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Information extraction, a key area of research in Natural Language Processing (NLP), con-

cerns the extraction of structured information from natural language documents. Recent

years have seen a gradual shift of focus from entity-based tasks to event-based tasks in infor-

mation extraction research. Being a core event-based task, event coreference resolution, the

task of determining which event mentions in a document refer to the same real-world event,

is generally considered one of the most challenging tasks in NLP. More specifically, for two

event mentions to be coreferent, both their triggers (i.e., the words realizing the occurrence of

events) and their corresponding arguments (e.g., time, places, and people involved in them)

have to be compatible. However, identifying potential arguments (which is typically per-

formed by an entity extraction system), linking arguments to their event mentions (which

is typically performed by an event extraction system), and determining the compatibility

between two event arguments (which is provided by an entity coreference resolver), are all

non-trivial tasks. In other words, end-to-end event coreference resolution is complicated in

part by the fact that an event coreference resolver has to rely on the noisy outputs produced

by its upstream components in the standard information extraction pipeline. Many existing

event coreference resolvers avoid the hassle of dealing with noisy information and simply

adopt a knowledge-lean approach consisting of a pipeline of two components, a trigger de-
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tection component that identifies triggers and corresponding subtypes, followed by an event

coreference component.

We hypothesize that knowledge-lean approaches are not the right way to go if the ultimate

goal is to take event coreference resolvers to the next level of performance. With this in mind,

we investigate knowledge-rich approaches in which we derive potentially useful knowledge for

event coreference resolution from a variety of sources, including models that are trained on

tasks that we believe are closely related to event coreference, statistical and linguistic features

that are directly relevant to the prediction of event coreference links, as well as constraints

that encode commonsense knowledge of when two event mentions should or should not be

coreferent. We start by designing a multi-pass sieve approach that first resolves easy corefer-

ence links and then exploits these easy-to-identify coreference links as a source of knowledge

to identify difficult coreference links. We then investigate two types of joint models for

event coreference resolution, including a joint inference model and a joint learning model,

where we encode commonsense knowledge of the inter-dependencies between the various

components via hard or soft constraints. In addition, we incorporate non-local information

extracted from the broader context preceding an event mention via learning a supervised

topic model and modeling discourse salience. Further, we present an unsupervised method

for deriving argument compatibility information from a large, unannotated corpus, and de-

velop a transfer-learning framework that transfers the resulting argument (in)compatibility

knowledge to an event coreference resolution resolver. Finally, we investigate a multi-tasking

neural model that involves simultaneously learning six tasks related to event coreference, and

guide the model learning process using cross-task consistency constraints.
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CHAPTER 1

INTRODUCTION

1.1 Background

Event coreference resolution is a task to determine which event mentions in a document

refer to the same real-world event. It is less studied but arguably more challenging. To

perform end-to-end event coreference resolution, one has to build an information extraction

(IE) pipeline that involves (1) extracting the entity mentions from a given document and

determining which of them are coreferent; (2) extracting the event mentions by identifying

their trigger words/phrases and determining which entity mentions are their arguments, and

a set of attributes that denote, for instance, whether it is a Generic or Actual event;

and (3) determining which event mentions are coreferent. To better understand the task,

consider the following example:

Georges Cipriani {left}ev1 a prison in Ensisheim in northern France on parole on Wednes-
day. He {departed}ev2 the prison in a police vehicle bound for an open prison near Stras-
bourg.

In this example, there are two event mentions, ev1 and ev2, which are triggered by the

words left and departed respectively. These event mentions are coreferent because they both

refer to the same event of Cipriani leaving the prison.

Intuitively, for two event mentions to be coreferent, not only should they have the same

event subtype, but their arguments and attributes should be compatible. In our example,

ev1 and ev2 have the same subtype, Movement.Transport-Person, thus satisfying the subtype

agreement constraint. As far as argument compatibility is concerned, note that an event

mention has zero or more arguments (the event’s participants), each of which plays a role. For

instance, ev1 has three arguments: Georges Cipriani is the Person argument, a prison is the

Origin argument, and Wednesday is its Time argument. ev2 also has three arguments, He,

the prison, and a police vehicle, serving as its Person, Origin, and Instrument arguments

1



respectively. Since the two event mentions have two overlapping roles (i.e., Person and

Origin) and their arguments are (entity-)coreferent w.r.t. each of these roles, they satisfy

the argument compatibility constraint. For attribute compatibility, both ev1 and ev2 are

Actual event mentions since they actually happened, thus attributes are compatible.

It should be easy to see from this example that event coreference resolution task is

challenging. An event coreference resolver has to assume as inputs the noisy outputs of

a larger set of upstream components involving entities and events, each of which involves

challenging tasks that are far from being solved.

Despite its difficulty, event coreference resolution is the fundamental technology for con-

solidating the textual information about an event, which is crucial for essentially all high-

level natural language processing (NLP) applications. For example, in IE, events and event

coreference information have been used for template filling (Humphreys et al., 1997) and

automated population of knowledge bases (Ji and Grishman, 2011). In topic detection and

tracking, event coreference information is needed to identify new events in a stream of broad-

cast news stories (Allan et al., 1998). In event-based text summarization, event coreference

information has been used to measure the similarity between two events, which in turn can

be used to determine whether a sentence is salient or not (Li et al., 2006). Finally, event

coreference information has also been used in other applications such as question answering

(Narayanan and Harabagiu, 2004) and contradiction detection (De Marneffe et al., 2008).

Our goal is to advance the state of the art in event coreference resolution by exploring

knowledge-rich approaches, which can address the error propagation problems in traditional

pipeline approach, exploit complex features and incorporate commonsense knowledge into

the model via constraints.

First, we develop a easy-first model using six sieves, which makes easy decisions first

and subsequently exploit these easy decisions to make hard decision. A sieve is composed

of either a set of hand-crafted rules or a machine-learned classifier for classifying a subset

2



of the mention pairs in a test document. Being an easy-first approach, the six sieves are

arranged as a pipeline in decreasing order of precision. When two event mentions are posited

as coreferent by a sieve, any argument extracted for one mention will be shared by the other

mention. In addition, later sieves can exploit the event coreference decisions made by earlier

sieves.

While the above model can propagate the information obtained from early stage to later

ones, the error made in the early stage can also propagate to later states. To address the

error propagation problem, we develop a joint inference model using Markov Logic Networks

(MLNs)(Domingos and Lowd, 2009). In our approach, we jointly perform four key tasks

in the IE pipeline: trigger identification and subtyping, argument identification and role

determination, entity coreference resolution, and event coreference resolution. The model

also exploits inter-dependencies between the various components using both hard and soft

MLN formulas.

The joint inference model only allows an event coreference resolver to interact with other

components at the inference time. We further investigate a joint learning model which can

learn interactions between different components at the model training time. The model

simultaneously learns three tasks, including event coreference resolution, trigger detection,

and event anaphoricity determination. We build a structured conditional random field model

with (1) unary factors, which encode the features specific for each task, and (2) higher-order

factors, which capture the interactions between each pair of tasks in a soft manner. However,

features used in this model only encode local context. We make two extensions that improve

trigger detection by exploiting topic information and improve event coreference by exploiting

discourse information. In particular, we propose to train a supervised topic model to infer

the topic of each word in a test document, with the goal of understanding each candidate

trigger using its global in addition to local context. To exploit discourse information, we

introduce a preprocessing component for event coreference resolution where we prune the
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candidate antecedents of an event mention that are unlikely to be its correct antecedent

based on discourse context.

In addition to non-local information, argument compatibility is frequently incorporated

into modern event coreference resolution systems. One of the key challenges in leveraging

argument compatibility lies in the paucity of labeled data. To address this problem, we

propose a transfer learning framework for event coreference resolution that utilizes a large

amount of unlabeled data to learn the argument compatibility between two event mentions.

In addition, we adopt an interactive inference network based model to better capture the

(in)compatible relations between the context words of two event mentions.

Above mentioned models addressed one or a few aspects of event coreference resolution.

The advent of the neural NLP era offers a breakthrough by enabling joint models to scale

beyond what has ever been possible. We develop a span-based neural model that involves

simultaneously learning six tasks related to event coreference in a multi-task learning frame-

work, and guide the model learning process by incorporating commonsense knowledge into

the model that encodes cross-task consistency constraints on event coreference.

1.2 Contribution

In this section, we summarize the major contributions:

• We propose the first multi-pass sieve approach to event coreference resolution. When

evaluated on the version of the KBP 2015 corpus available to the participants of EN

Task 2 (Event Nugget Detection and Coreference), our approach outperforms the best

participating system in KBP 2015.

• We propose a joint inference based event coreference resolver using Markov Logic Net-

works (MLNs). The model encodes rich NLP features implicitly by augmenting the

MLN distribution with low dimensional unit clauses. When evaluated on an English

4



corpus (KBP 2015) and a Chinese corpus (ACE 2005), our MLN based system achieves

statistically significantly better performance than a pipeline-based resolver.

• We propose a joint learning model of event coreference resolution, trigger detection,

and event anaphoricity determination. The model encodes features for capturing cross-

task interactions. To our knowledge, this is the first attempt to train a mention-

ranking model and employ event anaphoricity for event coreference. When evaluated

on the KBP 2016 English and Chinese corpora, our model outperforms the independent

models.

• We propose two extensions to improve the joint learning model using the non-local

information provided by a supervised topic model and salient discourse entities.

• We propose a transfer learning framework for event coreference resolution that utilizes a

large amount of unlabeled data to learn the argument compatibility between two event

mentions and transfers argument (in)compatibility knowledge to the event coreference

resolution system.

• We propose a neural model of event coreference resolution that involves simultaneously

learning six tasks related to event coreference in a multi-task learning framework, and

guide the model learning process by incorporating commonsense knowledge into the

model that encodes cross-task consistency constraints on event coreference.

1.3 Outline

The rest of the dissertation is organized as follows. Chapter 2 describes related work on event

coreference resolution. In Chapter 3, we describes the multi-pass sieve approach. Chapter 4

introduce the joint inference model. Chapter 5 and 6 introduce the joint learning model

and its extensions. Chapter 7 introduce the transfer-learning model. Chapter 8 introduce

the constrained multi-task neural model. We conclude with future work in Chapter 9.
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CHAPTER 2

RELATED WORK 1

In this chapter, we discuss the related work on event coreference resolution. While early

work on event coreference resolution has employed a rule-based approach (Humphreys et al.,

1997), virtually all recent work has adopted a learning-based approach, as described below.

2.1 Supervised Models

2.1.1 Mention-Pair Models

Following early entity coreference resolvers (e.g., Soon et al. (2001), Ng and Cardie (2002a)),

many event coreference resolvers adopt a two-step resolution framework. In the first step,

a binary classifier (known as a mention-pair model) is used to determine whether two event

mentions are coreferent. Mention-pair models are typically trained using an off-the-shelf

learning algorithm, such as decision trees (Cybulska and Vossen, 2015), maximum entropy

(Ahn, 2006; Chen and Ji, 2009), support vector machines (Chen and Ng, 2014), and deep

neural networks (Nguyen et al., 2016).

After training, the resulting mention-pair model can be applied to classify the test in-

stances. However, these pairwise classification decisions could violate transitivity, which is

an inherent property of the coreference relation. Hence, in the second step, a separate clus-

tering mechanism is needed to coordinate the pairwise decisions and construct a partition.

Some researchers employ agglomerative clustering algorithms, such as closest-first clustering

(selecting as the antecedent of an event mention the closest preceding event mention that is

classified as coreferent with it by the mention-pair model) and best-first clustering (selecting

as the antecedent of an event mention the preceding coreferent event mention that has the

highest coreference likelihood according to the mention-pair model) (Chen and Ng, 2014;

1This chapter was previously published in Lu and Ng (2018).
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Peng et al., 2016). Others employ graph partitioning. Specifically, given a test document, an

undirected weighted graph is first constructed, where the nodes represent the event mentions

in the document and the weight of an edge represents the coreference likelihood of the two

nodes it connects. Then, a clustering algorithm, such as spectral clustering and divisive clus-

tering, is used to obtain coreference clusters (Chen and Ji, 2009; Chen et al., 2009; Sangeetha

and Arock, 2012).

Improvements to this approach include using feature weighting to train a better model

(McConky et al., 2012) and training multiple classifiers to handle coreference between event

mentions of different syntactic types (Chen et al., 2011).

2.1.2 Generative Models

Though conceptually simple and extensively investigated, mention-pair models and the asso-

ciated two-step approach suffer from error propagation, where errors made by a mention-pair

model can propagate to the clustering step. To address this problem, Yang et al. (2015) pro-

pose a supervised nonparametric generative model for event coreference resolution, building

on the framework of the distance-dependent Chinese restaurant process. The model has sev-

eral key appealing properties. As a clustering model, event mentions are directly assigned to

incrementally built coreference clusters. As a nonparametric model, the number of clusters

does not need to be known a prior. As a Bayesian model, it can exploit priors, which in this

case encode the knowledge provided by a mention-pair model. Finally, being supervised, the

model can employ rich features in the modeling process.

2.1.3 Mention-Ranking Models

Recasting event coreference as a classification task may not be a good idea, however. Recall

that mention-pair models consider each candidate antecedent of an event mention to be re-

solved independently of other candidate antecedents. As a result, they can only determine
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how good a candidate antecedent is relative to the event mention, but not how good it is

relative to other candidate antecedents. Ranking models address this weakness by allowing

candidate antecedents of a mention to be ranked simultaneously. Motivated by their suc-

cessful application to entity coreference resolution (Denis and Baldridge, 2008; Durrett and

Klein, 2013), Lu and Ng (2017b) train a probabilistic mention-ranking model that ranks the

candidate antecedents of an event mention so that its correct antecedent has the highest

rank. Rather than train a model that maximizes the probability of selecting the correct

antecedent for each event mention independently of each other, Lu and Ng train a model to

select the antecedents for the event mentions in a document in a collective manner by hav-

ing it assign the highest probability to the correct vector of antecedents given all the event

mentions. Inference is easy: the most probable (i.e., highest-ranked) candidate antecedent

of an event mention is selected to be its antecedent independently of other event mentions.

2.1.4 Easy-First Models

Easy-first models have been successfully applied to many NLP tasks, including entity coref-

erence resolution (Lee et al., 2013). Easy-first coreference models operate in an iterative

fashion, aiming to make easy linking decisions first and subsequently exploit these easy

decisions (as additional knowledge) to make hard linking decisions.

One of the earliest event coreference resolvers that employs an easy-first approach is

Stanford’s resolver (Lee et al., 2012). This resolver iteratively bootstraps event coreference

output using entity coreference output and vice versa. Specifically, it incrementally builds

clusters of event and entity mentions. As clusters become larger, more information becomes

available. To exploit the additional information, the features of both the event coreference

resolver and the entity coreference model are regenerated.

Liu et al. (2014a) attempt to improve the two-step “classify and cluster” approach

described above by adding a third step, where they keep propagating arguments from one

8



mention in an event coreference cluster to another mention in the same cluster until all

mentions in an event coreference cluster share the same arguments. This is an instance

of the easy-first approach, as argument propagation helps to identify arguments for event

mentions that are otherwise difficult to extract.

Choubey and Huang (2017) build a two-step agglomerative clustering algorithm for

within- and cross-document coreference. In the first step, an iterative algorithm that al-

ternates between within- and cross-document event coreference is used to merge within- or

cross-document clusters by exploiting the merging decisions made in earlier iterations. Like

Liu et al. (2014a), the arguments of the event mentions in the same cluster are shared after

each merge. When no more merging can be done, the algorithm proceeds to the second step

where additional clusters are merged in an iterative fashion as follows. If the mentions in

cluster c1 are tightly associated (i.e., having the same dependency relations) or loosely asso-

ciated (i.e., co-occurring in the same sentential context) with those in c3, and the mentions

in cluster c2 are also tightly or loosely associated with those in c3, then c1 and c2 will be

merged.

2.1.5 Joint Models

The aforementioned models all adopt a pipeline architecture, where event triggers and argu-

ments are extracted prior to event coreference resolution. Hence, errors from the upstream

components (trigger identification and argument identification) will propagate to the event

coreference resolver.

One solution to the error propagation problem is to employ joint inference over the

outputs of different tasks in the IE pipeline. Chen and Ng (2016) perform joint inference

via Integer Linear Programming (ILP) over the outputs of the models trained for the four

key tasks in the IE pipeline, namely entity extraction, entity coreference, event extraction,

and event coreference. Choubey and Huang (2018) also perform joint inference via ILP by

modeling correlations between event coreference chains and document topical structures.
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Another solution to the error propagation problem is joint learning. Araki and Mitamura

(2015) formalize the task of jointly learning event trigger identification and event coreference

resolution as a structured prediction problem that is learned using the structured perceptron

training algorithm. They employ segment-based decoding with multiple-beam search for

event trigger identification, and combine it with best-first clustering for event coreference

resolution in document-level joint decoding.

2.2 Semi-Supervised Models

Supervised models suffer from the data acquisition bottleneck, where manually annotat-

ing data for all the components in the IE pipeline is expensive. This is especially true for

resource-scarce languages. To address this problem, researchers have employed active learn-

ing to select informative instances, showing that only a small number of training sentences

need to be annotated to achieve state-of-the-art event coreference performance (Chen and

Ng, 2016). Another attempt is made to utilize large amounts of out of domain text data

(Peng et al., 2016). The idea is to (1) represent event structures by five event semantic

components, namely action, argument, time, location, and sentence/clause; (2) convert each

event component to its corresponding vector representation using different methods, namely

explicit semantic analysis, Brown cluster, Word2Vec and dependency-based word embed-

ding; and (3) concatenate all components to form a structured vector representation. These

semantic representations are induced from a data set that is not part of the existing an-

notated event collections and not even from the same domain. Finally, event coreference

resolution can be recast as the task of comparing the similarities between event vectors.

2.3 Unsupervised Models

Unsupervised models are proposed to eliminate a model’s reliance on annotated data. The

vast majority of the existing unsupervised event coreference models are probabilistic gener-

10



ative models. Bejan and Harabagiu (2014) (B&H) propose several nonparametric Bayesian

models for event coreference resolution that probabilistically infer event clusters both within

a document and across multiple documents. One model uses the hierarchical Dirichlet pro-

cess. It consists of a set of Dirichlet Processes (DPs), in which each DP is associated with

each document, and each mixture component is an event coreference cluster shared across

documents. This model has the advantage of automatically inferring the number of event

clusters in a document. Despite this advantage, the model has limitations in representing

feature-rich objects. Consequently, B&H extend this model so that it can consider addi-

tional linguistic features derived from WordNet and FrameNet, for instance, instead of just

representing each data point by its corresponding word. However, using a feature-rich repre-

sentation may increase the complexity of a Bayesian model and there is no guarantee that all

the features have a positive impact on the task. As a result, B&H extend their model with a

feature selection mechanism that automatically selects a finite set of salient features. In ad-

dition, they propose another Bayesian model with a mechanism for capturing the structural

dependencies between objects.

B&H show that their models that exploit the semantic information extracted from Word-

Net and FrameNet contribute to coreference performance significantly. However, the lack

of comparable lexical knowledge bases complicates the design of event coreference resolvers

in languages other than English. To address this problem, Chen and Ng (2015a) design a

probabilistic model whose parameters are estimated using EM for computing the probability

that two event mentions are coreferent. Its generative process is not language-dependent

and does not rely on features extracted from lexical knowledge bases, so it could be applied

to languages where neither annotated data nor large-scale knowledge bases are available.
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CHAPTER 3

EVENT COREFERENCE RESOLUTION WITH MULTI-PASS SIEVES 1.

Multi-pass sieves were originally applied to entity coreference resolution (Raghunathan et al.,

2010; Lee et al., 2013) and have then been successfully applied to many other tasks in natural

language processing (NLP) such as temporal relation extraction (Chambers et al., 2014),

spatial relation extraction (D’Souza and Ng, 2015b), and disorder mention normalization

(D’Souza and Ng, 2015a). Though rarely explicitly mentioned, successful application of a

sieve-based approach to a given task depends heavily on the extent to which high-precision

rules can be designed for the task. For event coreference resolution, designing high-precision

rules is by no means trivial. The reason is that, as mentioned Chapter 1, an event coreference

resolver typically assumes as input the noisy outputs of its upstream components. The

difficulty in designing high-precision rules makes the successful application of a multi-pass

sieve approach to event coreference resolution challenging. In this chapter, we address this

challenge, proposing the first multi-pass sieve approach to event coreference resolution.

We first describe the baseline system and then describe the multi-pass sieve model.

3.1 Baseline System

In this section, we describe our baseline system, which operates in two steps. First, it

performs event mention detection, which involves detects all explicit mentioning of events

with certain specified types in text (Section 3.1.1). Second, it performs event coreference

resolution on the event mentions extracted in the first step (Section 3.1.3).

