

Erik Jonsson School of Engineering and Computer Science

High-к Dielectric on ReS₂: In-Situ Thermal Versus Plasma-Enhanced Atomic Layer Deposition of Al₂O₃—Supplement

UT Dallas Author(s):

Ava Khosravi Rafik Addou Massimo Catalano Jiyoung Kim Robert M. Wallace

Rights:

CC BY 4.0 (Attribution) ©2019 The Authors

Citation:

Khosravi, A., R. Addou, M. Catalano, J. Kim, et al. 2019. "High- κ dielectric on ReS 2 : In-situ thermal versus plasma-enhanced atomic layer deposition of Al 2 O 3." Materials 12(7), doi: 10.3390/ma12071056

This document is being made freely available by the Eugene McDermott Library of the University of Texas at Dallas with permission of the copyright owner. All rights are reserved under United States copyright law unless specified otherwise.

Supplementary Materials

Supplementary Materials: High-κ Dielectric on ReS₂: In-situ Thermal Versus Plasma-Enhanced Atomic Layer Deposition of Al₂O₃

Ava Khosravi¹, Rafik Addou^{1,2}, Massimo Catalano^{1,3}, Jiyoung Kim¹ and Robert M. Wallace^{1,*}

1. C 1s, O 1s, Re 4f, and S 2p Core Level Spectra of Initial ReS2 and Subsequent Annealing

Figure S1 shows the C 1s, O 1s, Re 4f, and S 2p core levels obtained from the ReS₂ sample after exfoliation and subsequent annealing. It is noted from Figure S1a that the C 1s core level is convoluted with a loss feature of the Re 4d_{5/2} (261.7 eV) and Re 4d_{3/2} (275.5 eV). This loss feature has been seen in clean Re XPS spectra. Annealing the sample at 250 °C in UHV environment for one hour reduced the intensity of the C 1s signal below the XPS detection limit and also reduced adventitious oxygen chemical states; however, a small concentration (7 at.%) of oxygen remains on the surface (Figure S1b). The O 1s and C 1s core levels were detected from the initial surface of the ReS₂ sample likely originating from the environment after the ex-situ exfoliation process. Figure S1c,d shows Re 4f and S 2p core level spectra before and after annealing. No additional chemical states were detected in Re 4f and S 2p core level spectra after annealing revealing clearly that surface chemistry has not changed after annealing.

Figure S1. (a) C 1s, (b) O 1s, (c) Re 4f, and (d) S 2p core level spectra of initial ReS₂ and subsequent annealing for 1 h at 250 °C in UHV environment.

2. In-Situ Half-Cycle ALD/PEALD Process

Figure S2. Half-cycle ALD/PEALD of Al₂O₃ on ReS_2 .

3. Wider XPS Region of Al 2p

Figure S2 shows the Al 2p core level XPS spectrum recorded after 10 ALD cycles of Al_2O_3 . This region is convoluted with a loss feature of Re 4f at 68 eV.

Figure S3. Al 2p core level spectrum acquired after 10 cycles ALD of ReS2.

4. XPS-Calculated Thickness

The XPS-estimated Al₂O₃ thickness is calculated based on the attenuation of the substrate S 2p integrated intensity. The effective attenuation length (EAL) λ was calculated using the NIST electron EAL database, version 1.3, where λ = 2.4 nm for an electron travelling through amorphous Al₂O₃. The signl attenuation is calculated from:

$$I_s = I_s^0 e^{(-t/\lambda \cos\theta)}$$

In this equation I_s is the attenuated electron signal, I_{s^0} is the non-attenuated electron signal, t is the electron depth, λ is the inelastic mean free path, and θ is the XPS take-off angle (45°).

5. O 1s and C 1s Core Level Spectra Comparison

Figure S4 shows the C 1*s* and O 1*s* core level spectra after UV-Ozone treatment and after first O₂ pulse of PEALD process. After the first O₂ pulse in PEALD chamber, the C–O in both O 1*s* and C 1*s* core level spectra is significantly higher than that of UV-Ozone treated. Figure S4a demonstrates the additional chemical state at lower binding energy relates to the newly formed S-O bond. The intensity of S–O bonds created by UV-Ozone treatment is significantly higher than the first O₂ plasma pulse in PEALD process.

Figure S4. O 1s and C 1s core level spectra after UV-Ozone treatment and after first O₂ pulse in PEALD process.

6. Re 4f and S 2p Core Level Spectra after Long Time Under X-Ray Exposure and Being in UHV Environment

To monitor the changes on the ReS₂ surface chemistry under a prolonged time of X-ray exposure and UHV environment, as-exfoliated ReS₂ sample was exposed to X-rays for 3 h. All XPS scans were recorded in the exact same spot. Figure S5 shows the Re 4f and S 2p XPS core levels recorded on the as-exfoliated surface and following the X-rays exposure. XPS of the ReS₂ sample does not detect an additional chemical state or any changes on the surface chemistry after 3 h of X-rays exposure. The sample is then left in the UHV environment for 18 hours and a subsequent XPS was recorded on the same spot as shown in Figure S5a,b. Same as the prolonged X-ray exposure, no changes are detected on the surface chemistry of the sample. The prolonged X-ray exposure and UHV conditions occurred during the half-cycle study do not change the surface chemistry of ReS₂ sample. Our ex-situ Raman spectroscopy also confirms that the ReS₂ stays intact following all processing and acquisition conditions, as well as other half-cycle studies reported on different TMD surfaces. [1] Normalized spectra of Re 4f and S 2p core levels from as-exfoliated ReS₂ sample, after X-ray exposure, and after 18h in UHV are shown in Figure S5c,d.

Figure S5. (a) Re 4f and (b) S 2p core level spectra from as-exfoliated ReS₂ (blue), after 3 hours X-ray exposure (Red), and after 18 hours in UHV environment (Purple). (c) Re 4f and (d) S 2p core level spectra with normalized intensity from as-exfoliated ReS₂ sample, after X-ray exposure, and after 18h in UHV.

References

 McDonnell, S.; Brennan, B.; Azcatl, A.; Lu, N.; Dong, H.; Buie, C.; Kim. J.; Hinkle, C.L.; Kim, M. J.; Wallace, R.M. HfO₂ on MoS₂ by Atomic Layer Deposition: Adsorption Mechanisms and Thickness Scalability. *ACS Nano* 2013, 7, 10354.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).