the comparison

of i-Vector with average pooled F1, F2 and F3 embeddings with PCA. Fig. 4.8 shows DER

for 6 meetings of AMI meeting corpus using i-Vector baseline and best proposed feature, i.e.,

F2-avg. Looking at Table 4.1, we see that i-Vector did not get DER improvements from

PCA as i-Vectors were already lower dimensional. We see F2-max embeddings has benefited

the most with PCA. Even if F2-avg has obtain relatively small reduction in DER with PCA

as compared to F2-max, we get the best DER using PCA on F2-avg embedding. After

this point, we stick to average pooling as it was better than max pooling for all the three
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Figure 4.9. Comparing the impact of SAD on standard SincNet training in two setups: (i)
Ground-truth SAD used train SincNet; (ii) No SAD used in training SincNet.

embeddings. Fig. 4.7 shows that F2-avg is best feature for speaker diarization leading to

absolute and relative improvements of 2.45% and 19.12%, respectively with respect to i-Vector

baseline. These comparison were done on PLTL evaluation set as it is out target domain.

Fig. 4.8 shows comparison of F2-avg with i-Vector features for AMI data. Proposed F2-avg

embeddings gave significant DER (%) improvement as compared to i-Vector baseline on AMI

data. On average, F2-avg leads to absolute and relative improvements of 2.39 % and 52.06%,

respectively over i-Vectors. In this chapter, two type of pooling operations were performed

on frame-level embeddings to obtain segment-level features: max() and avg(). While max()

pooling pick maximum value along each feature dimensions, avg() pooling averages along

each dimension. As the results show in last section, avg() pooling performs better than max()

for all three types of speaker embeddings.
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Figure 4.10. Standard SincNet trained on TIMIT data with no SAD. We extract F2-avg
embeddings using ground-truth segmentation of CRSS-PLTL data. It shows t-SNE plot of
F2-avg embeddings. All eight speakers are distinct while speaker ID 8 (peer-leader) spoke in
most segments. The color bar looks continuous but in fact the speaker IDs are integers from
1 to 8.

Fig. 4.10 shows the t-SNE visualization (Maaten and Hinton, 2008) of F2-avg speaker

embeddings for CRSS-PLTL data. The t-SNE tries to find faithful representation of high-

dimensional data into a low dimensional space (typically 2D or 3D). It is a non-linear mapping

that adapts to the underlying data. We employed principal component analysis (PCA) for

dimensionality reduction of speaker embeddings and i-Vectors. We choose PCA with 51

components for both CRSS-PLTL and AMI evaluation sets. Since comparative studies in this

chapter were focused on speaker modeling the diarization pipeline consists of ground-truth

speaker segmentation and uses cosine K-means clustering with cosine similarity. SincNet-VTL

embeddings (F1/F2/F3) or i-Vectors were extracted from all segments for speaker modeling.

We always perform length normalization of speaker feature just before clustering. Some

experiments had PCA-based dimensionality reduction before length-normalization.
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Figure 4.11. Comparing the impact of SAD on AM-SincNet training in two setups: (i)
Ground-truth SAD used to train AM-SincNet; (ii) No SAD used in training AM-SincNet.

Fig. 4.9 shows that speaker recognition Frame error rate (FER) remains similar towards

end of training/convergence in both cases. Thus, impact of SAD on in-domain speaker

recognition is not significant. However, the corresponding DER (%) on CRSS-PLTL data

was 15.42% when using standard SincNet trained on TIMIT data without SAD. On the

other hand, when we used ground-truth SAD for training standard SincNet on TIMIT data,

corresponding PLTL DER becomes 10.63%. Thus, using ground-truth SAD during SincNet

training helped in reducing DER on out-of-domain PLTL DER. In this way, for handling with

domain mis-match and/or transfer learning, use of SAD for training initial model is useful.
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Fig. 4.11 shows the impact of SAD on AM-SincNet with margin parameter (m) = 0.90.

Similar to above experiments, we trained AM-SincNet with and without ground-truth data

using TIMIT data. Once again, we see that speaker recognition Frame error rate (FER)

remains similar towards the end of training/convergence. However, the corresponding PLTL

DER are 8.04 % (without SAD) and 12.10 % (ground-truth SAD). Here, we see that margin

helps in making the model robust. On the other hand, we observe that not using SAD for

AM-SincNet with 0.9 margin gives better results on PLTL DER than with ground-truth

SAD. High margin helps in making the well separated decision boundaries that can handle

presence of undesirable non-speech frames.

Fig. 4.12 shows the PLTL DER when different margin parameters, m were used for

training AM-SincNet on TIMIT data without SAD. We found that among the chosen margins,

0.9 gave best results in terms of PLTL DER. However, we are not able to see any consistent

trend in DER for increasing or decreasing margins. All these experiments use cosine K-means

clustering.

Fig. 4.13 illustrate the impact of margin parameter in AM-CL-SincNet training for PLTL

speaker diarization. We performed some selected experiments to explore the PLTL DER

for different parameter set. We can see that the margin helps in making the model robust

while still preserving the discriminative power of center loss (CL). PLTL DER for CL-SincNet

trained with different CL parameter (λ) value is shown where 0.10 gives the least DER. We

also trained the AM-CL-SincNet with fixed margin m = 0.5 and different CL parameter (λ)

values of 0.4, 0.5 and 0.6. We also show the result from standard SincNet (right most bar)

for comparison purposes. Clearly, CL-SincNet and AM-CL-SincNet are superior to standard

SincNet in terms of PLTL DER. All these experiments used TIMIT data for training SincNet

architecture and cosine K-means for speaker clustering in PLTL diarization pipeline. These

experiments also show that the CL parameter (λ) and margin parameter (m) need tuning

on target domain for best DER. We observe no consistent trend in DER with increasing
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Figure 4.12. Showing the impact of margin parameter used during training AM-SincNet on
TIMIT data with no SAD. We used the trained network for extracting speaker embedding
from CRSS-PLTL data. These embeddings are used in PLTL diarization pipeline. Best
(lowest) PLTL DER is obtained for m=0.90.

or decreasing values of CL parameter (λ) and /or margin parameter (m). Three results

from AM-CL-SincNet shows a very little variation in DER unlike significant DER change

in corresponding CL-SincNet with same values for CL parameter (λ). Thus, it shows that

adding AM-Softmax to CL-SincNet, i.e., AM-CL-SincNet is relatively more robust to changes

in CL parameter (λ) values as compared to CL-SincNet.

Fig. 4.14 shows the speaker recognition rate at utterance-level, referred here as sentence

error rate (SER) on Librispeech test data when we train STL-SincNet first on TIMIT with

ground-truth SAD and then on Librispeech training data without SAD (see Sec. 4.7). We saw
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Figure 4.13. Showing the impact of margin parameter in AM-CL-SincNet. There are only a
few experiments done to explore the PLTL DER for different parameter set. We can see that
margin helps in making the model robust while still preserving the discriminative power of
center loss (CL).

that initial performance is significantly better and after 50 epochs it achieved 0.832% error

rate which established state-of-the-art on Librispeech speaker recognition. Using standard

way for training SincNet model on only Librispeech data converges in 2900 epoch with a final

SER of 0.96% (Ravanelli and Bengio, 2018).

Table 4.2. Table summarizing the PLTL DER (%) for all SincNet architectures. It shows
only best (lowest) DER from corresponding SincNet architecture. PLTL evaluation data
consists of 80 min audio from peer leader in a session.

System Best PLTL DER
Standard SincNet 10.63

AM-SincNet (margin, m = 0.90) 8.04
CL-SincNet 14.81

AM-CL-SincNet (m=0.5, CL parameter, λ=0.5) 15.01
TL-SincNet (F1-avg) 13.29

Table 4.2 shows the PLTL DER (%) for all SincNet architectures. It shows only best

(lowest) DER from corresponding SincNet architecture. We used mean normalization of
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Figure 4.14. Showing the impact of speaker recognition sentence error rate (SER) % for
Librispeech test data. STL-SincNet was first trained on TIMIT with ground-truth SAD.
Next, the output layer was replaced by two new layers which are learned from Librispeech
data. Clearly, the initial performance (epoch 0) is very good. Also, this network converges
very fast leading to best SER at epoch 50.

speaker embeddings followed by 100 dimensional PCA for all experiments. Last steps consists

of length-normalization and cosine K-means clustering. We see that AM-SincNet gives best

results. It is simpler than AM-CL-SincNet and still performs better than AM-CL-SincNet.

We were not able to optimize AM-CL-SincNet parameters for best DER as there were many

possible experiments. TL-SincNet had only last two layers learned using Librispeech, even if it

established state-of-the-art speaker recognition accuracy, it is not suited well for out-of-domain

PLTL speaker diarization. A useful next step would be to initialize the whole network from

pre-trained SincNet and re-train all layers. This approach is left for future work.

4.9 Summary and Conclusions

In this chapter, we summarize our research efforts using SincNet architectures for speaker

diarization and recognition. We proposed four novel architecture based on recently developed

92



SincNets (Ravanelli and Bengio, 2018) namely: (i) Standard SincNet, (ii) AM-SincNet

with AM-Softmax loss, (iii) CL-SincNet with weighted sum of conventional Softmax and

center loss (CL), (iv) AM-CL-SincNet with weighted sum of AM-Softmax and CL loss. We

leveraged discriminative loss functions such as AM-Softmax and CL-Softmax for enhancing

the standard SincNets. We leveraged vanilla transfer learning (VTL) which is a unsupervised

transfer learning. In VTL setup, we train the SincNet for frame-level speaker classification

using out-of-domain data such as TIMIT or Librispeech corpus. The trained network for

referred as SincNet-VTL from which several speaker embeddings were extracted depending

on which layer of SincNet was used for embedding extraction. After this, we also leveraged

supervised transfer learning (STL) where the network was first trained on TIMIT data using

ground-truth SAD and later output layer was replaced by two new layers. Now, the new

network was trained for frame-level speaker classification using Librispeech training data.

This STL-SincNet established the best speaker recognition accuracy on Librispeech. However,

it could not help in enhancing PLTL diarization as we learned only last two layers in new

network while freezing the inner layers. We found that AM-CL-SincNet were more robust to

change in parameter values as compared to CL-SincNet and AM-SincNet. We did not optimize

the parameters of AM-CL-SincNet for PLTL diarization due to many experiments required to

do so. We found that AM-SincNet has best DER for margin, m= 0.90. Future research can

focus on using more data in STL and parameter optimization in AM-CL-SincNet for enhanced

diarization. Overall, the proposed SincNet based speaker modeling has out-performed i-Vector

speaker model.
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CHAPTER 5

ROBUST SPEAKER CLUSTERING

5.1 Introduction

Speaker Diarization (i.e. determining who spoke and when?) for multi-speaker naturalistic

interactions such as Peer-Led Team Learning (PLTL) sessions is a challenging task. Robust

speaker clustering plays an important role in diarization pipeline. In this chapter we propose

three approaches for speaker clustering namely (i) Mixture of von Mises-Fisher distributions

(movMF), (ii) Normalized Fuzzy C-means clustering (NFCM), and (iii) Toeplitz Inverse

Covariance-based speaker clustering (TIC). These three methods are benchmarked on CRSS-

PLTL corpora and AMI meeting corpus. We also performed another study to understand

effect of speech enhancement on speaker clustering performance. Fig. 5.1 shows the proposed

Figure 5.1. Proposed pipeline for evaluation of three proposed clustering approaches and
baseline cosine K-means clustering. For all experiments involving clustering studies, we
leverage ground-truth speaker segmentation to avoid errors from incorrect segmentation.
Three proposed approaches are: (i) movMF; (ii) NFCM and (iii) TIC. Except TIC all
algorithms require length-normalization. We perform mean subtraction on each dimensions of
speaker features where the mean was computed from entire meeting. PCA was used to study
the effects of de-correlating the speaker feature space and dimension reduction on clustering
performance. We use DER for performance assessment.

pipeline for benchmarking of proposed speaker clustering approaches. We chose cosine K-

means clustering as baseline approach. For all experiments involving clustering studies, we

leverage ground-truth speaker segmentation to avoid errors from incorrect segmentation. In
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this pipeline, we perform mean subtraction on each dimensions of speaker features where the

mean is computed from entire meeting. PCA is used to study the effects of de-correlating

the speaker feature space and dimension reduction on clustering performance. We use DER

as evaluation metrics for assessment of clustering performance.

The main component of diarization system is speaker clustering. It takes the initial-

segments of audio and group it into hard-partitioned clusters. Given the importance of robust

clustering for speaker diarization, several approaches were developed such as agglomerative

hierarchical clustering (AHC) (Sun et al., 2010), top-down clustering (Meignier et al., 2006),

cosine K-means clustering, and HMM-based speaker clustering (Ajmera and Wooters, 2003)

etc. Researchers proposed joint speaker segmentation and clustering schemes based on

unsupervised analysis (Anguera et al., 2012). In (Zhu et al., 2005), the MAP-adapted Gaussian

mixture-models (GMMs) were combined with Bayesian information criterion (BIC) for speaker

diarization. A reduced complexity clustering approach leverages modified integer linear

programming (ILP) (Dupuy et al., 2014). Recently, speaker diarization based on i-Vectors

probabilistic linear discriminant analysis (PLDA) approach was analyzed in details (Salmun

et al., 2017). Weighted GMMs were utilized for multi-speaker segmentation for DARPA Hub4

Broadcast News 1997 evaluation (Huang and Hansen, 2006). Unsupervised calibration of

PLDA scores was used within i-Vector clustering framework for CALLHOME corpus (Sell

and Garcia-Romero, 2014). Previously, von Mises-Fisher distribution were used for text-

independent speaker identification based on line spectral frequencies (LSFs) features (Taghia

et al., 2013). The square-root of differential LSFs has directional-characteristics, motivating

accurate modeling with vMF distributions. The movMF models were used for speaker

identification (Taghia et al., 2013), document clustering (Anh et al., 2013), similarity measure

for text-snippets (Sahami and Heilman, 2006), clustering gene expression profiles (Dortet-

Bernadet and Wicker, 2007), and bio-informatics (Mardia et al., 2007) etc.

Speaker clustering for PLTL sessions is a challenging task due to following reasons: (i)

presence of overlapped-speech; (ii) skewed cluster-sizes; (iii) cluster-sizes much smaller than
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i-Vector dimension; (iv) significant reverberation and multiple noise-sources etc. Since we

input the number of speakers (clusters) in proposed approach, it is referred as informed

speaker clustering. Previously, researchers analyzed the length-normalization of i-Vectors

concluding that the resultant length-normalized i-Vectors lie on a unit hypersphere (Garcia-

Romero and Espy-Wilson, 2011). We model normalized i-Vectors with a mixture of Nc

multivariate (d-variate) von Mises-Fisher distributions (movMF) (Banerjee et al., 2005, 2003).

Here, Nc is number of speakers and d is the i-Vector dimension. The normalized i-Vectors

lie on a unit hypersphere (Garcia-Romero and Espy-Wilson, 2011) and hence are accurately

modeled with a movMF. The vMF distribution defines a probability density function (PDF)

of feature-vectors lying on a unit hypersphere. Modeling the normalized i-Vectors stream

from an audio-recording with movMF mixture-model introduces weight parameters, α for

each distribution in the mixture. We used the expectation-maximization (EM) algorithm

for maximum likelihood estimation (MLE) of movMF model parameters. In this study, we

used the EM-based MLE approach developed for movMF mixture-model in (Banerjee et al.,

2005). The estimated parameters of Nc vMF distributions of movMF model corresponds to

respective speaker clusters.

5.2 MovMF: Mixture of von Mises-Fisher distributions

Speaker clustering for PLTL sessions is a challenging task due to following reasons: (i)

presence of overlapped-speech; (ii) skewed cluster-sizes; (iii) cluster-sizes much smaller than i-

Vector dimension; (iv) significant reverberation and multiple noise-sources etc. Since we input

the number of speakers (clusters) in proposed approach, it is referred as informed speaker

clustering. Previously, researchers analyzed the length-normalization of i-Vectors concluding

that the resultant length-normalized i-Vectors lie on a unit hypersphere (Garcia-Romero

and Espy-Wilson, 2011). We model normalized i-Vectors with a mixture of Nc multivariate

(d-variate) vo n Mises-Fisher distributions (movMF) (Banerjee et al., 2005, 2003). Here,
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Algorithm 3 Proposed movMF-based Speaker Clustering
Input: (1) Set χ of n length-normalized i-Vectors of dimensions d from each audio-segment;
(2) Number of speakers (clusters), i.e., Nc.
Output: (1) A disjoint-partitioning i.e., clustering of χ in Nc clusters; (2) Model parameters
of Nc d-variate vMF distributions of mixture-model.
METHOD:
1: Initialize all αh, µh, κh for h = 1, · · · , Nc

2: Repeat
3: {The hardened Expectation-step of EM}
4: for i = 1 to n do
5: for h = 1 to Nc do
6: fh(χi|θh)← cd(κh)e

κhµ
T
hχi

7: end-for
8: for h = 1 to Nc do
9: The hardened-distribution of hidden-variables is given by q(h|χi,Θ) ←1, if h = arg max

h′
αh′fh′(χi|θh′)

0, otherwise
10: end-for
11: end-for
12: {The Maximization-step of EM}
13: for h = 1 to Nc do
14: αh ← 1

n

∑n
i=1 q(h|χi,Θ)

15: µh ←
∑n

i=1χi q(h|χi,Θ)

16: r̄ ← ||µh||
nαh

17: µh ← µh

||µh||

18: κh ← r̄d−r̄3
1−r̄2

19: end-for
20: Until convergence

Nc is number of speakers and d is the i-Vector dimension. The normalized i-Vectors lie

on a unit hypersphere (Garcia-Romero and Espy-Wilson, 2011) and hence are accurately

modeled with a movMF. The vMF distribution defines a probability density function (PDF)

of feature-vectors lying on a unit hypersphere. Modeling the normalized i-Vectors stream

from an audio-recording with movMF mixture-model introduces weight parameters, α for

each distribution in the mixture. We used the expectation-maximization (EM) algorithm

for maximum likelihood estimation (MLE) of movMF model parameters. In this study, we
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used the EM-based MLE approach developed for movMF mixture-model in (Banerjee et al.,

2005). The estimated parameters of Nc vMF distributions of movMF model corresponds to

respective speaker clusters. Recently, we leveraged mixtures of von Mises-Fisher distributions

for robust speaker clustering (Dubey, Sangwan, and Hansen, Dubey et al.).

5.2.1 EM-based ML estimation of movMF model parameter

In this section, we present the EM-based ML estimation of model parameters. The d-

dimensional normalized i-Vectors are feature-vectors for estimation algorithm. The PDF of a

d-variate vMF distribution is given by

f(x|µ, κ) = cd(κ)eκµ
Tx (5.1)

where ||µ|| = 1, κ ≥ 0 and d ≥ 2. Here, the feature-vectors lie on unit hypersphere, i.e.,

x ∈ Sd−1 and (·)T denote transpose operation. The normalizing constant, cd(κ) is given by

cd(κ) =
κ
d
2
−1

(2π)
d
2 I d

2
−1(κ)

(5.2)

where Ir(·) is the modified Bessel function of first-kind and order r. The PDF f(x|µ, κ) has

two parameters, mean direction-vector µ, and concentration parameter κ. The κ indicate how

strongly the normalized i-Vectors drawn according to f(x|µ, κ) distribution are concentrated

along the mean direction-vector µ. Large κ signify substantial concentration along µ. Let

us consider a mixture of Nc d-variate vMF distributions as a generative model of recording-

specific normalized i-Vectors. Let fh(x|θh) denote the h-th vMF distribution in the movMF

model and its parameter-vector is θh = (µh, κh) for 1 ≤ h ≤ Nc. Then, the PDF of movMF

mixture-model with Nc component-vMF distributions is given as

f(x|Θ) =
Nc∑
h=1

αhfh(x|θh) (5.3)

where Θ = {α1, · · · , αNc ,θ1, · · · ,θNc}; and αh are non-negative mixture-weights such that∑Nc
h=1 αh = 1. Let χ = {χ1, · · · ,χn} be the stream of normalized i-Vectors to be modeled
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with mixture-model in Eq. 5.3. Let ζ = {ζ1, · · · , ζn} be the corresponding set of hidden-

variables that indicate the component-vMF distribution from which the i-Vectors are sampled.

