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STOCHASTIC OPTIMIZATION AND OPTIMAL CONTROL FOR COMPLEX

NETWORKED INFRASTRUCTURES

Yi Guo, PhD
The University of Texas at Dallas, 2020

Supervising Professor: Tyler Summers, Chair

Networked infrastructures (e.g., power grids and water networks) are becoming increasingly

complicated systems due to accelerating integration of distributed devices, increasing scale of

network systems, heterogeneous distributed control strategies, nonlinear nature of physical

models and unpredictable netloads (e.g., renewable energy and water demands). These

tendencies promise to deliver unprecedented flexibility and smart features in these systems,

but require more sophisticated modelling and operation schemes. In particular, the large

and unpredictable uncertainties across networks are challenging the current management

and threaten the security of these vital infrastructures.

The main goal of this dissertation is to establish a methodology for designing stochastic

operation strategies in complex networks with large variation uncertainties, for optimal per-

formance, stability and robustness, which is applicable to a wide range of networked infras-

tructures. This dissertation addresses the main goal in various time-scales, ranging from the

operation phase in minutes to the dynamic phase in seconds.

In the operation phase, we present a data-based distributionally robust stochastic optimal

control framework to attain the real-time optimal adjustment for controllable devices based

on a finite training dataset of uncertainties. We consider ambiguity sets of probability dis-

tributions centered around the finite sampling dataset, and leverage Wasserstein metric to
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quantify the distance between the empirical data-based distribution and the real unknown

data-generating distribution. This allows the optimal decisions to be robust to the worst-

case probability distribution within the ambiguity sets, which efficiently trades off efficiency,

risks of constraint violations and out-of-sample performance. This proposed framework is

adapted to solve the stochastic optimal power flow (OPF) problems for power systems (i.e.,

transmission systems and distribution networks) and the stochastic optimal water pump

control for water distribution networks. In addition, we propose a gradient-based optimal

control algorithm with state estimation in the loop to facilitate the practical implementation

of OPF problems in large-scale distribution networks, where has inadequate monitoring and

unreliable measurement infrastructures.

In the dynamic phase, we consider the linear system with multiplicative noise and additive

noise, which captures the modelling errors and netload uncertainties, respectively. We adapt

this model to study the performance and stability of low-inertia power grids with stochastic

system inertia. An analytical expression of system H2 norm is provided and a mean-square

stability criteria is developed. In addition, we present a multi-stage stochastic optimal

control problem for wind farm power maximization. We generalize the original actuator

disk model (ADM) by incorporating state- and input-dependent multiplicative noises as a

stochastic actuator disk model (S-ADM) to capture the stochastic wind fluctuations. The

optimal control policies for each wind turbine explicitly incorporate the moment information

of multiplicative noise, which establishes a connection between uncertainties sampling dataset

and optimal feedback control.
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CHAPTER 1

INTRODUCTION

The rapidly growing city modernization and industrialization 4.0 have put advanced require-

ment on the current vital municipal networked infrastructures (e.g., power grids and water

distribution networks). These complex networked infrastructures become more sophisti-

cated physical systems by accelerating integration of distributed self-organized multi-agents,

increasing scale of network systems, heterogeneous and distributed control strategies, nonlin-

earity nature of physical coupling and unpredictable stochastic properties. These tendencies

will definitely deliver many smart features and flexibility for system operators, but obviously

aggravate the stochasticity of these complex systems, which are challenging the current man-

agement and control strategies and may threaten the security of these vital infrastructures.

One of the main challenges is how to explicitly balance the operation efficiency, robustness,

stability and complexity if the networked systems are under large variation uncertainties.

The main goal of this research dissertation is to address the aforementioned challenge and

establish a methodology for designing stochastic operation scheduling and optimal feedback

controllers in complex networked infrastructures. Our approaches explicitly incorporate the

probability distribution information of uncertainties based on real-time sampling and training

dataset. The dissertation utilizes distributionally robust optimization and optimal feedback

control techniques to address the main goal in various time-scales, ranged from the operation

phase in minutes to the dynamical behavior in seconds.

In the operation phase. We use distributionally robust optimization (DRO) techniques

to achieve the controllable conservativeness of optimal decisions. Numerous recent studies

have explored aspects of stochastic control in complex networks, but there is a lack of the

controllable robustness to inherent sampling errors, which has inadequate understanding and

quantification of overestimation/underestimation to risk of operational constraint violations.

The works in this dissertation provide a fundamental data-driven discussion on the inherent
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tradeoffs between operational risk and efficiency for effective overfitting regularization, and

guarantee the superior out-of-sample performance for complex networked infrastructures

under large variation uncertainties.

In the dynamic phase. we consider a generic linear system with both additive and multi-

plicative noise to appropriately capture the system stochasticity of the netload uncertainties

(i.e., additive noise) and system modelling errors (i.e., multiplicative noise). The open-loop

performance and the system mean-square stability are investigated under various network

settings (e.g., network topologies, distribution parameters of disturbances and system param-

eters) in power grids. A closed-loop optimal controller is designed for wind turbine control

in the objective of wind farm power maximization, where the multiplicative noise captures

the stochastic wind fluctuations.

1.1 Distributionally Robust Optimization

Distributionally robust optimization (DRO) is a class of state-of-art optimization techniques

to solve a wide variety of real-life decision making problems, which naturally come with ran-

dom parameters. The optimization problems under uncertainties have been discussed over

years since 1950’s, which are traditionally solved via stochastic and dynamic programming.

In practice, the uncertain parameters are inherently subjected to measurement errors or par-

tial unobservable at the planning stage. These factors are challenging our traditional methods

for decisions making to have disappointing robustness and poor out-of-sample performance,

where the situation is even worse if the size of decision problems have been substantially

grown.

Nowadays, a new field of distributionally robust optimization is tackling these challenges

in a different way. The key idea of such methodologies is to consider the uncertainty through

a ambiguity set consisting a group of probability distributions (possibly infinite candidates),

supported by finite sampling data or prior structural information. This underlying setting of
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DRO comes with a min-max problem to prompt the optimal decision robust to the worst-case

distribution within the ambiguity set for various optimization objectives (e.g., operational

efficiency, risk of constraint violations and etc.).

There are several striking benefits of having DRO formulation for stochastic decision

making. First of all, DRO formulations explicitly incorporate the inherent measurement

errors into stochastic optimization problems based on data sampling or structural informa-

tion. This exploits a more realistic modelling of uncertainties than the traditional stochastic

and dynamic programming. In addition, the optimal decisions are robust to a family of

distributions, instead of making prescribed distributions, which provides a good robust per-

formance. Finally, many DRO problems can be solved completely in low complexity and

always have tractability guarantee. This provides a great potential for practical adaption to

many large-scale industrial applications and real-life decision making problems.

1.1.1 Related Works in Distributionally Robust Optimization

Distributionally robust optimization has been widely discussed in both operation research

and machine learning communities, for their modelling, solutions and applications. Most

recent research works focused on the several directions. In the literature, two well-known

groups of ambiguity sets, moment-based ambiguity sets and metric-based ambiguity sets,

characterize the specific family of distributions. In general, the moment-based ambiguity

sets contain distributions sharing same moments’ characters. The metric-based ambiguity

sets collect all the distributions in the distance to the nominal distribution in the sense of

various discrepancy measure.

