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The processes eþe− → K0
SK

�π∓π0 and eþe− → K0
SK

�π∓η are studied over a continuum of energies
from threshold to 4 GeV with the initial-state photon radiation method. Using 454 fb−1 of data collected
with the BABAR detector at the SLAC PEP-II storage ring, the first measurements of the cross sections for
these processes are obtained. The intermediate resonance structures from K�0ðKπÞ0, K�ð892Þ�ðKπÞ∓, and
K0

SK
�ρ∓ are studied. The J=ψ is observed in all of these channels, and corresponding branching fractions

are measured.

DOI: 10.1103/PhysRevD.95.092005

I. INTRODUCTION

Measurements of low-energy eþe− hadronic cross sec-
tions are important ingredients for the standard model
prediction of the muon anomalous magnetic moment [1]
and provide a wealth of spectroscopic information. At an
eþe− collider, a continuous spectrum of collision energies
below the nominal eþe− c.m. energy can be attained by
selecting events with initial-state radiation (ISR), as pro-
posed in Ref. [2] and discussed in Refs. [3–5].
At energies below a few GeV, individual exclusive final

statesmust be studied in order to understand the experimental
acceptance. The cross section σγf for an incoming eþe− pair
colliding at a c.m. energy

ffiffiffi
s

p
to radiate a photon of energyEγ

and then annihilate into a specific final state f is related to the
corresponding direct eþe− → f cross section σf by

dσγfðs; xÞ
dx

¼ Wðs; xÞσfðEc:m:Þ; ð1Þ

where x ¼ 2Eγ=
ffiffiffi
s

p
and Ec:m: ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1 − xÞp

is the effective
center-of-mass energy at which the state f is produced. The
radiator function Wðs; xÞ, or probability density for photon
emission, can be evaluated to better than 1% accuracy [6].
Previously, we presented measurements of low-energy

cross sections for many exclusive hadronic reactions using
the ISR method, including a number of final states with two
kaons in the final state, such as f ¼ KþK− [7],KþK−πþπ−

[8], K0
SK

0
L, K

0
SK

0
Lπ

þπ−, K0
SK

0
Sπ

þπ− and K0
SK

0
SK

þK− [9],
K0

SK
�π∓ [10], K0

SK
0
Lπ

0, and K0
SK

0
Lπ

0π0 [11]. Here, we

extend our program and report measurements of the
eþe− → K0

SK
�π∓π0 and K0

SK
�π∓η channels, including

studies of the intermediate resonant substructure.

II. BABAR DETECTOR AND DATA SET

The results presented in this analysis are based on a
sample of eþe− annihilation data collected at Ec:m: ¼
10.58 GeV with the BABAR detector [12] at the SLAC
PEP-II2 storage ring and correspond to an integrated
luminosity of 454 fb−1 [13].
Charged-particle momenta are measured in a tracking

system consisting of a five-layer double-sided silicon vertex
tracker (SVT) and a 40-layer central drift chamber (DCH),
immersed in a 1.5 T axial magnetic field. An internally
reflecting ring-imaging Cherenkov detector (DIRC) with
fused silica radiators provides charged-particle identification
(PID). A CsI electromagnetic calorimeter (EMC) is used to
detect and identify photons and electrons. Muons are
identified in the instrumented magnetic flux-return system.
Charged pion and kaon candidates are selected using a

likelihood function based on the specific ionization in
the DCH and SVT and the Cherenkov angle measured in
the DIRC. Photon candidates are defined as clusters in the
EMC that have a shape consistent with an electromagnetic
shower and no associated charged track.
To study the signal efficiency as well as backgrounds

from other ISR processes, a special package of Monte Carlo
(MC) simulation programs for radiative processes has been
developed. Algorithms for generating hadronic final states
via ISR are derived from Ref. [14]. Multiple soft-photon
emission from initial-state charged particles is implemented
by means of the structure-function technique [15,16], while
extra photon radiation from final-state particles is simulated
with the PHOTOS [17] package.
Large samples of signal eþe− → K0

SK
�π∓π0γ and

K0
SK

�π∓ηγ events are generated with this program, as
are samples of events from the principal ISR background
sources, eþe− → K0

SK
�π∓γ and eþe− → K0

SK
�π∓π0π0γ.
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The K0
SK

�π∓γ generator is tuned to reproduce our mea-
sured [10] Ec:m: dependence and resonant substructure. The
other modes use smoothEc:m: dependences and phase space
for the final-state hadrons. The signal and K0

SK
�π∓

generators reproduce the kaon and pion kinematic distri-
butions observed in the data, and we study the effect of
resonances on the efficiency in each case below. In addition
to the ISR sources, background arises from the non-ISR
processes eþe− → qq̄ and τþτ−. These events are simu-
lated with the JETSET [18] and KORALB [19] event
generators, respectively. All simulated events are processed
through a detector simulation based on the GEANT4 [20]
package and are analyzed in the same manner as the data.

III. EVENT SELECTION AND KINEMATICS

We require events to contain at least three photon
candidates and at least four charged tracks, including at
least one K0

S → πþπ− candidate.
Photon candidates must lie within the acceptance of the

EMC, defined by 0.35 < θ < 2.4 radians, where θ is the
polar angle relative to the e− beam direction. The photon
candidate with highest energy is assumed to be the ISR
photon and is required to have energy E� > 3 GeV, where
the asterisk indicates a quantity evaluated in the eþe− c.m.
frame. To reduce background from machine-induced soft
photons, at least one additional photon candidate must have
E� > 100 MeV, and another must have E� > 60 MeV.
We calculate the invariant mass mγγ of each pair of
photon candidates and consider a pair to be a π0

candidate if 0.09 < mγγ < 0.18 GeV=c2 and an η candidate
if 0.47 < mγγ < 0.62 GeV=c2. Events with at least one π0

or η candidate are retained.
We require at least two charged tracks in an event, of

opposite charge, one identified as a kaon and one as a pion,
that appear in the polar angle range 0.45 < θ < 2.40
radians. Each track must extrapolate to within 0.25 cm
of the nominal eþe− collision point in the plane
perpendicular to the beam axis and to within 3 cm along
the axis.
The K0

S candidates are reconstructed in the πþπ−
decay mode from pairs of oppositely charged tracks not
identified as electrons. They must have an invariant mass
within 15 MeV=c2 of the nominal K0

S mass and a well-
reconstructed vertex at least 2 mm away from the beam
axis. The angle θK0

S
between reconstructed total momentum

of these tracks and the line joining their vertex with the
primary vertex position must satisfy cosðθK0

S
Þ > 0.99.

Each of these events is subjected to a set of five-
constraint (5C) kinematic fits, in which the four-momentum
of theK0

SK
�π∓γISRγγ system is required to equal that of the

initial eþe− system and the invariant mass of the two non-
ISR photon candidates is constrained to the nominal π0 or η
mass. The fits employ the full covariance matrices and
provide χ2 values and improved determinations of the

particle momenta and angles, which are used in the
subsequent analysis. Fits are performed for every π0 and
η candidate in the event, and we retain the combinations
giving the lowest values of χ2K0

S K
�π∓π0 and χ2K0

S K
�π∓η.