Particularly, ζi = h if χi is sampled from distribution fh(x|θh). In terms of hidden variable-

vector ζ, the log-likelihood (LL) of n observed i-Vectors is given by

ln{P (χ, ζ|Θ)} =
n∑
i=1

ln{αζifζi(χi|θζi)}. (5.4)

For a given (χ,Θ), it is possible to estimate the most likely conditional-distribution of

ζ|(χ,Θ), and this forms the Expectation-step in EM algorithm. We use the EM algorithm

for maximizing the expectation of Eq. 5.4 with constraints µThµh = 1 and κh ≥ 0. As a result,

we get the following expressions for movMF model parameters (Banerjee et al., 2005):

αh =
1

n

n∑
i=1

p(h|χi,Θ), (5.5)

rh =
n∑
i=1

χi p(h|χi,Θ), (5.6)

µ̂h =
rh
||rh||

, (5.7)

I d
2
(κ̂h)

I d
2
−1(κ̂h)

=
||rh||∑n

i=1 p(h|χi,Θ)
. (5.8)

The Eqs. 5.7 and 5.8 correspond to Maximization-step in the EM algorithm leading to ML

estimates of modal parameters. Given these parameter updates, we now consider update

scheme for distribution of ζ|(χ,Θ) (i.e., an Expectation-step) to maximize the likelihood of

i-Vectors χ given the estimated parameters from Eqs. 5.7 and 5.8. Using the standard EM

algorithm, the distribution of hidden-variables is given by

p(h|χi,Θ) =
αhfh(χi|Θ)∑Nc
l=1 αlfl(χi|Θ)

. (5.9)

Since computing κ̂ involved a ratio of Bessel functions (see Eq. 5.8), it is not possible to

obtain an analytic solution. Various numerical and/or asymptotic methods are used for
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approximating κ̂. In our study, we used the κ̂ estimates developed in (Banerjee et al.,

2005). Researchers suggested an accurate κ̂ approximation for hard-partitioned clustering

applications (Banerjee et al., 2005). With Ad(κ) =
I d
2

(κ)

I d
2−1

(κ)
, observe that Ad(κ) is a ratio of

Bessel functions that differ in their order by one. The Ad(κ) can be expressed as a continued

fraction given as (Watson, 1995)

Ad(κ) =
I d

2
(κ)

I d
2
−1(κ)

=
1

d
κ

+ 1
d+2
κ

+···

(5.10)

Letting Ad(κ) = r̄, we could approximate the above Eq. 5.10 as

1

r̄
≈ d

κ
+ r̄. (5.11)

This leads to following approximation,

κ ≈ dr̄

1− r̄2
. (5.12)

Researchers empirically found that the approximation given in Eq. 5.12 could be improved by

adding a correction-term −r̄3
1−r̄2 to it (Banerjee et al., 2005). Thus, the final κ̂ approximation

used in our study becomes

κ̂ =
r̄d− r̄3

1− r̄2
. (5.13)

5.2.2 MovMF Speaker Clustering: Algorithm 3

The movMF models were used for speaker identification (Taghia et al., 2013), document

clustering (Anh et al., 2013), similarity measure for text-snippets (Sahami and Heilman,

2006), clustering gene expression profiles (Dortet-Bernadet and Wicker, 2007), and bio-

informatics (Mardia et al., 2007) etc. We outline the proposed approach in Algorithm 3. It

outputs the maximum-likelihood estimates (MLE) of movMF mixture-model parameters.

This method essentially iterates over two steps of standard EM algorithm until it converges.

In each Expectation-step of EM, i-Vectors are hard-assigned to a single cluster. The hardened-

distribution of hidden-variables is given in Step 9 of Algorithm 3. It is important to note
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that the denominator in Eq. 5.9 is same for all clusters and hence excluded from "arg max"

in Step 9. The i-Vectors are hard-assigned to a unique cluster on the basis of derived

posterior-distribution. Cluster labels are assigned by computing the arg max of posterior for

each i-Vector (Step 9 ).

Next in Maximization-step of EM, the model parameters of component-vMFs are updated

using the posteriors of component-vMF distributions given the i-Vectors (Step 12 to Step 19

in Algorithm 3). In the proposed hard-assignment approach, the posterior probabilities are

restricted to have only binary i.e., 0 or 1 values. With hard-assignments, the distribution

of hidden-variables is restricted to assume probability value 1 for some mixture-component

and 0 for all others. This hard-assignment strategy maximizes a lower-bound on incomplete

log-likelihood (LL) of i-Vectors data (Banerjee et al., 2005). In other words, the expectation

over distribution q(·) lower bounds the LL of i-Vectors data.

Upon convergence, the Algorithm 3 output the parameters of mixture-model with Nc

component-vMF distributions and the hard-clustering of i-Vectors (Step 20 ). The hard-

assignments in Step 9 reduce the computational-complexity as posterior probabilities are

binary values. The proposed clustering approach in Algorithm 3 requires only O(Nc) computa-

tions in each EM iteration. It need to store only the cluster-assignments for all feature-vectors

i.e., n integers. These two facts make the proposed clustering approach both computationally-

efficient and scalable.

5.3 NFCM: Normalized Fuzzy C-Means Speaker Clustering

Normalized Fuzzy C-Means (NFCM) speaker clustering is an extension of fuzzy c-means

(FCM) algorithm for clustering of data lying on unit hypersphere (Kesemen et al., 2016).

We propose NFCM as a distribution-free approach for speaker clustering. It is based on

the principle that each feature vector can belong to more than one cluster with different

membership values in range [0,1] (Bezdek, 2013). NFCM adopts angular difference as the
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Algorithm 4 Proposed NFCM Speaker Clustering
Input: GIVEN: (i) n length normalized speaker embeddings extracted from speech segments;
(ii) Speaker count, K Output: (i) Membership values for all feature vectors for each speaker
cluster; (ii) Cluster assignment for each speaker embedding, spkLabels = spkLabelsi for
i=1, 2,...,n.
METHOD:
1: Initialize
2: Choose m = 2 and a threshold parameter, ε > 0 such as 1e-10 Initialize cluster

centers,φ0
j using uniform distribution between -π and π, i.e, U(−π, π). Initialize time

variable, t=1.
3: Compute angular difference of all feature vectors, θi and each cluster center, φj given

by Eq. 5.17, i.e.
4: Ψij = (((θi − φj) + π)mod2π)− π
5: Compute µij with Ψij as follows:

µij =

(
K∑
k=1

(
||Ψij||
||Ψik||

) 2
m−1

)−1

, (5.14)

for i =1, 2,..., N; and j=1,2,...,K.
6: Now, update cluster centers using new values of Ψij and µij:

φ
(t+1)
j =

(((
φ

(t)
j +

∑n
i=1 µ

m
ijψij∑n

i=1 µ
m
ij

)
+ π

)
mod2π

)
− π (5.15)

where j = 1, 2,..., K.
7: Compute difference ||µ(t)) − µ(t−1)||.
8: If ||µ(t)) − µ(t−1)|| < ε , STOP
9: Else t = t+1 and obtainO step 3: for computing angular difference.

10: spkLabelsi = arg-max{µij} for j=1, 2,..., K.

similarity measure unlike distance-based methods. Use of angular distance make it a consistent

and non-parametric approach for directional data. In addition to provide accurate clustering

output, NFCM possess low computational time.

Let X = {x1, x2, x3, ..., xn} be n speaker embeddings of of dimensions d such that

xi ∈ Rd. Let say there are K speakers, then the clustering approach groups the feature

vectors into K groups with cluster centers, {ν1, ν2, ..., νj, .., νK}. It works on minimization of
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a generalized form of least-squared error functions, as given below:

Jm =
n∑
i=1

K∑
j=1

µmij ||x− i− νj||2, 1 < m <∞ (5.16)

In this study, NFCM is an extension for fuzzy c-means clustering. NFCM leverages angular

difference for clustering. The angular difference is defined as

Φ = (((θa − θb) + π)mod2π)− π (5.17)

Lets say, Θnfcm = {θ1, θ2, θ3, ..., θn} be the circular data representing the length normalized

speaker embeddings. NFCM tries to minimize following objective function:

Jnfcm =
i=1∑
n

j=1∑
K

µmij ||θi − Φj||2, 1 < m <∞ (5.18)

where m are the weights known as fuzzines parameters. We found m = 2 gives the best

speaker clustering results. Φj is center of the j-th cluster, µmij is the membership value of the

i-th feature vector assigned to j-th speaker cluster. The membership value, µmij must satisfy

the following conditions (Bezdek, 2013):

• It lies between 0 and 1 i.e.,

µij ∈ [0, 1]∀i, j (5.19)

• The membership values for each feature vector must sum to one i.e.,
K∑
j=1

µij = 1∀i (5.20)

• The sum of all membership values in a cluster must be smaller than the number of data

(n) i.e.,

0 <
n∑
i=1

µij < N∀N (5.21)

Algorithm 4 shows the iterations of NFCM that groups n length-normalized speaker embed-

dings into K speaker clusters. We chose the property of temporal consistency when dealing

with short temporal windows.
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Figure 5.2. The proposed TIC speaker clustering approach takes speaker features extracted
from windows of audio signal and perform clustering as a sequence of speaker states. Each
cluster A, B or C is characterized by its correlation network defined as a Markov Random
Field (MRF). Such MRFs capture the time-invariant partial correlation structure present in
all speech segments belonging to that speaker.

5.4 TIC: Toeplitz Inverse Covariance-based Speaker Clustering

Speaker clustering for naturalistic audio such as CRSS-PLTL is a challenging tasks owing to:

(i) presence of overlapped-speech; and (ii) significant reverberation and multiple noise-sources.

Toeplitz Inverse Covariance (TIC)-based clustering was originally developed for segmenting

the real-world time-series such as fitness-tracker, driving data (Hallac et al., 2017). Such

real-word temporal data has complicated structure with underlying sequences of few fixed

states that repeat in definitive patterns. Robust speaker clustering has a similar property, i.e.,

there is a small set of speaker (such as 10 for PLTL) that repeat throughout the audio stream

within different conversational patterns. Consequently, TIC model satisfies the requirements

for speaker clustering using speaker features derived from overlapping speech segments. Each

unique speaker is modeled as a correlation network defined by Markov random field (MRF).
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Figure 5.3. The proposed TIC approach takes speaker models from windows of audio signal
and perform speaker clustering as a sequence of states. Each speaker cluster, A, B, C is
characterized by its Markov random Field (MRF) correlation network. Each speaker MRF
captures the time-invariant partial correlation structure of any segments belonging to that
speaker.

Each network indicate the interrelationship between different audio segments belonging to

the corresponding speaker. We leverage a variant of standard expectation maximization

(EM) algorithm for estimating the underlying model and hence cluster the speakers. Speaker

models are first initialized. During E-step, feature vectors are assigned to clusters. Next in

M-step the model parameters are updated using dynamic programming (DP) and alternating

direction method of multipliers (ADMM) (Hallac et al., 2017)

Essentially, this approach views the temporal order of speaker embedding as a sequence

of states where each state is characterized by underlying MRF correlation network. Each

MRF corresponds to a unique speaker. Unlike centroid-based approaches such as K-means,

proposed approach determines the explainable inner structures in feature space belonging to

speaker embeddings. This leads to enhanced clustering performance. Each MRF captures

time-invariant partial correlation structure in all segments belonging to corresponding speaker.
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Algorithm 5 TIC-1: Assign-Clusters
Input: GIVEN β ≥ 0, −LogL(i, j) = negative log-likelihood for i-th feature vector when it
is assigned to j-th speaker cluster. K is the number of speakers. Time stamp of i-Vectors
(speaker features) is from 1 to T .
Output: FinalPath i.e. cluster assignment for each i-Vector.
METHOD:
1: Initialize
2: previous_cost = list of K zeros
3: current_cost = list of K zeros
4: previous_path = list of K empty lists
5: current_path = list of K empty lists
6:
7: for i = 1, . . . , T do
8: for j = 1, . . . , K do
9: min_index = index of minimum {previous_cost}

10: if previous_cost[min_index] + β > previous_cost[j] then
11: current_cost[j] = previous_cost[j] −LogL(i, j)
12: current_path[j] = previous_path[j].append[j] else
13: current_cost[j] = previous_cost[minIndex] + β −LogL(i, j)
14: current_path[j]=previous_path[min_index].append[j]
15: previous_cost = current_cost
16: previous_path = current_path
17: final_min_index = index of minimum {current_cost }
18: FinalPath = current_path[final_min_index]
19: return FinalPath

5.4.1 Proposed TIC Speaker Clustering

Toeplitz Inverse Covariance (TIC)-based clustering was found to be suitable for segmenting

the real-world time-series data such as fitness-tracker and driving data (Hallac et al., 2017).

Such temporal data has complicated structure where the underlying sequences of few fixed

states repeat in definitive patterns. Robust speaker clustering task possess a similar property,

i.e., a small set of speakers (such as 10 for PLTL) that repeat throughout the audio stream in

different conversational turns. In this section, we describe the TIC based speaker clustering

followed by discussion of experimental results in next section.
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Algorithm 6 TIC-2: Proposed TIC-based Speaker Clustering
Input: GIVEN: (i) Algorithm 5 for assigning i-Vectors to speaker clusters; (ii) i-Vectors
(features) for time 1 to T .
METHOD:
1: Initialize
2: Speaker cluster parameters, Θ
3: Diarization output, spk_labels = cluster assignment set C
4: Repeat
5:
6: E-step: Assign feature vectors to speaker clusters using Algorithm 5 i.e., map

i-Vectors ⇒ spk_labels (see section 3.1.)
7:
8: M-step: Update speaker cluster (model) parameters by solving the Toeplitz Graph-

ical Lasso (see section 3.2.) i.e., spk_labels ⇒ Θ
9:

10: Until Stationarity.
11: return (Θ, spk_labels)

In the proposed approach, each unique speaker is represented as a correlation network

modeled as a MRF. Such MRF networks capture the interrelationship between different

audio segments belonging to the corresponding speaker. A variant of standard expectation

maximization (EM) algorithm is leveraged for estimating the underlying models for each

speaker and hence grouping the i-Vectors into speaker clusters. First of all, the speaker

models are initialized. Next, EM iterations run alternately between Expectation (E-step)

and Maximization (M-step). During the E-step, feature vectors are assigned to speaker

clusters. Next in the M-step, model parameters are updated using dynamic programming

(DP) and alternating direction method of multipliers (ADMM) (Hallac et al., 2017). This

process of E-step followed by M-step is repeated until convergence. Essentially, the proposed

TIC approach views the temporal order of i-Vectors as a sequence of states characterized by

their MRF correlation network. Unlike centroid-based approaches such as cosine K-means,

proposed approach models the inner structure present in the i-Vector feature space. This

leads to enhanced clustering performance. Each MRF models the time-invariant partial
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correlation structure in all feature vectors belonging to the corresponding speaker (Hallac

et al., 2017).

5.4.2 E-step: Assign feature vectors to clusters (Algorithm 5)

Given the model parameters (i.e., inverse covariance matrices) Θi’s for each of the K speakers

clusters, solving optimization problem in Eqn 5.26 assigns the T speaker embeddings, x1,

x2,....., xT to these K clusters in such a way that maximizes the likelihood of data while

minimizing the number of times the cluster assignment changes across the time. Given K

potential cluster assignments of the T points, this combinatorial optimization problem has

KT possible mapping of feature vectors to clusters. We assign the cluster using a dynamic

programming (DP) approach presented in Algorithm 5 and depicted pictorially in Fig. 5.3.

It is equivalent to finding the Viterbi path with minimum cost for the feature sequence of

length T .

This task involves fixing the current value of Θ and solving the following combinatorial

problem for obtaining the cluster assignment set, C = {C1, C2, · · · , CK} :

minimize
K∑
i=1

∑
Xt∈Pi

N(Xt,Θi) + β1Xt−1 /∈Ci (5.22)

This equation assigns each of the T feature vectors to one of the K speaker clusters by jointly

maximizing the log likelihood and temporal smoothness ensuring neighboring blocks to be

assigned for same speaker. The regularization parameter, β is switching penalty and controls

the trade-off between two objectives. For large values of β → ∞, all speaker features are

grouped together into a single cluster.

5.4.3 M-step: Toeplitz Graphical Lasso (Algorithm 6)

Each speaker cluster is modeled as a Gaussian inverse covariance matrix, Θi ∈ RnbXnb

where nb is the feature dimension. Since the inverse covariance matrix show the conditional
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independence structure between the variables, Θi defines a Markov Random Field (MRF) that

encodes the structural representation present in all feature vectors of the i-th speaker cluster.

Sparse graphical representations prevent overfitting in addition to fetching interpretable

results (Lauritzen, 1996). In the M-step of EM algorithm, our objective is to estimate the

K inverse covariance matrices, Θ = {Θ1,Θ2, · · · ,ΘK} using the cluster assignment sets,

C = {C1, C2, · · · , CK}, where Ci ⊂ {1, 2, ..., T} obtained from the previous E-step. We can

estimate each Θi in parallel thus saving execution time. The negative log likelihood of feature

vector, Xt to be assigned for i-th cluster with model parameter Θi, N(Xt,Θi) can be written

in terms of each Θi as follows (Hallac et al., 2017):

∑
Xt∈Ci

N(Xt,Θi) = −|Ci|(log det(Θi) + tr(SiΘi)) + γ (5.23)

where |Ci| is the number of feature vectors assigned to the i-th cluster, Si is the empirical

covariance of these feature vectors, and γ is a constant independent of Θi. Now, the M-step

of EM algorithm becomes

minimize− log det(Θi) + tr(SiΘi) +
1

|Ci|
||λ ◦Θi||1

subject to Θi ∈ T (5.24)

where T is a set of blockwise Toeplitz matrix. Eqn. 5.24 represents a convex optimization

problem known as Toeplitz graphical lasso (Hallac et al., 2017). It is a type of graphical

lasso problem with additional constraint of block Toeplitz structure on the inverse covariance

matrices. Here, λ is a regularization parameter matrix for handling the trade-off between two

objectives: (i) maximizing the log likelihood, and (ii) ensuring Θi to be sparse. For invertible

matrix Si, likelihood objective lead Θi to be near S−1
i . The inverse covariance matrix, Θi

is constrained to be block Toeplitz and λ is a nbXnb matrix so that it can regularize each

sub-block of Θi differently. A separate Toeplitz graphical lasso is solved for each speaker

cluster at every iteration of the EM algorithm. Since we require several iterations of the
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EM algorithm before speaker clustering converges, a fast and efficient approach based on

alternating direction method of multipliers (ADMM) is employed for this purpose (Hallac

et al., 2017). For more details on solving this Toeplitz graphical lasso, please refer to Section

4.2 in (Hallac et al., 2017). In this section, we propose a model-based speaker clustering

approach that explores graphical dependency structures in feature space. We formulate the

speaker clustering as a structured inverse covariance estimation problem known as Toeplitz

graphical lasso. Our work is motivated by recent success of this approach for unsupervised

analysis of physiological data (Hallac et al., 2017).

5.4.4 TIC Clustering as an Optimization Problem

In this section, we will formulate the speaker clustering in terms of an optimization problem.

Lets say we have raw i-Vectors from consecutive speech segments denoted as x1, x2, · · · , xT ,

where xi ∈ Rd and d is the length of speaker features (such as i-Vector). Speaker clustering is

the task of distributing these i-Vectors into K groups. We can treat each i-Vector in context

of its predecessors or can treat these independently.

Our approach consists of two algorithms: Algorithm 5 - AssignClusters; and Algorithm 6

- Proposed speaker clustering. First algorithm assign each feature vector xi to a unique

cluster. While second one update the model parameters by solving the Toeplitz graphical lasso

problem using dynamic programming (DP) and alternating direction method of multipliers

(ADMM) approaches. This is similar to standard EM algorithm where these two approaches

correspond to E and M steps, respectively. Until convergence, we iteratively cluster the data

and then update the model parameters (Hallac et al., 2017).

Lets say, we want to cluster a speech signal, Sorig consisting of T segments that can be of

same or different length. Then, the sequences of features for clustering becomes:

Sorig = [x1,x2,x3, ...xT], (5.25)
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where xi ∈ Rd is d-dimensional speaker model for i-th speech segment. We can either

treat each segment independently or in context of its predecessors. Thus, rather than just

looking at xt, we can rather cluster a short sub-sequence of size b << T that ends at time t.

Smoothing parameter, β is introduced for ensuring temporal consistency in audio stream.

This forces the adjacent segments to be clustered as same speaker. It can be chosen as a

regularization parameter according to audio corpus. Model parameters are estimated and

iteratively updated by solving Toeplitz graphical lasso. It learns the graphical structure

from data based on alternating direction method of multipliers (ADMM). Along with the

cluster assignments, this approach estimates the underlying MRF dependency network. Each

cluster model is defined by a Gaussian inverse covariance matrix, Θi ∈ RdXd where d is the

dimensions of input vector. In a study, researchers found that inverse covariance captures

the conditional dependency structure between the variables (Koller et al., 2009), hence Θi

defines a MRF encoding the structural representations in i-th speaker cluster. Being a sparse

graphical structure it is robust to over-fitting (Lauritzen, 1996).

The objective is to address for K inverse covariance matrices, Θ = {Θ1,Θ2, ...,ΘK}, one

per speaker and find the corresponding cluster assignment sets, C = {C1, C2yyi, · · · , CK}

where Ci ⊂ {1, 2, 3, · · · , T}. We assign each of the T points to exactly one cluster. Overall

TIC optimization problem is given by

arg min
Θ∈T,C

K∑
i=1

[
||λ ◦Θi||1 +

∑
Xt∈Ci

(
N(Xt,Θi) + β1Xt−1 /∈Ci

)]
(5.26)

where N(·) is negative log-likelihood. Here, T refers to a set of symmetric block Toeplitz

matrices and ||λ ◦Θi||1 is an L1-norm penalty of the Hadamard product to enforce sparse

inverse covariance with regularization parameter matrix λ. N(Xt,Θi) denote negative log-

likelihood of feature vector Xt to belong in i-th cluster and is given by

N(Xt,Θi) =
1

2
(Xt − µi)TΘi(Xt − µi)−

1

2
log det(Θi) +

n

2
log(2π), (5.27)
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where µi is the empirical mean of i-th cluster.

In Eqn. 5.26, β is the smoothness parameter to control temporal consistency, and 1Xt−1 /∈Ci

is an indicator function to show if neighboring points belong to the same cluster. Proposed

speaker clustering constrains the inverse covariance matrices Θi to be block Toeplitz. It

means, Θi is nbXnb matrix with following structure:

Θi =



P (0) (P (1))T (P (2))T · · · (P (b−1))T

P (1) P (0) (P (1))T
. . . . . .