In the literature, the moment-based distributionally robust techniques model the ambi-

guity sets whose satisfy certain moments properties [14, 101, 108, 129, 164, 173, 111, 163,

81, 34, 311, 57, 158]. As for the metric-based distributionally robust techniques, the options

of probability metric to model the distributional ambiguity includes: φ-divergence [220],
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Kolmogorov-Smirnov [272], Wasserstein [96, 70], Anderson-Darling [25], Cramer-von Mises

[272], Waston [272] and Kuiper [272]. The literature also consider a variety of risk measures

such as 1) Conditional Value-at-Risk (CVAR) [96], 2) Value-at-Risk (VaR) [272], 3) variance

[25], 4) absolute deviation of mean from the median [279], 5) negative mean return [45]

and etc. For the applications, the DRO problems have been studied in statistical learning

[186, 197, 133, 156, 103, 97], energy systems [269, 247, 310, 282, 239, 300, 89, 157], water

resource management [205], intelligent transportation [127], blood supply network [263] and

robotics [230, 246, 128, 223, 221, 222]. In this dissertation, we are mostly focusing on the ap-

plications of distributionally robust optimization for particular stochastic optimization and

optimal control tasks in power systems and water distribution networks.

1.1.2 Contributions

The contributions of this dissertation along this line was inspired by [96, 49] and summarized

below:

• We extend the recent tractable reformulations of distributionally robust optimization,

moment-based DRO [49] and Wasserstein-based DRO [96], to a multi-stage setting as

the multi-stage distributionally robust stochastic optimal control framework, whereas

mostly of the recent works focus on the single-stage phase; This allows the model

predictive controllers to repeatedly update the ambiguous distributional information

based on the latest realization of uncertainties, and then explicitly make real-time

optimal decisions.

• We explore the applications of the proposed multi-stage DRO in power systems to

formulate the stochastic optimal power flow problems with high penetration of renew-

ables.

• We also adapt the proposed multi-stage DRO in water distribution networks to have

optimal pump control with large variations of water demands.

4



• The proposed optimal control framework and applications formulations are with tract-

ability and convexity for low-complexity computation, which can be solved efficiently

through the existing commercial solvers.

1.2 Linear Systems with Multiplicative Noise

The systems with multiplicative noise are a special case of stochastic systems, which are more

general and practical than the classic linear system with only additive noises. This opens a

door to incorporate the statistical description of the noise in both state and input channels

for analysis and optimal design. The study of linear systems with multiplicative noise has a

long history since 1960’s [149, 154, 275, 13]. Such dynamical models can be adapted to many

physical systems with applications to signal process systems [107, 264], biological movement

systems [130, 251], fluid dynamics [123], power and energy systems [188, 125, 201, 141],

robotics, aerospace engineering systems [168, 170] and statistical learning [286, 69, 115, 114].

One important benefit of having multiplicative noise modelling in a stochastic system

is that it connects the performance and robustness of dynamic systems to the statistical

information of multiplicative noise in a closed-form expression via generalized Lyapunov

equations and Riccati equation, for stability and optimal control [43]. In the past, many

researches have explored various analysis and discussions on stability and stabilization of

stochastic multiplicative uncertainties in the sense of mean-square stability [283, 216, 273,

131, 177, 93]. There are also many interesting design of control and filtering of systems with

multiplicative noise, including but not limited to LQR problems [276, 69, 296, 161, 170, 145,

40, 56, 134, 219, 298], learning-based control [115, 114], H∞ control [107, 92], estimation and

filtering [168, 107, 288, 242], model predictive control (MPC) framework [162, 52, 104] and

game theory [116]. In this dissertation, we mostly focus on the applications of stochastic

multiplicative modelling to power grids and wind farms, which also come with performance,

mean-square stability and optimality analysis.
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1.2.1 Contributions

The contributions of this dissertation along this line are summarized as below

• We study the performance and stability of linear systems with multiplicative noise in

power grids with stochastic inertia setting. The mean-square stability of frequency

dynamics is studied and a closed-form stability criteria is provided.

• We design the optimal feedback controllers for linear systems with multiplicative noise,

where the state- and input-dependence noise capture the wind fluctuation for wind farm

power maximization. The optimal feedback control policies explicitly incorporate the

probability information of multiplicative noise for optimal closed-loop performance.

1.3 Structure of this Dissertation

The structure of the rest of this dissertation are listed below. All chapters can be read

individually based on the readers’ interests and background.

Chapter 2 proposes a data-based distributionally robust stochastic optimal control frame-

work. Such formulation is applied to solve a stochastic optimal power flow (OPF) in power

grids, which explicitly adjust the real-time economic dispatch decisions for controllable de-

vices (e.g., distributed generators and inverters), considering the stochasticity of solar PVs

in distribution networks and wind outputs in transmission systems.

Chapter 3 adapts the data-based distributionally robust stochastic optimal control to

solve a stochastic optimal water flow (OWF) problem for water distribution networks. The

objective is to determine the nominal pump schedule and tank levels with reaction to forecast

errors for accommodation of fluctuating water demand, which explicitly tradeoffs pump

operational costs, risks of tank level constraint violation and out-of-sample performance.

Chapter 4 proposes an optimal control framework with tightly integrating state estima-

tion for power system distribution networks. Our approach solves an OPF problem via a
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primal-dual algorithm with a SE feedback loop based on a limited sensors measurement.

This approach can scale to extremely large distribution networks (i.e., 11.000-nodes), which

facilitates a practical implementation scenario under limited communication infrastructures

and inadequate node-wise measurement. The numerical analysis of having SE feedback loop

promotes its excellent robustness to measurement noises on the proposed OPF solvers.

Chapter 5 investigates the performance and stability of low-inertia power grids with

stochastic system inertia. We consider system frequency dynamics modelled by a linearized

stochastic swing equation, where stochastic system inertia is regarded as multiplicative

noises. We develop a closed-form expression of H2 norms for the stochastic swing equa-

tion, which is closely connected to the grid topology, system parameters and probability dis-

tribution of disturbances. This discussion has fundamentally different characteristics from

systems with only additive noises.

Chapter 6 formulates a multi-stage stochastic optimal control problem for wind farm

power maximization, which explicitly incorporates information about the probability distri-

butions of wind fluctuations into control decisions. In particular, our model incorporates

state- and input-dependent multiplicative noise whose distributions capture stochastic wind

fluctuations. The optimal feedback control policies for each turbine can be attained by ana-

lytically solving the proposed problem via stochastic dynamic programming. This provides

a direct connection between statistical properties of the unsteady wind flow physics and the

optimal feedback control of wind farms.

Chapter 7 concludes this dissertation.
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CHAPTER 2

DATA-BASED DISTRIBUTIONALLY ROBUST STOCHASTIC OPTIMAL

POWER FLOW1

In this chapter, we propose a data-based method to solve a multi-stage stochastic optimal

power flow (OPF) problem based on limited information about forecast error distributions.

The framework explicitly combines multi-stage feedback policies with any forecasting method

and historical forecast error data. The objective is to determine power scheduling policies for

controllable devices in a power network to balance operational cost and conditional value-

at-risk (CVaR) of device and network constraint violations. These decisions include both

nominal power schedules and reserve policies, which specify planned reactions to forecast

errors in order to accommodate fluctuating renewable energy sources. Instead of assuming

the uncertainties across the networks follow prescribed probability distributions, we consider

ambiguity sets of distributions centered around a finite training dataset. By utilizing the

Wasserstein metric to quantify differences between the empirical data-based distribution and

the real unknown data-generating distribution, we formulate a multi-stage distributionally

robust OPF problem to compute control policies that are robust to both forecast errors

and sampling errors inherent in the dataset. Two specific data-based distributionally robust

stochastic OPF problems are proposed for distribution networks and transmission systems.

1This chapter is based on work supported by the National Science Foundation (NSF) under grant CNS-
1566127.