1This chapter was previously published in Lu and Ng (2016a)
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3.1.1 Event Mention Identification and Subtyping

This component extracts event triggers and determines the semantic type and subtype of

each event mention. We recast the task of identifying event triggers as a sequence labeling

task, where we train one CRF using the CRF++ package2. Each word can trigger multiple

event mentions having different types/subtypes, we train one CRF for each type. Specifically,

for classifier of type tj, we create one instance for each word wi, assigning it a class label

that indicates whether it begins a trigger with subtype sjk (B-sjk), is inside a trigger with

subtype sjk (I-sjk), begins a trigger with other types (B-tm 6=j), is inside a trigger with other

types (I-tm 6=j) or is outside a trigger (O). So there are (2× number of subtypes of tj + 2 ×

number of other types +1 ) labels in total. Below we describe the features used to represent

wi, which can be divide into three categories: lexical, syntactic and semantic.

Lexical: word unigrams (wi−2,wi−1,wi,wi+1,wi+2); word bigrams (wi−1wi, wiwi+1); word

trigrams (wi−2wi−1wi, wi−1wiwi+1, wiwi+1wi+2), the part-of-speech tag of wi; lemmatized

word unigrams, bigrams and trigrams.

Syntactic: depth of wi’s node in its syntactic parse tree; the path from the leaf node

of wi to the root in its syntactic parse tree; the phrase structure expanded by the parent of

wi’s node; the phrase type of wi’s node.

Semantic: the WordNet synset id of wi; the WordNet synset ids of the wi’s hypernym,

its parent, and its grandparent; When computing these semantic features, we only use the

synset corresponding to wi’s first sense.

We improve the recall of event mention detection in a postprocessing process as follows.

First, we construct a word list containing triggers that appear infrequently (less than 10

times) in the training data and do not belong to more than one subtype according to the

training data. For example, the word “hijack” appears only a few times in the training data

2https://taku910.github.io/crfpp/
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but is always labeled as “Conflict.Attack”. Then, we extract any word as a trigger with the

corresponding subtype as long as it appears in the word list.

3.1.2 Event Argument and Role Classification

Event arguments can be entities and argument fillers.3 Argument fillers corresponds to

specific event subtypes, meaning that they will only appear if the corresponding subtype lends

itself to such information. Also argument fillers such as Title, Age provide few information for

event coreference. Hence we only extract entities as candidate event arguments. To extract

entities, we train a CRF (using CRF++) on the texts of LDC2015E29 and LDC2015E68

annotated with Rich ERE entity mentions. The statistics on those corpora are shown in

Table 3.1. This classifier jointly identifies and determines the semantic type of each entity

mention. Specifically, we create one instance for each word wi, assigning it a class label

that indicates whether it begins an entity mention of type tj (B-tj) , is inside an entity of

type tj (I-tj) or is outside an entity (O). In Rich ERE annotation, entities are labeled by

five semantic types: PER, ORG, GPE, LOC, FAC, so there are 11 labels in total. The

features used to represent wi are lexical features including word unigrams, word bigrams,

word trigrams formed from words in a window of five, grammatical features namely the part-

of-speech tag of wi, whether wi is in a NP or not, whether wi is part of a pronoun, whether

the first letter of wi is in uppercase and semantic features including the WordNet synset id

of wi; the WordNet synset ids of the wi’s hypernym, its parent, and its grandparent.

Then the event argument and role classification component takes as input a set of event

mentions from previous component described in Section 3.1.1 and a set of candidate event

arguments. For each event mention em, it identifies those candidate arguments that are the

true arguments of em and then assigns a role to each of its true arguments. To implement this

3The Rich ERE annotation guideline overview is available from
http://cairo.lti.cs.cmu.edu/kbp/2015/event/annotation
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Table 3.1. Statistics on LDC2015E29 and LDC2015E68.

Newswire Forum

LDC2015E29
Documents 48 43

Entity mentions 2,751 4,906

LDC2015E68
Documents − 95

Entity mentions − 12,570

component, we jointly learns these two tasks by training a classifier using the SVMmulticlass.

This classifier is also trained on the texts of LDC2015E29 and LDC2015E68 annotated with

Rich ERE event arguments. The candidate event arguments include all entity mentions that

are extracted using the CRF mentioned above and appear in the same sentence as event

trigger. Specifically we create a training instance by pairing each event trigger with each of

its candidate arguments. If the candidate argument is indeed a true argument of the trigger,

the class label of the training instance is the argument’s role. Otherwise, its class label is

NONE. There are 27 labels in total, including 26 roles defined in the Rich ERE annotation

and NONE. We train this classifier using following 13 features.

Basic: trigger subtype; type of entity mention; head word of entity mention; event

subtype + head word; event subtype + entity type; POS of trigger word

Neighbouring words: left/right neighbor word of entity; left/right neighbor word of

the entity + word’s POS; left/right neighbor word of the trigger + word’s POS

Syntactic feature: the phrase structure expanding the parent of trigger in the syntactic

parse tree; the phrase type of the trigger; the path from entity to trigger; the dependency

path from entity to trigger;

3.1.3 Event Coreference Resolution

This component identifies event coreference links by combining a mention-pair model (Soon

et al., 2001), which is a binary classifier that determines whether two event mentions are
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co-referring or not, with a best-first single-link clustering algorithm, which selects as the

antecedent of an event mention e the best preceding event mention that is classified as coref-

erent with e. We train a mention-pair model using the libSVM software package (Chang and

Lin, 2001). We create positive training instances by pairing each anaphoric event mention

em with its closest antecedent and negative training instances by pairing em with each of

its preceding event mentions that is not coreferent with em. Each instance is representing

using 19 features. We use Stanford CoreNLP package to extract the linguistic information

needed to compute these features, including the part-of-speech tags, syntactic parse trees,

dependency parse trees and entity coreference chains. As can be seen below, the 19 features

can be divided into three groups. For convenience, we use em2 to refer to an event mention

to be resolved and em1 to refer to a candidate antecedent of em2.

Group 1 (Event Type and Subtype features). The four features in this group en-

code: whether em1 and em2 agree w.r.t. event type; whether they agree w.r.t. event subtype;

the concatenation of their event types; and the concatenation of their event subtypes.

Group 2 (Event Trigger features). The ten features in this group encode: whether

em1 and em2 have the same trigger; whether they have the same lemmatized trigger; whether

the triggers of em1 and em2 or the hypernyms of these triggers are in the same synset in

WordNet; the concatenation of their triggers; the concatenation of part-of-speech tags of their

triggers; whether their triggers agree in number if they are nouns; whether their triggers have

the same modifiers if they are nouns; whether their triggers are in the same entity coreference

chain if they are nouns; the sentence distance between the triggers of em1 and em2; whether

this trigger pair appears in the list of trigger pairs of coreferent events in the training set.

Group 3 (Event Argument features).

From the extracted arguments of the event mentions from the event argument component

described in Section 3.1.2, we encode seven features: if em1 and em2 have arguments of the

same role, whether the arguments have the same head word, whether they are in the same
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coreference chains, and whether they have the same modifiers; the roles and number of the

arguments that only appear in em1 and the roles and number of the arguments that only

appear in em2

3.2 A Multi-Pass Sieve Approach

In this section, we describe our multi-pass sieve approach to event coreference resolution.

The sieve approach has been successfully applied to entity coreference resolution. To our

knowledge, ours represents the first attempt to apply the sieve approach to event coreference

resolution.

3.2.1 Brief Introduction to Sieves

A sieve is composed of one or more heuristic rules. Each rule extracts a coreference relation

between two event mentions. Sieves are ordered by their precision, with the most precise

sieve appearing first. To resolve a set of event mentions in a document, the resolver makes

multiple passes over them: in the i-th pass, it uses only the rules in the i-th sieve to find an

antecedent for each event mention. The candidate antecedents are ordered by their positions

in the document. The partial clustering of event mentions generated in the i-th pass is then

passed to the i+1-th pass. In this way, later passes can exploit the information computed

by previous passes, but the decision make earlier cannot be overridden later.

In our approach, later sieves exploit the decisions made by the earlier sieves as follows.

When two event mentions are posited as coreferent by a sieve, any argument extracted for

one mention will be shared by the other mention. It is this sharing of argument among

coreferent event mentions that will be exploited by the later sieves.
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3.2.2 Sieves for Event Coreference

Our sieve approach first extracts event mentions using the same CRF model described in

Section 3.1.1, and then employs the following sieves that we designed for event coreference

resolution.

1. Newswire Headline sieve: this sieve is motivated by the journalistic nature of

newswire documents. The first sentence in the newswire documents always contains a de-

tailed explanation of the headline. This sieve posits two event mention in the headline and

an event mention the first sentence as coreferent if they have the same subtype and their

triggers are in the same WordNet synset.

2. Strict Event Coreference sieve: this sieve follows the strict event coreference

criteria. Two mentions are posited as coreferent if they satisfy all of the following conditions:

(a) they have the same subtypes; (b) their triggers are in the same lemmatized form; (c)

at least one of their arguments of the same role are in the same entity coreference chain or

are lexically identical (if they are non-pronominal); (d) their triggers are in the same entity

coreference chain if they are nouns.

3. Strict Trigger Match sieve: this sieve posits two event mentions with noun triggers

as coreferent if they have the same subtypes and their triggers have the same lemma and

same modifiers.

4. Semantic Similar Trigger sieve: this sieve relaxes the Strict Event Coreference

Sieve by deleting conditions (b) and (d), but it requires the triggers of the two mentions or

the hypernyms of the triggers to be in the same WordNet synset.

5. Known Coreferent Pair sieve: this sieve posits two event mentions as coreferent

if they have the same subtypes and the trigger pair has appeared in the list of trigger pairs

of coreferent event mentions in the training set.

6. Mention Pair sieve: this sieve exploits information of mention pairs provided by

the baseline system described in the previous section. Specifically, two event mentions are
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posited as coreferent with their coreference probability exceeds a certain threshold according

to the mention-pair baseline model. The threshold is tuned on development data.

For discussion forum documents, we employ essentially the same sieves except that we

replace the first sieve with a sieve that posits two event mentions as coreferent if their triggers

and the sentences containing them are identical.This sieve is motivated by the nature of a

discussion forum where an author usually quotes a preceding post to which she wants to

respond.

3.3 Evaluation

3.3.1 Experiment Setup

Corpus. While different corpora have been used to train and evaluate event coreference

resolvers, but as Liu et al. (2014b) pointed out, not all of them were carefully annotated.

OntoNotes and ECB have only be partially annotated with event coreference links. Among

the publicly-available corpus, the ACE 2005 corpus is arguably the one that is most complete

with respect to the annotation of event coreference links. In fact, the majority of recent work

on event coreference was evaluated on the ACE 2005 corpus.

As an event coreference corpus, ACE 2005 has a major weakness: it adopts a strict

notion of event identity. Specifically, two event mentions were annotated as coreferent if

and only if “they had the same agent(s), patient(s), time, and location” (Song et al., 2015),

and their event attributes (polarity, modality, genericity, and tense) are not incompatible.

This is arguably an overly strict definition of event coreference, as some event mentions are

intuitively coreferent even if their time and/or location arguments are not identical.

The KBP 2015 event coreference corpus, which we use to evaluate our model, was created

in response to the aforementioned weakness of the ACE 2005 corpus (Song et al., 2015). It

was annotated using the Rich ERE guidelines, which are arguably more realistic in the
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Table 3.2. Statistics on the official KBP 2015 Event Nugget Detection and Coreference
corpus.

Training Data Newswire Forum
Documents 81 77
Event mentions 2,219 4,319
Event hoppers 1,461 1874

Evaluation Data Newswire Forum
Documents 98 104
Event mentions 3,788 2,650
Event hoppers 2,440 1,685

sense that they mimic more closely a human’s judgment of whether two event mentions are

coreferent.

We train event mention identification and subtyping model and event coreference res-

olution model on the training data of TAC KBP 2015 event detection task. Evaluations

is performed on the official evaluation data of TAC KBP 2015 event detection task. The

statistics on the dataset are shown in Table 3.2.

Evaluation metrics. To evaluate event coreference performance, we employ four commonly-

used coreference scoring measures as implemented in the official scorer of version 1.7 provided

by the KBP 2015 organizers namely MUC (Vilain et al., 1995), B3 (Bagga and Baldwin,

1998), CEAFe (Luo, 2005) and BLANC (Recasens and Hovy, 2011). 4 Each of these eval-

uation measures reports results in terms of recall (R), precision (P), and F-score (F). We

also report event mention detection performance in terms of recall, precision and F-score,

considering a mention correctly detected if it has an exact match with a gold mention in

terms of boundary, event type, and event subtype.

Evaluation settings. We evaluate both baseline and proposed system using the pre-

dicted event mentions obtained from event detection component described in section 3.1.1.

4the official scorer can be found at http://cairo.lti.cs.cmu.edu/kbp/2015/event/scoring
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3.3.2 Results and Discussion

In this subsection, we present the results on the official evaluation data. Table 3.3 shows the

results of the baseline (row 1) as well as our event coreference resolver (rows 2 to 7) when

automatically extracted event mentions are used. Our event mention detection component

achieves scores of 50.50% (R), 66.60% (P), and 57.45% (F), which is second best among all

participants in KBP 2015 evaluation. The best system achieves score of 58.41% (F). As we

can see, the baseline achieves an Avg F-score (average of the F-scores of the four scoring

measures) of 37.82%. The subsequent rows show the results when the five sieves are added

incrementally. As we can see, our best Avg F-score of 40.32% is obtained when all six sieves

are employed. This improvement of 2.5% absolute F-score over the baseline is statistically

significant (paired t-test, p < 0.05). Our system achieves a better score than the highest

score of KBP 2015 evaluation which is 39.65% (F).

A major source of recall error stems from the system’s inability to cluster events have

few common features. For example, “Somali pirates said Saturday they had received a

record nine million dollar ransom in a helicopter air drop for the release of a South Korean

supertanker, Samho Dream, with 24 crew. ‘The boat was freed this morning agter the

payment of nine million dollars to my colleagues,’ one of the pirates told AFP by telephone.

” In this example, “ransom” and “payment” are triggers of two coreferent events. First

just based on the lexical meaning of these two triggers, they share a few information about

coreference. Second, in order to know their arguments “a South Korean supertanker” and

“the boat” are coreferent, we need more complex analysis.

A major source of precision error stems from the system’s tendency to cluster event

mentions whose triggers have the same lemma. Although semantic similar trigger sieve are

used, more background knowledge is needed to resolve this difficult case.
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Table 3.3. Event coreference Results with system event mentions of evaluation data
MUC B3 CEAFe BLANC Avg

R P F1 R P F1 R P F1 R P F1 F1

Baseline 29.26 50.78 37.13 39.34 53.88 45.48 35.85 41.66 38.54 23.82 40.93 30.12 37.82
Sieve 1 0.73 73.91 1.45 30.66 66.17 41.91 43.47 36.90 39.92 13.68 58.22 17.13 25.10
+Sieve 2 6.26 53.70 11.22 31.88 65.02 42.78 43.21 38.65 40.80 15.15 49.55 19.92 28.68
+Sieve 3 9.07 56.30 15.63 32.46 64.61 43.21 43.32 39.63 41.39 15.93 50.10 21.29 30.38
+Sieve 4 11.06 52.35 18.27 32.98 63.59 43.44 42.59 40.00 41.25 16.50 48.31 22.22 31.29
+Sieve 5 40.51 48.00 43.93 42.75 48.33 45.37 33.07 46.56 38.67 29.67 39.26 33.11 40.27
+Sieve 6 40.68 48.08 44.07 42.82 48.29 45.39 33.04 46.60 38.67 29.72 39.27 33.14 40.32

3.4 Chapter Summary

In this chapter, we proposed a multi-pass sieve approach to the task of event coreference

resolution. When evaluated on the version of the KBP 2015 corpus, our approach achieves

an Avg F-score of 40.32%, outperforming the best participating system in TAC KBP 2015

evaluation.
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CHAPTER 4

JOINT INFERENCE FOR EVENT COREFERENCE RESOLUTION 1

As discussed in Chapter 1, pipeline approaches suffer from the error propagation problem.

In this chapter, we propose a model based on Markov Logic Networks (MLNs) (Domingos

and Lowd, 2009) that jointly performs four key tasks in the IE pipeline, namely, trigger iden-

tification and subtyping, argument identification and role determination, entity coreference

resolution and event coreference resolution. MLNs are particularly well-suited for modeling

joint inference tasks in natural language processing (NLP) due to the inherent relational

structure and uncertainty typically associated with challenging NLP problems.

Formally, an MLN is a set of pairs (fi, θi) where fi is a formula in first-order logic

and θi is a real number. Given a set of constants, an MLN represents a ground Markov

network, in which we have one binary random variable for each possible ground atom and

one propositional feature for each possible grounding of each first-order formula. The weight

associated with the feature is the weight attached to the corresponding formula. The ground

Markov network represents the following probability distribution:

Pr(ω) =
1

Z
exp

(∑
fi

θiNfi(ω)

)
(4.1)

where Nfi(ω) is the number of groundings of fi that evaluate to True given a world ω (an

assignment of {0, 1} to all ground atoms). The use of first-order logic enables the user to

succinctly represent prior, relational knowledge about the application domain, while the

weights help model uncertainty in the truth of the first-order logic sentences.

As is commonly known, the major obstacle to the successful application of MLNs to

NLP tasks is computational complexity. For event coreference, the rich sets of features that

are typically used to model the four IE tasks mentioned above are ill-suited for modeling

1This chapter was previously published in Lu et al. (2016).
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as explicit MLN formulas since they tend to blow up the size of the MLN due to their

high dimensionality, making inference on the MLN infeasible. To address this, we propose a

hybrid approach where we embed such features as weighted unit clauses in a low-dimensional

space, and then integrate these clauses with the rest of the MLN formulas during inference.

We first describe the baseline system and then describe the joint inference model.

4.1 Baseline System

Our pipeline-based baseline system operates in five steps.

Step 1: Entity extraction. Our entity extraction model jointly identifies the entity

mentions and their entity types. We train this model using CRF++2, treating each sentence

as a word sequence. Specifically, we create one instance for each word w and assign it a

class label that indicates whether it begins an entity mention with type tj (B-tj), is inside

an entity mention with type tj (I-tj), or is outside an entity mention (O). The features used

to represent each instance for training the English CRF and the Chinese CRF are shown in

Tables 4.1 and 4.6, respectively.

Step 2: Entity coreference resolution. Our entity coreference classifier is a pairwise

classifier that determines whether two entity mentions are coreferent or not. To train this

classifier, we employ SVMlight (Joachims, 1999), creating training instances using Soon et

al.’s (2001) training instance creation method. Each training instance represents two entity

mentions in each training document. The class value of a training instance is either positive or

negative, depending on whether the two entity mentions are coreferent in the associated text.

The features used to represent each instance for training the entity coreference classifiers for

English and Chinese are shown in Tables 4.2 and 4.7, respectively.

2https://taku910.github.io/crfpp/
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After training, the resulting classifier can be used to classify each pair of entity mentions

extracted in Step 1 as coreferent or not. We select as the antecedent of an entity mention

em the closest preceding mention that is classified as coreferent with em.

Step 3: Trigger identification and subtyping. Since ACE allows only single-word

triggers, our SVM-based Chinese trigger classifier takes as input a candidate trigger word

(i.e., a word that survives Li et al.’s (2012) filtering rules) and outputs its event subtype (if

it is a true trigger) or None (if it is not a trigger). In essence, it jointly (1) identifies event

trigger words and (2) assigns a subtype to each identified trigger. To train this classifier, we

create one training instance for each word wi in each training document. If the word does

not correspond to a trigger, the class label of the corresponding instance is None. Otherwise,

the class label is the subtype of the trigger. The features used to represent each instance for

training this classifier are shown in Table 4.8.

Because KBP additionally allows multi-word triggers, we recast the task of identifying

English triggers as a sequence labeling task, where we train models using CRF++. Recall

that since each (multi-)word may trigger multiple event mentions having different (sub)types,

we train one CRF for each type. Specifically, to train the CRF for type tj, we create one

instance for each word wi, assigning it a class label that indicates whether it begins a trigger

with subtype sjk (B-sjk), is inside a trigger with subtype sjk (I-sjk), begins a trigger with

other types (B-tm 6=j), is inside a trigger with other types (I-tm 6=j) or is outside a trigger (O).

The features used to represent each instance for training this CRF are shown in Table 4.3. To

improve the recall of event trigger detection, we augment the CRF output with heuristically

extracted triggers. Specifically, we first construct a wordlist containing triggers that appear

infrequently (less than 10 times) in the training data and do not belong more than one

subtype according to the training data. Then, we extract any word as a trigger with the

corresponding subtype as long as it appears in the wordlist.
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Table 4.1. Features for entity extraction used in the English baseline system. w is the word
under consideration.

Lexical word unigrams, bigrams, and trigrams formed from w with a
window size of five.

Grammatical w’s part-of-speech (POS) tag; whether w is part of a NP;
whether w is part of a pronoun, whether the first letter of w
is in uppercase.

Semantic the WordNet synset id of w; the WordNet synset ids of w’s
hypernym, its parent, and its grandparent.