P (2) P (1) . . . . . . . . .
. . . . . . . . . . . . . . .
. . . . . . P (1) P (0) (P (1))T

P (b−1) · · · · · · P (1) P (0)


where b is window size used in clustering and, P (0), P (1), · · · , P (b−1) ∈ Rnxn. Block P (0)

represents the intra-time partial correlations. For MRF corresponding to this cluster, P (0)

defines the adjacency matrix of the edges within each layer. The off-diagonal sub-blocks

refer to cross-time edges. Essentially, the block Toeplitz structure constraint on inverse

covariance matrix ensures time-invariance of speaker models over window size b. In this

modeling approach, we identify each speaker cluster by a unique structural pattern in feature

space.

Thus, TIC speaker clustering is an optimization problem represented by Eqn. 5.26. It has

two variables, cluster assignment sets C and inverse covariance matrices Θi’s for each cluster.

This optimization problem is highly non-convex and hence no tractable method is available to

obtain the globally optimal solution (Hallac et al., 2017). A modified version of standard EM

algorithm is used to iterate through two steps in an alternating fashion: (Step 1) assigning

features to clusters; (Step 2) Updating model parameters using latest assignments. Even if

this approach do not yield globally optimum solution, it was found to work well on clustering
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tasks (Hallac et al., 2017; Fraley and Raftery, 2006). Next, we discuss these two steps in

detail and present an efficient implementation.

5.4.5 Practical Aspects

Context Dependence

For β = 0, TIC speaker clustering treats each feature vector independent of each other.

Thus, eliminating the temporal consistency constraint and letting each speech segment to be

assigned a cluster independent of its location in the audio stream. This is a good setup for

speech segments of size 1s or longer. For shorter segments such as 100ms, a small value of β

can be a better choice. It provides flexibility to choose the resolution of speaker diarization

system.

Regularization

The proposed speaker clustering approach is an optimization problem with two regularization

parameters, matrix λ and scaler β. While λ controls the sparsity in MRFs corresponding

to each cluster, β governs the temporal smoothness. Higher values of β encourage adjacent

feature vectors to be assigned same speaker. In general, λ is a matrix. Practically, it is

sufficient to fix it at a constant value for reducing the grid-search efforts. We can also choose

prior values of λ and β obtained with help of a development set. Otherwise, these can be a

user defined constant values. We choose these values to optimize the DER for each corpus.

Window size

TIC speaker clustering allows us to cluster either a block of several consecutive speaker

features or just single speaker features. This provides flexible modeling. Instead of clustering

each speaker embedding xt in isolation, we can also perform clustering over a segment

consisting of embeddings from time t − b + 1 to t. For this, we concatenate these feature
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vectors into a nb dimensional vector, Xt. Here, the window size, b is an important parameter.

Proposed clustering approach assumes time-invariant structure for each speaker cluster, thus

allowing it to learn cross-time correlations in speaker embedding space.

5.5 Speech Enhancement and Ground-truth Segmentation

Speech enhancement-based diarization pipeline has two stages: (i) ground-truth segmentation;

(ii) proposed movMF-based speaker clustering. The ground-truth segmentation information

is used for extracting segment-level i-Vectors. We post-process the i-Vectors with principal

component analysis (PCA) for dimensionality reduction followed by length-normalization.

Length-normalized i-Vectors lie on a unit hypersphere and possess discriminative directional-

characteristics. We model the normalized i-Vectors with a movMF mixture-model. Baseline

consists of cosine K-means clustering (with cosine distance) for normalized i-Vectors. The

evaluation data is derived from: (i) CRSS-PLTL corpus; and (ii) three-meetings subset of

AMI corpus. The CRSS-PLTL data contain audio recordings of PLTL sessions which is

student-led STEM education paradigm.

In this section, our diarization pipeline consists of three components: (i) speech derever-

beration; (ii) ground-truth segmentation; and (iii) proposed movMF-based speaker clustering

(or baseline cosine K-means). The purpose of this study is to develop movMF-based speaker

clustering so we used ground-truth segmentation information for i-Vector extraction. Using

ground-truth segmentation is important to prevent irrelevant errors due to incorrect segmenta-

tion as we focus on speaker clustering. Previously, researchers found that speaker clustering

could be developed independent of other components in diarization pipeline (Sinclair and

King, 2013).

The CRSS-PLTL data is significantly reverberated so we perform experiments with both

original (raw) and dereverbed audio. We employed weighted prediction error (WPE)-based

dereverberation approach developed for REVERB challenge (Yoshioka et al., 2011). After
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dereverberation, we get the initial speaker-segments using the ground-truth segmentation

information for preventing the irrelevant errors in speaker clustering. We used only raw audio

from AMI meeting corpus to avoid reporting too many results.

5.6 Experiments, Results and Discussions

In this section, we discuss the results on CRSS-PLTL and AMI corpora. We first discus

the speech enhancement speaker clustering using movMF. Next, we discuss the results with

speech enhancement as enhancement has not lead to consistent improvements in DER.

(a) (b)

Figure 5.4. PLTL results: (a) Diarization error rate (DER) for proposed and baseline
approaches. We used raw audio (original data) and dereverbed audio in our experiments. The
"w/ PCA" denotes PCA-based dimension-reduction of i-Vectors with PCA to 51 dimensions
before length-normalization. The % relative improvement (reduction) in DER with respect
to baseline is shown in red color on top of each bar. The proposed approach is able to
significantly reduce the DER elucidating improved performance in all cases. (b) Frame-wise
mutual information (MI) for proposed and baseline approaches. The % relative improvement
(increase) in MI with respect to baseline is shown in red color above each bar. The proposed
approach shows better performance in terms of consistent increase in MI.

5.6.1 Speech Enhancement based movMF Results

Our evaluation PLTL data contains audio of the peer-leader’s channel from a 80-minute

session with 8 participants. We obtain the ground-truth segmentation and speaker labels from

human annotators. Fig. 5.4 compares the performance of movMF approach with baseline on
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Figure 5.5. AMI (three-meetings subset) results: Diarization error rate (DER) for proposed
and baseline approaches. The "w/ PCA" case refers to PCA-based dimensionality reduction
of i-Vectors to 65 before length-normalization. The % relative improvement (reduction) in
DER with respect to baseline is shown in green color above each bar. The proposed approach
showed significant reduction in DER.

PLTL data enhanced with speech enhancement as discussed in Sec. 5.5. Sub-figure Fig. 5.4

(a) illustrates the DER while (b) shows the frame-level MI for raw and dereverbed audio.

The majority of PLTL speaker turns were less than one-second (though few lasted over

two seconds), we chose 75 (lower) dimensional i-Vectors. We repeated all experiments with

PCA for reducing the i-Vector dimension to 51. This PLTL audio contains significantly 10%

overlapped-speech that was incorporated as a separate cluster during evaluation. Thus, the

number of cluster becomes 9 that includes peer-leader, 7 students and overlapped-speech.

Clearly, the proposed movMF approach has improved performance in terms of lower DER

and higher MI values compared to baseline. The consistent improvement in all cases with

original and enhanced audio, with or without PCA validate the efficacy of movMF model

for robust speaker clustering. We have similar observation on three-meetings subset of AMI

data as illustrated in Fig. 5.5. We included only DER for AMI data to avoid presenting

too many results. The CRSS-PLTL audio has higher levels and more varied forms of

distortions as compared to AMI corpus resulting in a challenging diarization scenario. The

proposed clustering approach has the ability to adapt the concentration parameter (κ) for

each component vMF distribution in the mixture-model. This created a flexible modeling
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of normalized i-Vectors that is substantially better than cosine K-means as cosine K-means

do not estimate the weight or concentration parameters unlike movMF model. The movMF

clustering do a better job by taking advantage of the concentration estimates for each

component vMF distribution.

Figure 5.6. PLTL results: (a) Diarization error rate (DER) for three proposed methods
(movMF, NFCM and TIC) and baseline cosine K-means clustering. TIC has the best
performance without PCA as models the correlation in speaker features. TIC achieves
significant reduction in DER as compared to other methods. When SincNet embeddings are
used in Cosine K-means, DER significant reduced compared to i-Vectors.

5.6.2 Speaker Clustering Results

We perform comparison of proposed method with cosine K-means clustering on i-Vector and

AM-SincNet with 0.95 margin and F2 embeddings (Dubey et al., 2019). Naturalistic audio

data from CRSS-PLTL is used during evaluation. PLTL is our target domain so we adopted

it for evaluation studies. Fig. 5.6 shows the DER on CRSS-PLTL using proposed clustering.

We compare i-Vectors with F2-avg embeddings obtained from a AM-SincNet (m=0.95) model

trained on TIMIT data. Unlike NIST RT evaluations (NIST NIST, d), we do not apply

any forgiveness collar to the reference human annotations prior to scoring. We ignore the

117



overlapped-speech for experiments in this section. NIST md-eval scoring script (version-22)

was used for DER computations (Wooters and Huijbregts, 2007).

First of all, we can see that all three proposed algorithms are better than cosine K-means

baseline. NFCM speaker clustering has best results on AM-SincNet embeddings while TIC has

best results when using i-Vector speaker models. We used PCA for cosine K-means, movMF

and NFCM experiments. TIC works on learning a correlation model of speaker embeddings

hence we do not apply PCA for TIC experiments. Length-normalization is performed for all

algorithms discussed in this section. TIC has the best performance without PCA as it works

on correlation model of speaker embeddings. TIC achieves significant reduction in DER as

compared to other methods. When SincNet embeddings are used in Cosine K-means, DER

significant reduced compared to i-Vectors.

Among proposed approaches NFCM has least computational complexity and TIC has

the highest. The movMF speaker clustering is moderate complexity and lies between NFCM

and TIC. Even if NFCM is simple and fast approach, it led to significant DER reductions

while using AM-SincNet speaker embeddings. TIC has best results on i-Vector. It is due to

correlation in i-Vector features which is effectively captured by the TIC model.

The PLTL data contains audio of the peer-leader’s channel from a 80-minute session

with seven students. We obtain the ground-truth segmentation and speaker labels from

human annotators. Fig. 5.4 compares the performance of proposed approach with baseline

on PLTL data. Sub-figure 5.4 (a) illustrates the DER while (b) shows the frame-level MI for

raw and dereverbed audio. The majority of PLTL speaker-turns were less than one-second

(though few lasted over two-seconds), we chose 75 (lower) dimensional i-Vectors. We repeated

all experiments with PCA for reducing the i-Vector dimension to 51. This PLTL audio

contains significantly 10% overlapped-speech that was incorporated as a separate cluster

during evaluation. Thus, the number of cluster, Nc= 9 that includes peer-leader, seven

students and overlapped-speech. The proposed approach has improved performance in terms
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of lower DER and higher MI values compared to baseline. The consistent improvement in all

cases with original and enhanced audio, with or without PCA validate the efficacy of movMF

model for normalized i-Vectors. We have similar observation on three-meetings subset of AMI

data as illustrated in Fig. 5.5. We included only DER for AMI data to avoid presenting too

many results. The CRSS-PLTL audio has higher levels and more varied forms of distortions

as compared to AMI corpus resulting in a challenging diarization scenario. The proposed

movMF speaker clustering has the ability to adapt the concentration parameter κ for each

component-vMF distribution in the mixture-model. This created a flexible and accurate

modeling of length-normalized i-Vectors that is substantially better than cosine K-means

as cosine K-means do not estimate the weight or concentration parameters unlike movMF

model. The movMF clustering do a better job by taking advantage of the concentration

estimates for each component vMF distribution.

5.7 Summary and Conclusions

This chapter proposed and benchmarked three clustering approaches: (i) movMF, (ii) NFCM,

(iii) TIC as compared to cosine K-means clustering. Our evaluation data was derived from

naturalistic CRSS-PLTL and AMI meeting corpus. While NFCM is computationally simple,

it seems to be effective on AM-SincNet embeddings. NFCM provides soft speaker clustering

unlike movMF and TIC. TIC models the speaker features with MRFs and hence capture

the underlying correlation model. TIC was best approach for i-Vector features leading to

significant DER (%) reductions for CRSS-PLTL data. All the best approaches are better

than baseline method on both AM-SincNet speaker embeddings and i-Vector speaker model.

First of all, we can see that all three proposed algorithms are better than cosine K-

means baseline. NFCM speaker clustering has best results on AM-SincNet embeddings

while TIC has best (least) DER on PLTL data when using i-Vector speaker models. We

used PCA for cosine K-means, movMF and NFCM experiments. TIC works on learning a
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correlation model of speaker embeddings hence we do not apply PCA for TIC experiments.

Length-normalization is performed for all algorithms discussed in this section. TIC has the

best performance without PCA as it works on correlation model of speaker embeddings.

TIC achieves significant reduction in DER as compared to other methods. When SincNet

embeddings are used in Cosine K-means, DER significant reduced compared to i-Vectors.

NFCM has least computational complexity while TIC has the highest. One the other

hand, complexity of movMF speaker clustering lies between NFCM and TIC. Simple and fast

NFCM algorithm led to significant DER reductions with AM-SincNet speaker embeddings.

It is worth noting that Cosine K-means is a special case of proposed movMF-based speaker

clustering (Algorithm 3). If we impose all mixture-weights (αh for 1 ≤ h ≤ Nc) to be equal

and all concentration parameters (κh for 1 ≤ h ≤ Nc) to be equal (with any value), then the

proposed movMF-based speaker clustering becomes equivalent to Cosine K-means. Thus,

we can say that proposed algorithms provide a good variety of supply for speaker clustering

ranging from low complexity to high, from correlation model to centroid-based models. When

combined with proposed SincNet speaker embeddings and i-Vector speaker models, proposed

speaker clustering lead to robust diarization marked with significant reductions in DER for

CRSS-PLTL and AMI meeting corpora.
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CHAPTER 6

KNOWLEDGE EXTRACTION FOR PLTL INTERACTION ANALYSIS 1

6.1 Introduction

In this chapter, we summarize our research on audio-based knowledge extraction approaches

that is used for analyzing the PLTL interactions. For this purpose, we explore unsupervised

analysis and pre-trained models where the models were trained on out-of-domain data. As

we described in Chapter 2, PLTL is a student-led STEM education model where a peer-

leader facilitate problem-solving in 6-8 students (Carlson et al., 2016; Dubey et al., 2016b).

CRSS-PLTL corpora contains multi-stream audio for each session where the number of

streams is same as total participants. The salient features of this data are: (i) many segments

with overlapped-speech; (ii) short conversational-turns; (iii) multiple noise-sources; and (iv)

reverberation. These factors made PLTL speaker diarization challenging. In this chapter,

we choose the channel corresponding to PLTL leader for single-channel interaction analysis.

Speaker diarization is front-end for interaction analysis of PLTL sessions. Our evaluation set

has 8 speakers and lasted for about 80 minutes. It is important to note than many speaker

turns lasted for less than 1 second. Education researchers are interested in understanding

the impact of participation and group-behavior on class performance. This encouraged

us to study audio-based interaction analysis for PLTL sessions. We propose unsupervised

dominance score, word-count, question inflection detection, emphasis detection, student

participation, and CRSS speech profiler for engagement analysis (Dubey et al., 2016b, 2017).

These attributes are estimated using audio signal and diarization output.

Previously, researchers defined behavioral signal processing as computational methods

and signal processing approaches for predicting the behavioral patterns in small-group

1©2017 Elsevier Ltd. Portions Adapted, with permission, from H. Dubey, A. Sangwan, J. H. L. Hansen, "H.
Dubey, A. Sangwan, and J. H. L. Hansen. "Using speech technology for quantifying behavioral characteristics
in peer-led team learning sessions." Computer Speech and Language 46 (2017): 343-366.
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Figure 6.1. Block diagram of proposed speech processing pipeline for analysis of PLTL
extraction. We detect several attribute related to PLTL interactions that helps in knowledge
extraction for each sessions. Such analysis results are useful for PLTL researchers who wants
to study effect of communication behavior on student’s performance in semester exams. We
leverage diarization output that helps in processing each segment through interaction analysis
block.

interactions (Narayanan and Georgiou, 2013). We propose acoustic analyses for extracting

features that encapsulate communication behaviors and inter-person turn taking (See Fig. 6.1).

Specifically, we extracts following attributes: (1) participation analysis; (2) dominance score;

(3) question inflection detection; (4) emphasis detection; (5) speech rate (word count); and

(6) CRSS Speech Profiler. These high-level attributes aim to highlight salient aspects of

interactions patterns found in PLTL interactions. Fig. 6.1 shows the block diagram of the

proposed pipeline that highlights the modular structure of our speech systems.

PLTL audio is first processed with speaker diarization block to know who spoke and when.

Second stage consists of speech based methods for extracting attributes related to PLTL

interactions. The proposed methods are evaluated on disjoint evaluation datasets taken from

CRSS-PLTL corpus (See Table 6.3).
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Figure 6.2. The distribution of WADA-SNR (Kim and Stern, 2008) and NIST-STNR (NIST
NIST, c) signal to noise ratios(SNRs). Five-minute segments were processed to generated
these ratios. We used total of three teams with nine channels each. All teams participated
in 80 minute PLTL session, so in total 36 hours of data was used for generating this figure.
Since all PLTL sessions were carried out in same space, we could not observe any significant
difference in this plot by using more data. NIST STNR have tri-modal distribution while
WADA-SNR had bi-modal distributions. We can see that the majority of the segments have
SNR between 0 to 15 dB that shows moderate to high noise levels in PLTL data. In addition,
huge reverberation is another challenge.

6.2 Exploratory Data Analysis

In this section, we discuss general characteristic of CRSS-PLTL data. Fig. 6.2 shows the

distribution of WADA-SNR (Kim and Stern, 2008) and NIST-STNR NIST NIST c signal

to noise ratios computed over five-minute segments of 36 hours of PLTL data from three

teams. Each team has nine audio streams. The NIST-STNR has tri-modal distribution with
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Figure 6.3. Showing distribution of duration of segments with speech, non-speech and
overlapped-speech. We could see that most of the segments had duration less than one
second. Short-duration segments posed challenge in speaker diarization and behavioral speech
processing. The overlapped speech and non-speech accounted for 28.71% and 29.57% of total
duration leaving behind only 41.72% speech.

significant first model. One the other had, WADA-SNR has bi-modal distribution where first

model is significant. The SNR over five-minute segments was mostly between 0 and 15 dB

that showed moderate-to-high noise levels. In addition, huge reverberation was also present

that could not be visualized in this plot.

At the end of PLTL sessions, each student and their peer leader completed a form that

contained eight behavioral question with four options on Likert-scale (see Fig. 6.4). Questions

(Q1, Q2,...,Q8) were given in Table 6.1. These questions belong to three categories, namely

PLTL group (PG) assessment, students performance (SP) and overall. The questions Q1, Q2,

Q3 and Q4 were regarding the PLTL group (PG) and questions Q5, Q6 and Q7 were based

on students performance (SP). The last question, Q8 summarizes the overall assessment.

These responses were done on a Likert-scale with four choices, namely strongly disagree(1),
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Table 6.1. The questions designed to assess the ground-truth Likert-scale ratings from
students. PLTL group (PG) and students performance (SP) refers to two categories of
questions developed to assess the student’s view on group characteristics and his/her own
characteristics, respectively. The Q8 refers to overall assessment.

S.No. Description Assessment
Type

Q1 My PLTL group was friendly today PG
Q2 My PLTL group was engaging today PG
Q3 My PLTL group was helpful today PG
Q4 My PLTL group was motivated today PG
Q5 I learned a lot in today’s PLTL session SP

Q6 I felt comfortable with the interaction with my PLTL
group today SP

Q7 My participation in today’s PLTL session increased
my confidence in the course SP

Q8 Overall, the PLTL sessions are helping me do better in
my course Overall

Figure 6.4. Showing overall dynamics of five PLTL teams tracked over eleven weeks in terms
of ground-truth Likert-scale ratings obtained from students. These ratings were obtained
from feedback forms filled by students after each PLTL session. We discuss more details in
Sec. 6.3.

125



Figure 6.5. Showing distribution of emphasized segment duration for a PLTL session that
consisted of approximately 80 minutes audio data. Eight student participated in this session.
We could see that most of the emphasized segments have duration less than 1 second.

Table 6.2. Spearman’s rank correlation between ground-truth responses of question shown
in Table 6.1 for five PLTL groups over 11 sessions for each group, i.e., 55 PLTL sessions in
total. We can see high pair-wise correlation in these responses providing hints for combining
these into three dimensional scores as shown in Fig. 6.4. We combine PG questions (Q1-Q4)
together and SP questions (Q5-Q7) together and left Q8 (overall) as it is. This resulted in
three dimensional space for each team that is visualized in Fig. 6.4. The students along with
peer leaders are color coded. The peer leaders for each team are marked with asterisk above
their numerical index.