Chapter 2 in part is a reprint of material published in:
c© 2018 IEEE. Reprinted, with permission, from Y. Guo, K. Baker, E. Dall’Anese, Z. Hu, and T.H. Sum-

mers, “Stochastic optimal power flow based on data-driven distributionally robust optimization”, American
Control Conference, Milwaukee, WI, USA 2018.

c© 2019 IEEE. Reprinted, with permission, from Y. Guo, K. Baker, E. Dall’Anese, Z. Hu, and T.H.
Summers, “Data-based distributionally robust stochastic optimal power flow, Part I: Methodologies”, IEEE
Transactions on Power Systems, vol.34, no.2, pp.1483-1492, March 2019.

c© 2019 IEEE. Reprinted, with permission, from Y. Guo, K. Baker, E. Dall’Anese, Z. Hu, and T.H.
Summers, “Data-based distributionally robust stochastic optimal power flow, Part II: Case Studies”, IEEE
Transactions on Power Systems, vol.34, no.2, pp.1493-1503, March 2019.
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2.1 Introduction

The continued integration of renewable energy sources (RESs) in power systems is making it

more complicated for system operators to balance economic efficiency and system reliability

and security. As penetration levels of RESs reach substantial fractions of total supplied

power, networks will face high operational risks under current operational paradigms. As it

becomes more difficult to predict the net load, large forecast errors can lead to power security

and reliability issues causing significant damage and costly outages. Future power networks

will require more sophisticated methods for managing these risks, at both transmission and

distribution levels.

The flexibility of controllable devices, including power-electronics-interfaced RESs, can

be utilized to balance efficiency and risk with optimal power flow methods [54, 85, 9, 18,

175, 176, 180, 167, 166], which aim to determine power schedules for controllable devices

in a power network to optimize an objective function. However, most OPF methods in

the research literature and those widely used in practice are deterministic, assuming point

forecasts of exogenous power injections and ignoring forecast errors. Increasing forecast

errors push the underlying distributed feedback controllers that must handle the transients

caused by these errors closer to stability limits [153].

More recently, research focus has turned to stochastic and robust optimal power flow

methods that explicitly incorporate forecast errors, in order to more systematically trade off

economic efficiency and risk and to ease the burden on feedback controllers [291, 53, 68, 39,

260, 262, 270, 301, 208, 225, 248, 136, 224, 226, 157, 297, 178, 16, 73, 261, 160, 174, 256, 285].

Many formulations assume that uncertain forecast errors follow a prescribed probability dis-

tribution (commonly, Gaussian [39, 178, 225, 256]) and utilize analytically tractable refor-

mulations of probabilistic constraints. However, such assumptions are unjustifiable due to

increasingly complex, nonlinear phenomena in emerging power networks, and can signifi-

cantly underestimate risk.
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In practice, forecast error probability distributions are never known; they are only ob-

served indirectly through finite datasets. Sampling-based methods have been applied with

a focus on quantifying the probability of constraint violation [260, 262] and for constraining

or optimizing conditional value at risk (CVaR) [301, 248, 73]. The prediction-realization

approach [190, 189] solves an online stochastic optimal power flow problem by a recon-

ciliation algorithm, which ensures feasibility for any forecast error. Distributionally ro-

bust approaches use data to estimate distribution parameters (e.g., mean and variance)

and aim to be robust to any data-generating distribution consistent with these parame-

ters [248, 226, 157, 16, 73, 285]. Others take a robust approach, assuming only knowledge

of bounds on forecast errors and enforcing constraints for any possible realization, e.g.,

[270, 136]. Overall, this line of recent research has explored tractable approximations and

reformulations of difficult stochastic optimal power flow problems. However, none of the ex-

isting work explicitly accounts for sampling errors arising from limited data, which in oper-

ation can cause poor out-of-sample performance2. Even with sophisticated recent stochastic

programming techniques, decisions can be overly dependent on small amounts of relevant

data from a high-dimensional space, a phenomenon akin to overfitting in statistical models.

We propose a multi-period data-based method to solve a stochastic optimal power flow

problem based on limited information about forecast error distributions available through

finite historical training datasets. A preliminary version of this work appeared in [121], and

here we significantly expand the work in several directions into this chapter. The main

contributions are as follows

1. We formulate a multi-stage distributionally robust optimal control problem for opti-

mal power flow. A distributionally robust model predictive control algorithm is then

proposed, which utilizes computationally tractable data-driven distributionally robust

2Out-of-sample performance is an evaluation of the optimal decisions using a dataset that is different
from the one used to obtain the decision, which can be tested with Monte Carlo simulation
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optimization techniques [96] to solve the subproblems at each stage. Whereas distribu-

tionally robust optimization approaches focus on single-stage problems, here we extend

these approaches to multi-stage settings to obtain closed-loop feedback control policies.

This allow us to update forecast error datasets, and in turn re-compute decisions with

the latest knowledge. In principle, the framework allows any forecasting methodology

and a variety of ambiguity set parameterizations. We focus on Wasserstein balls [109]

around an empirical data-based distribution [109, 96], which allows controllable con-

servativeness by adjusting the Wasserstein radius. In contrast to previous work, we

obtain policies that are explicitly robust to sampling errors inherent in the dataset.

This approach achieves superior out-of-sample performance guarantees in comparison

to other stochastic optimization approaches, effectively regularizing against overfitting

the decisions to limited available data.

2. We leverage pertinent linear approximations of the AC power-flow equations (see,

e.g., [20, 42, 120, 61, 29]) to facilitate the development of computationally-affordable

chance-constrained AC OPF solutions that are robust to distribution mismatches, and

provide a unified framework that is applicable to both transmission and distribution

systems. Formulations for distribution networks incorporate inverted-based RESs and

energy storage systems, and focus on addressing the voltage regulation problem under

uncertainty. The transmission system formulation incorporates synchronous genera-

tors and power injections from RESs, and it focuses on probabilistic N − 1 security

constraints on active transmission line flows. The framework yields set points and

feedback control policies for controllable devices that are robust to variations in solar

and wind injections and sampling errors inherent to the finite training datasets.

3. The effectiveness and flexibility of the proposed methodologies are demonstrated with

extensive numerical experiments in a 37-node distribution network and in a 118-bus
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transmission system. These extensive case studies are presented in Part II [122]. We

demonstrate inherent tradeoffs between economic efficiency and robustness to con-

straint violations and sampling errors due to forecasting. By explicitly incorporating

forecast error and sampling uncertainties, the methodology can help network operators

to better understand these risks and inherent tradeoffs, and to design effective opti-

mization and control strategies for appropriately balancing efficiency objectives with

security requirements.

The rest of the chapter is organized as follows: Section 2.2 presents a general formulation

of the proposed data-based distributionally robust stochastic OPF problem. Section 2.3

describes the modeling of network, grid-connected components, and network constraints.

Section 2.4 specializes the data-based stochastic OPF for distribution networks with an

approximate AC power flow. Section 2.5 adapts the proposed methods for transmission

systems with DC power flow. Section 2.6 illustrates the data-based distributionally robust

stochastic AC OPF for mitigating overvoltages in a modified IEEE 37-node distribution

feeder with high PV penetration using local energy storage devices. Section 2.7 illustrates

the data-based distributionally robust stochastic DC OPF for reducing N-1 security line

flow constraint risks due to high wind penetration using reserve policies for controllable

generators. Section 2.8 concludes the chapter.

Notation: The inner product of two vectors a, b ∈ Rm is denoted by 〈a, b〉 := aᵀb. The Ns-

fold product of distribution P on a set Ξ is denoted by PNs , which represents a distribution

on the Cartesian product space ΞNs = Ξ × . . . × Ξ. We use Ns to represent the number of

samples inside the training dataset Ξ̂. Superscript “ ·̂ ” is reserved for the objects that depend

on a training dataset Ξ̂Ns . We use (·)ᵀ to denote vector or matrix transpose. The operators

<{·} and ={·} return the real and imaginary part of a complex number, respectively. The

operator [ · ][a,b] selects the a-th to b-th elements of a vector or rows of a matrix.
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2.2 Stochastic OPF as Stochastic Optimal Control

In this section, we formulate a stochastic OPF problem as a distributionally robust stochas-

tic optimal control problem. We first pose the problem generically to highlight the overall

approach, and in subsequent sections we detail the model and objective and constraint

functions more explicitly for both distribution networks and transmission systems. This

framework is more general than most stochastic OPF and distributionally robust optimiza-

tion approaches in the literature, which typically focus only on individual or single-stage

optimization problems.