Step 4: Argument identification and role labeling. Our argument identifier and role

labeler is a classifier trained using SVMlight that jointly learns the tasks of (1) identifying the

true arguments of an event mention and (2) assigning a role to each of its true arguments. To

train this classifier, we create the training instances by pairing each true event mention em

(i.e., event mention consisting of a true trigger) with each of em’s candidate event arguments,

considering an entity mention extracted in Step 1 a candidate argument of em if it appears

in the same sentence as em. If the candidate argument is indeed a true argument of em,

the class label of the training instance is the argument’s role. Otherwise, its class label is

None. The features used to represent each instance for training the English classifier and

the Chinese classifier are shown in Tables 4.4 and 4.9, respectively.

After training, we can apply this classifier to classify test instances. To create test

instances, we pair each candidate trigger (extracted in Step 3) with each of its candidate

event arguments.

Step 5: Event coreference resolution. The event coreference classifier is a pairwise

classifier that determines whether two event mentions are coreferent. To train this classifier,

we use SVMlight, creating training instances using Soon et al.’s( 2001) training instance cre-

ation method. The features used to represent each instance for training the event coreference

classifier for English and Chinese are shown in Tables 4.5 and 4.10, respectively.
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Table 4.2. Features for entity coreference resolution used in the English baseline system.
en2 is the entity mention to be resolved and en1 is a candidate antecedent of en2.

Lexical whether en1 is pronoun; whether en1 is the subject of the sen-
tence; whether en1 is noun; whether en2 is pronoun; whether
en1 is noun; whether en1 and en2 have the exactly the same
string; whether the modifiers of en1 and en2 match; the sen-
tence distance between the strings of en1 and en2.

Grammatical the number, gender and animacy of en1 and en2; whether en1

and en2 agree w.r.t. number; whether en1 and en2 agree w.r.t.
gender; whether en1 and en2 agree w.r.t. animacy.

Table 4.3. Features for event trigger identification and subtyping used in the English
baseline system. t is the candidate trigger.

Lexical t’s POS tag, lemmatized and unlemmatized word unigrams,
word bigrams, word trigrams formed from t with a window
size of five.

Syntactic depth of t in its syntactic parse tree; path from the leaf node
of t to the root in its syntactic parse tree; phrase structure
expanded by the parent of t’s node; phrase type of t’s node.

Semantic WordNet synset id of t; WordNet synset ids of t’s hypernym,
its parent, and its grandparent.

Table 4.4. Features for event argument identification and role labeling used in the English
baseline system. en is a candidate argument of trigger t.

Basic t’s event subtype; en’s entity type; en’s head word; event
subtype + head word; event subtype + entity type; t’s POS
tag.

Neighboring
words

left/right neighbor word of en; left/right neighbor word of
en + the word’s POS; left/right neighbor word of en + the
word’s POS.

Syntactic the phrase structure obtained by expanding the parent of t in
the constituent parse tree; the phrase type of t; the path from
en to t in the constituent parse tree; the dependency path
from en to t.

27



Table 4.5. Features for event coreference resolution used in the English baseline system.
ev2 is the event mention to be resolved and ev1 is a candidate antecedent of ev2.

Event type
features

whether ev1 and ev2 agree w.r.t. event type; whether they
agree w.r.t. event subtype; the concatenation of their event
types; and the concatenation of their event subtypes.

Trigger fea-
tures

whether ev1 and ev2 have the same trigger; whether they have
the same lemmatized trigger; whether the triggers of ev1 and
ev2 or the hypernyms of these triggers are in the same Word-
Net synset; the concatenation of their triggers; the concatena-
tion of POS tags of their triggers; whether their triggers agree
in number if they are nouns; whether their triggers have the
same modifiers and they are in the same entity coreference
chain if they are nouns; the sentence distance between the
triggers of ev1 and ev2; whether the triggers of ev1 and ev2
appear in a training document as a coreferent event mention
pair; whether the triggers of ev1 and ev2 appear in the first
sentence and headline of the document if this is a newswire
document; whether the sentence containing the the triggers
of ev1 and ev2 are identical if this is a discussion forum doc-
ument.

Argument fea-
tures

whether ev1 and ev2 have arguments of the same role; whether
the arguments have the same head word; whether they are
in the same coreference chains; whether they have the same
modifiers; the roles and number of the arguments that only
appear in ev1; and the roles and number of the arguments
that only appear in ev2.

Table 4.6. Features for entity extraction used in the Chinese baseline system. w is the word
under consideration.

Lexical word unigrams, bigrams, and trigrams formed from w with a
window size of five.

Grammatical w’s POS tag; whether w is in a NP; whether w is part of a
pronoun.

Wordlist-
based

whether w can be found in each of the following 10 wordlists:
Chinese surnames; famous GPE and location names (three
wordlists); Chinese location suffixes; Chinese GPE suffixes;
famous international organization names; famous company
names; famous person names; and a list of pronouns.
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Table 4.7. Features for entity coreference resolution used in the Chinese baseline system.
en2 is an entity mention to be resolved and en1 is a candidate antecedent of en2.

Lexical whether en1 is pronoun; whether en1 is the subject of the sen-
tence; whether en1 is noun; whether en2 is pronoun; whether
en1 is noun; whether en1 and en2 are the same string; whether
the modifiers of en1 and en2 match; the sentence distance be-
tween en1 and en2;

Grammatical the number, gender and animacy of en1 and en2; whether en1

and en2 agree w.r.t. number; whether en1 and en2 agree w.r.t.
gender; whether en1 and en2 agree w.r.t. animacy

Table 4.8. Features for event trigger identification and subtyping used in the Chinese
baseline system. t is a candidate trigger.

Lexical word and POS n-grams formed from t with a window size of
three

Syntactic depth of t in its syntactic parse tree; path from the leaf node
of t to the root in its syntactic parse tree; phrase structure
expanded by the parent of t’s node; the path from the leaf
node of t to the governing clause; phrase type of t’s node.

Semantic whether t exists in a predicate list from the Chinese PropBank
(Xue and Palmer, 2009); the entry number of t in a Chinese
synonym dictionary

Nearest entity
information

entity type of the syntactically/physically nearest entity to
t in its syntactic parse tree; entity type of the syntacti-
cally/physically left/right nearest entity to t in its syntactic
parse tree + entity

Table 4.9. Features for event argument identification and role labeling used in the Chinese
baseline system. en is a candidate argument of trigger t.

Basic t’s event subtype; en’s entity type; en’s head word; t’s subtype
+ en’s head word; t’s event subtype + en’s entity type; t’s
POS tag.

Neighboring
words

left/right neighbor word of en; left/right neighbor word of en
+ the word’s POS tag; left/right neighbor word of t + the
word’s POS tag.

Syntactic the phrase structure obtained by expanding the parent of t in
the constituent parse tree; the phrase type of t; the path from
en to t in the constituent parse tree; the dependency path
from en to t.

29



Table 4.10. Features for event coreference resolution used in the Chinese baseline system.
ev2 is the event mention to be resolved and ev1 is a candidate antecedent of ev2.

Event type
features

whether ev1 and ev2 agree w.r.t. event type; whether they
agree w.r.t. event subtype; the concatenation of their event
types; and the concatenation of their event subtypes.

Trigger fea-
tures

whether ev1 and ev2 have the same trigger; whether the trigger
of ev1 and ev2 partially matched; whether they have the same
lemmatized trigger; the concatenation of their triggers; the
concatenation of part-of-speech tags of their triggers; whether
their triggers agree in number if they are nouns; whether their
triggers have the same modifiers if they are nouns; the sen-
tence distance between the triggers of ev1 and ev2; the number
of words between ev1 and ev2; whether the triggers of ev1 and
ev2 appear in a training document as a coreferent event men-
tion pair.

Argument fea-
tures

whether ev1 and ev2 have arguments of the same role; whether
the arguments have the same head word; whether they are
in the same coreference chains; whether they have the same
modifiers; the roles and number of the arguments that only
appear in ev1; and the roles and number of the arguments
that only appear in ev2

After training, we apply the resulting classifier to classify test instances. We select as the

antecedent of an extracted event mention e the closest preceding mention that is classified

as coreferent with e.

4.2 Joint Model

In this section, we describe our MLN-based joint model for event coreference resolution.

4.2.1 MLN Structure

Figure 4.1 shows our proposed MLN for event coreference resolution. It has five predicates

subdivided into three categories: query, hidden and evidence.

The query predicate EventCoref(d,t1,t2) is true when two event mentions t1 and t2 in

document d are coreferent. The hidden predicates are those that cannot be directly observed
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EventCoref(d,t1,t2)

(a) Query

EntityCoref(d,a1,a2)
Trigger(d,t,type!)
Argument(d,t,a,role!)

(b) Hidden

Word(d,t,word)

(c) Evidence

1. Trigger(d,t1,p) ∧ EventCoref(d,t1,t2) ∧ p 6= None ⇒ Trigger(d,t2,p)

2. EventCoref(d,t1,t2) ⇒ (¬Trigger(d,t1,None) ∧ ¬Trigger(d,t1,None))

3. EventCoref(d,t1,t2) ⇒ EventCoref(d,t2,t1)

4. EventCoref(d,t1,t2) ∧ EventCoref(d,t2,t3) ⇒ EventCoref(d,t3,t1)

5. EntityCoref(d,a1,a2) ⇒ EntityCoref(d,a2,a1)

6. EntityCoref(d,a1,a2) ∧ EntityCoref(d,a2,a3) ⇒ EntityCoref(d,a3,a1)

7. Trigger(d,t1,p) ∧ Trigger(d,t2,p) ∧ Argument(d,t1,a1,r) ∧ Argument(d,t2,a2,r) ∧
¬EntityCoref(d,a1,a2) ∧ p 6= None ∧ r 6= None ⇒ ¬EventCoref(d,t1,t2)

8. Word(d,t1,+w1) ∧ Word(d,t2,+w2) ∧ Trigger(d,t1,+p1) ∧ Trigger(d,t2,+p2) ⇒
EventCoref(d,t1,t2)

(d) Joint Formulas

Figure 4.1. MLN structure.

in the data. Our model contains three hidden predicates: (1) Trigger(d,t,p) is true when

mention t in document d has event/trigger subtype p. A special type called “None” indicates

that t does not contain a trigger. (2) Argument(d,t,a,r) asserts that entity mention a is an

argument of event mention t in document d and its role is r. Again, we include a special

role called “None”, which indicates that the entity mention is not an argument of the event

mention. The ! symbol in the predicate definition indicates that every entity mention must

take one and only one argument role. (3) EntityCoref(d,a1,a2) is true when entity mentions

a1 and a2 in document d are coreferent. The evidence predicates represent (ground) random

variables that can be directly observed in the data. In our MLN, we assume that we only

observe the words; the predicate Word(d,t,w) is true when mention t in document d equals

word w.

3http://ir.hit.edu.cn/
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The MLN formulas are of two types. The first six formulas have infinite weight which

means that they are hard formulas and must be always satisfied. The last two formulas are

soft, and their weights will be learned from the data. All logical variables in our formulas

are universally quantified and therefore for brevity, we do not use them in the formulas.

Formula 1 encodes the hard constraint that if two event mentions are coreferent, then they

should share the same trigger subtype. Formula 2 specifies the hard constraint that if

event mentions are coreferent, then their triggers subtypes cannot be “None.” Formulas

3−6, all of which are hard formulas, specify the commutative and transitive properties of

coreferent event and entity mentions. Formula 7, which is a soft formula, specifies the

following dependency between the entity mentions that are coreferent and event mentions

that are coreferent: for two event mentions t1 and t2, if the trigger subtypes of t1 and t2 are

identical but if there exists a pair of arguments corresponding to t1 and t2 respectively that

share the same role but the corresponding entity mentions are not coreferent, then event

mentions t1 and t2 are not coreferent.4 Formula 8, which is also a soft formula, specifies the

dependency between words in the text with the trigger subtypes and event coreference. The

+ sign in this formula indicates that for every grounding of the variables marked by the +

sign, we learn a different weight for the soft formula.

4.2.2 Augmenting the MLN Distribution

Notice that the MLN shown in Figure 4.1 does not model the features used in the baseline

systems. These features typically have high dimensionality and encoding them directly in

the MLN is quite inefficient. For example, describing a trigram as an MLN formula results in

d3 ground formulas, where d is the number of words in our vocabulary. Therefore, the ground

Markov network of an MLN that explicitly models all such high dimensional features would

4We restrict the application of Formula 7 to arguments having the following roles: Position, Person,
Entity, Organization, Attack, Defendant, Adjudicator, Giver, Agent, Target, and Thing.

32



be extremely large and infeasible for inference. To address this issue, we implicitly encode

the high-dimensional features by embedding them as weighted unit clauses on the groundings

of hidden and query predicates in our MLN. Specifically, for each hidden/query ground atom

Xi, we derive a single weight, φ(Xi) using the baseline system. This weight is computed as

the distance from the hyperplane for the SVM-based classifiers in the baseline system and as

a probability value for the CRF-based classifier in the baseline system. We normalize each

weight between the interval [−1,1]. The modified MLN distribution incorporating the new

unit clauses is given by

PM′(ω) ∝ exp

(∑
fi

θiNfi(ω)

)
Φ(ω) (4.2)

where ω is a world (assignment on every ground atom) and Φ(ω) acts as a prior on the set

of hidden (H) and query (Y) ground atoms in the original MLN and is given by,

Φ(ω) = exp

( ∑
X∈H∪Y

IX(ω)φ(X)

)
(4.3)

where IX(ω) is an indicator function that is equal to 1 if X is true in ω and 0 otherwise.

4.2.3 Setting the Soft Formula Weights

During inference time, we dynamically set the weights for the soft formulas (Formulas 7

and 8 in Fig. 4.1) as follows. For each ground soft formula, where the evidence atoms

does not make the formula false, we set the formula weight as the summation of SVM

weights corresponding to hidden and query atoms in that formula. We then multiply the

soft-weights with hyper-parameters η1 and η2 for Formula 7 and 8 respectively and tune η1

and η2 using a grid-search over values [0.1, 0.25, 0.5, 0.75, 1.0], which optimizes the F1-score

of event coreference resolution over the development set.

4.2.4 Inference

Given the prior-augmented MLN, M′, the key task we are interested in is finding a truth

assignment to all ground atoms of EventCoref that has the maximum probability given
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evidence on all ground atoms of Word. The following standard MAP inference task, which

computes a joint assignment to all hidden and query variables given evidence, can be used

to find the desired truth assignment.

arg max
ω

{
exp

(∑
fi

θiNfi(ω)

)
Φ(ω)

}
(4.4)

Unfortunately, the optimization problem given above is NP-hard in general. Moreover, the

number of possible worlds in M′ is extremely large and as a result naively searching over

this large space in order to solve the optimization problem is computationally infeasible. As

a concrete example, for the KBP 15 training dataset, we have 50 million ground atoms.

Fortunately, we can exploit the structure of the MLN given in Figure 4.1 in order to

scale up MAP inference. In particular, the subset of ground atoms corresponding to two

distinct documents are independent of each other. More formally, let Xi and Xj be the

subset of ground atoms corresponding to two documents, say Di and Dj respectively, then

Xi is conditionally independent of Xj given evidence. Thus, given D documents in our

corpus, the joint distribution represented by our MLN can be expressed as a product of

D distributions. We can then perform inference independently over each such distribution,

which greatly reduces the complexity of inference. Our inference procedure therefore follows

an efficient, lazy grounding strategy (Gogate and Domingos, 2011) that grounds the MLN

for each document independently and solves Eq. (4.4) for each document separately using

Gurobi (2013), a state-of-the-art integer linear programming solver.

4.3 Evaluation

4.3.1 Setup

We perform our evaluation on two corpora, the KBP 2015 English corpus and the Chinese

portion of the ACE 2005 training corpus. For English, we train models on 128 of the
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training documents, tune parameters (the regularization parameters in SVM classifiers and

the weights of the soft MLN formulas) on the remaining 30 training documents, and report

results on the official test set.5 For Chinese, since the ACE 2005 test set is not publicly

available, we report five-fold cross validation results on the ACE 2005 training corpus. For

each fold experiment, we employ three folds for classifier training, one fold for development

(parameter tuning), and one fold for testing.

To evaluate event coreference performance on KBP, we follow the official KBP evaluation

and employ four commonly-used scoring measures as implemented in version 1.7 of the official

scorer provided by the KBP 2015 organizers, namely MUC (Vilain et al., 1995), B3 (Bagga

and Baldwin, 1998), CEAFe (Luo, 2005) and BLANC (Recasens and Hovy, 2011), as well

as the unweighted average of their F-scores.6 To evaluate event coreference performance on

ACE, we follow previous work on event coreference (e.g., Yang et al. (2015)) and employ the

aforementioned four scoring measures as implemented in the latest version (v8) of the CoNLL

scorer (Pradhan et al., 2014), as well as the CoNLL score, which is the unweighted average of

the MUC, B3, and CEAFe F-scores.7 To our knowledge, there is only one difference between

the implementations of the four scoring measures in the two scorers: while the CoNLL scorer

considers an event mention correctly detected as long as it has an exact match with a gold

event mention in terms of its left and right boundaries, the KBP 2015 scorer is stricter in

that it considers an event mention correctly detected by additionally requiring that its event

subtype be correctly determined.

5Since the KBP 2015 corpus was not annotated with event arguments and entity coreference links, we
train our entity mention extractor, our entity coreference resolver, and our event argument identification and
role classification model on two LDC corpora provided by the TAC KBP 2015 task organizers (LDC2015E29
and LDC2015E68), as permitted by the rules of the shared task.

6The official KBP scorer is available at http://cairo.lti.cs.cmu.edu/kbp/2015/event/scoring.

7The CoNLL scorer is available at https://github.com/conll/reference-coreference-scorers.
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Table 4.11. Results for event coreference resolution on KBP 2015 and ACE 2005.

Metric English/KBP 2015 Chinese/ACE 2005
Baseline MLNs Baseline MLNs

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

B3 53.48 39.21 45.20 50.27 41.63 45.54 38.21 37.93 37.66 36.87 42.54 39.50
CEAFe 42.33 38.54 40.35 47.53 33.48 39.29 40.28 37.76 38.98 41.02 41.19 41.10
MUC 50.52 29.13 36.96 47.07 38.21 42.18 40.02 40.27 40.14 39.37 44.70 41.86

BLANC 41.16 26.17 32.00 40.61 28.96 33.30 24.75 25.67 25.20 22.41 29.07 25.29

Average = 38.64 Average = 40.08 CoNLL = 39.02 CoNLL = 40.82

Table 4.12. Results for event trigger identification and subtyping on KBP 2015 and ACE
2005.

English/KBP 2015 Chinese/ACE 2005
Baseline MLNs Baseline MLNs

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

65.05 51.43 57.45 67.97 50.51 57.95 67.08 56.44 61.30 66.39 57.37 61.55

4.3.2 Results and Discussion

The left half of Table 4.11 shows the results for English event coreference resolution on the

KBP 2015 dataset. As can be seen, MLNs outperform the baseline system when evaluated

on all but the CEAFe metrics. W.r.t. the Average metric, MLNs achieve an F-score of 40.38,

outperforming the baseline significantly by 1.44 points (paired t-tests, p < 0.05). In general,

the MLN could detect more event coreference chains than the baseline system, as seen from

its higher recall in all but the CEAFe metrics.8

The right half of Table 4.11 shows the results for event coreference resolution on the

ACE 2005 Chinese corpus. As can be seen, MLNs outperform the baseline significantly by

1.8 points w.r.t. the CoNLL metric. In fact, MLNs achieve a higher score than the baseline

w.r.t. each of the four scoring measures. Similar to what we observed on the KBP corpus,

8As is commonly known, CEAFe sometimes produces unintuitive scores. Specifically, the CEAFe F-score
may drop as more coreference links are correctly identified. See Moosavi and Strube (2016) for a detailed
discussion.
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the consistently superior performance achieved by the MLN-based resolver can be attributed

to its substantially higher recall accompanied by a slightly lower precision. In particular,

since MUC is a link-based metric, the fact that the MLNs achieve a higher MUC recall on

both datasets suggest that the MLNs are better at discovering event coreference links than

the baseline.

One may argue that the MLNs may not be better than the baseline at discovering event

coreference links: it may simply be the case that the joint inference process has allowed

additional triggers to be extracted, which in turn allowed additional event coreference links

to be established. To understand whether this is indeed the case, we compute the results for

trigger identification and subtyping in Table 4.12. As can be seen, fewer English triggers are

extracted after joint inference, whereas the reverse is true for Chinese. These results suggest

that at least for English, the higher event coreference recall achieved by the MLNs is not

attributable to better trigger identification and subtyping.

A closer examination of the outputs reveals that our resolver is comparatively better at

extracting two types of coreference links that are traditionally considered difficult to extract.

The first type involves triggers that are lexically different. For example, in the text segment

“The former mayor of Detroit, Michigan was sentenced to 28 years in prison . . . Prosecutors

asked for a minimum of 28 years for Kilpatrick, who resigned from the mayor’s office in 2008

. . .”, the link between event mentions triggered by former and resigned, both of which have

type Personnel.End-position, is discovered by our resolver but not the baseline. The second

type involves links between event mentions that are far from each other.

4.4 Chapter Summary

In this chapter, we described a joint inference based event coreference resolver using MLNs.

