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ROBUST ANALYSIS OF NON-PARAMETRIC SPACE-TIME CLUSTERING

Xin Huang, PhD
The University of Texas at Dallas, 2018

Supervising Professor: Yulia R. Gel, Chair

Recently, the rampant growth of various remote sensing technologies has resulted in a spike

of interest in space-time data mining and particularly clustering of environmental time series

and spatio-temporal processes.

Remarkably, the dynamic data-driven clustering procedures for space-time data that allow

the number, shape and distributional properties of clusters to vary, have received a flare

of interest in recent years. Despite the potential of the dynamic data-driven clustering

procedures, the price for their flexibility is usually a set of parameters that control clustering

performance and are to be user-specified – for instance, the value similarity threshold � in

TRUST; the maximum radius of the neighborhood Eps in DBSCAN; the steepness parameter

⇠ in OPTICS; and the kernel smoothing parameter h in DENCLUE. The choice of these

parameters can noticeably impact the number and shape of detected clusters, and ideally

should be approached in an objective manner. The goal of this dissertation is to address

those challenges by developing new nonparametric data-driven approaches in space-time

clustering.

First, we propose a new data-driven procedure for optimal selection of these tuning param-

eters in dynamic clustering algorithms, using the notion of stability probe. We study finite

sample performance of DR in conjunction with DBSCAN and TRUST in application to

clustering synthetic times series and yearly temperature records in Central Germany. We
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also utilized DR in studying the ecological trends and water quality in Chesapeake Bay and

legislative rhetoric data in the U.S. Senate.

Second, when it comes to optimal selection of tuning parameters in density-based clustering

procedures such as DBSCAN, OPTICS, and DENCLUE, some additional problems such

as existence of clusters with varied densities and existence of outliers need to be addressed.

Therefore, we develop a new density-based clustering algorithm named CRAD which is based

on a new neighbor searching function with a robust data depth as the dissimilarity measure.

Our experiments prove that the new CRAD is highly competitive at detecting clusters with

varying densities, compared with the existing algorithms such as DBSCAN, OPTICS and

DBCA.
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CHAPTER 1

INTRODUCTION1

1.1 Motivation

1.1.1 Dynamic Data-driven Clustering Procedures for Space-time Data

Clustering of time series has received considerable attention in the last two decades both

in data mining and statistical literature (Lux and Marchesi, 2000; Keogh and Lin, 2005;

Ratanamahatana et al., 2005; Wei and Keogh, 2006; Euan et al., 2015), with applications

ranging from finance and communication sciences to neuroscience and geology. Most re-

cently, the rampant growth of various remote sensing technologies has resulted in a spike of

interest in space-time data mining and particularly clustering of environmental time series

and spatio-temporal processes (Phoha et al., 2003; Lozano et al., 2009; Urbancic et al., 1992;

Rashidi and Cook, 2010). However, many currently existing clustering procedures for space-

time data are either based solely on geographical proximity, which does not account for drifts

in space-time data distribution, or are restricted to a relatively small domain to avoid high

spatial heterogeneity (Stein, 2005; Beelen et al., 2013). Furthermore, the number of possible

1 This chapter includes verbatim excerpts from

Reprinted from Huang, X., Iliev, I., Brenning, A., Gel, Y. (2016) Space-Time Clustering with Stability
Probe while Riding Downhill. Proc.22nd ACM SIGKDD Workshop on Mining and Learning from Time

Series (MiLeTS), 2016, http://www-bcf.usc.edu/
~

liu32/milets16/#papers.

©2017 John Wiley and Sons. Reprinted, with permission, from Huang, X., Iliev, I., Lyubchich, V.,
Gel, Y. Riding down the Bay: Space-time clustering of ecological trends. Environmetrics, e2455, 2017,
https://onlinelibrary.wiley.com/doi/abs/10.1002/env.2455.

©2017 IEEE. Reprinted, with permission, from Huang, X., Gel, Y. CRAD: Clustering with Robust
Autocuts and Depth. Proc. 17th IEEE International Conference on Data Mining (ICDM), 2017,
https://ieeexplore.ieee.org/document/8215579/

Under Invited Revision. Iliev, I., Huang, X., Gel, Y. (2017) Political Rhetoric through the Lens of
Nonparametric Statistics: Are Our Legislators That Di↵erent?

1

http://www-bcf.usc.edu/~liu32/milets16/#papers
https://onlinelibrary.wiley.com/doi/abs/10.1002/env.2455
https://ieeexplore.ieee.org/document/8215579/


clusters is often fixed a-priori, which substantially limits the utility of such clustering pro-

cedures in environmental applications that are typically characterized by spatio-temporal

non-stationarity and non-separability (Gneiting, 2002; Sherman, 2011).

Remarkably, the number of dynamic data-driven clustering procedures for space-time

data that allow the number, shape and distributional properties of clusters to vary, still

remains quite limited. However, this research direction has received a flare of interest in

recent years (Gaber et al., 2005; Cao et al., 2006; Banerjee et al., 2014). Two such dy-

namic clustering procedures are an e�cient space-time data mining procedure (TRUST)

of Ciampi et al. (2010) that is based on interleaving spatial clustering and temporal trend

detection, and a hierarchical spectral merger algorithm to cluster brain connectivity (Euan

et al., 2015). Alternatively, we can adjust various density-based clustering procedures such

as DBSCAN (Kogan et al., 2006; Ester et al., 1996), OPTICS (Ankerst et al., 1999), DEN-

CLUE (Hinneburg and Keim, 1998) etc, to a space-time context.

Despite the potential of these dynamic clustering procedures, the price for their flexibility

is usually a set of parameters that control clustering performance and are to be user-specified

– for instance, the value similarity threshold � in TRUST (Ciampi et al., 2010); the maximum

radius of the neighborhood Eps in DBSCAN (Ester et al., 1996); the steepness parameter ⇠ in

OPTICS (Ankerst et al., 1999); and the kernel smoothing parameter h in DENCLUE (Hin-

neburg and Keim, 1998). The choice of these parameters can noticeably impact the number

and shape of detected clusters, and ideally should be approached in an objective manner.

Therefore, the first goal of our research is the optimal selection of these parameters to

achieve both accurate and robust clustering performances for space-time data using the

notion of stability probe.

1.1.2 Data Depth based Spatial Clustering

Data depth methodology is a widely employed nonparametric tool in multivariate and func-

tional data analysis, with applications ranging from outlier detection to clustering and visual-

2



ization (Liu et al., 1999; Cuevas et al., 2007; Li et al., 2012). Depth measures the “centrality”

(or “outlyingness”) of a given object with respect to an observed data cloud (Mosler, 2013;

Zuo and Serfling, 2000). Many desirable properties of data depth such as a�ne invariance,

robustness, and center maximality have earned it an increasing attention in the machine

learning and statistics communities in the last decade. There exist numerous clustering

and classification methods, based on a data depth concept (Jörnsten, 2004; Mosler, 2013;

Pokotylo et al., 2016). Most such methods, however, rely on the knowledge of a true num-

ber of clusters k. Most recently, Jeong et al. (2016) proposed a Depth Based Clustering

Algorithm (DBCA) and showed benefits of a data depth for clustering spatial data. To the

best of our knowledge, Jeong et al. (2016) is the first and only reference introducing a data

depth concept into clustering analysis of spatial data. However, DBCA cannot handle a

case of clusters with varying densities, which is a common issue in density-based clustering

domain. In addition, the problem how to select the tuning parameter, which highly impacts

the clustering result, remains unstudied.

Therefore, the second goal of our research aims to answer following major challenges in

density-based clustering: (1) Based on data depth, can we propose an algorithm that delivers

more robust performance under the existence of clusters with varying densities? (2) Based

on the proposed algorithm, how can we select the true underlying parameter in the real-

world clustering when the ground truth is not given? (3) Can the density-based algorithm

be extended to multivariate time-series clustering, without a-priori knowledge of the number

of clusters?

1.2 Dissertation Outline

Space-Time Clustering with Stability Probe while Riding Downhill Motivated by

Section 1.1.1, we propose a new data-driven procedure for optimal selection of tuning pa-

rameters in dynamic clustering algorithms, using the notion of stability probe (Chapter 2).

3



Due to the shape of the stability probe dynamics, we refer to the new clustering stability

procedure as Downhill Riding (DR). We study finite sample performance of DR in con-

junction with DBSCAN and TRUST in application to clustering synthetic times series and

benchmark data (Section 2.4). We also utilized DR in analysing yearly temperature records

in Central Germany (Section 2.5) and studying the ecological trends and water quality in

Chesapeake Bay2 (Section 2.6).

CRAD: Clustering with Robust Autocuts and Depth Motivated by Section 1.1.2, we

develop a new density-based clustering algorithm named CRAD which is based on a new

neighbor searching function with a robust data depth as the dissimilarity measure (Chap-

ter 3). Our experiments prove that the new CRAD is highly competitive at detecting clusters

with varying densities, compared with the existing algorithms such as DBSCAN, OPTICS

and DBCA (Section 3.4.1, 3.4.2). Furthermore, a new e↵ective parameter selection procedure

is developed to select the optimal underlying parameter in the real-world clustering, when

the ground truth is unknown (Section 3.3). Lastly, we suggest a new clustering framework

that extends CRAD from spatial data clustering to time series clustering without a-priori

knowledge of the true number of clusters (Section 3.4.3). The performance of CRAD is

evaluated through extensive experimental studies.

Political Rhetoric through the Lens of Nonparametric Statistics: Are Our Leg-

islators That Di↵erent? Not limited to environmental space-time data in Chapter 2, the

dynamic clustering procedure combined with DR procedure can also be extended to un-

structured space-time data—legislative rhetoric data in the U.S. Senate. We present a novel

statistical analysis of legislative rhetoric in the U.S. Senate that sheds a light on hidden

patterns in the behavior of senators as a function of their time in o�ce (Chapter 4). Using

natural language processing, we create a novel comprehensive dataset based on the speeches

2The Chesapeake Bay Program, initiated in 1983, is a regional partnership between several state gov-
ernments, federal agencies and advisory groups, that is involved in the clean-up and restoration of the Bay.
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of all senators who served on the U.S. Senate Committee on Energy and Natural Resources

in 2001–2011 (Section 4.3.1). We develop a new measure of congressional speech, based on

senators’ attitudes toward the dominant energy interests (Section 4.3.2, 4.3.3, 4.3.4). To

evaluate intrinsically dynamic formation of groups among senators, we adopt a model-free

unsupervised space-time data mining algorithm that has been proposed in the context of

tracking dynamic clusters in environmental geo-referenced data streams (Section 4.4). Our

approach based on a two-stage hybrid supervised-unsupervised learning methodology is in-

novative, data-driven and transcends conventional disciplinary borders. We discover that

legislators become much more alike after the first few years of their term, regardless of their

partisanship and campaign promises.

To ensure that each chapter is self-contained, the preliminary information and notations

are mentioned in every chapter in which new methodology is proposed.

1.3 Contributions

• We present a new data-driven procedure for optimal selection of tuning parameters

in dynamic clustering algorithms called Downhill Riding (DR), using the notion of

stability probe (Chapter 2). We study finite sample performance of DR in conjunction

with DBSCAN and TRUST in application to clustering synthetic times series and

yearly temperature records in Central Germany, and studying the ecological trends and

water quality in Chesapeake Bay. The results of this project are published in (Huang

et al., 2016) and (Huang et al., 2017).

• We develop a new density-based clustering algorithm named CRAD which is based

on a new neighbor searching function with a robust data depth as the dissimilarity

measure (Chapter 3). The findings of this project have been published in (Huang and

Gel, 2017).

5



• We present a novel statistical analysis of legislative rhetoric in the U.S. Senate that

sheds a light on hidden patterns in the behavior of senators as a function of their

time in o�ce (Chapter 4). The findings have been summarized in a manuscript which

undergoes an invited revision and has been presented at Joint Statistical Meetings

(JSM) conference 2016.
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CHAPTER 2

RIDING DOWN THE BAY: SPACE-TIME CLUSTERING OF

ECOLOGICAL TRENDS1

2.1 Introduction

Chesapeake Bay is the largest estuary in the United States and one of the largest in theWorld.

It stretches for over 200 miles from Maryland to Virginia and is home to a large number of

plants, animals, and people. The Bay has been impacted by numerous contaminants and

ecological threats. Currently, about three-quarters of its waters are considered impaired by

chemical contaminants such as pesticides, pharmaceuticals, and metals (U.S. Environmental

Protection Agency, 2012). These contaminants can harm the health of humans and wildlife

alike. The Chesapeake Bay Program is a regional partnership between several state and

local governments, federal agencies, academic institutions, and advisory groups, aiming at

the restoration of the Bay and the clean-up of pollutants. Investigating ecological trends,

such as the concentrations of pollutants, can allow for the better management of resources

and a more precise geographic focus of the program. Studying ecological trends requires a

data-driven procedure that can identify spatial and temporal clustering in a selected area. We

propose such a procedure for dynamic clustering that allows the automatic optimal selection

of the tuning parameters using a clustering stability probe. By probe here we understand an

1 This chapter includes verbatim excerpts from

Reprinted from Huang, X., Iliev, I., Brenning, A., Gel, Y. (2016) Space-Time Clustering with Stability
Probe while Riding Downhill. Proc.22nd ACM SIGKDD Workshop on Mining and Learning from Time

Series (MiLeTS), 2016, http://www-bcf.usc.edu/
~

liu32/milets16/#papers.

©2017 John Wiley and Sons. Reprinted, with permission, from Huang, X., Iliev, I., Lyubchich, V.,
Gel, Y. Riding down the Bay: Space-time clustering of ecological trends. Environmetrics, e2455, 2017,
https://onlinelibrary.wiley.com/doi/abs/10.1002/env.2455.

7

http://www-bcf.usc.edu/~liu32/milets16/#papers
https://onlinelibrary.wiley.com/doi/abs/10.1002/env.2455


exploratory measure (or indicator) that can be utilized to assess stability and accuracy of

clustering performance.

Clustering of time series has received considerable attention in the last two decades both

in data mining and statistical literature (for overviews see, e.g., Wei and Keogh, 2006; Mueen

et al., 2011; Silva et al., 2013; Euan et al., 2015, and references therein), with applications

ranging from finance and communication sciences to neuroscience and geology. Most re-

cently, the rampant growth of various remote sensing technologies has resulted in a spike of

interest in space-time data mining and particularly clustering of environmental time series

and spatio-temporal processes. However, many currently existing clustering procedures for

space-time data are either based solely on geographical proximity, which does not account

for drifts in space-time data distribution, or are restricted to a relatively small domain to

avoid high spatial heterogeneity. Furthermore, the number of possible clusters is often fixed

a-priori, which substantially limits the utility of such clustering procedures in environmental

applications that are typically characterized by spatio-temporal non-stationarity and non-

separability (Sherman, 2011).

Our initial interest in the topic was motivated by studies of the impact of climate change

on insurance claim dynamics and early recognition of areas with the highest vulnerabil-

ity to adverse weather conditions, particularly, the so-called “normal” extreme weather,

with a low individual but high cumulative impact (for overview see, e.g., Lyubchich and

Gel, 2017a; Scheel et al., 2013; Soliman et al., 2015, and references therein). Remarkably,

attribution analysis of such “normal” weather on the insurance industry is largely unex-

plored (Curry et al., 2012; CIA, 2014; Lyubchich and Gel, 2017a). Since there exist multiple

factors contributing to elevated insurance risks, e.g., city infrastructure, building codes,

socio-demographics, landscape, as well as numerous latent variables, areas that are similar

in their sensitivity to adverse weather are not necessarily close geographically. At the same

time, the number of clusters, or areas with similar levels of vulnerability, is unknown and can
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vary over di↵erent periods driven, for example, by the El Niño-Southern Oscillation (ENSO)

cycles and other forcings. Moreover, the choice of optimal number of clusters is a longstand-

ing problem in climate sciences (see, for instance, discussion by Werner and Gerstengarbe,

1997; Mahlstein and Knutti, 2010; Heikkilä and Sorteberg, 2012). How can we approach this

problem then?

Nevertheless, the number of dynamic data-driven clustering procedures for space-time

data that allow the number, shape, and distributional properties of clusters to vary, still

remains quite limited. Two such dynamic clustering procedures are an e�cient space-time

data mining procedure TRUST of Ciampi et al. (2010) that is based on interleaving spatial

clustering and temporal trend detection; and a hierarchical spectral merger algorithm to

cluster brain connectivity (Euan et al., 2015). Alternatively, we can adjust various density-

based clustering procedures, such as DBSCAN (Ester et al., 1996; Kogan et al., 2006),

OPTICS (Ankerst et al., 1999), and DENCLUE (Hinneburg and Keim, 1998), to a space-

time context.

Despite the potential of these dynamic clustering procedures, the price for their flexibility

is usually a set of parameters that control clustering performance and are to be user-specified

– for instance, the maximum radius of the neighborhood Eps in DBSCAN; the steepness pa-

rameter ⇠ in OPTICS; the value similarity threshold � in TRUST; and the kernel smoothing

parameter h in DENCLUE. The choice of these parameters can noticeably impact the num-

ber and shape of detected clusters, and ideally should be approached in an objective manner.

In this paper we propose a new data-driven and computationally e�cient procedure for

optimal selection of clustering tuning parameters using a clustering stability probe. Our

approach is rooted in the so-called clustering (in)stability criteria (Wang, 2010; Ben-David

et al., 2006; Ben-David and Von Luxburg, 2008; Dudoit and Fridlyand, 2002), based on the

intuitive idea that if we randomly split our data into two non-overlapping subsets, then a

good clustering algorithm should deliver similar clustering results. Hence, the idea is to
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perform multiple splits, using cross-validation, and search for the case with the most similar

(on average) partitions.