IV. K0
SK

�π∓π0 FINAL STATE

A. Event selection

The χ2K0
SK

�π∓π0 distribution for the selected eþe− →
K0

SK
�π∓π0γ events is shown in Fig. 1, after subtraction of

the small background from qq̄ events, which is discussed
below and shown in the figure as the cross-hatched
histogram. The corresponding distribution for simulated,
selected signal events is shown as the open histogram. It is
normalized to the data integrated over the first five bins,
where the lowest ISR background contributions are
expected. These distributions are broader than a typical
5C χ2 distribution because of multiple soft-photon emission
from the initial state, which is not taken into account in the
fit but is present in both the data and simulation. Previous
studies have found these effect to be well simulated, and we
assign a systematic uncertainty in Sec. IV B. The remaining
differences can be explained by ISR backgrounds, which
we discuss in this subsection.
Signal event candidates are selected by requiring

χ2K0
SK

�π∓π0 < 20. Events with 20 < χ2K0
SK

�π∓π0 < 40 are used

as a control sample to evaluate background. The signal and
control samples contain 6859 (5656) and 1257(870)
experimental (simulation) events, respectively.
Figure 2(a) compares the γγ invariant-mass distribution

of the π0 candidate for data events in the signal region
with the prediction of the signal-event simulation. The π0

1

10

10 2

10 3

10 20 30 40 50 60

Signal Control
region region

χ2(KSKππ0)

E
ve

nt
s/

U
ni

tχ
2

FIG. 1. Distribution of χ2 from the five-constraint fit for
K0

SK
�π∓π0γ candidates in the data (points). The open and

cross-hatched histograms are the distributions for simulated
signal and qq̄ background events, respectively, normalized as
described in the text. The signal and control regions are indicated.
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peak in the simulation is shifted with respect to the
data by −0.6� 0.2 MeV=c2, while the standard deviations
are consistent with each other (σDATA ¼ 6.65 �
0.14 MeV=c2 and σMC ¼ 6.70� 0.12 MeV=c2).
The corresponding distributions of the πþπ− invariant

mass of the K0
S candidate are shown in Fig. 2(b). In this

case, a shift in the peak values of 0.23� 0.05 MeV=c2

is observed between data and simulation. The widths
are found to be somewhat different: σDATA ¼ 2.40�
0.03 MeV=c2 and σMC ¼ 2.30� 0.03 MeV=c2. Our selec-
tion criteria on the π0 and K0

S masses are unrestrictive
enough to ensure the shifts do not affect the result.
The distribution of the invariant mass of the final-state

hadronic system for all data events in the signal region is
shown as the open histogram in Fig. 3. A narrow peak due
to J=ψ → K0

SK
�π∓π0 decays is clearly visible.

Cross sections for backgrounds from qq̄ processes are
poorly known. In simulation, the dominant such process is

eþe− → K0
SK

�π∓π0π0, in which an energetic photon from
one of the π0 decays is erroneously taken as the ISR photon.
These events have kinematic properties similar to signal
events and yield a χ2 distribution peaked at low values. This
component can be evaluated from the data, since such
events produce a peak at the π0 invariant mass when the
photon erroneously identified as the ISR photon is com-
bined with another photon in the event. Following the
procedure described in Ref. [10], we use the MC mass
distribution and normalize it to the data in the region
2 < m < 4 GeV, where the π0 peak is prominent. A
consistent normalization factor is obtained from the
4–6 GeV=c2 region. For lower masses, we see no signifi-
cant π0 peak in the data, and we use the very small MC
prediction with the same normalization. The normalized
contribution of the qq̄ background to the distributions of
Figs. 1 and 3 is shown by the cross-hatched histograms. For
subsequent distributions, the qq̄ background is subtracted.
The remaining background arises from ISR processes,

dominated by eþe− → K0
SK

�π∓γ events combined with
random photons and by eþe− → K0

SK
�π∓π0π0γ events.

These have broad distributions in χ2 and can be estimated
from the control region of the χ2 distribution. The points
with errors in Fig. 4 show the difference between the data
and the normalized simulated χ2K0

SK
�π∓π0 distributions of

Fig. 1. Assuming good signal simulation and low ISR
background at low χ2, this gives an estimate of the shape
of the distribution for the total remaining background.
The simulation of the ISR K0

SK
�π∓ background shows a

consistent shape and, when normalized to our previous
measurement [10], accounts for about 10% of the entries.
The simulated ISR K0

SK
�π∓π0π0 background also has a
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FIG. 2. The (a) γγ and (b) πþπ− invariant-mass distributions of
the π0 and K0

S candidates, respectively, in K0
SK

�π∓π0 events in
the χ2K0

SK
�π∓π0 signal region, for the selected data (points) and the

signal simulation (histograms).
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for data events in the K0
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�π∓π0 signal region. The hatched

and cross-hatched distributions show the estimated backgrounds
evaluated from ISR and qq̄ events, respectively.
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SK
�π∓γ and eþe− →
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�π∓π0π0γ (open histogram) described in the text.
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consistent shape and is expected to be much larger.
Normalizing to a cross section nine times larger and adding
the ISR K0

SK
�π∓ prediction, we obtain the simulated

distribution shown as the histogram in Fig. 4. This
demonstrates sufficient understanding of the shape of the
background distribution, and we assume that all remaining
background has the simulated shape. The genuine signal
and the ISR background in any distribution other than the
χ2 are estimated bin by bin using the numbers of selected
events in that bin in the signal and control regions, N1

and N2, after subtraction of the respective qq̄ backgrounds.
We take N1 (N2) to be the sum of the numbers of genuine
signal N1S (N2S) and ISR background events N1B (N2B) in
the signal (control) region. From the signal simulation,
we obtain N1S=N2S ¼ α ¼ 6.59� 0.24, and from the ISR
background simulation, N1B=N2B ¼ β ¼ 0.49� 0.07.
The observed values of N1 and N2 are 6509� 81 and
1146� 34, respectively. We then solve for

N1S ¼ α ·
N1 − β · N2

α − β
ð2Þ

and N1B in that bin.
The ISR background evaluated in this manner is shown

by the hatched histogram in Fig. 3.
We find N1S ¼ 6430� 90, where the uncertainty is

statistical. The systematic uncertainty in the qq̄ background
estimate is taken to be 50%, to account for the limited
knowledge of the qq̄ cross section. The systematic uncer-
tainty in the ISR background estimate is, more conserva-
tively, taken to be 100%. The total systematic uncertainty is
evaluated in three regions of Ec:m:. This yields relative
uncertainties in N1S of 2.5% for Ec:m: < 2 GeV, 6.25% for
2 < Ec:m: < 3 GeV, and 10% for Ec:m: > 3 GeV.

B. Detection efficiency

The reconstruction and selection efficiency for signal
events is determined from the signal simulation, corrected
for known differences with respect to data. The efficiencies
for charged-track, photon, and K0

S reconstruction depend
on the momentum and polar angle of the particle. The
distributions of these variables are well described by the
simulation for all relevant particles. The total event detec-
tion efficiency from the simulation, including the K0

S →
πþπ− branching fraction of 0.692 [21], is shown as a
function of Ec:m: in Fig. 5. A smooth parametrization,
shown by the solid line, is used.
The π0 detection efficiency was studied in our previous

analysis [22] of eþe− → ωγ → πþπ−π0γ events, yielding
corrections to the simulation as a function of the π0

momentum and polar angle. Applying these event by event
to the signal simulation yields an overall correction of
þ2� 1%, independent of Ec:m:. Similarly, we incorporate
corrections to the charged-track and K0

S reconstruction
efficiencies, making use of the results found in our previous

studies of eþe− → πþπ−πþπ−γ [23] and eþe− → K0
SK

0
Lγ

[9] events, respectively, where the latter corrections also
depend on the flight length of the K0

S meson transverse to
the beam direction. Corrections ofþ0.8� 1.0% for each of
the π� and K�, and þ1.1� 1.0% for the K0

S, are derived,
again independent of Ec:m:. Similar corrections to the pion
and kaon identification efficiencies amount to 0� 2%.
We study a possible data-MC difference in the shape of

the χ2 distribution using the J=ψ signal, which has
negligible non-ISR background. The increase in the J=ψ
yield when loosening the χ2 requirement from 20 to 200 is
consistent with the expectation from simulation, and we
estimate a correction of þ3.7� 4.6%.
As a cross-check, using a fast simulation of the detector

response for computational simplicity, we compare the
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0.03
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ε

FIG. 5. Detection efficiency for eþe− → K0
SK

�π∓π0 events
as a function of the hadronic invariant mass Ec:m: ¼
mðK0

SK
�π∓π0Þ. The solid curve shows a fitted parametrization.