Since encoding rich NLP features in MLNs is a challenging task, we encoded these features

implicitly by adding weighted unit clauses to the MLN distribution. Results on an English
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corpus (KBP 2015) and a Chinese corpus (ACE 2005) show that our MLN based system

achieved statistically significantly better performance than a pipeline-based resolver.
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CHAPTER 5

JOINT LEARNING FOR EVENT COREFERENCE RESOLUTION 1

While the joint inference model can address the error propagation problem, it only allows an

event coreference resolver to interact with other components at the inference time. In this

chapter, we describe a joint learning model of trigger detection, event coreference, and event

anaphoricity. Our choice of these three tasks is motivated in part by their inter-dependencies.

It is well-known that trigger detection performance has a huge impact on event coreference

performance. Though largely under-investigated, event coreference could also improve trigger

detection. For instance, if two event mentions are posited as coreferent, then the underlying

triggers must have the same event subtype. While the use of anaphoricity information for

entity coreference has been extensively studied (see Ng (2010)), to our knowledge there

has thus far been no attempt to explicitly model event anaphoricity for event coreference.2

Although the mention-ranking model we employ for event coreference also allows an event

mention to be posited as non-anaphoric (by resolving it to a null candidate antecedent),

our decision to train a separate anaphoricity model and integrate it into our joint model is

motivated in part by the recent successes of Wiseman et al. (2015a), who showed that there

are benefits in jointly training a noun phrase anaphoricity model and a mention-ranking

model for entity coreference resolution. Finally, event anaphoricity and trigger detection can

also mutually benefit each other. For instance, any verb posited as a non-trigger cannot be

anaphoric, and any verb posited as anaphoric must be a trigger. Note that in our joint model,

anaphoricity serves as an auxiliary task: its intended use is to improve trigger detection and

event coreference, potentially mediating the interaction between trigger detection and event

coreference.

1This chapter was previously published in Lu and Ng (2017a).

2Following the entity coreference literature, we overload the term anaphoricity, saying that an event
mention is anaphoric if it is coreferent with a preceding mention in the associated text.
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5.1 Model

5.1.1 Overview

Our model, which is a structured conditional random field, operates at the document level.

Specifically, given a test document, we first extract from it (1) all single-word nouns and verbs

and (2) all words and phrases that have appeared at least once as a trigger in the training

data. We treat each of these extracted nouns and verbs as a candidate event mention. 3

The goal of the model is to make joint predictions for the candidate event mentions in a

document. Three predictions will be made for each candidate event mention that correspond

to the three tasks in the model: its trigger subtype, its anaphoricity, and its antecedent.

Given this formulation, we define three types of output variables:

• Event subtype variables t = (t1, . . . , tn). Each ti takes a value in the set of 18 event

subtypes defined in KBP 2016 or None, which indicates that the event mention is not

a trigger.

• Anaphoricity variables a = (a1, . . . , an). Each ai is either Anaphoric or Not Anaphoric.

• Coreference variables c = (c1, . . . , cn), where ci ∈ {1, . . . , i−1, New}. In other words,

the value of each ci is the id of its antecedent, which can be one of the preceding event

mentions or New (if the event mention underlying ci starts a new cluster).

Each candidate event mention is associated with exactly one coreference variable, one

event subtype variable, and one anaphoricity variable. Our model induces the following

log-linear probability distribution over these variables:

3According to the KBP annotation guidelines, each word may trigger multiple event mentions (e.g.,
murder can trigger two event mentions with subtypes Life.Die and Conflict.Attack). Hence, our treating
each extracted word as a candidate event mention effectively prevents a word from triggering multiple event
mentions. Rather than complicate model design by relaxing this simplifying assumption, we present an
alternative, though partial, solution to this problem wherein we allow each event mention to be associated
with multiple event subtypes. See the Appendix for details.
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Figure 5.1. Unary factors for the three tasks, the variables they are connected to, and
the possible values of the variables. Unary factors encode task-specific features. Each factor is

connected to the corresponding output node. The features associated with a factor are used to

predict the value of the output node it is connected to when a model is run independently of other

models.

p(t, a, c|x; Θ) ∝ exp(
∑
i

θifi(t, a, c,x)) (5.1)

where θi ∈ Θ is the weight associated with feature function fi and x is the input document.

5.1.2 Features

Given that our model is a structured conditional random field, the features can be divided

into two types: (1) task-specific features, and (2) cross-task features, which capture the

interactions between a pair of tasks. We express these two types of features in factor graph

notation. The task-specific features are encoded in unary factors, each of which is connected

to the corresponding variable (Figure 5.1). The cross-task features are encoded in binary

or ternary factors, each of which couple the output variables from two tasks (Figure 5.2).

Next, we describe these two types of features. Each feature is used to train models for both

English and Chinese unless otherwise stated.
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Figure 5.2. Binary and ternary factors. These higher-order factors capture cross-task inter-

actions. The binary anaphoricity and trigger factors encourage anaphoric mentions to be triggers.

The binary anaphoricity and coreference factors encourage non-anaphoric mentions to start a New

coreference cluster. The ternary trigger and coreference factors encourage coreferent mentions to

be triggers.

5.1.2.1 Task-Specific Features

We begin by describing the task-specific features, which are encoded in unary factors, as well

as each of the three independent models.

Trigger Detection

When applied in isolation, our trigger detection model returns a distribution over possible

subtypes given a candidate trigger. Each candidate trigger t is represented using t’s word,

t’s lemma, word bigrams formed with a window size of three from t, as well as feature

conjunctions created by pairing t’s lemma with each of the following features: the head word

of the entity syntactically closest to t, the head word of the entity textually closest to t, the

entity type of the entity that is syntactically closest to t, and the entity type of the entity

that is textually closest to t.4 In addition, for event mentions with verb triggers, we use

4We train a CRF-based entity extraction model for jointly identifying the entity mentions and their types.
Details can be found in Chapter 4
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the head words and the entity types of their subjects and objects as features, where the

subjects and objects are extracted from the dependency parse trees obtained using Stanford

CoreNLP (Manning et al., 2014). For event mentions with noun triggers, we create the

same features that we did for verb triggers, except that we replace the subjects and verbs

with heuristically extracted agents and patients. Finally, for the Chinese trigger detector,

we additionally create two features from each character in t, one encoding the character

itself and the other encoding the entry number of the corresponding character in a Chinese

synonym dictionary.5

Event Coreference

We employ a mention-ranking model for event coreference that selects the most probable

antecedent for a mention to be resolved (or New if the mention is non-anaphoric) from its

set of candidate antecedents. When applied in isolation, the model is trained to maximize

the conditional likelihood of collectively resolving the mentions to their correct antecedents

in the training texts (Durrett and Klein, 2013). Below we describe the features used to

represent the candidate antecedents for the mention to be resolved, mj.

Features representing the Null candidate antecedent: Besides mj’s word and

mj’s lemma, we employ feature conjunctions given their usefulness in entity coreference

(Fernandes et al., 2014). Specifically, we create a conjunction between mj’s lemma and the

number of sentences preceding mj, as well as a conjunction between mj’s lemma and the

number of mentions preceding mj in the document.

Features representing a non-Null candidate antecedent, mi: mi’s word, mi’s

lemma, whether mi and mj have the same lemma, and feature conjunctions including: (1)

mi’s word paired with mj’s word, (2) mi’s lemma paired with mj’s lemma, (3) the sentence

distance between mi and mj paired with mi’s lemma and mj’s lemma, (4) the mention

5The dictionary is available from http://ir.hit.edu.cn/. An entry number in this dictionary conceptually
resembles a synset id in WordNet.
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distance between mi and mj paired with mi’s lemma and mj’s lemma, (5) a quadruple

consisting of mi and mj’s subjects and their lemmas, and (6) a quadruple consisting of mi

and mj’s objects and their lemmas.

Anaphoricity Determination

When used in isolation, the anaphoricity model returns the probability that the given

event mention is anaphoric. To train the model, we represent each event mention mj using

the following features: (1) the head word of each candidate antecedent paired with mj’s

word, (2) whether at least one candidate antecedent has the same lemma as that of mj, and

(3) the probability that mj is anaphoric in the training data (if mj never appears in the

training data, this probability is set to 0.5).

5.1.2.2 Cross-Task Interaction Features

Cross-task interaction features are associated with the binary and ternary factors.

Trigger Detection and Anaphoricity

We fire features that conjoin each candidate event mention’s event subtype, the lemma

of its trigger and its anaphoricity.

Trigger Detection and Coreference

We define our joint coreference and trigger detection factors such that the features defined

on subtype variables ti and tj are fired only if current mention mj is coreferent with preceding

mention mi. These features are: (1) the pair of mi and mj’s subtypes; (2) the pair of mj’s

subtype and mi’s word; and (3) the pair of mi’s subtype and mj’s word.

Coreference and Anaphoricity

We fire a feature that conjoins event mention mj’s anaphoricity and whether or not a

non-Null antecedent is selected for mj.
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5.1.3 Training

We learn the model parameters Θ from a set of d training documents, where document i

contains content xi, gold trigger annotations t∗i and gold event coreference partitions C∗i .

Before learning, there are a couple of issues we need to address.

First, we need to derive gold anaphoricity labels a∗i from C∗i . This is straightforward: the

first mention of each cluster is Not Anaphoric, whereas the rest are Anaphoric.

Second, we employ gold event mentions for model training, but training models only on

gold mentions is not sufficient: for instance, a trigger detector trained solely on gold mentions

will not be able to classify a candidate event mention as None during testing. To address

this issue, we additionally train the models on candidate event mentions corresponding to

non-triggers. We create these candidate event mentions as follows. For each word w that

appears as a true trigger at least once in the training data, we create a candidate event

mention from each occurrence of w in the training data that is not annotated as a true

trigger.

Third, since our model produces event coreference output in the form of an antecedent

vector (with one antecedent per event mention), it needs to be trained on antecedent vectors

c∗. However, since the coreference annotation for each document i is provided in the form of

a clustering C∗i , we follow previous work on entity coreference resolution (Durrett and Klein,

2013): we sum over all antecedent structures A(C∗i ) that are consistent with C∗i (i.e., the

first mention of a cluster has antecedent New, whereas each of the subsequent mentions can

select any of the preceding mentions in the same cluster as its antecedent).

Next, we learn the model parameters to maximize the following conditional likelihood of

the training data with L1 regularization:

L(Θ) =
d∑

i=1

log
∑

c∗∈A(C∗i )

p′(t∗i , a
∗
i , c
∗|x; Θ) + λ‖Θ‖1 (5.2)
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where p′(t∗, a∗, c∗|x; Θ) is p(t∗, a∗, c∗|x; Θ) augmented with task-specific loss functions, de-

fined as follows:

p′(t∗, a∗, c∗|x; Θ) ∝ p(t∗, a∗, c∗) exp[αtlt(t, t
∗) + αala(a, a

∗) + αclc(c, C
∗)] (5.3)

where lt, la and lc are task-specific loss functions, and αt, αa and αc are the associated weight

parameters that specify the relative importance of the three tasks in the objective function.

The technique of integrating task-specific loss functions into the objective function,

softmax-margin, was introduced by Gimpel and Smith (2010) and used by Durrett and

Klein; Durrett and Klein (2013; 2014). By encoding task-specific knowledge, these loss

functions can help train a model that places less probability mass on less desirable output

configurations.

Our loss function for event coreference, lc, is motivated by the one Durrett and Klein

(2013) developed for entity coreference. It is a weighted sum of the counts of these three

error types:

lc(c, C
∗) = αc,FAFA(c, C∗) + αc,FNFN(c, C∗) + αc,WLWL(c, C∗) (5.4)

where FA(c, C∗) is the number of non-anaphoric mentions misclassified as anaphoric, FN(c, C∗)

is the number of anaphoric mentions misclassified as non-anaphoric, and WL(c, C∗) is the

number of incorrectly resolved anaphoric mentions.

Our loss function for trigger detection, lt, is parameterized in a similar way, having three

parameters associated with three error types: αt,FT is associated with the number of non-

triggers misclassified as triggers, αt,FN is associated with the number of triggers misclassified

as non-triggers, and αt,WL is associated with the number of triggers labeled with the wrong

subtype.

Finally, our loss function for anaphoricity determination, la, is also similarly parame-

terized, having two parameters: αa,FA and αa,FN are associated with the number of false

anaphors and the number of false non-anaphors, respectively.
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Following Durrett and Klein (2014), we use AdaGrad (Duchi et al., 2011) to optimize

our objective with λ = 0.001 in our experiments.

5.1.4 Inference

Inference, which is performed during training and decoding, involves computing the marginals

for a variable or a set of variables to which a factor connects. For efficiency, we perform

approximate inference using belief propagation rather than exact inference. Given that con-

vergence can typically be reached within five iterations of belief propagation, we employ five

iterations in all experiments.

Performing inference using belief propagation on the full factor graph defined in Sec-

tion 5.1.2 can still be computationally expensive, however. One reason is that the number of

ternary factors grows quadratically with the number of event mentions in a document. To

improve scalability, we restrict the domains of the coreference variables. Rather than allow

the domain of coreference variable cj to be of size j, we allow a preceding event mention mi

to be a candidate antecedent of mj if (1) the sentence distance between the two mentions is

less than an empirically determined threshold and (2) either they are coreferent at least once

in the training data or their head words have the same lemma. Doing so effectively enables

us to prune the unlikely candidate antecedents for each event mention. As Durrett and Klein

(2014) point out, such pruning has the additional benefit of reducing “the memory footprint

and time needed to build a factor graph”, as we do not need to create any factor between mi

and mj and its associated features if mi is pruned. To further reduce the memory footprint,

we additionally restrict the domains of the event subtype variables. Given a candidate event

mention created from word w, we allow the domain of its subtype variable to include only

None as well as those subtypes that w is labeled with at least once in the training data.

For decoding, we employ minimum Bayes risk, which computes the marginals of each

variable w.r.t. the joint model and derives the most probable assignment to each variable.
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Table 5.1. Results for all three tasks on KBP 2016 evaluation set.

English
MUC B3 CEAFe BLANC AVG-F Trigger Anaphoricity

KBP2016 26.37 37.49 34.21 22.25 30.08 46.99 -
Indep 22.71 40.72 39.00 22.71 31.28 48.82 27.35
Joint 27.41 40.90 39.00 25.00 33.08 49.30 31.94

∆ +4.70 +0.18 0.00 +2.29 +1.80 +0.48 +4.59

Chinese
MUC B3 CEAFe BLANC AVG-F Trigger Anaphoricity

KBP2016 24.27 32.83 30.82 17.80 26.43 40.01 -
Indep 22.68 32.97 29.96 17.74 25.84 39.82 19.31
Joint 27.94 33.01 29.96 20.24 27.79 40.53 23.33

∆ +5.26 +0.04 0.00 +2.50 +1.95 +0.71 +4.02

5.2 Evaluation

5.2.1 Experimental Setup

We perform training and evaluation on the KBP 2016 English and Chinese corpora. For

English, we train models on 509 of the training documents, tune parameters on 139 training

documents, and report results on the official KBP 2016 English test set.6 For Chinese, we

train models on 302 of the training documents, tune parameters on 81 training documents,

and report results on the official KBP 2016 Chinese test set.

Results of event coreference and trigger detection are obtained using version 1.7.2 of

the official scorer provided by the KBP 2016 organizers. To evaluate event coreference

performance, the scorer employs four commonly-used scoring measures, namely MUC (Vilain

et al., 1995), B3 (Bagga and Baldwin, 1998), CEAFe (Luo, 2005) and BLANC (Recasens and

Hovy, 2011), as well as the unweighted average of their F-scores (AVG-F). The scorer reports

event mention detection performance in terms of F-score, considering a mention correctly

detected if it has an exact match with a gold mention in terms of boundary, event type, and

6The parameters to be tuned are the α’s multiplying the loss functions and those inside the loss functions.
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Table 5.2. Results of model ablations on the KBP 2016 evaluation set. Each row of ablation

results is obtained by either adding one type of interaction factor to the Indep. model or deleting

one type of interaction factor from the Joint model. For each column, the results are expressed in

terms of changes to the Indep. model’s F-score shown in row 1.

English Chinese
Coref Trigger Anaph Coref Trigger Anaph

Indep. 31.28 48.82 27.35 25.84 39.82 19.31
Indep.+CorefTrigger +0.39 +0.42 −0.05 +0.95 +0.56 −0.37
Indep.+CorefAnaph +0.40 −0.08 +3.45 +0.37 +0.04 −0.11

Indep.+TriggerAnaph +0.11 +0.38 +1.35 +0.14 +0.52 +0.02
Joint−CorefTrigger +0.56 −0.06 +4.41 +0.19 +0.35 +3.34
Joint−CorefAnaph +0.63 +0.66 +1.46 +1.50 +0.88 +0.28

Joint−TriggerAnaph +1.89 +0.50 +4.01 +1.65 +0.50 +1.79
Joint +1.80 +0.48 +4.59 +1.95 +0.71 +4.02

event subtype. In addition, we report anaphoricity determination performance in terms of

the F-score computed over anaphoric mentions, counting a mention as a true positive if it

has an exact match with an anaphoric gold mention in terms of boundary.

5.2.2 Results and Discussion

Results are shown in Table 5.1 where performance on all three tasks (event coreference,

trigger detection, and anaphoricity determination) is expressed in terms of F-score. The

top half of the table shows the results on the English evaluation set. Specifically, row 1

shows the performance of the best event coreference system participating in KBP 2016 (Lu

and Ng, 2016b). This system adopts a pipeline architecture. It first uses an ensemble of

one-nearest-neighbor classifiers for trigger detection. Using the extracted triggers, it then

applies a pipeline of three sieves, each of which is a 1-nearest-neighbor classifier, for event

coreference. As we can see, this system achieves an AVG-F of 30.08 for event coreference

and an F-score of 46.99 for trigger detection.

Row 2 shows the performance of the independent models, each of which is trained inde-

pendently of the other models. Specifically, each independent model is trained using only
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the unary factors associated with it. As we can see, the independent models outperform

the top KBP 2016 system by 1.2 points in AVG-F for event coreference and 1.83 points for

trigger detection.

Results of our joint model are shown in row 3. The absolute performance differences

between the joint model and the independent models are shown in row 4. As we can see,

the joint model outperforms the independent models for all three tasks: by 1.80 points for

event coreference, 0.48 points for trigger detection and 4.59 points for anaphoricity determi-

nation. Most encouragingly, the joint model outperforms the top KBP 2016 system for both

event coreference and trigger detection. For event coreference, it outperforms the top KBP

system w.r.t. all scoring metrics, yielding an improvement of 3 points in AVG-F. For trigger

detection, it outperforms the top KBP system by 2.31 points.

The bottom half of Table 5.1 shows the results on the Chinese evaluation set. The top

KBP 2016 event coreference system on Chinese is also the Lu and Ng (2016b) system. While

the top KBP system outperforms the independent models for both tasks (by 0.59 points

in AVG-F for event coreference and by 0.19 points for trigger detection), our joint model

outperforms the independent models for all three tasks: by 1.95 points for event coreference,

4.02 points for anaphoricity determination, and 0.71 points for trigger detection. Like its

English counterpart, the joint model for Chinese outperforms the top KBP system for both

event coreference and trigger detection. For event coreference, it outperforms the top KBP

system w.r.t. all scoring metrics, yielding an absolute improvement of 1.36 points in AVG-F.

For trigger detection, it outperforms the top KBP system by 0.52 points.

For both datasets, the joint model’s superior performance to the independent coreference

model stems primarily from considerable improvements in MUC F-score. As MUC is a link-

based measure, these results provide suggestive evidence that joint modeling has enabled

more event coreference links to be discovered.

50



5.2.3 Model Ablations

To evaluate the importance of each of the three types of joint factors in the joint model,

we perform ablation experiments.7 Table 5.2 shows the results on the English and Chinese

datasets when we add each type of joint factors to the independent model and remove each

type of joint factors from the full joint model. The results of each task are expressed in

terms of changes to the corresponding independent model’s F-score.

Coref-Trigger interactions. Among the three types of factors, this one contributes

the most to coreference performance, regardless of whether it is applied in isolation or in

combination with the other two types of factors to the independent coreference model. In

addition, it is the most effective type of factors for improving trigger detection. When applied

in combination, it also improves anaphoricity determination, although less effectively than

the other two types of factors.

Coref-Anaphoricity interactions. When applied in isolation to the independent mod-

els, this type of factors improves coreference resolution but has a mixed impact on anaphoric-

ity determination. When applied in combination with other types of factors, it improves both

tasks, particularly anaphoricity determination. Its impact on trigger detection, however, is

generally negative.

Trigger-Anaphoricity interactions. When applied in isolation to the independent

models, this type of factors improves both trigger detection and anaphoricity determination.

When applied in combination with other types of factors, it still improves anaphoricity

determination (particularly on English), but has a mixed effect on trigger detection. Among

the three types of factors, it has the least impact on coreference resolution.

7Chen and Ng (2013) also performed ablation on their ACE-style Chinese event coreference resolver.
However, given the differences in the tasks involved (e.g., they did not model event anaphoricity, but in-
cluded tasks such as event argument extraction and role classification, entity coreference, and event mention
attribute value computation) and the ablation setup (e.g., they ablated individual tasks/components in their
pipeline-based system in an incremental fashion, whereas we ablated interaction factors rather than tasks),
a direct comparison of their observations and ours is difficult.
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5.2.4 Error Analysis

Next, we conduct an analysis of the major sources of error made by our joint coreference

model.