S.No. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Q1 1 0.93 0.91 0.90 0.89 0.93 0.89 0.91
Q2 0.93 1 0.92 0.93 0.90 0.92 0.0.90 0.89
Q3 0.91 0.0.93 1 0.90 0.91 0.91 0.91 0.92
Q4 0.90 0.93 0.90 1 0.88 0.91 0.88 0.90
Q5 0.89 0.90 0.92 0.88 1 0.91 0.89 0.91
Q6 0.93 0.92 0.91 0.91 0.91 1 0.92 0.92
Q7 0.89 0.90 0.91 0.88 0.89 0.92 1 0.94
Q8 0.91 0.89 0.92 0.90 0.91 0.92 0.94 1
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disagree(2), agree(3), strongly agree(4) (see Fig. 6.4). Each of these eight questions had a

response from each student while team leader responded to only PG and overall category

of questions. Table 6.1 shows the statement of these questions and its categorization as

PLTL group (PG) assessment, students performance (SP) and overall. The Spearman’s

rank correlation uses ranks instead of the actual values used by the Pearson’s correlation.

Table 6.2 shows the pair-wise Spearman’s rank correlation between ground-truth responses

of each question. We could see that among pair-wise correlation between questions Q1 to

Q4, the minimum and maximum values were 90% and 93% respectively. The same values for

questions Q5, Q6 and Q7 were 89% and 92%. This showed the responses were consistent

with respect to categorization. If we see the correlation between Q8 and other questions, we

have minimum and maximum values of 89% and 94%. This table gave hints that instead of

using responses from eight questions, we could reduce this to a smaller set.

Finally, we averaged the responses to question Q1 to Q4 and called it team feature.

Similarly, the average of Q5, Q6 and Q7 was called as individual feature. The Q8’s response

was denoted as overall feature. We did the averaging operations over all responses from

each participant. Fig. 6.4 showed these three features team, individual, and overall for all

sessions of each team separately. This serves as visualization of behavioral dynamics of each

team. Fig. 6.3 showed the distribution of duration of segments with speech, non-speech and

overlapped-speech. We could see that most segments were short with less than 1 second

duration. Short-duration segments were challenging with respect to speaker diarization and

behavioral speech processing. We used ground-truth information from a PLTL session with

approximately 87 minutes of audio data for generating this figure (Eval-Set-7, see Table 6.3).

The overlapped-speech and non-speech accounted for 28.71% and 29.57% of total duration

leaving behind 41.72% speech. The total number of overlapped-speech, non-speech and speech

segments were 205, 738 and 1316 respectively, for this data. The data used for this analysis

were Eval-Set-7 as given in Table 6.3. We used this dataset for validating the speech activity
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detection based on fusion of DNN-based pitch estimation and TO-combo-SAD (Sadjadi and

Hansen, 2013; Ziaei et al., 2014). The results are shown in Table 6.4. Fig. 6.5 shows the

distribution of duration of emphasized speech segments. Ground-truth information from a

PLTL session with approximately 80 minute duration was used for generating this figure. It

showed that most of the emphasized segments had duration less than 1 second.

Table 6.3. Description of evaluation datasets derived from CRSS-PLTL corpus that were used
for validating the proposed algorithms. The evaluation datasets were disjoint, i.e., chosen
from different PLTL session to avoid bias in annotation process.

Eval dataset Duration (minute) Description
Eval-Set-1 70 Diarization
Eval-Set-2 21 Participation
Eval-Set-3 70 Dominance rating
Eval-Set-4 30 Emphasis
Eval-Set-5 30 Question Inflection Detection
Eval-Set-6 70 Speech rate/ Word count
Eval-Set-7 87 Speech Activity Detection

6.3 Data Preparation and Annotation

Table 6.3 shows the duration and brief description of six evaluation sets that were derived from

CRSS-PLTL corpus for experiments discussed in this chapter. These seven evaluation datasets

were annotated for diarization ground-truth (Eval-Set-1), speech activity detection (Eval-Set-

7), participation analysis (Eval-Set-2), dominance score estimation (Eval-Set-3), emphasis

detection (Eval-Set-4), question inflection detection (Eval-Set-5), and speech rate/word count

(Eval-Set-6). For CRSS Speech profiler, we used the entire PLTL sessions used for diarization

evaluations(Eval-Set-1). The duration of these evaluation sets are provided in Table 6.3.

Before conducting the interaction analysis evaluations, human annotator were chosen to

perform intelligent listening test for generating the ground-truth. The annotators generated
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labels for each attributes. Using different (disjoint) evaluation set was to make sure that

annotation bias was the least as some of the studied behavioral characteristics are correlated.

The evaluation set for question inflection detection was 30 minute audio data. We used

another 30 minutes of data for emphasis detection. During the listening test, an annotator

marked the start-time and end-time of audio segments composed of (1) emphasized-speech

regions and (2) interrogative utterances/questions. The goal of this annotation process was to

estimate the temporal boundaries of segments with emphasized-speech and question inflection.

It is important to note that the semantic aspects were taken into account during ground-truth

annotations. For instance, the emphasis was marked on the basis of what was said and how it

was spoken in the given context. Same procedure was used for annotating question inflections.

However, the algorithms developed for detecting these two phenomenon are based only on

acoustics features: (i) fundamental frequency, and (ii) speech energy.

The speaker diarization ground-truth was obtained on Eval-Set-1 with 70 minute audio.

Participation refers to annotating the percentage time for which a speaker was active in the

PLTL session (Eval-Set-2). For measuring the engagement in terms of speech rate, annotators

listened to each five minute segment of PLTL session and note the number of words spoken.

Five minutes segment were derived for Eval-Set-6 with 70 minutes audio. Speech activity

detection is evaluated on 87 minutes of audio from a PLTL session (Eval-Set-7).

The dominance ratings (ground-truth) were obtained on each five minute segment of Eval-

Set-3 (70 minutes). There were seven students in Eval-Set-3. For each five-minute segment,

we compute a dominance score (DS) for each of the seven students using unsupervised

acoustic analysis explained in Sec. 6.8. Each five-minute segment of Eval-Set-3 was assigning

a ground-truth dominance rating (Drate) for each student per segment. Three annotators

listened to each five-minute segment and assigned a dominance rating (Drate) for each student

per segment. The ground-truth dominance rating, Drate, was a number between 1 and 5.

The speakers who were present in the whole session but did not speak in the chosen segment
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Table 6.4. Results of SAD systems on PLTL evaluation dataset.

SAD System Pfa(%) Pmiss (%)
(A) TO-Combo-SAD 5.05 12.07
(B) USC-NN-SAD 6.27 15.35
(C) Fusion 8.02 9.42
(D) Fusion + Refinements 10.48 6.65

were assigned a dominance rating, Drate = 1. The scores of Drate = 2 and Drate = 5 were

assigned to the least-and most-dominant students who spoked in that segment. For students

who spoke in that segment and were neither least-dominant nor most-dominant, we assigned

them a Drate between 2.25 and 4.75. It was possible to score 2.25, 2.50, 2.75, 3.0, 3.25, 3.50,

3.75, 4.0, 4.25, 4.50 and 4.75. However, no fractions other than these were used to ensure

consistency in evaluations. We averaged the ground-truth rating (Drate) of all three annotator

to obtain a final ground-truth that was used for computing the correlation with proposed

dominance score (DS).

6.4 Speech Activity Detection for Interaction Analysis

Speech activity detection (SAD) is evaluated on Eval-Set-7 (See Table 6.3 and the data is

explained in Sec. 6.2. The evaluation results of SAD algorithms are collected in Table 6.4).

Fig. 6.3 shows the distribution of duration of speech, non-speech and overlapped-speech

segments. Non-speech often contained several noise sources such as mumbling of far-speakers,

writing-on-the-white-board noise (impulsive) in addition to noise from fan and other back-

ground sources.

We used DNN-based pitch extractor(see Sec. 6.6) along with TO-combo-SAD (Ziaei et al.,

2014) for SAD. The frames that were assigned zero (0 Hz) pitch were declared non-speech.

TO-combo-SAD (Sadjadi and Hansen, 2013; Ziaei et al., 2014) was SAD system developed

for DARPA RATS data. TO-combo-SAD had shown good performance on naturalistic audio

streams such as NASA Apollo mission data. TO-combo-SAD assigned zero (0) for non-speech
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and one (1) for speech. We fused the output of both systems for accurate speech activity

detection. The frames with non-zero pitch were taken as speech frames and assigned one (1)

as SAD output. If both system’s output (DNN-based pitch and TO-combo-SAD) were not

same, we consider those frames as non-speech. As a results, false alarms were greatly reduced.

The non-speech in evaluation dataset has multiple simultaneous sources that results in high

false alarm for individual SAD system. We evaluated the SAD system on Eval-Set-7 data as

shown in Table 6.4. Pmiss and Pfa refers to miss rate (true-speech detected as non-speech

in %) and false alarm rate (true non-speech detected as speech in %), respectively.

In addition to the proposed fused SAD system, we used a supervised SAD system trained

on DARPA RATS data (Van Segbroeck, Tsiartas, and Narayanan, Van Segbroeck et al.) and

compare its performance with proposed SAD system. The comparison results were shown

in Fig. 6.4. This was a supervised Neural Network-based SAD system. The Gammatone,

Gabor, long-term spectral variability and voicing features were combined together and used

for training the neural network. This system was developed for DARPA Robust Automated

Transcription of Speech (RATS) program (Van Segbroeck, Tsiartas, and Narayanan, Van Seg-

broeck et al.). Researchers extracted features using speech characteristics such as spectral

shape, spectro-temporal modulations, periodicity (pitch harmonics), and long-term spectral

variability. Researchers used the features from long context-windows to obtain combined

feature vector. These features were used for training a neural network (Van Segbroeck,

Tsiartas, and Narayanan, Van Segbroeck et al.). The evaluation on DARPA RATS corpora

showed accurate results, thus validating the applicability of developed SAD system for highly

distorted conditions such as those in DARPA RATS (Van Segbroeck, Tsiartas, and Narayanan,

Van Segbroeck et al.).

It is important to note that the PLTL data has (1) not-so-close microphone; and (2) small

movement in students, such as moving to white board and writing something, was frequent

event that made SAD a challenging task. In addition, huge reverberation and noise corrupted

131



the speech data further. We would discuss the proposed bottleneck features and informed

HMM-based diarization system in Sec. 6.12 and Sec. 6.13.

6.5 Speech Energy

Earlier, we used the formant energy for computing the speaker energy. This energy was

leveraged for separating the primary and secondary speakers on each channel of the multi-

channel PLTL data (wearer was primary speaker and rest secondary) (Dubey et al., 2016).

More often than not, the wearer was assumed to be the closest to their LENA device as

compared to other LENA devices. Thus, the audio channel with highest energy could identify

the primary speaker. These intensity differences helped in refining diarization output in one of

our previous studies (Dubey et al., 2016). Later, we computed the energy of speech signal using

wavelet packet decomposition (Dubey et al., 2016a). We choose wavelet packets over formant

energy that was used in our earlier studies (Dubey et al., 2016). Formant energy was noise-

robust, unlike short-time Fourier transform at the cost of huge computational load. Wavelet

packet decomposition was noise-robust and possessed good resolution in time-frequency space

with moderate computational load (Wickerhauser, 1991). Wavelet packets provided good

time-frequency resolution with reasonable computational expense. The position, scale and

frequency parameters characterize the wavelet packets (Wickerhauser, 1991). Traditional

wavelet decomposition had only two parameters, namely (1) position; and (2) scale. Wavelet

packets could be viewed as a generalized form of wavelet decomposition. Wavelet packets

provide better signal resolution in terms of scale, position and frequency dependence. Wavelet

packets are bases generated from decomposition of a signal using orthogonal wavelet functions.

There are several computationally simple methods for estimating wavelet packets, that made

them a better choice for signal decomposition than computationally expensive continuous

wavelet transforms.
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Traditional wavelet decomposition generates approximation coefficient vector and detailed

coefficient vector after first level of decomposition. At next level and successive levels of

decomposition, only approximation coefficient vector is re-decomposed into its approximate

and detailed components. On the other hand, wavelet packet decomposition allows each

detailed coefficient vector to be decomposed in the same way as the approximate coefficient

vector (Wickerhauser, 1991). For a speech segment, wavelet packet decomposition generated

a complete binary tree allowing a more generic decomposition of the signal. Symlets6 (sym6)

wavelet with six levels of decomposition were used for computing the energy. We added the

squared wavelet packet coefficient corresponding to the frequency range [50, 2000] Hz for

capturing the speech intensity while ignoring the spurious background artifacts and noise.

We used the speaker energy for estimating the unsupervised dominance score as discussed in

Sec. 6.8 and also in emphasis detection (see Sec. 6.10).

6.6 Robust Pitch Estimation

This section describes the robust pitch extraction using deep neural network trained on

stacked spectral features (Pitch Estimation Filter with Amplitude Compression) (Gonzalez

and Brookes, 2014). The pitch estimates were later used for detecting curiosity (in terms of

question inflection) and emphasized speech. We tested various pitch estimation algorithms

such as modified autocorrelation method (De Cheveigné and Kawahara, 2002), Sawtooth

Waveform Inspired Pitch Estimator (Camacho and Harris, 2008), Subband Autocorrelation

Classification (Lee and Ellis, 2012) and deep neural network (DNN) (Han and Wang, 2014).

state-of-the-art pitch tracking method use a deep neural network (DNN) trained on spectral

features (Han and Wang, 2014) for predicting the pitch states. DNN-based pitch tracker

was the best among four alternatives we tested. The parameters of system used for pitch

extraction is given in Table 6.5.
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Table 6.5. System parameters for robust pitch extraction method as depicted in Fig. 6.9.
The pitch was used for measuring curiosity (in terms of question inflection) and emphasis
detection. The super-segments of size 2s were used for detecting emphasis and question
inflection.

Parameter Value
Sampling rate 8000Hz
Frame rate 25ms
Skip-rate 10ms

Super-segment size 2s

Features Pitch Estimation Filter with Amplitude
Compression (Gonzalez and Brookes, 2014)

Splicing context (past) 2 frames
Splicing context (future) 2 frames

Number of Hidden Layers in
DNN 3

Number of Hidden Nodes (three
layers) 1600

Hidden Layer activation Sigmoid
Output Layer activation Soft-max

Output Layer dimension (pitch
states) 68

We would briefly cover the DNN-based pitch estimator adopted from (Han and Wang,

2014). The stacked spectral features (Pitch Estimation Filter with Amplitude Compres-

sion) (Gonzalez and Brookes, 2014) were used to train three-hidden-layer DNN to learn the

pitch states. Viterbi decoding was used to connect the probabilistic pitch states, thus fhing

the pitch contours. DNN pitch tracker was robust to high amount of noise and worked well

for PLTL data. Researchers compared the accuracy of DNN pitch tracker with other methods

in (Han and Wang, 2014). Spectral features used for training DNN (See Fig. 6.9) were

developed in (Gonzalez and Brookes, 2014). The log-frequency power spectra was normalized

to capture long-term information and further filtered to suppress the noise and enhance the

harmonic structure in speech frames (Gonzalez and Brookes, 2014).

Pitch Estimation Filter with Amplitude Compression features were earlier used for pitch

tracking in noise by peak-picking (Gonzalez and Brookes, 2014). These features were stacked

134



Figure 6.6. Distribution of the fundamental frequency estimates from a PLTL session that
consists of eight audio streams of 80 minutes duration. We dropped the non-speech frames
(that was assigned a fundamental frequency of zero (0) Hz.

using two past and two future frames as shown in Fig. 6.9 (see Table 6.5). The reverberation

and noise in CRSS-PLTL data posed challenge for pitch extraction that necessitated use

of DNN-based pitch tracker. We smoothed the DNN extracted pitch using Savitzky-Golay

filter (Schafer, 2011) with third order and 11 frames. The smoothing helped in further

correction of pitch values for PLTL data. Fig. 6.6 show the distribution of pitch estimates

obtained using DNN-based system. It was obtained on a 80 minute audio from a PLTL session.

DNN could accurately estimate the pitch eliminating the pitch doubling that was common

in unsupervised methods for pitch estimation. The non-speech frames (corresponding to

fundamental frequency of 0 Hz) were dropped for plotting this distribution.

6.7 Participation Analysis

Diarization output could be used for extracting participation analysis, that refers to the

percentage of total time for which each speaker and their team leader occupied the conversation
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Figure 6.7. Participation analysis of Eval-Set-2 (see Table 6.3) that consisted of 21 minute
audio data. It depicts the percentage time for which each individual was speaking. We
can see all students occupy comparable fraction of conversation floor while the peer leader
occupied the highest fraction.
floor. Fig. 6.7 shows the participation analysis obtained using 21 minutes of data, Eval-Set-2

(See Table 6.3) from a PLTL session. The comparison between diarization-based participation

analysis and ground-truth clearly shows that even if diarization error rate is non-zero, we can

still derive meaningful participation analysis from it. The percentage values were rounded-up

for better visualization (Dubey et al., 2016).

6.8 Proposed Dominance Score 2

Dominance in human-to-human communication had been studied for several decades (Young,

2016). Dominance is a fundamental aspect of interactions in PLTL sessions. The researchers

in social psychology have studied dominance in human interactions (Dunbar and Burgoon,

2005). The speaking time of speakers were found to be correlated with perceived dominance of

individuals in groups (Mast, 2002). Researchers in social signal processing studied dominance

models developed from multi-modal data. Researchers measured the dominance in meeting

2©2016 IEEE. Portions Adapted, with permission, from H. Dubey, A. Sangwan, and J. H. L. Hansen. "A
robust diarization system for measuring dominance in peer-led team learning groups." In 2016 IEEE Spoken
Language Technology Workshop (SLT), pp. 319-323, 2016.
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using the speaker diarization techniques (Hung et al., 2008). Researchers developed a

supervised model for dominance using short-utterances (Basu et al., 2001). However, the

model was developed and evaluated on a constrained settings that was very different from

real-life situations such as PLTL sessions. Researchers analyzed the interaction between

two individuals who debated for 60 seconds. Such controlled settings and short-duration

analyses were not applicable for spontaneous conversations such as those in PLTL sessions.

Researchers used multi-modal features derived from audio and video streams for analyzing

the dominant persons in meetings (Hung et al., 2007).

Researchers used manual transcriptions of meetings for generating semantic metrics that

were later used for training static and dynamic models of dominance (Rienks et al., 2006).

However, they did not process the audio rather the text was processed to build the supervised

models. Such systems could not be deployed for analysis of PLTL groups as they required

scripting and training supervised classifiers. Researchers proposed a dominance model for

meetings based on supervised learning using multi-modal data (multi-microphone audio

and multi-camera video). The audio and visual data were used for training support vector

machine classifier. It was used for training the supervised dominance model for meeting

conversations (Jayagopi et al., 2009). However, such a system need supervised training on

huge amount of labeled multi-modal data and was likely to perform poorly under mismatched

conditions. Another limitation was that it could not be used if only audio data were available

from PLTL sessions. The proposed dominance score is computed by approach illustrated

in Fig. 6.8. We developed an unsupervised feature for measuring dominance (Dubey et al.,

2016a). Dominance score (DS) was assigned to each student by unsupervised acoustic analysis

of their speech segments. The proposed DS encapsulates the probability of a given student

to be dominant in collaborative problem solving. We considered three features derived

from speech corresponding to each speaker. This information was available from speaker

diarization system. The three features are turn-taken-sum (turns) (Larrue and Trognon,
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Figure 6.8. Block diagram of proposed speech system for estimating unsupervised dominance
score (DS). It uses total speaking time, total turn taken and total energy for each speaker to
computed the DS.

1993), speaking-time-sum (spts), and speaking-energy-sum (spens). These features were

motivated from social psychology literature where the dominance of a speaker was found to

be correlated with taking more turns in a conversation, speaking for longer duration (Mast,

2002), and with higher energy (Dunbar and Burgoon, 2005). These features were correlated

among themselves. For example, a person who was taking many turns was likely to speak for

longer duration than others. Also, adding the speaker energy for a longer duration would

result in higher spens. The turn-taken-sum (turns) was the number of turns taken by the

speaker in a given session. A conversation turn was decided by a speech segment from

the speaker cascaded between that from other speakers and/or speech pauses (non-speech).

The speaking-time-sum (spts) was the sum of duration of all time-segments (in seconds)

belonging to that speaker. The overlapped speech was not taken into account in this sum.

Speaking-energy-sum (spens) was sum of energies for that speaker’s segments.

The speech energy was computed using wavelet packet decomposition (Wickerhauser,

1991) as discussed in Sec. 6.5. The PLTL data had huge reverberation and noise, that

necessitated development of better metric for computing speaking energy. We used the

Symlets6(sym6) wavelet with six levels of decomposition for computing the speech energy.

The coefficients corresponding to frequency range [50, 2000] Hz were summed to obtain the

energy. After extracting these three features, turns, spts and spens, we normalized each

feature dimension. Let f be the three dimensional feature-vector, µ and σ being the mean
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vector and standard deviation vector. The normalized feature vector, f̄ , is given by f̄ = f−µ
σ
.

Here, the division is point-wise, the mean and variance were calculated over the entire PLTL

session (approximately 70-80 minute audio).

We projected these normalized features onto eigen space corresponding to the highest

eigen value of the feature space. This was realized by principal component analysis (PCA)

that combined the three features into a single feature, named comb feature (short form for

combined feature). Let us denote the comb feature by p. We computed the comb feature for

each speaker in each segment of the PLTL session. PCA was performed for the whole PLTL

session. In this chapter, we divided the entire PLTL session into five-minute segments. A

dominance score was estimated for each speaker during five-minute segments.

Lets say, pi was the comb feature corresponding to i− th speaker. For CRSS-PLTL corpus

we have six to nine speakers in sessions including team leader. We defined comb feature-vector

as, p = [p1, p2, .., pN ], where N was the number of speakers. The dominance score (DS)

for each speaker was estimated by processing the dominance feature-vector, p, through a

soft-max function that convert these numbers into probability scores. Thus, we had

DSi =
epi∑N
j=1 e

pj
, (6.1)

for i = 1, 2, .., N ; where DSi was the dominance score (DS) of the i− th speaker.