TABLE I. Summary of the corrections to and systematic
uncertainties in the eþe− → K0

SK
�π∓π0 cross section.

Source Correction (%)
Systematic

uncertainty (%)

π0 reconstruction þ2.0 1.0
K�, π� reconstruction þ1.6 2.0
K0

S reconstruction þ1.1 1.0
PID efficiency 0.0 2.0
χ2 selection þ3.7 4.6
Background subtraction — 2.5, < 2.0 GeV

4.2, 2.0–3.0 GeV
10.0, > 3.0 GeV

Model acceptance — 0.5
Luminosity and
radiative corrections

— 1.4

Total þ8.6 6.3, < 2.0 GeV
7.1, 2.0–3.0 GeV
11.5, > 3.0 GeV
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results obtained for signal events generated with a phase-
space model to those obtained for signal events generated
with intermediate K0

Sπ
∓ resonances, specifically eþe− →

K�ð892Þ�K0
Sπ

∓ and K�0K�π∓. No difference in efficiency
larger than 0.5% is seen, and we assign a systematic
uncertainty of 0.5% to account both for possible model
dependence and for the choice of parametrization of the
efficiency as a function of Ec:m:. These corrections and
uncertainties are listed in Table I. The total correction
is þ8.6%.

C. Cross section for e + e− → K0
SK

�π∓π0

The eþe− → K0
SK

�π∓π0 cross section is obtained from

σðEc:m:Þ ¼
dNK0

SK
�π∓π0ðEc:m:Þ

dLðEc:m:ÞϵðEc:m:ÞRðEc:m:Þ
; ð3Þ

where Ec:m: is the invariant mass of the K0
SK

�π∓π0 system,
dNK0

SK
�π∓π0 is the number of signal K0

SK
�π∓π0 events in

the interval dEc:m:, dLðEc:m:Þ is the differential luminosity,
ϵðEc:m:Þ is the corrected efficiency discussed in Sec. IV B,
and RðEc:m:Þ is the correction to account for additional soft
radiative photon emission from the initial state.
The differential luminosity dLðmÞ is calculated using the

total PEP-II integrated luminosity L ¼ 454 fb−1 and the
probability density function for ISR photon emission. To
first order, it can be written as

dL
dm

¼ α

πx

�
ð2 − 2xþ x2Þ log 1þ C

1 − C
− x2C

�
2m
s

L: ð4Þ

Here, m ¼ mðK0
SK

�π∓π0Þ, x ¼ 1 −m2=s, C ¼ cos θ�0,
and θ�0 defines the acceptance of the analysis in the
polar angle of the ISR photon in the eþe− c.m. frame,
θ�0 < θ�γ < 180o − θ�0. Here, θ

�
0 ¼ 20°.

The radiative correction RðEc:m:Þ is determined using
generator-level MC (without simulation of the detector
response) as the ratio of theK0

SK
�π∓π0 spectrum with soft-

photon emission to that at the Born level. We determine
R ¼ 1.0029� 0.0065, independent of Ec:m:. The combined
systematic uncertainty in the luminosity and radiative
correction is estimated to be 1.4%.
The fully corrected eþe− → K0

SK
�π∓π0 cross section is

shown in Fig. 6 and listed in Table II, with statistical
uncertainties. The relative systematic uncertainties are
summarized in Table I; their total ranges from 6.2% for
Ec:m: < 2 GeV to 11.6% for Ec:m: > 3 GeV.

D. Substructure in the K0
SK

�π∓π0 final state

Previously, we studied single K�ð892Þ production in the
processes eþe− → K0

SK
�π∓ and KþK−π0 [10] and double

K�ð892Þ production, as well as ϕ, ρ, and f0 production, in
eþe− → KþK−πþπ−, KþK−π0π0 [8], and K0

SK
0
Lπ

þπ− [9].
Here, we expect single K�ð892Þ, double K�ð892Þ, ρ, and
possibly other resonance contributions, but the statistical
precision of the data sample is insufficient for competitive
measurements of such processes. Since it is important to
confirm, as far as possible, resonant cross sections mea-
sured in different final states and to verify expected isospin
relations, we perform a simple study of those resonant
subprocesses accessible with our data.
Decays of the J=ψ are discussed below (Sec. VI), and for

the study presented in this section, we exclude the region
3.0 < Ec:m: < 3.2 GeV. Figure 7(a) shows a scatter plot of
the K0

Sπ
0 vs K�π∓ invariant masses in the selected data

sample, corrected for backgrounds as described above,while
Fig. 7(b) shows theK�π0 vsK0

S π
∓ masses. Clear signals for

charged and neutral K�ð892Þ0 states are seen. Figure 8(a) is
the projection of Fig. 7(a) onto the vertical axis and
shows a large K�ð892Þ0 peak as well as possible structure
near 1.43 GeV=c2. This could arise from the K�

2ð1430Þ or
K�

0ð1430Þ resonances, or any combination.We cannot study
this structure in detail but must take it into account in any fit.
We fit this distribution with a sum of two incoherent

resonances and a nonresonant (NR) component. The
K�ð892Þ0 is described by a relativistic P-wave Breit-
Wigner (BW) function with a threshold term, with mass
and width fixed to the world-average values [21]. The NR
function is the product of a fifth-order polynomial in the
inverse of the mass and an exponential cutoff at threshold.
The second peak is described by a relativistic D- or S-wave
BW with parameters fixed to the nominal values [21] for
K�

2ð1430Þ or K�
0ð1430Þ. The narrower K�

2ð1430Þ gives
better fits here and in most cases below, so we use it
everywhere. The result of the fit is shown as the line in
Fig. 8(a), with the NR component indicated by the
hatched area.
The fit yields 1671� 60 K�ð892Þ0K�π∓ events and

85� 24 K�
2ð1430Þ⋆K�π∓ events, where the uncertainties
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FIG. 6. Cross section for the process eþe− → K0
SK

�π∓π0. The
uncertainties are statistical.
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are statistical only. We do not claim observation of any
particular state near 1.43 GeV=c2, but we quote a generic
number of events from this fit and those below for
completeness. Some of the K�0ð892ÞK�π∓ events are
produced through the K�0ð892ÞK̄ �0 channel, which we
study below. In order to avoid double counting, we subtract
the latter yield to obtain 1533� 60 quasi-three-body
K�ð892Þ0K�π∓ events.
The projection of Fig. 7(a) onto the horizontal axis

is shown in Fig. 8(b), along with the results of a corre-
sponding fit, which, after K�0ð892ÞK̄ �0ð892Þ subtraction,
yields 454�60 K�ð892Þ0K0

Sπ
0 and 20�25 K�

2ð1430ÞK0
Sπ

0

events, respectively.

TABLE II. Measurements of the eþe− → K0
SK

�π∓π0 cross section vs Ec:m: ¼ mðK0
SK

�π∓π0Þ. The uncertainties are statistical only;
systematic uncertainties are given in Table I.