5.2.4.1 Two Major Types of Precision Error

Erroneous and mistyped triggers. Our trigger model tends to assign the same subtype

to event mentions triggered by the same word. As a result, it often assigns the wrong subtype

to triggers that possess different subtypes in different contexts. For the same reason, words

that are sometimes used as triggers and sometimes not are often wrongly posited as triggers

when they are not. These two types of triggers have in turn led to the establishment of

incorrect coreference links.8

Failure to extract arguments. In the absence of an annotated corpus for training an

argument classifier, we exploit dependency relations for argument extraction. Doing so proves

inadequate, particularly for noun triggers, owing to the absence of dependency relations that

can be used to reliably extract their arguments. Moreover, using dependency relations does

not allow the extraction of arguments that do not appear in the same sentence as their

trigger. Since the presence of incompatible arguments is an important indicator of non-

coreference, our model’s failure to extract arguments has resulted in incorrect coreference

links.

8In our joint model, mentions that are posited as coreferent are encouraged to have the same subtype.
While it can potentially fix the errors involving coreferent mentions that have different subtypes, it cannot
fix the errors in which the two mentions involved have the same erroneous subtype.
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5.2.4.2 Three Major Types of Recall Error

Missing triggers. Our trigger model fails to identify trigger words/phrases that are unseen

or rarely-occurring in the training data. As a result, many coreference links cannot be

established.

Lack of entity coreference information. Entity coreference information is useful for

event coreference because the corresponding arguments of two event mentions are typically

coreferent. Since our model does not exploit entity coreference information, it treats two

lexically different event arguments as non-coreferent/unrelated, which has in turn weakened

its ability to determine two event mentions as coreferent. This issue is particularly serious

in discussion forum documents, where it is not uncommon to see pronouns serve as subjects

and objects of event mentions. The situation is further aggravated in Chinese documents,

where zero pronouns are prevalent.

Lack of contextual understanding. Our model extracted only features from the sen-

tence in which an event mention appeared, but additional contextual information present in

neighboring sentences may be needed for correct coreference resolution. This is particularly

true for discussion forum documents, where the same event was described differently by dif-

ferent people. For example, when describing the fact that Tim Cook will attend the Apple’s

Istanbul Store opening, one person said “Cook is expected to return to Turkey for the store

opening”, and another person described this event as “Tim travels abroad YET AGAIN to

be feted by the not-so-high-and-mighty”. It is by no means easy to determine that return

and travel trigger two coreferent event mentions in these sentences.

5.3 Chapter Summary

In this chapter, we describe a joint model of event coreference resolution, trigger detection,

and event anaphoricity determination. The model is novel in its choice of tasks and the
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cross-task interaction features. When evaluated on the KBP 2016 English and Chinese

corpora, our model illustrates the effectiveness of joint learning model and outperforms the

independent model.
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CHAPTER 6

JOINT LEARNING FOR EVENT COREFERENCE RESOLUTION WITH

NON-LOCAL INFORMATION 1

We hypothesize that the power of this joint event coreference model has not been fully

exploited and seek to extend it in this chapter. Our extensions are based on the observation

that the strength of a joint model stems from its ability to facilitate cross-task knowledge

transfer. In other words, the better we can model each task involved, the more we can

potentially get out of joint modeling. Given this observation, we seek to improve the modeling

of these tasks in this joint model as follows.

First, we improve trigger detection by exploiting topic information. State-of-the-art

trigger detectors, including those based on deep neural networks (e.g., Nguyen et al. (2016)),

classify each candidate trigger using local information and largely ignore the fact that the

topic of the document in which a trigger appears plays an important role in determining its

event subtype. To understand the usefulness of document topics, consider the examples in

Table 6.1: although all five events have similar trigger words, we can see that the meaning

of the triggers and their event subtypes are different in different contexts. Hence, if an event

coreference model knows that the topics of these two documents are different, it can exploit

this information to more accurately classify their event subtypes. In particular, we propose

to train a supervised topic model to infer the topic of each word in a test document, with

the goal of understanding each candidate trigger using its global in addition to local context.

Second, we improve event coreference by exploiting discourse information. Specifically,

we introduce a preprocessing component for event coreference resolution where we prune the

candidate antecedents of an event mention that are unlikely to be its correct antecedent based

on discourse context. In essence, this discourse-based preprocessing step seeks to simplify the

1This chapter was previously published in Lu and Ng (2020).
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Table 6.1. Event coreference resolution examples.

Three journalists at The New York Times on Tuesday announced plans to {leave}ev1
the newspaper. The {departures}ev2 follow moves last month by several other Times
employees, all of whom were {leaving}ev3 to join digital companies.

Pakistan’s Interior Ministry has ordered New York Times Reporter to {leave}ev4. The min-
istry gave no explanation for the expulsion order. “You are therefore advised to {leave}ev5
the country within 72 hours,” the order stated.

job of the event coreference model by reducing the number of candidate antecedents it has

to consider for a given event mention. We encode the discourse context of an event mention

using the entities that are salient at the point of the discourse in which the event mention

appears. To our knowledge, we are the first to show that event coreference performance can

be improved using discourse contexts that are encoded using salient discourse entities.

6.1 Model

Following the model proposed in Chapter 5, we employ a structured conditional random field,

which operates at the document level. Specifically, given a test document, we first extract

from it all single- and multi-word nouns and verbs that have appeared at least once as a

trigger in the training data. We treat each of these extracted nouns and verbs as a candidate

event mention. The goal of the model is to make joint predictions for the candidate event

mentions in a document. Three predictions will be made for each candidate event mention

that correspond to the three tasks in the model: its trigger subtype, its induced topic, and

its antecedent.

Given this formulation, we define three types of output variables. The first type consists

of event subtype variables s = (s1, . . . , sn). Each si takes a value in the set of the 18 event

subtypes defined in KBP 2017 or None, which indicates that the event mention is not a

trigger. The second type consists of coreference variables c = (c1, . . . , cn), where ci ∈ {1,

. . . , i− 1, New}. In other words, the value of each ci is the id of its antecedent, which can
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be one of the preceding event mentions, or New (if the mention underlying ci starts a new

cluster). The third type consists of topic variables t = (t1, . . . , tn). Each ti takes a value in a

19-element set in which the topics have a one-to-one correspondence with the event subtype

labels defined above. Despite this one-to-one mapping, these two types of labels should not

be interpreted in the same manner. As we will see, a word’s induced topic label is influenced

by our supervised topic model, whereas a word’s subtype is not.

Each candidate event mention is associated with one coreference variable, one event

subtype variable, and one topic variable. Our model induces a probability distribution over

these variables:

p(s, c, t|x; Θ) ∝ exp(
∑
i

θifi(s, c, t, x))

where θi ∈ Θ is the weight associated with feature function fi and x is the input document.

6.1.1 Independent Models

Trigger Detection Model

Each instance for training the trigger detection model corresponds to a candidate trigger in

the training set, which is created as follows. For each word w that appears as a true trigger

at least once in the training data, we create a candidate trigger from each occurrence of w in

the training data. If a given occurrence of w is a true trigger in the associated document, the

class label of the corresponding training instance is its subtype label. Otherwise, we label

the instance as None.

Each candidate trigger m is represented using features generated from the following fea-

ture templates: m’s word, m’s lemma, word bigrams formed with a window size of three from

m; feature conjunctions created by pairing m’s lemma with each of the following features:

the head word of the entity syntactically closest to m, the head word of the entity textually
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closest to m, the entity type of the entity that is syntactically closest to m, and the entity

type of the entity that is textually closest to m.2 In addition, for event mentions with verb

triggers, we use the head words and the entity types of their subjects and objects as features,

where the subjects and objects are extracted from the dependency parses produced by Stan-

ford CoreNLP (Manning et al., 2014). For event mentions with noun triggers, we essentially

create the same features except that we replace the subjects and verbs with heuristically

extracted agents and patients.

Topic Model

Our first extension to the model in Chapter 5 seeks to improve trigger detection using topic

information. We train a supervised topic model to infer the topic of each word in a test

document, with the goal of understanding each candidate trigger using its global in addition

to local context.

Like the trigger detection model, each training instance corresponds to a candidate trig-

ger. The class label is the topic label of the candidate trigger. We have 19 topic labels in

total: there is a one-to-one correspondence between the 18 subtype labels and 18 of the topic

labels. The remaining topic label is Other, which is reserved for those words that do not

belong to any of the 18 topics. Topic labels can be derived directly from subtype labels given

the one-to-one correspondence between them. Each candidate trigger is represented using

19 features, which correspond to the 19 topic labels. The value of a feature, which is derived

from the output of a LabeledLDA model (Ramage et al., 2009), encodes the probability that

the candidate trigger belongs to the corresponding topic.

To train the LabeledLDA model, we first apply LabeledLDA using the Mallet toolkit

(McCallum, 2002) to the training documents, which learns a distribution over words for

2We use an in-house CRF-based entity extraction model to jointly identify the entity mentions and their
types.
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each topic, β. We represent each training document using the candidate triggers as well as

the context words that are useful for distinguishing the topics.3 To get the useful context

words, we rank the words in the training documents by their weighted log-likelihood ratios:

P (wi|mj, vk) log
P (wi|mj, vk)

P (wi|mj,¬vk)

where wi, mj and vk denote the ith word in the vocabulary, the jth candidate trigger word

and the kth subtype (including None), respectively. Intuitively, a word wi will have a high

rank with respect to a candidate trigger word mj of subtype vk if it appears frequently with

mj of subtype vk and infrequently with mj of other subtypes. We employ as the useful

context words the top 125 words ranked by the weighted log likelihood ratio w.r.t. each

pair of trigger and subtype. The label set of each training document is the set of subtypes

collected from all the triggers in the document plus None.

After training, we apply the resulting LabeledLDA model to a test document, which

is represented using the candidate triggers and the useful context words, as defined above.

Specifically, given a test document, we (1) apply the model to infer the distribution of

topics in the document, and then (2) compute the posterior distribution of topics given each

candidate trigger in the document using Bayes rule as follows:

P (z|m) ∝ P (m|z : β)P (z)

where P (z) is the distribution of topic z in the test document, P (m|z : β) is the topic-

dependent distribution of candidate triggers m that is learned from the training documents,

and P (z|m) is the posterior distribution of z given m in the test document. We use this

3If a candidate trigger is a multi-word phrase, we treat it as a “word” by concatenating its constituent
words using underscores (e.g.,“step down” is represented as “step down”).

59



posterior distribution to generate features for representing each instance for training/testing

the topic model, as described above.

Note that while the label sets used by the trigger detector and the topic model are

functionally equivalent, they are trained using different feature sets. The features used by

the trigger detector encodes a candidate trigger’s local context, while the features used by

the topic model encodes its global context (e.g., its relationship with other words).

Event Coreference Model

Our event coreference model is an adaptation of Durrett and Klein’s (2013) mention-ranking

model, which was originally developed for entity coreference, to the task of event coreference.

This model selects the most probable antecedent for a mention to be resolved from its set of

candidate antecedents (or New if the mention is non-anaphoric).

We employ two types of feature templates to represent the candidate antecedents for the

event mention to be resolved, mj. The first type is composed of features that represent the

Null candidate antecedent. These include: mj’s word, mj’s lemma, a conjoined feature

created by pairing mj’s lemma with the number of sentences preceding mj, and another

conjoined feature created by pairing mj’s lemma with the number of mentions preceding

mj in the document. The second type is composed of features that represent a non-Null

candidate antecedent, mi. These include mi’s word, mi’s lemma, whether mi and mj have

the same lemma, and the following feature conjunctions: (1) mi’s word paired with mj’s

word, (2) mi’s lemma paired with mj’s lemma, (3) the sentence distance between mi and

mj paired with mi’s lemma and mj’s lemma, (4) the mention distance between mi and mj

paired with mi’s lemma and mj’s lemma, (5) a quadruple consisting of mi and mj’s subjects

and their lemmas, and (6) a quadruple consisting of mi and mj’s objects and their lemmas.

Our second extension to model in Chapter 5 involves leveraging discourse information to

improve this event coreference model. Specifically, we introduce a preprocessing component
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for event coreference resolution where we prune the candidate antecedents of an event men-

tion that are unlikely to be its correct antecedent based on discourse context. The idea is to

(1) encode the discourse context of each event mention in a document using the entities that

are salient at the point of the discourse in which the event mention appears, and by hypoth-

esizing that two event mentions that appear in different discourse contexts are unlikely to be

coreferent, we (2) prune any candidate antecedent of an event mention m whose discourse

context is different from that of m, allowing the event coreference model to resolve an event

mention to one of the candidate antecedents that survive this discourse-based filtering step.

In essence, this preprocessing step seeks to simplify the job of the event coreference model by

reducing the number of candidate antecedents it has to consider for a given event mention.

Since we aim to encode the discourse context of each event mention using the entities

that are salient at the point of the discourse in which the event mention appears, we need

to compute the salience score of each entity E w.r.t. each event mention m. We employ the

following formula, which was proposed by Chen and Ng (2015b):

∑
e∈E

g(e)× decay(e)

In this formula, e is a mention of entity E that appears in either the same sentence as m or

one of its preceding sentences. g(e) is a score that is computed based on the grammatical

role of e in the sentence: 4 if e is a subject, 2 if it is an object, and 1 otherwise. decay(e) is

a decay factor that is set to 0.5dis, where dis is the sentence distance between e and m. We

compute discourse entities using Stanford CoreNLP’s neural entity coreference resolver and

grammatical roles using CoreNLP’s syntactic dependency parser.

Next, we define the discourse context of an event mention m to be the list of entities

whose salience score is at least 1 when computed w.r.t. m. As noted before, we aim to

prune the unlikely candidate antecedents of an event mention m, namely those candidates
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Figure 6.1. Unary factors for the three tasks, the variables they are connected to, and the
possible values of the variables.

whose discourse contexts are different from that of m. Rather than heuristically defining

a function for computing the similarity between two different discourse contexts, we train

a ranker that ranks the candidate antecedents of m based on two types of features derived

from their discourse contexts:

Salience score ratios (SSRs): For each entity E that appears in the discourse contexts

of both candidate antecedent c and m, we first compute E’s SSR as the ratio of E’s salience

score computed w.r.t. m to E’s salience score computed w.r.t. c. (If this ratio is less than

1, we take its reciprocal.) Then, for each (c,m) pair, we create five features that encode the

number of entities whose SSR falls into each of these five intervals: [1,1], (1, 2], (2, 3], (3,4],

(4,5], and [5, inf]. Intuitively, c’s and m’s discourse contexts tend to be more similar if they

have more entities in the lower buckets.

Lexical features: For each mention em1 of each entity in candidate antecedent c’s dis-

course context and each mention em2 of each entity in m’s discourse context, we create a

lexical feature that pairs em1’s head with em2’s head.

To train this ranker, we employ the same log-linear model as the one used for the event

coreference model, where the training objective is to maximize the likelihood of selecting the

correct antecedent for each event mention.
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After training, we apply this ranker to prune all but the top k candidate antecedents

of each event mention in a test document. These k candidate antecedents, together with

the Null candidate antecedent, will be ranked by the event coreference model, and the

highest-ranked candidate will be selected as the antecedent of the event mention under

consideration.4 We treat k as a hyperparameter and tune it on the development set.

It is worth noting that we prune the candidate antecedents of the event mentions not

only in the test set but also in the training set. We produce the top k candidate antecedents

of each event mention in the training set via five-fold cross-validation over the training

documents.

Figure 6.1 illustrates the unary factors, which encode the features used in the three

independent models. Specifically, the sentence fragment at the bottom of the figure contains

two event mentions, one triggered by leave and the other by departure. Each of them is

associated with three variables, one for each of the three models. Next to each variable is

the set of possible values of that variable.

6.1.2 Joint Learning

To perform joint training over the three models described in the previous subsection, we

need to define (1) features that capture the interaction between the two tasks, (2) the joint

training scheme, and (3) the inference mechanism.

Cross-Task Interaction Features

Our cross-task interaction features, which capture the pairwise interaction between our tasks,

are associated with ternary factors, as described below.

4The discourse preprocessing module does not handle Null candidate antecedents, so they will always
be available to the event coreference model.

63



Figure 6.2. Binary and ternary factors.

Trigger detection and coreference. We define our joint coreference and trigger detec-

tion factors such that the features defined on subtype variables si and sj are fired only if

current mention mj is coreferent with preceding mention mi. These features are: (1) the

pair of mi and mj’s subtypes; (2) the pair of mj’s subtype and mi’s word; and (3) the pair

of mi’s subtype and mj’s word.

Trigger detection and topic modeling. We fire features (encoded as binary factors)

that conjoin each candidate event mention’s event subtype, its topic and the lemma of its

trigger.

Topic modeling and coreference. Our joint coreference and topic modeling factors and

features are the same as those for trigger detection and coreference, except that event subtype

labels are replaced with topic labels. In other words, the features are defined on the topic

labels.

Figure 6.2 shows the cross-task interaction features. The green factor is binary, connect-

ing a subtype variable and a topic variable. The red factor is ternary, connecting two subtype

variables to a coreference variable. Finally, the blue factor is also ternary, connecting topic

with coreference.

64



Training

The joint training scheme seeks to learn the model parameters Θ from a set of d training

documents, where document i contains content xi, gold trigger annotations s∗i , inferred topic

labels t∗i from LabeledLDA model using Gibbs sampling and gold event coreference partition

C∗i , by maximizing the conditional likelihood of the training data with L1 regularization:5

L(Θ) =
d∑

i=1

log
∑

c∗∈A(C∗i )

p′(s∗i , t
∗
i , c
∗|xi; Θ) + λ‖Θ‖1

where p′(s∗, t∗i , c
∗|x; Θ) is p(s∗, t∗i , c

∗|x; Θ) augmented with task-specific loss functions. Specif-

ically,

p′(s∗, t∗i , c
∗|x; Θ) ∝ p(s∗, t∗i , c

∗|x; Θ) exp[αsls(s, s
∗) + αtlt(t, t

∗) + αclc(c, C
∗)]

where ls, lt and lc are task-specific loss functions6, and αs, αt and αc are the associated weight

parameters that specify the relative importance of the two tasks in the objective function. 7

We use AdaGrad (Duchi et al., 2011) for optimization with λ = 0.001.

5In the conditional log likelihood function, A(C∗
i ) is the set of antecedent structures that are consistent

with C∗
i . Since our model needs to be trained on antecedent vectors c∗ but the gold coreference annotation

for each document i is provided in the form of a clustering C∗
i , we need to sum over all consistent antecedent

structures.

6The loss function for event coreference, which is introduced by Durrett and Klein (2013) for entity
coreference resolution, is a weighted sum of (1) the number of anaphoric mentions misclassified as non-
anaphoric, (2) the number of non-anaphoric mentions misclassified as anaphoric, and (3) the number of
incorrectly resolved mentions. The loss function for trigger detection is parameterized in a similar way,
having three parameters associated with (1) the number of non-triggers misclassified as triggers, (2) the
number of triggers misclassified as non-triggers, and (3) the number of triggers labeled with the wrong
subtype. The loss function for topic detection is defined in similar way as trigger detection.

7These weight parameters, as well as those that are used within the loss functions, are tuned on the
development set using grid search.
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Inference

Inference, which is performed during training and decoding, involves computing the marginals

for a variable or a set of variables to which a factor connects. For efficiency, we perform ap-

proximate inference using belief propagation, running it until convergence. We use minimum

Bayes risk decoding, where we compute the marginals for each variable in our model and

independently return the most likely setting of each variable. Marginals typically converge

in 3–5 iterations of belief propagation, so we use 5 iterations in our experiments.

6.2 Evaluation

6.2.1 Experimental Setup

We perform training and evaluation on the KBP 2017 English and Chinese corpora. For

English, we train models on 646 of the training documents, tune parameters on 171 training

documents, and report results on the official KBP 2017 English test set. For Chinese, we

train models on 438 of the training documents, tune parameters on 110 training documents,

and report results on the official KBP 2017 Chinese test set.

Results of event coreference and trigger detection are obtained using version 1.8 of the

official scorer provided by the KBP 2017 organizers. To evaluate event coreference per-

formance, the scorer employs four commonly-used scoring measures, namely MUC (Vilain

et al., 1995), B3 (Bagga and Baldwin, 1998), CEAFe (Luo, 2005) and BLANC (Recasens

and Hovy, 2011), as well as the unweighted average of their F-scores (AVG-F). The scorer

reports event mention detection performance in terms of Precision (P), Recall (R) and F-

score, considering a mention correctly detected if it has an exact match with a gold mention

in terms of boundary and event subtype.
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Table 6.2. Results of event coreference and trigger detection on the KBP 2017 English and
Chinese test sets.