Once we have the dominance score, finding the most and least dominant speaker was

trivial. The one with highest score was the most dominant person while the one with lowest

was least dominant. In PLTL sessions, the dominance score of each students is an important

metric with respect to inter-session variability for all sessions of that team. From previously

studied supervised dominance models that predicted only the most dominant speaker, such

a comparison would not be possible (Jayagopi et al., 2009; Hung et al., 2007; Huang and

Hansen, 2006). Dominance analysis could help in understanding the role of each team member

in a PLTL session with respect to learning of their own and others. It could help in choosing
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Figure 6.9. Block diagram of the proposed method for detecting question inflections and em-
phasis in PLTL sessions. Frame-wise pitch was extracted using a deep neural network trained
on stacked spectral features (Pitch Estimation Filter with Amplitude Compression) (Han
and Wang, 2014). The pitch information along with speech energy was used for detecting
the emphasized regions. The pitch gradient was used for detecting the question inflection (a
measure of curiosity).

suitable candidates for a PLTL session so as to maximize the learning outcome for each one

of them.

Table 6.6. Showing results for emphasis and question-inflection detection. We used the
correlation between ground-truth mid-point and point of emphasized speech-region and
question-inflection detection. The evaluation used the oracle speaker segments (except the
EER calculation) for question-inflection detection.

Quantity Correlation root mean squared error(s) EER (%)
Question Inflection 0.84 0.51s 12.31

Emphasis 0.78 0.42s –
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Figure 6.10. Detection of question inflection using gradient of pitch contour. The top
sub-figure shows the pitch contour along with start-time (Q-truth1) and end-time (Q-truth2)
of the question inflection, and mean-Pitch ± std-Pitch lines. The bottom sub-figure shows
the gradient of pitch contour along with mean, and meanGradPitch ± 4*stdGradPitch lines.
We could see that question inflection was accompanied by low-to-very high pitch inflation
leading to a local maxima at the end of the question (see top sub-figure). We detect the
question inflection by a statistical rule as shown in bottom sub-figure. The frames that belong
to GradPitch ≥ meanGradPitch ± 4*stdGradPitch corresponds to a question inflection.

6.9 Question Inflection Detection

Curiosity refers to a desire for gaining new information or skill (Renner, 2006). Curiosity was

defined in the study as "aurally identifiable trait of the internal desire" of PLTL participants

to acquire new information or skills. The curiosity is an important trait in learning (Renner,

2006). A pitch transform was used for detecting the interrogative sentence in (Nagy and

Németh, 2016).

Eval-Set-5 (30 minute audio data) was used for evaluating the algorithm for question

inflection detection. The audio data was annotated for start-time and end-time of each

question. The annotation was done over five minute super-segments. The time-stamps for

each question inflection were located. Gradient of the pitch contour for each speaker segment

was computed to find the local maximum. Question inflection was detected when the pitch
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Figure 6.11. Detection error trade-off (DET) curve for 30 minutes of audio data for question
inflection detection. The pitch contour from complete signal was mean and variance normalized
over non-overlapping 2-second segments. The equal error rate (EER) comes out to be 12.31%.
The threshold for detection of question was varied to determine various points (each point
corresponds to a miss rate and false alarm rate) shown in this curve.

gradient goes above the value of meanGradPitch+ 4 ∗ stdGradPitch (the mean and std are

computed using gradient contour over that segment).

We annotated the start-time and end-time of the segment when question was asked. The

mid-point of ground-truth question-boundary was used for computing correlation and root

mean squared error with algorithm detected question inflection point. Fig. 6.10 shows the

pitch variations on a question onset and its neighborhood. It also shows the gradient contour

and detection of question inflection. We designed another experiment to study the pitch-based

question inflection detection. We took the evaluation audio data and estimated the pitch

contour for complete signal regardless of speaker-change boundaries. We performed the mean

and variance normalization of pitch contour over each two-second non-overlapping segments.

Normalization compensated the long-term effects making the pitch contour robust to acoustic
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variability. Normalized pitch was used for detecting the question inflection by choosing a

threshold. We varied the threshold from minimum to maximum value (of pitch contour) in

small steps. For each threshold values, we get miss probability, Pmiss and probability of

false alarm , Pfa (in %) with respect to detection of question inflection.

For EER calculation (DET curve), all frames belonging to the time-interval during which a

question was asked, were taken as question inflection points. This is different from root mean

squared error and correlation computation where the mid-point of ground-truth question-

boundary was compared with point of question inflection detection. Fig. 6.11 shows the

detection error trade-off (DET) curve for Eval-Set-5 data. The equal error rate (EER) was

12.31%. Here, Pmiss refers to the frames where we had the questions asked but the system

failed to detect it (miss). Pfa refers to the frames where question inflection was falsely

detected (false alarm). In this chapter, we used only single channel data for annotation and

evaluation for pitch-based question inflection detection for simplicity in evaluation.

Table 6.6 showed the evaluation of question inflection sub-system on PLTL data that

consisted of 80 minutes of audio data. The system uses a fixed threshold on speaker-normalized

pitch contours for detection of question inflection. The ground-truth question inflection

was the end of the question labeled by human annotators. We used a collar that that

symmetrically placed around the true question inflection point. If we could successfully

detect the question inflection within that collar, it was counted as true detection. We can see

using a collar of two seconds, we have a high accuracy given that diarization system was not

perfect. Even with non-zero diarization error rate (DER), we get reasonable accuracy over

80% using a collar of 1.5 seconds. With a collar size of one second, we get the accuracy level

to 68.42%. The proposed system for question inflection detection was based on the fact that

pitch get inflated near the end of a question (also known as question inflection). As pitch

ranges vary with speakers, it was crucial to speaker-normalize the pitch contour. Accurate

pitch extraction was important to reduce amount of outliers in pitch estimates. The DNN
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Figure 6.12. Showing pitch-and energy-based emphasis detection. Top sub-figure showed
the pitch contour for a speaker segment with emphasized region. The middle sub-figure
showed only speech frames (with non-zero pitch). Bottom sub-figure showed the frame-level
speech energy obtained using wavelet packet decomposition. When the pitch was higher
than meanPitch + std− Pitch and energy was higher that meanEnergy + stdEnergy, the
emphasized region was detected.

pitch extractor was trained on multi-conditioned TIMIT data containing various noise types

added at different SNR levels (Han and Wang, 2014).

6.10 Emphasis Detection

Detection of emphasized speech could help in discovering the "hot-spots" in PLTL sessions

wherein important discussions might have happened. Such segments could help education
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Figure 6.13. We chose a PLTL session with eight students that was organized for 80 minutes.
We divide the session into five-minute segments. This bar graph shows the number of
emphasized speech regions in each of these five-minute segments. We could be observed
that the highest number of emphasized segments occurred around the middle of the session.
The last segments were more about logistics and general questions and answers that did not
involve emphasized regions.

researchers in understanding and designing the best practices. Student’s excitement could

be captured by detecting such segments. Emphasized speech regions were important with

respect to semantic analysis. Such segments could be further processed with natural language

processing (NLP) tools. We have the option of using NLP tools on complete session, however

using NLP only on few emphasized segment could reduce computations by eliminating

segments that were relatively less important. We used the pitch contour and speech energy

for detecting the emphasized speech. These regions identify the important regions in audio

data.

The emphasis detection from audio had been studied previously (Chen and Withgott, 1992;

Arons, 1994, Arons, 1997). Detecting the emphasized regions helped in quick summarization

of spoken documents (Arons, 1997). Such summaries collected the salient features of the

recordings and were useful for analysis of technical discussions and daily-life conversations. A

HMM-based model trained on huge amount of data was used for emphasis detection in (Chen
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and Withgott, 1992). Pitch changes were leveraged for detection of emphasized regions in

meetings (Kennedy and Ellis, 2003).

However, the past works (Chen and Withgott, 1992; Arons, 1994, Arons, 1997) had not

been tested over long-duration spontaneous speech with several speakers (such as six to eight

participants in PLTL session). CRSS-PLTL data had short conversational-turns at several

instances in addition to noise and reverberation, thus making the task challenging. Since we

estimated the pitch contour and do the analysis for each speaker segment, the pitch range of

each speaker is automatically taken into account. As the pitch could change abruptly due

to speaker changes (for example, from a male to female speaker), it was important to have

accurate speaker segments. The proposed algorithm adapted to the pitch and energy range of

a speaker (by operating over non-overlapping two-second windows), and then automatically

selected the regions of increased pitch-and energy-activity as a measure of emphasis. Increase

pitch and speech energy are markers of an emphasized region while pitch information was

found to be more important (Chen and Withgott, 1992).

We proposed detection of emphasized speech using inflated speech energy and increased

pitch. The wavelet packet decomposition was used for robust estimation of speech energy as

explained in Sec. 6.5. The correlation and root mean squared error between ground-truth

(mid-point) and estimated point of emphasis detection were used as figure of merit for

this method. Fig. 6.13 showed the distribution of emphasized regions in each five-minute

segments of a PLTL session (approximately 80 minutes). We could see the highest number

of emphasized speech segment lies in mid of the session. It showed that the "hot-spots" in

PLTL sessions were more often during the mid-time.

Fig. 6.12 shows detection of emphasized segments using pitch and energy. Emphasis was

detected based on two conditions: 1) energy higher than meanEnergy + stdEnergy, and 2)

pitch higher than meanPitch+ std− Pitch. Simultaneous satisfaction of these conditions

detected emphasized speech regions. We had the start-time and end-time boundaries for
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Figure 6.14. The word count ground-truth and estimated using (Ziaei et al., 2016) for
Eval-Set-6 (see Table 6.3) that consisted of 70 minutes of audio data. We could see that
performance varies from very good to very poor. It depicted the changing acoustic scenarios
that affected the quality of the speech signal. The red number above the bars showed the
percentage error rate with respect to ground-truth word count. The low errors occur when
speaker wore the LENA device and high error occurred due to voice of a distant speaker.
The reverberation levels were different for each unique position of the speaker. Very low error
in seventh and ninth segment showed that method worked well when speech quality was
good and very high errors in first, third and thirteenth segment shows that method proposed
in (Ziaei et al., 2016) obtain worse when speaker changes were rapid and/or some of the
speakers were far from the LENA device.

emphasized regions from manual annotation as described in Sec. 6.3. We took the mid-point

of ground-truth emphasis-boundary and estimated its correlation with algorithm computed

point of emphasis detection. Also, we calculated the root mean squared error (in units

of second), between these two quantities, i.e., ground-truth and estimated detection point.

Table 6.6 shows the evaluation results.
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6.11 Speech Rate

Speech rate/word count is an important aspect of vocal communication (Cummins, 2009).

Speech rate was useful for quantifying the engagement behavior. Increased speech rate showed

more engagement. Researchers used prosodic cues for studying engagement behaviors in

children (Gupta et al., 2016). Several interaction scenarios between a child and psychologist

were used for validating the developed algorithms. Engagement was predicted using vocal and

prosodic cues. Researchers concluded that the engagement information was not only reflected

in global cues but also in short-term local cues. Three levels of engagement were used for

experimental validation. Fusing global and local cues gave the best results. Even though the

experiments were validated in constrained settings, it showed that certain prosodic patterns

captured the engagement in dyadic interactions (Gupta et al., 2016).

Several algorithms were developed for estimating the speech rate (Morgan and Fosler-

Lussier, 1998; Jiao et al., 2015; Wang and Narayanan, 2007; Ziaei et al., 2016). We bench-

marked the method developed in (Ziaei et al., 2016) on Eval-Set-6 (see Table 6.3) derived

from the CRSS-PLTL corpus. It consisted of 70 minute audio from a PLTL session.

Fig. 6.14 shows the evaluation of word count algorithm (Ziaei et al., 2016) on Eval-Set-6.

We divided the PLTL session into five-minute segments and performed the word count

estimation using method proposed in (Ziaei et al., 2016). The red numbers above the bars

showed the percentage error rate with respect to ground-truth word count. We could see the

performance varying from very low to high error rate. The low errors occurred when speaker

wore the LENA device and high error was possibly due to the speech of a distant speaker

and rapid short-turns from several speakers (six to eight student were in a PLTL session).

The reverberation levels were different for each unique position of speakers. Very low error

in seventh and ninth segments showed that method worked well when speech quality was

good and very high errors in first, third and thirteenth segment shows that method in (Ziaei

et al., 2016) obtain worse when speaker changes were rapid and some of the speaker were far
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Table 6.7. The parameters set for proposed diarization system that consisted of three main
parts: (1) acoustic feature extraction, (2) stacked autoencoder (autoencoder)-based bottleneck
features, and (3) informed HMM-based diarization system.

Parameter Value
Stacked autoencoder input layer dim. 1001
Stacked autoencoder second layer dim. 91

Stacked autoencoder bottleneck layer dim. 21
Number of hidden layers 3
First layer activation tanh

Hidden layer activation sigmoid
Initial states in HMM 12-18

Number of GMM components 2-5
Minimum duration of HMM states 0.2s-1s

Splicing context (past) 5 frames
Splicing context (future) 5 frames

Features MFCC
Window length 25ms

Skip-rate 10ms
Sampling rate 8000Hz

from the LENA device. It showed the necessity to investigate reverberation-and noise-robust

methods for speech rate estimation that could work accurately for naturalistic audio streams.

This chapter is a first step towards leveraging speech technology for extracting behavioral

characteristics in small-group conversations such as PLTL sessions. Proposed methods were

evaluated on CRSS-PLTL corpus. However, these algorithms can be extended to other similar

applications such as small-group meetings/conversations. We used robust front-end for speech

activity detection (SAD) and speaker diarization. Speech segments from all speaker were

later processed with behavioral speech processing block that incorporate several acoustic

analyses. Speech algorithms extract features capturing the behavioral characteristics such as

participation, dominance, emphasis, curiosity and engagement. Results obtained on CRSS-

PLTL corpus using proposed techniques are encouraging and motivate use of behavioral

speech processing for understanding practical problems in education, human-to-human

communication and small-group conversations.
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Table 6.8. Comparison of diarization error rate (DER) for various parameters of the stacked
autoencoder-based bottleneck features and informed HMM-based diarization system. IK
is initial number of clusters (hypothesized number of speakers) and IG is the number of
Gaussian components in initial model for over-segmented clusters. All experiments has IG =
2 and IK= 12.

SAD feature dim tmin(s) DER(%)
LIUM 35.80

NO SAD 13-MFCC (* 7= 91 from seven streams) 0.5 41.71
NO SAD 13-MFCC (* 7= 91 from seven streams) 1 33.23
NO SAD 19-autoencoder 0.5 16.64
NO SAD 19-autoencoder 1 15.83
Oracle 13-MFCC (* 7= 91, i.e., seven streams) 1 19.98
Oracle 13-MFCC (* 7= 91, i.e., seven streams) 0.5 18.95
Oracle 19-autoencoder 1 8.05
Oracle 19-autoencoder 0.5 8.87

Figure 6.15. Proposed diarization system using autoencoder and HMM. It has two main
components: (1) stacked autoencoder based bottleneck features that incorporated splicing
with context of five past and future frames and takes acoustic features from all streams of
PLTL data; (2) Informed HMM-based diarization system that incorporated the number of
students (same as number of audio channels) and minimum duration of conversational-turns
as side information.
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6.12 Stacked Autoencoder-based Bottleneck Features for Diarization 3

The proposed scheme is depicted in Fig. 6.15. Deep neural network (DNN) could be used

for dimension reduction for high dimensional feature vectors (Hinton and Salakhutdinov,

2006). Autoencoders were found useful in dimension reduction task (Wang et al., 2016). This

network was trained in a way that allowed it to learn low-dimensional hidden representation

of the data such that taking noisy input, it could reconstruct the input.

Input feature vectors were corrupted with additive random noise. We used 13 dimensional

Mel-Frequency Cepstral Coefficients (MFCC). Each feature dimension was mean and variance

normalized. We performed splicing of normalized feature vectors by taking five past and future

frames. The stacked autoencoder was used for extracting the bottleneck features (bottleneck)

from spliced and normalized MFCC features. Several autoencoders were stacked to form a

deep network with five layers. Stacked autoencoder was trained using spliced features. Stacked

autoencoders were first trained in layer-wise fashion that is a standard way of pre-training.

After pre-training, stacked autoencoder was fine-tuned so that it could reconstruct the input

features. The input to the stacked autoencoder was corrupted before feeding into it. The

reconstruction-loss was minimization criterion for training this network (Vincent et al., 2008).

We used PDNN toolkit (Miao, Miao) with corruption parameter 0.2, learning rate,

and momentum factor parameters of 0.01 and 0.05, respectively for realizing the stacked

autoencoder. The parameters of the stacked autoencoder used for bottleneck feature extraction

was given in Table 6.7. The feature vectors (13-MFCC) were first mean and variance

normalized. Let m was the feature vector, µm and σm were the mean and standard deviation

vectors, respectively. The normalized feature vector, m̄, is given by m̄ = m−µm
σm

.

Since all the channel were delayed and scaled versions of the same speech signal at a

given frame, using all channels for diarization was important. Time-spliced feature vectors

3©2016 IEEE. Portions Adapted, with permission, from H. Dubey, A. Sangwan, and J. H. L. Hansen. "A
robust diarization system for measuring dominance in peer-led team learning groups." In 2016 IEEE Spoken
Language Technology Workshop (SLT), pp. 319-323, 2016.
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from each channel were concatenated to form a supervector that consisted of feature vectors

corresponding to all PLTL channels. The room where PLTL data was collected has dimensions

of 7X10 meters. Thus, the maximum distance between a LENA device and any students

(other than the wearer) can be assumed to be within ten meters. Taking the speed of sound

in air to be 343 meters per second (m/s), we have the maximum time delay, to be of the order

30ms. This calculation did not accounted for reverberation. We used 25ms windows with

10ms skip-rate for our experiments as given in Table 6.7. We concatenated the features from

all streams. The normalized feature super-vectors were spliced by taking five past and future

frames. The concatenation was done to incorporate time and intensity differences between

various channels of multi-stream PLTL data. The splicing incorporates the long-term context

leading to a better quantification of reverberant and noisy speech frames. For a PLTL group

with seven streams, the final dimension of spliced features was 11*7*13-MFCC, i.e., 1001.

6.13 Informed-HMM based Diarization System 4

In this section, we discuss informed-Hidden Markov Model (HMM) for joint speaker seg-

mentation and clustering. HMM system incorporate the bottleneck features from stacked

autoencoder system (Gehring et al., 2013) along with two dimensions of side information, i.e.,

(1) number of speakers; and (2) minimum duration of conversational-turns. Hence, we called

the system as informed HMM system. The iterative diarization procedure had three steps: (i)

initial segmentation, (ii) merging, and (iii) re-estimation. The diarization for PLTL sessions

was different with respect to information available such as speaker-count and turn-statistics.

The rapid short-turns, overlapped-speech and significant noise and reverberation made the task

challenging. Most of the studied diarization system did not address such challenges (Dubey

4©2016 IEEE. Portions Adapted, with permission, from H. Dubey, A. Sangwan, and J. H. L. Hansen. "A
robust diarization system for measuring dominance in peer-led team learning groups." In 2016 IEEE Spoken
Language Technology Workshop (SLT), pp. 319-323, 2016.
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et al., 2016; Anguera et al., 2012). PLTL sessions had frequent short-segments of size 0.2s

to 1s and few segments of size 1-3s. HMMs had been used in previous studies for various

audio segmentation tasks in varied forms (Fredouille and Senay, 2006; Madikeri and Bourlard,

2015; Kotti et al., 2008; Ajmera et al., 2002; Huang and Hansen, 2006). However, using side

information, application to PLTL and using stacked autoencoder-based bottleneck features

were novel contributions with respect to speaker diarization.

Initially, we performed over-segmentation by dividing speech into OS segments where OS

was four to six times the expected number of speakers. A HMM with OS states was assumed

for initial segments. Each HMM state had an output probability density function that

was modeled by M component Gaussian Mixture Model (GMM). Each state of HMM was

allowed to have T sub-states to incorporate the minimum duration constraint. All sub-states

of a given HMM state (hypothesized speaker cluster) share the GMM corresponding to

their state. The HMM system was trained using Expectation-Maximization (EM) algorithm.

One step aimed to segment the data such that their likelihoods given corresponding GMM

parameters were maximized. In next step, the GMM parameters were re-estimated based on

new segmentation. Once HMM was trained, we obtained the Viterbi path for each frame.

Following it, we used the Viterbi path for checking the binary merging hypothesis based on

modified G3 algorithm (Dubey et al., 2016). After the merge iteration finished, a new HMM

with less number of states was trained. The whole process was repeated again till the number

of HMM states equaled the number of speakers.

We performed merging based on G3 algorithm that was a variant of BIC and eliminated

the need of the penalty term. The unsupervised G3 algorithm (Dubey et al., 2016) was used

for deciding the binary hypothesis of merging two segments. This trick was first developed

to improve the speaker change detection as compared to BIC (Ajmera et al., 2004). In this

chapter, we used the same techniques for a different binary hypothesis to decide merging of

two over-segmented segments or equivalently two HMM states. There are some modifications

153



to G3 algorithm applied for merging most-similar segments (HHM states) at each iteration

of the informed HMM-based diarization system. First, the minimum duration of staying in

a HMM state was much lower, 0.2s to 0.5s owing to the rapid short conversational-turns.

