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Engineering materials such as rubbers are widely used in industrial applications and are often 

exposed to cyclic stress and strain conditions while in service. To ensure safety and reliability, 

quantifying the effect of loads on the life is an important but challenging task, due to the 

combination of geometric/material nonlinearities and loading conditions for extended time 

durations. In this work, a novel simulation-based approach based on space-time finite element 

method (FEM) is presented with a goal to capture fatigue failure in rubbery material subjected to 

cyclic loads and dynamic fracture in general elastic solids. It is established by integrating the 

time discontinuous Galerkin (TDG) formulation with either nonlinear material constitutive laws 

or peridynamics models.  

In the first implementation, nonlinear space-time FEM framework is established and integrated 

with a continuum damage mechanics (CDM) model to account for the damage evolution due to 

cyclic loading. CDM parameters for synthetic rubber are calibrated based on fatigue experiment. 

The nonlinear system in space-time FEM is solved using Newton’s method in which the system 

Jacobian is approximated with a finite difference approach. The developed approach is then 



 

vii 

employed to solve a set of benchmark problems involving fracture and low cycle fatigue in 

rubber. Additional tests on notched rubber sheet specimen are carried out to validate the 

simulation predictions. The simulation predictions yield good agreement with the tests. In 

addition, it is shown that responses to fatigue load with 106 cycles can be captured using the 

proposed approach.  

In the second case, a multiscale method that couples the space-time FEM based on the time 

discontinuous Galerkin method with non-ordinary state-based peridynamics (NOPD) is 

developed for dynamic fracture simulation. A concurrent coupling scheme is presented for the 

coupling, in which the whole domain is discretized by finite elements, and a local domain of 

interest is simulated with NOPD. The space-time FEM approach allows flexible choice of time 

step size and this makes the computation more effective. As a meshfree method, NOPD is 

introduced as a fine scale representation to capture the initiation and propagation of the crack. 

Through coupling to space-time FEM, NOPD simulation domain moves with the propagating 

crack front, leading to an adaptive multiscale simulation scheme. The robustness of this 

methodology is demonstrated through examples of a linear elastic material, in which 

comparisons are made to the full scale NOPD simulation.  

In summary, the proposed space-time approach introduces the key capability to establish 

approximations in the temporal domain, thus enabling prediction of nonlinear responses that are 

strongly time-dependent. This is demonstrated in two cases in this dissertation: the first involves 

fatigue failure prediction at extended time scale, and the second deals with dynamic fracture at 

small time scale. Based on the implementation and results, it is concluded the established space-

time FEM framework is both efficient and accurate, and overcomes the critical limit of the 
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traditional FEM approach using semi-discrete time integration schemes. The presented framework 

is ideal for many engineering problems featured by a multitude of temporal scales. 
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CHAPTER 1 

  
INTRODUCTION 

1.1 Background and motivation 

 

1.1.1 Constitutive model and damage model of rubber 

 

Rubbery materials are widely used in industrial products such as tire, engine mount, 

seismic isolation rubber, sealing, medical equipment etc. The special properties of rubber (large 

deformation, incompressibility, rate-temperature dependency, stress-strain hysteresis, etc.) 

cannot be easily replaced by other materials. Under operating environments, parts made of 

rubber can be subjected to cyclic stress and strain conditions over extended time period. As such, 

durability is an important aspect in the design of rubber. As an example, a standard automotive 

tire is a composite that consists of rubber, steel wire and textile and the resultant stress-strain 

history inside the tire is complex. Failure modes of the tire that initiate from the edge or interface 

of the reinforcements have been reported [1]. A general review on fatigue failure in rubbery 

materials can be found in Mars and Fatemi [2]. 

Fatigue life prediction in rubbery materials is a challenging task due to the lack of 

understanding on the controlling mechanisms. Most of the life prediction tools employed by the 

industry today are heavily empirical in nature. They can be broadly classified into two categories 

based on the parameters chosen to calculate fatigue life, i.e., models based on fatigue crack 

initiation/propagation (FCIP) and cumulative fatigue damage (CFD). A comprehensive review 

on the fatigue life prediction models for rubbery materials can be found in Mars and Fatemi [3]. 

In FCIP approach, maximum principal strain or strain energy density are widely used as the 

criteria for fatigue failure. As an example, Fielding [4] showed the relationship between uniaxial 
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strain and fatigue life of synthetic rubber. On the other hand, the fatigue crack growth approach 

is mainly based on strain energy release rate [5, 6] or J-integral [7]. Mars and Fatemi [3] 

summarized both crack nucleation and growth approaches. In CFD approach, continuum damage 

mechanics (CDM) theory is introduced in which it is assumed that the internal damage variable 

is accumulated due to cyclic load. Lemaitre [8] developed this concept for ductile failure of 

metals. Cantournet and Desmorat et al [9, 10] applied CDM for modelling Mullins effect [11] 

and cyclic softening of elastomers. For the fatigue life of rubber, Wang et al [12] proposed CDM 

model as a function of strain amplitude. 

To handle the large and highly nonlinear deformation of elastomers while subjected to 

cyclic loads, numerous constitutive models have been established [13]. Isotropic hyperelastic 

model have been commonly introduced for rubber in which the strain energy is expressed as a 

function of the three principal invariants of the Cauchy Green deformation tensor, given as 
1I , 

2I  

and 
3I . In this context, Neo-Hookean material model is the simplest form and it can be regarded 

as an extension of Hooke’s law to large deformation. A polynomial form involving the principal 

invariants was introduced in Rivlin and Saunders [14]. Mooney-Rivlin model [14, 15] is also a 

standard model that has been widely used for the modeling of rubber. It is described as a 

combination of first order terms of 
1I  and 

2I . In Yeoh’s model [16], the strain energy potential is 

a cubic form of the first invariant. Ogden [17, 18] extended the polynomial form of the strain 

energy by using the summation of non-integer order principal stretches. Arruda and Boyce [19] 

proposed the stretch based model known as the 8-chain model. Because of incompressibility of 

the rubber, the volume ratio is theoretically assumed to be one in these hyperelastic models. To 

enforce the incompressibility constraint, methods of modifying the hyperelastic models have 
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been developed and used [20–22]. In some applications, viscoelastic properties of rubber must 

also be considered. Simo [23] developed finite strain viscoelastic theory by extending the linear 

viscoelasticity model. With this formulation, arbitrary hyperelastic material models can be 

incorporated. 

While a great deal of efforts has been devoted to fatigue modeling, relatively little 

progress has been made towards direct numerical simulation (DNS) of fatigue failure in rubbery 

materials. The challenges in establishing the DNS tools are mainly due to the temporal scales 

associated with the application. Fatigue failure in rubber may take from a few thousands to 

millions of load cycles, Traditional computational tool such as the finite element method (FEM) 

based on semi-discrete schemes is not well suited for these types of analysis as it lacks the 

flexibility in establishing approximations in the temporal domain. Semi-discrete time integration 

schemes such as the center difference or Newmark- methods are known to suffer from either 

the time-step constraints or lack of convergence due to the oscillatory nature of the fatigue 

loading condition. As such, simulating loading conditions with cycles on the order of hundreds 

of thousands and beyond is generally an impractical task for FEM. On the other hand, there is a 

great demand for such a computational capability as factors such as stress history and triaxiality, 

nonlinear coupling among the loads, complex geometry are known to critically influence the 

fatigue failure in rubber and generally not fully accounted for in the empirical design approaches 

that are in practice today. In this dissertation, a study is presented on the application of the space-

time FEM formulation for failure problems such as due to fatigue. A brief review on the 

formulation is outlined next. 
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1.1.2 Space-time FEM 

 

Generally, finite difference approach such as explicit and implicit methods are used for 

the temporal integration of finite element analysis. These implementations are also referred to as 

semi-discrete scheme in conventional FEM since only the spatial domain is discretized by finite 

element mesh. On the other hand, both spatial and temporal domains are discretized and space-

time shape function is introduced in space-time FEM. The idea to discretize both spatial and 

temporal domain had been introduced by Argyris and Scharpf [24], Fried [25] and Oden [26] and 

this formulation is also called as the time continuous Galerkin (TCG) formulation. An alternative 

approach is known as time discontinuous Galerkin (TDG) formulation. TDG formulation was 

introduced by Reed and Hill [27] and Lesaint and Raviart [28] to solve the neuron transport 

equation. Extensions to solve solid mechanics problems were made in [29–33]. It has been 

shown that TDG based formulation is both A-stable and higher-order accurate [29, 30]. These 

works have demonstrated that TDG formulation significantly reduces the artificial oscillations 

that are commonly associated with semi-discrete time integration schemes in capturing sharp 

gradients or discontinuities. More recently, it has been proposed that the convergence properties 

of the regular space-time FEM can be further enhanced by introducing enrichment functions that 

represents the problem physics [34, 35]. This enriched formulation is referred to as the extended 

space-time finite element method (XTFEM) [36]. The robustness of XTFEM has been 

demonstrated in the context of coupled atomistic-continuum simulations of fracture [37], wave 

dynamics [38] and high cycle fatigue failure in metals [39, 40].  

 

1.1.3 Literature review of peridynamics 

 

In the fracture simulation, prediction of crack initiation and propagation is still a 
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challenging topic though various kinds of computational modeling based on FEM have been 

developed and applied in recent years [41]. For example, the simplest implementation is the 

element deletion method. Another way of modeling crack is the inter-element crack method. In 

this method, cohesive law is prescribed between elements to express the crack separation [42, 

43]. Generally, the disadvantage of these fracture simulation based on FEM is that the mesh 

structure heavily affects the crack path choice and the spatial partial derivative in the theory loses 

accuracy around the discontinuity coming from cracks. The extended finite element method 

(XFEM) is originally developed by Belytschko and Black [44] and Moës et al [45]. In XTFEM 

framework, the enrichment shape function and additional degree of freedoms are introduced to 

represent the discontinuity at the crack pass. XFEM is innovative approach to express cracks in 

FEM framework, however, using XFEM for capturing propagation process of multiple and 

complicated cracks is still an ongoing research topic. 

Peridynamics formulation was originally developed by Silling [46] and is a  

reformulation of the classical continuum theory based on an integral form. Compared with FEM 

based methods, evaluations of the spatial derivatives are not required in peridynamic equation of 

motion because of the integral formulation. Peridynamics is nonlocal particle theory and 

rewriting of the equation of motion is done based of the concept nonlocality. In peridynamic 

theory, the state of material point is determined by itself and other material points within a 

constant distance region called horizon and the set of material points is called family. Figure 1 

illustrates the horizon and family in peridynamics modeling. In peridynamics formulation, the 

bond is defined between the material point and a member of its family. Spatial discontinuity like 

a crack [46–48] can be easily defined as debonding of peridynamic bonds, which makes it quite 
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straightforward in crack modeling. In the present work, peridynamics is regarded as a “fine 

scale” computational technique as it directly provides information on the crack initiation and 

propagation.  

 

 

Figure 1. Image of horizon and family in peridynamics. 

 

There exists three types of peridynamics formulation. The first one is called bond-based 

peridynamics and is proposed in [46]. The bond-based peridynamics theory has been built as a 

reformulation of elasticity theory. The pairwise bond force vectors between two material points 

have the same magnitude but opposite directions. Equivalently they can be regarded as two 

material points connected by a spring. In the bond-based peridynamics theory, the Poisson’s ratio 

is limited to 0.25. This original peridynamic theory has been generalized and other two types of 

peridynamics have been proposed in [48]. One is called ordinary state-based peridynamics and 

the other is non-ordinary state-based peridynamics. In deriving these state-based peridynamics 
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theories, the concepts of some state vectors and correspondence between peridynamic 

constitutive model and classical continuum theory are introduced. In the ordinary state-based 

peridynamics, the force state vectors between two material point are parallel, however, not 

necessarily of the same magnitude. On the other hand, the pair of force state vectors are not 

necessarily parallel or same magnitude in non-ordinary state-based peridynamics. The image of 

three types of peridynamic theory is illustrated in Figure 2. In this work, non-ordinary state-

based peridynamic theory is used for fracture prediction since continuum constitutive model can 

be incorporated in the theory. An example of crack propagation simulation of non-ordinary state-

based peridynamics is shown in Figure 3. 

 

 

(a)             (b)    (c) 

 

Figure 2. Illustration of force or force state vectors of each types peridynamics. (a) bond-

based, (b) ordinary state-based and (c) non-ordinary state-based. 

 

1.2 Objective 

 

This work sets two main technical objectives. The first is to establish a nonlinear TDG-

based space-time approach to fatigue failure prediction of rubbery materials. Motivation for the 

space-time approach is to overcome the limitations associated with the semi-discrete scheme in 

the finite element method. We note that most of the prior works summarized earlier on TDG 
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Figure 3. An example of fracture prediction of non-ordinary state-based peridynamics with 

Mooney-Rivlin hyperelastic constitutive law. 