Event Coreference Trigger Detection
English MUC B3 CEAFe BLANC AVG-F ∆ P R F ∆

1 Jiang et al. (2017a) 30.63 43.84 39.86 26.97 35.33 56.83 55.57 56.19
2 Full 37.11 44.49 40.03 29.93 37.89 64.45 46.92 54.30
3 − Topic 34.16 43.76 40.78 28.20 36.72 −1.17 64.39 46.67 54.11 −0.19
4 − Discourse 34.53 43.06 40.07 27.95 36.40 −1.49 62.15 47.49 53.84 −0.46
5 − Both 31.94 42.84 40.21 26.49 35.37 −2.52 63.57 45.87 53.29 −0.89

Event Coreference Trigger Detection
Chinese MUC B3 CEAFe BLANC AVG-F ∆ P R F ∆

6 Lu and Ng (2017c) 27.07 34.18 32.22 18.57 28.01 46.61 46.91 46.76
7 Full 27.89 40.95 39.49 22.00 32.58 51.81 54.81 53.27
8 − Topic 26.39 40.43 38.75 21.18 31.69 −0.89 51.81 53.28 52.53 −0.74
9 − Discourse 26.13 40.78 39.31 21.02 31.81 −0.77 51.65 54.65 53.11 −0.16

10 − Both 25.93 37.50 34.24 19.92 29.40 −3.18 56.78 44.63 49.98 −3.29

6.2.2 Results

Results on the English test set are shown in the top half of Table 6.2. Specifically, row 1

shows the results of Jiang et al. (2017a)’s resovler, which achieves the best performance in

English trigger detection and event coreference systems participating in KBP 2017. Row 2

shows the results of our full model, which substantially outperforms the baseline system

(row 1), yielding an improvement of 2.56 points in AVG-F for event coreference though it

underperforms by 1.89 points in F-score for trigger detection. The higher recall of KBP 2017

system for trigger detection may partially due to the application of oversampling technique

to increase the numbers of subtypes with few instances and using a ensemble model.

Results on the Chinese test set are shown in the bottom half of Table 6.2. Specifically,

row 6 shows the results of Lu and Ng’s (2017c) resolver, which is the top KBP 2017 system

for Chinese and has produced the best results to date on this test set. Our full model (row 7)

outperforms this baseline by 4.57 points in AVG-F for event coreference and 6.51 points in

F-score for trigger detection. Despite the large improvement in AVG-F, the MUC F-score

only increases by 0.82 points. Since MUC F-scores are computed solely based on coreference

links, these results suggest that the improvement in AVG-F can largely be attributed to

67



Table 6.3. Statistics on salience-based candidate pruning.

English Chinese
Training Test Training Test

1 Number of event mentions to be resolved 52370 9494 39758 9918
2 Number of candidate antecedents before pruning 371718 48750 124292 26406
3 Number of candidate antecedents after pruning 119416 20956 83378 20109

4 Number (%) of anaphoric event mentions
4362

(8.3%)
914

(9.6%)
1713

(4.3%)
821

(8.3%)

5
Number (%) of anaphoric event mentions whose correct
antecedent are among the candidates before pruning

4317
(99.0%)

803
(87.8%)

1671
(97.6%)

585
(71.3%)

6
Number (%) of anaphoric event mentions whose correct
antecedent are among the candidates after pruning

3171
(72.7%)

670
(73.3%)

1610
(94.0%)

565
(68.8%)

successful identification singleton clusters rather than successful identification of coreference

links.

6.2.3 Model Ablations

To evaluate the importance of each of the two extensions in the full model, we perform

ablation experiments. Rows 3–5 and rows 8–10 in Table 6.2 show the English and Chinese

results obtained using models that are retrained after one or both of the extensions are

removed from the full model. The changes in AVG-F as a result of the ablations are shown

in the ∆ columns for both tasks.

Similar conclusions can be drawn from the ablation results for both languages. First,

ablating each of the two extensions causes a drop in performance for both event coreference

and trigger detection. These results suggest that topic modeling and discourse pruning are

both useful for the two tasks. Second, ablating both extensions causes a more abrupt drop

in performance than ablating one of the extensions. This implies that each extension is

providing useful information for each task that cannot be provided by the other extension.

Third, when both extensions are ablated, the resulting models still outperform the baselines

for both tasks. Nevertheless, we can see that for English, discourse pruning contributes more
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to the performance of our full model than topic modeling, whereas the reverse is true for

Chinese.

6.2.4 Analysis of Salience-Based Pruning

To gain insights into the effectiveness of discourse modeling in terms of pruning candidate

antecedents, Table 6.3 shows some statistics on the candidate antecedents before and after

applying pruning. Concretely, row 1 shows the total number of event mentions to be resolved

in the English and Chinese training and test sets. For English, as we can see in rows 2–3,

only 32.1% and 43.0% of the candidate antecedents remain in the training and test sets

respectively after pruning. This can be attributed to the fact that we aggressively prune

the candidate antecedents by allowing k (the number of top candidate antecedents that can

survive the pruning for each event mention) to be in the range of 1 to 5 during parameter

tuning.8 Row 4 shows that among all event mentions to be resolved, only 8.3% of them

are anaphoric. Row 5 shows that before pruning, the correct antecedent of almost all of

the anaphoric event mentions in the training set is among the set of candidate antecedents,

whereas the corresponding number on the test set is only 87.8% due to the presence of

unseen event mentions. Row 6 shows that 72.7% and 73.3% of the correct antecedents on

the training set and the test set survive the pruning, respectively. Similar trends can be

observed for the Chinese datasets. Overall, these statistics shed light on why discourse-

based pruning is beneficial: the percentage of correct antecedents that survive the pruning

is far greater than the percentage of candidate antecedents that are pruned.

6.2.5 Discussion

One thing that the reader may not be able to appreciate just by looking at the performance

numbers in Table 6.2 is that our two extensions are starting to attack some of the non-

8The best k according to the development set is 2 for English and 3 for Chinese.
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Table 6.4. Examples illustrating the usefulness of topic modeling and salience-based pruning.

A barrage of US missile {struck}m1 Pakistan’s North Waziristan tribal district on Tuesday,
killing at least 15 militants.

President Vladimir Putin sent his condolences to U.S. President Barack Obama on Tuesday
over the deadly tornado that {struck}m2 Oaklahoma City. The tornado {struck}m3 the
southern suburbs of the Oklahoma state capital Monday afternoon, killing at least 51 people
and injuring at least 140 others.

The French police said they were continuing to search for the man responsible for
{stabbing}m4 a uniformed soldier in the neck Saturday evening. The soldier was
{stabbed}m5 in the back of the neck with a box cutter or short knife as he patrolled with
two colleagues through the transport station of La Défense, a business area in a suburb of
Paris. The police suggested that the deed may have been inspired by the {attack}m6 on
a British soldier in a London street Wednesday. A spokesman for the police union UNSA,
Christophe Crépin, said there were similarities with the London {attack}m7 . The case of the
{wounded}m8 soldier, Pfc. Cédric Cordier, 23, is being handled by France’s anti-terrorism
court, officials said Sunday.

trivial aspects of event coreference that involve semantics and discourse, as opposed to those

previous approaches that focus on low-level issues (e.g., string matching). For this reason,

we will take a look at some of the errors addressed by our extensions below.

Let us first consider the kind of errors topic modeling allows us to address. Consider the

first two sentences in Table 6.4, both of which contain the trigger candidate “struck”. While

“struck” triggers a “Conflict.Attack” event in the first sentence, neither of its occurrences in

the second sentence corresponds to a true trigger (and therefore their subtypes should both

be None). Without topic modeling, the model predicts all occurrences of “struck” in these

sentences as belonging to Conflict.Attack (and hence misclassifies the subtypes of m2 and

m3). The reasons are that (1) “struck” is most frequently associated with “Conflict.Attack”

in the training data, and (2) since the two sentences have a similar syntactic structure and

contain entities of the same type, the model fails to identify their differences. In contrast,

with topic modeling, our model correctly predicts the topic of the document in which the

second example appears as Contact.Meeting. Since the model manages to learn that the

subtype of “struck” should be None when the topic is Contact.Meeting and that its subtype
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should be “Conflict.Attack” when the topic is “Conflict.Attack”, it correctly predicts m2 and

m3 as having subtype None and, as a result, it also correctly determines that they are not

coreferent. In other words, by using global information encoded by the topic model, our

model can distinguish between words that have different meanings in different contexts.

Next, consider the last example in Table 6.4, which aims to give the reader an idea of the

usefulness of discourse-based pruning. In this example, m4, m5, and m8 refer to the event of

the French soldier being stabbed and are coreferent, whereas m6 and m7 refer to the attack on

the British solider and form another coreference cluster. Without discourse-based pruning,

the model mistakenly links m8 with m7 because they both have subtype “Conflict.Attack”.

In contrast, discourse-based pruning ranks m4 and m5 higher than m6 and m7 in m8’s list of

candidate antecedents, the reason being that m4, m5, and m8 share the same entity (realized

as “a uniformed soldier”, “The soldier”, and “the wounded soldier”) in their contexts. Since

the model retains only the top two candidate antecedents for English, m6 and m7 are being

pruned, and the model successfully resolves m8 to m5.

6.3 Chapter Summary

We incorporated non-local information into a state-of-the-art joint model for event corefer-

ence resolution via topic modeling and discourse-based pruning. The resulting model not

only significantly outperforms the independent models but also achieves the best results to

date on the KBP 2017 English and Chinese event coreference corpora.
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CHAPTER 7

IMPROVING EVENT COREFERENCE RESOLUTION BY LEARNING

ARGUMENT COMPATIBILITY FROM UNLABELED DATA 1

Arguments are the participants of an event, each having its role. For example, as shown in

the example in Fig 7.1, KMT is the AGENT-argument and new party chief is the PATIENT-

argument of m1. Argument compatibility is an important linguistic condition for determining

the coreferent status between two event mentions. Two arguments are incompatible if they

do not correspond to the same real-world entity when they are expressed in the same level

of specificity; otherwise, they are compatible. For example, a pair of TIME-arguments —

Wednesday and 2005 — which are expressed in different level of specificity, are considered

compatible. If two event mentions have incompatible arguments in some specific argument

roles, they cannot be coreferent. For example, m2 and m6 are not coreferent since their

TIME-arguments — January 2012 and 2005 — and their PATIENT-arguments — a new

chairperson and Ma — are incompatible. On the other hand, coreferent event mentions

can only have compatible arguments. For example, m3 and m5 both have Wednesday as

TIME-arguments. In this example, argument compatibility in the TIME argument role is a

strong hint suggesting their coreference.

Despite its importance, incorporating argument compatibility into event coreference sys-

tems is challenging due to the lack of sufficient labeled data. Many existing works have

relied on implementing argument extractors as upstream components and designing argu-

ment features that capture argument compatibility in event coreference resolvers. However,

the error introduced in each of the steps propagates through these resolvers and hinders their

performance considerably.

In light of the aforementioned challenge, we propose a framework for transferring argu-

ment (in)compatibility knowledge to the event coreference resolution system, specifically by

1This chapter was previously published in Huang et al. (2019).
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Figure 7.1. A document with three events described in six event mentions. Coreferent event
mentions are highlighted with the same color.

Figure 7.2. System overview.

adopting the interactive inference network (Gong et al., 2018) as our model structure. The

idea is as follows. First, we train a network to determine whether the corresponding argu-

ments of an event mention pair are compatible on automatically labeled training instances

collected from a large unlabeled news corpus. Second, to transfer the knowledge of argu-

ment (in)compatibility to an event coreference resolver, we employ the network (pre)trained

in the previous step as a starting point and train it to determine whether two event mentions

are coreferent on manually labeled event coreference corpora. Third, we iteratively repeat

the above two steps, where we use the learned coreference model to relabel the argument
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Table 7.1. Examples of NER-based sample filtering. The phrases tagged as DATE are
underlined, and the trigger words are boldfaced.

event mention DATE-compatibility with ma

ma The result of the election last October surprised everyone. -
m1 He was elected as president in 2005. no
m2 The presidential election took place on October 20th. yes
m3 The opposition party won the election. yes

compatibility instances, retrain the network to determine argument compatibility, and use

the resulting pretrained network to learn an event coreference resolver. In essence, we mutu-

ally bootstrap the argument (in)compatibility determination task and the event coreference

resolution task.

Our contributions are two-fold. First, we utilize and leverage the argument (in)com-

patibility knowledge acquired from a large unlabeled corpus for event coreference resolution.

Second, we employ the interactive inference network as our model structure to iteratively

learn argument compatibility and event coreference resolution. Initially proposed for the task

of natural language inference, the interactive inference network is suitable for capturing the

semantic relations between word pairs. Experimental results on the KBP coreference dataset

show that this network architecture is also suitable for capturing the argument compatibility

between event mentions.

7.1 Method

Our proposed transfer learning framework consists of two learning stages, the pretraining

stage of an argument compatibility classifier and the fine-tuning stage of an event coreference

resolver (Figure 7.2). We provide the details of both stages in sections 7.1.1 and 7.1.2, and

describe the iterative strategy combining the two training stages in section 7.1.3. Details on

the model structure are covered in section 7.1.4.
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7.1.1 Argument Compatibility Learning

In the pretraining stage, we train the model as an argument compatibility classifier with

event mentions extracted from a large unlabeled news corpus.

Task definition Given a pair of event mentions (ma, mb) with related triggers, predict

whether their arguments are compatible or not.

Here, an event mention is represented by a trigger word and the context words within an

n-word window around the trigger.

Related trigger extraction We analyze the event coreference resolution corpus and ex-

tract trigger pairs that are coreferent more than k times in the training data. We define

these trigger pairs to be related triggers in our experiment. In this work, we set k to 10.

Table 7.2 shows some examples of related triggers with high counts.

Table 7.2. Examples of related triggers.
trigger pair count
kill - death 86

shoot - shooting 35
retire - retire 34

demonstration - protest 30

If the triggers of an event mention pair are related, their coreferent status cannot be

determined by looking at the triggers alone, and this is the case in which argument compat-

ibility affects the coreferent status most directly. Thus, we focus on the event mention pairs

with related triggers in the pretraining stage of argument compatibility learning.

Compatible samples extraction From each document, we extract event mention pairs

with related triggers and check whether the following conditions are satisfied:

1. DATE-compatibility (Table 7.1):

First, we perform named entity recognition (NER) on the context words. If both event
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mentions have phrases tagged as DATE in the context, these two phrases must contain

at least one overlapping word. If there are multiple phrases tagged as DATE in the

context, only the phrase closest to the trigger word is considered.

2. PERSON-compatibility: Similar to 1.

3. NUMBER-compatibility: Similar to 1.

4. LOCATION-compatibility: Similar to 1.

5. Apart from function words, the ratio of overlapping words in their contexts must be

under 0.3 for both event mentions. We add this constraint in order to remove trivial

samples of nearly identical sentences.

Conditions 1–4 are heuristic filtering rules based on NER tags, which aim to remove

samples with apparent incompatibilities. Here, we consider four NER types — DATE,

PERSON, NUMBER, and LOCATION — because these types of words are the most salient

types of incompatibility that can be observed between event mentions. Condition 5 aims to

remove event mention pairs that are “too similar”. We add this condition because we do not

want our model to base its decisions on the number of overlapping words between the event

mentions.

We collect event mention pairs satisfying all the above conditions as our initial set of

compatible samples.

Incompatible sample extraction From different documents in the corpus, we extract

event mentions with related triggers and check whether the following conditions are satisfied:

1. The creation date of the two documents must be at least one month apart.

2. Apart from the trigger words and the function words, the context of the event mentions

must contain at least one overlapping word.
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In the unlabeled news corpus, articles describing similar news events are sometimes

present. Thus, we use condition 1 to roughly assure that the event mention pairs extracted

are not coreferent. Mention pairs extracted from the same document tend to contain over-

lapping content words, so to prevent our model to make decisions based on the existence of

overlapping words, we add condition 2 as a constraint.

We collect event mention pairs satisfying all the above conditions as our initial set of

incompatible samples.

Argument compatibility classifier With the initial set of compatible and incompatible

samples acquired above, we train a binary classier to distinguish between samples of the two

sets.

7.1.2 Event Coreference Learning

In the fine-tuning stage, we adapt the argument compatibility classifier on the labeled event

coreference data to a mention-pair event coreference model.

Event Mention Detection

Before proceeding to the task of event coreference resolution, we have to identify the event

mentions in the documents. We train a separate event mention detection model to identify

event mentions along with their subtypes.

We model event mention detection as a multi-class classification problem. Given a can-

didate word along with its context, we predict the subtype of the event mention triggered

by the word. If the given candidate word is not a trigger, we label it as NULL. We select the

words that have appeared as a trigger at least once in the training data as candidate trigger

words. We do not consider multi-word triggers in this work.

Given an input sentence, we first represent each of its comprising words by the concatena-

tion of the word embedding and the character embedding of the word. These representation
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vectors are fed into a bidirectional LSTM (biLSTM) layer to obtain the hidden representation

of each word.

For each candidate word in the sentence, its hidden representation is fed into the inference

layer to predict the class label. Since the class distribution is highly unbalanced, with the

NULL label significantly outnumbering all the other labels, we use a weighted softmax at

the inference layer to obtain the probability of each class. In this work, we set the weight to

0.1 for the NULL class label and 1 for all the other class labels.

Intuitively, candidate triggers with the same surface form in the same document tend

to have the same class label. However, it is difficult to model this consistency since our

model operates at the sentence level. Thus, we account for this consistency across sentences

by the following post-processing step: If a candidate word is assigned the NULL label but

more than half of the candidates sharing the same surface form is detected as triggers of

a specific subtype, then we change the label to this given subtype. Also, we disregard

event mentions with types contact, movement and transaction in this post-processing step,

since the subtypes under these three types do not have a good consistency across different

sentences in the same document.

Mention-Pair Event Coreference Model

With the argument compatibility classifier trained in the previous stage, we use the labeled

event coreference corpus to fine-tune the model into an event coreference resolver. We design

the event coreference resolver to be a mention-pair model (Soon et al., 2001), which takes a

pair of event mentions as the input and outputs the likelihood of them being coreferent.

With the pairwise event coreference predictions, we further conduct best-first clustering

(Ng and Cardie, 2002b) on the pairwise results to build the event coreference clusters of

each document. Best-first clustering is an agglomerative clustering algorithm that links each

event mention to the antecedent event mention with the highest coreference likelihood given

the likelihood is above an empirically determined threshold.
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Figure 7.3. Model structure.

7.1.3 Iterative Relabeling Strategy

Previously, we collected a set of compatible event mentions from the same document with

simple heuristic filtering. Despite this filtering step, the initial compatible set is noisy. Here,

we introduce an iterative relabeling strategy to improve the quality of the compatible set of

event mentions.

First, we calculate the coreference likelihood of the event mentions in the initial compat-

ible set. Mention pairs with a coreference likelihood above threshold θM are added to the

new compatible set. On the other hand, mention pairs with a coreference likelihood below

θm are added to the initial incompatible set to form the new incompatible set. With the

new compatible and incompatible sets, we can start another iteration of transfer learning to

train a coreference resolver with improved quality. In this work, we set θM to 0.8 and θm to

0.2.

7.1.4 Model Structure

We adopt an interactive inference network as the model structure of our proposed method

(Figure 7.3). A qualitative analysis of an interactive inference network shows that it is good
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at capturing word overlaps, antonyms and paraphrases between sentence pairs (Gong et al.,

2018). Thus, we believe this network is suitable for capturing the argument compatibility

between two event mentions. The model consists of the following components:

Model inputs The input to the model is a pair of event mentions (ma, mb), with ma being

the antecedent mention of mb:

ma = {w1
a, w

2
a, ..., w

N
a }

mb = {w1
b , w

2
b , ..., w

N
b }

(7.1)

Each event mention is represented by a sequence of N tokens consisting of one trigger word

and its context. Here, we take the context to be the words within an n-word window around

the trigger. In this work, n is set to 10.

Embedding layer We represent each input token by the concatenation of the following

components:

Word embedding The word representation of the given token. We use pretrained

word vectors to initialize the word embedding layer.

Character embedding To identify (in)compatibilities regarding person, organization

or location names, the handling of out-of-vocabulary (OOV) words is critical.

Adding character-level embeddings can alleviate the OOV problem (Yang et al., 2017).

Thus, we apply a convolutional neural network over the comprising characters of each token

to acquire the corresponding character embedding.

POS and NER one-hot vectors One-hot vectors of the part-of-speech (POS) tag

and NER tag.
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Exact match A binary feature indicating whether a given token appears in the context

of both event mentions. This feature is proved useful for several NLP tasks operating on

pairs of texts (Chen et al., 2017; Gong et al., 2018; Pan et al., 2018).

Trigger position We encode the position of the trigger word by adding a binary feature

to indicate whether a given token is a trigger word.

Encoding layer We pass the sequence of embedding vectors into a biLSTM layer (Hochre-

iter and Schmidhuber, 1997), resulting in a sequence of hidden vectors of size |h|:

hia = biLSTM(emb(wi
a), h

i−1
a )

hib = biLSTM(emb(wi
b), h

i−1
b )

(7.2)

where emb(w) is the embedding vector of token w.

Interaction layer The interaction layer captures the relations between two event mentions

based on the hidden vectors ha and hb. The interaction tensor I, a 3-D tensor of shape (N , N ,

|h|), is calculated by taking the pairwise multiplication of the corresponding hidden vectors:

Iij = hia ◦ h
j
b (7.3)

Finally, we apply a multi-layer convolutional neural network to extract the event pair repre-

sentation vector fev.