Clustering (in)stability has gained an increased interest in machine learning and statis-

tical sciences for identification of the optimal number of clusters, typically in conjunction

with k-means (Wang, 2010; Ben-David et al., 2006; Ben-David and Von Luxburg, 2008; Du-

doit and Fridlyand, 2002). The field has attracted a lot of attention in the last couple of

years (Ben-David and Reyzin, 2014; Jia et al., 2014; Nikulin, 2015), especially in terms of

consensus clustering, which aims to find a single partitioning that is as similar as possible

to existing basic partitions (see Lock and Dunson, 2013; Niu et al., 2016, and references

therein).

Our approach, however, has two main advantages over conventional clustering (in)stability.

First, instead of measuring the distance between each two partitions, which is a very compu-

tationally demanding if not prohibitive step, we select a clustering probe and define stability

only based on the distance between univariate probes. In this paper, we are primarily in-

terested in the utility of a number of clusters as a probe. Second, we advance the idea of

a clustering (in)stability criterion to choose the optimal parameters in TRUST, DBSCAN

and other dynamic clustering algorithms. Due to the shape of the stability probe dynamics,

we refer to the new clustering stability procedure as Downhill Riding (DR). We outline the

theoretical properties of the new DR procedure and evaluate its finite sample performance

for dynamic clustering using synthetic time series. We also illustrate the DR procedure in

application to data on water quality in Chesapeake Bay for a 32-year period (1985–2016).

The paper is organized as follows. The new stability probe approach, DR algorithm, is

presented in Section 2.2. In Section 2.3, we discuss TRUST and DBSCAN, i.e., the two

primary clustering methods we focus on. The proposed DR algorithm is then evaluated

by extensive numerical studies in Section 2.4. We illustrate applications of new Downhill

Riding (DR) procedure to analysis of the yearly temperature records in Central Germany in
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Section 2.5 and the water quality in Chesapeake Bay in Section 2.6. The paper is concluded

by discussion in Section 2.7.

2.2 Downhill Riding Procedure with Clustering Stability Probe

Preliminaries Let ⌦
N

be the observed data set that contains N multivariate items, i.e.,

⌦
N

= {a1, a2, . . . , aN

} and a
i

= (a
i1, ai2, . . . , ait)T , 1 6 i 6 N . (For instance, a

i

may

represent an i-th observed time series up to time point t.) Our goal is to partition ⌦ into

subsets C1, C2, . . . , CK

such that
S

K

k=1 Ck

= ⌦
N

and C
i

T
C

j

= ; for i 6= j. A number of

clusters K is unknown a-priori. To achieve such partition C, we use a clustering algorithm

M(⌫,⌦), where ⌫ is a generic notation for a set of tuning parameters that controls parti-

tioning of ⌦, and is usually pre-specified by user. (For simplicity, we start from a case of

a single parameter ⌫ but the idea can be extended to a more general case.) The resulting

clustering performance is typically evaluated using standard information criteria such as the

Normalized Mutual Information (NMI), the Jaccard Index, or Rand Index (RI, Wagner and

Wagner, 2007; Meilă, 2007).

The Downhill Riding (DR) Algorithm As discussed by Kogan et al. (2006), choice

of a tuning parameter ⌫, such as Eps in DBSCAN or steepness parameter ⇠ in OPTICS,

may substantially impact the resulting partitioning C. How can we choose ⌫ in an objective

manner while achieving the optimal clustering performance? In a nutshell, our intuitive idea

is to look at the stability of the number of detected clusters as indicator for the underlying

“ground truth”.

In particular, let us select the number of clusters K̂ as a clustering probe; obviously, K̂

is a function of ⌫ and ⌦
N

(i.e., K̂(⌫,⌦
N

)). Suppose that ⌦
N

is a su�ciently large data set

such that each true cluster is well represented in ⌦
N

. We now randomly split ⌦
N

into two

subsets ⌦1
N/2 and ⌦2

N/2 of equal cardinality. If we partition ⌦1
N/2 and ⌦2

N/2 using the same

11



clustering algorithm M(⌫, ·), we intuitively expect that, if the tuning parameter ⌫ is selected

correctly, such partitions should be relatively similar, homogeneous or, at least,

|K̂(⌫,⌦1
N/2)� K̂(⌫,⌦2

N/2)| ⇡ 0. (2.1)

Hence, by viewing (2.1) as a function of ⌫, we can look at its minimum as indicator of

correctly selected parameter ⌫. We define the function in (2.1) as the Cluster Deviation:

CD(⌫) = |K̂(⌫,⌦1
N/2)� K̂(⌫,⌦2

N/2)|.

Smaller CD indicates more steady clustering performance. However, there exist two

extreme scenarios when CD(⌫) ⇡ 0. First, when all N/2 items in ⌦1
N/2 and ⌦2

N/2 are

partitioned into N/2 individual clusters. Second, when all data are grouped into a single

cluster. Hence, we search for the local minimum in CD(⌫) as the indicator of “truth”. Since

estimation uncertainty due to a single split of ⌦
N

into ⌦1
N/2 and ⌦2

N/2 might be high, we use

the V -fold cross-validation procedure with multiple splits and define a new measure for the

stability of a clustering algorithm, Average Cluster Deviation (ACD):

ACD(⌫) =
1

B

P
B

b=1

����K̂(⌫,⌦1
N/2, b)� K̂(⌫,⌦2

N/2, b)

����,

where B is the number of splits in cross-validation, and K̂(⌫,⌦1
N/2, b) and K̂(⌫,⌦2

N/2, b)

are the number of clusters delivered by M in application to the b-th split of (⌦1
N/2, b) and

(⌦2
N/2, b). The optimal empirical estimate ⌫̂e is the parameter ⌫ corresponding to the local

minimum of ACD (see Algorithm 1).

Note that the idea is intrinsically linked to the notion of clustering (in)stability (Wang,

2010; Ben-David et al., 2006; Ben-David and Von Luxburg, 2008; Dudoit and Fridlyand,

2002; Bubeck and Luxburg, 2009; Von Luxburg, 2010). However, in contrast to the earlier

stability approaches, we do not aim to evaluate closeness of cluster assignments of each

observation but focus on a distance between probes.
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Algorithm 1: Downhill Riding (DR)

Input : � = {⌫
n

, n = 1, 2, . . . , L}, ⌦, B
Output: optimal empirical estimate ⌫̂e

1 for each ⌫
n

2 � do
2 Compute ACD(⌫

n

);
3 A {A [ ACD(⌫

n

)};
4 end
5 Find ⌫⇤

n

such that ACD(⌫⇤
n

) is a local minimum in A;
6 if the number of ⌫⇤

n

equals 1 then
7 return ⌫⇤

n

;
8 else
9 return argmin ⌫⇤

n

;
10 end

To get an initial validation insight into this idea, we now consider a relationship between

ACD and NMI (Vinh et al., 2010; Rand, 1971), which is a robust evaluation metric especially

when the number of cluster is large. Given a set ⌦
N

of N observations, let us consider two

partitions of ⌦
N

, namely U = {U1, U2, . . . , UR

} with R clusters, and V = {V1, V2, . . . , VC

}

with C clusters. NMI is defined as:

NMI(U, V ) =
MI(U, V )

(H(U) +H(V ))/2
, (2.2)

where H(U) = �
RP
i=1

P (i) log(P (i)), MI(U, V ) =
RP
i=1

CP
j=1

P (i, j) log P (i,j)
P (i)P 0(j) , P (i) = |U

i

|/N ,

P 0(j) = |V
j

|/N , and P (i, j) = |U
i

\ V
j

|/N . NMI has a range [0, 1] with larger values of NMI

indicating better clustering performance.

Figure 2.1 shows the dynamics (aggregated and for a single synthetic data set) of ACD

and NMI in application to the TRUST clustering algorithm (Section 2.3.1). Figure 2.1

suggests that the local minimum for ACD indeed is well aligned with the global maximum

of NMI. Note that as expected, ACD is close to 0 at lower or higher values of ⌫. Lower

values of ⌫ tend to correspond to a higher number of clusters, up to an extreme case of each

sample forming a single cluster, which leads to lower (or even zero) values of ACD but also

lower NMI. At the same time, higher values of ⌫ lead to a lower number of clusters, up to
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an extreme case of all samples being in one group, which again leads to lower (or even zero)

values of ACD but low NMI. Based on the
V
-shape of ACD and our search for its right-hand

side minimum, we call our algorithm a Downhill Riding (DR) procedure.

0.0 0.1 0.2 0.3 0.4

0

1

2

3

ν

M
et

ric Global Max

Local Min

Global Max NMI

ACD

Figure 2.1. Aggregated dynamics of NMI and ACD (smooth lines) and dynamics for a single
data realization (dashed lines) with clustering by TRUST. The metrics are scaled to fit on one
graph. The Downhill Riding (DR) procedure selects the TRUST tuning parameters v (e.g.,
the value-similarity threshold �) corresponding to the first right-hand side local minimum of
ACD.

The DR procedure discussed above is defined by (Huang et al., 2016) for the optimal

selection of a single parameter ⌫ with a searching space of one-dimensional array. However,

most dynamic clustering algorithms have two tuning parameters rather than one. The DR

procedure can be extended to the optimal selection of two parameters ⌫1, ⌫2 with a searching

space of a two-dimensional matrix. Specifically, for each combination of values of ⌫1 and ⌫2

(i.e., each entry in the two-dimensional matrix of searching space), an ACD can be calculated.

The procedure produces a two-dimensional surface of ACD rather than a one-dimensional

curve. A saddle point is defined as the point where the value of ACD is the smallest in a

14



predefined neighborhood. The saddle point for the ACD surface, an analogy to the local

minimum for one-dimensional ACD curves, is used to select the optimal parameters. Note

that there is a possibility of non-existence of these saddle points in the implementation. In

such cases, the smallest non-zero value in the ACD surface can be selected as the optimal

position, due to the fact that zero values of ACD correspond to extreme cases of each sample

forming a single cluster or all samples being in one group (Nykamp, 2016; Cormen et al.,

2009).

Asymptotics Properties To proceed with theoretical properties of the DR procedure,

we adopt notions of clustering consistency and stability discussed by (Bubeck and Luxburg,

2009) and (Ben-David et al., 2006).

Definition Assume that the observed data ⌦
N

has been sampled from an underlying

population ⌦ according to some probability measure P . Let Q be a clustering loss function

on the set S of all partitions of the population ⌦. Let C⇤(⌦) be a unique minimizer of

Q. A clustering algorithm M(⌫) is called asymptotically consistent if it delivers a partition

C(⌦
N

) such that Q(C(⌦
N

)) converges to Q(C⇤(⌦)) as N ! 1. Note that this concept is

intrinsically connected to uniqueness of optimal partitioning of a population set, discussed

by (Pollard, 1981) in a context of k-means clustering.

Proposition 1. Let M be an asymptotically consistent clustering algorithm such that Q(C(⌦
N

))

converges to Q(C⇤(⌦)) at rate r
N,k

where r
N,k

is a nonincreasing sequence of positive num-

bers. Let ⌫⇤ be a a value of a tuning parameter ⌫ that delivers M(⌦) = C⇤. Then, in

probability

⌫̂0 !
N!1

⌫⇤,

where ⌫̂0 is the argument of the local minimum of the oracle loss function, or the Expected

Cluster Deviation,

E

����K̂(⌫,⌦1
N/2, b)� K̂(⌫,⌦2

N/2, b)

����.
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Proof of Proposition 1 is approached similarly to Theorem 1 of (Wang, 2010).

Now, let ⌫̂e be the empirical counterpart of ⌫̂0, that is,

⌫̂e = argmin
1

B

P
B

b=1

����K̂(⌫,⌦1
N/2, b)� K̂(⌫,⌦2

N/2, b)

����.

The next proposition states that di↵erence between ⌫̂e and ⌫̂0 is asymptotically negligible.

Proposition 2. Let ⌦
N

= {a1, a2, . . . , aN

} be a sample from an underlying population ⌦,

where a
i

, i = 1, . . . , N are mutually independent random vectors. Let M be an asymptotically

consistent clustering algorithm, and let C⇤(⌦) = {C⇤
1 , . . . , C

⇤
K

} be the true clustering of ⌦.

Let N
i

be the number of items in ⌦
N

corresponding to the true cluster C⇤
i

in ⌦. Then, if

K ⌧ N
i

, N !1, and N
i

!1

|⌫̂e � ⌫̂0|! 0,

in probability.

The proof of Proposition 2 is based on the Chebyshev inequality and approached in a

similar manner as Theorem 3 by (Bickel and Gel, 2011).

2.3 Clustering Algorithms

We now discuss the two main clustering algorithms that we illustrate application of the

Downhill Riding procedure to, that is, TRUST and DBSCAN.

2.3.1 The TRUST Algorithm

The TRUST algorithm is an unsupervised clustering algorithm designed for space-time data

streams by Ciampi (Ciampi et al., 2010; Appice et al., 2015). Specifically, TRUST inte-

grates spatial clustering and temporal trend detection with a goal to continuously group

geo-referenced data according to a similar temporal trajectory in time t1, t2, . . . , tp, where p

is pre-specified by the user. TRUST has the following advantages:
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• does not require a number of clusters a-priori as opposed to k-means;

• can detect arbitrarily shaped clusters;

• can dynamically detect the drift of space-time data distributions by using a sliding

window moving from past to recent.

Let the data be stored in a matrix ⌦ = [a1, . . . , aN

], where a
t

= [a
t1, . . . , atm]

T, (1 6 t 6 N)

corresponds to observed time series data from m sensor devices at a time point t. Each

a
t

(1 6 t 6 n) is called a layer (corresponding to a time point) and several layers constitute

a slide (corresponding to a time period). We segment data set ⌦ into several slides such that

TRUST performs clustering on each slide (slide-level clustering). Then a sliding window,

moving from past to recent, generates slide-level clustering sets to obtain final trend-clusters

(window-level clustering).

The core clustering performed by TRUST is slide-level clustering. The TRUST algo-

rithm splits the data ⌦ into segments of p time points, and then divides the m time se-

ries, each of length p, into clusters. Specifically, for one slide ⌦1 = [a1, . . . , ap

], where

a
t

= [a
t1, . . . , atm]

T, (1 6 t 6 p) and p < N , TRUST randomly starts with one time series u

as an initial point (seed time series), and searches time series v for close relations in terms

of E✓

�

(referred to as neighbors). This is formalized as:

E✓

�

=

⇢
hu, vi 2 E

����
pX

i=1

 
�

(u[t], v[t]) > ✓ ⇥ p

�
,

where

 
�

(u[t], v[t]) =

8
>><

>>:

1, if ku[t]�v[t]k1
��↵

6 �

0, otherwise

where E is a set of time series, u[t] (v[t]) is the value at t-th time point, ✓ is the slide-level

trend continuity threshold in [0, 1], p is the slide size, [↵, �] is the domain of slide ⌦1, and �

is the value-similarity threshold in [0, 1].
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An initial cluster is formed by the seed time series and its neighbors. Each neighbor in

this cluster is recursively chosen as a seed time series and applied to the same neighborhood

construction described above. Initial clusters are merged to form a bigger one if they share

some time series. Once all time series are classified into a cluster, the algorithm stops by

returning � as a slide-level clustering set for slide ⌦1. The slide size p, slide-level trend

continuity threshold ✓, and value-similarity threshold � need to be pre-specified by users

when TRUST is run. (For more details on pseudo code of TRUST algorithm and definitions

of concepts see (Ciampi et al., 2010), an R code is available from (Lyubchich and Gel,

2017b).)

2.3.2 The DBSCAN Algorithm

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) of (Ester et al.,

1996) and (Kogan et al., 2006) is one of the most widely used clustering algorithms and

recipient of the 2014 SIGKDD Test of Time Award. Similar to TRUST, DBSCAN does not

require a pre-defined number of clusters and can detect arbitrarily shaped clusters. The core

idea of DBSCAN is as follows: given a set of points in some space, it groups together points

that are in a high-density region (i.e., neighbors of the points are close to each other), and

marks points as outliers if they lie alone in low-density regions (whose nearest neighbors are

far away). DBSCAN requires two parameters: the maximum radius of the neighborhood,

Eps, and the minimum number of points required to form a dense region, minPts. Selection

of both Eps and minPts is typically performed in a subjective manner.

2.4 Numerical Experiments

2.4.1 Benchmark Iris Data

We evaluate the performance of Downhill Riding by applying it to DBSCAN and comparing

its performance against DBSCAN with pre-selected Eps on real benchmark data Iris (Fisher,
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Table 2.1. Performance of DBSCAN on Iris data in terms of NMI, with Eps-opt selected
using Downhill Riding and with Eps-kdist selected by conventional k-dist graph.

MinPts Eps-opt Eps-kdist
5 0.76 0.61
6 0.76 0.60
7 0.76 0.58

1936; Bache and Lichman, 2013). Despite the popularity of DBSCAN in spatial clustering,

determination of its parameter Eps is mostly based on heuristic and non-automatic meth-

ods – sorted k-dist graph (Ester et al., 1996). Using Iris data, which contains 150 samples

with 4 variables for 3 clusters, we compare the performance of DBSCAN with Eps selected

using Downhill Riding, and with conventional selection (through sorted k-dist graph). The

pre-selected Eps is set as 0.5 (Hahsler, 2015). As evaluation metric we consider Normal-

ized Mutual Information (NMI). Table 2.1 shows the comparative results: for each possible

value of parameter MinPts, DBSCAN with Downhill Riding outperforms DBSCAN with the

conventional selection. This is a notable result: an algorithm using our data-driven mech-

anism for selection of optimal clustering parameters outperforms the same algorithm that

uses predefined parameters based on a-priori knowledge.

2.4.2 Synthetic data

To further evaluate the performance of the Downhill Riding procedure, we proceed with a

series of Monte Carlo simulations, where the performance with TRUST is evaluated with

the selection of two parameters. (For a detailed discussion of a single parameter selection

with TRUST and DBSCAN and an extensive comparison study, see (Huang et al., 2016).)