 

have focused on the linear formulations, and nonlinear TDG-based space-time FEM has not been 

systematically established and applied for practical application. In this work, the Mooney-Rivlin 

hyperelastic constitutive model and CDM models are coupled with TDG formulation. This 

integration leads to a nonlinear space-time FEM implementation that incorporates both 

geometric and material nonlinearities. 

The second objective is to develop a coupled simulation approach in which peridynamics 

is integrated with space-time FEM. Several works of coupling peridynamic theory and FEM 

have been developed in recent years [49, 50]. In the current work, peridynamic model was 

applied to a local region where the failure initiates and propagates, and coupled to space-time 

FEM prescribed over the entire domain. This coupling approach is more robust in fracture 

prediction than FEM alone due to the addition of NOPD. Furthermore, it is also more efficient 
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than a full-scale peridynamic simulation. The proposed work can be regarded as an extension to 

the earlier work in Chirputkar and Qian [36], in which the molecular dynamics in coupled with 

space-time FEM. 

 

1.3 Outline of the Dissertation 

 

The rest of the dissertation is organized as follows: In Chapter 2, we first review the 

space-time FEM framework based on time discontinuous Galerkin formulation. We then outline 

the implementation of space-time FEM with the use of total Lagrangian formulation. This 

implementation accounts for both geometric and material nonlinearities. The enriched space-time 

FEM is also described. In Chapter 3, we review several constitutive laws for rubbery materials. 

These include hyperelasticity, finite strain viscoelasticity and continuum damage mechanics 

model. Non-ordinary state-based peridynamics theory and implementation are reviewed in 

Chapter 4. In Chapter 5, we present detailed steps of the multiscale fracture simulation by 

coupling space-time FEM formulation with peridynamics. The applications of the approaches 

outlined in Chapter 2, 3, 4 and 5 are demonstrated through a set of numerical examples in 

Chapter 6. These examples are divided into two categories: One based on the nonlinear space-

time FEM with constitutive models of rubber, and the other on multiscale coupled simulation of 

space-time FEM and non-ordinary state-based peridynamics. Conclusion and future works are 

presented in Chapter 7. 
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CHAPTER 2 

  
SPACE-TIME FEM FORMULATION 

2.1 Space-time FEM formulation for linear elastic material 

 

In this section, the space-time FEM formulation for linear elasticity based on the updated 

Lagrangian formulation [51] and TDG formulation [30] is reviewed. The displacement is 

denoted by  , tu X , where X  is the spatial coordinate and t  is time. The strong form of 

initial/boundary value problem is defined over spatial domain   and temporal domain 

 0,I T  and given as follows. 

 on  Q I     u σ b   ,  (1) 

 on u u I   u u ,  (2) 

 on t t I    n σ t ,  (3) 

    0,0 on  u X u X X ,  (4) 

    0,0 on  v X v X X .  (5) 

Here σ , b  and   represent the spatial Cauchy stress tensor, body force and mass density, 

respectively. Superimposed dot indicates the time derivative, u  and t  are the prescribed 

displacement and traction over the essential boundary u  and nature boundary t , respectively. 

Further, we have u t     and u t   . Finally, 0u  and 0v  are the initial displacement 

and velocity. 

In TDG formulation, the temporal domain  0,I T  is divided into multiple sub-domains 
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 1,n n nI t t  and each sub-domain and spatial domain are combined as a space-time slab 

n nQ I  . In addition, essential and traction boundary conditions are defined on 

 u u nn
I    and  t t nn

I    respectively. Furthermore, a space-time slab nQ  is discretized 

into  el n
n  space-time slabs e

n nQ Q  and its boundary is e

n . Figure 4 shows an illustration of 

space-time discretization. 

 

 

Figure 4. Image of space-time discretization for 2D spatial domain 

 

We further introduce the jump operators to treat the temporal jumps between space-time 

slabs. 

      n n nt t t  u u u   (6) 

    
0

limn nt t








 u u   (7) 

In deriving the weak form in TDG formulation, the trial function  ,h tu X  and test 

function  ,h tu X  are introduced. The subscript “ h ” denotes the approximation and both the 

trial and test function are 0C  continuous. 
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     0

1

, , , , on
N

h h h h

n u

n

t t C Q 


  
     

  
u X u X u u uU U ,  (8) 

     0

0 0

1

, , , , on
N

h h h h

n u

n

t t C Q    


  
     

  
u X u X u u 0U U .  (9) 

The TDG weak form is constructed in each space-time slab by using bilinear form 

expression 

    ,B u u L u
h h h

n n
    (10) 

with 

 
   

        1 1 1 1

,
n n

h h h h h

n Q Q

h h h

n n n n

dQ dQ

t t d t t d
 

   

       

   

    

    

 

 

B u u u u u σ

u u u σ

, (11) 

 
 

        1 1 1 1

n n

h h h

n Q

h h h

n n n n

d dQ

t t d t t d



 

    

       

   

   

    

 

 

L u u t u b

u u u σ

 . (12) 

Here the subscript “ n ” denotes the n-th space-time slab. We can see the detail of this expression 

in [30]. Equations (10) to (12) leads to 

 

 

   

    

1 1

1 1

0
n n

n n

h h h

Q Q

h h

Q

h h

n n

h

n n

dQ dQ

d dQ

t t d

t t d







  

   

  

 



 



 

    

   

 

  

 

 





u u u σ

u t u b

u u

u σ

  (13) 

To interpolate nodal displacement in spatial and temporal domain, a space-time shape 

function  , tN X  is introduced. 
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    
1

, ,
sn

h

I I

I

t N t


u X X d ,  (14) 

    
1

, ,
sn

h

I I

I

t N t


u X X d ,  (15) 

    
1

, ,
sn

h

I I

I

t N t


u X X d ,  (16) 

where d  is the element nodal displacement vector. Displacements at temporal jump follows the 

rule; (i) for 1nt t , displacements 1nd  from previous space-time slab are used. (ii) for 1nt t , 

displacement nd  from current space-time slab are assumed and obtained by solving equation 

(13). By assuming linear elastic constitutive model and substituting equations (14) to (16) into 

equation (13), we have 

 

   

         
         

, ,

1 1 1 1 1

, 1 , 1 , 1 , 1 1

0
n n

n n

T T T T

n n
Q Q

T T T T

Q

T T T T

n n n n n n

T T T T

n n n n n n

dQ dQ

d dQ

t t d t t d

t t d t t d



 

 

  

   

     

   

   

    

   

    

  

   

   

 

 

 

 

 

x x

x x x x

d N N d d N CN d

d N t d N b

d N N d d N N d

d N CN d d N CN d

 , (17) 

where C  is the constitutive matrix. We can further simplify equation (17) into 

 

   

   

   

   

1 1

, ,

, 1 , 1

1 1

1

, 1 , 1

n n

n n

T

n n
T T

n
Q Q T

n n

T

n n
T T

n
Q T

n n

t t d
dQ dQ

t t d

t t d
d dQ

t t d











 




 
 



 

 

 

 

 

 


 

 

  
    
     

  
       

    


 




 



x x

x x

x x

N N
N N N CN d

N CN

N N
N t N b d

N CN

 . (18) 

Finally, we can treat equation (18) as a form of linear system 

 n dK F  (19) 
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where K  is global space-time stiffness matrix and F  is global space-time force vector. 

 

2.2 Implementation of space-time FEM for linear elastic material 

 

For numerical discretization, a multiplicative form of the space-time FEM shape function 

 , tN X  is introduced 

 
     

1

,

i n

t s

t s t s t s

t t

N N N

 

   

N X N N X

N N N
,  (20) 

where sN  and tN  are the spatial and temporal shape functions respectively. Further, the symbol 

“ ” denotes the Kronecker product. In this work, the standard 4-node quadrilateral (Q4) 

element shape function has been adopted for sN . 

            
1

1 1 1 1 1 1 1 1
4

s                  N ,  (21) 

Furthermore, a simple 3-node quadratic shape function is used for tN  and it can be given as a 

Lagrange form of the interpolation polynomial. 

 
  

  

  

  
  
  

1 2 1 1 21

1 1 2 1 1 2 1 2 1 1 1 2

n n n nn n

t

n n n n n n n n n n n n

t t t t t t t tt t t t

t t t t t t t t t t t t

  

       

     
 

       

N ,  (22) 

where   and   are variables for the reference coordinate in the spatial domain. 1nt  , 1 2nt   and nt  

denote equally spaced three temporal nodes, so that 

 
1 2 1

2
n n

t
t t 


  ,  (23) 

 1n nt t t   .  (24) 



 

15 

Then, the first and second derivatives of temporal shape function tN  are 

      1 1 12

1
4 4 3 8 8 4 4 4t n n nt t t t t t t t t

t
             

N   (25) 

  2

4
1 2 1t

t
 


N   (26) 

Using spatial and temporal shape functions, four terms in LHS of equation (18) are rewritten as 

 

   

2

4 8 4
1

0 0 0

4 8 4

n n

T T T

t t s s
Q I

dQ dt d

t


  



  

 
 

 
 
  

  N N N N N N

M

,  (27) 

 

   , , , ,

3 4 1
1

4 0 4
6

1 4 3

n n

T T T

t t s s
Q I

dQ dt d


 

  
 

  
 
  

  x x x x
N CN N N N CN

K

,  (28) 

 

          1 1 1 1

2

9 12 3
1

12 16 4

3 4 1

T T T

n n t n t n s st t d t t d

t

 
   



   

     

 
 

   
 
  

 N N N N N N

M
,  (29) 

 

          , 1 , 1 1 1 , ,

1 0 0

0 0 0

0 0 0

T T T

n n t n t n s st t d t t d
 

    

    

 
 

 
 
  

 x x x x
N CN N N N CN

K
.  (30) 

T

s sd


  M N N  and , ,

T

s s d


  x xK N CN  are mass matrix and stiffness matrix in the spatial 

domain. By combining equations (27) to (30), final expression for global space-time stiffness 
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matrixK  is obtained as 

 

2 2 2

2 2 2

2 2 2

5 4 2

2 3 6

12 2 16 4 2

3 3

7 12 2 5

6 3 2

t t t

t t t

t t t

  

  

  

 
     

 
     
 
 
    
  

M K M K M K

M K M M K

M K M K M K

K   (31) 

Similarly, the expression for the part of F  in RHS of equation (18) can be derived as 

 

          1 1 1 1

2

3 12 9
1

4 16 12

1 4 3

T T T

n n t n t n s st t d t t d

t

 
   



   

     

  
 

  
 
   

 N N N N N N

M
 , (32) 

 

          , 1 , 1 1 1 , ,

0 0 1

0 0 0

0 0 0

T T T

n n t n t n s st t d t t d
 

    

    

 
 

 
 
  

 x x x x
N CN N N N CN

K
. (33) 

Then, we can define the matrix H  as 

 

       1 1 , 1 , 1

2 2 2

2 2 2

2 2 2

3 12 9

4 16 12

4 3

T T

n n n nt t d t t d

t t t

t t t

t t t

 
  

  

  

  

   

     

 
   
 
  
 
 
  
  

  x xN N N CN

M M M
K

M M M

M M M

H

. (34) 

Finally, the current space-time displacement vector nd  can be solved as follows. 

 
 

1

1

1
n n

n

T T

n
Q

d dQ


 









     

d

N t N b d

K F

K H
.  (35) 
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The integration parts come from traction and body force can be computed numerically. If the 

function forms of these terms are known, we can also integrate them analytically. The 

implementation steps are provided as follows. 

 

1. Discretize the spatial and temporal domain. 

2. Build the regular spatial mass matrix M  and stiffness matrix K  by Gauss quadrature 

integration. 

3. To obtain the matrices K  and H , assemble M  and K  by following  equations (31) and 

(34). Apply boundary condition for K  and compute 1K  in advance of starting time 

step loop. (K  and H  are constant unless the spatial or temporal mesh change.) 

4. Start the time step loop. 

(i) Perform space-time integration regarding traction boundary 
n

T d


 N t  and body 

force 
n

T

Q
dQ N b  in RHS of equation (35). 

(ii) Compute F  in equation (35) and apply boundary conditions. 

(iii) Solve the space-time displacement vector 
1

n

d K F . 

(iv) Store the displacement vector nd  as 1nd  for the next step. 

5. End the time step loop. 

 

2.3 Nonlinear space-time FEM formulation 

 

The space-time FEM formulation and implementation shown in section 2.1 and 2.2 are 

applicable only for linear elastic constitutive model. In this and following section, the 
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formulation and implementation for nonlinear space-time FEM are developed. Based on this 

nonlinear space-time FEM framework, dynamic problems including material and geometrical 

nonlinearly can be solved. 