Ec:m: (GeV) σ (nb) Ec:m: (GeV) σ (nb) Ec:m: (GeV) σ (nb) Ec:m: (GeV) σ (nb) Ec:m: (GeV) σ (nb)

1.51 0.05� 0.03 2.01 1.65� 0.16 2.51 0.65� 0.09 3.01 0.47� 0.07 3.61 0.14� 0.03
1.53 0.05� 0.03 2.03 1.67� 0.16 2.53 0.77� 0.10 3.03 0.26� 0.05 3.63 0.07� 0.02
1.55 0.02� 0.02 2.05 1.62� 0.16 2.55 0.83� 0.10 3.05 0.33� 0.06 3.65 0.15� 0.04
1.57 0.06� 0.04 2.07 1.91� 0.17 2.57 0.71� 0.09 3.07 0.39� 0.06 3.67 0.11� 0.03
1.59 0.19� 0.06 2.09 1.44� 0.15 2.59 0.85� 0.10 3.09 2.69� 0.16 3.69 0.17� 0.04
1.61 0.16� 0.06 2.11 1.90� 0.17 2.61 0.56� 0.08 3.11 1.61� 0.13 3.71 0.16� 0.04
1.63 0.36� 0.09 2.13 1.78� 0.16 2.63 0.43� 0.07 3.13 0.38� 0.06 3.73 0.07� 0.02
1.65 0.53� 0.10 2.15 1.73� 0.16 2.65 0.56� 0.08 3.15 0.30� 0.05 3.75 0.08� 0.02
1.67 0.52� 0.10 2.17 1.36� 0.14 2.67 0.64� 0.09 3.17 0.25� 0.05 3.77 0.08� 0.03
1.69 0.72� 0.12 2.19 1.49� 0.14 2.69 0.46� 0.07 3.19 0.16� 0.04 3.79 0.05� 0.02
1.71 0.70� 0.12 2.21 1.42� 0.14 2.71 0.63� 0.08 3.21 0.21� 0.04 3.81 0.09� 0.03
1.73 1.09� 0.14 2.23 1.36� 0.14 2.73 0.49� 0.07 3.23 0.18� 0.04 3.83 0.07� 0.02
1.75 0.91� 0.13 2.25 1.36� 0.14 2.75 0.59� 0.08 3.25 0.19� 0.04 3.85 0.04� 0.02
1.77 1.11� 0.14 2.27 1.15� 0.12 2.77 0.37� 0.06 3.27 0.23� 0.05 3.87 0.04� 0.02
1.79 1.48� 0.16 2.29 0.99� 0.12 2.79 0.51� 0.07 3.29 0.16� 0.04 3.89 0.11� 0.03
1.81 1.35� 0.15 2.31 0.95� 0.11 2.81 0.35� 0.06 3.31 0.19� 0.04 3.51 0.05� 0.02
1.83 1.67� 0.17 2.33 1.25� 0.13 2.83 0.30� 0.06 3.33 0.07� 0.03 3.53 0.17� 0.04
1.85 1.73� 0.17 2.35 0.98� 0.11 2.85 0.36� 0.06 3.35 0.15� 0.04 3.55 0.09� 0.03
1.87 1.98� 0.18 2.37 0.98� 0.11 2.87 0.42� 0.07 3.37 0.13� 0.03 3.57 0.08� 0.03
1.89 2.12� 0.19 2.39 0.61� 0.09 2.89 0.28� 0.05 3.39 0.12� 0.03 3.59 0.13� 0.03
1.91 1.99� 0.18 2.41 1.08� 0.12 2.91 0.44� 0.07 3.41 0.14� 0.03 3.91 0.08� 0.02
1.93 2.31� 0.19 2.43 0.84� 0.10 2.93 0.37� 0.06 3.43 0.15� 0.04 3.93 0.08� 0.03
1.95 2.05� 0.18 2.45 1.03� 0.11 2.95 0.23� 0.05 3.45 0.18� 0.04 3.95 0.05� 0.02
1.97 2.32� 0.19 2.47 0.93� 0.11 2.97 0.29� 0.06 3.47 0.09� 0.03 3.97 0.10� 0.03
1.99 2.00� 0.18 2.49 0.77� 0.10 2.99 0.42� 0.07 3.49 0.14� 0.04 3.99 0.08� 0.02
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FIG. 7. Scatter plots of (a) the K0
Sπ

0 vs K�π∓ and (b) K�π0 vs
K0

Sπ
∓ invariant masses in eþe− → K0

SK
�π∓π0 events.
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FIG. 8. The (a) K0
Sπ

0 and (b) K�π∓ invariant-mass projections
of Fig. 7(a) and the (c) K0

Sπ
� and (d) K�π0 invariant-mass

projections of Fig. 7(b). The lines represent the results of the
fits described in the text, with the hatched areas denoting their
nonresonant components.
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Corresponding fits to the projections of Fig. 7(b), shown
in Figs. 8(c) and 8(d), followed by K�ð892ÞþK�ð892Þ−
subtraction, yield 1173� 64 K�ð892Þ�K∓π0 events, 157�
50 K�ð892Þ�K0

Sπ
∓ events, 187� 25 K�

2ð1430ÞK∓π0
events, and 141� 27 K�

2ð1430ÞK0
Sπ

∓ events. The uncer-
tainties are statistical only; systematic uncertainties are
discussed below.
Repeating these fits in 0.2 GeV bins of Ec:m:, and using

Eq. (3), we extract the cross sections for the processes
eþe− → K�ð892Þ0K�π∓, K�ð892Þ0 → K0

Sπ
0, and eþe− →

K�ð892Þ0K0
Sπ

0, K�ð892Þ0 → K�π∓ shown in Fig. 9(a),
as well as for the processes eþe− → K�ð892Þ�K0

Sπ
∓,

K�ð892Þ� → K�π0, and eþe− → K�ð892Þ�K∓π0,
K�ð892Þ� → K0

Sπ
∓, shown in Fig. 9(b). They are similar

in size and shape, except that theK�0K0
Sπ

0 cross section is a
factor of 2–3 lower. Accounting for the K�ð892Þ branching
fractions, the K�ð892Þ0K�π∓ and K�ð892Þ�K∓π0 cross
sections are consistent with those we measured previously
[8] in the KþK−πþπ− and KþK−π0π0 final states, respec-
tively, and the K�ð892Þ�K0

Sπ
∓ cross section is consistent

with our previous measurement [9] in the K0
SK

0
Sπ

þπ−

final state.
We investigate the correlated production of K�0 and K̄ �0

directly by repeating the fit of the K�π∓ invariant-mass
distribution in 0.05 GeV=c2 bins of the K0

Sπ
0 invariant

mass. The resulting numbers of K�ð892Þ0 decays in each
bin are shown in Fig. 10(a), and there is a substantial peak
near 892 MeV=c2. Fitting these points with the same NR
function plus a single BW function yields 138� 16

eþe− → K�0K̄ �0 events. Similarly, fitting the K0
Sπ

� invari-
ant-mass distribution in bins of the K�π0 invariant mass
yields the results for K�ð892Þ� decays shown in Fig. 10(b),
and a single-resonance plus NR fit to those results yields
814� 36 eþe− → K�ð892ÞþK�ð892Þ− events. Repeating
this procedure in 0.2 GeV=c2 bins of Ec:m:, and applying

Eq. (3), provides the cross sections for eþe− → K�0K̄ �0 →
K0

SK
�π∓π0 and eþe−→K�ð892Þ�K�ð892Þ∓→K0

SK
�π∓π0

shown in Figs. 9(a) and 9(b), respectively.
The K�ð892ÞþK�ð892Þ− intermediate state dominates

both K�ð892Þ�K0
Sπ

∓ and K�ð892Þ�K∓π0 production,
whereas the K�0K̄ �0 intermediate state [Fig. 9(a)] provides
a significant fraction of K�ð892Þ0Kπ production only near
2.1 GeV. Accounting for the K�ð892Þ branching fractions,
the K�ð892ÞþK�ð892Þ− cross section is consistent with our
previous measurement [8] in the KþK−π0π0 final state,
where it also dominated K�ð892Þ�K∓π0 production, and
the K�0K̄ �0 cross section is consistent with our previous
measurement [8] in the KþK−πþπ− final state, where it
also represented only a small fraction of K�ð892Þ0Kþπ−

and K̄ �0K−πþ production.
Figure 11(a) shows the distribution of the π�π0 invariant

mass in selected, background-subtracted, K0
SK

�π∓π0
events, which features a prominent ρð770Þ peak. The
limited size of the data sample precludes a detailed study
of the ρ region, and instead we perform a simple fit, using
the same NR function plus a relativistic P-wave BW with
parameters fixed to those of the ρð770Þ� [21]. The result is
shown as the line and hatched area in Fig. 11(a). The fitted
number of K0