We produce a data stream of 16 time series, denoted by Y , and obtained by sequencing

two consecutive periods (slides) of 60 time points (layers). The cluster configurations of Y

are shown in Table 2.2.
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Table 2.2. Cluster configuration of 16 simulated time series.
Time series model Time series
AR(1), �1 = 0.2, 1, 5, 4, 12
"
t

⇠ N(0, 1)

AR(2), �1 = 0.1,�2 = �0.2, 3, 9, 11, 15
"
t

⇠ N(1, 1)

MA(1), ✓1 = 0.4, 10, 13, 14, 16
"
t

⇠ N(2, 1)

ARMA(1,1), �1 = 0.3, ✓1 = 0.2, 2, 6, 7, 8
"
t

⇠ N(3, 1)

To evaluate the finite sample performance of Downhill Riding procedure with TRUST,

we calculate ACD and Rand Index with di↵erent values of the similarity threshold � and

the connectivity parameter ✓ (Table 2.3). To compute the Rand Index, a cluster label cl1

returned by TRUST and the ground truth cluster label cl2 are needed. Let A be the number

of pairs of time series in Y that are in the same cluster in both cl1 and cl2, B be the number

of pairs of time series that are in di↵erent clusters in both cl1 and cl2, C be the number of

pairs of time series in the same cluster in cl1 but in di↵erent clusters in cl2 and D be the

number of pairs of time series in di↵erent clusters in cl1 but in the same cluster in cl2. Then

the Rand Index can be computed as follows:

Rand Index = (A+B)/(A+B + C +D). (2.3)

The Rand Index has a range [0, 1] with larger values indicating better clustering performance.

In contrast, smaller values of ACD indicate more steady clustering performance. The number

of detected clusters for TRUST corresponds to slide-level clustering by setting slide size

p = 60.

We find that TRUST parameters �
opt

and ✓
opt

, selected using Downhill Riding, are close

to �
oracle

and ✓
oracle

and yield the Rand Index comparable to the highest empirically achiev-

able (Table 2.3). These findings show that our automatic data-driven parameter selection
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Table 2.3. Performance of TRUST with value similarity threshold �
opt

and connectivity
parameter ✓

opt

selected by Downhill Riding and TRUST with �
oracle

, ✓
oracle

. Number of
Monte Carlo experiments is 100. Number of cross-validation splits T is 300.

�
opt

,✓
opt

�
oracle

,✓
oracle

Average RI 0.80(0.13) 0.94(0.04)
Average ACD 1.48(1.00) 2.54(0.33)

procedure tends to deliver close to the empirically achievable levels of clustering performance

despite the lack of a-priori knowledge.

Combined with the results from the benchmark Iris data study above, the results show

that our automatic procedure is not just on par with the competition that has the informa-

tional advantage, but at times better. These findings imply that the new DR algorithm can

be particularly useful in studies where there is no knowledge of the parameters or number

of clusters, such as when exploring environmental, insurance, or social science data, without

imposing considerable performance trade-o↵s.

2.5 Case Study I

Observed temperature data We applied TRUST and DBSCAN to yearly tempera-

ture records from 167 weather stations in Central Germany in a 60-year period 1951–2010

(Deutscher Wetterdienst Data Archive, 2015). Analyzing temperature data for such a long

period can provide some important insights into climate change and the di↵erences of these

e↵ects in the various geographic areas. The controlling parameters � for TRUST and Eps

for DBSCAN are set as 0.036 and 6.5 by “Downhill Riding”. We select 15-year intervals

as a time period to perform clustering since the climate of Europe exhibits cycles of 12-16

years (Vines, 1985). Thus, the 60 year temperature data is segmented into 4 non-overlapped

time periods, each of which is clustered by TRUST and DBSCAN, respectively. We set the
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layer size p as 40, the window size ! as 3 (with step size as 3), and set MinPts of DBSCAN

as 3.

The clustering results based on TRUST and DBSCAN show similar patterns where eleva-

tion is a dominant factor: elevation of weather stations – one of the key factors in temperature

di↵erences – is found to be relatively homogeneous within each cluster. Figure 2.2 shows the

results of TRUST clustering in time period 4 in a topographic map. The contour lines show

places of equal elevation. Di↵erent clusters are labeled with di↵erent colors. The weather

stations in the yellow cluster are mostly located in areas below 300 m; while the weather

stations in the red cluster are mostly located in areas around 500-600 m. The fact that

elevation strongly a↵ects temperature is well known in climate sciences. Hence, we are in-

terested to investigate potential less explicit latent factors a↵ecting temperature dynamics

and segmentation.

Figure 2.2. Clustering of weather stations in time period 4 (year 46-60) by TRUST.

Elevation Scaled temperature data We now consider elevation scaled temperature

where the impact of elevation has been removed according to (Barry, 1992; Daly et al.,

22



2008). In particular, let X be elevation and Y be temperature, then:

Y t

n

= �
t0 + �

t1Xn

+ ✏t
n

, n = 1, 2, . . . , 167, t = 1, 2, . . . , 60 (2.4)

The residuals ✏t
n

(n = 1, 2, . . . , 167, t = 1, 2, . . . , 60) from linear regression are combined into

a new data set where TRUST and DBSCAN are applied with the same framework setting

as in previous temperature data clusterings. Optimal Downhill Riding parameters are � and

Eps, set as 0.1 and 0.65.

The resulting patterns are di↵erent from the ones observed in the temperature clustering.

Figure 2.3a and Figure 2.3b show the clustering results for periods 1 and 4 by TRUST in

terrain maps, respectively. Climate stations in Halle (Saale) area are grouped together in

both time periods 1 and 4 (red dots in Figure 2.3a and navy dots in Figure 2.3b). Average

residuals of the two clusters are 0.2 and 0.6 respectively, which makes sense because Halle

(Saale) area corresponds to the dry region of Central Germany. In addition, a handful of

stations north/northwest of Karlovy Vary show unique patterns: individual weather stations

form their own mini-clusters. For example, black and grey dots in Figure 2.3a, and light pink,

rosy dots in Figure 2.3b. These weather stations are all in a part of a mountain range called

the Ore Mountains where they are probably located in fairly unique topographic situations,

e.g. mountain top, or valley. In mountain areas, the orientation of a valley can have a large

influence on the movement of air masses, so valleys of di↵erent orientations may be distinct

enough to be placed in di↵erent clusters. Similar patterns are observed in the DBSCAN

clustering results depicted in Figure 2.4.

Between periods 1 and 4, we observe how the cluster patterns change dynamically.

Weather stations in the southwest area are grouping into one big yellow cluster, changing

from a mean residual �0.23 for the red cluster and �0.01 for the green cluster in period 1 to

�0.02 for the yellow cluster in period 4. And weather stations in the west are grouping into

another cluster (red) with a mean residual 0.12. Remarkably, the TRUST algorithm identi-

fies partly changing clusters of temperature residuals in the early and late periods. Spatially
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(a) Period 1 (Year 1-15).

(b) Period 4 (Year 46-60).

Figure 2.3. Clustering of weather stations in time period 1 and 4 by TRUST.

varying climatic changes have been observed elsewhere before (Anisimov et al., 2013); such

patterns that would explain these observed changes in clustering may potentially be related

to the complexity of topography in the studied region (orographic e↵ects), changes in cloud
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(a) Period 1 (Year 1-15).

(b) Period 4 (Year 46-60).

Figure 2.4. Clustering of weather stations in time period 1 and 4 by DBSCAN.

cover and atmospheric dust content due to reduced industrial emissions first in West and

later in East Germany, or confounding with spatially varying changes in precipitation, for

example. While such explanations are not immediately evident from the clusters produced
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Table 2.4. MAPE of 4 time periods by TRUST and DBSCAN on observed temperature
data.

TRUST
MAPE

(Year 1-15)

TRUST
MAPE

(Year 16-30)

TRUST
MAPE

(Year 31-45)

TRUST
MAPE

(Year 46-60)

0.07 0.07 0.06 0.03

DBSCAN
MAPE

(Year 1-15)

DBSCAN
MAPE

(Year 16-30)

DBSCAN
MAPE

(Year 31-45)

DBSCAN
MAPE

(Year 46-60)

0.11 0.11 0.10 0.09

Table 2.5. MAPE of 4 time periods by TRUST and DBSCAN on scaled temperature data.
TRUST
MAPE

(Year 1-15)

TRUST
MAPE

(Year 16-30)

TRUST
MAPE

(Year 31-45)

TRUST
MAPE

(Year 46-60)

0.63 1.12 1.10 0.94

DBSCAN
MAPE

(Year 1-15)

DBSCAN
MAPE

(Year 16-30)

DBSCAN
MAPE

(Year 31-45)

DBSCAN
MAPE

(Year 46-60)

1.69 1.28 1.74 1.75

by TRUST, this knowledge discovery technique provides a starting point for further climato-

logical analyses of local patterns of climate change. Knowledge of the existence and location

of regions with homogeneous patterns may furthermore be instrumental in the geostatistical

interpolation of instationary random fields of climatic parameters (Guinness et al., 2013).

MAPE values for 4 periods of observed temperature data and scaled temperature data

are shown in Table 2.4 and Table 2.5. TRUST outperforms DBSCAN in each of the 4 periods

(with smaller MAPE) on both observed temperature data and scaled temperature data.

2.6 Case Study II

In this section, we illustrate the suggested approach of finding the optimal classification with

TRUST by applying it in a spatio-temporal analysis of water quality. We use the example of

Chesapeake Bay, which is one of the most important estuaries in the USA in terms of its size,

ecosystem diversity, and economic impact of the developed fishing and tourism industries.
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At the same time, the bay has been known for severe problems of water pollution, which

negatively a↵ect the populations of bay inhabitants.

The Chesapeake Bay Agreement of 1983 laid down a basis for the Chesapeake Bay Pro-

gram to monitor, improve, and protect the water quality and living resources of the Chesa-

peake Bay. As one of the results, we are able to use the publicly available dataset2 of

water quality parameters recorded at more than a hundred monitoring stations spread out

throughout the watershed. Particularly, we consider pollution with suspended matter (sus-

pended solids or sediment), the primary sources of which in the Chesapeake bay watershed

are agriculture and urban runo↵ (59.8% and 23.9% of the total suspended solids, TSS, load

in 20153).

The largest spatial extent of the continuous records is available since 1985, thus, we

use 32 years (1985–2016) of surface TSS concentrations (mg/L) from 133 stations. Bi-

weekly measurements are aggregated to monthly averages; missing values (approximately

12% of the data points) are filled in using information from other stations in the radius of

15 km (considering stations only in the same tributary, not crossing the land) or up to the

nearest station, whichever is greater. In the analyzed period, the method for measuring TSS

concentrations did not change, however, many monitoring stations experienced changes of

the laboratories, which might have slightly di↵erent implementations of the same measuring

method. To account for the shifts possibly caused by the change of analytical laboratories

at each station, we adjusted the pre-change measurements by the di↵erence of medians

calculated for one year before and after the change.

Similarly to (Schae↵er et al., 2016), we split the data in two sub-periods of 16 years

each (1985–2000 and 2001–2016) that correspond to the time before and after adopting the

2http://data.chesapeakebay.net/WaterQuality [Accessed on January 13, 2017]

3http://chesapeakeprogress.com/clean-water/water-quality/watershed-implementation-plans [Accessed
on January 23, 2017]
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Chesapeake 2000 agreement. This agreement brought a new wave of restoration activities

to the bay watershed, and here we assess how it changed the space-trend panorama.

Since we are more interested in trends rather than particular TSS values, we scale the

data for each station to zero mean and unit variance. The TRUST clustering procedure

with Downhill Riding parameter selection is applied to each of the two non-overlapping sub-

periods of 16 years. The controlling TRUST parameters � and ✓ selected by Downhill Riding

are 0.16 and 0.63 for 1985–2000; and 0.15 and 0.63 for 2001–2016.

The results yield one dominant cluster (comprises about half of the stations) and several

small clusters in each sub-period. Many of the small clusters contain only one station.

Notably, Figure 2.5 shows clear groupings of the stations, even though the time series were

scaled and no spatial information (longitude and latitude) was supplied to the algorithm.

Similar dynamics in each cluster, however, does not imply statistical significance of the

trends, which should be assessed separately by other methods.

The size of the dominant cluster reduced from 77 stations in 1985–2000 to 59 stations in

2001–2016 (stations from this cluster are shown in black in Figure 2.5). To assess the cluster

dynamics, we obtain an aggregated series as a median of concurrent values in the cluster

and apply loess smoothing. Figure 2.6 shows that time series from the main cluster exhibit

almost no change in the long-term perspective, except the variance declined in the second

sub-period. The fact that this cluster decreased in size tells us that the overall dynamics

became more disparate.

Remarkably, by comparing which black dots in Figure 2.5 turned out to be colored in

2000–2016 (i.e., exited the main cluster), we notice that the main changes occur in the bay

tributaries and partly in the upper bay, which can be seen as an e↵ect of implementing

the restoration activities (restoration activities take place in the streams, not in the bay

itself). Examples include the Rappahannock, York, and James rivers. Thus, the tidal

fresh Rappahannock River stations (TF3.1B, TF3.1E, and TF3.1F; marked with “*” in
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Figure 2.5. Clustering of the Chesapeake Bay water quality monitoring stations using
TRUST, with cluster assignments denoted by color. Black indicates the most populous
cluster in each sub-period; “2” denotes the second populous cluster in 1985–2000, and “*”
denotes upper Rappahannock River stations.
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Figure 2.6. Time series of the standardized TSS concentrations in the main cluster, along
with the loess smoothing curves.

Figure 2.5) belong to the main cluster in 1985–2000, but exhibit a non-linear dynamics of TSS

concentrations in the later years. The rise in 2001–2002 then steady decline of concentrations

in these three stations (Figure 2.7) do not match the flat loess curve in Figure 2.6 and make
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these stations cluster separately. Similar case is observed in lower James River, with a jump

and decline of TSS concentrations in 2011–2016.
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Figure 2.7. Time series of the upper Rappahannock River stations (marked with “*” in
Figure 2.5) that exited the main cluster in 2001–2016, along with a loess smoothing curve.

A di↵erent example is the cluster 2 in 1985–2000 (Figure 2.5), which joined the main

cluster in 2001–2016. Dynamics at these 11 stations is characterized by profound stabilization

of the concentrations, both in terms of their mean and variance. Figure 2.8 shows how

increasing trend changed its direction and matched the main cluster behavior with no or

subtle long-term changes.
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Figure 2.8. Time series of cluster 2 (see Figure 2.5) that joined the main cluster in 2001–2016,
along with a loess smoothing curve.
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Overall, the monthly TSS concentrations in the main cluster exhibit little or no central

tendency, however, the variance visibly decreased in the last 16 years (Figure 2.6), which can

be seen as an e↵ect of storm water best management practices developed for sediment and

nutrient retention and reducing the discharge of pollutants into the streams, particularly,

during the storm events. Clustering results help us to see the broader picture and joint

dynamics across stations that now can be analyzed together, according to their cluster as-

sociations. The reasons and implications of changing cluster associations should be assessed

individually for each group of stations. The considered examples of Rappahannock River

and lower main stem demonstrate that both exiting and joining the main cluster can be

associated with improvements of the water quality (decline of TSS concentrations).

2.7 Conclusion

In this paper we advance the idea of clustering (in)stability from a case of selecting a “true”

number of clusters to a choice of multiple optimal tuning parameters in a broad range of

dynamic clustering algorithms. We propose a new data-driven and computationally e�cient

procedure called Downhill Riding (DR) for optimal selection of clustering tuning parameters

in dynamic clustering algorithms like TRUST and DBSCAN using a clustering stability probe.

Using simulations, as well as real data, we show the e↵ectiveness of the new procedure

for selection of optimal parameters. The finite sample performance of DR for dynamic

clustering of synthetic time series is close to the optimal for these algorithms. Furthermore,

the performance of clustering algorithms using DR against competing algorithms that have

a-priori knowledge of the parameters shows that our procedure is a viable alternative, and

often performs better.

We also illustrate the Downhill Riding procedure in dynamic cluster detection in yearly

temperature records among 167 stations in Central Germany over year period (1951–2010)

and in monthly average concentrations of suspended solids across 133 stations in Chesapeake
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Bay for a 32-year period (1985–2016). Particularly on the case of Chesapeake Bay, we find

remarkable patterns in the data that can provide an insight into the management of resources

in the area and the e↵ects of the restoration activities over time. Based on our clustering

results, we discover a dynamic pattern, which is useful when studying spatially varying

ecological changes. The identification of clusters in the water quality in the Chesapeake

Bay has a number of applications and can help address problems in the area. Identifying

concentrations of pollutants can aid in determining sources of contamination and assessing

which parts of the Bay are at risk. The clustering results provide a clearer picture of the

environmental impact of various activities in the area, and can aid future restoration e↵orts

in creating targeted interventions for specific parts of the Bay.

In the future, we plan to extend the use of the new DR procedure to other dissimi-

larity measures and stability probes, and investigate the utility of DR in other clustering

algorithms.
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CHAPTER 3

CRAD: CLUSTERING WITH ROBUST AUTOCUTS AND DEPTH1

3.1 Introduction

Data depth methodology is a widely employed nonparametric tool in multivariate and func-

tional data analysis, with applications ranging from outlier detection to clustering and visual-

ization (Liu et al., 1999; Cuevas et al., 2007; Li et al., 2012). Depth measures the “centrality”

(or “outlyingness”) of a given object with respect to an observed data cloud (Mosler, 2013;

Zuo and Serfling, 2000). Many desirable properties of data depth such as a�ne invariance,

robustness, and center maximality have earned it an increasing attention in the machine

learning and statistics communities in the last decade. There exist numerous clustering

and classification methods, based on a data depth concept (Jörnsten, 2004; Mosler, 2013;

Pokotylo et al., 2016). Most such methods, however, rely on the knowledge of a true num-

ber of clusters k. Most recently, (Jeong et al., 2016) proposed a Depth Based Clustering

Algorithm (DBCA) and showed benefits of a data depth for clustering spatial data. To the

best of our knowledge, (Jeong et al., 2016) is the first and only reference introducing a data

depth concept into clustering analysis of spatial data. However, DBCA cannot handle a

case of clusters with varying densities, which is a common issue in density-based clustering

domain. In addition, the problem how to select the tuning parameter, which highly impacts

the clustering result, remains unstudied.