Nonlinear space-time FEM formulation is derived by following total Lagrangian 

formulation [51]. Then, the nominal stress tensor P  is used instead of the Cauchy stress tensor 

σ  to handle large deformation problems. The strong form of initial/boundary value problem is 

defined over spatial domain 0  and temporal domain  0,I T  and is given as follows. 

 0 0 0on  Q I       
X

P b u   ,  (36) 

 0on u u I   u u ,  (37) 

 0

0 0 on t t I    n P t ,  (38) 

    0 0,0 on  u X u X X ,  (39) 

    0 0,0 on  v X v X X ,  (40) 

where the subscript zero denotes the material configuration so that, for example, 0n  is normal 

vector of undeformed traction boundary 
0

t . Also, the essential boundary 
0

u  and nature 

boundary
0

t  have relationship 
0 0 0

u t     and 0 0

u t   . Figure 4 in section 2.1 shows 

an illustration of space-time discretization. 

Similarly to the linear elastic material case, we introduce jump operators in equations (6) 

and (7). The trial function and test function are given as well. 

     0 0

1

, , , , on
N

h h h h

n u

n

t t C Q 


  
     

  
u X u X u u uU U ,  (41) 
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     0 0

0 0

1

, , , , on
N

h h h h

n u

n

t t C Q    


  
     

  
u X u X u u 0U U .  (42) 

The nonlinear TDG weak form is constructed in each space-time slab, e.g.  

    ,B u u L u
h h h

n n
    (43) 

with 

    
   

        
0 0

0

1 0 1 0 1 1 0

,
n n

h h h h h

n Q Q

h h h

n n n n

dQ dQ

t t d t t d
 

   

       

   

    

    

 

 

X

X

B u u u u u P

u u u P

 (44) 

    
 

        
0 0

0 0

1 0 1 0 1 1 0

n n

h h h

n Q

h h h
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  (45) 

Combining equations (43) to (45) leads to 
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 . (46) 

It can then be seen from equation (46) that the integrations over 
n

Q  (first, second and fourth 

term) enforces the conservation of linear momentum, traction boundary condition is enforced 

through the integration over 
n

 , and the last two integrals enforces the continuities for the 

velocity and displacement, respectively. 

To interpolate nodal displacement in spatial and temporal domain, space-time shape 

function  , tN X  is introduced. Displacement, velocity and acceleration approximation is given 
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in equations (14) to (16). Substitution of these interpolation formulations into equation (46) leads 

to 

 

   
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 . (47) 

Unlike in the case of space-time FEM for linear elastic material, we cannot take displacement 

vector out from nominal stress tensor. In other words, we cannot solve equation (47) as a linear 

system directly. Therefore, we introduce residual vector G  as following. 

 int kin ext   G G G G 0   (48) 

in which G int , Gkin  and Gext  represent the contributions from the internal, kinetic and external 

forcing terms respectively and are given as 

    
0

1 1 0, ,
n

T T

int n n n
Q

dQ t t d


 

   X X
G N P N P , (49) 

     
0

0 1 0 1 0
n

T T

kin n n n n
Q

dQ t t d


   

     G N N N N d , (50) 
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. (51) 

 

2.4 Implementation of nonlinear space-time FEM 

 

Similar to the case of space-time FEM for linear elasticity, a multiplicative form of the 
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space-time FEM shape function  , tN X  is introduced for numerical discretization. 

 

1

( , )

i k

t s

t s t s t s

t

N N N

 

   

N X N N

N N N
.  (52) 

For the numerical examples shown in this dissertation, the standard 4-node quadrilateral (Q4) 

element spatial shape function and a simple 3-node quadratic temporal shape function is used for 

sN and 
tN  as shown in equations (21) and (22). 

The form of  , tN X  shown in equation (52) leads to independent evaluation of the 

integrals over the spatial and temporal domains as shown in equations (49) to (51). To handle 

incompressibility, the selective reduced integration scheme [51] has been implemented. We first 

decompose the nominal stress tensor into hydrostatic and deviatoric components: 

 
hyd dev P P P ,  (53) 

 1hyd hydJ P F σ ,  (54) 

 1dev devJ P F σ ,  (55) 

  
1

tr
3

hyd  σ σ 1 ,  (56) 

 dev hyd σ σ σ ,  (57) 

where hyd
σ  and dev

σ  are hydrostatic and deviatoric part of Cauchy stress tensor σ , F  is 

deformation gradient tensor,  detJ  F  is the Jacobian determinant and 1  is the identity tensor. 

The deformation gradient F  is computed based on displacement vector. Accordingly, one point 

integration is employed for the terms related to the hydrostatic component to avoid locking [51], 

while full quadrature is carried out for the deviatoric components. In the case of a single space-
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time element using Q4 for sN ,  
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B ξ P ξ ξ
G N

B 0 P 0 0 0

B ξ P ξ ξ ξ
N
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  (58) 

in which i  and Q  are introduced as the index for the temporal and spatial quadrature points, and 

tn  and Qn  denote the number of the temporal and spatial quadrature points, respectively. The 

associated quadrature weights are 
t

w  and 
s

w . For the spatial Q4 element, the element coordinate 

ξ  is introduced. The Jacobian for the spatial element and its determinant are given as 
ξ

X
J

ξ





 

and  detJ  ξJ . The strain-displacement matrix is then evaluated as 0B s



N

X

s 


 

N ξ

ξ X

1

, ,s


ξ ξ

N X
1

,s


ξ ξ

N J .  

The kinetic contribution kinG  in equation (50) is given by following the procedure similar 

to the case of linear space-time FEM. By referring equations (27) and (29), we have 

    
0

1 1 0 0

2

5 4 1
1
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T T T

kin t t t n t n s s n
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dt t t d
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 

 

    
  

    
  

     
    

 G N N N N N N d

M d

. (59) 

Again, 
0

0 0

T

s sd


  M N N  is the spatial mass matrix. 
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The term related to the external force part extG in equation (51) of the residual vector G  

is given as  
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  (60) 

in which the first and second terms come from the traction boundary condition and body force. 

The third term represents the jump term related to the internal force. It can be evaluated by using 

a similar procedure as the corresponding jump term in intG , i.e.,  
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The multiplication of temporal shape functions in the fourth term of equation (60) can be 

shown to be 

    1 1 2

3 12 9
1

4 16 12

1 4 3

T

t n t nt t
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 

 
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 

 
 
   

N N .  (62) 

With the evaluations of the intG , kinG , extG  as shown above, the final space-time equation 

(48) is generally a nonlinear equation and is solved by employing Newton’s method [52], i.e., 

 , 0,1,2,m m

n m

m
 

   
 

G
d G

d
,  (63) 



 

24 

 

1

1m m

n n m

n m



  
   

 

G
d d G

d
,  (64) 

where m  is the iterative index. The Jacobian matrix of Newton’s method 
n

 
 
 

G

d
 can be 

estimated by numerical differentiation methods, e.g., the finite difference scheme. In this work, 

the forward difference method is used [52], 

 
   1 2 1 2, , , , , , , ,i j j i ji

j j

G d d d d G d d dG

d d





 



.  (65) 

The linear system of equation (64) is solved by using a sparse direct solver intel MKL 

PARDISO [53]. The iterative step as indicated from equation (64) continues until the following 

criterion is satisfied: 

  
2 2

min ,m m DOFN G d   (66) 

where 
2

•  ••  is the L2 norm and 
DOFN  is the total number of degree of freedom with 

regard to space-time nodes. For the present application, the tolerance value 310   is used. 

Finally, the implementation flow is shown as follows. 

 

1. Discretize the spatial and temporal domain. 

2. Start the time step loop. 

(i) Give an initial guess for the displacement vector 0

nd . 

(ii) Start Newton’s method loop to solve nd  that satisfies G 0 . 

[a] Compute kinG  and intG  in equations (58) and (59) based on the current 
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displacement vector m

nd . The nominal stress tensor P  in intG  is evaluated by 

nonlinear material constitutive law. 

[b] Compute extG  in equation (60) based on traction boundary, body force and the 

displacement at previous time step 1nd . 

[c] Assemble residual vectors and obtain mG . 

[d] Compute the Jacobian matrix of Newton’s method m

n

 
 
 

G

d
 based on equation 

(65). 

[e] Compute 1m

n


d  based on equation (64). If the criterion (66) is satisfied, m

nd  is 

the solution and exit the Newton’s method loop. Otherwise, repeat [a] to [e]. 

(iii) Store the displacement vector nd  as 1nd  for the next time step. 

3. End the time step loop. 

 

2.5 Extended space-time FEM formulation and implementation 

 

In the previous sections, the temporal domain of each space-time slab is discretized using 

the standard quadratic shape function. In this section, enrichment is introduced into the space-

time shape function. The idea of enriching shape function in FEM with the function that 

represents the problem physics has been developed in extended finite element method (XFEM) 

[45] or generalized finite element method (GFEM) [54]. Both XFEM and GFEM are based on 

the partition of unity finite element method developed by Melenk and Babuška [34]. The 

extended space-time FEM (XTFEM) is developed by applying enrichment for temporal domain 
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too. Chessa and Belytschko [35] applied XFEM concept for temporal domain to capture the 

discontinuity in time as well as space. Chirputkar, Qian [36, 37] and Yang [38] used XTFEM for 

coupled molecular dynamics and FEM simulation. Bhamare et al [39] proposed the 

computational framework to predict high cycle fatigue life of linear elastic material by 

combining XTFEM with damage model based of continuous damage mechanics (CDM) [8, 10]. 

In Bhamare’s work, harmonic function is used as the enrichment of temporal shape function [39] 

to capture the deformation at cyclic loading. In this work, the XFEM formulation [45] was 

extended to deal with nonlinear problems. 

The form of enriched space-time FEM approximation is 

      , , ,h

I I J J

I J

t N t N t  u X X d X a ,  (67) 

where Id  and Ja  are the space-time displacement vector and additional degree of freedom of the 

enriched part. The first term of RHS is regular space-time interpolation and  ,IN tX  is a 

component of space-time shape function that is introduced in equation (14). The enriched shape 

function in the second term is, 

      , , ,J J JN t N t t X X X   (68) 

In the case of crack modeling, the shifted Heaviside function is used to express the strong 

discontinuity of the crack and only spatial domain is enriched so that, 

        ,J Jt H H   X X X   (69) 

  
1, 0

0, 0
H







 


  (70) 

  X  is the signed distance function regarding the crack. Figure 5 shows the relationship of the 
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position and value of   X  in crack enrichment. 

 

 

Figure 5. Image of crack enriched element and signed distance function. 

 

Next, the case of the sinusoidal enrichment in temporal domain is shown. In the case of 

crack enrichment of spatial domain, we only enrich the element with crack. However, temporal 

enrichment is implemented over the whole space-time slab. If we chose quadratic temporal shape 

function for regular space-time FEM part and use the same temporal nodal position for both the 

regular and enriched parts, we have 
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  (71) 

where 
it

N  is the regular temporal shape function given in equation (22). In the case of sinusoidal 

enrichment, we define the enrichment function  ,J t X  in equation (68) as 

      , sin sinJ Jt t t   X   (72) 
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where   is the angular frequency of sinusoidal function and Jt  is the temporal enriched node. 

Therefore, 
it

N  is in equation (71) is given as 
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Figure 6 shows the comparison of the regular and enriched shape function. This 

sinusoidal enrichment captures the deformation of cyclic loading with large time step and 

enables us to do direct numerical simulation of high cycle fatigue problem by coupling XTFEM 

with the two scale damage model [39]. 

 

 

Figure 6. Regular and enriched temporal shape function (The example case: 

        
1 1 1sin 20 sin 20t tN t N t t t   ) 



 

29 

By assuming linear elastic material and discretizing TDG weak form with sinusoidal 

temporal enrichment shape function, we can derive the form of linear system below, using the 

similar procedure outlined in section 2.1 and 2.2. 
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Again, M  and K  are spatial mass matrix and stiffness matrix. Equation (76) can be 

simplified as 
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where the subscript “r” and “e” indicate regular and enriched part. rrK  is same as the space-time 

stiffness matrixK shown in equation (31). The other block matrices in LHS and force vectors in 

RHS include derivatives and integrations with enriched terms and the expressions can be 

complicated depending on the enrichment function. In some cases, they can be evaluated 

analytically. If the enrichment function is too complicated to get the exact form, we can still 

evaluate them by numerical integration. 
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The approach shown in equation (76) is limited to the case of linear elastic material with 

sinusoidal loading. In the case of nonlinear material, the cyclic response cannot be captured by 

single enrichment function even if the loading is given as exact sinusoidal. In this case, the 

displacement field is approximated by using superposition of multiple sinusoidal functions with 

different angular frequency like Fourier series. With the use of multiple enrichment functions, 

the enriched temporal shape function is given as, 

 1 2en

t t t t
      N N N N   (78) 

  
i i

m m

t t iN N t    (79) 

For cyclic response of nonlinear material, the enrichment function can be chosen as, for example, 

      sin sinm

i it m t m t    ,  (80) 

or 

      cos cosm

i it m t m t    .  (81) 

The interpolation of displacement is then given as, 
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CHAPTER 3 

  
CONSTITUTIVE MODEL FOR RUBBER 

3.1 Linear elastic material 

 

The linear elastic constitutive law is widely used for many kind of materials and the detail 

of theory can be shown, for example, in [55, 56]. 