Let xt ∈ Rn denote a state vector at time t that includes the internal states of all

devices in the network. Let ut ∈ Rm denote a control input vector that includes inputs

for all controllable devices in the network. Let ξt ∈ RNξ denote a random vector in a

probability space (Ω,F ,Pt) that includes forecast errors of all uncertainties in the network.

Forecast error distributions are never known in practice, so Pt is assumed to be unknown but

belonging to an ambiguity set Pt of distributions with a known parameterization, which will

be discussed in detail shortly. We define the concatenated forecast error over an operating

horizon T as ξ0:T := [ξᵀ0 , . . . , ξ
ᵀ
T ]ᵀ ∈ RNξT , which has joint distribution P and corresponding

ambiguity set P .

Since forecast errors are explicitly included, we seek closed-loop feedback policies of the

form ut = π(x0, . . . , xt, ξ0:t,Dt), where the term Dt collects all network and device model

information and the parameterization of the ambiguity set of the forecast error distribution.

The control decisions at time t are allowed to be functions of the entire state and forecast

error history up to time t; this is called a history-dependent state and disturbance feedback

information pattern. This general formulation allows for the design of not only nominal

plans for controllable devices inputs, but also for planned reactions to forecast errors as they
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are realized.3 The policy function π maps all available information to control actions and is

an element of a set Π of measurable functions.

This leads us to the following multi-stage distributionally robust stochastic optimal con-

trol problem

inf
π∈Π

sup
P∈P

EP
T∑
t=0

ht(xt, ut, ξt), (2.1a)

subject to xt+1 = ft(xt, ut, ξt), (2.1b)

ut = π(x0, . . . , xt, ξt,Dt), (2.1c)

(xt, ut) ∈ Xt. (2.1d)

The goal is to compute a feedback policy that minimizes the expected value of an objective

function ht : Rn × Rm × RNξ → R under the worst-case distribution in the forecast error

ambiguity set P . The objective function ht will include both operating costs and risks

of violating various network and device constraints and is assumed to be continuous and

convex for every fixed ξt. The system dynamics function ft : Rn×Rm×RNξt → Rn models

internal dynamics and other temporal interdependencies of devices, such as state of charge

for batteries and ramp limits of generators. The constraint set Xt includes network and

device constraints, such as power balance and generator and storage device bounds (some

constraints may be modeled deterministically and others may be included as risk terms in

the objective function).

The main challenges to solving (2.1) are the multi-stage feedback nature of the problem,

the infinite dimensionality of the control policies, the possible nonlinearity of device dynam-

ics, and how to appropriately parameterize and utilize our available knowledge about fore-

cast error distributions. We will tackle these using a distributionally robust model predictive

3The reactions can be interpreted as pre-planned secondary frequency control allocations [270] or contin-
gency reactions in response to forecast errors based on device dynamics and parameters describing forecast
error distributions.
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control scheme with affine feedback policies and linear models for device dynamics, where

stage-wise distributionally robust stochastic optimization problems are repeatedly solved

over a planning horizon. To incorporate forecast error knowledge, we will use tractable

reformulations of ambiguity sets based explicitly on empirical training datasets of forecast

errors.

2.2.1 Ambiguity Sets and Wasserstein Balls

There is a variety of ways to reformulate the general stochastic OPF problem (2.1) to obtain

tractable subproblems that can be solved by standard convex optimization solvers. These

include assuming specific functional forms for the forecast error distribution (e.g., Gaus-

sian) and using specific constraint risk functions, such as those encoding value at risk (i.e.,

chance constraints), conditional value at risk (CVaR), distributional robustness, and support

robustness. In all cases, the out-of-sample performance of the resulting decisions in opera-

tional practice ultimately relies on 1) the quality of data describing the forecast errors and 2)

the validity of assumptions made about probability distributions. Many existing approaches

make either too strong or too weak assumptions that possible lead to underestimation or

overestimation of risk. In this chapter, we extend a recently proposed tractable method [96]

to a multi-period data-based stochastic OPF, in which the ambiguity set is based on a finite

forecast error training dataset Ξ̂Ns .

Within the area of distributionally-robust optimization, moment-based ambiguity sets

are utilized to model distributions featuring specified moment constraints such as unimodal-

ity [157, 158], directional derivatives [272], symmetry [226], and log-concavity [159]. The

ambiguity sets can be defined as confidence regions based on goodness-of-fit tests [35]. An-

other line of works considers ambiguity sets as balls in the probability space, with radii

computed based on the Wasserstein metric [278], the Kullback-Leilber divergence [137], and

the Prohorov metric [95]. This chapter formulates ambiguity sets by leveraging Wasserstein
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balls. Relative to other approaches, Wasserstein balls provide an upper confidence bound,

quantified by Wasserstein radius ε [96], to achieve the superior out-of-sample performance;

they also enable power system operators to “control” the conservativeness of the solution,

thus ensuring the flexibility in the power system operation. Additionally, the approach in

this chapter seeks the worst-case expectation subjected to all distributions contained in the

ambiguity set. The worst-case expectation of the stochastic OPF problem over Wasserstein

ambiguity set can be reformulated as a finite-dimensional convex problem, and can be solved

using existing convex optimization solvers.

The Wasserstein metric defines a distance in the space M(Ξ) of all probability dis-

tributions Q supported on a set Ξ with EQ[‖ξ‖] =
∫

Ξ
‖ξ‖Q(dξ) < ∞. In this chap-

ter, we assume the support set is polytopic of the form the uncertainty set is a polytope

Ξ := {ξ ∈ RNξ : Hξ ≤ d}.

Definition [Wasserstein Metric]. Let L be the space of all Lipschitz continuous functions

f : Ξ → R with Lipschitz constant less than or equal to 1. The Wasserstein metric dW :

M(Ξ)×M(Ξ)→ R is defined ∀Q1,Q2 ∈M(Ξ) as

dW (Q1,Q2) = supf∈L

(∫
Ξ
f(ξ)Q1(dξ)−

∫
Ξ
f(ξ)Q2(dξ)

)
.

Intuitively, the Wasserstein metric quantifies the minimum “transportation” cost to move

mass from one distribution to another. We can now use the Wasserstein metric to define an

ambiguity set

P̂Ns :=

{
Q ∈M(Ξ) : dw(P̂Ns ,Q) ≤ ε

}
, (2.2)

which contains all distributions within a Wasserstein ball of radius ε centered at a uniform

empirical distribution P̂Ns on the training dataset Ξ̂Ns . The radius ε can be chosen so that

the ball contains the true distribution P with a prescribed confidence level and leads to

performance guarantees [96]. The radius ε also explicitly controls the conservativeness of

the resulting decision. Large ε will produce decisions that rely less on the specific features
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of the dataset Ξ̂Ns and give better robustness to sampling errors. This parameterization will

be used in the next subsection to formulate a distributionally robust optimization.

2.2.2 Data-based Distributionally Robust Model Predictive Control

The goal of our data-based distributionally robust stochastic OPF framework is to under-

stand and to illustrate inherent tradeoffs between efficiency and risk of constraint violations.