The current paper is motivated by three over-arching major challenges in density-based

clustering: (1) Based on data depth, can we propose an algorithm that delivers more ro-

1 This chapter includes verbatim excerpts from

©2017 IEEE. Reprinted, with permission, from Huang, X., Gel, Y. CRAD: Clustering with Robust
Autocuts and Depth. Proc. 17th IEEE International Conference on Data Mining (ICDM), 2017,
https://ieeexplore.ieee.org/document/8215579/
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bust performance under the existence of clusters with varying densities? (2) Based on the

proposed algorithm, how can we select the true underlying parameter in the real-world clus-

tering when the ground truth is not given? (3) Can the density-based algorithm be extended

to multivariate time-series clustering, without a-priori knowledge of the number of clusters?

We address these three major problems by proposing a new clustering algorithm, named

Clustering with Robust Autocuts and Depth (CRAD).

One of the key benefits of the new CRAD algorithm is its ability to detect clusters with

varying densities. Let us start with a simple yet typical dataset to shed some light on the

di↵erence between our algorithm and some existing algorithms such as DBSCAN (Ester et al.,

1996), OPTICS (Ankerst et al., 1999), and DBCA (Jeong et al., 2016) in addressing this type

of problem. As shown in Figure 3.1(a), the toy dataset includes two dense clusters (clusters

1 and 2), and one sparse cluster (cluster 3). The number of observations in cluster 3 is larger

than that in clusters 1 and 2. The result of each algorithm is selected by searching the best

clustering performance on a wide range of possible combinations of its tuning parameters.

Clustering results are shown in Figure 3.1. Currently available methods such as DBCA,

DBSCAN, and OPTICS, all fail to separate the cluster 1 and 2; in contrast, our new CRAD

algorithm is able to detect both. The reason for this phenomenon is that both DBSCAN

and DBCA use globally-defined parameters (i.e., ✏ and ✓, respectively) to find clusters, thus

lacking the flexibility to adjust their value when clusters have di↵erent densities. Even

OPTICS, which is proposed to solve this density variation problem, still does not deliver

competitive clustering performance on the toy example. Our algorithm, in contrast, uses a

locally-defined parameter to customize the neighbor searching function for each observation,

based on a notion of density level. As a result, CRAD is able to deliver a competitive

performance in separating clusters with varying densities.

This paper makes the following novel contributions to spatial and temporal clustering:
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1. We propose a new robust density-based clustering algorithm (CRAD), using a notion

of statistical data depth as the dissimilarity measure, and further augment the depth-

based clustering analysis with an outlier-resistant and highly computationally e�cient

estimator of multivariate scale, namely, the Minimum Covariance Determinant (MCD).

Our experiments prove that the new algorithm CRAD is highly competitive at detecting

clusters with varying densities, compared with the existing algorithms such as DBSCAN,

OPTICS and DBCA.

2. Furthermore, we show that a hybrid combination of our new robust depth-based neighbor

searching algorithm and conventional DBSCAN, allows to significantly improve clustering

performance of DBSCAN. This is an important standalone step toward future extension

of DBSCAN to non-Euclidian spaces and functional data clustering.

3. We develop a new e↵ective parameter selection procedure to select the optimal underlying

parameter in the real-world clustering, when the ground truth is unknown.

4. We suggest a new clustering framework that extends CRAD from spatial data clustering

to time series clustering without a-priori knowledge of the true number of clusters. Per-

formance of CRAD in time series clustering is evaluated with extensive experiments on

benchmark data.

The paper is organized as follows. In Section 3.2 we present the new algorithm CRAD. In

Section 3.3 an e↵ective parameter selection procedure is proposed to select the parameters in

CRAD. We evaluate CRAD through extensive numerical studies in Section 3.4. The paper

is concluded with discussion and future research directions in Section 3.5.
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Figure 3.1. Clustering Performance of CRAD, DBCA, DBSCAN and OPTICS on the Toy
Example.

3.2 Our Algorithm

We start from providing a direct insight into our algorithm, with a particular emphasis on

introducing the distinguishing features of CRAD, namely, the dissimilarity measure and the

neighbor searching function.

Before proceeding to details, we first review the general structure for density-based

clustering algorithm. Let the data be stored as an n ⇥ p-matrix X = (x1, . . . ,xn

)t with

x
i

= (x
i1, . . . , xip

)t the i-th observation, and n be a sample size. The core idea behind all

density-based algorithms is to assign a {0, 1}-relationship between all observations in X,

based on how close the two observations are, in terms of a given dissimilarity measure. That

is, a neighbor searching function NBR(x
i

), i = 1, 2, . . . , n is needed such that x
i

and x
j

are

1-related if x
j

2 NBR(x
i

) and 0-non-related if x
j

/2 NBR(x
i

). These results are stored in a

{0, 1}-adjacency matrix A, and a breadth-first search is then applied to A to generate the

final clustering partition of X. What discriminates the clustering algorithms, however, is
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the dissimilarity measure and neighbor searching function. We present the distinguishing

features of CRAD in terms of these two as follows.

3.2.1 A Robust Data Depth Based Dissimilarity

A data depth is a function that quantifies how closely an observed point x 2 Rd, d � 2, is

located to the “center” of a finite set X 2 Rd, or relative to a probability distribution P in

Rd. A data depth shall satisfy the following desirable properties (Mosler, 2013; Zuo and

Serfling, 2000): a�ne invariant; upper semi-continuous in x; quasiconcave in x; (i.e., having

convex upper level sets) vanishing as ||x||!1 (Mosler, 2013; Zuo and Serfling, 2000).

We propose to utilize a robust Mahalanobis depth function, with the Minimum Co-

variance Determinant (MCD) as an outlier-resistant and highly computationally e�cient

estimator of multivariate scale, as an alternative clustering dissimilarity measure. That is,

let the data be stored as an n⇥ p-matrix X = (x1, . . . ,xn

)t with x
i

= (x
i1, . . . , xip

)t the i-th

observation, and n be a sample size. The Robust Mahalanobis depth function can be defined

as:

RM
d

(x
j

|x
i

) = [1 + (x
j

� x
i

)T⌃�1(x
j

� x
i

)]�1, (3.1)

where

⌃ = c1
1

n

nX

i=1

W (d2
i

)(x
i

� û
MCD

)(x
i

� û
MCD

)T ,

and û
MCD

=
P

n

i=1 W (d2
i

)x
i

/
P

n

i=1 W (d2
i

); d
i

=
q
(x

i

� µ̂
o

)T ⌃̂�1
o

(x
i

� µ̂
o

); W is an appropri-

ate weight function; µ̂0 and ⌃̂
o

are sample mean and sample covariance matrix, respectively;

and c1 is a consistency factor (Hubert and Debruyne, 2010). The MCD covariance estimator

has been proven to significantly outperform the Minimum Volume Ellipsoid (MVE) covari-

ance estimator, that is used by (Jeong et al., 2016), both in terms of statistical e�ciency and

computation (see, e.g., Van Aelst and Rousseeuw (2009)). The high computational e�ciency

of MCD makes it a preferred method over MVE, especially in modern high dimensional prob-

lems.
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Now for each x
i

, we calculate a robust Mahalanobis depth vector

RM
d

(x
i

) = hRM
d

(x1|xi

), . . . , RM
d

(x
n

|x
i

)i, measuring the “outlyingness” of every other

observation with respect to x
i

, i = 1, 2, . . . , n. The depth vector RM
d

(x
i

) provides a center-

outward ordering of the data and serves as a topological map. The e↵ect of traditional

and robust Mahalanobis depth function is visualized in Figure 3.2, where the solid red dot

represents the observation x
i

(center) and each contour corresponds to a depth value. Armed

with a robust depth-based dissimilarity measure (3.1), we now proceed to clustering.
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Figure 3.2. A contour plot based on traditional (black dash line) and robust (blue solid line)
Mahalanobis depth function.

3.2.2 A New Neighbor Searching Algorithm

Who is Your Closest Neighbor?

In CRAD, we use a robust depth-based dissimilarity measure (3.1), and the neighbor search-

ing function is defined as:

NBR(x
i

) = {x
j

: RM
d

(x
j

|x
i

) � h
opt

(i), j = 1, . . . , n}, (3.2)
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where RM
d

(x
j

|x
i

) is defined in (3.1) and h
opt

(i) is the cut-o↵ parameter. The novel part

of our neighbor searching function is that for each observation x
i

, i = 1, . . . , n, the cut-o↵

parameter h
opt

(i) is locally rather than globally defined, and accounts for di↵erent density

level around it. E.g., if a person resides in Manhattan, his closest neighbor is likely in the

same apartment complex; but if he lives in Dallas, TX, the closest neighbor might be miles

away.

In contrast, DBCA uses a globally defined parameter ✓ in its neighbor searching function:

NBR(x
i

) = {x
j

: RM
d

(x
j

|x
i

) � ✓, j = 1, . . . , n}, (3.3)

Similarly, DBSCAN uses a globally-defined parameter ✏ in its neighbor searching function:

NBR(x
i

) = {x
j

: kx
i

� x
j

k2  ✏, j = 1, . . . , n}. (3.4)

With an additional requirement on the minimum number of observations MinPts in each

cluster, elements A
ij

of the adjacency matrix for DBSCAN are defined as 1 if x
j

2 NBR(x
i

)

and |NBR(x
i

)| > MinPts, and 0, otherwise. Here |X| denotes the cardinality of a set X.

The parameter in NBR is critical in detecting cluster patterns. A globally-defined pa-

rameter cannot find all intrinsic clusters with varying densities. The example in Figure 3.3

best illustrates the idea: we take the toy data in Section 3.1 and investigate the neighbor

searching process of an observation for CRAD and DBCA (Jeong et al., 2016). The obser-

vation is labeled as the yellow dot in Figure 3.3(a). The reader could visualize the di↵erence

between the neighbor observations (red dots) found by the locally-adjusted parameter h
opt

(i)

in CRAD and the globally-defined parameter ✓ in DBCA, as shown in the Figure 3.3(c), (d).

We find that the DBCA incorrectly includes the observations in the nearby cluster of the

yellow dot as its neighbors, thus leading to the inaccurate clustering result. Given the ground

truth, the parameter ✓ in DBCA is selected by searching the best clustering result over a

wide range of values [0.80, 0.81, . . . , 1]. In contrast, parameter h
opt

(i) of CRAD is selected by

an automatic self-searching algorithm based on a notion of density level (see Algorithm 3).
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Figure 3.3. Neighbor search for a given point (the yellow dot) in the toy example. The
red dots are the neighbors, identified by CRAD and DBCA under their best clustering
performances, shown in top (bottom) right. The histogram shows the optimal value of the
cut-o↵ parameter, h

opt

(i) (the red vertical line) for CRAD and ✓ (the blue vertical line) for
DBCA.
An Automatic Self-Searching Algorithm for Finding h

opt

(i)

The idea is that the neighbor searching function of each observation should depend on the

relative change of the density level around it. The term “relative” accounts for the cus-

tomization for each observation. As mentioned before, for each x
i

we calculate a robust

Mahalanobis depth vector RM
d

(x
i

) = hRM
d

(x1|xi

), . . . , RM
d

(x
n

|x
i

)i, measuring the “out-

lyingness” of every other observation with respect to x
i

, i = 1, 2, . . . , n (Figure 3.2).

Armed with RM
d

(x
i

) of x
i

, we create a vector of histogram H = hh
width

, h2⇤width

, . . . , h1i,

where h
j

=
P

n

k=1 j�width

< RM
d

(x
k

|x
i

)  j. Parameter width = 1/Nbin 2 (0, 1), where

Nbin is the number of bins in H and is user pre-defined. Analogous to the definition

of density for a substance, ⇢ = m/V mass (m) per unit volume (V ), we define the den-

sity level of a point as N/d, number of observations (N) per unit depth distance (d). If

we choose the unit depth distance as the parameter width, then the reverse order of H:

h1, h1�width

, h1�2⇤width

, . . . , h
width

are the density levels around x
i

in a center-outward order.

A higher value of h
k

, k = 1, 1�width, 1� 2 ⇤width, . . . , width indicates a denser region and
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a lower value corresponds to a sparser region. Thus, starting from h1 we search for the first

local minimum h
opt

overH. The value of h
k

, k = 1, 1�width, 1�2⇤width, . . . , width decreas-

ing from h1 to h
opt

indicates that the density level around x
i

, in a center-outward manner,

changes from dense to sparse. The observations in the sparse region do not have the same

property as the observations in the dense region. Thus, the first local minimum h
opt

could

serve as the cut-o↵ depth value to select the neighbors of x
i

. For each x
i

, i = 1, 2, . . . , n, a

locally-defined h
opt

(i) is selected. Thus, neighbor observations of x
i

can be found from (3.2).

Figure 3.3(b) shows how the neighbor searching parameter h
opt

(i) (red vertical line) is se-

lected for each x
i

. Note, the DBCA does not include a similar self-searching step. For better

comparison and visualization purpose we put the selected ✓ (blue line) in the histogram plot.

The CRAD algorithm is summarized in Algorithm 2. The neighbor searching function

and the automatic self-searching method are described in Algorithm 3. A user pre-defined

parameter StepSize is required to decide the size of neighbor buckets in H to compare for

each h
i

, i = 1, 1�width, 1� 2 ⇤width, . . . , width. Another user pre-defined parameter is the

number of bins Nbin in generating H (for details on Nbin selection see Section 3.3). The

upper bound for time complexity of CRAD isO(n2), and complexity can be further lowered to

achieve O(n log n), by using an accelerating index structure for the data in two dimensional

spaces (Ester et al., 1996; Gan and Tao, 2015). The source code of CRAD algorithm is

available from https://github.com/DataMining-ClusteringAnalysis/CRAD-Clustering/.

3.2.3 An Extension to DBSCAN

Since the essential di↵erence between CRAD and DBSCAN is the neighbor searching func-

tion, a hybrid combination of our new robust depth-based neighbor searching algorithm and

conventional DBSCAN is generated by replacing the neighbor searching function (3.4) in

DBSCAN with the proposed new function (3.2). We name the hybrid algorithm as CRAD-

DBSCAN. Our experiments show that with a replacement of a neighbor searching function,
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Algorithm 2: CRAD Algorithm

Input: A finite set of observations X = (x1, . . . ,xn

)t with x
i

= (x
i1, . . . , xip

)t the ith
observation; n: Sample size; Nbin: Number of bins; StepSize: Size of
neighbor buckets to compare.

Output: ClVec: Cluster ID of each observation.
1 Initialization: ClVec = [�1] ⇤ n; label := 0; A := {0}n⇥n;
2 Compute Robust Mahalanobis depth vector for each observation:
RM

d

= hRM
d

(x1),RM
d

(x2), . . . ,RM
d

(x
n

)i;
// Compute the adjacency matrix A

3 for i := 1 to n do
4 AdjIndex := NBR(RM

d

(x
i

), Nbin, StepSize);
for 8 ind 2 AdjIndex : A[i, ind] := 1;

5 end
6 for i := 1 to n do
7 if ClVec[i] == �1 then
8 nbrs := neighbor IDs of observation i;
9 if nbrs. size() == 1 then

10 ClVec[i] := 0; // single cluster
11 end
12 else
13 label := label + 1;
14 for 8 nbrId 2 nbrs : ClVec[nbrId] := label;
15 nbrs. remove(i);
16 while nbrs is not empty do
17 CurrentPoint := nbrs. get()
18 Snbrs := neighbor IDs of CurrentPoint;
19 if Snbrs. size() > 1 then
20 for x in Snbrs do
21 if ClVec[x] == �1 then
22 ClVec[x] := label; nbrs. add(x);
23 end
24 end
25 end
26 end
27 end
28 end
29 end
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Algorithm 3: NBR(RM
d

(x
i

), Nbin, StepSize)

Input: RM
d

(x
i

): Robust Mahalanobis depth vector of observation i; Nbin: Number
of bins; StepSize: Size of neighbor buckets to compare.

Output: nbrIds: Neighbor IDs of observation i.
1 Initialization: width := 1/Nbin.
2 Compute histogram H based on RM

d

(x
i

): H = hh
width

, h2⇤width

, . . . , h1i.
3 for j := H.size()� StepSize to 1 + StepSize do
4 Boolean b := An empty array;
5 for z := 1 to StepSize do
6 if H[j] < H[j + z] and H[j] < H[j � z] then
7 b.append(TRUE);
8 end
9 else

10 b.append(FALSE);
11 end
12 end
13 if (b == TRUE).size() == StepSize then
14 h

opt

:= 1� (H.size()� j + 1) ⇤ width;
15 Break;
16 end
17 end
18 nbrIds := {l : RM

d

(x
l

|x
i

) > h
opt

, l = 1, . . . , n}.

CRAD-DBSCAN significantly outperforms DBSCAN (see Section 3.4.1). This is an im-

portant standalone step toward future extension of DBSCAN to non-Euclidian spaces and

functional data clustering. That is, the DBSCAN approach and its adaptations, such as

CRAD-DBSCAN, with a suitable metric as a dissimilarity measure (e.g., band depth), can

be further advanced to clustering of functional curves in Hilbert spaces.