The initial segments were modeled with a Gaussian Mixture Model (GMM) with only Ms

components. After merging two initial segments modeled with Ms components, the merged

segment was modeled with 2Ms components. Thus, the number of parameters in GMM

model for merged segment is same as the sum of number of parameters in child segments.

Consequently, the number of parameters remains the same at each merging step, and hence

the penalty term in BIC criterion (See Equation 6.5) is eliminated.

Let Xm = [X1,X2] be the feature matrix corresponding to the merged HMM states.

Merging two segments, X1 and X2 into Xm can be formulated as the following binary

hypothesis: H0 vs. Hm, where Hm denotes merging, and H0 denotes no merging. To facilitate

the test, we build models for both hypotheses. GMMs were used to model X1 , X2 and

merged segment Xm. Let ψXm be the parameter vector of the GMM with Ms = M1 +M2

component estimated for the merged segment, Xm. Let, ψX1 and ψX2 be the parameter

vector of the GMMs with M1 and M2 components, estimated for the child segments, X1

and X2, respectively. Under the assumption of independence and identical distribution of

feature vectors in segments X1 and X2, we can represent the log likelihood LH0 and LHm for

hypotheses H0 and Hm, respectively as

LHm = log(p(X1|ψXm)) + log(p(X2|ψXm)), (6.2)

LH0 = log(p(X1|ψX1)) + log(p(X2|ψX2)), (6.3)

where p(Xm|ψXm) is the likelihood of merged segment, Xm given the model, ψXm , and so on.

The merging decision is made based on the Dmerging, defined as

Dmerging = LHm − LH0 , (6.4)
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However, if we used Bayesian Information Criterion (BIC) for making the merging decision,

then corresponding to Equation 6.4, we have following expression for BIC merging:

DBIC = LHm − LH0 −
1

2
ν∆ logNm, (6.5)

where ν is a constant usually assigned a value of 1.0 and Nm is the number of feature vectors

in merged segment, Xm. Here, ∆ is the difference in number of parameters in merged model,

ψXm and sum of parameters in child models, ψX1 and ψX2 . All segments were evaluated for

Dmerging. The segments with Dmerging ≥ 0 were merged. Once the merging done, the new

HMM of smaller size was estimated where the GMM for each state was re-estimated using

the EM algorithm. The acoustic features belonging to that HMM state (cluster) were used

to re-estimate the corresponding GMM.

The parameters of proposed diarization system was shown in Table 6.7. The results of

diarization system were given in Table 6.8. It is important to note that MFCC features from

all the seven streams were used in HMM-based diarization for comparing its performance

with bottleneck features. We could see that bottleneck feature captured useful statistics

of multi-stream audio data that resulted in better accuracy using informed HMM-based

diarization system.

We extracted 13-dimensional MFCC features from each of the seven streams of the PLTL

session. After concatenating the features from each stream we get a feature super-vector of

dimensions 91 (=13*7). After splicing the feature super-vectors with five past and future

frames (see Fig. 6.15), we get the final dimension of features as 1001 (=11*91). Spliced

feature super-vector was fed to a stacked autoencoder for extracting the bottleneck features

of dimension 21. Stacked autoencoder with three hidden layers was chosen where the middle

hidden layer acted as bottleneck layer. The bottleneck features were fed to the informed

HMM-based diarization system. We used the Oracle SAD in the proposed system to validate

the accuracy of HMM-based joint segmentation and clustering. However, we performed
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another case-study by formulating non-speech as an additional HMM state. We compared the

diarization accuracy of bottleneck features (derived from raw MFCC features form each of the

seven steams) and raw acoustic features (13-MFCC from each of the seven streams). Thus,

the concatenation of MFCC features from multi-stream was done in both cases ensuring that

it was a fair comparison between two approaches (raw features and bottleneck).

Table 6.8 showed the diarization accuracy in various cases. The "NO SAD" case refers to

not using any SAD labels and modeling non-speech as an additional HMM state. We knew

that the non-speech has several distinct varieties, such as silences (with extreme noise of

varied types), overlapped speech etc. This made the diarization, a challenging task without

SAD labels. It led to degradation in diarization accuracy (see Table 6.8). We could see

that the bottleneck features combined with HMM was robust with respect to change in

minimum duration constraints and to some extent is robust to absence of SAD labels. state-

of-the-art LIUM baseline (Meignier and Merlin, 2010) was borrowed from our earlier work for

comparison (Dubey et al., 2016). We could see an absolute improvement of approximately

27% in terms of DER over the baseline LIUM system and approximately 12% improvement

was due to bottleneck features instead of using raw MFCC features (Oracle SAD, one second

time-constraint).

6.14 CRSS Speech Profiler for Engagement Detection

Fig. 6.16 shows the CRSS speech pipeline for knowledge extraction in PLTL team learning.

This system is modular with three stages namely: Front-end, Feature extraction, Analysis

backend. The proposed speech systems contains machine learning and signal processing

blocks that are well trained on out-of-domain data. Fig. 6.17 shows the GUI of CRSS Speech

Profiler that implements the first two blocks and have intuitive visualization. It shows the

audio, its spectrogram and three physical traits namely Lombard effect probability, Whisper

probability, Stress probability. It also shows activation valence 2-D plot of emotion profile.
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Figure 6.16. Block diagram of proposed CRSS Speech Profiler system for interaction analysis
in PLTL sessions. It detects four low-level features: Emotion, Whisper, Physical Task
Stress and Lombard effect. We use these features to detect engagement and communication
behaviors. Speech profiler outputs the probabilities of Lombard effect, whisper and physical
stress.

Figure 6.17. CRSS Speech Profiler graphical user interface for knowledge extraction.

The three circular dots shows confidence on decisions. Red shows lower confidence and green

shows high confidence while yellow shows reasonable confidence.
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Emotion Recognition

Speech profiler has a emotion recognition module that is based on ladder network (Parthasarathy

and Busso, 2018). This system uses unsupervised auxiliary tasks for improving recognition of

emotional states. It learns the emotional attributes namely arousal, valence and dominance

using a joint model. This model explores unsupervised task for regularizing the predictions.

It adds unsupervised auxiliary tasks to reconstruct hidden layer representations. The auxil-

iary task implements denoising of hidden representations at each layer of an auto-encoder.

This structure relies on ladder networks where skip connections exists between encoder and

decoder layers. This framework learn powerful representations of emotional attributes. This

emotion recognition system is trained using multi-task learning where it learn to predict

the three emotional attributes. This model establishes state-of-the-art on MSP-Podcast

corpus (Parthasarathy and Busso, 2018).

Lombard Effect

Lombard effect refers to involuntary tendency of speakers to increase their vocal effort in

noisy environments for maintaining intelligible voice communication. Lombard effect can

degrade the performance of speech systems (Kelly and Hansen, 2016). Proposed Lombard

effect detection approach was found to be robust in presence of several noise types and their

levels on UT-Scope corpus (Kelly and Hansen, 2016). CRSS speech profiler compute the

probability of Lombard effect in speech segments. Here, the probability of Lombard effects

shows the vocal effort of speakers (Kelly and Hansen, 2016).

Whisper Detection

Whisper detection is a measure of vocal effort found in s speech segments. CRSS speech

profiler gives the probability of whisper from a speech segment. Whisper is a commonly

encountered form of speech that differs significantly from modal speech. Researchers developed
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i-Vector based approach for whisper detection. It was shown to perform well across different

scenarios even for short speech segments (Kelly and Hansen, 2018). CRSS speech profiler

outputs the probability of whisper in a speech segment. We use it as another cue for vocal

effort in addition to Lombard effect.

Physical Task Stress

CRSS speech profiler detects physical task stress using a fusion of i-Vector and other speech

features (Zhang et al., 2015). Physical task influence human speech production causing

variabilities in speech. Such variabilities can degrade the performance of speech systems.

Detecting physical task stress helps in identifying important cues from data. It leverages

fusion of i-Vectors derived from MFCCs and TEO-CB-Auto-Env features for neutral/physical

task stress detection (Zhang et al., 2015). MFCCs are based on linear speech production model

and TEO-CB-Auto-Env features are extracted using a nonlinear operator. In this way, these

features are complimentary for detecting physical task stress. This method was validated

on UT-Scope physical corpus where it leads to significant accuracy gains. Furthermore,

AdaBoost algorithm is used for score fusion leading to improvements in accuracy (Zhang

et al., 2015).

6.14.1 Knowledge Extraction in Team Learning

This section addresses knowledge extraction for interaction analysis in team learning. We

leverage low-level attributes from two categories:(i) emotion recognition- activation, valence

and dominance; (ii) physical task profile- Lombard, whisper and physical task stress. These

six dimensional features are mean normalized and later used in unsupervised analysis. We

perform smoothed histogram based visual plotting. We perform clustering using 6D features

obtained from CRSS speech profiler. Human listening experiments confirmed the two clusters

to represent low and high engagement. The proposed approach for classifying engagement into
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Figure 6.18. Figure showing 3D scatter plot for physical task profile (PTP). This graph
is obtained from speaker segments corresponding to a PLTL session with 8 participants
(80 minute). CRSS Speech profiler was used to obtain the probabilities of Lombard effect,
whisper and physical task stress.

Figure 6.19. Figure showing 2D scatter plot for emotion profile with activation (x-axis) and
valence (y-axis). It corresponds to 80 minute PLTL session with 8 participants. CRSS Speech
profiler was used to obtain the activation and valence values for each speech segment.

low Vs high profile using thin slices of audio ( 10s) looks promising for knowledge extraction.

Interaction among students and their peer leader is key elements of learning in Peer Led

Team Learning (PLTL). PLTL is an important learning paradigm popular in US universities

for undergraduate courses. PLTL teams contains 6-8 students plus a peer leader. The team
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Figure 6.20. Figure showing 3D scatter plot for emotional traits profile (ETP). It corresponds
to 80 minute PLTL session with 7 students and peer-lead. Speech profiler was used to obtain
dominance, activation and valence values for each speech segment.

meets weekly for approx. 80 minutes sessions where students tries to address problems in

collaborative ways. Peer leader’s responsibilities lies in guiding the team in right direction to

arrive at the solution. We assess the efficacy for proposed system on CRSS-PLTL corpus.

Fig. 6.18 shows 3D scatter plot for physical task profile (PTP). This graph is obtained

from speaker segments corresponding to a PLTL session with 8 participants (80 minute).

CRSS Speech profiler was used to obtain the probabilities of Lombard effect, whisper and

physical task stress. Fig. 6.19 shows 2D scatter plot for emotion profile with activation (x-axis)

and valence (y-axis). Fig. 6.21 illustrates the histograms for each feature in 6D attributes

obtained using CRSS speech profiler. We see only probability of whisper is bi-modal. Rest

features looks like a single modality.

The evaluation set for knowledge extraction using CRSS Speech Profiler consists of a

PLTL session with seven students and a peer leader that accounted for 80 minute audio data.

The Silhouette Value measures how each data point is similar to other data points in same

cluster. It is used for validating the efficacy of a given clustering algorithm on a task. It is

defined as Si = (bi − ai)/max(ai, bi) where bi is a chosen data vector and aiis the average
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Figure 6.21. Figure illustrating histograms for each feature in 6D attributes obtained using
CRSS speech profiler. We see only porbability of whisper is bi-modal. Rest features looks
like a single modality.

distance from the i-th point to the other points in the same cluster as i, and bi is the minimum

average distance from the i-th point to points in a different cluster, minimized over all clusters.

Si ∈ [−1, 1]. High Si shows that i-th data is a good match to its cluster and mis-matched from

other neighboring clusters. High silhouette value shows that obtained clusters are reasonable.

This criterion can adopt any distance metric and do not need ground-truth for computation.

This makes it attractive for unsupervised analysis of PLTL interaction using four low-level

attributes computed by CRSS speech profiler. We perform K-means clustering using 6-D

features from CRSS speech profiler. Mean Silhouette values over all segments is 0.3864 for 8

clusters, 0.5973 with 2 clusters and 0.4845 for 3 clusters (See Fig. 6.22). It shows that two

cluster here represents high and low engagements.
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Figure 6.22. t-SNE plots with 3-D embedding of mean normalized 6-dimensional features.
Color coding shows two clusters obtained using K-means. t-SNE used Euclidean distances
for this plot.

6.15 Summary and Conclusions

The audio stream collected form naturalistic scenarios inherently contains rich information

about person assessment, group dynamics, learning outcomes. The CRSS-PLTL corpus

presents new opportunities for speech scientists and education researchers to collaborate on

finding useful metrics for individual and group assessment that could be derive from audio

signal. To this end, speech technology provides an opportunity for collective processing
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in varied acoustic environments. Results obtained on CRSS-PLTL corpus validate the use

of speech technology for knowledge extraction and interaction analysis in Peer-Led Team

Learning (PLTL) groups. Even though, the development and evaluations were done on PLTL

data, the proposed techniques could be used for other small-group conversations such as

flipped classes, workplace meetings. The results and discussion showed the effectiveness of

proposed systems for interaction analysis of PLTL sessions.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

Most state-of-the-art diarization techniques aim to address two-speaker structured diarization

which is significantly simpler as compared to free-from small-group with 8-10 individuals

scenario. Furthermore, most state-of-the-art systems are developed for telephone speech

which is both clean and structured conversations simpler for diarization than PLTL-type

naturalistic audio. This dissertation provided solutions for robust speaker diarization of

small-group conversations (4-10 speakers) in naturalistic audio streams. As noted, naturalistic

audio has uncontrolled noise, reverberation, overlap and other acoustic events that degrade

performance of state-of-the-art systems. In this dissertation, we studied three important

blocks in diarization pipeline: (i) speech activity detection (SAD), (ii) speaker modeling for

speaker recognition and diarization, and (iii) speaker clustering. Specifically, SAD, speaker

recognition and modeling with SincNet convolutional neural network (CNN) and model-based

speaker clustering were investigated. A probe study also explored knowledge extraction and

interaction analysis in Peer-Led Team Learning (PLTL) sessions. To this end, we proposed

several techniques for analyzing the PLTL conversations that can potentially help PLTL

researchers.

This chapter covers the specific dissertation contributions including highlights of algorith-

mic advancements and their significance for naturalistic scenarios. We close the chapter by

providing pointers for future work.

7.1 Dissertation Contributions

As part of the advancements, naturalistic audio corpora were established including: CRSS-

PLTL (Dubey et al., 2016), CRSS-PLTL-II (Dubey et al., 2017), and CRSS-LDNN (Hansen

et al., 2018). CRSS-PLTL and CRSS-PLTL-II contains audio recordings of five teams attend-

ing undergraduate Chemistry and Calculus courses at The University of Texas at Dallas. These
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corpora were collected for 11 weeks in two different semesters. CRSS-LDNN contains long-

duration noise recordings from naturalistic scenarios where more than one noise source was

present. The secondary probe efforts considered knowledge extraction for interaction analysis

of Peer-Led Team Learning (PLTL) groups. Contribution #1: Frequency-Dependent Kernel (FDK) features for Robust SAD

We proposed FDK features as a novel way to decompose speech signals where distinct

frequency-dependent kernels are used for analyzing different frequency bins. We employed

frequency-dependent Gaussian kernels where the width of the kernel were inversely propor-

tional to frequency bin. In this way, we obtain narrow kernels for higher frequencies and wider

ones for lower frequencies. FDK features aim to provide a generalized decomposition of signal

energies across different time-frequency locations. We derived eight statistical descriptors

from the logarithm of the absolute value of the FDK vector corresponding to each frame.

These statistical descriptors were also mean and variance normalized. The resulting normal-

ized features were later processed with principal component analysis (PCA), where the first

component chosen as the final FDK-SAD feature. This FDK-SAD feature was incorporated

with three proposed decisions backends for achieving unsupervised/semi-supervised SAD.

Results from Sec. 3.9.4 demonstrated that FDK-SAD out-performed SohnSAD by +92.87%

for CRSS-PLTL data. Further SAD experiments are reported in Tables 3.2, 3.3, 3.4 and

Sec. 3.10.5.

Contribution #2: SAD Decision Backends (i) VMGMM; (ii) DipSAD, and

(iii) D-SAD

We proposed three decision backends for SAD that include: (i) Variable Model Size Gaussian

Mixture Model (VMGMM); (ii) Hartigan Dip test for robust feature clustering (DipSAD), and

(iii) Density-SAD (D-SAD). VMGMM uses Akaike information criterion (AIC) for estimating

the model order of a GMM used to model the SAD features. GMM means were combined in
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a convex manner to form a general SAD threshold. The weights for combining the GMM

means are user defined and can be optimized based on development data. Thus, VMGMM is

a semi-supervised approach. In an attempt to design a fully unsupervised SAD; we leveraged

Hartigan dip test recursively for segmenting (clustering) SAD features into speech and non-

speech clusters, resulting in the second approach called DipSAD. Next, we proposed the third

method called Density-SAD (D-SAD) as a computationally simple and fully unsupervised

SAD. D-SAD fits a straight line by joining the first and last data points in a cumulative

distribution curve (CDC) for the SAD features. The point of intersection between straight

line and CDC curve defines the operating decision threshold. We combined three alternate

decision backends with FDK-SAD feature to obtain three unsupervised/semi-supervised SAD

systems. We performed comparative studies (see Table 3.6) to highlight the competitive

trade-offs of the proposed SAD techniques over prior state-of-the-art approaches.

For evaluation, we used a DCF equal weight (0.5) for false-alarms and miss rate, since both

components are equally important for diarization. This fact is illustrated by DER formula

(see Eq. 2.3). We obtain following DCF (%) for CRSS-PLTL data: Combo-VMGMM (1.97%)

where Combo-SAD features were combined with VMGMM backend, FDK-VMGMM (2.01%)

where FDK-SAD features were combined with VMGMM backend, Combo-DipSAD (2.84%)

where Combo-SAD features were combined with DipSAD backend, FDK-DipSAD (7.23%)

where FDK-SAD features were combined with DipSAD backend, FDK-DSAD (15.29%) where

FDK-SAD features were combined with DSAD backend, Combo-DSAD (17.68%) where

Combo-SAD features were combined with D-SAD backend. We see that D-SAD gives worse

performance as compared to VMGMM and DipSAD. However, it is still superior than baseline

methods namely SohnSAD (28.20%), rSAD (49.57%), SSGMM (28.95%), TO-Combo-SAD

(29.16%) and USC-DNN-SAD (23.19%) which is neural networks based supervised SAD

approach. More details on these results can be found in Sec. 3.10.4.

We performed experiments involving standalone SAD and text-dependent speaker verifi-

cation for redDots corpus. The proposed features were found to perform consistently well
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on both tasks leading to significant relatives gains in EER (%). We compared baseline

SAD approaches with proposed ones for text-dependent speaker verification on redDots

data. We obtained the following EER: No SAD (7.90%) where silences were not discarded,

SohnSAD (6.32%), Combo-VMGMM (6.97%) where Combo-SAD features were combined

with VMGMM decision backend, Combo-DipSAD (10.12%) where Combo-SAD features

were combined with DipSAD backend, FDK-VMGMM (6.29%) where FDK features were

combined with VMGMM backend, FDK-DipSAD (9.48%) where FDK-SAD features were

combined with DipSAD backend, rSAD (6.58%), SSGMM (7.37%). For more details on these

experiments, please refer Sec. 3.10.5.

Contribution #3: Speaker Modeling (i) SincNet,(ii) AM-SincNet,

(iii) CL-SincNet, and (iv) AM-CL-SincNet

We proposed raw waveform modeling with SincNet convolutional neural network for speaker

modeling in diarization pipeline.This architecture is trained for frame-level (10ms) speaker

identification. We proposed novel AM-SincNet, CL-SincNet and AM-CL-SincNet by incorpo-

rating discriminative loss functions: (i) additive margin (AM)-Softmax; and (ii) Center Loss

(CL). These architectures improve SincNet based speaker modeling. We leveraged recently

developed discriminative loss functions such as additive margin (AM)-Softmax, and Center

Loss (CL) to advance the standard SincNet architecture to AM-SincNet, CL-SincNet, and

AM-CL-SincNet. We investigated supervised transfer learning (STL) for improving the gener-

alization ability of SincNet to multiple data sets. STL reduces the training time of proposed

SincNet architectures. The STL approach first trains a SincNet model for speaker recognition

on TIMIT data. Later, we adopted this model and discarded its output layer. It is followed

by adding two new layers (fully connected hidden layer and output layer for Librispeech

training data) to already trained TIMIT SincNet model. This network is now re-trained

for learning the parameters of newly added layers, i.e., last two layers while parameters of
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other pre-trained layers is kept fixed. This strategy is based on the fact that earlier layers

of SincNet neural network tries to learn robust features for speaker representation while

later layers learn domain-specific speaker discrimination information. This STL approach

leads to 100 times improvements in convergence speech, i.e., it reduces the training time by

order of 100. STL SincNet architecture leads to better results on both in-domain speaker

recognition (Librispeech test data) and speaker diarization on CRSS-PLTL and AMI corpora.

We trained SincNet architectures using out-of-domain data such as TIMIT and Librispeech

corpora. Trained SincNet was adopted for unsupervised transfer learning (UTL) where we

extract frame-level speaker embeddings from in-domain CRSS-PLTL and AMI data. We also

performed experiments with supervised transfer learning (TL) for data efficient training of

SincNet. TL approach trains the SincNet model first using TIMIT, next we discarded the

output layer and added two new layers for training on Librispeech corpus. We optimized the

hyper-parameters and discussed its importance in achieving robust diarization performance.