Accordingly, the objective function comprises a weighted sum of an operational cost function

and a constraint violation risk function: ht = J tCost + ρJ tRisk, where ρ ∈ R+ is a weight that

quantifies the network operator’s risk aversion. The operational cost function is assumed to

be linear or convex quadratic

J tCost(xt, ut) := fᵀ
xxt +

1

2
xt

ᵀHxxt + fᵀ
uut +

1

2
ut

ᵀHuut,

where Hx and Hu are positive semidefinite matrices. This function can capture several

objectives including thermal generation costs, ramping costs, and active power losses.

The risk function JRisk associated with the constraint violation comprises a sum of the

conditional value-at-risk (CVaR) [227] of a set of N` network and device constraint functions;

specifically, it is defined as

J tRisk :=

N∑̀
i=1

CVaRβ
P[`i(xt, ut, ξt)],

where β ∈ (0, 1] refers to the confidence level of the CVaR under the distribution P of

the random variable ξt. Intuitively, the constraint violation risk function JRisk could be

understood as the sum of networks and devices constraint violation magnitude at a “risk

level” β, which penalizes both frequency and expected severity of constraint violations [227].

Further details will be provided in subsequent sections.

Data-based distributionally robust model predictive control for stochastic

OPF. The general problem (2.1) will be approached with a distributionally robust model
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predictive control (MPC) algorithm. MPC is a feedback control technique that solves a

sequence of open-loop optimization problems over a planning horizon Ht (which in general

may be smaller than the overall horizon T ). At each time t, we solve the distributionally ro-

bust optimization problem over a set Πaffine of affine feedback policies using the Wasserstein

ambiguity set (3.14)

inf
π∈Πaffine

sup
P∈P̂Ns

EP
t+Ht∑
τ=t

JτCost(xτ , uτ , ξτ ) + ρJτRisk(xτ , uτ , ξτ ), (2.3a)

subject to xτ+1 = fτ (xτ , uτ , ξτ ), (2.3b)

uτ = π(x0, . . . , xτ , ξτ ,Dτ ), (2.3c)

(xτ , uτ ) ∈ Xτ . (2.3d)

Only the immediate control decisions for time t are implemented on the controllable device

inputs. Then time shifts forward one step, new forecast errors and states are realized,

the optimization problem (2.3) is re-solved at time t + 1, and the process repeats. This

approach allows any forecasting methodology to be utilized to predict uncertainties over the

planning horizon. Furthermore, the forecast error dataset P̂Ns , which defines the center of

the ambiguity set P̂Ns , can be updated online as more forecast error data is obtained. It is

also possible to remove outdated data online to account for time-varying distributions.

In the rest of the chapter, we will derive specific models for both distribution and trans-

mission networks and grid devices where the subproblems (2.3) have exact tractable convex

reformulations as quadratic programs [96] and can be solved to global optimality with stan-

dard solvers.

2.3 System Model

We now consider a symmetric and balanced electric power network model in steady state,

where all currents and voltages are assumed to be sinusoidal signals at the same frequency.
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2.3.1 Network Model

Consider a power network (either transmission or distribution), denoted by a graph (N , E),

with a set N = {1, 2, ..., N} of buses, and a set E ⊂ N × N of the power lines connecting

buses. Let V t
i ∈ C and I ti ∈ C denote the phasors for the line-to-ground voltage and the

current injection at node i ∈ N . Define the complex vectors vt := [V t
1 , V

t
2 , ..., V

t
N ]ᵀ ∈ CN

and it := [I t1, ..., I
t
N ] ∈ CN . Let zij denote the complex impedance of the line between bus i

and bus j, then the line admittance is yij = 1/zij = gij + jbij. We model the lines using a

standard Pi Model. The admittance matrix Y ∈ CN×N has elements

Yij =


∑

l∼i yil + yii if i = j

−yij (i, j) ∈ E

0 (i, j) /∈ E

, (2.4)

where l ∼ i indicates that bus i and bus l are connected. Via Kirchoff’s and Ohm’s laws, we

have it = Yvt. Net complex power bus injections are given by

st = vt (it)∗ = diag
(
vt
) (

Yvt
)∗
. (2.5)

The components of st = [St1, S
t
2, . . . , S

t
N ]ᵀ ∈ CN can be expressed in rectangular coordinates

as Sti = P t
i +jQt

i, where P t
i is active power and Qt

i is reactive power. Positive Pi and Qi means

that bus i generates active/reactive power, and negative Pi and Qi mean that bus i absorbs

the active/reactive power. Vectors of active and reactive power pt = [P t
1, P

t
2, . . . , P

t
N ]ᵀ and

qt = [Qt
1, Q

t
2, . . . , Q

t
N ]ᵀ are further divided into nominal and error terms: pt = p̄t(ut)+ p̃t(ξt)

and qt = q̄t(ut)+q̃t(ξt). The nominal active and reactive power injection vectors p̄t(ut) ∈ RN

and q̄t(ut) ∈ RN depend on control decisions, and the forecast errors p̃t(ξt) ∈ RN and

q̃t(ξt) ∈ RN depend on the random vector ξt.

To handle nonconvexity of the power flow equations (2.5), we utilize two different lin-

earization methods that are effective in both distribution and transmission networks.
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2.3.2 Dynamic of Grid-connected Devices

We consider Nd grid-connected devices, which may include 1) traditional generators and

inverter-based RESs; 2) fixed, deferrable, and curtailable loads; 3) storage devices like bat-

teries and plug-in electric vehicles, which are able to act as both generators and loads. There

are two types of devices: devices with controllable power flow affected by decision variables

(e.g., conventional thermal and RESs generators, deferrable/curtailable loads and storage

devices); and devices with fixed or uncertain power flow which will not be affected by deci-

sion variables (e.g., fixed loads). The power flow of each controllable device is modeled by a

discrete-time linear dynamical system

xdt+1 = Ādxdt + B̄dudt ,

where device d at time t has internal state xdt ∈ Rnd , dynamics matrix Ād ∈ Rnd×nd , input

matrix B̄d ∈ Rnd×md , and control input udt ∈ Rmd . The first element of xdt corresponds to

the power injection of device d at time t into the network at its bus, and other elements

describe internal dynamics, such as state-of-charge (SOC) of energy storage devices. At

time t, state and input histories are expressed by xdt := [(xd1)ᵀ, . . . , (xdt )
ᵀ]ᵀ ∈ Rndt and

udt := [(ud0)ᵀ, . . . , (udt−1)ᵀ]ᵀ ∈ Rmdt with

xdt = Adtx
d
0 +Bd

t u
d
t ,

where

Adt :=



Ād

(Ād)2

...

(Ād)t


, Bd

t :=



B̄d 0 . . . 0

ĀdB̄d B̄d . . . 0

...
. . . . . .

...

(Ād)t−1B̄d . . . ĀdB̄d B̄d


.
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2.3.3 Network Constraints

The AC power flow equations render prototypical AC OPF formulation nonconvex and NP-

hard; what is more, in the present context, they hinder the development of computationally-

affordable chance-constrained AC OPF formulations where CVaR arguments are leveraged

as risk measures.

For distribution systems, we refer the reader to the linear approximation methods pro-

posed in e.g., [20, 42, 120, 61, 29, 82], with the latter suitable for multi-phase systems with

both wye and delta connections; these approximate models have been shown to provide high

levels of accuracy in many existing test systems. For transmission systems, one can consider

the tradition DC power-flow model to approximate the voltage angles and active power flows

in the system; see, e.g., [62, 270, 248, 277]. Alternatively, one can consider alternative lin-

earizations; see e.g.,[82]. As long as an accurate linear model exists, the proposed technical

approach can be utilized to formulate and solve a distributionally-robust chance-constrained

AC OPF problem. In particular, linear models can be utilized to formulate convex (in fact,

linear) constraints on line flows and voltage magnitudes, e.g.