SK
�ρ∓ events, 2498� 100, is a large fraction

of the K0
SK

�π∓π0 signal. Again, the uncertainty is stat-
istical only, and systematic uncertainties, discussed below,
are large.
Repeating this fit in 0.1 GeV bins of Ec:m: and using

Eq. (3), we extract the cross section for the process
eþe− → K0

SK
�ρ∓, shown in Fig. 11(b). It peaks at lower

Ec:m: and at approximately twice the value of a typical
K�ð892ÞKπ cross section and is consistent with our
previous measurement of the KþK−ρ0 cross section [8].
Some of these events may arise from eþe− → KK1

events, with K1 → Kρ�, ρ� → π�π0. Figures 12(a)
and 12(b) show the K�π∓π0 and K0

Sπ
�π0 invariant-mass

distributions, respectively. There is some apparent structure
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FIG. 9. Cross sections for (a) the processes eþe− → K�0K�π∓
(squares), eþe− → K�0K0

Sπ
0 (triangles), and eþe− → K�0K̄ �0

(circles) and (b) the processes eþe− → K�ð892Þ�K0
Sπ

∓
(squares), eþe− → K�ð892Þ�K∓π0 (triangles), and eþe− →
K�ð892ÞþK�ð892Þ− (circles). The uncertainties are statistical
only, and in each case, the K�K̄ � cross section is included in
both of the others.
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FIG. 10. The number of events in the K0
SK

�π∓π0 sample
containing (a) a K�0 → K�π∓ decay as a function of the K0

Sπ
0

invariant mass and (b) a K�ð892Þ� → K0
Sπ

� decay as a function
of the K�π0 invariant mass. The lines represent the result of the
fits described in the text, with the hatched areas denoting their
nonresonant components.
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in the peak regions of both distributions, and, as an
exercise, we perform fits to each distribution with a sum
of the same NR function and three incoherent P-wave BW
functions with parameters fixed to world-average [21]
values for the K1ð1270Þ, K1ð1400Þ, and K1ð1650Þ reso-
nances. We note that other nearby resonances, such as
K�

2ð1430Þ or K�ð1680Þ, could contribute in addition or
instead. The results are shown as the lines in Fig. 12, with
the hatched areas denoting the NR components. The fit to
the spectrum in Fig. 12(a) yields 230� 70 K0

SK1ð1270Þ0
events, 739� 101 K0

SK1ð1400Þ0 events, and 537� 126

K0
SK1ð1650Þ0 events, where all uncertainties are statistical

only. The fit to Fig. 12(b) yields 1593� 76 K�K1ð1270Þ∓
events, 547� 60 K�K1ð1400Þ∓ events, and 0� 49

K�K1ð1650Þ∓ events. Systematic uncertainties, discussed
below, are large, but at least three (two) neutral (charged)
K1 states are required to describe the data. Far more
charged than neutral KK1ð1270Þ, but far fewer charged
than neutral KK1ð1650Þ, are produced.

Systematic uncertainties are substantial and difficult to
evaluate. The NR function must describe a distribution
complicated by resonances in, and kinematic constraints
on, the other particles in the event, and the widths and
positions of the ρð770Þ and K�ð890Þ resonances do not
allow strong constraints from the data. We adopt a simple,
conservative procedure, based on the largest sources of
variation. We repeat exactly the same fit but with the NR
function reduced to a fourth-order polynomial, and, sep-
arately, with the parameters of each resonance under
study allowed to vary. The two resulting differences in
yield are added in quadrature. To this we add, linearly, a
10% relative uncertainty to account for possible interfer-
ence between resonances, the use of fixed vs energy-
dependent widths, and the choice of parametrization for
the ρ� line shape. This procedure is applied to the Ec:m: -
integrated distributions in Figs. 8, 10, and 11(a), yielding
systematic uncertainties in the respective total yields. In
each case, the same relative uncertainty is applied as an
overall normalization uncertainty in the cross sections
[Figs. 9 and 11(b)].
The total yields of all measured K�Kπ, K�0K̄ �0, and

KKρ intermediate states and their uncertainties are listed in
Table III. We do not quote yields for any of theKK1 modes,
as the uncertainties are very large. Here, we have subtracted
each K�K̄ � yield from both of the relevant K�Kπ yields,
so that the sum of all yields, 7013� 683 events, can be
compared with the total number of K0

SK
�π∓π0 events,

which is 6430� 90. The two numbers are consistent,
leaving little room for additional resonant contributions.
From Table III, we see that K�ð892ÞþK�ð892Þ− events

account for most of the K�ð892Þ�K0
Sπ

∓ production, but
only half the K�ð892Þ�K∓π0 production. Neutral K�ð892Þ
pair production is much lower than charged, whereas
K�0Kπ and K�ð892Þ�Kπ are similar. The rate of charged
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FIG. 11. (a) The π�π0 invariant-mass distribution in eþe− →
K0

SK
�π∓π0 events. The line represents the result of the fit

described in the text, with the hatched area denoting its
nonresonant component. (b) Cross section for the process
eþe− → K0

SK
�ρ∓ as a function of Ec:m:. The uncertainties are

statistical only.
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FIG. 12. The (a) K�π∓π0 and (b) K0
Sπ

�π0 invariant-mass
distributions in eþe− → K0

SK
�π∓π0 events. The solid lines

represent the results of the fits described in the text; the hatched
areas denote their nonresonant components, while the dashed,
dotted, and dash-dotted lines indicate the contributions from
KK1ð1270Þ, KK1ð1400Þ, and KK1ð1650Þ events, respectively.

TABLE III. Summary of intermediate processes contributing to
the K0

SK
�π∓π0 final state. The results for the K�Kπ channels do

not include contributions from the K�K̄ � channels. The first
uncertainty is statistical, and the second is systematic.

Intermediate state Number of events

K�0K0
Sπ

0 454� 60� 74

K�0K�π∓ 1533� 60� 296

K�
2ð1430Þ0K0

Sπ
0 20� 25� 4

K�
2ð1430Þ0K�π∓ 85� 24� 18

K�ð892Þ�K0
Sπ

∓ 157� 50� 117

K�ð892Þ�K∓π0 1173� 64� 170

K�
2ð1430Þ�K0

Sπ
∓ 141� 27� 28

K�
2ð1430Þ�K∓π0 187� 25� 35

K�0K̄ �0 138� 16� 55

K�ð892ÞþK�ð892Þ− 814� 36� 229

K0
SK

�ρð770Þ∓ 2498� 100� 521

Total 7013� 167� 682
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K�ð892ÞþK�ð892Þ− production is about three times that of
neutral K�0K̄ �0, and these are about 4 and 15 times lower
than those of the respective K�ð892Þ states. This pattern in
the data after qq̄ background subtraction is consistent with
that seen in our previous study of eþe− → KþK−πþπ− and
KþK−π0π0 [8].