Generally, the linear elastic constitutive low is known as Hooke’s law 

 :σ C ε   (83) 

where σ  is the Cauchy stress tensor, ε  is infinitesimal strain tensor and C  is the fourth order 

elasticity tensor. If the material is isotropic,  

  ijkl ij kl ik jl il jkC            (84) 

where   and   are Lamé’s constants. It is also known that the constitutive model can be 

expressed by the combination of two constants from Young’ modulus E , Poisson’s ratio  , 

Bulk modulus K  and two Lamé’s constants. In the case of rubber,   is very close to a half and 

K  becomes very large because rubber shows high incompressibility. 

In the case of 2D plane condition, the Hooke’s law can be simplified as followings. 

Plane stress condition ( 0zz  ): 
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. (85) 

Plane strain condition ( 0zz  ): 
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.  (86) 

where xy  is the engineering shear strain. 

 

3.2 Hyperelastic material 

 

The theory of the hyperelastic constitutive model is briefly reviewed in this section. 

Reviewing of constitutive models of rubber elasticity can be found in Boyce and Arruda [13]. 

Firstly, Rivlin and Saunders [14] developed a hyperelastic constitutive model by using 

polynomial form of invariants of the stretch tensor as the strain energy potential. 

    1 2

,

3 3
i j

ij

i j

W C I I


     (87) 

where ijC  is the constant, iI  is the invariant of the right Cauchy Green deformation tensor 

TC F F , and F  is the deformation gradient tensor. Invariant  can be expressed by 

combination of principal stretches. 
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C
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If the material is completely incompressible, 3 1I   so that 3I  does not appear in equation (87). 

The Neo-Hookean model is the simplest form and uses only one term of equation (87).  

  10 1 3W C I  .  (91) 

The Neo-Hookean model can be considered as extension of Hooke’s law to finite strain. 

Mooney-Rivlin model [14, 15] is one of the most widely used model that has been used 

for elastomers. It is described as a combination of first order terms of 
1I  and 

2I . 

    10 1 01 23 3W C I C I    .  (92) 

In Yeoh model [16], the strain energy potential is given as a cubic form of . 
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  .  (93) 

Ogden [17, 18] extended the polynomial form of the strain energy (87) to the series of 

non-integer order principal stretches, 

  1 2 3

1

3n n n

N
n

n n

W
  

  


      (94) 

where N  is number of terms, n  and n  are constants. It can be said that Neo-Hookean model 

is the case of 1N   and 1 1  .Also, the Mooney-Rivlin model is that of 2N  , 1 2   and 

2 2   . Therefore, these two models are included in the Ogden model. 

Arruda and Boyce [19] proposed the stretch based model known as the 8-chain model, 

1I
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since it has been developed by introducing a cubic model with eight springs that are connected 

with its center and corners. 

  
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

    (95) 

where   is a constant, 1 1 2C  , 2 1 20C  , 3 11 1050C  , 4 19 7000C   and 5 519 673750C  . 

The coefficient m  is called locking stretch because the stress-strain curve slope rises drastically. 

The initial shear modulus 0  is given as 
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  (96) 

and 7m   is often used as a typical value [22]. 

From the strain energy potential of hyperelastic constitutive law, the second Piola-

Kirchhoff stress tensor S  is computed as below. (See the detail in [51]). 
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where  
1

2
 E C 1  is the Green strain tensor and again C  is the right Cauchy Green 

deformation tensor. By using the chain rule, we obtain 
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We can recall the properties of the derivatives of invariants, 



 

35 

 1I 


1
C

,  (99) 

 2
1

TI
I


 


1 C

C
,  (100) 

 3
3

TI
I 




C
C

,  (101) 

and then, we obtain the final expression of S . We can also obtain Cauchy stress tensor σ  and 

nominal stress tensor P  by using following equations of conversion. 

 1 TJ   σ F S F   (102) 

 : T

T T

W W  
   
  

C
P S F

F C F
  (103) 

For example, by substituting Mooney-Rivlin model (92) into equation (98), we have 

   10 01 12 C C I  S 1 1 C .  (104) 

At the undeformed condition so that C 1  and 1 3I  , we obtain 

  10 012 2C C S 1 .  (105) 

This means the stress value is not zero in the case of no deformation and it is inconsistent 

obviously. To avoid this problem, several modification methods are proposed [13]. In this work, 

the following modified Mooney-Rivlin model is used and this model is also used in the 

commercial FEM software ABAQUS [22]. In the modified model, the strain energy potential is 

given as 
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 , (106) 
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 TC F F ,  (107) 

 
1

3J


F F ,  (108) 

where detJ  F , 1I  and 2I  are two invariants of C . Since  det 1F ,  W C  does not depend 

on volume change J  and is called the isovolumetric part of the strain energy density. On the 

other hand,  U J  is considered as volume changing part. k  is also a constant and a large 

number is chosen to enforce quasi-incompressibility. 

 

3.3 Finite strain viscoelastic model 

 

Simo’s finite strain viscoelastic material model [23] has already been implemented in 

some FEM commercial codes [22]. In this section, this model is briefly reviewed. The details of 

the theory are described in [23]. For this finite strain viscoelastic model, the strain energy 

potential for instantaneous responses  0W C  is given as arbitrary hyperelastic constitutive 

model. The hyperelastic constitutive law is combined with the Prony series, given as 
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where   and i  are parameters of Prony series and i  is the relaxation time. We can consider 

that 1    and 0i   for hyperelastic case. 

The second Piola-Kirchhoff stress tensor S  is given as below by introducing internal 

variable tensors iQ  with regard to viscos parts. 
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DEV :

3
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where the hyperelastic strain energy potential  0W C  can be decomposed into the isovolumetric 

and volume changing part similar to equation (106), so that 

      0 0 0W W U J C C .  (115) 

By solving (113) and substituting iQ   into (111), the final form of the second Piola-Kirchhoff 

stress tensor S  is given as, 
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or 
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To avoid cumbersome computation of convolution integral, the tensor iH  in equation 

(117) is updated by following equation. 
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  (119) 

Note that the mean value theorem evaluates the derivative in the first approximation. Also, the 

midpoint rule integration is used in the second approximation. By using equation (119), iH  can 

be updated gradually. 

 

3.4 Damage model based on continuous damage mechanics 

 

Rubber often shows mechanical behaviors that are due to the damage from the previous 

loading history. Mullins effect [11] is one of the most well-known and studied phenomena in 

rubbery material. The continuum damage mechanics (CDM) theory can be applied for fatigue 

modeling by expressing damage evolution as a function of either time or load cycles. Kachanov 

[57] established CDM by correlating the damage at micro-scale to macro-scale through damage 

variables. Lemaitre developed damage theory within the exiting elastoplastic framework and 

proposed model for ductile failure [8, 58]. Applications of CDM approaches for rubbery can be 

found in material [23, 59]. In this work, an attempt has been made in incorporating CDM model 

developed by Cantournet and Desmorat [9, 10] into space-time FEM. The details of the theory is 
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described in [10]. The formulation of CDM for damage and fatigue of elastomers is briefly 

outlined here.  

The potential energy of hyperelasticity with internal friction coupled with damage is 

given as, 

       1 2

1
1 :

2
xW D W W C    E E E α α   (120) 

where  1W E  is a hyperelastic energy potential and E  is the Green-Lagrange strain tensor. It can 

be seen that 1W  can be equivalently expressed as a function of the Right Cauchy-Green tensor. 

In this case, the modified Mooney-Rivlin model (106) has been introduced for 1W . The term 

 2W E E  is a second order term of the energy potential and depends on E  and inelastic strain 


E . xC  is material parameter and α  is introduced as internal sliding variable. D  is defined as 

the isotropic damage variable and 0 1cD D    where cD  is the damage value at the failure. 

The term  2W E E  is further expressed as 
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Here 20C  is a material parameter. E , 


E , α  and D  are state variables. E  is observable and the 

others are internal variables. The constitutive equations between a state variable A  and an 

associated variable B  are given as 
W




B
A

. Then, we have 
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where 


S  is the stress tensor associated with 


E , Q  is the residual micro-stress tensor and Y  is 

the energy density release rate. The sets of state variables and associated variables are 

summarized in Table 1. By substituting equation (121) into (123), we also have 
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This means that the stress tensor 


S  associated with inelastic strain 


E  is given as isotropic 

tensor in this case. 

 

Table 1. Sets of state variables and associated variables 

Mechanism Type 
State variables A  

Associated variables B  
Observable Internal 

Elasticity Tensor 

E  

Green Lagrange 

strain 

--- 

S  

The second Piola-Kirchhoff 

stress 

Internal 

sliding 

Tensor --- 


E  

Inelastic strain 
S  

Tensor --- α  
Q 

Micro residual stress 

Damage Scalar --- 
D  

Fatigue damage 

Y  

Energy density release late 
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Furthermore, the reversibility criterion is given as 
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where s  is the reversibility limit and 


S  is the effective stress of 


S . 


S  is defined as, 
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If the reversibility criterion satisfies the consistency condition 0f   and 0f  , then the internal 

friction occurs. Otherwise if 0f   or 0f  , then internal friction does not occur and the 

material stays hyperelastic. 

The dissipation potential is defined as 

 DF f F F  
Q ,  (129) 

 :
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where  , S  and s  are material parameters. 

Evolutions laws of each internal variable can be derived from the normality rule 

F
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 as followings. 
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,  (134) 

where   is the internal friction multiplier determined from the consistency condition. By 

substituting equation (129) into equations (132) to (134), we have 
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,  (135) 

  1xC D    Q E Q ,  (136) 
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  
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  
.  (137) 

Also, if necessary, the cumulative measure   can be introduced. 

 
0

t

d   E   (138) 

If D  , the damage evolution does not occur ( 0D  ). 

From equation (126), we can recall that 
S  is an isotropic tensor. Then, by assuming 

 E 0  and Q 0  at the initial state, and considering equations (124), (135) and (136), we can 

easily guess that the tensors related to internal sliding 
E , α  and Q  are all isotropic. So that, 

 E  E 1 ,  (139) 

 Q Q 1 ,  (140) 

 
x

Q

C
 α 1 ,  (141) 

where E  and Q  are scalar values. Since : 3 1 1 1 ,  equation (135) can be rewritten as 
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 sign
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E S Q
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 
 


  (142) 

where S is scalar so that S  S 1 . Also, equation (136) will be 

  1xQ C D E Q    .  (143) 

In addition, the reversibility criterion (127) can be written again, 
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S Q
.  (144) 

By checking equation (144), if 0f  , the material behaves hyperelastic and we do not need to 

consider internal variables evolution. Otherwise we should enforce it to satisfy the consistency 

condition 0f  , 0f   and equations (137), (142) and (143). The mid-point rule and Newton’s 

method [52] are used to solve these equations numerically. Firstly, following residual equations 

are defined based on equations (142), (143) and (137). 
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,  (145) 

  1 2 1 21 0Q xg Q C D E Q        ,  (146) 
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.  (147) 

Note that the subscripts and increment of each variable have following relationship. 

  S S  

   E E ,  (148) 

    1 2Y W W 

     E E E ,  (149) 

 0E E E    ,  (150) 
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 0E E E  

    ,  (151) 

 0Q Q Q    ,  (152) 

 0D D D    .  (153) 

where 0 1   and the subscript zero indicates the value from previous time step. Therefore, 

equations (145) to (147) require that the corresponding residuals become zero at the middle point 

of time step points (
1

2
  ) because mid-point rule gives more accurate results than Euler 

method. However, in the case of the consistency condition, 0f   is solved at 1   because the 

condition should be satisfied at the end of time steps. So that, 

 
1 13 0f sg S Q      .  (154) 

If 2D plane stress condition is assumed, the component of the second Piola-Kirchhoff stress 

tensor in z -direction should be zero. 
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.  (155) 

Finally, we solve equations (145) to (147), (154) and (155). The undetermined variables 

in these equations are  , E , Q , D  and the increment of z -direction component of 

deformation gradient zzF . Then, we can define the residual vector g  and the unknown 

variables vector v  as below in the case of 2D plane stress condition. 
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By using Newton’s method, g 0  can be solved. 
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1m m





 
    

g
v v g
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,  (158) 

where m  indicates the number of step of the Newton’s method. The iteration is repeated until 

the L2 norms 
2

g  and 
12 m m  v v v  become enough small. 