3.3 Determining the Parameter StepSize and Nbin

Our CRAD algorithm requires two parameters, StepSize and Nbin, both of which are used

in the automatic self-searching algorithm in Algorithm 3. The goal is to select optimal

StepSize and Nbin to help CRAD achieve the highest quality of clustering results. There

are two kinds of evaluation metrics to measure the quality of clustering results, external and

43



internal metrics. An external metric, such as Rand Index (RI) (Rand, 1971; Jain et al.,

1999) and Adjusted Mutual Information (AMI) (Meilă, 2007), is a measure of agreement

between the result obtained from a clustering algorithm and the ground truth. Since the

ground truth is not available in the real-world clustering, we use the internal metric, which

measures the goodness of clustering without external information (Rousseeuw, 1987; Caliński

and Harabasz, 1974; de Amorim and Hennig, 2015), to serve as a validation tool for select-

ing optimal StepSize and Nbin. If we assume larger values of the metric indicate better

clustering results, StepSize
opt

and Nbin
opt

are then defined as:

StepSize
opt

, Nbin
opt

:= argmax
StepSize,Nbin

M(X,ClVec), (3.5)

where ClVec is the clustering result returned by Algorithm 2. Here we consider the Calinski-

Harabasz (CH) score as the internal metric M , which evaluates the clustering quality based

on the average between- and within-cluster sum of squares (Caliński and Harabasz, 1974;

Frakes and Baeza-Yates, 1992).

The CH score is defined as:

CH(X, ClV ec) =
traceB/(k � 1)

traceW/(n� k)
, (3.6)

where B is the error sum of squares between di↵erent clusters (between-cluster),

traceB =
kX

m=1

|C
m

|kC
m

� x̄k2, (3.7)

and W is the squared di↵erences of all objects in a cluster from their respective cluster center

(within-cluster)

traceW =
kX

m=1

nX

i=1

w
m,i

kx
m

� C
m

k. (3.8)

Here |C̄
m

| and x̄ are the sample mean of mth cluster and the data set X, respectively; n

is sample size; k is the number of clusters in ClV ec, and w
m,i

is the weight function. The

larger value of CH, the better clustering performance (Caliński and Harabasz, 1974).
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Our simulations show that optimal performance can be achieved with StepSize 2 {1, 2}

and Nbin 2 (0.2 ⇤ n� 100, 0.2 ⇤ n+ 100), where n is the sample size. Thus, we fix StepSize

as 1 and search Nbin
opt

based on (3.5) (For details see Section 3.4).

3.4 Experimental Evaluation

3.4.1 Synthetic Data

We evaluate performance of CRAD with respect to DBCA (Jeong et al., 2016), DBSCAN (Es-

ter et al., 1996), and OPTICS (Ankerst et al., 1999). The DBSCAN has two versions: 1.

Original DBSCAN with Euclidean distance as the dissimilarity measure, i.e., DBSCAN (EU);

2. An extension version of DBSCAN (CRAD-DBSCAN), which is a hybrid combination of

our new robust depth-based neighbor searching algorithm and conventional DBSCAN, as

discussed in Section 3.2.3. We show that with a simple replacement of a neighbor search-

ing function, CRAD-DBSCAN significantly outperforms DBSCAN in the considered set of

synthetic data.

The evaluation is first conducted on 2 synthetic data sets, S1 and S2. To visualize the

improved e↵ects of our algorithm on DBCA, we extend the data sets in (Jeong et al., 2016)

so that they exhibit the challenging properties on which we focus. Specifically, for S1 we

generate a mixture of clusters from both normal and uniform distributions (with varying

density among clusters) by replacing the “circles” shaped clusters with the “cassini” cluster

structure. In addition, we decrease the distance bewteen clusters, which makes it harder to

detect true patterns. All the sample data are from the mlbench (Leisch and Dimitriadou,

2010; Lichman, 2013). The extended dataset S1 is shown in Figure 3.4(a). Lastly, we explore

the performance of algorithms under the existence of noises. Dataset S2 is generated by

adding a number of noises with 2% noise to signal ratio, shown in Figure 3.5(a).

As evaluation metric we consider Adjusted Mutual Information (AMI) (Vinh et al.,

2010; Meilă, 2007), which is a robust adjustment of the Mutual Information (MI) score.
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Given a set X of n observations (x1, x2, . . . , xn

), let us consider two partitions of X, namely

U = {U1, U2, . . . , UR

} with R clusters, and V = {V1, V2, . . . , VC

} with C clusters. The AMI

is defined as follow:

AMI(U, V ) =
MI(U, V )� E(MI(U, V ))

max{H(U), H(V )}� E{MI(U, V )} , (3.9)

where

H(U) = �
RX

i=1

P (i) log(P (i)),

MI(U, V ) =
RX

i=1

CX

j=1

P (i, j) log
P (i, j)

P (i)P 0(j)
,

P (i) = |U
i

|/N , P 0(j) = |V
j

|/n and P (i, j) = |U
i

\ V
j

|/n. In contrast to MI, the value of

AMI between two random clusterings takes on a constant value, especially when the two

partitions have a larger number of clusters (Vinh et al., 2010).

For each clustering algorithm, we search the best achievable clustering result in a wide

range of combinations of its parameters. The search range of Nbin in CRAD and CRAD-

DBSCAN is in {80, 90, . . . , 700}, and StepSize is set as 1. The search range of ✓ in DBCA

is in {0.80, 0.82, . . . , 1}. In DBSCAN (EU), ✏ is selected from minimum to the half of

the maximum value of pairwise dissimilarity in the given dataset. Parameter MinPts

for CRAD-DBSCAN, DBCSAN (EU) and OPTICS is selected from {2, 3, . . . , 6}, and ⇠ 2

{0.01, 0.02, . . . , 0.99}.

The clustering results on S1 and S2 are shown in Figure 3.6, where each number is an

average result over 10 trails. The clustering results on S1 and S2 are visualized in Figure 3.4

and Figure 3.5. For S1, we can see that our new CRAD achieves the best clustering per-

formance, with an almost perfect detection result. In addition, CRAD-DBSCAN produces

almost the same result as CRAD with a minor misclassification on the boundaries of the

“spiral” cluster (top right). DBSCAN (EU), in contrast, fails to separate most of the clus-

ters, which well demonstrates the competitive performance of our new neighbor searching
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Figure 3.4. Clustering Performance of CRAD, CRAD-DBSCAN, DBCA, DBSCAN (EU),
and OPTICS on S1.
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Figure 3.5. Clustering Performance of CRAD, CRAD-DBSCAN, DBCA, DBSCAN (EU),
and OPTICS on S2.
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Figure 3.6. Best AMI of CRAD, CRAD-DBSCAN, DBCA, DBSCAN (EU) and OTPICS
on synthetics S1 and S2. Each AMI score is an average result over 10 trials.

algorithm. DBCA has a slightly better performance than DBSCAN (EU) but still cannot

recognize the “cassini” cluster (top left) and the “spiral” cluster (top right) with their nearby

clusters. Lastly, OPITCS delivers the poorest performance among the five considered meth-

ods. Same conclusion is obtained for S2, that is, CRAD and CRAD-DBCSAN outperform all

the other competing methods, showing highly competitive performance in detecting intrinsic

clusters with varying densities under the existence of noises.

Table 3.1. Clustering Performance on 5 UCI Multivariate Datasets. The winner method on
each dataset is highlighted.

Dataset Rand Index
CRAD CRAD DBCA DBSCAN OPTICS

-DBSCAN (EU)
Banknote 0.86 0.79 0.52 0.81 0.53

Iris 0.77 0.78 0.36 0.78 0.75
Blood Transf. 0.64 0.64 0.46 0.64 0.49
Occupancy 0.77 0.72 0.67 0.67 0.66

Seeds 0.68 0.67 0.33 0.69 0.69
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Table 3.2. Clustering Performance for the 29 UCR Time Series Datasets. Two ratios, which
are over 0.9 and 0.8 in column “CRAD / k-means” and column “Empirical CRAD / CRAD”,
are highlighted, respectively.

Dataset
(# of Clusters)

CRAD
/k-means

Empirical
CRAD
/CRAD

CRAD Empirical
CRAD

# of Time
Series
/Length

50words (9) 0.96 0.35 0.90 0.31 905/271
Beef (5) 1.09 0.80 0.76 0.62 60/471

BirdChicken (2) 1.09 1.00 0.54 0.54 40/513
Car (4) 1.10 0.64 0.75 0.48 120/578

Co↵ee (2) 0.88 1.00 0.74 0.74 56/287
Cricket-X (9) 1.01 0.87 0.88 0.77 780/301
Cricket-Y (9) 1.02 0.82 0.89 0.73 780/301
Cricket-Z (9) 1.02 0.94 0.88 0.83 780/301
ECG200 (3) 0.97 0.87 0.61 0.53 200/97

ECG-FiveDays (2) 1.00 0.82 0.98 0.80 5000/141
FaceFour (4) 0.95 0.98 0.94 0.92 112/351
FISH (7) 1.00 0.99 0.84 0.83 350/464

Gun-Point (2) 1.03 0.79 0.77 0.62 200/151
Ham (2) 0.96 1.00 0.56 0.56 214/432

Haptics (5) 1.10 0.88 0.75 0.66 463/1093
Herring (2) 0.96 0.93 0.53 0.49 128/513

InlineSkate (7) 1.09 0.31 0.82 0.25 650/1883
Lighting2 (3) 1.04 0.93 0.54 0.50 121/638
Lighting7 (7) 1.01 1.00 0.82 0.82 143/320
Meat (3) 0.97 1.00 0.78 0.78 120/449

OSULeaf (6) 1.03 0.87 0.80 0.70 442/428
Plane (7) 0.98 0.96 0.95 0.91 210/145

SonyAIBORobot (2) 0.94 1.04 0.67 0.70 621/71
Synthetic-Control (6) 0.96 1.00 0.86 0.86 600/61
ToeSegmentation1 (2) 0.95 0.77 0.81 0.62 268/278
ToeSegmentation2 (2) 1.00 0.95 0.89 0.84 166/344

Trace (4) 0.99 1.00 0.99 0.99 200/276
Worms (5) 1.13 0.66 0.75 0.49 258/901

WormsTwoClass (2) 0.97 0.98 0.54 0.53 258/901
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3.4.2 Read-World Multivariate Data

We now evaluate CRAD on real-world multivariate data, with the same competing methods

and experiment settings, as in Section 3.4.1. The evaluation is conducted on 5 bench-

mark multivariate datasets from UCI (Lichman, 2013): Banknote Authentication, Iris, Blood

Transfusion, Occupancy Detection, and Seeds. A brief description of each dataset is shown

as follows.

• Banknote Authentication: contains 762 and 610 observations for each of two classes of

banknotes, respectively. Each observation has 4 attributes, which are extracted features

from the image of the banknote-like specimen.

• Iris : contains 3 classes of 50 observations each, where each class refers to a type of iris

plant. The number of attributes for each observation is 4.

• Blood Transfusion: contains 570 and 178 observations for each of two classes of people,

respectively. Each class represents whether he/she donated blood in March 2007. The

number of attributes for each observation is 4.

• Occupancy Detection: contains 7703 and 2049 observations for each of two classes of

o�ce rooms, respectively. Each class indicates whether the o�ce room is occupied. Each

observation has 5 attributes, which are temperature, humidity, light, CO2 and humidity

ratio in the room.

• Seeds : contains 3 classes of 70 observations each, where each class refers one kind of wheat.

Each observation has 7 attributes, which are geometric descriptions of the wheat kernel.

As Table 3.1 indicates, for all datasets, except Seeds, CRAD and CRAD-DBSCAN rank

1st/2nd among all the methods. In particular, CARD and CRAD-DBSCAN significantly

outperform DBCA and OPTICS for Banknote Authentication, Iris, Blood Transfusion, and
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Occupancy Detection. Furthermore, CRAD outperforms DBSCAN (EU) for Banknote Au-

thentication and Occupancy Detection and delivers a comparable performance for Iris and

Blood Transfusion. For Seeds, CRAD and CRAD-DBSCAN slightly underperform, compar-

ing to DBSCAN (EU) and OPTICS, but still significantly outperform DBCA.

3.4.3 Real-World Time Series Data

We now evaluate the utility of CRAD for time series clustering. Time series data usually con-

tain noises, dropouts, or extraneous data, existence of which can greatly limit the accuracy of

clustering (Ye and Keogh, 2009; Mueen et al., 2011; Hartmann et al., 2010). Thus, we apply

a time-series based feature-extraction technique, named U-Shapelets (Zakaria et al., 2012) to

filter out noises in data in the first place. The idea of the U-Shapelets is to search for small

subsequences of a few time series, named U-Shapelets, that best represent the entire time

series data and then to use those subsequences as features. Since the number of extracted

U-Shapelets is small (usually < 10), dimension of time series data is highly reduced.

Based on the extracted U-Shapelets, we evaluate our CRAD algorithm with respect to the

“U-Shapelets + k-means” methodology, where k denotes the true number of clusters (Zakaria

et al., 2012). The choice for the study settings is addressed as follows.

1. First, we select “U-Shapelets + k-means” as the competing clustering method, because

as demonstrated by (Zakaria et al., 2012), it is the winner method over other clustering

methods with the state-of-the-art feature-extraction techniques.

2. Second, the density-based clustering algorithms such as DBSCAN, DBCA, and OPTICS

are not included as competing methods, as none of these methods are designed for time

series clustering. Furthermore, we focus on the following practical problems in this section:

(a) Without any a-priori knowledge on a number of clusters, can our CRAD algorithm

detect the true number of clusters and the correct partitions?
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(b) Without knowing the true parameters, Nbin and StepSize, can our parameter se-

lection procedure, from Section 3.3, assist the clustering method to achieve a satis-

factory clustering performance?

The evaluation is conducted on 29 benchmark datasets from the UCR time series archive

(Chen et al., 2015), in terms of RI (Rand, 1971) and is consistent with the evaluation of “U-

Shapelets + k-means” in (Zakaria et al., 2012). The datasets include various domains, i.e.,

from finance to neuroscience to geology (see Table 3.2). The column “CRAD” and “k-means”

denote the best achievable RI by searching clustering results over a wide range of parameters

and possible combinations of U-Shapelets features. As shown in (Zakaria et al., 2012), 1 or

2 U-Shapelets are su�cient to achieve the best clustering result in most cases. Hence, the

upper limit on a number of U-Shapelets is set to 2. The column “Empirical CRAD” is

the RI achieved by CRAD, using the new parameter selection procedure in Section 3.3.

Compared with the best achievable “CRAD”, the “Empirical CRAD” is more important

since we will not know the ground truth in real-data clustering and thus being able to select

the right parameter is critical in achieving a good clustering result. Two ratio indicators,

that is “CRAD / k-means” and “Empirical CRAD / CRAD”, are presented to simplify the

comparison among methods.

For the ratio “CRAD / k-means”, 28 (out of 29) datasets are over 0.9, among which

16 datasets deliver a ratio of more than 1, indicating the competitive performance of our

CRAD algorithm. Note, our benchmark method “U-Shapelets + k-means” has a critical

advantage of knowing the true number of clusters in datasets, thus operating with more

information. Despite this, the new CRAD algorithm still delivers a quite close performance

with the benchmark method and even outperforms it in half of the datasets. For the ratio

“Empirical CRAD / CRAD”, 23 (out of 29) datasets are over 0.8, among which 16 datasets

yield a ratio more than 0.9, and 13 datasets deliver a ratio more than 0.95. These findings

indicate a high practical utility of CRAD in the real-world time-series clustering, which is
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typically performed without any prior information on the true number of clusters and cluster

density.

Finally, we assess performance of CRAD with respect to other density-based clustering

algorithms. The competing methods are DBCA and DBSCAN. All the methods are per-

formed on U-Shapelets extracted from the data, following the framework of clustering time

series in (Zakaria et al., 2012), i.e., “U-Shapelets + a clustering method”. The time series

data are selected from Table 3.2. Each dataset contains two versions: a raw dataset and a

noisy dataset which is obtained by adding a random noise N(0, 0.2) on each observation of

time series in the raw dataset.

Table 3.3. Clustering Performance of CRAD, DBCA and DBSCAN on 5 UCR Time Series
Datasets. The winner method on each dataset is highlighted.

Dataset Rand Index
CRAD DBCA DBSCAN

Co↵ee 0.74 0.59 0.75
Noisy Co↵ee 0.65 0.58 0.55
FaceFour 0.94 0.91 0.98

Noisy FaceFour 0.92 0.86 0.85
SonyAIBO 0.67 0.68 0.53

Noisy SonyAIBO 0.67 0.56 0.52
ToeSegm1 0.81 0.71 0.72

Noisy ToeSegm1 0.80 0.68 0.68
Trace 0.99 0.99 1.00

Noisy Trace 0.95 0.93 0.89

As Table 3.3 indicates, on the raw datasets CRAD outperforms DBCA and DBSCAN

for ToeSegm1 and delivers a comparable performance for Co↵ee, FaceFour, SonyAIBO, and

Trace. However, under noised scenarios, CRAD outperforms DBCA and DBSCAN on all the

five considered datasets. These findings are consistent with conclusions in previous sections,

that is, our new CRAD algorithm delivers a more competitive performance for data that

contain noise, outliers and of varying densities.
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3.5 Conclusion

We propose a new robust data depth based clustering algorithm CRAD with a locally-defined

neighbor searching function. Besides robustness to outliers, we show that the new CRAD

algorithm is highly competitive in detecting clusters with varying densities, compared with

the existing algorithms such as DBSCAN, OPTICS and DBCA. Furthermore, the perfor-

mance of DBSCAN is shown to be e↵ectively improved, by replacing its original neighbor

searching function with the new locally tuned neighbor searching algorithm. In addition,

we propose a new e↵ective parameter selection procedure, to select the optimal underlying

parameter in the real-world clustering, when the ground truth is unavailable. In the future,

we plan to investigate the utility of other data depth functions as dissimilarity measures and

extend the CRAD idea to functional data clustering.
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CHAPTER 4

POLITICAL RHETORIC THROUGH THE LENS OF NONPARAMETRIC

STATISTICS: ARE OUR LEGISLATORS THAT DIFFERENT?1

4.1 Introduction

What are politicians really telling us? They sound di↵erent, but are they really? The 2016

campaign for U.S. president presented us with two distinct candidates: Hillary Clinton and

Donald Trump, who had very di↵erent messages for the voters. The outsider message was a

prominent feature of the 2016 elections, used by both presidential and congressional candi-

dates, on both sides of the isle (Lowry, 2016; Healy, 2015). The Democrats and Republicans

in the U.S. Congress are also fighting for the increasingly divided electorate. Using their

speech, politicians from both sides constantly send (often contradictory) signals to the vot-

ers and financial supporters. Such political sentiments have a tremendous impact on all

aspects of our society, and better understanding of the behavior of politicians when in of-

fice is critical for both voters and interest groups. This is particularly acute as political

discourse is rarely driven by compromise and cooperation, especially in the currently highly

polarized U.S. Congress. Politicians running for o�ce often promise to be di↵erent from

their colleagues, but do they keep those promises when in o�ce? Is their rhetoric really that

distinct, or do they cater to similar interests? And how can statistical analysis help us to

unveil and quantify political perception?