V min ≤ |Vi| ≤ V max, ∀i ∈ N . (2.6)

Grid-connected devices have various local constraints including, e.g., state of charge

limitations for energy storage devices, allowable power injection ranges, generator ramping

limits, and other device limits. These can be modeled (or approximated) as linear inequalities

of the form

Tt
dx

d
t + Ut

du
d
t + Zt

dξt ≤ wd, d = 1, . . . , Nd, (2.7)

where Tt
d ∈ Rld×ndt, Ut

d ∈ Rld×mdt, and Zt
d ∈ Rld×Nξt, and wd ∈ Rld is a local constraint

parameter vector.
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2.4 Data-based Distributionally Robust Stochastic Optimal Power Flow for

Distribution Networks

2.4.1 Distribution Network Model

In this section, we specialize the model to symmetric and balanced power distribution net-

works, connected to the grid at a point of common coupling (PCC). Loads and distributed

generators (e.g., thermal generators, inverter-based RESs, and energy storage devices) may

be connected to each bus. We augment the bus set with node 0 as the PCC.

The voltage and injected current at each bus are defined as V t
n = |V t

n |ej∠V
t
n , and I tn =

|I tn|ej∠I
t
n . The absolute values |V t

n | and |I tn| correspond to the signal root-mean-square values,

and the phase ∠V t
n and phase ∠I tn correspond to the phase of the signal with respect to a

global reference.

Node 0 is modeled as a slack bus and the others are PQ buses, in which the injected

complex power are specified. The admittance matrix can be partitioned asI t0
it

 =

y00 ȳᵀ

ȳ Y


V0

vt

 .
The net complex power injection is then

st = diag(vt)
(
Y∗(vt)∗ + ȳ∗(vt0)∗

)
. (2.8)

The nonconvexity of this equation in the space of power injections and bus voltages is a

source of significant computational difficulty in optimal power flow problems. In the rest of

this section, we formulate a convex and computationally efficient data-based stochastic OPF

problem based on a particular linear approximation of (4.3) that is appropriate for distri-

butions networks. This approximation occurs on a specific point of a power flow manifold

that preserves network structure for both real and reactive power flows and allows direct

application of stochastic optimization techniques for incorporating forecast errors.
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2.4.2 Leveraging Approximate Power Flow

Collect the voltage magnitudes {|V t
n |}n∈N into the vector |vt| := [|V t

1 |, . . . , |V t
N |]ᵀ ∈ RN . To

develop computationally-feasible approaches, the technical approach in this chapter leverages

linear approximations of the AC power-flow equations; in particular, linear approximations

for voltages, as a function of the injected power st, are given by

vt ≈
(

Hpt + Jqt + c

)
, |vt| ≈

(
Mpt + Nqt + a

)
. (2.9)

Using these approximations, the voltage constraints V min ≤ |V t
n | ≤ V max can be approxi-

mated as V min1N � Mpt + Nqt + a � V max1N . The coefficient matrices of the linearized

voltages, and the normalized vectors a and c can be obtained as shown in [82, 120, 29, 61].

For completeness, in the remainder of this subsection we briefly outline the approach taken

in [82, 120] to derive a linear model for the voltages.

Suppose that vt = v̄ + ∆vt, where v̄ = |v̄|∠θ ∈ CN is a pre-determined nominal voltage

vector and ∆vt ∈ CN denotes a deviation from nominal. Then we have

st = diag(v̄ + ∆vt)

(
Y∗(v̄ + ∆vt)∗ + ȳ∗V ∗0

)
. (2.10)

Neglecting second-order terms diag(∆vt)Y∗(∆vt)∗, the power balance (4.3) becomes Λ∆vt+

Φ(∆vt)∗ = st + Ψ, where Λ := diag(Y∗v̄∗ + ȳ∗V ∗0 ), Φ := diag(v̄)Y∗, Ψ := −diag(v̄)(Y∗v̄∗ +

ȳ∗V ∗0 ). We consider a choice of the nominal voltage v̄ = Y−1ȳV0, which gives Λ = 0N×N

and Ψ = 0N . Therefore the linearized power flow expression is st = diag(v̄)Y∗(∆vt)∗, the

deviation ∆vt becomes ∆vt = Y−1diag−1(v̄∗)(st)∗.

Let us denote Y−1 = (G + jB)−1 = ZR + jZI . Then expanding ∆vt in rectangular form

gives

M̄ =

(
ZR diag

(
cos(θ)

|v̄|

)
− ZI diag

(
sin(θ)

|v̄|

))
,

N̄ =

(
ZI diag

(
cos(θ)

|v̄|

)
+ ZR diag

(
sin(θ)

|v̄|

))
,
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which define the rectangular matrices H := M̄ + jN̄, J := N̄− jM̄, and the coefficient c is

v̄. If v̄ dominates ∆vt, then the voltage magnitudes are approximated by |v̄|+<{∆vt}, and

linearized coefficients of voltage magnitudes become M := M̄, N := N̄, and a := |v̄|. It is

worth noting that the approach proposed in [29] accounts for multiphase systems with both

wye and delta connections. Accordingly, the proposed framework is applicable to generic

multiphase feeders with both wye and delta connections.

2.4.3 Data-based Stochastic OPF Formulation for Distribution Networks

Using the introduced linearized relationship between voltage and power injection vectors pt

and qt, we express the voltage magnitude in the following form

gt
[
pt(ut, ξt),q

t(ut, ξt)
]

:= M(I− diag{αt})ptav + Nqt + |v̄|,

where αt ∈ RN is a control policy defined as the fraction of the active power curtailment by

the renewable energy power injection. A system state vector ptav ∈ RN collects the active

power injection including loads and the available RES power. We aim to optimize the set

points {αt,qt} of nodal power injections, which can be achieved by adjusting controllable

loads and generators. More details of system modeling and component dynamics will be

introduced in Part II.

Broadly speaking, we quantify a violation risk of voltage magnitude constraints (6) and

local device constraints (7) for each node and each time as follows

E R
{
gtn
[
pt(ut, ξt),q

t(ut, ξt)
]
− V max

}
≤ 0, (2.11a)

E R
{
V min − gtn

[
pt(ut, ξt),q

t(ut, ξt)
]}
≤ 0, (2.11b)

E R
{

Tt
dx

d
t + Ut

du
d
t + Zt

dξt − wd
}
≤ 0, d = 1, . . . , Nd, (2.11c)

where gtn( · ) is the n-th element of the function value gt( · ), and R denotes a generic transfor-

mation of the inequality constraints into stochastic versions. Using a prior on the uncertainty
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and possibly introducing auxiliary variables, the general risk functions (2.11a)-(2.11c) can

be reformulated using e.g., scenario-based approaches, [261, 160] or moment-based distribu-

tionally robust optimization [248, 157]. This chapter seeks a reformulation by leveraging the

CVaR [227]. A set of constraints will be approximated using the proposed distributionally

robust approach, while other constraints will be evaluated using sample average methods.

We define a set Vt that contains a subset of N` affine constraints (2.11a)-(2.11c) that

will be treated with distributionally robust optimization techniques. This allows some or all

of the constraints to be included. We express them in terms of a decision variable vector

yt and uncertain parameters ξt, where yt consists of all the decision variables including the

RES curtailment ratio vector ατ and other controllable device set-points, and ξt contains the

uncertain parameters across the network including the active and reactive power injection

forecast errors. For simplicity, we consider the risk of each constraint individually; it is

possible to consider risk of joint constraint violations, but this is more difficult and we leave

it for future work. Each individual affine constraint in the set Vt can be written in a compact

form as follows

Cto(yt, ξt) = [Ā(yt)]oξt + [B̄(yt)]o, o = 1, ..., N`,

where Cto(·) is the o-th affine constraint in the set Vt. We use [ · ]o to denote the o-th element

of a vector or o-th row of a matrix. The CVaR with risk level β of the each individual

constraint in the set Vt is

inf
κto
Eξt

{
[Cto(yt, ξt) + κto]+ − κtoβ

}
≤ 0, (2.12)

where κto ∈ R is an auxiliary variable [227]. The expression inside the expectation in (3.25)

can be expressed in the form

Q̄to = max
k=1,2

[
〈āok(yt), ξt〉+ b̄ok(κ

t
o)

]
. (2.13)
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This expression is convex in yt for each fixed ξt since it is the maximum of two affine functions.