Inference layer In the pretraining stage, we feed fev to a fully-connected inference layer

to make a binary prediction of argument compatibility.

As for the fine-tuning stage, we concatenate an auxiliary feature vector faux to fev before

feeding it into the inference layer. faux consists of two features, a one-hot vector that

encodes the sentence distance between the two event mentions and the difference of the

word embedding vectors of the two triggers.
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Table 7.3. Event coreference resolution results of our proposed system, compared with the
biLSTM baseline model and the current state-of-the-art system.

MUC B3 CEAFe BLANC AVG-F

biLSTM (standard) 29.49 43.15 39.91 24.15 34.18
biLSTM (transfer) 33.84 42.91 38.39 26.59 35.43
Interact (standard) 31.12 42.84 39.01 24.99 34.49
Interact (transfer) 34.28 42.93 39.95 32.12 36.24
Interact (transfer, 2nd iter) 35.66 43.20 40.02 32.43 36.75
Interact (transfer, 3rd iter) 36.05 43.07 39.69 28.06 36.72
Jiang et al. (2017) 30.63 43.84 39.86 26.97 35.33

7.2 Evaluation

7.2.1 Experimental Setup

Corpora

We use English Gigaword (Parker et al., 2009) as the unlabeled corpus for argument com-

patibility learning. This corpus consists of the news articles from five news sources, each

annotated with its creation date.

As for event coreference resolution, we use the English portion of the KBP 2015 and

2016 datasets (Ellis et al., 2015, 2016) for training, and the KBP 2017 dataset (Getman

et al., 2017) for evaluation. The KBP datasets comprise news articles and discussion forum

threads. The KBP 2015, 2016, and 2017 corpora contain 648, 169, and 167 documents,

respectively. Each document is annotated with event mentions of 9 types and 18 subtypes,

along with the coreference clusters of these event mentions.

Implementation Details

Preprocessing We use the Stanford CoreNLP toolkit (Manning et al., 2014) to perform

preprocessing on the input data.

Network structure Each word embedding is initialized with the 300-dimensional pre-

trained GloVe embedding (Pennington et al., 2014). The character embedding layer is a
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combination of an 8-dimensional embedding layer and three 1D convolution layers with a

kernel size of 5 with 100 filters. The size of the biLSTM layer is 200. The maximum length

of a word is 16 characters; shorter words are padded with zero and longer words are cropped.

For the interaction layer, we use convolution layers with a kernel size of 3 in combination

with max-pooling layers. The size of the inference layer is 128. Sigmoid activation is used

for the inference layer, and all other layers use ReLU as the activation function.

Event mention detection model For word embeddings, we use the concatenation of a

300-dimensional pretrained GloVe embedding and the 50-dimensional embedding proposed

by Turian et al. (2010). The character embedding layer is a combination of an 8-dimensional

embedding layer and three 1D convolution layers with kernel sizes of 3, 4, 5 with 50 filters.

Evaluation Metrics

We follow the standard evaluation setup adopted in the official evaluation of the KBP event

nugget detection and coreference task. This evaluation setup is based on four distinct scor-

ing measures —MUC (Vilain et al., 1995), B3 (Bagga and Baldwin, 1998), CEAFe (Luo,

2005) and BLANC (Recasens and Hovy, 2011) — and the unweighted average of their F-

scores (AVG-F). We use AVG-F as the main evaluation measure when comparing system

performances.

7.2.2 Results

We present the experimental results on the KBP 2017 corpus in Table 7.3. In the following,

we compare the performance of methods with different network architectures and experi-

mental settings.

Comparison of network architectures We compare the results of the interactive infer-

ence network (Interact) with the biLSTM baseline model (biLSTM).
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Table 7.4. Examples of event pairs with related triggers. Trigger words are boldfaced, and
words with (in)compatibility information are colored in blue.

Type Event Mention Pair Gold System

Explicit
m1: ... the building where 13 people were killed will be razed, and a memorial ...
m2: In that case, George Hennard killed 23 people at a Luby ’s restaurant, ...

non-coref non-coref

Explicit
m1: Ten relatives of the victims arrived at the airport Sunday before traveling to the city of Jiangshan.

m2: On Monday , the victims’ relatives went to the Jiangshan Municipal Funeral Parlor.
non-coref non-coref

Implicit
m1: ... a young woman protester was brutally slapped while she was demonstrating ...
m2: ... explain why a women protester in her 60s was beaten up by policemen ...

non-coref coref

Implicit
m1: She died from a brain hemorrhage on July 10, 2003, ...

m2: ... has denied killing his second wife, whom he says died in a car accident.
non-coref non-coref

Implicit
m1: Nationwide demonstrations held in France to protest gay marriage.
m2: ... to protest against the country’s plan to legalize same-sex marriage.

coref coref

General
m1: ... Connecticut elementary school shooting has reignited the debate over gun control.

m2: Gun supporters hold that people, not guns, are to blame for the shootings.
non-coref coref

General
m1: Industrial accidents have injured and killed Foxconn workers, and the company also experienced ...

m2: ... explosion in May 2011 at Foxconn ’s Chengdu factory killed three workers ...
non-coref non-coref

The biLSTM baseline model does not have the interaction layer. Instead, the last hidden

vectors of the biLSTM layer are concatenated and fed into the inference layer directly.

When trained solely on the event coreference corpus (standard), the model with the in-

teractive inference network performs slightly better than the biLSTM baseline model, as

shown in rows 1 and 3. However, with an additional pretraining step of argument compat-

ibility learning (transfer), the interact inference network outperforms the biLSTM baseline

model by a considerable margin, as shown in rows 2 and 4. We conclude that the interactive

inference network can better capture the complex interactions between two event mentions,

accounting for the difference in performance.

Effect of transfer learning Regardless of the network structure, we observe a consider-

able improvement in performance by pretraining the model as an argument compatibility

classifier. The biLSTM baseline model achieves an improvement of 1.25 points in AVG-F

by doing transfer learning, as can be seen in rows 1 and 2. As for the interactive inference

network, an improvement of 1.75 points in AVG-F is achieved, as can be seen in rows 3

and 4. These results provide suggestive evidence that our proposed transfer learning frame-

work, which utilizes a large unlabeled corpus to perform argument compatibility learning, is

effective.
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Effect of iterative relabeling We achieve another boost in performance by using the

trained event coreference resolver to relabel the training samples for argument compatibility

learning. The best result is achieved after two iterations (row 5) with an improvement of 2.26

points in AVG-F compared to the standard interactive inference network (row 3). However,

we are not able to obtain further gains with more iterations of relabeling (row 6). We

speculate that the difference in event coreference model predictions across different iterations

is not big enough to have a perceivable impact, but additional experiments are needed to

determine the reason.

Comparison with the state of the art Comparing row 5 and 7, we can see that our

method outperforms the previous state-of-the-art model (Jiang et al., 2017b) by 1.42 points

in AVG-F.

7.3 Discussion

In this section, we conduct a qualitative analysis of the outputs of our best-performing system

(the Interact (transfer, 2nd iter) system in Table 7.3) on the event coreference dataset and

the unseen event mention pairs extracted from the unlabeled corpus.

7.3.1 Compatibility Classification

We focus on the samples with related triggers having either compatible or incompatible

arguments (Table 7.4). These samples can be roughly classified into the following categories:

Explicit argument compatibility The existence of identical/distinct time phrases, num-

bers, location names or person names in the context is the most explicit form of (in)com-

patibility.

For these event pairs, the existence of identical/distinct phrases with the same NER type

is a direct clue toward deciding their coreferent status. Making use of this nature, we perform
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filtering on the set of compatible samples acquired from the unlabeled corpus in order to

remove samples with explicit incompatibility.

Our model can recognize this type of (in)compatibility with a relatively high accuracy.

Both examples shown in Table 7.4 are classified correctly.

Implicit argument compatibility Event pairs with implicit (in)compatible arguments

require external knowledge to resolve.

We present three examples in Table 7.4. In the first example, the knowledge that a

woman in her 60s is generally not referred to as being young is required to determine the

incompatibility. Similarly, the knowledge that both brain hemorrhage and car accident are

causes of people’s death are required to classify the second example correctly.

While the performance on samples with implicit (in)compatibility is not as good as

that on samples with explicit (in)com-patibility, our system is able to capture implicit

(in)compatibility to some extent. We believe that this type of (in)compatibility is diffi-

cult to be captured with the argument features that are designed based on the outputs of

argument extractors and entity coreference resolvers, and that the ability to resolve implicit

(in)compatibility contributes largely to our system’s performance improvements.

General-specific incompatibilities Event mentions describing general events pose spe-

cial challenges to the task of event coreference resolution.

In Table 7.4, we present two typical examples of this category. In the first example,

the second event mention does not refer to any specific shooting event in the real world, in

contrast to the first event mention, which describes a specific school shooting event. Similarly

for the second example, where the first event mention depicts a general event and the second

event mention depicts a specific one.

General event mentions typically have few or even no arguments and modifiers, making

the identification of non-coreference relations very challenging. Since we cannot rely on
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Table 7.5. Case study on manually-generated event mention pairs. Trigger words are bold-
faced, and the target arguments are colored in blue.

Event Mention Pair Type System

1

m1: What would have happened if Steve Jobs had never left Apple ... - -
ma

2: ...in the state that is today if John hadn’t left. Explicit non-coref
mb

2: ...in the state that is today if she hadn’t left. Implicit non-coref
mc

2: ...in the state that is today if he hadn’t left. Implicit coref

2

m1: Police arrest 6 men for gangraping housewife in northern India. - -
ma

2: Indian police have arrested six men for allegedly gangraping a 29-year-old housewife ... Explicit coref
mb

2: Indian police have arrested six men for allegedly gangraping a woman ... Implicit coref
mc

2: Indian police have arrested six men for allegedly gangraping a medical student ... Implicit non-coref

3
m1: Nationwide demonstrations in France to protest gay marriage. - -
ma

2: ...took to the streets across the country to protest against the country’s plan to legalize same-sex marriage. Implicit coref
mb

2: ...took to the streets across the country to protest against the contentious citizenship amendment bill. Implicit non-coref

argument compatibility, a deeper understanding of the semantics of the event mentions is

needed. General event mentions account for a considerable fraction of our system’s error,

since they are quite pervasive in both news articles and discussion forum threads.

7.3.2 Case Study

To better understand the behavior of our system, we perform a case study on manually-

generated event pairs. Specifically, for a given pair of event mentions, we first alter only one

of the arguments and keep the rest of the content fixed. We then observe the behavior of

the system across different variations of the altered argument (Table 7.5).

Example 1 In this example, we pick the AGENT-argument as the target and alter the

AGENT-argument of the second event mention. The event pair (m1, m
a
2) is non-coreferent

due to the explicit incompatibility between Steve Jobs and John, and the system’s prediction

is also non-coreferent. Further, we alter the target argument to the pronoun she (mb
2),

resulting in an implicit incompatibility in the AGENT argument since the Steve Jobs is

generally not considered a feminine name. As expected, the system classifies the event pair

(m1, m
b
2) as non-coreferent. Finally, when we alter the target argument to he (mc

2), the

system correctly classifies the resulting pair as coreferent.
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Example 2 In this example, we pick the PATIENT-argument as the target and alter the

PATIENT-argument of the second event mention. The system classifies the event pair (m1,

ma
2) as coreferent, which is reasonable considering the presence of the explicit compatible

arguments housewife and 29-year-old housewife. Further, when we alter the target argument

to woman (mb
2), the system output is still coreferent. This is consistent with our prediction:

the event mentions are likely to be coreferent judging only from the context of the two event

mentions. However, when we alter the target argument to medical student (mc
2), the event

pair would become non-coreferent due to the incompatibility between medical student and

housewife. The system classifies the event pair correctly.

Example 3 In this example, we pick the REASON-argument as the target and alter the

REASON-argument of the second event mention. The event pair (m1, m
a
2) has a pair of

implicit compatible arguments in the REASON-argument role and is likely to be coreferent.

In contrast, altering the target argument to contentious citizenship amendment bill (mb
2)

would yield an pair of implicit incompatible arguments, and the resulting event pair would

become non-coreferent. Our system classifies both event pairs correctly.

7.4 Chapter Summary

We proposed an iterative transfer learning framework for event coreference resolution. Our

method exploited a large unlabeled corpus to learn a wide range of (in)compatibilities be-

tween arguments, which contributes to the improvement in performance on the event coref-

erence resolution task. Our model outperforms the previous state-of-the-art system. In

addition, a qualitative analysis of the system output confirmed the ability of our system to

capture (in)compatibilities between two event mentions.
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CHAPTER 8

CONSTRAINED MULTI-TASK LEARNING FOR EVENT COREFERENCE

RESOLUTION 1

As we discussed in the previous sections, one of the most common approaches to event

coreference resolution is pipelined approaches, where a trigger detection component, which

identifies triggers and assigns event subtypes to them, is followed by an event coreference

component, which clusters coreferent event mentions. It should therefore not be surprising

that errors propagate from the trigger detection component to the event coreference compo-

nent. To avoid further aggravating this error propagation problem, information from other

IE components such as entity coreference and arguments are typically employed as features

for training the event coreference model (Chen et al., 2009; McConky et al., 2012; Cybulska

and Vossen, 2013; Araki et al., 2014; Liu et al., 2014a; Peng et al., 2016; Krause et al., 2016;

Choubey and Huang, 2017). Oftentimes, these features provide limited improvements to

event coreference models as they are too noisy to be useful.

Though less popular than pipelined approaches, bootstrapping approaches have been used

for event coreference resolution, where an event coreference model is bootstrapped with

models trained for one or more related IE tasks. For instance, Lee et al. (2012) incrementally

builds clusters of event and entity mentions by iteratively bootstrapping event coreference

output using entity coreference output and vice versa. While in pipelined approaches only

upstream tasks can influence downstream tasks, in bootstrapping approaches different tasks

can influence each other. Nevertheless, errors made in earlier iterations of the bootstrapping

process cannot be undone in later iterations.

Joint learning approaches have recently emerged as a promising approach to event coref-

erence resolution owing to its ability to address error propagation. The key advantage of

1This chapter was previously published in Lu and Ng (2021).
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these models is that the tasks involved can benefit from each other during training. How-

ever, since a jointly learned model involves multiple tasks, it is typically complex. In fact,

it is by no means easy to scale such a model to a large number of tasks because of the high

computational complexity involved in the learning process.

Joint inference approaches have also been applied to event coreference resolution. Since

the models are trained independently, they cannot benefit from each other and could be

noisy. Worse still, performing joint inference using hard constraints over (very) noisy outputs

could do more harm than good. For instance, if two event mentions are correctly classified

as coreferent but one of their subtypes is misclassified, then enforcing the aforementioned

constraint might cause the joint inference procedure to incorrectly infer that the two are

not coreferent. This explains why joint inference approaches have become less popular than

joint learning approaches in recent years.

In light of the above discussion, we propose a model that jointly learns six tasks: trig-

ger detection, event coreference, entity coreference, anaphoricity determination, argument

extraction, and realis detection. As noted above, joint learning typically presents a serious

computational challenge, and training a complex joint model involving six tasks would not

have been possible without the advent of neural NLP era.

While multi-task learning in a neural network typically allows the different tasks involved

to benefit from each other via learning shared representations, we hypothesize that the model

would benefit additional guidance given that the learning task (which involves six tasks) is

so complex. Consequently, we propose to guide the learning process by exploiting cross-

task consistency constraints. As mentioned above, such consistency constraints are typically

employed in joint inference and rarely in joint learning. Moreover, unlike in joint inference

where such constraints are typically implemented as hard constraints, we provide flexibility

by implementing them as soft constraints. Specifically, we design penalty functions for

penalizing outputs that violate a constraint, where the degree of penalty depends on the

extent of the violation.
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Another contribution of our work involves proposing the idea of a unified coreference

model. So far, entity and event coreference have always been viewed as two separate tasks,

where links between entity mentions are distinguished from links between event mentions.

However, their similarity led us to hypothesize that they could be viewed as a single task,

where coreference links are established between a set of mentions without distinguishing

between entity and event mentions.

8.1 Model

We design a span-based neural model for event coreference resolution owing to their ability

to effectively learn representations of text spans (as opposed to words). While span-based

models have been successfully applied to a variety of entity-based IE tasks such as entity

coreference (Lee et al., 2017; Joshi et al., 2020) and relation extraction (Luan et al., 2019),

they have not been applied to event coreference.

More formally, our model takes as input a document D represented as a sequence of

word tokens, from which we extract all possible intra-sentence spans of up to length L. In

event coreference resolution, each such span corresponds to a candidate trigger. Our model

simultaneously learns six tasks, which we define below.

The trigger detection task aims to assign each span i a subtype label yi. Each yi takes

a value in a subtype inventory or None, which indicates that i is not a trigger. The model

predicts i’s subtype to be y∗i = arg maxyt st(i, yt), where st is a scoring function suggesting

i’s likelihood of having yi as its subtype.

The event coreference resolution task aims to assign span i an antecedent yc, where

yc ∈ {1, . . . , i− 1, ε}. In other words, the value of each yc is the id of its antecedent, which

can be one of the preceding spans or a dummy antecedent ε (if the event mention underlying

i starts a new cluster). We define the following scoring function:
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sc(i, j) =

 0 j = ε

sm(i) + sm(j) + sp(i, j) j 6= ε
(8.1)

where sm(i) is the score suggesting span i’s likelihood of being a trigger and sp(i, j) is a

pairwise coreference score computed over span i and a preceding span j. The model predicts

the antecedent of i to be y∗c = arg maxj∈Y(i) sc(i, j), where Y(i) is the set containing all

candidate antecedents.

The entity coreference resolution task involves identifying entity mentions that refer to

the same real-world entity. Intuitively, entity coreference is useful for event coreference:

two event mentions are not likely to be coreferent if there exists an argument role (e.g.,

ATTACKER) for which the corresponding arguments in the two event mentions are not

entity-coreferent. In our model, it is defined in the same way as the event coreference

resolution task except that it operates on the spans identified by the entity mention detection

component rather than the trigger detection component. The entity mention detection task

is defined in the same way as the trigger detection task except that it aims to assign each

span i an entity type label.

The anaphoricity determination task aims to assign each span i an anaphoricity label ya,

where ya can be Anaphoric, which indicates that the mention having span i is coreferent

with a preceding mention, or Non-anaphoric. The model sa(i) predicts the mention having

span i as anaphoric if and only if sa(i) ≥ 0. To train this model, we set the target value

to 1 for anaphoric mentions and −1 for non-anaphoric mentions. Anaphoricity is useful for

coreference: it prevents non-anaphoric mentions from being (erroneously) resolved.

The realis detection task aims to assign each span i a realis label yr, where yr ∈ {Actual,

Generic, Other, Entity, and None}, indicating whether an event actually happened

or will happen in the future or whether it is a generic event. Entity is a label that is

exclusively reserved for spans that correspond to entity mentions. Actual, Generic, and

Other are labels used for event mention spans. None indicates that i does not correspond
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to a mention. The model predicts the realis type of i to be y∗r = arg maxyr sr(i, yr), where

sr is a scoring function suggesting i’s likelihood of having realis type yr. Realis detection is

useful for event coreference: two event mentions cannot be coreferent if their realis labels

are different.

The argument extraction task aims to assign an argument role label yo to an argument

candidate k given a span i. yo can be a role taken from an argument role inventory or

None, which indicates that the token is not an argument of i. For every event mention

candidate span i, we consider an entity mention candidate span k an argument candidate of

i if and only if it appears within the same sentence as i. For each argument candidate k of

i, the model predicts its role to be y∗o = arg maxyo so(i, k, yo), where so is a scoring function

suggesting token k’s likelihood of being an argument of i having role yo. As mentioned above,

event arguments, when combined with entity coreference information, would be useful for

event coreference.

8.1.1 Model Structure

The model structure, which is shown in Figure 8.1, is described in detail below.

Span Representation Layer We adapt the independent version of Joshi et al.’s (2019)

state-of-the-art entity coreference resolver to event coreference resolution. Specifically, we

divide an input document into non-overlapping regions, each of which has size Ld. The

word sequence in each region serves as an input training sequence. We then pass the se-

quence into a pretrained transformer encoder to encode tokens and their contexts used in

SpanBERT-large (Joshi et al., 2020). Finally, we set gi, the representation of span i, to

[hstart(i); hend(i); hhead(i); fi], where hstart(i) and hend(i) are the hidden vectors of the start and

end tokens of the span, hhead(i) is an attention-based head vector and fi is a span width

feature embedding. To maintain computational tractability, we first compute a score sm for

each span i:

93



Figure 8.1. Model structure.

sm(i) = FFNNm(gi) (8.2)

where FFNN is a standard feedforward neural network. Then we retain only the top N% of

the spans for further processing.