V. K0
SK

�π∓η FINAL STATE

A. Event selection

The χ2K0
SK

�π∓η distribution for the selected eþe− →
K0

SK
�π∓η events in the data is shown in Fig. 13, together

with the corresponding distributions of simulated signal
and qq̄ background events. Again, the qq̄ background is
normalized using the π0 peaks in the data and simulated
invariant-mass distributions of the ISR photon candidate
combined with all other photon candidates in the event. The
signal simulation is normalized to have the same integral in
the first five bins as the data minus the qq̄ background.
We define signal and control regions by χ2

K0
SK

�π∓η < 20 and

20 < χ2K0
SK

�π∓η < 40, respectively, containing 459 (1418)

and 128 (147) data (simulated) events.
Figure 14(a) compares the γγ invariant-mass distribution

of the η candidate for data events in the signal region with
the prediction of the signal-event simulation, and Fig. 14(b)
shows the corresponding πþπ− invariant-mass distributions
of the K0

S candidate. The η peak is wider and more skewed
than the π0 peak in Fig. 2(a), but the selection criteria are
sufficiently loose enough that there is no effect on the
results.

The distribution of the invariant mass of the final-state
hadronic system for data events in the signal region is
shown in Fig. 15. A narrow peak due to J=ψ → K0

SK
�π∓η

decays is visible. The qq̄ background is shown as the cross-
hatched histogram. We subtract it and then estimate the
remaining background, assumed to arise from ISR events,
as described above. We take the shape of the ISR back-
ground χ2 distribution directly from the data, as the
difference between experimental χ2K0

SK
�π∓η distribution with

qq̄ background subtracted and that of the normalized signal
simulation (points and open histogram in Fig. 13).
The total number of signal events obtained in this way is

358� 24 (stat.) We define the systematic uncertainty in
two Ec:m: regions to be half the number of background
events, resulting in a relative uncertainty in the signal
event yields of 11% for Ec:m: < 3 GeV and 18% for
Ec:m: > 3 GeV.
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FIG. 13. Distribution of χ2 from the five-constraint fit of the
K0

SK
�π∓ηγ candidates in the data (points). The open and cross-

hatched histograms are the distributions for simulated signal and
qq̄ background events, respectively, normalized as described in
the text. The signal and control regions are indicated.
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FIG. 14. The (a) γγ and (b) πþπ− invariant-mass distributions of
the η and K0

S candidates, respectively, in K0
SK

�π∓η events in the
χ2K0

SK
�π∓η signal region, for the selected data (points) and the

signal simulation (histograms).
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for data events in the signal region (open histogram). The
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B. Detection efficiency

The total reconstruction and selection efficiency from the
signal simulation is shown as a function of Ec:m: in Fig. 16
and is parametrized by a smooth function, shown as the
solid line. We apply the same corrections for charged-track
finding, K0

S reconstruction, and K� and π� identification
efficiencies as in Sec. IV B and evaluate a correction for the
shape of the χ2 distribution in the same way. We do not
have a dedicated study of η reconstruction efficiency, so we
assume a correction equal to that on the π0 efficiency, but
with the uncertainty doubled.
The momentum and polar angle distributions of the K0

S,
K�, π�, and η candidates in the data are well described by
the signal simulation. To study the effects of resonant
substructure, we use fast simulations of signal and the ISR
K�ð892Þ�K∓η and K�ð892Þ0K0

Sη processes. Their efficien-
cies are consistent, and we take the largest difference,
which is 2.5%, as the systematic uncertainty at all Ec:m:,
to account for potential differences between data and
simulation for the Ec:m: dependence of the efficiency and
for the resonant structure. These corrections and their
uncertainties are listed in Table IV. The total correction
is þ0.6� 5.5%.

C. Cross section for e + e − → K0
SK

�π∓η
The eþe− → K0

SK
�π∓η cross section is obtained from

the analog of Eq. (3), with the π0 replaced by an η. The
differential luminosity is the same as for the K0

SK
�π∓π0

cross section, and the radiative correction is evaluated in an
analogous way to be R ¼ 1.0022� 0.0016, independent
of Ec:m:.
The fully corrected cross section is shown in Fig. 17

and listed in Table V, with statistical uncertainties only.

The relative systematic uncertainties are summarized in
Table IV, yielding a total systematic uncertainty of 12.0%
for Ec:m: < 3 GeV and 19% for Ec:m: > 3 GeV.

D. Substructure in K0
SK

�π∓η
We study substructure in the K0

SK
�π∓η mode in the

same way as for the K0
SK

�π∓π0 mode, using background-
subtracted data and excluding the J=ψ region
3.0 < Ec:m: < 3.2 GeV. Here, we expect far less structure,
and indeed we see no significant structure in the K�K0

S,
K�η, or K0

Sη invariant-mass distributions. Figure 18 shows
the K0

Sπ
� and K�π∓ invariant-mass distributions. The

former shows a dominant K�ð892Þ� peak, as well as
structure near 1.43 GeV=c2, whereas the latter shows
only a modest K�ð892Þ0 peak over a large, broad
distribution.
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FIG. 16. Detection efficiency for eþe− → K0
SK

�π∓η events as
a function of the hadronic invariant mass Ec:m: ¼ mðK0

SK
�π∓ηÞ.

The solid curve shows the fitted parametrization.

TABLE IV. Summary of the corrections to, and systematic
uncertainties in, the eþe− → K0

SK
�π∓η cross section.

Source Correction (%)
Systematic

uncertainty (%)

η efficiency þ2.0 2.0
K�, π� reconstruction þ1.6 2.0
K0

S reconstruction þ1.1 1.0
PID efficiency 0.0 2.0
χ2 selection −4.0 4.6
Background subtraction — 11.0, < 3.0 GeV

18.0, > 3.0 GeV
Model acceptance — 2.5
Luminosity and
radiative corrections

— 1.4

Total þ0.6 12.8, < 3.0 GeV
19.1, > 3.0 GeV
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FIG. 17. Cross section for the process eþe− → K0
SK

�π∓η.
Uncertainties are statistical.
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We fit the mðK0
Sπ

�Þ distribution with a sum of incoher-
ent K�ð892Þ and K�

2ð1430Þ resonances and a NR compo-
nent of the same form as in Sec. IV D. The result of the fit is
shown in Fig. 18(a) as the solid line, yielding 242� 21

eþe− → K�ð892Þ�K∓η events and 10� 5 eþe− →
K�

2ð1430Þ�K∓η events, where the uncertainties are stat-
istical only. There is no hint of a K�

2ð1430Þ 0 signal in the
mðK�π∓Þ distribution, and we show the result of a
single-resonanceþ NR fit in Fig. 18(b), which yields
123� 36 (stat.) eþe− → K�ð892Þ0K0

Sη events.
We estimate systematic uncertainties due to the fitting

procedure as above and summarize these results in

Table VI. The sum of these three resonant yields is
consistent with the total number of K0

SK
�π∓η events,

and the suppression of neutral with respect to charged
K�ð892Þ production is similar to that seen above in the
K0

SK
�π∓π0 final state and in our previous study of the

KþK−πþπ− final state [8].
Repeating these fits in 0.2 GeV bins of Ec:m:, and using

Eq. (3), we extract cross sections for the processes eþe− →
K�ð892Þ�K∓η with K�ð892Þ� → K0

Sπ
� and eþe− →

K�ð892Þ0K0
Sη with K�ð892Þ0 → K�π∓. These are shown

in Fig. 19 with statistical uncertainties. A systematic
uncertainty of 16% (21%) is applicable for Ec:m: below
(above) 3 GeV. These are the first measurements of these
cross sections. Well above threshold, they become con-
sistent with the corresponding K�ð892ÞK̄π0 cross sections.

TABLE V. Measurement of eþe− → K0
SK

�π∓η cross section. The uncertainties are statistical only; systematic uncertainties are given
in Table IV.