In the case of fatigue damage computation, since the damage grows very slowly, the 

damage increment D  in unknown vector v  (equation  (157)) is often much smaller than the 

values of other unknowns. This causes instability in solving the equation because the Jacobian 

matrix of the Newton’s method 
 
  

g

v
 becomes very close to singular and the solution diverges 

in equation (158). To avoid this problem, the rows of Dg  and D  can be removed from the 

residual vector g  (equation (156)) and the unknown variables vector v  (equation (157)). Then, 

the damage variable D  can be integrated separately based on equations (147) and (153) after 

solving g 0  with the constant damage variable 0D D . Alternatively, two-scale damage model 

approach can help to simplify the problem solution. The two-scale damage model was proposed 

by Lemaitre [60, 61]. In the two-scale damage model approach, it is assumed that the damage 

only occurs in micro scale region and it does not affect deformation in macro scale level. In this 

case, we can treat the damage D  as zero in macro scale computation. Then, the damage 
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evolution in micro scale is evaluated independently based on equations (147) and (153). 

The following equations are the components of the Jacobian matrix 
 
  

g

v
 with the 

constant damage 0D D . If we use the two-scale damage model, 0D  can be replaced with zero. 
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where 1

zzF  is the z  component of deformation gradient at 1  . The value of equation (174) 

depends on the hyperelastic constitutive model of  1W E . From equations (159) to (174), we can 

find that many components of Jacobian matrix 
 
  

g

v
 are constant and we can easily derive the 

analytical form of inverse matrix 

1
 
  

g

v
. This leads to efficient implementation of the Newton 

iteration (158). 

In summary, the computational algorithm for solving the combined hyperelastic/CDM 

model is given as follows: 

1. At each quadrature point, compute 


S  (equations (126) and (128)) based on the 

displacement solution at current step and 


E , Q  and D  from the previous step 
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(calculated from 3. Case(ii) below). 

2. Compute the reversibility criterion value f  (equations (127) and (144)). 

3. Case (i) 0f  . 

There is no damage evolution and the material is assumed to be hyperelastic. Stress 

values are updated according to equation (122). No update is implemented for 


E , Q  

and D .  

Case (ii) 0f  . 

Undetermined variables should be updated to satisfy the consistency condition 0f   

and 0f  . This is accomplished by solving the residual vector g 0  (equation (156)) 

by using Newton’s method (equation (158)) to get 


E , Q , D  and  . Update 


E , Q  

and D  according to the rates obtained. 

4. Check if cD D . If this is the case, then crack is initiated. Otherwise damage will 

continue to evolve according to the constitutive solver. 
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CHAPTER 4 

  
NON-ORDINARY STATE-BASED PERIDYNAMICS 

4.1 Non-ordinary state-based peridynamics formulation 

 

In this section, the theory of non-ordinary state-based peridynamics is reviewed. For 

detailed description on the subjects, we refer to [48, 62]. In non-ordinary state-based 

peridynamics theory, the deformation gradient and related stress values of each point are 

evaluated nonlocally by introducing subregion of the body called horizon H
X . The horizon H

X  

is defined as a spherical region of the constant distance   from the center material point X . 

Then, the bond between two material points is defined as 

  ξ X X ,  (175) 

where X  is a material point in H
X . Figure 7 shows the image of the bond and horizon in a 

body. 

 

 

Figure 7. Bond ξ  and horizon H
X   
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Similarly, the deformation state Y ξ  is defined as 

 

   

     
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, ,

t t

t t
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 

Y ξ x X x X

X u X X u X

ξ η

,  (176) 

where x  and x  are deformed configuration of X  and X , u  and u  are displacement, and 

 η u u . The deformation state Y ξ  is the deformation image of the original bond ξ . 

Silling et al. [48] introduced peridynamics equation of motion as below. 

           , , , ,
H

t t t dV t 
      

X
X

X u X T X X X T X X X b X ,  (177) 

where   X  and  , tb X  are the mass density and body force density field,  , tT X  is the vector 

state called force state.  By comparing equation (177) with the equation of motion for continuum 

(equation (1)), it is found that the term of partial derivative of stress tensor has been replaced 

with integration of force state. This allows us to avoid computing derivative near the 

discontinuous or singular point like crack and makes peridynamics more robust in predicting 

crack propagation. 

In non-ordinary state-based peridynamics theory, the nonlocal deformation gradient 

 , tF X  is given as nonlocal approximation of the deformation gradient based on the original 

bond ξ  and the deformation state Y ξ . 

       1,
H

t dV 


   
  

X
X

F X ξ Y ξ ξ K X ,  (178) 

     
H

dV 
  
  

X
X

K X ξ ξ ξ ,  (179) 

where   ξ  is the influence function and it can express the effect of the original bond distance. 
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How to determine the influence function is still an ongoing research topic [63]. In many cases, 

the influence function is simply given as the unity. The symbol   denotes the dyadic product of 

vectors and V X  is the volume associated with point X .  K X  is the nonlocal shape tensor 

which is symmetric. Force state  , tT X  is given as 

      1, t          T X X X X X F S K X X ,  (180) 

where S  is the nonlocal second Piola-Kirchhoff strain tensor which is symmetric. Then, F S  

can be considered as the nonlocal first Piola-Kirchhoff stress tensor [51]. S  or F S  can be 

evaluated by the material constitutive law and the nonlocal deformation gradient F . 

 

4.2 Implementation of non-ordinary state-based peridynamics 

 

In this section, the numerical implementation of the non-ordinary state-based 

peridynamics theory [62] is reviewed. At first, the nonlocal deformation gradient F  and nonlocal 

shape tensor K  given in (178) and (179) are discretized with regard to the particle j  that is the 

center particle of horizon as follows. 
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 
      
 
F X X X Y X X X X K X        (181) 

         
1

m

j n j n j n j n

n

V


    K X X X X X X X   (182) 

where m  is the number of particles within the horizon of particle j . 

Then, the equation of motion (177) is discretized as 

         
1

, , , ,
m

j j j n j n j n n j

n

t t t V t
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      X u X T X X X T X X X b X .  (183) 
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Finally, we obtain the acceleration vector  ,j tu X  and update the velocity  ,j tu X  and 

displacement  ,j tu X  by finite difference scheme like, for example, the central difference or 

velocity Verlet. 

Silling and Askari [47] discussed how to estimate the critical time step size in the 

peridynamic model. The Courant-Friedrichs-Lewy (CFL) condition [64] can be used to estimate 

a proper maximum time step size, i.e.,  t l c   where l  is the particle spacing and c  is the 

speed of sound in the solid. 

 

4.3 Stabilization of non-ordinary state-based peridynamics 

 

It is known that non-ordinary state-based peridynamics has an inherent problem called 

zero-energy mode. This is a phenomenon similar to that of finite element method, also called 

hour glass mode. The zero-energy mode causes instability in results. To control the zero-energy 

model, several approaches have been proposed, for example, in [65–68]. In this work, the 

stabilization method proposed by Silling [68] is used to reduce instability coming from zero-

energy mode. Here, the theory of the stabilization is reviewed. The detail can be seen in [68]. 

At first, the nonuniform part of the deformation state z ξ  is introduced as 

   z ξ Y ξ F ξ .  (184) 

Recall that Y ξ  is deformation state given by equation (176) and F  is the nonlocal deformation 

gradient in equation (178). From equations (178), (179) and (184), it can be seen that 
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This fact shows that the deformation state Y ξ  is not unique even if the deformation gradient 

approximation F  is same. 

In this stabilization method, the force vector state T ξ  (equation (180)) is  replaced with 

T̂ ξ  and it is defined as 

   1
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ˆ GC




 
     

 
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  0
H
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X

X
ξ ,  (187) 

where G  is positive constant and C  is given as follows [69]. 
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where   is the radius of horizon, k  is the bulk modulus, h  is the thickness and A  is the cross 

sectional area. Also, k   is the bulk modulus in 2D and given as 
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CHAPTER 5 

  
COUPLING PERIDYNAMICS WITH SPACE-TIME FEM 

5.1 Multiscale crack propagation simulation by coupling non-ordinary state-based 

peridynamics coupling with space-time FEM 

 

As shown in section 4.1, since peridynamics is nonlocal and partial derivative of stress 

tensor is replaced with integration of force state in the equation of motion in continuum 

(equation (177)), peridynamics can be employed for crack simulation. However, the 

computational cost is not small because we need to compute nonlocal deformation gradient as a 

value of combination of particles in each horizon. Therefore, to make computation more 

efficient, one solution is to couple peridynamics with FEM frame work, for example, in [49, 70]. 

In this work, the non-ordinary state-based peridynamics is coupled with space-time FEM based 

on the time discontinuous Galerkin formulation to solve dynamic crack propagation problems. 

Here, the framework of coupling non-ordinary state-based peridynamics with space-time 

FEM is presented. For spatial domain, direct coupling between space-time FEM and non-

ordinary state-based peridynamics is implemented. First of all, the whole spatial domain is 

discretized by finite elements. If there exists initial cracks, the elements with a crack are enriched 

by using XFEM methodology [45, 71]. In this work, the Heaviside step enrichment function 

(equations (67) to (70) in section 2.5) is applied to represent the crack in the global domain. 

Secondly, peridynamics simulation region overlaps the finite elements in the region surrounding 

the crack tip. The boundary conditions for peridynamics is obtained from the interpolation by 

using space-time FEM (equations (14) and (67) ) shape functions in the patch region. The 

number of patch region layer is determined by considering the horizon size  .  Figure 8 shows 
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an illustration of configuration of FEM mesh and peridynamics particles in the spatial domain. 

The advantage of using space-time FEM is that the shape functions can be employed to obtain 

the spatial and temporal information at any particle location within the problem domain. It is 

then possible to develop an adaptive scheme such as the NOPD simulation domain moves with 

the crack front. 

 

 

Figure 8. An illustration of coupling finite element and peridynamics region for a crack 

problem. 

 

For temporal domain, time subcyling is used in which two different time increments are 

used for space-time FEM and peridynamics. At first, a temporal domain for space-time FEM is 

assumed as  1,n n nI t t  and the time increment is defined as 1ST n nt t t    . Then, we divide 

STt  into m  subdomains and define PD STt t m   . PDt  is used for local peridynamics 

simulation. Figure 9 shows an image of the coupling of peridynamics and space-time FEM in 

temporal domain. 
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Figure 9. An illustration of coupling space-time FEM with peridynamics in temporal 

domain. 

 

The crack propagation is predicted in peridynamics region based on the given boundary 

conditions from space-time FEM. If the crack grows over an element, the information of crack 

position is fed back to space-time FEM region and the XFEM enrichment is applied for the new 

cracked element. In addition, the coupled region will be advanced to be around the new crack tip. 

Figure 10 shows an image of crack propagation in FEM and peridynamics region. 

 

5.2 Non-ordinary state-based peridynamics with the time integration based on time 

discontinuous Galerkin formulation 

 

In this section, the peridynamics theory is coupled with space-time formulation based on 

the time discontinuous Galerkin (TDG) approach. The TDG formulation is already reviewed in 

chapter 2. 
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Figure 10. Image of crack propagation in coupling scheme. 

 

From the weak form of the TDG formulation (10)-(12) and the non-ordinary state-based 

peridynamics equation of motion (177), the weak form for space-time peridynamics can be 

derived as 
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     , ,int
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X
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By following the procedure shown in section 2.1, equation (190) can be rewritten as 
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where tN  is the quadratic temporal shape function (equation (22)). nd  and 1nd  are the 

displacement vector of current and previous time step. The displacement vector includes the 

particle displacement data at all temporal nodes. 