SincNet and its variants extract speaker embeddings from short speech segments of size

100-200ms with 10ms skip. This approach eliminates the need of speaker change detection.

SincNet embeddings are found to be superior than i-Vectors as i-Vector do not perform well for

short utterances. Proposed novel SincNet architectures converge faster that standard SincNet.

The neural speaker modeling using SincNet architecture was found to perform significantly

better than i-Vector baseline. The proposed SincNet architecture are robust even with

limited amount of training data (15 second/speaker). The advancements in discriminative

loss function and supervised transfer learning (STL) helps in improving the convergence

speed and hence the total training time. By using proposed approach, we out-performed

state-of-the-art speaker recognition on Librispeech corpus. This dissertation contributed novel

SincNet architectures for speaker recognition and diarization. We studied the effect of SAD

on SincNet based speaker diarization and found that SAD is very important for robustness of

diarization performance on naturalistic audio such as CRSS-PLTL. We studied the effect of
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margin parameter in AM-SincNet for speaker diarization. There was no consistent trend in

DER for change in margin parameter, m that lies in range [0,1]. We found that AM-SincNet

with m = 0.9 gave best performance in terms of DER where the AM-SincNet was trained

on TIMIT data. We also studied the effect of CL parameters on DER and could not find a

regular trend. We noticed that adding center loss (CL) to AM-SincNet, i.e., AM-CL-SincNet

makes the DER robust to changes in CL parameters. We studied different ways to extract

parameters from trained SincNet. We found that average pooling leads to better diarization

performance than max pooling where pooling was done over all embeddings from a segment to

convert frame-level embeddings to segment-level embeddings. We found that F2 embeddings

(output of last convolutional layer) was better than F1 embeddings (activations of output

layer) and F3 embeddings (output of Sinc Layer). Standard SincNet lead to DER of 12.81%

as compared to i-Vector DER of 15.26. When, we used AM-SincNet with m = 0.90, DER

reduces to 8% that shows effectiveness of discriminative loss functions. Similarly, we obtained

significant DER reductions for 12-meetings set of AMI corpus. More results and discussions

can be found in Sec. 4.8.2.

In addition to SincNet based speaker modeling, we reviewed our initial work that includes

unsupervised denoising autoencoder (DAE) for meeting-specific speaker embedding extractor

and HMM for joint segmentation and speaker clustering.

Contribution #4: Speaker Clustering (i) movMF, (ii) NFCM, and (iii) TIC

We proposed three model-based approaches for speaker clustering. The proposed clustering

methods rely on established theoretical foundations and structural constraints present in

length-normalized speaker embeddings. First method leverages mixture of von Mises-Fisher

distributions (movMF) for clustering length-normalized speaker embeddings. In this case,

each component in movMF mixture model represents a speaker. Standard expectation

maximization (EM) was used for iterative speaker clustering that alternates between cluster
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assignment (in E-step) and re-estimation of movMF model parameters (in M-step). Second

approach is based on normalized Fuzzy C-means (NFCM) clustering which is suitable

for length-normalized speaker embedding. It is motivated from recent developments on

Fuzzy C-means based soft-clustering of length-normalized data. Soft speaker clustering

provides possibility of flexible decision making in diarization pipeline. Standard NFCM

assigns the speaker embeddings to a cluster that maximizes the likelihood of data given

the model. Our third approach is more sophisticated and computationally expensive as

compared to movMF and NFCM. Toeplitz Inverse Covariance (TIC) speaker clustering tries

to learn a Markov Random Field (MRF) correlation network for each speaker. It models

each speaker using a Toeplitz Inverse Covariance matrix.We rely on dynamic programming

(DP) for cluster assignment. The clustering problem is essentially a Toeplitz graphical

lasso optimization problem. We conducted several experiments to benchmark the proposed

clustering approaches with respect to cosine K-means baseline. Speaker embeddings (F2-avg)

from AM-SincNet with margin parameter (m=0.95) leads to following DER (%): for Cosine

K-means (15.07%), movMF (14.58 %), NFCM (10.58 %), and TIC (14.04 %). When we

used i-Vector feature of dimensions 75, these methods lead to following DER (%): for Cosine

K-means (17.15%), movMF (12.96%), NFCM (12.5%) and TIC (8.88%). We can see proposed

methods leads to significant relative DER reductions of upto 48.22%. Similarly, the proposed

methods significantly out-performed cosine K-means baseline for 12 meetings subset of AMI

corpus where DER for many meetings was in order of 1-2%. These experiments validated

the efficacy of proposed methods for robust speaker clustering in naturalistic scenarios.

Contribution #5: Knowledge Extraction and Interaction Analysis in PLTL

Sessions

This was the secondary focus of this dissertation where we started from diarization output

and performed analysis to extract knowledge about conversational dynamics and behavioral
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metrics related to PLTL sessions. We proposed novel metrics to achieve this task. Specifically,

we proposed (i) unsupervised dominance score, (ii) question inflection detection, (iii) emphasis

detection, (iv) speech rate (word), and (v) CRSS Speaker Profiler based analysis. CRSS

Speaker profiler detects four low-level features namely (1) Emotion, (2) Whisper, (3) Physical

Task Stress and (4) Lombard effect. These features were later utilized in unsupervised

analysis for inferring engagement in communication behavior of students participating in

PLTL sessions. The results showed validity of proposed approach for engagement detection

and interaction analysis in PLTL sessions. More details on these experiments and discussions

can be found in Sec. 6.14.1.

7.2 Future Work

This dissertation contributed several advancements for robust speaker diarization. However,

it is just the beginning of second generation diarization systems based on Machine Learning

(ML) models. There are some aspects of proposed research that can be extended into related

tasks as well.

1. Benchmarking frequency-dependent kernel (FDK) for other speech tasks:

The frequency-dependent kernel (FDK) features are derived from a decomposition matrix

that can be utilized as a substitute for spectrogram or Mel-spectrogram for automatic

speech recognition (ASR), speaker identification, language and dialect identification.

Instead of deriving eight features from FDK spectrum D(τ, f, θ), we can just take

E = 20 log 10(|D|) from Eq. 3.1 as described in Sec. 3.5. The FDK log spectrum E

can replace Mel-spectrum in speech tasks. Mel-scale was developed to mimic human

auditory perception, however machine learning models can have different ways to

perceive the input feature. There is no sufficient evidence that Mel-spectrum is best for

all deep learning models for speech and audio recognition tasks.
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2. Parametric D-SAD:

Cumulative Distribution based SAD (D-SAD) is parameter free approach. However,

we can introduce a parameter that can help in tuning D-SAD backend on different

domains or tasks. We can name the D-SAD with an additional intercept parameter

c as parametric D-SAD (pD-SAD). As we have described in Sec. 3.8, D-SAD fits a

straight line between first and last point in cumulative distribution curve (CDC). Lets

say, featsmin and featsmax are minimum and maximum value of features as extracted

from CDC. We compute the slope of straight line connecting the points [featsmin, 0]

and [featsmax, 1]. The slope, m is given as

m =
1

(featsmax − featsmin)
(7.1)

Now, we define the straight line for parametric D-SAD as:

y = m · x+ c (7.2)

where x are feature values that lies in range [featsmin, featsmax]. The parameter c is

introduced to make this model flexible. We can derive a new straight line for each value of c.

Each of such lines are parallel to each other. The point of intersection of these line with CDC

makes a new SAD threshold if such intersection point exists. Thus, we can get different SAD

threshold for each unique value of c. In this way, we can compute DCF for different SAD

threshold and choose the parameter c that can minimize the DCF. We see that this approach

helps in optimizing DCF for a given application where some development data is available.

It is possible that D-SAD and pD-SAD are good solutions for any binary classification with

one-dimensional features.
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² Goal: advancing Diarization for 4-10 speakers
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² movMF: Mixture of von Mises-Fisher distributions 
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² 1.0 Speech Activity Detection (SAD)
² FDK-SAD: Frequency-Dependent Kernel Features
² VMGMM: Variable Model-size GMM Decision Backend
² Dip-SAD: Hartigan Dip Test-based Decision Backend
² D-SAD: Cumulative Density based linear curve Decision Backend

² 2.0 Raw Waveform SincNet for Speaker Modelling
² Speaker ID and Diarization with Transfer Learning (TL) and SincNet
² Discriminative loss functions: Additive Margin (AM)-Softmax and 

Center Loss (CL)
² 3.0 Model-based Speaker Clustering

² movMF: Mixture of von Mises-Fisher distributions 
² NFCM: Normalized Fuzzy C-means clustering
² TIC: Toeplitz Inverse Covariance-based speaker clustering

² 4.0 Interaction Analysis: Speaker Profiler, Dominance Score
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² SAD Detection Cost Function (DCF), w= 0.5 for Diarization as
miss rare and false alarms are equally important (see DER eqn.)

² Diarization error rate (DER) given as

Total-time from
reference segments

Speaker 
error

Miss 
(SAD)

False-alarm
(SAD)
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𝐷𝐶𝐹 = 𝑤 ∗ 𝑃 &'(( + 1 − 𝑤 ∗ 𝑃 *+

Weight Miss rate False-alarm rate
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² Traditional: SAD algorithms tested on 1-D noise
² Naturalistic: Multi-layer noise

² Target applications 

² Naturalistic audio

² Low-resource speech systems

SAD
ASR

Speaker ID
Speaker Diarization

Introduction SAD SincNet Speaker ID Speaker Clustering Interaction Analysis Summary

Multi-layer
Noise

Speech

² Performance of SAD directly impacts follow-on speech tasks
² Unsupervised SAD offers flexibility for diverse changing environments 
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² Phonetic-SAD [1]: A two-stage approach, In first stage a bottleneck DNN is trained to predict
senone posteriors. In second stage, activations at bottleneck layer used to train a second DNN for
SAD. (Supervised Methods)
² USC-DNN-SAD [2]: 4-D features namely (i) spectral shape, (ii) spectro-temporal modulations,
(iii) periodicity, and (iv) the long-term spectral variability are used for training a feedforward DNN for
SAD.
² SohnSAD [3]: Decision rule derived from the generalized likelihood ratio test that considered the
geometric mean of likelihood ratios over all frequency bins (Unsupervised Methods)
² rSAD [4]: High-pass filtering followed by selection of high-energy frames based on aposteriori
SNR weighted energy-difference. The high-energy frames without a pitch value in reasonable range
were taken as non-speech.
² SSGMM [5]: Semi-supervised GMM, trains two GMMs for speech & non-speech. Higher energy
frames used to train speech GMM and lower energy frames for non-speech.
² Combo-SAD [6]: Handcrafted 5-D features namely harmonicity, clarity, prediction gain,
periodicity and spectral flux. Processed with PCA 1-dim and considered in 2-GMM for decision.

[1] L. Ferrer, M. Graciarena, and V. Mitra, “A phonetically aware system for speech activity detection,” IEEE ICASSP, 2016.
[2] M. Van Segbroeck, A. Tsiartas, S. Narayanan, "A robust frontend for VAD: exploiting contextual, discriminative and spectral cues of human voice”, ISCA INTERSPEECH, (2013), pp.

704-708.
[3] J. Sohn, N. S. Kim, and W. Sung, “A statistical model-based voice activity detection,” IEEE Signal Processing Letters, (1999), vol. 6, no. 1, pp. 1–3.
[4] Z.-H. Tan and B. Lindberg, "Low-complexity variable frame rate analysis for speech recognition and voice activity detection." IEEE Journal of Selected Topics in Signal Processing,

(2010), vol. 4, no. 5, pp. 798-807.
[5] A. Sholokhov, M. Sahidullah, and T. Kinnunen,“Semi-supervised speech activity detection with an application to automatic speaker verification,” Computer Speech & Language, (2018),

vol. 47, pp. 132–156.
[6] S. O. Sadjadi and J. H. L. Hansen, “Unsupervised speech activity detection using voicing measures and perceptual spectral flux,” IEEE Signal Processing Letters, (2013), vol. 20, no.

3, pp. 197–200.
[7] A. Ziaei, L. Kaushik, A. Sangwan, J. H. L. Hansen, D.W. Oard, “Speech activity detection for NASA Apollo space missions: Challenges and solutions “, ISCA INTERSPEECH, (2014).
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² Motivation:
² Under adverse acoustics conditions (e.g., multi-layer noise), 

there could be possibly many processes in audio generation

² Leverage frequency-dependent Gaussian kernels (FDGKs) 
for spectral decomposition

² Advantages:
² Better than other kernels due to its compact time-frequency 

spectrum. For Gaussian kernels, the product of uncertainty in 
time and frequency domains is minimum. 

² Variance in FDGK is inversely proportional to frequency i. e., 
higher width for lower frequencies

² FDK provides generalized spectral decomposition that quantifies
multiple noise-sources and speech contained in an audio signal

Introduction SAD SincNet Speaker ID Speaker Clustering Interaction Analysis Summary
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Audio Signal
²FDK decomposition is defined below

²To ensure consistency, windows should satisfy: 

²Gaussian kernels with frequency-dependent variance

² is is generalized spectral decomposition 
² Captures speech non-speech statistics in an audio

Introduction SAD SincNet Speaker ID Speaker Clustering Interaction Analysis Summary

[1] H. Dubey, A. Sangwan, and J. H. L. Hansen, "Leveraging Frequency-Dependent Kernel and DIP-Based Clustering for Robust
Speech Activity Detection in Naturalistic Audio Streams", IEEE/ACM Trans. on Audio, Speech, and Language Processing,
(2018): 26.11, 2056-2071.".
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Akaike information criterion (AIC)

Fast-FDK
computation

Extract DCT0, 
Mean, Std, Geo-
mean, trim-mean, 
median, max, min

abs() log()

Speech
signal

PCA
1-dim

Frame-level
FDK-SAD
featuresAIC-based 

Model Order
Estimation

m-component 
GMM fit

m

SAD decisions
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² Under adverse acoustic conditions such as multi-layer noise, 
SAD features (FDK/Combo) do not remain bimodal

² Akaike information criterion (AIC) for estimating the model-order 
of GMM

² k is the number of estimated parameters and y is data, theta 
stands for ML estimates of parameters

² BEST model is one with minimum AIC value

Likelihood function
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[1] H. Dubey, A. Sangwan, and J. H. L. Hansen, "Leveraging Frequency-Dependent Kernel and DIP-Based Clustering for Robust
Speech Activity Detection in Naturalistic Audio Streams", IEEE/ACM Trans. on Audio, Speech, and Language Processing,
(2018): 26.11, 2056-2071.".
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² Top Figure:
² Histogram of Combo-SAD features from an utterance (audio recording)

² Bottom Figure:
² Cumulative distribution (CDF) of features follows the convex-then-concave 

nature when the mode changes from Non-speech to Speech

Non-speech

Speech

Introduction SAD SincNet Speaker ID Speaker Clustering Interaction Analysis Summary

[1] H. Dubey, A. Sangwan, and J. H. L. Hansen, "Leveraging Frequency-Dependent Kernel and DIP-Based Clustering for Robust
Speech Activity Detection in Naturalistic Audio Streams", IEEE/ACM Trans. on Audio, Speech, and Language Processing,
(2018): 26.11, 2056-2071.
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² A distribution is unimodal if its CDF takes a convex form up to its
mode/modal interval and a concave form after it.

² Dip statistic, DIP ∈ (0, 1/4 ], is defined as the minimum
achievable vertical offset for two copies of ECDF (one above,
one below, shown in dashed lines) such that piece-wise linear-
fit (of ECDF) does not violate its unimodal rule

² Farther distribution move away from unimodality, larger  the corresponding dip

[1] P. M. Hartigan, "Algorithm AS 217: Computation of the dip statistic to test for unimodality" Journal of the Royal Statistical
Society, Series C (Applied Statistics) 34.3 (1985): 320-325.
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[1] H. Dubey, A. Sangwan, and J. H. L. Hansen, "Leveraging Frequency-Dependent Kernel and DIP-Based Clustering for Robust
Speech Activity Detection in Naturalistic Audio Streams", IEEE/ACM Trans. on Audio, Speech, and Language Processing,
(2018): 26.11, 2056-2071.".
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² Examples with 5 classes:
² First iteration gives: 

[R3,R5] and [R1,R2]
² Second iteration within 

[R3,R5] gives R3,R4 and 
R5

² Iterating in [R1,R2] gives 
R1 and R2

² 1. We included nearest region in left-search and right-search
² 2. Dip-SAD on a sorted feature-vector requires O(N) operations in the 

worst case; where N is number of frames
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² FDK-SAD: discriminative features 
(from PLTL data)

² D-SAD: CDF based linear curve
² Let                          and

are end points of      
CDF curve
² We fit a straight line between them as

² Now, we compute y for all x in range
[𝐹𝐷𝐾 &': , 𝐹𝐷𝐾 &+; ].
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𝑦 =
(𝑥 − 𝐹𝐷𝐾 &': )

𝐹𝐷𝐾 &+; − 𝐹𝐷𝐾 &':

[𝐹𝐷𝐾 &': , 0]
[𝐹𝐷𝐾 &+; , 1]

² Point of intersection between straight line and CDF curves gives the SAD 
threshold.

[1] H. Dubey, and J. H. L. Hansen, "Speech Systems for Knowledge Extraction in Team Learning", (to be submitted at) JASA
Express Letters (2019).
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² We combine proposed FDK-SAD features and three proposed backend
namely VMGMM, DipSAD and D-SAD for comparisons

Introduction SAD SincNet Speaker ID Speaker Clustering Interaction Analysis Summary

System Feature Decision Backend

Combo-SAD  
(Sadjadi & Hansen, 2013)

Combo-VMGMM
FDK-VMGMM
Combo-DipSAD

FDK-DipSAD

Combo-SAD

Combo-SAD
FDK-SAD

FDK-SAD
Combo-SAD

2-GMM

VMGMM
VMGMM
DipSAD

DipSAD

FDK-DSAD FDK-SAD D-SAD

Combo-DSAD FDK-SAD D-SAD

ProposedState-of-the-art
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² Combo-SAD Features (Sadjadi & Hansen, 2013) [6]: Unsupervised Handcrafted
five-dimensional features using harmonicity, clarity, prediction gain, periodicity and
spectral flux. SAD threshold is given as convex combination of GMM means.

² Semi-supervised GMM (SSGMM) (Sholokhov etal., 2018) [5]: Semi-supervised It 
trains utterance-level speech-GMM and non-speech GMM. Higher energy frames 
takes as speech and lower energy frames as non-speech.

² SohnSAD (Sohn etal., 1990) [3]: Unsupervised Decision rule derived from 
generalized likelihood ratio test, Based on Frame-level energy

² rSAD (Tan and Lindberg, 2010) [4]: Unsupervised Selecting high-energy frames 
using aposteriori SNR. Frame-level pitch values computed. High-energy frames 
without a pitch value in reasonable range taken as non-speech.

² USC-DNN-SAD (Van Segbroeck etal., 2013 ) [2]: Supervised 4-D features namely 
(i) spectral shape, (ii) spectro-temporal modulations, (iii) periodicity, and (iv) the long-
term spectral variability are used for training a feedforward DNN for SAD.

² TO-Combo-SAD [7] (Ziaei, Hansen etal., 2014) [6]: Semi-supervised Combo-SAD 
features used to train a GMM for SAD using out-domain data. Later, trained GMM is 
used for decision making. 
² F0 ranges: male (85 -180 Hz), and female (65 -255 Hz)

Introduction SAD SincNet Speaker ID Speaker Clustering Interaction Analysis Summary
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² 5db SNR with Noise n1 and n2 CRSS-LDNN; “Overlapped-speech” and “Misc”
included in feature extraction & decision making but excluded in scoring
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𝐷𝐶𝐹 = 0.5 ∗ 𝑃 &'(( + 0.5 ∗ 𝑃 *+

Table: showing DCF (%) of all algorithms on PLTL data (approx. 80 minutes)
Systems PLTL PLTL+ n1 PLTL + n2

Combo-VMGMM 1.97 1.99 2.35

FDK-VMGMM 2.01 2.16 2.17

Combo-DipSAD 2.84 2.96 2.76

FDK-DipSAD 7.23 7.50 7.12

FDK-DSAD 15.29 N/A N/A

Combo-DSAD 17.68 N/A N/A

SohnSAD [3] 28.20 28.51 28.71

rSAD [4] 49.57 49.57 49.65

SSGMM [5] 28.95 29.13 30.58

TO-Combo-SAD [7] 29.16 N/A N/A

USC-DNN-SAD [2]: 23.19 N/A N/A
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² FDK-SAD: Discriminative features
² VMGMM: Flexible model for decision making, semi-supervised
² Dip-SAD: Non-parametric approach for low-resource situations
² D-SAD: Computationally simple approach
² Proposed methods lead to significant reductions in DCF for naturalistic

CRSS-PLTL and NIST corpora (OpenSAD 2015 and OpenSAT 2017).
² Two phase of evaluations (1) standalone SAD assessment; (2) SAD for

text-dependent speaker verification on RedDots
² Significant reverberation, overlap and multiple noise sources break state-

of-art methods: SohnSAD, SSGMM and rSAD broke as their performance
depends on speech energy and fundamental frequency (F0)

² Getting accurate F0 for naturalistic data is challenging
² Future Work:

² Use FDK for ASR
² Introducing slope parameter into D-SAD

Introduction SAD SincNet Speaker ID Speaker Clustering Interaction Analysis Summary
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² Infusing DSP knowledge into Neural Nets
² Band-pass spectral filtering Sinc functions as convolutive filters
² Sinc Layer: Each node perform convolution with Sinc functions
² Neural architecture for processing time-domain raw waveform

[1] H. Dubey, A. Sangwan and J. H. L. Hansen, "Transfer Learning Using Raw Waveform SincNet For Robust Speaker Diarization",
IEEE ICASSP 2019, May 12-19, Brighton, UK.