Ec:m: (GeV) σ (nb) Ec:m: (GeV) σ (nb) Ec:m: (GeV) σ (nb) Ec:m: (GeV) σ (nb)

2.01 0.01� 0.03 2.51 0.09� 0.05 3.01 0.14� 0.05 3.51 −0.02� 0.02
2.03 0.04� 0.04 2.53 0.20� 0.07 3.03 0.08� 0.05 3.53 0.07� 0.04
2.05 0.08� 0.04 2.55 0.11� 0.05 3.05 0.03� 0.03 3.55 0.07� 0.04
2.07 0.05� 0.04 2.57 0.06� 0.05 3.07 0.00� 0.03 3.57 0.02� 0.02
2.09 −0.04� 0.03 2.59 0.12� 0.06 3.09 0.68� 0.11 3.59 −0.02� 0.02
2.11 0.05� 0.03 2.61 0.07� 0.06 3.11 0.33� 0.08 3.61 0.03� 0.03
2.13 0.02� 0.04 2.63 0.22� 0.07 3.13 0.08� 0.04 3.63 0.09� 0.04
2.15 0.05� 0.05 2.65 0.09� 0.04 3.15 0.07� 0.06 3.65 −0.01� 0.03
2.17 0.02� 0.04 2.67 0.07� 0.05 3.17 0.13� 0.06 3.67 0.02� 0.02
2.19 0.19� 0.07 2.69 0.02� 0.02 3.19 0.10� 0.06 3.69 0.03� 0.03
2.21 0.04� 0.04 2.71 0.18� 0.07 3.21 0.03� 0.04 3.71 0.09� 0.04
2.23 0.04� 0.04 2.73 0.08� 0.04 3.23 0.07� 0.04 3.73 0.05� 0.04
2.25 0.04� 0.06 2.75 0.11� 0.05 3.25 0.00� 0.00 3.75 0.03� 0.02
2.27 0.10� 0.06 2.77 0.09� 0.06 3.27 0.08� 0.05 3.77 0.00� 0.01
2.29 0.23� 0.07 2.79 0.05� 0.04 3.29 0.03� 0.04 3.79 0.03� 0.02
2.31 0.14� 0.07 2.81 0.16� 0.06 3.31 0.03� 0.03 3.81 0.04� 0.02
2.33 0.04� 0.04 2.83 0.08� 0.04 3.33 0.00� 0.03 3.83 0.00� 0.01
2.35 0.07� 0.05 2.85 0.19� 0.07 3.35 0.02� 0.02 3.85 0.01� 0.02
2.37 0.11� 0.05 2.87 0.09� 0.05 3.37 0.00� 0.00 3.87 0.03� 0.02
2.39 0.08� 0.06 2.89 0.03� 0.03 3.39 0.12� 0.05 3.89 0.08� 0.04
2.41 0.17� 0.07 2.91 0.05� 0.04 3.41 0.02� 0.03 3.91 0.00� 0.01
2.43 0.09� 0.06 2.93 0.08� 0.04 3.43 0.03� 0.02 3.93 0.03� 0.02
2.45 0.12� 0.07 2.95 0.07� 0.04 3.45 0.04� 0.03 3.95 0.01� 0.01
2.47 0.05� 0.05 2.97 0.10� 0.05 3.47 0.03� 0.04 3.97 0.05� 0.03
2.49 0.10� 0.07 2.99 0.01� 0.02 3.49 0.07� 0.04 3.99 0.00� 0.00
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FIG. 18. The (a) K0
Sπ

� and (b) K�π∓ invariant-mass distribu-
tions in eþe− → K0

SK
�π∓η events. The lines represent the results

of the fits described in the text.

TABLE VI. Summary of intermediate processes contributing to
the K0

SK
�π∓η final state.

Intermediate state Number of events

K�0K0
Sη 123� 36� 13

K�ð892Þ�K∓η 242� 21� 24

K�
2ð1430Þ�K∓η 10� 5� 2

Total 375� 42� 27
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VI. J=ψ REGION

Figures 20 and 21 show expanded views of the mass
distributions in Figs. 3 and 15, respectively, in the
2.8–3.8 GeV=c2 mass region. They show clear J=ψ signals
and no other significant structure. Fitting each of these
distributions with the sum of a Gaussian describing the J=ψ
signal shape and a first-order polynomial function yields
393� 23 J=ψ → K0

SK
�π∓π0 decays and 44� 7 J=ψ →

K0
SK

�π∓η decays. In these fits, the Gaussian center is fixed
to the nominal J=ψ mass [21], and the fitted widths of
8–9 MeV=c2 are consistent with the simulated resolution.
The results of the fits are shown as solid lines on Figs. 20
and 21, with the hatched areas representing the non-J=ψ
components.
Using the simulated selection efficiencies with all the

corrections described above and the differential luminosity
and dividing by the K0

S → πþπ− and π0=η → γγ branching
fractions [21], we calculate the products of the J=ψ

electronic width and branching fractions to these modes
and list them in Table VII. The first uncertainties are
statistical, and the second include all the systematic
uncertainties applied to the cross sections, described above.
Using the world-average value of ΓJ=ψ

ee ¼ 5.55 keV [21],
we obtain the corresponding J=ψ branching fractions, also
listed in Table VII. The results for BJ=ψ

K0
SK

�π∓π0 and B
J=ψ
K0

SK
�π∓η

include the contributions of both nonresonant and inter-
mediate resonant states. The systematic uncertainties now
include the uncertainty in ΓJ=ψ

ee . Our result for BJ=ψ
K0

SK
�π∓η is

consistent with, and more precise than, the world-
average value [21]. Our result for BJ=ψ

K0
SK

�π∓π0 is the first

measurement of this branching fraction. Our result,
BJ=ψ
K0

SK
�π∓π0 ¼ ð5.7� 0.3� 0.4Þx10−3, is consistent with

our previous measurement of BJ=ψ
KþK−πþπ− ¼ ð6.84�

0.28Þx10−3 [8] within around two standard deviations
and larger than our BJ=ψ

KþK−π0π0 ¼ ð2.12� 0.21Þ × 10−3

[8], BJ=ψ
K0

SK
0
Lπ

þπ− ¼ ð3.7� 0.7Þ × 10−3 [9], and

BJ=ψ
K0

SK
0
Sπ

þπ− ¼ ð1.68� 0.17Þ × 10−3 [9].

A. Substructure in J=ψ → K0
SK

�π∓π0 decays

We study the K0
SK

�ρ∓ and K�Kπ contributions to the
J=ψ → K0

SK
�π∓π0 decay in a manner similar to that

described in Sec. IV D. Fitting the π�π0 invariant-mass
distribution [see Fig. 11(a)] in 10 MeV=c2 bins of the
K0

SK
�π∓π0 invariant mass yields the numbers of K0

SK
�ρ∓

events per bin shown in Fig. 22. A fit to a Gaussian plus
first-order polynomial (line and hatched area, respectively,
in Fig. 22) yields 130� 12� 19 J=ψ → K0

SK
�ρ∓ decays,

where the first uncertainty is statistical and the second is the
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FIG. 20. The K0
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�π∓π0 invariant-mass distribution in the J=ψ
mass region. The line represents the result of the fit described in
the text, with the open (hatched) area indicating the (non)resonant
component.
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FIG. 21. The K0
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�π∓η invariant-mass distribution in the J=ψ
mass region. The line represents the result of the fit described in
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component.
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systematic uncertainty associated with the fit to the π∓π0
invariant-mass distribution, described above. We correct for
efficiency and calculate the product ΓJ=ψ

eeBJ=ψ
K0

SK
�ρ∓ from

which we determine the branching fraction. The results,
listed in Table VII, represent the first measurement of this
J=ψ decay mode.
We perform fits in bins of Ec:m: between 3.0 and 3.2 GeV,

analogous to those shown in Figs. 8 and 10, of the K0
Sπ

0,
K�π∓, K0

Sπ
�, and K�π0 invariant-mass distributions, to

determine the number of respective J=ψ → Kπ decays.
Systematic uncertainties for these results are determined as
described in Sec. IV D. We fit each of the four distributions
in Fig. 23 with a Gaussian plus first-order polynomial
function to obtain 34� 6� 22 J=ψ → K�0K0