Generally, nd  can be solved by setting the residual vector and using Newton’s method 

similar to the procedure shown in section 2.4. In the case of linear elasticity, we obtain the linear 

system in the form of n dK F  , similar to space-time FEM shown in section 2.2. In the case of 

coupling TDG formulation and non-ordinary state-based peridynamics case, the system matrix 

K is given as 
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This is the same form as equation (31), however, the mass and stiffness matrix in non-ordinary 

state-based peridynamics is different from those of the finite element method. For example, in 

1D case, the mass matrix PDM  is given as 
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where N is number of particles and iV  is the volume associated with the i-th particle. In general, 

the form of the stiffness matrix PDK  is complicated due to the effects of the particle spacing, 

horizon size and influence function. A particular form of PDK  of the 1D spatial case is derived 

by assuming that the particles are evenly spaced, the influence function is constant of value of 

one and the horizon size is one particle distance. First, from equation (182), 

  
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2
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2 otherwise
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X V i N
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X V
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, (197) 

where X  and V  are the distance of neighbor particles and volume of a particle. Note that the 

number of family of a particle is two or less since the horizon size is one particle spacing. Then, 

from equation (180) we have 
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 
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where E is the Young’s modulus and iu  is the displacement of i-th particle. Then, the 

approximation of the integration of the force state is given as 
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Finally, the stiffness matrix is given as 
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For other conditions, PDK  can be numerically evaluated by a similar procedure. 
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CHAPTER 6 

  
RESULTS AND DISCUSSIONS 

6.1 Nonlinear space-time FEM with hyperelastic constitutive model 

 

6.1.1 Plate subjected to uniaxial cyclic tension 

 

To verify the proposed nonlinear space-time FEM framework, we first consider the 

problem of a thin rectangular plate subjected to uniaxial tension with hyperelastic constitutive 

model. Spatial domain of the problem is modelled with Q4 elements and plane stress condition is 

assumed. The dimension, boundary conditions, and spatial mesh of the model are shown in 

Figure 11. As described earlier, three nodes are assigned along the temporal axis for each space-

time slab and a quadratic function is used as the temporal shape function for the space-time 

FEM. The material is assumed to be isotropic hyperelastic and modelled with the modified 

Mooney-Rivlin constitutive model (106). The material parameters are given as 
10 1.0[MPa]C  ,

01 0.5 [MPa]C   and 25.0 10 [MPa]k    and mass density is 3930[kg/m ]  . For verification and 

comparison purposes, the same problem is also solved using the commercial FEM code 

ABAQUS employing both explicit and implicit time integration algorithms. For explicit time 

integration, standard center difference scheme is employed and Newmark time integration 

algorithm ( 0.28  , 0.55  ) is chosen for the implicit time integration. 

In terms of the loading condition, a pressure    2.0 1 cos 2 [MPa]p t ft    is applied 

on the top of the plate, where 1 10 [Hz]f T   is the frequency of the cyclic loading and T  is 

the period. The time step for the explicit method is determined by the Courant-Friedrichs-Lewy 

(CFL) condition [64] and 63.0 10 [s]dt    is used. For the implicit method, different time step 
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sizes of t were tried and it is found that maximum allowable time increment in ABAQUS is

21.0 10 [s]dt   . On the other hand, for nonlinear space-time FEM, time steps of 4dt T , 8T ,

16T
22.5 10  , 21.25 10 ,  36.25 10 s  are examined. 

 

 

Figure 11. 2D FEM model and dimension for rubber plate under cyclic pressure. 

 

Figure 12 shows a comparison of displacement solutions at the top edge of the plate 

obtained from three different approaches. It can be seen that the results from 8, 16dt T T  in 

space-time FEM show good agreement with the predictions obtained from regular FEM. These 

time increments are at least three orders of magnitude larger than that of FEM explicit 

integration. The largest time increment tried in space-time FEM is 4dt T  and discrepancies are 

observed for the peak displacement in this case, which is an indication that the temporal mesh is 

too coarse to capture the responses. The temporal resolution can be further improved by either p- 

or h-type of adaptive refinement in the temporal domain. The implementation is relatively 

straightforward due to the multiplicative form of the shape functions that are introduced.  
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It is also observed that FEM implicit method can solve the problem with larger time 

increment. However, the information between the time steps are lost due to the finite difference 

nature of the time integration. In contrast, information at any time point can be obtained based on 

interpolation using the temporal shape functions in space-time FEM. This capability is critical in 

handling time or history dependent constitutive models such as viscoelasticity, plasticity or 

damage models and often leads to a local-global coupling scheme. In this type of coupling 

scheme, constitutive models are resolved based on the interpolation from the space-time shape 

function at discrete temporal quadrature points to ensure that material responses are accurately 

accounted for. 

 

 

Figure 12. Displacement histories of the top side of the plate with cyclic loading by regular 

FEM implemented on ABAQUS (explicit and implicit) and nonlinear space-time FEM with 

different time steps. 

 

6.1.2 Shear and bending deformation of the bar 

 

To demonstrate the accuracy of more complex deformation patterns, other example 
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problems are solved in this and next section. The problem shown in Figure 13 is considered to 

check the capability of nonlinear space-time FEM to express the shear, bending and rotational 

deformation. The time dependent shear stress 0.1 [MPa]t   is applied on the top surface of the 

bar. The material model is same as that of the previous one. Figure 14 shows the deformation 

results by the regular FEM (ABAQUS) and nonlinear space-time FEM. Since the both results 

show good agreement, it is found that the nonlinear space-time FEM can capture the complex 

deformation from the combination of shear and bending. 

 

 

Figure 13. 2D bar FEM model (500 elements, 561 nodes) and its dimension. 

 

6.1.3 Buckling deformation of the arch bar 

 

Next, the buckling deformation is checked by using the arch model shown in Figure 15. 

An arch like model in [72] is used for reference. The both ends of arch bar are pinned and  
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Figure 14. 2D bar with shear stress (deformation at 1.0 [s]t  ). 

 

indentation displacement  1.0 mm syU    is prescribed on the top. Hyperelasticity with the 

modified Mooney-Rivlin constitutive model (106) is assumed as the material. The material 

parameter is given as 10 1000[MPa]C  , 01 700[MPa]C    and 
25.0 10 [MPa]k   . Also, the 

mass density is 
31.21[g/cm ]  . Figure 16 demonstrates the buckling deformation results from 

nonlinear space-time FEM. Figure 17 shows the equilibrium paths of the displacement and 

reaction force at the top point. It is found that nonlinear space-time FEM and regular FEM show 

good agreement. The region between local maximum and minimum force is the unstable solution 

and it cannot be obtained by load control scheme because of snap through buckling behavior. 

From these results, it can be said that nonlinear space-time FEM is able to capture the buckling 

deformation. 
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Figure 15. 2D arch model (2000 elements, 2505 nodes) for buckling deformation. 

 

 

Figure 16. Buckling deformation of the ache bar from the nonlinear space-time FEM (Only 

the center line of the bar is visualized). 

 

6.1.4 Transverse beam problem in the nonlinear space-time FEM 

 

To demonstrate the robustness of nonlinear space-time FEM in handling more 

complicated loading condition, we consider the case of a beam with a span of  10 m subjected to 

transversal pressure as shown in Figure 18. Both sides of the beam are fully clamped and the 

pressure load is given as     0 128sin 2 MPa.p t ft   in which “-” indicates downwards  
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Figure 17. The equiliburium path of the displacement and reaction force at the top of the 

arch. 

 

direction and f  is the load frequency. 

The FEM model consists from 256 Q4 elements (Evenly spaced 64 elements in length 

and 4 elements in width direction) in spatial domain. Modified Mooney-Rivlin constitutive 

model (equation (106)) is used and the material parameters are given as 
10 100[MPa]C  , 

01 50[MPa]C   and 
41.0 10 [MPa]k   . The mass density is

3930[kg/m ]  . 

Figure 19 provides a comparison on the mid-span vertical displacement history between 

nonlinear space-time FEM and regular FEM for the case of load frequency  1.0 Hzf  . It can be 

first observed that the displacement is a nonlinear function of time due to the inherent coupling 

of the nonlinear material model with finite deformation. The good agreement between nonlinear 

space-time FEM (  210 sdt  ) and explicit FEM with very refined time step of  610 sdt   
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indicates that space-time FEM fully captures the nonlinear dynamics. On the other hand, two 

time step sizes (  210 sdt   and  310 s ) are tried in FEM with implicit method. It is observed 

that prediction from the case of  210 sdt  is inaccurate by comparing with the same from 

space-time FEM, explicit time integration and implicit time integration using time step of 

 310 s . This example again demonstrates the robustness of the nonlinear space-time FEM 

approach in capturing nonlinear time-dependent deformation. 

 
Figure 18. 2D transverse beam with cyclic loading. 

 

           

Figure 19. Comparison of displacement histories of nonlinear space-time FEM and regular 

FEM (Explicit and Implicit) (  1.0 Hzf  ). 
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6.1.5 Numerical performance of nonlinear XTFEM 

 

In this subsection, the capability of XTFEM is demonstrated. FEM model and material 

parameters used here are the same as in subsection 6.1.1. First, we consider the case of cyclic 

pressure  p t   2.0 1 cos 2 t   [MPa] applied to the top side of the plate in Figure 11. To 

capture the deformation that comes from material nonlinearity, we employed the following 

enrichment function 

      cos 2 cos 2m

i it mt mt      (202) 

where 1,2,3,4m   are used as the temporal enrichment function in the XTFEM formulation. 

Figure 20 shows the results of XTFEM with hyperelastic constitutive model and regular FEM 

(ABAQUS, implicit). The XTFEM and regular FEM shows good agreement. This indicates that 

XTFEM can take very large time increment 100.0dt   [s] and still provide accurate result. This 

is in contrast with the time increment of the order of 
610
 [s] or less in the FEM explicit time 

integration algorithm. It is very hard for explicit computation to get accurate results because of 

the error accumulation and the solution diverges as a result. 

Next, the case of the cyclic loading with multiple frequencies are considered. The 

pressure  p t   2.0 1 0.6cos 2 0.4cos 4t t     is prescribed to the top of the plate in Figure 

11. The results are shown in Figure 21. It can be seen that nonlinear XTFEM can capture the 

large deformation from complicated cyclic loading with very large time increment. From these 

results, the nonlinear XTFEM demonstrates the capability in simulating response of hyperelastic 

materials subjected to cyclic loading condition. 
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Figure 20. Displacement histories of the top side of the plate with cyclic loading by regular 

FEM (ABAQUS, implicit) and nonlinear XTFEM. 

 

 

Figure 21. Displacement histories of the top side of the plate with cyclic loading of double 

frequencies by regular FEM (ABAQUS, implicit) and nonlinear XTFEM 
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6.2 Nonlinear space-time FEM with finite strain viscoelastic constitutive model 

 

In this section, the results of nonlinear viscoelastic space-time FEM are shown and 

discussed. The result is verified by comparing with ABAQUS [22], one of the most widely used 

FEM commercial software. 

For the strain energy potential, the modified Mooney-Rivlin model (equation (106)) is 

used for 0W in equation (112). The material parameters are chosen as  10 1.0 MPaC  , 

 01 0.5 MPaC   and  500 MPak   for all numerical examples in this section. The number of 

Prony series (equation (109)) is one, so that 

   1

1

exp
t

t  




 
   

 
.  (203) 

 

6.2.1 2D plate subjected to uniaxial loading 

 

To verify the results, the simple thin plate model is used. The plate is a square with 50 

mm edges. The thickness is 1 mm and 2D plane stress condition is assumed. In spatial domain, 

the standard Q4 element is used and the model has 25 nodes and 16 elements. The bottom edge 

is fixed in vertical direction and the left edge is fixed in horizontal direction.  Figure 22 shows 

the image of the mesh structure and boundary condition. In the temporal domain, quadratic 

temporal shape function (equation (22)) is used.  

At first, the constant strain rates 10 , 1.0  and  0.1 1 s  are applied on the top edge. For the 

Prony series parameters, 1 0.5     and  1 1.0 s   are used. To verify the nonlinear space-

time FEM result, it is compared with the explicit regular FEM by using the commercial FEM 
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software ABAQUS. Figure 23 shows the stress-strain curves with different strain rates. The case 

of high strain rate (  10 1 s ), the stress-strain curve is very close to that of complete hyperelastic 

constitutive model. On the other hand, in the case of slow strain rate (  0.1 1 s ), stress value 

becomes close to a half of hyperelastic case. This is reasonable because 0.5   in this case.  

Also, by comparing with ABAQUS results with nonlinear space-time FEM, it is concluded that 

the predictions from the space-time FEM code are correct. 

Next, an example with step strain is demonstrated. In this example, 1 0.5     and 

 1 1.0 s   are used as Prony series parameters. The strain history and the stress response are 

shown in Figure 24. From these plots, the nonlinear space-time and regular FEM also show good 

agreement in the stress relaxation process. Furthermore, the nonlinear space-time FEM can 

capture exact step strain. In contrast, the large step strain cannot be well captured by regular 

FEM. Instead, it has to be approximated by a ramp strain with short rise time. This example 

demonstrates the advantage of space-time FEM in dealing with jump. 

 

Figure 22. The FEM model and boundary conditions for the 2D plate problem. 
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Figure 23. Comparison of stress-strain curves with different strain rates 

 

 

                                       (a)                                                                         (b) 

Figure 24. (a) Strain history of step strain and (b) stress response(The small plots are the 

enlarged one at the time when the first step strain is given) 
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Figure 25 shows the given strain history and the stress-strain curve of the case that the 

sinusoidal strain history is given. In this example, 0.2  , 1 0.8   and  1 1.0 s   are used as 

Prony series parameters. The amplitude of sinusoidal strain is  0.1 mm mm  and the frequency 

is  1.0 Hz . In this example, five temporal time steps are used in one cycle, so that  0.2 st  . 