Our risk objective function is expressed by the distributionally robust optimization of CVaR

Ĵ tRisk =
t+Ht∑
τ=t

N∑̀
o=1

sup
Qτ∈P̂Nsτ

EQτ max
k=1,2

[
〈āok(yτ ), ξ̂τ 〉+ b̄ok(κ

τ
o)

]
.

The above multi-period distributionally robust optimization can be equivalently reformulated

the following quadratic program, the details of which are described in [96]. The objective is

to minimize a weighted sum of an operational cost function and the total worst-case CVaR

of the affine constraints in set V t (e.g., voltage magnitude and local device constraints).

Data-based distributionally robust stochastic OPF

inf
yτ ,κτo

t+Ht∑
τ=t

{
E[ĴτCost] + ρ sup

Qτ∈P̂Nsτ

N∑̀
o=1

EQτ [Q̄τo ]
}
,

= inf
yτ ,κτo ,

λτo ,s
τ
io,ς

τ
iko

t+Ht∑
τ=t

{
E[Ĵ tCost] +

N∑̀
o=1

(
λoετ +

1

Ns

Ns∑
i=1

sτio

)}
, (2.14a)

subject to

ρ(b̄ok(κ
τ
o) + 〈āok(yτ ), ξ̂iτ 〉+ 〈ςiko,d−Hξ̂iτ 〉) ≤ sτio, (2.14b)

‖Hᵀςiko − ρāok(yτ )‖∞ ≤ λτo , (2.14c)

ςiko ≥ 0, (2.14d)

∀i ≤ Ns,∀o ≤ N`, k = 1, 2, τ = t, ..., t+Ht,

where ρ ∈ R+ quantifies the power system operators’ risk aversion. This is a quadratic pro-

gram that explicitly uses the training dataset Ξ̂Ns
τ = {ξ̂iτ}i≤Ns . The risk aversion parameter

ρ and the Wasserstein radius ετ allow us to explicitly balance tradeoffs between efficiency,

risk and sampling errors inherent in Ξ̂Ns
τ . The uncertainty set is modeled as a polytope

Ξ := {ξ ∈ RNξ : Hξ ≤ d}. The constraint ςiko > 0 holds since the uncertainty set is not-

empty; on the other hand, in a case with no uncertainty (i.e, ςiko = 0), the variable λ does

not play any role and sτio = ρ(b̄ok(κ
τ
o) + 〈āok(yτ ), ξ̂iτ 〉).
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2.5 Data-based Distributionally Robust Stochastic Optimal Power Flow for

Transmission Systems

2.5.1 Illustrative Explanation for the DC Approximation

In transmission networks, we employ a widely used “DC” linearization of the nonlinear AC

power flow equations that makes the following assumptions [270, 248]:

• The lines (i, j) ∈ E are lossless and characterized by their reactance ={1/yik};

• The voltage magnitudes {|Vn|}{n∈N} are constant and close to one per unit;

• Reactive power is ignored.

Under a DC model, line flows are linearly related to the nodal power injections; therefore,

flow constraints in the transmission lines can be expressed as

Nd∑
d=1

Γtd(r
t
d +Gt

dξt + Ct
dx

d
t ) ≤ p̄t, (2.15)

where Γtd ∈ R2Lt×t maps the power injection (or consumptions) at each node to line flows and

can be constructed from the network line impedances [62, 308]; on the other hand, p̄t ∈ R2Lt

denotes a limit on the line flows. The power injections in (2.15) features controllable and

non-controllable components; the non-controllable power for a device/node d is modeled as

rtd +Gt
dξt (with positive values denoting the net power injection in the network), where the

vector rtd ∈ Rt denotes the nominal power injection and Gt
dξt models uncertain injections.

Finally, xdt is the vector of controllable powers, and the matrix Ct
d ∈ Rt×ndt selects the

first element of xdt at each time, i.e., Ct
d := It ⊗ C̃t

d, where C̃t
d = [1,01×(nd−1)], It is a t-

dimensional identity matrix and ⊗ denotes the Kronecker product operator. The power

balance constraint is
Nd∑
d=1

(rtd +Gt
dξt + Ct

dx
d
t ) = 0. (2.16)
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2.5.2 Reserve Policies

Deterministic OPF formulations ignore the uncertainties ξt and compute an open-loop input

sequence for each device. In a stochastic setting, one must optimize over causal policies,

which specifies how each device should respond to the current system states and forecast

errors as they are discovered. We can now formulate a finite horizon stochastic optimization

problem

inf
π∈Πaffine

t+Ht∑
τ=t

E
[
JτCost(xτ , πτ , ξτ )

]
, (2.17a)

subject to

Nd∑
d=1

[
rt̄d +Gt̄

dξt̄ + C t̄
dx

d
t̄

]
[t,t̄ ]

= 0, (2.17b)

E R
{ Nd∑

d=1

[
Γt̄d(r

t̄
d +Gt̄

dξt̄ + C t̄
dx

d
t̄ )− p̄t̄

]
[2Lt,2Lt̄ ]

}
≤ 0, (2.17c)

E R
[
Tτ
dx

d
τ + Uτ

du
d
τ + Zτ

dξτ − wd
]
≤ 0, (2.17d)

d = 1, . . . , Nd, τ = t, . . . , t+Ht,

where R denotes a general constraint risk function. The definition and discussion of the

general stochastic transformation of (2.17c)-(2.17d) is same as (2.11a)-(2.11c), and can be

found in Section IV.C. Here, [t, t̄] denotes the finite time interval [t, t+Ht] for brevity. The

cost function is proportional to the first and second moments of the uncertainties ξt, since we

assume the operational cost function is convex quadratic. Optimizing over general policies

makes the problem (2.17) infinite dimensional, so we restrict attention to affine policies

udt = Dd
t ξt + edt ,

where each participant device d (e.g., traditional generators, flexible loads or energy storage

devices) power schedule udt ∈ Rt is parameterized by a nominal schedule edt ∈ Rt plus a linear
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function Dd
t ∈ Rt×Nξt of prediction error realizations. To obtain causal policies, Dd

t must be

lower-triangular. The Dd
t matrices can be interpreted as planned reserve mechanisms involv-

ing secondary frequency feedback controllers, which adjust conventional generator power

outputs using frequency deviations to follow power mismatches [270]. Under affine poli-

cies, the power balance constraints are linear functions of the distribution of ξt, which are

equivalent to
Nd∑
d=1

(rtd + Ct
d(A

d
tx

d
0 +Bd

t e
d
t )) = 0,

Nd∑
d=1

(Gt
d + Ct

dB
d
tD

d
t ) = 0.