Sπ
0 decays,

99� 10� 17 J=ψ → K�0K�π∓ decays, 80� 10� 24

J=ψ → K�ð892Þ�K∓π0 decays, and 64� 9� 22 J=ψ →
K�ð892Þ�K0

Sπ
∓ decays. Here, the first uncertainties

are statistical, and the second are systematic, where

these latter terms result from the fit procedure. We
correct for efficiency and calculate the products

ΓJ=ψ
eeBJ=ψ

K�ð892ÞK̄πB
K�ð892Þ
Kπ and then the products of the

J=ψ and K�ð892Þ branching fractions and list them in
Table VII. With the current data samples, we are not able to
study J=ψ → K�K̄ � decays.
There are no previous measurements of these decay

chains. The measurement BJ=ψ
K�ð892Þ�K0

Sπ
∓BK�ð892Þ�

K0
Sπ

� ¼
ð2.6� 0.9Þ × 10−3 [9] is about half as large as our result
for BJ=ψ

K0
SK

�π∓π0 ; this difference is consistent with expect-
ations for isospin conservation. In Ref. [8], it was found

TABLE VII. Summary of J=ψ decay measurements from this analysis. Here, Bf represents the J=ψ branching
fraction to the indicated final state, and ΓJ=ψ

ee is the partial width for J=ψ decay to ee.

This work PDG(2014)

Final state Bf · Γ
J=ψ
ee (eV) Bf (10−3) Bf (10−3)

K0
S K� π∓ π0 31.7� 1.9� 1.8 5.7� 0.3� 0.4 —

K0
SK

�π∓η 7.3� 1.4� 0.4 1.30� 0.25� 0.07 2.2� 0.4
K0

SK
�ρð770Þ∓ 10.4� 1.0� 1.9 1.87� 0.18� 0.34 —

K�ð892Þ0 K− πþ þ c:c: 7.1� 0.8� 1.2 1.3� 0.1� 0.2 —
K�ð892Þ0 K0

S π0 þ c:c: 2.4� 0.5� 1.5 0.43� 0.01� 0.27 —
K�ð892Þ�K∓π0 5.7� 0.7� 1.7 1.0� 0.1� 0.3 —
K�ð892Þ�K0

Sπ
∓ 4.6� 0.6� 1.6 0.8� 0.1� 0.3 —
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�ρ∓ events as a function of the
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�π∓π0 invariant mass in the J=ψ region. The line represents

the result of the fit described in the text, with the open (hatched)
area indicating the resonant (nonresonant) component.
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FIG. 23. Event yields of (a) K�0K0
Sπ

0, (b) K�0K�π∓,
(c) K��K∓π0, and (d) K��K0

Sπ
∓ final states as functions of

the K0
SK

�π∓π0 invariant mass in the J=ψ region. The lines
represent the results of the fits described in the text, with the
open (hatched) areas indicating the resonant (nonresonant)
components.
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that the KþK−πþπ− mode is dominated by the
K�ð892Þ0K�π∓ channel, which originates predominantly
from the decay of K�0ð892ÞK̄ �

ð0;2Þð1430Þ apart from a small

contribution from K�0ð892ÞK̄ �0ð892Þ. Our results are
consistent with this pattern, and the world-average
BJ=ψ

K�0K̄ �0 ¼ ð0.23� 0.07Þ × 10−3 [21] is well below
our values for BJ=ψ

K�0ð892ÞKπ. On the other hand, the sum
of our BJ=ψ

K�ð892Þ�Kπ modes is only about twice the world-

average BJ=ψ
K�ð892Þ�K�ð892Þ∓ ¼ 1.00þ0.22

−0.40 × 10−3 [21].

VII. SUMMARY

We have presented the first measurements of the eþe− →
K0

SK
�π∓π0 and eþe− → K0

SK
�π∓η cross sections. The

measurements are performed over the c.m. energy ranges
from their respective threshold to 4 GeV. The total
uncertainty in the K0

SK
�π∓π0 cross section ranges from

6.3% at low masses to 11.5% at 3 GeV, increasing with
higher masses. That on the K0

SK
�π∓η cross section is

12.8% (19.1%) below (above) 3 GeV. These results are
useful inputs into the total hadronic cross section and the
theoretical calculation of ðg − 2Þμ.
The K0

S K
� π∓ π0 cross section exhibits a slow rise from

threshold, then a steep rise from 1.6 GeV to a peak value
of about 2 nb near 1.9 GeV, followed by a slow decrease
with increasing mass. There is a clear J=ψ signal, but no
other significant structure. The cross section is about half
that of eþe− → KþK−πþπ− [8] and about twice that of
eþe− → K0

SK
0
Lπ

þπ− [9] or KþK−π0π0 [8].
The K0

SK
�π∓η cross section is much smaller and

consistent with zero between threshold and 2 GeV. It then
demonstrates a slow rise to a value of about 0.1 nb over a
wide range around 2.5 GeV, followed by a slow decrease
with increasing mass. There is a clear J=ψ signal and no
other significant structure.
Several intermediate resonant states are evident in the

K0
SK

�π∓π0 data, and we have measured cross sections into
this final state via eþe− → K�0K̄ �0, K�0K0

Sπ
0 þ c:c:,

K�0K−πþ þ c:c:, K�ð892Þ�K�ð892Þ∓, K�ð892Þ�K0
Sπ

∓,
K�ð892Þ� K∓ π0, and K0

SK
�ρ∓. There are also signals

for the production of at least one K�ð1430Þ state and at
least three K1 states. Together, these channels dominate
K0

SK
�π∓π0 production, and the K�ð892ÞþK�ð892Þ− chan-

nel dominates both K�ð892Þ� K0
S π∓ and K�ð892Þ�K∓π0

production. The cross sections are consistent with previous
results in other final states.
The K0

SK
�π∓η final state includes contributions from

K�0K0
Sηþ c:c:, K�ð892Þ�K∓η, and K�

2ð1430Þ�K∓η and
no other significant substructure. We have obtained the
first measurements of the eþe− → K�0K0

Sηþ c:c: and
K�ð892Þ�K∓η cross sections, and these channels dominate
the overall K0

SK
�π∓η production.

With the results of this analysis, BABAR has now
provided the cross section measurements for the complete
set of allowed eþe− → KK̄π and KK̄ππ processes except
for those containing aK0

LK
0
L pair. Since the latter modes are

expected to be the same as the corresponding modes with a
K0

SK
0
S pair, the KK̄π and KK̄ππ contributions to gμ − 2 can

be calculated using this set of exclusive cross section
measurements, with no assumptions or isospin relations.
We expect a reduction in the total uncertainties of these
contributions by a factor of 5 to 8 compared with current
estimates [1].
We have measured the J=ψ branching fraction to

K0
SK

�π∓η and presented the first J=ψ branching
fraction measurement to K0

SK
�π∓π0 as well as the

branching fractions to the K0
SK

�π∓π0 final state via
K�0K�π∓ þ c:c:, K�0K0

Sπ
0 þ c:c:, K�ð892ÞþK−π0 þ c:c:,

K�ð892Þ�K0
Sπ

∓, and K0
SK

�ρ∓. We cannot extract branch-
ing fractions for K�0K̄ �0 or K�ð892ÞþK�ð892Þ−, but our
results for K�ð892ÞþK−π0 þ c:c: and K�ð892Þ�K0

Sπ
∓ are

both consistent with the world-average value for
K�ð892ÞþK�ð892Þ−, indicating the same dominance of
K�ð892ÞþK�ð892Þ− as in non-J=ψ data. Our results for
K�0Kþπ− þ c:c: and K�0K0

Sπ
0 þ c:c:, respectively, are

about five and two times larger than the world-average
value for K�0K̄ �0.
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