[2] M. Ravanelli, Y. Bengio. "Speaker Recognition from raw waveform with SincNet”, IEEE SLT 2018, Athens, Greece, Dec. 2018.

Time-domain: Sinc filter

Frequency response:Sinc filter
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²Input: Raw waveform SincNet
²Sinc Layer: 80 sinc filters (length 251), max-
pooling (3). 
²Compact architecture: Total 2*80 parameters 
²Next, two 1-D CNN layers and three fully 
connected (FC) layers; Final soft-max layer 
perform speaker classification.
²Faster convergence compared to standard CNN

[1] M. Ravanelli, Y. Bengio. "Speaker Recognition from raw waveform with SincNet”, IEEE SLT 2018, Athens, Greece, Dec. 2018.

² Sinc-Layer learn the formants and pitch trajectory 
² Leads to efficient speaker modeling in compact representations

Fig. 2: Cumulative frequency response of 
SincNet and CNN filters on speaker-id 
(Librispeech).
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[1] H. Dubey, A. Sangwan and J. H. L. Hansen, "Transfer Learning Using Raw Waveform SincNet For Robust Speaker Diarization",
IEEE ICASSP 2019, May 12-19, Brighton, UK.

[2] C. Zhang, S. Ranjan, J.H.L. Hansen, “'An Analysis of Transfer Learning for Domain Mismatched Text-independent Speaker
Verification," ISCA Speaker Odyssey-2018, June 26-29, Les Sables d'Olonne, France.

² Unsupervised Transfer Learning implemented in two stages:
² Stage 1: SincNet is trained for frame-level (10ms) speaker ID on out-domain data.
² Stage 2: Trained SincNet is used as feature extractor for in-domain data. Frame-level

embeddings are max() or avg() pooled to get utterance/segments-level embeddings.
² Next, PCA, length-normalization and Speaker Clustering follows.
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PLTL data: Comparing i-vector with average pooled
F1, F2 and F3 embeddings. w/o PCA= No PCA

AMI corpus: F2-avg with PCA (51 dim.) shows 
significant improvements over i-vector with PCA. 

² F2-avg gives Best (least) DER among all alternatives here
² PCA helps in improving Diarization performance

Results w/ PLTL data:
(F2-avg)

PLTL data corpus: Effect of PCA 
(51 dim.) on DER
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² Softmax loss:
² Optimizes the inter-class variance; 
² Lacks the capacity to reduce the intra-class variations. 

² AM-Softmax (Additive Margin): 
² minimize intra-class variance.
² Introduce a margin around decision boundary in Softmax
² Large margin further reduce the intraclass variance 

[1] F. Wang, J. Cheng, W. Liu, and H. Liu, "Additive margin softmax for face verification,” IEEE Signal Processing Letters, (2018),
vol. 25, no. 7, pp. 926–930.

Graphical illustration of conventional 
Softmax and AM-Softmax

Margin parameter
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² CL: Supervised loss used jointly with Softmax/AM-Softmax loss
² Simultaneously, (i) learns a center for deep embeddings of each      

speaker; and (ii) penalizes the distances between deep features and their 
corresponding class centers.

² CL + Softmax has two benefits:
² Inter-class dispension ­(Softmax),
² Intra-class compactness (CL).

² CL aims to improve the discriminative power of SincNet embeddings: 
² By minimizing the intra-class variance, and 
² Ensuring the separability of different classes.

[1] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, "A discriminative feature learning approach for deep face recognition," in European
Conference on Computer Vision, (2016), pp. 499–515.

Illustration: CL enhances the discriminating 
power of deep speaker embeddings

Centroid of corresponding class

Speaker Embedding

Balancing parameter, small value < 1
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² Bringing the discrimination power of CL and AM-Softmax into SincNets
² Proposed: 

² CL-SincNet, AM-CL-SincNet for Speaker ID
² All four architectures for Speaker Diarization

² Trained on Librispeech (2484 speakers) and TIMIT (462 speakers)
[1] H. Dubey, A. Sangwan and J. H. L. Hansen, "Transfer Learning Using Raw Waveform SincNet For Robust Speaker Diarization",

IEEE ICASSP 2019, May 12-19, Brighton, UK.
[2] H. Dubey, and J. H. L. Hansen, "SincNet Speaker Embeddings and Model-based Clustering for Speaker Diarization in

Naturalistic Audio Streams", (to be submitted at) IEEE/ACM TASLP (2019).
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² Supervised Transfer Learning (STL): use of additional source of
information (from out-domain source task) into an supervised
classification on target domain.

² Goal:
² Improve learning in the target task by leveraging knowledge from

the source task.
² STL-SincNet transfer speaker discriminative capability from TIMIT

to Librispeech

² Improvements obtained:
² Better initial performance
² Faster speed of convergence
² better final performance
² Better unsupervised transfer to Diarization pipeline

[1] H. Dubey, and J. H. L. Hansen, "SincNet Speaker Embeddings and Model-based Clustering for Speaker Diarization in
Naturalistic Audio Streams", (to be submitted at) IEEE/ACM TASLP (2019).

Introduction SAD SincNet Speaker ID Speaker Clustering Interaction Analysis Summary

Email: Harishchandra.Dubey@utdallas.edu Slide 36 Ph.D. Dissertation Defense, CRSS, UT Dallas, ECSN 2.704, May 01, 2019

² Motivation: Early layers in SincNet learn robust, domain-invariant
features and later layers learn speaker discrimination for speakers
contained in training data

² Fine-tune the pre-trained SincNet on TIMIT w/ Groundtruth SAD.
[1] H. Dubey, and J.H.L. Hansen, "SincNet Speaker Embeddings and Model-based Clustering for Speaker Diarization in Naturalistic

Audio Streams", (to be submitted at) IEEE/ACM TASLP (2019).
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² Mutual Information (MI)-SincNet [1]: Leverages MI to 
learn speaker embeddings in an unsupervised setup.

² Implicit optimization of MI is achieved via Encoder-
discriminator architecture. 

² SincNet encoder: transforms raw speech to bottleneck 
features. 

² Discriminator trained to separate positive samples 
(codes from same speakers/sentence) or negative 
samples (from different speakers).

² Maximizing MI between the encoded representations 
of speech chunks from same speaker. 

² Discriminator trained using the standard binary cross-
entropy (BCE) loss: 

[1] Ravanelli, Mirco, and Yoshua Bengio. "Learning Speaker Representations with Mutual Information." arXiv preprint
arXiv:1812.00271 (2018).
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² PASE [1] = Problem-Agnostic Speech 
Encoder

² PASE tasks: Waveform, Log power spectrum 
(LPS), Mel-frequency cepstral coefficients 
(MFCC), Prosody, Local info max (LIM), 
Global info max (GIM), Sequence predicting 
coding (SPC)

² Proposed MI-SincNet for Diarization uses 
PASE architecture but trains it on MI based 
speaker identification and do not include 
PASE tasks.

² Bottleneck feature of 100 dim. are extracted 
from each 200ms frames with 10ms skip.

² Avg() pooling in applied on frame-level 
speaker embeddings to get segment-level 
embeddings for Diarization

[1] S. Pascual, M. Ravanelli, J. Serrà, A. Bonafonte, and Y. Bengio. "Learning Problem-agnostic Speech Representations from
Multiple Self-supervised Tasks." arXiv preprint arXiv:1904.03416 (2019).
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The PASE architecture [1], with 
the considered tasks.
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[1] H. Dubey, and J. H. L. Hansen, "SincNet Speaker Embeddings and Model-based Clustering for Speaker Diarization in
Naturalistic Audio Streams", (to be submitted at) IEEE/ACM TASLP (2019).

² SincNet robust to presence of pause/silence for in-domain speaker ID
² Presence of SAD has limited impact on SID Frame-error-rate; However, 

effective SAD (groundtruth) has major impact on final DER%!
² SincNet w/ SAD generalizes better on out-domain Diarization task

² SAD impact on SincNet training
Option1: Ground-truth SAD used train SincNet

Option2: No SAD used in training SincNet

² Speaker ID Frame error rate (FER) 
remains similar towards end of 
training/convergence

² PLTL DER% (Best)
wo/ SAD, TIMIT trained model:  15.42%
w/ Groundtruth SAD, 

TIMIT trained model: 10.63%
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² AM-SincNet is robust to presence of silences similar to SincNet
² Ground-truth SAD more stable training; Margin need to be tuned.
² In noiser data and wo/ SAD, DER is better than SincNet (AM helps)

² SAD impact on AM-SincNet training
² Trained with Margin Weight of
m=0.90 in two cases:
Option1: Ground-truth SAD used train AM-SincNet
Option2: No SAD used in training AM-SincNet

² Good news: Frame error rate (FER) 
remains similar towards end of 
training/convergence
² PLTL   DER (%)   (Best)

wo/ SAD, TIMIT trained model:  8.04 %
w/ Groundtruth SAD, 

TIMIT trained model: 12.10 %
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² Unsupervised Transfer 
Learning (UTL)

² Trained wo/SAD (no SAD 
used)

² Trained with Different 
margins (m)

² Trained on TIMIT data 
(training set)

² Cosine K-means clustering
² UTL is complex process

² F2-avg from AM-SincNet: PLTL DER % (Best) for margin = 0.90
² Higher margin leads to robustness in unsupervised Transfer Learning
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² Early layers in SincNet learn robust, domain-invariant features 
² Later layers learn speaker discrimination for training set
² STL-SincNet Fine-tune pre-trained SincNet on TIMIT w/ grount-truth SAD
² Tabular results are from conducted experiments not all possible ones 

Introduction SAD SincNet Speaker ID Speaker Clustering Interaction Analysis Summary

Librispeech SER (%) for STL-SincNet System Best PLTL
DER (%)

SincNet 10.63
AM-SincNet 8.04 

(m= 0.90)

CL-SincNet 14.81
AM-CL-
SincNet

15.01
(m=0.5, CL=0.5)

TL-SincNet 
(F1avg)

13.29

MI-SincNet 15.71
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² Sentence 
Error Rate 
for Speaker 
ID using CL-
SincNet

Introduction SAD SincNet Speaker ID Speaker Clustering Interaction Analysis Summary

CL  parameter SER(%)
0.10 0.3608
0.20 0.2886
0.30 0.2165
0.40 0.3608
0.50 + AM m=0.5 0.2886
0.60 0.2886
0.70 0.2886
0.80 0.1443
0.90 0.2886

SincNet 0.7937
SincNet w/ ground-truth SAD 0.5772

CL-SincNet always better than standard SincNet in terms of SER (%)
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Introduction SAD SincNet Speaker ID Speaker Clustering Interaction Analysis Summary

² Unsupervised 
Transfer 
Learning (UTL)

² Trained 
wo/SAD (no 
SAD used)

² F2-avg from CL-SincNet: PLTL DER % (Best) for CL (lambda) = 0.10 
² Lower CL params. leads to robustness in Diarization (UTL)
² AM-CL-SincNet: Additive Margin (AM) improves generalization in UTL and 

hence better DER for CL-SincNets
² Careful selection of CL and AM parameters is important

CL AM-CL

Standard
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² CONTRIBUTION #1: Speech Activity Detection (SAD)
² Feature: FDK-SAD
² Decision Backends: VMGMM, DipSAD, D-SAD

² CONTRIBUTION #2: SincNet based Neural Speaker Modelling
² Unsupervised Transfer Learning (TL), Supervised TL
² SincNet, AM-SincNet, CL-SincNet, AM-CL-SincNet

² CONTRIBUTION #3: Robust Speaker Clustering
² movMF: Mixture of von Mises-Fisher distributions 
² NFCM: Normalized Fuzzy C-means clustering
² TIC: Toeplitz Inverse Covariance-based speaker clustering

² CONTRIBUTION #4: Interaction Analysis
² Speaker Profiler, Engagement, Dominance Score

Introduction SAD SincNet Speaker ID Speaker Clustering Interaction Analysis Summary
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² Evaluation pipeline includes ground-truth segmentation
² Except TIC all algorithms require length-normalization
² Mean subtraction requires mean from entire meeting
² Speaker embeddings extracted from entire segment

Introduction SAD SincNet Speaker ID Speaker Clustering Interaction Analysis Summary

[1] H. Dubey, A. Sangwan and J. H. L. Hansen, "Robust Speaker Clustering using Mixtures of von Mises-Fisher Distributions
for Naturalistic Audio Streams", ISCA INTERSPEECH, (2018), Hyderabad, India, Sept. 2-6, 2018.

[2] H. Dubey, A. Sangwan, J.H.L. Hansen, “Toeplitz Inverse Covariance based Robust Speaker Clustering for Naturalistic Audio
Streams,” (submitted to) ISCA INTERSPEECH, 2019.

[3] H. Dubey, and J. H. L. Hansen, "SincNet Speaker Embeddings and Model-based Clustering for Speaker Diarization in
Naturalistic Audio Streams", (to be submitted at) IEEE/ACM TASLP (2019).
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Introduction SAD SincNet Speaker ID Speaker Clustering Interaction Analysis Summary

² Motivation: von Mises-Fisher (vMF) distributions model data on 
unit hypersphere such as L2-normalized speaker embeddings

² Mixture Model movMF: One component per speaker; 
Expectation Maximization (EM) for estimation of movMF model

Weights of each component

Mean vector Concentration 
parameter

modified Bessel function of first-kind and order (d/2)-1
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Introduction SAD SincNet Speaker ID Speaker Clustering Interaction Analysis Summary

² In E-step: embeddings are 
assigned to clusters such that the 
likelihood is maximized.

² In M-step: model parameters are 
updated

² movMF model do not have 
closed form solutions, we 
approximate!

² EM is used for hard 
clustering where each data 
point is assigned to one 
unique cluster in E-step. 
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Introduction SAD SincNet Speaker ID Speaker Clustering Interaction Analysis Summary

² NFCM: Normalized Fuzzy C-means is an extension of fuzzy c-
means for length-normalized data

² Principle: Each feature vector can belong to more than one 
cluster with different membership values in range [0,1].

² Conditions for minimization of Least-Squared Error

² Membership values lies in range [0,1].

² Membership values for each feature vector must sum to 1.

² The sum of all membership values in a speaker cluster must be 
smaller than the number of data points.

² Angular difference is used as similarity measure
² Distribution-free approach
² low computational time
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Introduction SAD SincNet Speaker ID Speaker Clustering Interaction Analysis Summary

² TIC: Toeplitz Inverse Covariance
² Motivation: Small set of speakers (~10)
repeat throughout the audio stream
² Highlights: Segment-level speaker features 

are modelled as MRF correlation network 
where conversational turns are a sequence 
of states. 

² Speaker MRFs capture the time-invariant 
partial correlation structure present in all 
speech segments belonging to that speaker.

Each speaker A, B or C is 
characterized by its correlation 
network defined as a
Markov Random Field (MRF).

² Implemented as two Algorithms 
² Algorithm 1: Assign-Clusters
² Algorithm 2: EM based iterations for speaker clustering

[1] H. Dubey, A. Sangwan, J.H.L. Hansen, “Toeplitz Inverse Covariance based Robust Speaker Clustering for Naturalistic Audio 
Streams,” (submitted to) ISCA INTERSPEECH, 2019.
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² Approach: Viterbi-like approach 
assigns the clusters in a way such that

² The Likelihood of data given the model 
is maximized

² State transition between successive 
segments in minimized where \beta is 
switch penalty

Introduction SAD SincNet Speaker ID Speaker Clustering Interaction Analysis Summary

199



Email: Harishchandra.Dubey@utdallas.edu Slide 53 Ph.D. Dissertation Defense, CRSS, UT Dallas, ECSN 2.704, May 01, 2019

Introduction SAD SincNet Speaker ID Speaker Clustering Interaction Analysis Summary

² In E-step: embeddings are 
assigned to clusters [Viterbi path 
with least cost]

² In M-step: model parameters are 
updated using dynamic 
programming (DP) and alternating

direction method of multipliers (ADMM) 
[Toeplitz Graphical Lasso]

² Beta is switch penalty and ensure smoothness in decoded path
² Lambda is sparsity constraints imposed on Inverse Covariance Matrix
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Introduction SAD SincNet Speaker ID Speaker Clustering Interaction Analysis Summary

(a) PLTL: F2-avg AM-SincNet m=0.95

² TIC has the BEST performance without PCA as it works on correlation!
² TIC achieves significant reduction in DER as compared  to other methods
² TIC gets less than 1% DER for AMI meetings
² When SincNet embeddings are used in Cosine K-means, DER significant 

reduced compared to i-vectors. 

(b) PLTL: i-vector
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Introduction SAD SincNet Speaker ID Speaker Clustering Interaction Analysis Summary

² Comparison between estimated analysis with ground-truth;
relative time/student per session (80 min session).

² Useful for educational researchers in PLTL.
[1] H. Dubey, L. Kaushik, A. Sangwan, J.H.L. Hansen, “A Speaker Diarization System for Studying Peer-Led Team Learning 

Groups,” ISCA INTERSPEECH, 2016, pp. 2180-2184,  San Francisco, CA, Sept. 8-12, 2016
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Introduction SAD SincNet Speaker ID Speaker Clustering Interaction Analysis Summary

² 4 Low-level Features: Emotion, 
Whisper, Physical Task Stress and 
Lombard effect.

² Motivation: Use these features to 
detect engagement and 
communication behaviors

² Speech profiler was used to get the 
probabilities of Lombard effect, 
whisper and physical stress.
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Introduction SAD SincNet Speaker ID Speaker Clustering Interaction Analysis Summary

Shows 3D scatter plot for physical task 
profile (PTP). It corresponds to 80 minute 
PLTL session with 7 students and peer-lead. 

2D scatter plot showing 
valence and activations

Showing smoothed 
density for all six 
features. Only Whisper is 
bi-modal

t-SNE plots with 3-D 
embedding of mean 
normalized 6-dimensional 
features.Color coding shows 
two clusters from K-means. t-
SNE used Euclidean 
distances for this plot.
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Introduction SAD SincNet Speaker ID Speaker Clustering Interaction Analysis Summary

² Idea: Dominance score (DS) is estimated using unsupervised analysis of
each speaker segment.

² Approach: Dominance is correlated with speaking time and turns taken by
the speakers [2]. We added speaker energy as third parameter.

² Diarization makes this process unsupervised and automatic.
² Pearson’s correlation between DS and ground-truth dominance rating is

0.8748.
² Ground-truth: is average of scores from three annotators

[1] H. Dubey, A. Sangwan and J. H. L. Hansen, "A Robust Diarization System for Measuring Dominance in Peer-Led Team 
Learning Groups", IEEE SLT, (2016), San Diego, USA, pp. 319–323.

[2] M. Schmid Mast, “Dominance as expressed and inferred through speaking time,” Human Communication Research, (2002),
vol. 28, no. 3, pp. 420–450, 2002.
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Introduction SAD SincNet Speaker ID Speaker Clustering Interaction Analysis Summary

² CONTRIBUTION #1: Speech Activity Detection (SAD)
² Feature: FDK-SAD
² Decision Backends: VMGMM, DipSAD, D-SAD

² CONTRIBUTION #2: SincNet based Neural Speaker Modelling
² Unsupervised Transfer Learning (TL), Supervised TL
² SincNet, AM-SincNet, CL-SincNet, AM-CL-SincNet

² CONTRIBUTION #3: Robust Speaker Clustering
² movMF: Mixture of von Mises-Fisher distributions 
² NFCM: Normalized Fuzzy C-means clustering
² TIC: Toeplitz Inverse Covariance-based speaker clustering

² CONTRIBUTION #4: Interaction Analysis
² Speaker Profiler, Engagement, Dominance Score
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[JP1] H. Dubey and J. H.L. Hansen, " SincNet Speaker Embeddings and Model-based Clustering for Speaker
Diarization in Naturalistic Audio Streams", (to be submitted at) IEEE/ACM TASLP, (2019).

[JP2] H. Dubey, A. Sangwan and J. H.L. Hansen, "Leveraging Frequency-Dependent Kernel and DIP-Based Clustering
for Robust Speech Activity Detection in Naturalistic Audio Streams", IEEE/ACM Trans. on Audio, Speech, and
Language Processing, (2018), 26.11 (2018): 2056-2071.

[JP3] H. Dubey, A. Sangwan and J. H.L. Hansen, "Using Speech Technology for Quantifying Behavioral Characteristics
in Peer-Led Team Learning Sessions", Computer Speech & Language, (2017), 46 : 343-366.

[JP4] H. Dubey and J. H.L. Hansen, "Speech System for Knowledge Extraction in Team Learning", (to be submitted at) JASA 
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Naturalistic Audio Streams", (under review) ISCA INTERSPEECH, (2019), Graz, Austria, Sept. 15-19.
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[CP5] H. Dubey, A. Sangwan and J. H. L. Hansen, "Robust Feature Clustering for Unsupervised Speech Activity Detection",
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Learning Groups", IEEE SLT, (2016), San Diego, USA, pp. 319–323, (Travel Grant Award).
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