Detecting hidden underlying dynamics in political attitudes and expressions, as well as

similarities between them is crucial for our society but such a challenging task is impossible

1 This chapter includes verbatim excerpts from

Under Invited Revision. Iliev, I., Huang, X., Gel, Y. (2017) Political Rhetoric through the Lens of
Nonparametric Statistics: Are Our Legislators That Di↵erent?
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without advanced statistical methods and data mining tools. And while politicians increas-

ingly use data analytics in their election campaigns (see overviews in Issenberg, 2012; Kaye,

2014; Grajales, 2014; Markman, 2016, and references therein), can we uncover political pat-

terns with modern statistical methodology? We attempt to address this challenging problem

by proposing a novel study of political rhetoric in congressional committees.

We develop a mixed supervised-unsupervised approach for tracking changes in speech

over time and detecting common features and behavioral clustering among legislators. We

combine automated content analysis of legislative speech with spatio-temporal dynamic clus-

tering and a data-driven (in)stability criteria to select optimal clustering input parameters.

While some of the tools that we use existed before, the combination of these methods is

novel, as well as their application. The application of these algorithms to the study of politi-

cians’ rhetoric and their dynamic behavior with respect to their time in o�ce is innovative,

and such an analysis is only possible through the use of advanced statistical methods. The

statistical contribution stems from the combining of three methods that existed separately

to solve a complex problem in energy policy, which could not be analyzed using a traditional

approach. That is, we show how statistical thinking and statistical algorithms and analyses

can play a vital role in enhancing our understanding of intrinsic mechanisms of legislative

politics and can benefit our society in general. Furthermore, the need and application of

these advanced statistical and data mining methods renders our study beyond the tradi-

tional scope of a single discipline. Our approach is not exclusive to political science, but can

be used as a template to solve similarly complex multi-stage problems in a wide array of

disciplines.

While committee text has been used previously (Yano et al., 2012; Nowlin, 2015; Stramp

and Wilkerson, 2015; Talbert et al., 1995), the focus has been on legislative bills or specific

issue definitions. Rhetoric in congressional committees has not been analyzed before, to our

knowledge, in a systematic and objective way using advanced statistical methods. Here, we
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primarily focus on the arguably most dominant area of the U.S. and worldwide politics, the

energy sector. We create a novel comprehensive dataset based on the statements from con-

gressional hearings of all senators who served on the U.S. Senate Committee on Energy and

Natural Resources in 2001–2011. Our dataset can be used to quantitatively evaluate vari-

ous expressions of political behavior or attitudes through rhetoric. Our analytic approach of

combining supervised natural language processing and aggregate classification with unsuper-

vised dynamic clustering has numerous applications well beyond the energy sector and range

from analysis of political statements when soliciting campaign contributions, discussing for-

eign policy issues, or during contentious political campaigns. The results can in turn lead to

a deeper understanding of political rhetoric, and facilitate the comprehensive analysis that

can inform the voters, as well as a broad range of policy-makers.

The first stage of our algorithm is an automated content analysis of legislative speech in

a supervised context. We are interested in scaling attitudes towards pre-specified interest

groups and in classifying document category proportions. Notice that we do not focus on

individual documents since we study attitudes in the aggregate. Thus, the first stage of our

analysis is based on a supervised natural language processing (NLP) method for aggregate

classification developed by (Hopkins and King, 2010). Since our current focus is on the U.S.

Senate Committee on Energy and Natural Resources and the energy sector explicitly and

implicitly a↵ects all sectors of the economy, including non-energy related ones, from national

security to the environment, we propose a novel measure for legislative rhetoric — attitudes

toward the dominant energy interests. In a statistical sense, the measure can be viewed as

a baseline. The data are aligned so that all rhetoric begins at month one of the senators’

tenure in o�ce within the period that we analyze, allowing us to trace the speech trajectories

as they progress in o�ce.

The second stage of our analysis aims to uncover clusters in the behavior of legislators

in terms of their expressed rhetoric identified in the first stage. However, the process of
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political group formation is intrinsically dynamic, and the number and shape of the clusters

are unknown a-priori, since they could be based on partisanship, geography, constituency,

and other unknown subjective factors. To address these challenges, we adopt an unsuper-

vised spatio-temporal data mining algorithm for discovering dynamic clusters of arbitrary

shape in environmental geo-referenced data, namely, TRend based clUstering algorithm for

Spatio-Temporal data stream (TRUST) (Ciampi et al., 2010). We then employ data-driven

(in)stability criteria to select optimal clustering input parameters, based on the crossval-

idation argument (Dudoit and Fridlyand, 2002; Ben-David et al., 2006; Ben-David and

Von Luxburg, 2008; Wang, 2010; Huang et al., 2016) that allow for more objective and

automatic choice of parameters in contrast to a traditional user pre-specified option. Such

a data-driven approach to clustering allows us to retain the dynamic component of politi-

cal speech — group membership and the number of groups can evolve over time, thus the

number of clusters are selected automatically.

The results of the study suggest that in the beginning of their tenure, senators tend

to noticeably di↵er from each other (i.e., exhibit distinct rhetoric), as usually promised

on the campaign trail — there is a higher number of clusters with smaller membership.

However, as senators spend more time in the institution, becoming more institutionalized,

these di↵erences begin to diminish and their rhetoric becomes more alike — as a result, we

observe less clusters and cluster membership tends to be higher. The cluster formation shows

complex dynamics, and not separation based on party. For instance, the senators cluster

based on their seniority in the committee, the significance of the energy industry in their

state, and other connections to the sector, but surprisingly not on partisanship. Our data-

driven dynamic clustering approach allows us to explore these political formation dynamics

in a more objective way while minimizing model and data constraints.

The paper is organized as follows. We proceed with an overview of related methodology

for the analysis of political text in Section 4.2. Next, in Section 4.3 we discuss the natural
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language processing algorithm that we employ and the rhetoric data set produced by it. Sec-

tion 4.4 is devoted to the dynamic clustering algorithm TRUST in application to committee

rhetoric. We discuss our case study and findings on the dynamics of legislative rhetoric in

the U.S. Senate Committee on Energy and Natural Resources in Section 4.5. The paper is

concluded with the closing discussion and overview of future work in Section 4.6.

4.2 Related Work

Stringent seniority deference norms are suggested to influence the behavior (Sinclair, 2016,

1983), which is in line with the traditional view of Congressional norms. Analysis of floor

speeches suggests that senators tend to di↵erentiate themselves later in their terms (Quinn

et al., 2010). However, an important aspect of modern campaigns in the candidate posi-

tioning as an outsider, or someone who is di↵erent from an otherwise unpopular institution.

This phenomenon, which shapes Congressmen’s behavior is what is known as Fenno’s para-

dox — voters’ generally disapprove of Congress as a whole, but support the Congressmen

from their own district (Fenno, 2002). Anti-establishment politics are not new (Horwitz,

2013; Barr, 2009), and can currently be observed both in the conservative right with the

Tea Party members (Boyko↵ and Laschever, 2011; Skocpol and Williamson, 2012), as well

as in the liberal left (Bolton, 2016). However, members of Congress become institutionalized

and their behavior is shaped by their institution (Binder, 2015; Hibbing and Theiss-Morse,

1995; Canon, 1989) even as they campaign as outsiders (Herrnson, 2007; Burden, 2004).

The literature provides evidence that members become more alike the more time they spend

in the institution (Cox and McCubbins, 2005) and that general election competition exerts

pressure toward convergence (Hirano et al., 2010).

Rhetoric is an important political commodity that carries value for both the speaker

and the audience, and it can be used as a strategic tool (Mayhew, 2004). The need for

credibility makes the signals costly and not just “cheap talk”. Interest groups pay attention
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to the way their preferences are discussed and adjust their responses. Examples come from

every policy area, ranging from oil companies getting involved in lobbying during an oil spill

(OpenSecrets.org, 2011) to IT companies fighting for net neutrality (Ars Technica, 2015)

and for changes in the H1B visa process (San Jose Mercury News, 2015). The evolving

patterns of legislative behavior can alert these groups when and how to get involved into the

political processes. The diverse patterns of legislative behavior can be based on party lines,

geographic di↵erences, or the composition of the particular constituents. The numerous

sources that influence the behavior and associated uncertainties create underlying patterns

that are hardly detectable without a deeper statistical analysis.

Individual Document Classification vs. Category Proportions Unlike other fields, content

analysis in the social sciences is often focused on category proportions and generalizations

rather than individual document classifications (Hopkins and King, 2010; Grimmer, 2010).

Political scientists are generally interested in the attitudes of a senator or a presidential

candidate in the aggregate, rather than the classification of any specific speech or statement.

Hopkins and King (2010) make an apt analogy — “policy makers or computer scientists may

be interested in finding the needle in the haystack..., but social scientists are more commonly

interested in characterizing the haystack”. Grimmer (2010) proposes a hierarchical structure

with political statements at the bottom, and their author at the top, which we employ in our

analysis. The focus on political actors and not on their individual expressions is crucial, as

we are interested in the overall legislative behavior of these actors. Document classification

would require frequency-based methods, while our focus on the speakers themselves requires

a method that takes the category proportions into account. In addition, the link between

legislative sentiment and legislative text, and its use to explain and predict roll call voting,

is discussed, for instance, by (Gerrish and Blei, 2011, 2012).

Analysis of the Dynamics The behavior of political actors is dynamic in nature and study-

ing it requires statistical solutions that capture its temporal and spacial components. One
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such solution is provided by the dynamic networks literature (Loglisci, 2013; Loglisci et al.,

2015; Beykikhoshk et al., 2015; Loglisci and Malerba, 2015). The focus is on the dynamics

of evolving (heterogeneous) structured data (Loglisci et al., 2015), as well as the dynamics

of the content of textual data (Loglisci, 2013; Beykikhoshk et al., 2015). Beykikhoshk et al.

(2015) propose a flexible solution that does not restrict the type of changes that the model

can capture, while Loglisci and Malerba (2015) develop a method based on two notions of

patterns, emerging patterns and periodic changes. The emphasis is on discovering complex

structural changes in the dynamic network across the temporal dimension. These solutions

are useful when the focus of the analysis is on networks, where the complex linkages between

individual nodes are of interest. When the dynamics of the behavior are studied at the

group level, i.e. similar behavior within a group over time, clustering methods are appropri-

ate. The number of dynamic data-driven clustering procedures for space-time data that allow

the number, shape and distributional properties of clusters to vary, remains limited, despite

receiving interest in recent years (Gaber et al., 2005; Cao et al., 2006; Banerjee et al., 2014).

Two such dynamic clustering procedures are a space-time data mining procedure (TRUST)

that is based on interleaving spatial clustering and temporal trend detection (Ciampi et al.,

2010), and a hierarchical spectral merger algorithm to cluster brain connectivity (Euan et al.,

2015).

Supervised vs. Unsupervised Political Content Analysis Measuring the intensity of ex-

pressed attitudes through political speech patterns provides rich data, and allows for a better

measure of support or opposition that is not necessarily visible in the final vote. Automated

analysis of political text is a relatively new field, which poses specific problems and requires

a problem-specific validation (Hopkins and King, 2010; Grimmer, 2010; Gerrish and Blei,

2011; Grimmer and Stewart, 2013). Within the field, the two main categories of analysis

are ideological scaling and classification mechanisms, both of which can be supervised or

unsupervised (for a more extended overview see Grimmer and Stewart, 2013, and references
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therein). Ideological scaling o↵ers a specific scale (for example 0 to 100 scale of liberalism),

while classification mechanisms have separate categories (liberal and conservative), without

o↵ering a scale. Supervised and dictionary-based learning methods assume defined sets of

categories allowing for the selection of a particular focus of the analysis rather than relying

on underlying categories. If such a predetermined categorization scheme is missing or the

goal is to explore unknown classifications, unsupervised methods can be helpful. According

to (Grimmer and Stewart, 2013), while supervised and unsupervised methods are often seen

as competing, they are in fact context-dependent, and can even be complementary. We

apply this logic to our study, and utilize the benefits of both methods in a new two-stage

procedure to better capture the dynamics of legislative behavior over time.

4.3 Data Generation

4.3.1 Rhetoric in Committee

Our focus on committee rhetoric is novel both in political science and in the statistics and

machine learning contexts, providing multi-fold benefits. Despite some indication that the

role of committees in the legislative process in Congress is evolving (Sinclair, 2016; Schickler,

2001), Congressional committees continue to be an important component of that process.

First, most of the interactions take place within committees, providing richer information on

its members. Second, legislative hearings in committee allow for daily measures of changes

in rhetoric. Such highly disaggregated data are still underused in political science, where

measures of committee speech are absent. Third, understanding dynamics of committee

work is essential because policy preferences are expressed during committee hearings, and

those discussions shape future bills. While a large number of proposed bills never make it

past that stage, they still contain indispensable information about policy positions. Finally,

despite the various audiences that scrutinize the behavior in committees, they provide a lower
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visibility setting where legislative interactions can occur with less attention from the public.

Thus, the agenda in congressional committees is more fluid, and it is easier for interest groups

to get involved and insert their preferences (Hall and Wayman, 1990; Hojnacki and Kimball,

1998).

Despite the importance of congressional rhetoric, and the fact that the records of the

committee hearings are public, to the best of our knowledge, this wealth of data has never

been systematically organized and analyzed. This is largely due to the fact that commit-

tee hearings span over hundreds of thousands of pages and hand-coding of the data, as is

customary in the social sciences, is not a feasible task. Hence, such a dataset on committee

rhetoric simply did not exist up to this point. We develop a novel methodical procedure to

analyze political rhetoric, with an immediate application for committee speech, but with a

multitude of applications beyond that.

Our source of legislative rhetoric is the U.S. Government Printing O�ce (GPO), which

has an archive of transcripts from congressional hearings (U.S. Government Printing O�ce,

2014). We use data on hearings from 2001 to 2011. However, the unit of analysis is individual

rhetoric, which is not readily obtainable. Senators can make a number of statements within

the same hearing, thus we utilize a Java algorithm to parse single uninterrupted remarks

from the full text of the hearings. The algorithm separates statements by members of the

committee from other statements such as testimonies from witnesses, statements by foreign

delegations, and others. The algorithm also takes into account changing chairmanship of the

committee, and di↵erent members sharing the same last name such is the case with Frank

Murkowski of Alaska who was the chairman in the beginning of the time period in question,

and his daughter Lisa Murkowski, who replaced him in 2002.

The transcripts from the committee include statements by senators (the focus here),

as well as statements from witnesses and expert testimony. The witness statements are

oftentimes in the form of written prepared testimony. Senators can sometimes submit written
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remarks as well, usually when they are not present at the hearing. These types of statements

occur rather infrequently and since most introductory statements are prepared in advance,

the dynamics and inherent structure are similar in written and spoken statements.

The resulting dataset includes 40,525 individual statements from congressional hearings

from 2001 to 2011 that are organized temporally. The rhetoric data spans over more than

10,000 pages. Due to the large amount of text that was analyzed, we employ a natural

language processing algorithm devised by (Hopkins and King, 2010).

4.3.2 Natural Language Processing of Committee Rhetoric

Computerized text analysis falls within the broader field of pattern recognition and is a

rather new field, especially for the social sciences (Monroe and Schrodt, 2008; Pang and Lee,

2008; Shellman, 2008). We conducted an extensive search of appropriate language process-

ing tools, and a method developed by (Hopkins and King, 2010) is particularly suitable for

our objectives. The method is a supervised learning approach, allowing us to specify cate-

gories of interest (attitudes towards the energy industry), and to estimate document category

proportions instead of individual document scores. Our focus is not to find random inher-

ent patterns in the congressional speeches, but to measure changes in specified categories

over time that constitute a basis for subsequent quantitative and qualitative analysis. We

study document category proportions instead of scoring individual texts — the proportion of

speeches within each month that fall within the predetermined categories because the focus

is on the speakers and not the speeches themselves. The natural language processing algo-

rithm is used to produce proportion level estimates per senator per month (a senator-month

measure).

Let us select a training set with documents D
i

, where i = 1, . . . , I. We choose a training

sample size I in accordance with the guidelines specified by Hopkins and King (2010, pp.241-

242), who recommend 500 documents for minimizing the root mean square error. Our
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training set is almost double the recommended value and is based on I of 947 statements.