Figure 25 shows that the nonlinear space-time FEM interpolates deformation smoothly by using 

temporal shape function. 

 

 

                                       (a)                                                                         (b) 

Figure 25. (a) strain history (sinusoidal strain) and (b) stress-strain plot (hysteresis curve). 

 

6.2.2 Indentation and stress relaxation of plate 

 

In this subsection, the indentation of a plate is considered. Figure 26 shows the mesh 

structure and the size and position of the indenter. In this model, the bottom edge is fixed and the 

symmetric condition at the plane 0x    is assumed. Also, the thickness is  1.0 mm  and the 2D 
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plane stress condition is assumed. For the Prony series parameters, 1 0.5     and  1 1.0 s   

are used. It is assumed that the indenter is rigid and the friction coefficient between the material 

and indenter is infinite. Figure 27 shows the compressive displacement history of the indenter. 

 

 

Figure 26. FEM model and indenter. 

 

 

Figure 27. Compressive displacement history of the indenter. 

 

Figure 28 demonstrates the deformation and Mises stress of the plate. It can be seen that 
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the deformation, strain and stress responses of finite strain viscoelastic material can be well 

captured by using this nonlinear space-time FEM based on TDG formulation. 

 

   

 (a)  1.0 st  . (b)  3.0 st  . 

Figure 28. Deformation and contour plot of Mises stress at different time point. 

 

6.3 Nonlinear space-time FEM with CDM constitutive model 

 

In this section, the predicative capability of the nonlinear space-time FEM coupled with 

the CDM constitutive model described in section 3.4 is demonstrated. First of all, uniaxial tests 

of rubber specimen are carried out to calibrate the model parameters. Simulations based on the 

calibrated material model are then performed for a different case of a single notch rubber 

specimen subjected to cyclic loads. To validate the simulation prediction, the computational 

results are compared with experimental results of uniaxial tension and low cycle fatigue test of 

rubber samples with single notch. 
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6.3.1 Material and experimental set up 

 

For the experimental study, samples of carbon filled synthetic rubber has been supplied 

by Bridgestone Corporation, a Japanese tire company. The experiments are conducted on an 

Instron 5969 dual column testing system at room temperature. 

 

6.3.2 Uniaxial tension test and calibration of CDM model parameters 

 

The rubber specimen is designed by following ASTM D412 and the geometry is shown in 

Figure 29. For uniaxial loading and unloading, triangular cycle with cross-head speed of 

 10 mm/s  is imposed. CDM model parameters are calibrated by comparing experimental 

stress-strain responses with those solved from the CDM constitutive model. 

 

 

Figure 29. Geometry of rubber specimen. 

 

The calibrated model parameters are given in Table 2. Figure 30 and Figure 31 provides 

the comparison between the model prediction based on the parameters and the experimental 

results.  Figure 30 shows the stress history at the triangular cycle with strain range  0 250 % . 
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We can see that the decline of stress peaks comes from the softening phenomena is well captured 

by CDM with the calibrated parameters. Figure 31 shows the nominal strain at failure and the 

fatigue life from experimental results and predictions from the calibrated CDM model. It can be 

concluded that stress softening behavior, elongation at the failure and fatigue life in relatively 

low cycle are consistent with CDM model predictions. 

 

Table 2. CDM material parameters for the synthetic rubber. 

10C  
01C  k  20C  

xC    
s  S  s  cD  

[MPa] [MPa] [MPa] [MPa] [MPa]  [MPa] [MPa]   

0.06 1.2 500 0.3 6.5 1.0 0.3 9.0 13.5 0.2 

 

 

 

Figure 30. Calibration of CDM model for a synthetic rubber (nominal stress history). 
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Figure 31. Calibration of CDM model for a synthetic rubber (Low cycle fatigue life [R-

ratio is zero]). 

 

6.3.3 Numerical and experimental results of the uniaxial tension tests of notched sample. 

 

To validate the robustness of the nonlinear space-time FEM with the calibrated CDM 

model, computational and experimental results are presented in this section for the case of a 

notched specimen subjected to uniaxial tension. The rubber material is the same as that described 

in subsection 6.3.2 and the same set of CDM parameters have been employed in this case. The 

geometry of the notched specimen is shown in Figure 32 along with a representative spatial 

mesh. For computational implementation, a convergence study on the spatial element mesh size 

is first conducted. The nominal stress rate  0.68 MPa/s  is imposed at the two ends of specimen. 

Figure 33 shows a relationship between maximum nominal stress at failure and the mesh size. It 

can be seen the stress value at failure converged to the value of  5.92 MPa in the case of element 

size of  0.35 mm  near the notch root region. As such, we have used  0.35 mm  mesh density at 
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notch root region in this study. It is also noted that the computed stress value of  5.92 MPa

compares favorably with the experimentally measured value of  6.08 MPa . 

 

 

Figure 32. Geometry of the notched rubber specimen and mesh structure for FEM. (The 

shaded regions at the top and bottom are grabbed by jigs of testing machine.) 

 

 

Figure 33. The relationship between the mesh size at the notch root and the nominal stress 

at the failure. 
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Next, computational predictions of fatigue failure are compared with experimental 

results. Triangle wave cyclic loading with constant cross-head speed  10 mm/s  for both loading 

and unloading is imposed (Figure 34 (a)). At the same time, the maximum and minimum 

nominal stress values at the end are controlled in the experiment (Figure 34 (b)). The value of the 

maximum stress is chosen to be in the range of  3.0 6.0 MPa  and the minimum stress is kept 

at  0 MPa . The number of cycles at failure is recorded. Figure 35 provides a comparison on the 

maximum nominal stress vs number of cycles to failure between the experiment and simulation. 

As can be seen, simulation yields good agreement with experiment for the range of the stress 

ratios applied. Due to the limitation of the experiment instrumentation, the maximum load cycles 

applied is 1244 and the corresponding predicted cycle is 1408 under the same loading condition. 

To further demonstrate the robustness of the simulation approach, other simulation cases of 

maximum applied stress of 2.73, 2.50, 2.40 and 2.23 [MPa] are carried out. To accelerate the 

computation of these higher cycle cases, the Jacobian matrices 
n

 
 
 

G

d
 in equation (65) are stored 

over a cycle and reused for following cycles. Since the damage accumulation in each time step is 

extremely small, this recycling of Jacobian matrices can give enough convergence. Due to the 

relatively low stress, the number of cycles to failure is given as 21985, 104656, 236252 and 

1083614. 

It is thus concluded that the nonlinear space-time FEM with CDM can predict both 

fracture and fatigue life. 
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(a) Displacement history of cross-head. 

 

 

(b) Nominal stress history at the end of specimen. 

Figure 34. An example of loading condition. (In (a) displacement history of the cross-head, 

cross-head speed at both loading and unloading are constant. In (b) stress history, 

maximum and minimum stress values are fixed.) 

 

6.4 Fracture prediction based on non-ordinary state-based peridynamics 

 

In this section, the performance of non-ordinary state-based peridynamics is 

demonstrated before moving to the coupled simulation of space-time FEM and peridynamics. 

Some examples of failure prediction of composite materials are shown in the following 

subsections. 
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Figure 35. The comparison of experimental and computational results of low cycle fatigue 

of the notched specimen. 

 

6.4.1 2D composite plate with circular inclusions 

 

Here, failure prediction of 2D composite plate with circular inclusions is conducted. The 

peridynamics models of the composites are shown in Figure 36. There are four sets of number 

(N) and radius (R) of the inclusions,   , mmN R   12,6.0 ,  24,4.2 ,  36,3.5  and  48,3.0 . 

Each set has three models with different random distributions of inclusions so that there are 

totally twelve models. The volume ratio of inclusions is constant (13.6 %) in all models. 

The modified Mooney-Rivlin hyperelastic constitutive model (equation (106)) is used for 

the matrix part of the composites. The Mooney-Rivlin material parameters are chosen as 

 10 1.0 MPaC  ,  01 0.5 MPaC   and  100 MPak  . The mass density of the matrix is 
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3930 kg mM     . On the other hand, the inclusions are assumed to be linear elastic and 

roughly ten times stiffer than the matrix part. For the inclusion Young’s modulus  88 MPaE   

and the Poisson’s ratio 0.49   are used. The mass density of the inclusion is set as 

39300 kg mI      to keep the wave speed same as that of the matrix part in this example 

problem. 

The shape of the composite plates is a square with the edges of 100 [mm] and the 

thickness is 1.0 [mm]. The peridynamics particles are equally spaced in the horizontal and 

vertical directions. The distance of the neighbor particles is 1.0 [mm] and total number of 

particles is 10000. The horizon size is defined as  3.0 mm  . The non-ordinary state-based 

peridynamics is stabilized by following the procedure shown in section 4.3 and the stabilization 

parameter 1.0G   is used. For failure prediction, the stretch at a failure of the bond is given as 

1.5f  . In other words, if 
fY ξ ξ , then the bond ξ  is broken. 

In terms of the boundary conditions, the bottom edge of the composite plate is fixed and 

the uniaxial tension is given by applying the constant velocity  10 mm sv  to the top edge. For 

the time integration, the velocity Verlet scheme is used with the time step size of  61.0 s . 

Figure 37 shows an example of crack propagation. We observe that the crack avoids the 

inclusions in this example. The stress-strain curves of composite materials are plotted in Figure 

38. All the paths of stress-strain curve are almost same because the volume ratio of inclusions is 

constant in all composite models. On the other hands, Figure 39 shows the relationship between 

tensile strength and radius of inclusions. The composite with smaller inclusion has higher 
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strength. This is because the smaller inclusion composite is more uniform than the composite 

with larger inclusion and it is known that generally a failure happens at the weakest point in the 

material. 

 
 R6.0_N12_1 R6.0_N12_2 R6.0_N12_3 

 

   
 R4.2_N24_1 R4.2_N24_2 R4.2_N24_3 

 

   
 R3.5_N36_1 R3.5_N36_2 R3.5_N36_3 

 

   
 R3.0_N48_1 R3.0_N48_2 R3.0_N48_3 

 

Figure 36. PD Models of 2D composite plate with circular inclusions. 
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 (a) Crack length 50 [mm]. (b) Crack length 100 [mm]. 

Figure 37. An example of crack propagation in a composite with circular inclusions. 

(N36_R3.5_3). 

 

 

Figure 38. Stress-strain curves of composites with circular inclusions. 
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Figure 39. The relationships between tensile strength and radius of inclusions in a 

composite. 

 

6.4.2 2D composite plate with fibers 

 

The fracture simulations of the composite material with fibers are demonstrated in this 

subsection. The 2D plate is reinforced by eight fibers as shown in Figure 40. The materials of the 

matrix and fiber part are same as those of matrix and inclusions of the composite in subsection 

6.4.1. The critical stretch of the bonds between particles in the matrix is defined as 1.5MM

f  . In 

this example, the breakage of the bond at interface of the materials is also allowed. The 

simulations are conducted with two different interfacial critical stretch 1.5M I

f   and 

1.05M I

f  . The other parameters with regard to the model, boundary condition and computation 

are same as those of subsection 6.4.1. 

Figure 41 shows the crack initiation and propagation of the fiber composite with strong 

interfacial strength. First, the crack initiates at the point between the ends of fibers. Then, the 
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crack propagates while avoiding the fibers. The result of weak interfacial strength case is shown 

in Figure 42. In this case, the crack initiation happens at the end of fiber and the separation of the 

matrix and fibers can be observed after crack propagation. 

 

Figure 40. The PD model of 2D composite plate with fibers. 

 

 
 (a) Crack initiation. (b) Failure. 

Figure 41. Crack initiation and propagation of the composite with fibers. (The case of 

strong interfacial strength 1.5M I

f  ). 
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 (a) Crack initiation. (b) Failure. 

Figure 42. Crack initiation and propagation of the composite with fibers. (The case of weak 

interfacial strength 1.05M I

f  ). 

 

6.5 Multiscale crack propagation simulation by coupling non-ordinary state-based 

peridynamics coupling with space-time FEM 

 

6.5.1 The setup of the multiscale crack propagation simulation 

 

In this section, numerical examples of the coupled space time/NOPD simulation are 

demonstrated. Crack propagation of the thin glass plate with an initial crack is considered. The 

space-time FEM with discontinuity enrichment is applied for whole domain to predict the 

deformation of the global region. Also, the NOPD region is spanned around the crack tip to 

simulate crack propagation. In this case, linear elastic constitutive model is assumed. For NOPD, 

the theory and implementation described in section 4.1 and 4.2 are applied. The space-time FEM 

and NOPD frameworks are combined by following coupling procedure in section 5.1. 