Trigger Prediction Layer For each span i that survives the filtering, we pass its repre-

sentation gi to a FFNN, which outputs a vector oti of dimension T , where T is the number

of possible event subtypes (including None). oti(y), the yth element of oti, is a score

indicating i’s likelihood of belonging to event subtype y. Specifically:

oti = FFNNt(gi) (8.3)

st(i, y) = oti(y) (8.4)
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Anaphoricity Prediction Layer We predict the anaphoricity value of each top span i

as follows. Since the anaphoricity of a mention is dependent on its preceding context, we

first concatenate the average of the representations of the 25 tokens immediately preceding

i (to approximate i’s preceding context) with the span representation gi. We then pass the

resulting vector, cxi, to a FFNN, which outputs an anaphoricity value. Specifically:

sa(i) = FFNNa(cxi) (8.5)

Realis Prediction Layer To predict the realis value of each top span i, we pass its

representation gi to a FFNN, which outputs a vector ori of length 5. ori(y), the yth element

of ori, is a score indicating i’s likelihood of having realis type y:

ori = FFNNr(gi) (8.6)

sr(i, y) = ori(y) (8.7)

Coreference Prediction Layer To predict event coreference links, we define the pairwise

score between span i and span j as follows:

sp(i, j) = FFNNc([gi; gj; gi ◦ gj,uij]) (8.8)

where ◦ denotes element-wise multiplication, gi ◦ gj encodes the similarity between span i

and span j, and uij is a feature embedding encoding the distance between two spans. We can

then compute the full coreference score defined in equation 8.1 using equations 8.2 and 8.8.

To improve running time, we follow Lee et al. (2018) and use their antecedent pruning

method, coarse-to-fine pruning, to reduce the number of candidate antecedents for each

anaphor.

95



Incorporating Entity Coreference The most straightforward way to incorporate entity

coreference information into our model would be to have (1) an entity mention detection

model that is architecturally identical to the trigger detection model except that it assigns

entity type (rather than subtype) labels to each span, and (2) an entity coreference model

that is architecturally identical to the event coreference model described above except that it

identifies antecedents for spans provided by the entity mention detection (rather than trigger

detection) component. While this would allow entity coreference to interact with event

coreference and other tasks via the shared span representation layer, the two coreference

tasks would otherwise be learned independently of each other.

Towards the goal of building a unified model of coreference, we propose a novel idea:

we seek to learn entity and event coreference simultaneously by viewing them as a single

coreference task. In other words, from a learning perspective, there is only one task to be

learned, which is coreference resolution over a set of mentions. To do so, we extend afore-

mentioned the Span Representation Layer, the Trigger Prediction Layer, and the Coreference

Layer as follows. First, the Span Representation Layer will identify spans corresponding to

mentions that are composed of both entity mentions and event mentions even though the

model doesn’t know (and doesn’t need to know) which ones are entity mentions and which

ones are event mentions. Second, the Trigger Prediction Layer will assign each mention

span a semantic type, which is taken from a type inventory consisting of both entity types

and event subtypes (or None if the span is not a mention). In other words, the Trigger

Detection Layer, which is essentially extended to a Mention Detection Layer, now extracts

both entity and event mention spans. Third, the Coreference Layer computes coreference

chains based on the predicted mention spans and their semantic types. Since all the learner

sees are mentions, it doesn’t know (and doesn’t need to know) which coreference chains it

computes are entity-based and which ones are event-based. Similarly, it doesn’t know (and

doesn’t need to know) which types in the type inventory are entity types and which ones are
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event subtypes. A key advantage of this unified model of coreference is that it allows entity

and event coreference to be tightly coupled via parameter sharing.

When we apply this model to a test document, we need to distinguish which coreference

relations it identifies are entity-based and which ones are event-based. This can be done easily

based on the semantic type associated with the mentions underlying the extracted coreference

relation under consideration. If the semantic type is an entity type, the corresponding

coreference relation is regarded as an entity coreference relation; otherwise, it is regarded as

an event coreference relation.

Argument Prediction Layer To predict arguments and their roles, we pair each top span

i and each candidate argument k to form an input vector vaik = [gi; ti; gk; tk], where gi is the

span representation of i, ti is the one-hot subtype vector of i, gk is the span representation

of argument candidate k, tk is the one-hot subtype vector of k respectively. During training,

we use the gold subtype label to derive the subtype vector. During inference, we derive the

subtype vector from the output of the mention detection layer. We feed the resulting vector

into a FFNN, which outputs a vector oaik of dimension 21. oaik(y), the yth element of oaik,

is a score indicating k’s likelihood of being an argument of i with role y:

oaik = FFNNoa(vaik) (8.9)

so(i, k, y) = oaik(y) (8.10)

Incorporating Consistency Constraints As noted before, we propose to guide the

learning process by incorporating commonsense knowledge that encodes cross-task consis-

tency constraints on event coreference and the auxiliary tasks. We begin by incorporating

two consistency constraints on the outputs of event coreference and trigger detection: C1:
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If two spans are coreferent, they should have the same trigger subtype. C2: If a span has

an antecedent that is not the dummy antecedent, its subtype shouldn’t be None.

We incorporate each constraint into the model via a scoring function that computes how

much two spans i, an anaphor, and j, a candidate antecedent of i, should be penalized if a

constraint is violated. For constraint C1, we define a cost function, c1, which is computed

as follows:

c1(i, j) = min(|st(i, yi)− st(i, yj)|, |st(j, yj)− st(j, yi)| (8.11)

yi = arg maxyt st(i, yt) and yj = arg maxyt st(j, yt). Intuitively, c1 provides an estimate of

the least amount of adjustment needed to make i’s subtype the same as j’s or the other way

round. In particular, c1 returns 0 (i.e., no penalty) if the two spans already have the same

subtype.

Similarly, for constraint C2, we define a cost function c2, which is computed as follows:

c2(i, j) =


0 arg max

y∈Y
st(i, y) 6= None

st(i,None)− max
y∈Y\{None}

st(i, y) otherwise
(8.12)

where Y is the set of possible subtypes. Intuitively, c2 estimates the minimum amount that

needs to be adjusted so that anaphor j’s subtype is not None.

Finally, we incorporate c1 and c2 into the model as penalty terms in sc (Equation (8.1)).

Specifically, we redefine sc as follows:

sc(i, j) =

 0 j = ε

sm(i) + sm(j) + sp(i, j)− [β1c1(i, j) + β2c2(i, j)] j 6= ε
(8.13)

where β1 and β2 are positive constants that control the hardness of the constraints. The

smaller a βi is, the softer the corresponding constraint is. Intuitively, if a constraint is

violated, sc(i, j) will be lowered by one or more of the penalty terms, and j will less likely

be selected as the antecedent of i.

In addition, we enforce the following consistency constraints. Like C1 and C2, each of

them will be accompanied by a cost function that will eventually be incorporated into sc as

a penalty term.
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Event coreference and anaphoricity. C3: If a span’s antecedent is not the dummy an-

tecedent, its anaphoricity should be Anaphoric. C4: If a span has a dummy antecedent,

its anaphoricity should be Non-Anaphoric.

Event coreference and realis detection. C5: If two spans are coreferent, they should have the

same realis value. C6: If a span’s antecedent is not the dummy antecedent, its realis should

not be None.

Event coreference and argument extraction. C7: If two spans are coreferent and have argu-

ments with the same role, the arguments should be coreferent.

8.1.2 Training

The loss function we use, L(Θ), is composed of the losses of the six tasks, and is defined as

follows:

L(Θ) =
d∑

i=1

(λcLc + λtLt + λaLa + λrLr + λoLo) (8.14)

where hyperparameters (i.e., the λ’s) determine the trade-off between the task losses. The

model is trained to minimize L(Θ), whereas the hyperparameters are tuned using grid search

to maximize AVG-F (the standard event coreference evaluation metric; see the next section)

on development data.

Task Losses We employ a max-margin loss for each of the six tasks.

Defining the coreference loss is slightly tricky since the coreference annotations for each

document are provided in the form of clusters. We adopt the coreference loss function

previously defined by Wiseman et al. (2015b) for entity coreference resolution. Specifically,

let GOLDc(i) denote the set of spans preceding span i that are coreferent with i, and ylc be

arg maxy∈GOLDc(i) sc(i, y). In other words, ylc is the highest scoring (latent) antecedent of i
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according to sc among all the antecedents of i. The loss function for coreference is defined

as:

Lc(Θ) =
n∑

i=1

max
j∈Y(i)

(∆c(i, j)(1 + sc(i, j)− sc(i, ylc)) (8.15)

where ∆c(i, j) is a mistake-specific cost function that returns the cost associated with a

particular type of error (Durrett and Klein, 2013).2 Intuitively, the loss function penalizes a

span i if the predicted antecedent j has a higher score than the correct latent antecedent ylc.

We similarly define the loss for trigger detection:

Lt(Θ) =
∑n

i=1

∑
l̂ 6=yt

max(0,∆t(i, l̂)(1 + st(i, l̂)− st(i, yt))) (8.16)

where ∆t(i, l̂) is a mistake-specific cost function that returns the cost associated with a

particular type of error.1 Intuitively, the loss function penalizes each span for which each of

the wrong subtypes l̂ has a higher score than the correct subtype yt according to st.

The task losses for anaphoricity determination, realis detection, and argument extraction

are all max-margin losses that are defined similarly as the one used for trigger detection.

8.2 Evaluation

8.2.1 Experimental Setup

Corpus

We perform training and evaluation on the English corpora used in the TAC KBP 2017 Event

Nugget Detection and Coreference task. There are no official training sets: the task orga-

nizers simply made available a number of event coreference-annotated corpora for training.

2Space limitations preclude a description of these error types. See Durrett and Klein (2013) for details.
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We use LDC2015E29, E68, E73, and E94, and LDC2016E64 as our training set, which con-

tain 817 documents with 22894 event mentions distributed over 13146 coreference chains3.

Among these 817 documents, we reserve 82 documents for parameter tuning and use the

remaining documents for model training. We report results on the official test set, which

consists of 167 documents with 4375 event mentions distributed over 2963 coreference chains.

Evaluation Metrics

Results of event coreference, trigger detection and realis detection are obtained using version

1.8 of the official scorer provided by the KBP 2017 organizers. For event coreference, the

scorer employs four scoring measures, MUC (Vilain et al., 1995), B3 (Bagga and Baldwin,

1998), CEAFe (Luo, 2005) and BLANC (Recasens and Hovy, 2011), as well as the unweighted

average of their F-scores (AVG-F). Results of trigger detection and realis detection are both

expressed in terms of Precision (P), Recall (R) and F-score. The scorer considers (1) a

trigger correctly detected if it has an exact match with a gold trigger in terms of boundary,

event type, and event subtype, and (2) a realis label correctly classified if it has an exact

match with a gold trigger in terms of boundary and realis value.

Additionally, we express results of both argument detection and anaphoricity determi-

nation in terms of Precision (P), Recall (R) and F-score. We consider an event argument

correctly detected if it has an exact match with a gold trigger-argument pair in terms of trig-

ger boundary, trigger subtype, argument head and argument role. We consider an anaphoric

mention correct if it has an exact match with the boundary of a gold anaphoric mention.

Finally, we report entity coreference results in terms of CoNLL score, which is the un-

weighted average of MUC, B3, and CEAFe.

3LDC2015E73 and E94 don’t have annotations for entity detection, entity coreference resolution and
argument detection. We set the loss of those three tasks to 0 during training.
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Event Coreference Trigger Anaphoricity Realis Argument
Entity
Coref.

MUC B3 CEA BLA AVG P R F P R F P R F P R F CoNLL
Jiang et al. (2017a) 30.6 43.8 39.9 27.0 35.3 56.8 55.6 56.2 − − − 48.0 46.9 47.4 − − − −

Transfer Learning Model 35.7 43.2 40.0 32.4 36.8 56.8 46.4 51.1 − − − − − − − − − −
Joint Learning model 37.1 44.5 40.0 29.9 37.9 64.5 46.9 54.3 − − − − − − − − − −

Knowledge-lean 37.6 52.3 51.7 33.6 43.8 71.5 55.3 62.4 − − − − − − − − − −
Pipeline 38.6 53.0 53.0 35.0 44.9 73.9 56.1 63.8 43.0 44.5 43.8 70.0 53.1 60.3 36.9 29.9 33.0 72.6

Full Joint 45.2 54.7 53.8 38.2 48.0 71.6 58.7 64.5 50.4 45.3 47.7 63.7 52.0 57.3 32.4 24.5 27.9 68.7

Table 8.1. Results of different resolvers on event coreference and related tasks. Results in
rows 1-3 are copied verbatim from the original papers; − indicates the corresponding result
is not available.

Implementation Details

We use the SpanBERT-large model in the span representation layer.4 For each document,

we split it into segments of length 512. We generate all spans of length up to 10. Each

FFNN has 1 hidden layer of size 2000. The size of the width feature embedding is 20. For

span pruning, we keep the top 50% of the spans. For candidate antecedent pruning, we keep

the top 15 antecedents.

For training, we use document sized mini-batches. We apply a dropout rate of 0.3.

Following Joshi et al. (2019), we use different learning rates for training the task parameters

and the SpanBERT parameters. Specifically, the task learning rate is 1×10−5 and is decayed

linearly, whereas the learning rate for SpanBERT is 2 × 10−4 and is decayed linearly. The

hyperparameters in the loss function are 1, 1, 0.05, 0.5, 0.05 for λc, λt, λa, λr, λo.

8.2.2 Results and Discussion

Results are shown in Table 8.1. To gauge the performance of our model, we employ five

baselines. Row 1 shows the result of our first baseline, Jiang et al.’s 2017a resolver, which

is the best system participating in KBP 2017. Row 2 shows the performance of our second

baseline, the transfer learning resolver in Chapter 7. Both resolvers perform trigger detection

4https://github.com/facebookresearch/SpanBERT
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and event coreference in a pipeline fashion. The embeddings being used in these resolvers

are uncontextualized. Row 3 shows our third baseline, joint learning resolver in Chapter 6.

Row 4 shows our fourth baseline, which is our model except that (1) three prediction

layers (argument, realis, and anaphoricity) are removed, and (2) the remaining layers are

trained to identify event mentions only (i.e., without entity mentions). This baseline mimics

typical knowledge-lean approaches to event coreference resolution, which perform only trigger

detection and event coreference, but is the first knowledge-lean event coreference approach

implemented in a span-based framework. As we can see, this baseline performs considerably

better than the joint learning resolver by 5.9 points in AVG-F for event coreference. A closer

inspection of the other coreference evaluation metrics reveals that in comparison to the joint

learning model, the B3, CEAFe and BLANC increased substantially while the MUC scores

barely changed. Since MUC only rewards successful identification of coreference links, the

fact that the MUC score was more or less unchanged implies that the improvement did

not arise from link identification; rather, the fact that the B3, CEAFe and BLANC scores

improved suggests that the improvement came from successful identification of singleton

clusters. This is further supported by the improvement in trigger detection: the baseline’s

trigger detection module achieves an F-score of 62.4, outperforming the joint learning model’s

trigger detection module by 8.1 points in F-score. This huge improvement should not be

surprising, as SpanBERT is designed to extract text spans. Overall, despite the 6-point

improvement in event coreference AVG-F score, we cannot say that the successes of span-

based models on entity coreference can be extended to event coreference as it largely fails to

establish event coreference links.

Row 5 shows the result of our fifth baseline, which is a pipelined version of our model,

designed to gauge the benefits of our joint model. Here, we first train a trigger detector,

which is the same as the Mention Prediction Layer of our model trained to assign event

subtypes to top spans. The resulting triggers are used to train an anaphoricity model (same
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as our model’s Anaphoricity Prediction Layer) and a realis detection model (same as our

model’s Realis Prediction Layer). Next, we train an entity coreference model, which is

the same as our third baseline except that it is trained to operate on entity rather than

event mention spans. Then, we train an argument extraction model (same as our model’s

Argument Prediction Layer) using the extracted entity mentions as candidate arguments

for the triggers identifed by the trigger detection model. Finally, the outputs of all these

models are used to enforce the seven constraints in our model as hard constraints: any

candidate antecedent of an anaphor that violates any of the constraints is filtered prior to

event coreference resolution. Overall, the performances of this baseline outperforms the

fourth baseline by 0.6 points in AVG-F for event coreference and 1.4 points in F-score for

trigger detection.

Row 6 shows the result of our full model, which outperforms the Pipeline model by 3.1

points in AVG-F for event coreference and establishes new state-of-the-art results. Encour-

agingly, the gains in AVG-F are accompanied by improvements w.r.t. all four coreference

scoring metrics. In particular, the MUC score improves considerably by 6.6 points, which

means that the full model has successfully identified event coreference links. In addition, we

see a 0.7 point improvement in trigger detection over Pipeline, and a 12.9 points improve-

ment in realis detection in comparison to Jiang et al. For bookkeeping purposes, we report

the scores for each of the components of our model. Overall, the fact that our joint model

outperform Pipeline suggests the benefits of joint modeling.

8.2.3 Model Ablations

To evaluate the contribution of different components in our model, we report in Table 8.2

the results of ablation in which we remove one component each time from the full model and

retrain it.
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Consistency constraints. Ablating the consistency constraints means removing all the

penalty terms from sc. The ablated system resembles what one would usually see in a multi-

task learning setup, where the different tasks involved has a shared representation. As we

can see from row 2, the performance of event coreference drops by 1.0 points in AVG-F,

suggesting the usefulness of employing consistency constraints in a multi-task setup. The

removal of consistency constraints also adversely affected entity coreference. This suggests

that constraints C7 and perhaps C1 and C2 are important.

Entity coreference. Next, we ablate the entity coreference component. Note that the

ablation of entity coreference also causes the removal of the argument detection component

since the latter relies on the outputs of entity coreference. We see from row 3 that event

coreference performance drops precipitously by 2.7 points. These results suggest that entity

coreference has a considerable positive impact on event coreference.

The next question is: will coreference performance go up or down if we treat entity and

event coreference as two separate tasks that are learned in a typical multi-task setup? As

we can see from row 4, the performance of event coreference and entity coreference drop by

0.8 points and 3 points, respectively. These results suggest that our viewing the two tasks

as a single task is beneficial.

Anaphoricity determination. Next, we ablate the anaphoricity component, which in-

volves removing both its task loss and consistency constraints. Moreover, the score sa is set

to 0. From row 5, we can see that event coreference performance drops by 0.5 point, and

anaphoricity determination performance drops 0.8 points.

Realis detection. When we ablate realis detection, both the task loss and the corre-

sponding consistency constraints are removed. The performance on event coreference and

anaphoricity drops significantly, by 1.4 points and 1.0 points respectively, suggesting the

usefulness of realis detection for both event coreference and anaphoricity detection.
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Event
Coref.

Tri. Ana. Rea. Arg.
Entity
Coref.

AVG F F F F CoNLL
1 Full Model 48.0 64.5 47.7 57.3 27.9 68.7
2 − constraints 47.0 64.5 47.6 57.9 27.9 68.5
3 − entity coref. 45.3 63.5 45.0 58.2 − −
4 sep. entity coref. 47.2 65.1 47.8 56.3 26.0 65.7
5 − anaphoricity 47.5 64.9 46.9 58.1 28.4 69.3
6 − realis 46.6 64.8 46.7 − 29.6 69.3
7 − argument 47.4 64.3 48.6 58.5 − 66.7

Table 8.2. Ablation results of the full model.

Argument detection. Finally, when the argument component is ablated, event corefer-

ence performance drops by 0.6 points in AVG-F. These results illustrate the importance of

argument detection for event coreference.

Overall, these results suggest that each component contributes significantly to event

coreference.

8.3 Chapter Summary

We proposed a multi-task neural model for event coreference resolution that (1) jointly learns

six tasks, (2) uses consistency constraints to guide learning, and (3) views entity and event

coreference as a single task. Our model achieves state-of-the-art results on the KBP 2017

English dataset.
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CHAPTER 9

CONCLUSION

In this dissertation, we investigated knowledge-rich approaches in which we derive potentially

useful knowledge for event coreference resolution from a variety of sources, including models

that are trained on tasks that we believe are closely related to event coreference, statistical

and linguistic features that are directly relevant to the prediction of event coreference links,

as well as constraints that encode commonsense knowledge of when two event mentions

should or should not be coreferent.

We first proposed a multi-pass sieve approach to event coreference resolution in Chap-

ter 3, which resolves easy coreference links first and then different coreference links. We

then proposed several joint models. We proposed a joint inference based event coreference

resolver using Markov Logic Networks (MLNs) in Chapter 4. The model encodes rich NLP

features implicitly by augmenting the MLN distribution with low dimensional unit clauses.

We then proposed a joint learning model of event coreference resolution, trigger detection,

and event anaphoricity determination in Chapter 5. The model encodes features for captur-

ing cross-task interactions. Furthermore, we proposed two extensions to improve the joint

learning model using the non-local information provided by a supervised topic model and

salient discourse entities in Chapter 6. To leverage argument information, we proposed a

transfer learning framework for event coreference resolution in Chapter 7. The model uti-

lizes a large amount of unlabeled data to learn the argument compatibility between two

event mentions and transfers argument (in)compatibility knowledge to the event corefer-

ence resolution system. Finally, we proposed a neural model of event coreference resolution

that involves simultaneously learning six tasks related to event coreference in a multi-task

learning framework in Chapter 8, and guide the model learning process by incorporating

commonsense knowledge into the model that encodes cross-task consistency constraints on

event coreference.
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