The documents in the training set are selected using simple random sampling from the full

set of speeches, and hand coded into four categories. The documents are labeled with a

label j, such that D
i

= j. In our case, with four categories, j = 1, . . . , 4. The categories

that we use are “pro-lobby” (category 1), “neutral” (category 0), “procedural” (category

9) and “anti-lobby” (category -1). An “anti-lobby” statement, for example, would be one

that proposes a cut in the subsidies for the oil industry. A “pro-lobby” statement would be

one that proposes an increase in the number of drilling permits for o↵-shore oil drilling. A

“procedural” speech is one that thanks an outside expert for being present during a hearing,

while an example for a “neutral” statement would be the discussion of the creation of a

memorial.

The energy industry is dominated by the fossil fuel and electric utilities sub-industries

both in terms of interest group activity, and production. These sub-industries represented

78% of the total energy production in 2010 (EIA (U.S. Energy Information Administration),

2000) and around 92% of the lobbying and campaign contributions from the energy sector

(OpenSecrets.org, 2013). Thus, our focus here is on those interests, and the attitudes we

measure in the rhetoric are towards these groups. Multivariate classification across the sub-

interests (oil, coal, etc.) is preferable, but there is not enough variation in the data to support

coding multiple dimensions.

The classification algorithm summarizes the text of the labeled documents D
i

using word

stems S
ik

, k = 1, . . . , K, where K is a number of word stems. Thus, the text of each labeled

document is represented by a K ⇥ 1-vector of word stems, where word stem S
ik

= 1, if the

particular word stem is used at least once in document D
i

, and S
ik

= 0 otherwise. The

selection mechanism and size of the subsets of words that are used for word stems K are

outlined in Hopkins and King (2010, p.237).

The population set of documents, D
l

, l = 1, . . . , L, includes the full 40,525 speeches for

all the members of the committee from 2001 to 2011, which are then subsetted by speaker
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and time. The documents in the population set have an unobserved classification D
l

= j,

j = 1, . . . , 4, and are described using word stems, similarly as for the training set. The

quantity of interest for the algorithm is the aggregate proportion of all of the population

documents that fall into each category (P (D) = {P (D = 1), . . . , P (D = 4)}0). For example,

P (D0 = 1) is the estimate of the proportion of documents in category 1, and the true

proportion is P (D = 1). Proportion P (D) is a 4⇥1-vector, where each element is computed

as follows

P (D = j) =
1

L

LX

l=1

1(D
l

= j). (4.1)

The algorithm estimates the proportion of documents in various categories using

P (D0 = j) =
JX

j

0=1

P (D0 = j|D = j0)P (D = j0). (4.2)

Hence, the aggregate proportion of all of the population documents that fall into each cate-

gory, P (D
l

= j), is computed according to

P (S)
2k⇥1

= P (S|D)
2k⇥J

P (D)
J⇥1

, (4.3)

where P (S) is a probability of each of the 2K possible word stem profiles occurring and

P (S|D) is a probability of each of the word stem profiles occurring within the documents

in category D
l

= j. Note that P (S|D) signifies that the attitude of the senators towards

the energy industry comes before the words that they use in their statements. (We follow

Mahatma Gandhi’s paradigm “Your beliefs become your thoughts, Your thoughts become your

words...”) For a further discussion of the algorithm, see (Hopkins and King, 2010).

Figure 4.1 illustrates how the algorithm works in practice. A statement such as “Exxon

should be subsidized” would be labeled as being a category 1 statement, while a statement

in the population set, “more subsidies should be given to Exxon” would have an unobserved

classification D
l

. Word stems S
i1, Si2, Si3, Si4 appear in the training set, and the unclassified

stems (S
i5) do not.
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Figure 4.1. Example of supervised classification of the energy-related political rhetoric.

The syntax of a language oftentimes needs to be annotated as part of natural language

processing. The annotation usually includes part of speech tagging, phrase structure, and

dependency structure. Various corpora include parts of speech tags as part of the annotation

process. Such a step is particularly important for parsers. Additional annotation for seman-

tic content is also possible, allowing an algorithm to distinguish more complex structures.

Finally, annotation can help identify the document level semantic properties implied by a

text, such as free-text annotations (Branavan et al., 2009). While annotations can be crucial

for certain applications, the so called “bag of words” simplification can be highly e↵ective

(Pang et al., 2002). Hopkins and King (2010, p.232) discuss the issue at length and conclude

that upon empirical testing, annotation is not necessary for the particular application of the

algorithm.

Certain senators might make a higher number of interrupted remarks (such as the chair-

man) versus longer uninterrupted statements within the same hearing. The final scores are

not a↵ected by the length of the individual statements, nor by whether they are interrupted

or not because we are not interested in classification of individual statements, but in clas-

sifying statement category proportions within a given month. There are di↵erent reasons

why a senator would be a member of the committee but not make a statement in a given
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time period. There might not have been a committee hearing in that period (during recesses

for example), thus the senators were unable to express their attitudes and we can extend

the last available expression of their attitudes to the period with the missing data. The

same logic applies in cases of absence from a hearing. However, the cases when there was

a committee hearing and a senator did not make a speech contain information because not

making a speech while being present on the committee can represent a certain expression

of attitude and we cannot assume that he or she simply retained the previously expressed

attitude. In these cases, we cannot extend their previous available scores without inducing

bias. Instead a score of 0 for all possible categories of rhetoric in that period would signify

that there was a hearing, but attitude was not expressed in either category. Ignoring the

di↵erent reasons for the missing data would induce bias. We handle the missing rhetoric

using a combination of extending previous rhetoric scores in cases when a hearing did not

occur and assigning a score of 0 when a senator was present, but did not speak.

4.3.3 Re-Indexing Time

The final measures are monthly time series for each member of the committee in the period

2001-2011. For our analysis, we select the pro-lobby rhetoric for all senators who were

members of the committee for at least 48 months during the period of interest, and produce

two datasets with a focus on Full Membership and Full Term representation. The Full

Membership data include 31 senators over 48 months, while the Full Term data includes

a smaller number of senators (19) over a longer time period (72 months). The supportive

rhetoric measure is on a scale of 0.00 to 1.00.

The data presents a time indexing problem. If we use the “real world clock”, we would

account for events a↵ecting the policy environment (oil spills, wars, etc.) and the political

environment (divided government, etc.). However, this “clock” does not align with the

time the senators have spent on the committee or the time that has passed since their
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previous election because they are elected at di↵erent times. We also cannot account for the

time that has passed since they were first elected (their time in the Senate) because some

of the members that are included had been in Congress for decades before our period of

interest. Finally, aligning the senators based on when they appeared in the data removes

the substantive meaning that we are interested in.

Ultimately, our substantive focus is on their behavior based on length of time since their

last election. Electoral strategies and concerns have an impact on legislative behavior as

evidenced by the “electoral connection” literature (Mayhew, 2004; Rothenberg and Sanders,

2000). We measure the impact of the electoral connection on legislative behavior by re-

indexing the data so that all rhetoric begins at month one in o�ce following a senator’s

election (time-since-last-election). Thus, for both datasets, x
tm

is rhetoric expressed by the

m-th senator at time point t, where t = 1, . . . , T , m = 1, . . . ,M . For the Full Membership

dataset, T = 48, and M = 31, while for the Full Term dataset, T = 72, and M = 19.

4.3.4 Statistical Validation and Reliability Testing

The two main requirements for any automated natural language processing algorithm are

reliability and utility over hand-coding. In our case, hand-coding tens of thousands of pages

of text is not feasible, so the algorithm clearly adds utility. However, validation and relia-

bility concerns need to be addressed by any researchers that utilize automated text analysis

(Grimmer and Stewart, 2013). Biases in supervised learning stem mostly from the human

coding that “teaches” the algorithm (Hopkins and King, 2010). A critical component of

content analysis is the measure of intercoder reliability or coder agreement (Lombard et al.,

2002). Intercoder reliability refers to the degree to which independent coders evaluate a

feature (in this case, text) and reach the same conclusion. We perform an intercoder reli-

ability test with two coders who coded the training set of 947 statements. A widely used

measure for evaluating intercoder reliability is Krippendor↵’s ↵ which can be used regardless
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of the number of observers, levels of measurement, sample sizes, and presence or absence

of missing data (Hayes and Krippendor↵, 2007; Krippendor↵, 2004). The general form of

Krippendor↵’s ↵ is

↵ = 1�D
o

/D
e

, (4.4)

where D
o

is the disagreement observed, and D
e

is the disagreement expected by chance (for

a detailed discussion, see Krippendor↵, 2004). Values of ↵ above 0.8 are generally considered

to indicate a high intercoder reliability (Krippendor↵, 2004, pp.241-243). In our case, the

resulting Krippendor↵’s ↵ is 0.91, which suggests a high intercoder agreement and a reliable

coding scheme.

Furthermore, the algorithm needs to be validated as a reliable tool for replicating human

coding (Grimmer and Stewart, 2013, p.271). Cross-validation is a commonly used method

for assessing reliability of automated natural language processing algorithms. The idea is to

partition data into complementary non-overlapping subsets, perform analysis on one subset,

and validate the results on the other subset. The process involves multiple rounds using dif-

ferent partitions (known as folds), with the results averaged over the folds to produce a single

estimation. V -fold cross-validation is a process, in which the original text data are randomly

partitioned into V equally sized subsamples. We performed five-fold cross-validation, which

randomly partitioned the training set into five groups. This allows us to compare the output

of the machine coding to the output of the hand coding. The performance is assessed on

each of the groups with predictions made on data out of sample. (For a complete discussion

of this validation method, see Grimmer and Stewart, 2013, pp.279-280.) In our study, the

resulting accuracy (i.e., proportion of correctly classified documents) score is 0.92, which

indicates an accurate classifier.
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4.4 Cluster Analysis of Political Rhetoric

Grimmer and King (2011) provide an overview of the existing automated methods for cluster

analysis of political data, and propose a simultaneous unsupervised algorithm that combines

text analysis and clustering, under the assumption of unknown document categories or topics.

In our setting, however, we focus on detecting common features and a hidden structure among

time series where each time series represents a senator’s aggregated behavior in respect to a

certain known topic, or a baseline. In our study, the pre-specified topic is attitudes towards

energy, and the goal is to cluster senators’ aggregated behavior with respect to the energy

interests and then to trace the changes during their time in o�ce.

Political clusters based on such “behavioral” time series are intrinsically dynamic, with

time-varying distributional shapes and number of groups. Indeed, behavior of senators may

dynamically evolve over time to maximize their interests at di↵erent stages. Hence, most

conventional clustering algorithms are inapplicable in the current setting. Due to this com-

plexity of the behavioral time series, it is crucial to choose a more flexible clustering method

that can dynamically detect the intrinsic patterns. Some possible methods are clustering

techniques from streamed data mining, where a window model is usually used to capture

dynamics inside data (Aggarwal et al., 2003; Munro and Chawla, 2004; Cao et al., 2006;

Aggarwal, 2007). However, these methods either require the number of clusters to be pre-

specified (Aggarwal et al., 2003), thus increasing the level of a-priori subjectivity, or they do

not address the temporal dynamics of the data within a cluster, which is required for our

political science study (Munro and Chawla, 2004; Cao et al., 2006).

To address these challenges, we bring an idea from environmental studies and adopt a

flexible data mining approach, TRend based clUstering algorithm for Spatio-Temporal data

(TRUST) that is proposed by Ciampi et al. (2010); Appice et al. (2015) in the context of

environmental space-time data. The key idea of TRUST is based on a temporal sliding win-

dow argument extended to multiple spatially distributed data sources such as, for instance,
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geo-referenced sensors. Spatial locations are then grouped together in terms of the proxim-

ity of their temporal trajectories in the recent past. We, in turn, apply TRUST by viewing

each senator as a location (or “sensor”), and cluster them in terms of the similarity of their

rhetoric. However, in the framework of political time series, there exists no spatial informa-

tion, and senators are grouped together as long as they share similar temporal trajectories

in their rhetoric. Therefore, our modified algorithm is targeted to detect dynamic clustering

in time series only, and is referred as reduced-TRUST, or R-TRUST.

Below we present a schematic idea of the R-TRUST algorithm. (Since in general TRUST

aims to preserve the space-time continuity of the observed data, its detailed description is

tedious, and for more details we refer the reader to Ciampi et al., 2010, and discussion

therein.)

For both datasets, x
tm

is rhetoric expressed by the m-th senator at time point t, where

t = 1, . . . , T , m = 1, . . . ,M . (For the Full Membership dataset, T = 48, and M = 31, while

for the Full Term dataset, T = 72, and M = 19.) Let X be a T ⇥M -matrix with elements

x
tm

. Each row of X, i.e. x·1, . . . , x·M , represents the rhetoric of all senators at a given time

point and is called a layer. A set of p consecutive rows is called a slide, and a set of !

consecutive layers forms a sliding window of size !.

The R-TRUST algorithm consists of two main steps. The first step is slide-level cluster-

ing. Let the i-th slide, denoted by X
i

, be a p ⇥M matrix, where p < T , i = 1, . . . , bT/pc

and brc denotes the floor function, i.e., greatest integer less than or equal to r. Each column

of X
i

, i.e. x1., . . . , xp.

represents temporal behavior of one senator (i.e., a sequence of time

series). R-TRUST randomly starts with one time series l as an initial point (i.e., seed time

series) and searches time series m for close relations in terms of E✓

�

(referred to as neighbors).

The procedure is formalized as follows

E✓

�

=

⇢
x·m, x·l,m, l = 1, . . . ,M |

pX

t=1

 
�

(x
tm

, x
tl

) � ✓ ⇥ p

�
, (4.5)
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Figure 4.2. Sketch of the R-TRUST clustering approach for a toy example with 6 senators.
Circles S1, . . . , S6 denote times series corresponding to rhetoric of each senator over a period
of one slide.

where

 
�

(x
tm

, x
tl

) =

8
><

>:

1 if |xtm�xtl|
��↵

 �

0 otherwise,
(4.6)

where x·m and x·l are rhetoric expressed by the m-th and l-th senators, respectively, over

t = 1, . . . , T ; ✓ is the slide-level trend continuity threshold in [0, 1]; p is the slide size; [↵, �]

is the domain of slide X
i

, and � is the value-similarity threshold in [0, 1] (✓, p,↵, �, � are

user-prespecified parameters). Hence, the dissimilarity measure  
�

(x
tm

, x
tl

) is a weighted

l1-distance between x·m and x·l.

The seed time series and neighbors found by (4.5) form the initial cluster. Each neighbor

time series is then chosen as seed time series and applied to (4.5) to further expand the

cluster in an iterative fashion. Once each time series is assigned into a cluster, the algorithm

stops and returns a � slide-level clustering set for slide X
i

. (For more details on pseudocode

of the algorithm and definitions of concepts, see (Ciampi et al., 2010; Appice et al., 2015).)

Second, window-level clustering: senators are identified to belong to the same slide-level

cluster over a window of size ! if their rhetoric trajectories are clustered jointly in at least
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[✏!] slides; here ✏ 2 R, 0 < ✏ < 1 and [·] denotes its integer part. Slide-level clustering can

be performed as a stand-alone task or a preliminary stage for window-level clustering.

R-TRUST has multifold benefits: 1. it does not require a number of clusters a priori

as opposed to k-means; 2. it can detect arbitrarily shaped clusters; 3. it can dynamically

detect the drift of space-time data distributions by using a sliding window moving from past

to recent, which provides flexibility to detect various behaviors and political expressions of

senators at di↵erent time periods.

Following Ciampi et al. (2010), layer and window sizes are defined via expert knowledge

input, e.g. corresponding to climate cycles. In our case, we set the slide size to four and the

window size to three. These settings produce 12 month periods for the analysis. The 12

month period is a reasonable choice for the analysis because a Congressional session lasts for

around a year or until the Congressional chambers decide to adjourn for that year. A full

session of 12 months is a natural time period for position taking as it follows the cycle of

the institution. Finally, we select � using the clustering cross-validation based (in)stability

principle (Dudoit and Fridlyand, 2002; Ben-David et al., 2006; Ben-David and Von Luxburg,

2008; Wang, 2010). In particular, we adopt the Downhill Riding (DR) procedure of (Huang

et al., 2016) with 2-fold cross-validation averaged over 100 rounds.

4.5 Case Study

As outlined in Section 4.3, the natural language processing algorithm produced two datasets

that di↵er in their membership and temporal composition. The Full Membership dataset

includes 31 senators over 48 months, while the Full Term dataset contains a smaller number

of senators (19) over a longer time period (72 months). The reasons for the inclusion of

two separate datasets are both substantive and methodological. It allows us to evaluate

the performance of the clustering algorithm with varying data structures — di↵erences in

the number of time points and in the estimates per time point. In particular, the Full
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Membership dataset, which contains a higher number of senators, allows us to better evaluate

the dynamics of expressed rhetoric due to variation in the types of included senators. This

provides more generalizable results in terms of membership-related factors. For instance,

some of the senators included in the Full Membership dataset are senators who retired in

the period that we study; others were first time senators that just started their first term. The

Full Term dataset, on the other hand, comprises one full term in the Senate — 72 months.

While not every senator from the Full Membership dataset is included in the second data

set, analysis of the 19 senators over their full term allows us to test how clusters evolve in the

last years before an election. Hence, the combined conclusions from the results on both data

sets allow us to paint a fuller and multi-perspective picture of the behavior in the Senate

committee.

Figure 4.3. Summary of clustering results for the Full Term (6 periods) and Full Membership
(4 periods) datasets. Each period is 12 months. Note that since the Full Membership dataset
is limited to only 4 periods, no clustering exists for periods 5 and 6.