Figure 43 shows the dimension of glass plate with an initial crack. The plate is a square 

with  90 mm  edges. It has a horizontal initial crack of  20 mm  at the middle of the left edge. 
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The thickness is set as  1 mm  and 2D plane stress condition is assumed in the computation. The 

bottom edge is fixed in both horizontal and vertical direction. Several loading conditions are 

applied on the top edge and crack propagation is predicted for each loading condition. 

For the material, the linear elastic constitutive model is assumed in which Young’s 

modulus  74 GPaE  , Poisson’s ratio 0.22  , and the mass density 32480 kg m      are 

chosen from typical parameters of glassy materials. 

The initial configuration of coupling model of space-time FEM and peridynamics is 

shown in Figure 44. The global domain is discretized by a structured mesh with 81 elements and 

100 nodes in space. The dashed line and triangle nodes indicate the initial crack and nodes with 

Heaviside step function enrichment. As a result, there are two enriched elements and six 

additional nodes initially. In addition, each coupled element has 12 12 144   PD particles, so 

that the particle spacing in peridynamics is 5 6p   0.83 mm . The radius of horizon is 

2 p    in this case. The influence function is defined as the unity so that   1 ξ . The stretch 

at the failure of the bond is defined as 1.0005f  . 

As explained in section 5.1, crack in the global domain is represented by enrichment 

shape functions in the extended space-time FEM and crack propagation is computed by 

peridynamics simulation, with boundary conditions obtained from the space-time FEM result. If 

crack passes through an FEM element, the element is enriched and peridynamics coupling 

domain moves along with crack tip. 

In non-ordinary state-based peridynamics computation, the stabilization method shown in 

section 4.3 is applied. The stabilization constant in equation (186) is given as 0.5G  . 
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Figure 43. The dimension of thin glass plate with the initial crack at the middle. (Thickness 

is  1 mm ). 

 

 

Figure 44. Initial configuration of FE mesh, peridynamics particles, crack and enriched 

nodes. 
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The time steps of space-time FEM and peridynamics is given as  51.0 sSTt    and

 91.0 sPDt   . Due to the large differences in the time step, the computational time of the 

space-time FEM part is quite small in the total computation and it is expected that we can 

drastically reduce computational cost by using this coupling method. 

For verification, the result is compared with full scale NOPD simulation. Figure 45 shows 

the initial configuration of full scale NOPD model. There are totally 108 108 11664   

particles. All other parameters are same as peridynamics part in the coupling code so that 

5 6p   0.83 mm , 2 p   ,   1 ξ , 1.0005f  , 0.5G   and  91.0 st   . 

 

 

Figure 45. Initial configuration of full peridynamics model. 
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6.5.2 Multiscale crack propagation simulation results 

 

The crack propagation of glass plate is simulated for two loading cases. In the first case, 

the constant tensile stress rate  100 MPa sy   is applied on the top edge of the plate shown in 

Figure 43.  This loading condition is expected to result in a horizontally opening crack, which is 

known as mode I crack. 

Figure 46 shows the crack propagation process of the coupling simulation. It can be seen 

that the peridynamics coupling region moves along the crack tip and the number of enriched 

nodes (denoted by triangular nodes) increases. The crack propagation process of full 

peridynamics simulation is shown in Figure 47. Similar to the coupling simulation, the crack 

propagates horizontally in full peridynamics. Figure 48 shows the comparison of the crack path 

between coupling simulation and full peridynamics. In mode I case, the crack path becomes 

horizontally and the both simulation shows good agreement. 

Figure 49 illustrates the comparison of crack length history. At first, the crack length 

values of both simulation rise at almost same time. However, after that, the result of coupling 

simulation shows a little delay. In the coupling simulation, a small growth of the crack in an 

element does not affect the FEM part and the boundary condition for the peridynamics region 

because the new enrichment is done only when the crack grows over the element. On the other 

hand, the bond breaking immediately affects for the whole domain in full peridynamics 

simulation. In this case, the result may be improved by, for example, refining the mesh structure 

of FEM domain or using tip enrichment that can consider the singular stress field around crack 

tip [45]. Based on the results presented in this section, it can be concluded that the coupled 

simulation of space-time FEM and non-ordinary state-based peridynamics shows good 
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agreement with the full peridynamics result in case of mode I fracture problem. 

In the second case, the constant shear stress rate  100 MPa sxy    is applied on the top 

edge of the plate shown in Figure 43. The displacement of the top edge is enforced to be zero in 

y-direction. This situation is referred to as crack sliding mode or mode II crack. 

Figure 50 shows the crack propagating process of the coupling simulation. Because of 

shear loading, the crack grows in a diagonal direction. The peridynamics coupling region moves 

and enriched element is added along with the crack tip. The crack propagation process of full 

NOPD simulation is shown in Figure 51. Similar to the coupled simulation, the crack propagates 

diagonally in full peridynamics. Figure 52 shows the comparison of the crack path between 

coupled simulation and full peridynamics. In this mode II case, as we saw, the crack path 

becomes diagonal and the angles of the crack direction are almost the same. 

Figure 53 illustrates the comparison of crack length history. In this case, the crack grows 

a little faster in the coupling simulation. This difference seems to be due to the same reason as 

discussed in the case of mode I. Similarly, it can be improved by refining the FE mesh or 

introducing the tip enrichment. In addition, vibrations of particles in coupled simulation have 

been observed in both mode I and II cases. This phenomenon comes from the stress wave 

reflection in the small coupling domain. Boundary condition treatments like matching boundary 

condition (MBC) [73, 74] and perfect matched layer (PML) [75] can be implemented to 

eliminate the artificial reflections. 
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   (a)  0.043455 st  .     (b)  0.043465 st  . 

 

   

  (c)  0.043474 st  .     (d)  0.043482 st  . 

Figure 46. Crack propagation of coupling simulation of mode I (displacement scaling factor 

is 500). 
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  (a)  0.029212 st  .     (b)  0.029226 st  . 

 

     

  (c)  0.029240 st  .     (d)  0.029256 st  . 

Figure 47. Crack propagation of full peridynamics simulation of mode I (displacement 

scaling factor is 500). 
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Figure 48. Crack path of mode I. 

 

 

Figure 49. Crack length history of mode I. 
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  (a)  0.056704 st  .     (b)  0.056712 st  . 

 

     

  (c)  0.056716 st  .     (d)  0.056723 st  . 

Figure 50. Crack propagation of coupling simulation of mode II (displacement scaling 

factor is 500). 
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  (a)  0.071176 st  .     (b)  0.071180 st  . 

 

     

  (c)  0.071185 st  .     (d)  0.071188 st  . 

Figure 51. Crack propagation of full peridynamics simulation of mode II (displacement 

scaling factor is 500). 
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Figure 52. Crack path of mode II. 

 

 

Figure 53. Crack length history of mode II. 
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6.6 Non-ordinary state-based peridynamics with the time integration based on time 

discontinuous Galerkin formulation. 

 

6.6.1 1D bar subjected to step loading 

 

In this section, we demonstrate the performance of non-ordinary state-based 

peridynamics with the time integration based on time discontinuous Galerkin formulation by 

following the theory shown in section 5.2. The deformation of 1D bar with step loading is 

simulated. The dimension of the bar and loading condition are shown in Figure 54. The material 

of the bar is assumed to be linear elastic. The Young’ modulus and mass density is given as 

 200 GPaE   and 37860 kg m     . The evenly spaced 101 particles are placed in 1D non-

ordinary state-based peridynamics model and the size of horizon is one particle distance. For 

comparison, the time integration of non-ordinary state-based peridynamics is done by the 

velocity Verlet and time discontinuous Galerkin formulation. For the velocity Verlet, the time 

step is determined as  71.0 10 sdt    based on Courant-Friedrichs-Lewy condition [64]. For 

time discontinuous Galerkin approach, the time step is set as  61.0 10 sdt   . 

 

 

Figure 54. 1D bar subjected to step loading. 

 

The displacement history of the middle point of the bar is shown in Figure 55. The results 

are compared with the theoretical solution and both results show good agreement. At the peak of 
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the displacement, some oscillation can be observed in both the velocity Verlet and time 

discontinuous Galerkin method. However, it can be seen that the time discontinuous Galerkin 

result shows smaller oscillation even it uses larger time increment. Through this simple example, 

the advantage of the coupling of non-ordinary state-based peridynamics and time discontinuous 

Galerkin formulation is shown.  

 

 

Figure 55. The displacement history at the middle of the bar. 
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CHAPTER 7 

  
CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

 

In summary, this dissertation presents two key contributions to the field of failure 

prediction in solids. The first is the development of nonlinear space-time FEM based on time 

discontinuous Galerkin formulation. The second is a multiscale fracture simulation approach 

established by coupling space-time FEM with non-ordinary state-based peridynamics. 

The major goal for developing nonlinear space-time FEM is to capture failure and 

responses in nonlinear solids. After an outline of the formulation, its robustness is demonstrated 

in the cases of modified Mooney-Rivlin hyperelastic and finite strain viscoelastic constitutive 

models. Based on these implementations, a computational framework for fatigue life prediction 

in rubbery material based on the integration of nonlinear space-time FEM employing TDG 

formulation with continuum damage constitutive model is presented. This development is 

motivated by the challenge associated with traditional FEM in capturing cyclic failure that is 

coupled with finite deformation in nonlinear solids. The unique capability of space-time FEM in 

discretizing in the temporal domain effectively captures the temporal nonlinearities associated 

with the structure/material response. Coupling with the hyperelastic/CDM constitutive model 

further ensures that the basic mechanisms of progressive damage evolution due to the cyclic 

loads are properly accounted for. Verification and validation of the proposed method is carried 

out via two steps: First of all, comparisons are made to results obtained from both explicit and 

implicit time integration algorithms that are typically employed in conventional FEM 

approaches. It has been demonstrated that space-time FEM approach is accurate and employs 
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time step size much larger than those used in explicit time integration. While implicit time 

integration algorithm is capable of handling time step sizes of the same orders of magnitude, it 

fails to provide accurate predictions of the nonlinear dynamics response. Furthermore, lack of 

interpolation in the temporal domain renders both explicit and implicit time integration 

inappropriate for applications that involve both temporal nonlinearities and large number of load 

cycles. The second part of the verification and validation focuses on the application to fatigue 

life predictions in rubbery materials. A CDM model with calibrated material parameters has been 

established for synthetic rubber based on comparison to the experiments. Life predictions on 

single notched specimens are modelled with this calibrated damage model and nonlinear space-

time FEM. The simulation prediction yields good agreement with the fatigue experiments on 

single notched specimen of the same configurations. The capability of the method in modeling 

cyclic failure coupled with both geometric and material nonlinearity is thus demonstrated.  

The major goal for coupling space-time FEM with NOPD is to improve the predicative 

capability for dynamic fracture problems by integrating the multi-temporal scale approximation 

with a nonlocal meshfree-based approach. More specifically, the NOPD region is prescribed in 

the neighborhood of a crack tip and debonding from NOPD simulation is used to initiate and 

propagate the crack. With the evolving crack front, the NOPD simulation region is dynamically 

adjusted to minimize the computational expense in tracking the crack tip. Based on the NOPD 

representation of the crack, enrichment function employing discontinuous representations are 

established for elements that are completely breached by the crack. Numerical performance of 

the coupling space-time FEM/NOPD simulation is demonstrated through solving crack 

propagation problems of glass plate with an initial crack for both the mode I and II cracks. 
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Verification of the numerical result is done by comparing with full peridynamics simulation. It 

has been shown that the both coupling prediction and full scale peridynamics results agree with 

each other. The computational cost of multi scale coupling simulation, however, is much less 

than that of full scale peridynamics. 

 

7.2 Future work 

 

Future efforts are directed towards in several directions: First of all, we propose that the 

temporal resolutions in nonlinear space-time FEM can be further enhanced by introducing 

enrichments [39] based on physical insights into the applications. In this work, the enrichment 

has been applied for hyperelastic constitutive model. This implementation can be extended to 

damage model and shall further improve the accuracy as well as efficiency in handling 

applications with large number of load cycles. Secondly, it is well known that failure in many 

engineering material systems are microstructural sensitive. Therefore, the continuum damage 

model can be extended to incorporate microstructure mechanisms through either a hierarchical or 

concurrent multiscale approach to fully capture the multiple length scales that are associated with 

material failure at extended temporal scale. Finally, the multiscale failure prediction based on 

coupling space-time FEM with peridynamics can be extended to nonlinear material fatigue 

problem by combining with nonlinear space-time FEM framework also shown in this work. 
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