Figure 4.3 depicts clustering results for the Full Membership and Full Term datasets,

obtained using TRUST. The results are comparable across the datasets — the number of

clusters diminishes over time. In both datasets, there is a higher number of clusters in the

beginning of the senators’ terms than in later periods. The biggest changes occur in the

earlier periods, and then the number of clusters stabilize. The dynamics are comparable in
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the two datasets despite the di↵erent membership and length of the analyzed period. The

findings suggest an astonishing phenomenon — whether we are observing institutionalization

or similarities in strategic behavior, legislative speech is congruous, and becomes more so as

a senator’s term progresses. Politicians, especially in Congress, run for o�ce on a promise of

being di↵erent from their colleagues, but we find that these di↵erences greatly diminish soon

after they take o�ce. Our results are also a proof of concept, political speech can in fact

be analyzed, and it does follow detectable patterns. However, simply analyzing the number

of clusters does not show us the full picture. Hence, we proceed with a more fine-grained

analysis of the composition and structure of the clusters in each dataset.

In certain contexts, unsupervised clustering models might include substantive clusters/sub-

clustering specification that can help detect latent clustering e↵ects (Womack et al., 2014;

Yano et al., 2014; Gill and Casella, 2009; Sireci and Geisinger, 1992). Womack et al. (2014)

propose a Bayesian approach where the random e↵ects are modeled with a Dirichlet process

mixture prior. The application of such specifications is for instances when “a variable could

be a strong determinant of the outcome variable, but its e↵ect is su�ciently heterogeneous

across individuals that it does not appear statistically reliable in the model” (Womack et al.,

2014, p.2). The specification accounts for latent clusters where the e↵ect of the variable

might di↵er between clusters, a↵ecting the way the explanatory variable is assessed in the

model summary. Additional modeling of the substantive/latent clusters can be beneficial

when working with unsupervised clustering. However, such specifications rely on the inclu-

sion of information from explanatory variables, which is beyond the scope of the analysis

proposed here.

The issue of substantive clusters also relates to the identity of the nodes within the

clusters. Of interest is which nodes are included in each cluster, and what is the unifying

feature. Two aspects of our clustering analysis relate to that concept. Our focus is not on

the relationships between the individual nodes (senators) or the network structure within the
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clusters, but the overall behavior over time (whether the nodes converge, not who converges).

The unifying features are unspecified, which is a crucial component behind the selection of

the TRUST algorithm – it is a dynamic data-driven clustering procedure that allows the

number, shape and distributional properties of the clusters to vary. Additionally, the cluster

numbers are not fixed between time periods – cluster number one in time period one is

not necessarily the same as cluster number one in time period two so we are not observing

the “evolution” of specific clusters over time. These aspects of the analysis were chosen

deliberately due to our focus on the overall dynamics instead of the individual dynamics of

specific nodes (senators).

Remark To evaluate the stability of our findings, we also consider multiple settings

for slide and window sizes in the R-TRUST algorithm, and such additional studies yield

qualitatively similar results. Furthermore, we also investigate the clustering dynamics of

both data sets using Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

of Ester et al. (1996) and a more conventional k-means method. While neither DBSCAN nor

k-means are aimed for cluster recovery in dynamic space-time data, DBSCAN is considered

to be the most popular and most cited clustering algorithm for spatial data (Microsoft

Academic Search, 2016); while k-means is (arguably) a conventional starting point in many

clustering studies (Steinbach et al., 2000; Kanungo et al., 2002; Friedman et al., 2009). In

the case of DBSCAN, we select optimal clustering parameters using cross-validation based

(in)stability criterion (Huang et al., 2016). In the case of k-means, we choose the optimal

number of clusters using the silhouette analysis (Rousseeuw, 1987). Both approaches deliver

similar findings as TRUST, that is, the number of groups is highest in the beginning of the

senators’ terms and gradually diminishes over time. (The results for DBSCAN and k-means

are omitted here but are available from the authors. The R code used for the analysis is made

available by the authors as part of the funtimes R package (Lyubchich and Gel, 2017b).)
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4.5.1 The Full Membership Dataset — High Number of Senators, Shorter Pe-

riod

Our clustering findings for the Full Membership dataset are depicted in Figure 4.4. The

circles represent the clusters, and their sizes convey the relative size of the clusters. The

initials of the senators, their party and state are shown in the circles. The smaller clusters

are individual senators whose speech is di↵erent from the rest of their colleagues. Their

names are omitted from the circles for clarity.

The composition of the clusters reveals that not only the number of clusters diminishes

over time, but the membership in the clusters becomes more concentrated in fewer clusters.

Less clusters exist over time, but also more senators belong to fewer clusters with a small

number of senators representing separate clusters, or forming small clusters with a few others.

Overall, the senators become more alike.

We observe a high number of clusters in the first year in o�ce with a small number of

senators in each cluster, as illustrated in time period 1 in Figure 4.4. This is to be expected

given the current levels of polarization in Congress, which is at an all time high — congress-

men rarely agree on policies and there is not much compromise. A number of widely known

surveys show that the institution is the least popular part of the government, surpassed

even by the IRS (GALLUP, 2014; The Washington Post, 2011). Legislators are aware of

it and often run their campaigns promising their constituents that they are di↵erent than

their colleagues in o�ce. This creates a situation where the voters like their congressman,

but hate Congress (GALLUP, 2013; The Wall Street Journal, 2014). The results of our

clustering analysis depict these attitudes and promises. In their first and second years in

o�ce, congressmen use their rhetoric to di↵erentiate themselves from their colleagues and do

not coalesce into big groups. This trend is sustained throughout their second year in o�ce,

when we still observe a relatively high number of groups, but the total number diminishes

— they begin to form bigger clusters.
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Figure 4.4. Dynamic Clustering of Legislative Rhetoric in the Full Membership dataset.

A significant change occurs after the second year, as seen in the remarkable change be-

tween time period 2 and time period 3 in Figure 4.4. The slow decrease in the number of total

clusters that can be observed during year two in o�ce is accelerated and the total number

of clusters drops precipitously. One big cluster is formed in this period, as well as a number

of smaller ones. The rhetoric becomes more alike and both Republicans and Democrats

start speaking in similar ways. This type of behavior is associated with institutionalization

or “marrying the locals” — it occurs in various bureaucracies where an outsider becomes

more like those already in the institution. The trend peaks in the fourth year (time period

4 in Figure 4.4), when the largest cluster becomes even bigger and almost all senators are

included. The rhetoric towards the energy sector is very similar across parties and geography.

The clusters are not based on simple party lines, but show more complex dynamics.

These dynamics are more evident with the newer members of the committee — senators

Maria Cantwell D-WA (joined in 2001; cluster numbers 7,6,3,1), Jon Tester D-MT (joined

in 2007; clusters 12,10,2,1), and Bob Corker R-TN (joined in 2007; clusters 15,11,1,1), were

not clustering with anyone else in their first one or two years in o�ce. They are relatively

new members of the committee and do not yet have well established relations with their

colleagues, or with the various interest groups. Their rhetoric slowly converges with the

rest of their colleagues, and by their fourth year, they become members of the biggest
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cluster (cluster 1). Similar dynamics can be observed with other relatively new senators

who converge with the rest of the institution at various speeds — senators Robert Menendez

D-NJ (joined in 2006, cluster numbers 8,1,1,1), James Talent R-MO (joined in 2002, clusters

9,1,1,1), and Jim Demint R-SC (joined in 2005, clusters 3,2,1,1), either do not group with

others in their first year, or are not part of bigger groups in their first year, but in their

second year start speaking in a similar way to the rest of their colleagues.

The senators who do not cluster with others towards their fourth year in o�ce tell a

compelling story too. Senator Lisa Murkowski R-AK (cluster numbers 10,3,1,3) was the

minority leader in the energy committee, and her speech patterns reflect her special role in

the committee. Most of the time she is not part of big groupings, and even in the fourth

year in o�ce has di↵erent speech patterns than the rest of her colleagues. Minority leaders

in a polarized Congress are to be expected to make stronger and more divisive statements

(Davidson et al., 2013). Another senator who does not appear in large clusters most of the

time is Ken Salazar D-CO (cluster numbers 11,7,1,4) who served between 2005 and 2009,

when he became Secretary of the Interior in President Obama’s administration. He has

strong ties with the coal and oil industries, and often supports these interests. His rhetoric

and voting record exhibit complex patters, as a right-of-center Democrat, which explains

why he does not cluster together with colleagues most of the time.

Furthermore, since any clustering algorithm can be sensitive to the underlying assump-

tions built into it, it is important to evaluate sensitivity of the drawn conclusions. We address

the issue of clustering sensitivity, by performing a crossvalidation study, i.e., a standard data-

driven validation routine in statistics. We find that the crossvalidation (CV) analysis, based

on randomly selecting 40%, 60%, and 80% of Senators in the Full Membership Dataset over

10 CV replications, supports our conclusion of a decreasing number of clusters over time and

institutionalizing of Senators over their term in o�ce (see Figure 4.5).
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Figure 4.5. Sensitivity analysis for Full Membership Dataset. Number of crossvalidation
replications is 10.

4.5.2 The Full Term Dataset — Longer Period, Lower Number of Senators

Figure 4.6 shows the clustering results for Full Term dataset. It includes more temporal

points, but less senators per time period. Analyzing the full term allows us to study whether

the dynamics exhibited in Full Membership dataset hold for the Full Term dataset despite

the variation in the number of senators, and whether there exist di↵erences in their last two

years in o�ce before an election. While the number of clusters that the algorithm captures

di↵er between the datasets, the dynamics are similar. The number of groups decreases over

time in both datasets, although we do not observe the same sharp drop in the Full Term

dataset. Just like with the Full Membership dataset, in the Full Term dataset, the group

membership becomes more concentrated in fewer clusters. After the first two years, most

senators belong to one or two large clusters, which is sustained until the end of their term.
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Figure 4.6. Dynamic Clustering of Legislative Rhetoric in the Full Term dataset.

As with the Full Membership dataset, we observe the most significant changes in the first

few time periods. The tendency to cluster in bigger groups that we detect in the first dataset

is also present here, but the “lumping” of senators occurs sooner in their term. Clusters in

the Full Term dataset are not based on simple party lines, but once again on more complex

dynamics. The members in this dataset are generally long-time senators that have worked

with one another multiple times before and are well aware of what successful strategies look

like. This can explain the di↵erences in the results for the two datasets. The senators in

the Full Term dataset have likely already been institutionalized in their previous terms, and

they follow a familiar strategy — behave di↵erently in the beginning of the term, but then

start converging. These similarities in behavior occur frequently in various organizations and

depict the “culture” of the institution. This type of homogeneous behavior is beneficial to the

institutional agents because it allows them easier access to resources (successful legislation,

campaign contributions, or earmarks) and creates informal mechanisms for their distribution.

These patterns are not based on partisanship — both Republicans and Democrats follow

similar strategies and the dynamics of the rhetoric towards the energy sector is very similar

across parties and geography.

The overall dynamics in the data are clear — in the beginning of their tenure, most

senators’ speech and attitudes are distinct from their colleagues, as most politicians promise
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on the campaign trail, especially at times when the institution is highly polarized. However,

after the first two years in o�ce, the di↵erences tend to diminish. These findings are of

importance to interest groups because they can adjust their strategies based on these changes.

Understanding these dynamics is crucial when strategizing when to get involved through

lobbying and campaign contributions. The results show that legislative rhetoric is malleable

and dynamic, and e↵orts from outside groups to influence and shape it could be more e�cient

at certain times during a senator’s tenure. These conclusions are also meaningful for the

voters because of the prevalent “we like our congressman, but hate Congress” attitudes

(GALLUP, 2013, 2014, 2016).

Similarly to the Full Membership Dataset, the sensitivity analysis of the Full Term

Dataset based the crossvalidation argument, i.e., randomly selecting 40%, 60%, and 80%

of Senators, supports our conclusion of a decreasing number of clusters over time and associ-

ated institutionalizion of Senators in o�ce (see Figure 4.7). Legislators run on the promise of

being di↵erent, but the results suggest that their rhetoric when in o�ce is not that di↵erent

from one another.

4.6 Discussion

Legislative representation is crucial in a democratic society, and politicians typically run for

o�ce on the promise of change. Understanding their behavior when in o�ce can help interest

groups and voters make informed decisions. However, the hidden sophisticated structure of

political time series poses a broad range of methodological challenges and cannot be assessed

with conventional statistical procedures of time series analysis and clustering. In this paper,

we develop an innovative two-stage hybrid supervised-unsupervised learning methodology

to study dynamics in legislative rhetoric in congressional committees, without imposing

restrictions on shape, number and structure of clusters. We construct an innovative measure

of political rhetoric and produce two datasets with varying structures, both in terms of the
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time component and membership. Such investigation of legislative behavior at the committee

level was not available before, and it serves as a proof of concept, allowing for other political

speech to be analyzed in a systematic way, and for the uncovering of hidden structures within

such data.

The results from our clustering analysis depict compelling dynamics. As the legislative

term progresses, senators, despite their party membership and campaign promises, tend to

increasingly group together over time. The similarities in their behavior become apparent

after the first year or two in o�ce, and near the last year, there are only few groupings that

describe the speech. Our findings are in contrast with the promises that politicians usually

make on the campaign trail. They usually emphasize how di↵erent they are from their

opponents, and their future colleagues. As we showed, voters are generally supportive of

their own representative, but not of the institution as a whole. We find that these perceived

dissimilarities are in fact greatly exaggerated, and politicians are in fact more alike then they
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are trying to project.

In the future, we plan to incorporate a network component into a rhetoric analysis and

to evaluate how the structure of legislative networks evolves over time. Possible algorithms

for this future work can be found in the dynamic networks literature (Beykikhoshk et al.,

2015; Loglisci, 2013). This is of particular interest in analyzing presidential elections in the

United States, as well as statements by terrorist organizations, and foreign political and

social leaders, to name a few. Another future component is analysis at the document level,

which would require a frequency-based solution. Such classification would be a beneficial

addition to the current analysis and would allow us to study the e↵ect of specific events such

as terrorist attacks or international conflicts.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This dissertation opened up new horizons for more robust non-parametric analysis of space-

time clustering procedures.

In particular, we propose a new data-driven and computationally e�cient procedure

called Downhill Riding (DR) for optimal selection of clustering tuning parameters in dy-

namic clustering algorithms like TRUST and DBSCAN using a clustering stability probe

(Chapter 2). Using simulations, as well as real data, we show the e↵ectiveness of the new

procedure for selection of optimal parameters. The finite sample performance of Down-

hill Riding for dynamic clustering of synthetic time series is close to the optimal for these

algorithms. Furthermore, the performance of clustering algorithms using Downhill Riding

against competing algorithms that have a-priori knowledge of the parameters, shows that our

procedure is a viable alternative, and often performs better. Lastly, We illustrate the Down-

hill Riding procedure in dynamic cluster detection in yearly temperature records among 167

stations in Central Germany over 1951–2010. Based on the clustering results of TRUST and

DBSCAN, not only do we discover a well known pattern but also a dynamic pattern, which

is useful when studying spatially varying climatic changes. We also illustrate the DR pro-

cedure in dynamic cluster detection in monthly average concentrations of suspended solids

across 133 stations in Chesapeake Bay for a 32-year period (1985–2016). We find remarkable

patterns in the data that can provide an insight into the management of resources in the

area and the e↵ects of the restoration activities over time. Based on our clustering results,

we discover a dynamic pattern, which is useful when studying spatially varying ecological

changes. The identification of clusters in the water quality in the Chesapeake Bay has a num-

ber of applications and can help address problems in the area. Identifying concentrations of
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pollutants can aid in determining sources of contamination and assessing which parts of the

Bay are at risk. The clustering results provide a clearer picture of the environmental impact

of various activities in the area, and can aid future restoration e↵orts in creating targeted

interventions for specific parts of the Bay.

Furthermore, we propose a new robust data depth based clustering algorithm CRAD with

a locally-defined neighbor searching function (Chapter 3). Besides robustness to outliers,

we show that the new CRAD algorithm is highly competitive in detecting clusters with

varying densities, compared with the existing algorithms such as DBSCAN, OPTICS and

DBCA. Furthermore, the performance of DBSCAN is shown to be e↵ectively improved,

by replacing its original neighbor searching function with the new locally tuned neighbor

searching algorithm. In addition, we propose a new e↵ective parameter selection procedure,

to select the optimal underlying parameter in the real-world clustering, when the ground

truth is unavailable.

Lastly, not only limited to environmental space-time data in Chapter 2, the dynamic

clustering procedure combined with DR procedure can also be extended to unstructured

space-time data—legislative rhetoric data in the U.S. Senate. We develop an innovative two-

stage hybrid supervised-unsupervised learning methodology to study dynamics in legislative

rhetoric in congressional committees, without imposing restrictions on shape, number and

structure of clusters. We construct an innovative measure of political rhetoric and produce

two datasets with varying structures, both in terms of the time component and membership.

Such investigation of legislative behavior at the committee level was not available before,

and it serves as a proof of concept, allowing for other political speech to be analyzed in a

systematic way, and for the uncovering of hidden structures within such data.
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5.2 Future Work

• We plan to extend the new Downhill Riding procedure (Chapter 2) from univariate

parameter selection to multivariate parameters selection and investigate the utility of

Downhill Riding in other clustering algorithms.

• We intend to investigate the utility of other data depth functions as dissimilarity mea-

sures such as simplicial volume depth, Lp depth, and projection depth (Mosler, 2013;

Zuo and Serfling, 2000) and extend the CRAD idea (Chapter 3) to functional data

clustering.

• We also plan to incorporate a network component into a rhetoric analysis and to evalu-

ate how the structure of legislative networks evolves over time. Possible algorithms for

this future work can be found in the dynamic networks literature (Beykikhoshk et al.,

2015; Loglisci, 2013). This is of particular interest in analyzing presidential elections

in the United States, as well as statements by terrorist organizations, and foreign po-

litical and social leaders, to name a few. Another future component is analysis at the

document level, which would require a frequency-based solution. Such classification

would be a beneficial addition to the current analysis and would allow us to study the

e↵ect of specific events such as terrorist attacks or international conflicts.
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