2.5.3 Data-based Stochastic OPF Formulation for Transmission Systems

We now use the above developments to formulate a data-based distributionally robust OPF

problem to balance an operating efficiency metric with CVaR values of line flow and local

device constraint violations. We collect the line flow and local device constraints into a set

Vt, which will be evaluated with distributionally robust optimization techniques in a total

amount of N`. This allows some or all of the constraints to be included. For simplicity, we

again consider the risk of each constraint individually. We express the constraints in terms

of decision variables {Dd
t , e

d
t } and uncertain parameters ξt. Each individual affine constraint

in the set Vt can be written in a compact form as follows

Cto(Dt, et, ξt) = [A(Dt)]oξt + [B(et)]o, o = 1, ..., N`,

where Cto(·) is the o-th affine constraint in the set Vt. The decision variables Dt and et both

appear linearly in Cto. The CVaR with risk level β of the each individual constraint in the

set Vt is

inf
σto
Eξt

{
[Cto(Dt, et, ξt) + σto]+ − σtoβ

}
≤ 0, (2.18)

where σto ∈ R is an auxiliary variable [227]. The expression inside the expectation (2.18) is

expressed in the form
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Qt
o

= max
k=1,2

[
〈aok(yt), ξt〉+ bok(σ

t
o)

]
, (2.19)

where the decision variable vector y consists of optimization variables {D, e, σ}. The con-

vex expression (2.19) is maximum of two affine functions, and we consider the following

distributionally robust total CVaR objective

Ĵ tRisk =
t+Ht∑
τ=t

N∑̀
o=1

sup
Qτ∈P̂Nsτ

EQτ max
k=1,2

[
〈aok(yτ ), ξ̂τ 〉+ bok(σ

τ
o )

]
.

The above multi-period distributionally robust optimization can be equivalently reformulated

as a quadratic program. The details of the linear reformulation are shown in [96]. The

objective is to minimize a weighted sum of an operational cost function and the total worst-

case CVaR of the affine constraints in the set V t (e.g., line flow constraints and local device

constraints).

Data-based Distributionally Robust Stochastic DC OPF

inf
yτ ,στo

t+Ht∑
τ=t

{
E[ĴτCost] + ρ sup

Qτ∈P̂Nsτ

N∑̀
o=1

EQτ [Qτo ]
}
,

= inf
yτ ,στo ,

λτo ,s
τ
io,ς

τ
iko

t+Ht∑
τ=t

{
E[ĴτCost] +

N∑̀
o=1

(
λτoετ +

1

Ns

Ns∑
i=1

sτio

)}
, (2.20a)

subject to

Nd∑
d=1

[
(rt̄d + C t̄

d(A
d
t̄x

d
0 +Bd

t̄ e
d
t̄ ))
]

[t,t̄]
= 0, (2.20b)

Nd∑
d=1

[
(Gt̄

d + C t̄
dB

d
t̄D

d
t̄ )
]

[t,t̄]
= 0, (2.20c)

ρ(bok(σ
τ
o ) + 〈aok(yτ ), ξ̂iτ 〉+ 〈ςτiko,d−Hξ̂iτ 〉) ≤ sτio, (2.20d)

‖Hᵀςτiko − ρaok(yτ )‖∞ ≤ λτo , (2.20e)

ςτiko ≥ 0, (2.20f)

∀i ≤ Ns,∀o ≤ N`, k = 1, 2, τ = t, . . . ,Ht,
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where ρ ∈ R+ quantifies the power system operators’ risk aversion. Once again, this is a

quadratic program that explicitly uses the training dataset Ξ̂Ns
τ := {ξ̂iτ}i≤Ns , and the risk

aversion parameter ρ and the Wasserstein radius ετ allow us to explicitly balance tradeoffs

between efficiency, risk, and sampling errors inherent in Ξ̂Ns
τ . The uncertainty set is modeled

as a polytope Ξ := {ξ ∈ RNξ : Hξ ≤ d}. The constraint ςiko > 0 holds since the uncertainty

set is not-empty; on the other hand, in a case with no uncertainty (i.e, ςiko = 0), the variable

λ does not play any role and sτio = ρ(bok(σ
τ
o ) + 〈aok(yτ ), ξ̂iτ 〉).

2.6 Overvoltage Mitigation in Distribution Networks

In this section, we apply the data-based distributionally robust stochastic OPF methodology

to mitigate overvoltages in distribution networks by controlling set points in RESs and energy

storage devices. We provide further modeling details of the loads, inverter-based RESs, and

energy storage devices. The set points of controllable devices are repeatedly optimized over

a finite planning horizon within a MPC feedback scheme. The risk conservativeness of the

voltage magnitude constraints and the out-of-sample performance robustness to sampling

errors are explicitly adjustable by two scalar parameters.

2.6.1 System Model

1) Loads. We use P t
l,n and Qt

l,n to denote the active and reactive power demands at bus

n ∈ N . We also define two vectors ptl := [P t
l,1, . . . , P

t
l,N ]ᵀ and qtl := [Qt

l,1, . . . , Q
t
l,N ]ᵀ. If no

load is connected to bus n ∈ N , then P t
l,n = 0 and Qt

l,n = 0. Load uncertainties are modeled

based on historical data of forecast errors. The active and reactive loads are given by

ptl = p̄tl(ut) + p̃tl(ξt), qtl = q̄tl(ut) + q̃tl(ξt), where p̄tl(ut) ∈ RN and q̄tl(ut) ∈ RN are forecasted

nominal loads, which can depend on control decisions (e.g., load curtailment control). The

nodal injection errors p̃tl(ξt) ∈ RN and q̃tl(ξt) ∈ RN depend on the aggregate forecast error

vector ξt.
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2) Renewable energy model. Let P t
av,n be the maximum availability renewable energy gen-

eration at bus n ∈ NR ⊆ N , where the set NR denotes all buses with RESs. With high

RES penetration, overvoltages can cause power quality and reliability issues. By intelligently

operating set points of RES and energy storage, operators can optimally trade off risk of

constraint violation and economic efficiency (e.g., purchase of electricity from the main grid,

active power curtailment costs, and reactive compensation costs). The active power injec-

tions of RESs are controlled by adjusting an active power curtailment factor αtn ∈ [0, 1].

Reactive power set points of RESs can also be adjusted within a limit S̄n on apparent power

as follows √
((1− αtn)P t

av,n)2 + (Qt
n)2 ≤ S̄n, n ∈ NR.

We define aggregate vectors: αt := [αt1, . . . , α
t
N ]ᵀ and ptav := [P t

av,1, . . . , P
t
av,N ]ᵀ and qtc :=

[Qt
1, . . . , Q

t
N ]ᵀ.

If bus n ∈ N\NR has no RES, by convention we set αtn = 0, P t
av,n = 0 and Qt

n = 0.

The curtailment factor and reactive power compensation {αtn, Qt
n} together set the inverter

operating point and are also subject to a power factor constraint

|Qt
n| ≤ tan(θn)[(1− αtn)P t

av,n], n ∈ NR,

where cos(θn) ∈ (0, 1] is the power factor limit for RESs. The power factor constraint is

convex, and can be discarded in settings where the inverters are not required to operate at

a minimum power factor level. The premise here is that RESs can assist in the regulation

of voltages by promptly adjusting the reactive power and curtailing active power as needed;

RESs can provide faster voltage regulation capabilities compared to traditional power factor

correction devices (i.e., capacitor banks). The proposed data-based distributionally robust

OPF will consider adjustments of both active and reactive powers to aid voltage regulation,

which in principle can be done in both transmission and distribution networks.
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3) Energy storage model. The state-of-charge (SOC) of the energy storage device located at

bus n ∈ NB ⊆ N in kWh is represented as Bt
n. The dynamics of these devices are

Bt+1
n = Bt

n + ηB,nP
t
B,n∆, n ∈ NB, (2.21)

where ∆ is the duration of the time interval (t, t + 1], and P t
B,n is the charging/discharging

power of the storage device in kW. We assume the battery state is either charging (P t
B,n ≥ 0)

or discharging (P t
B,n ≤ 0) during each time interval (t, t + 1]. For simplicity, we suppose

the round-trip efficiency of the storage device ηB,n = 1 to avoid the nonconvexity when

introducing binary variables. Additionally, two common operational constraints of energy

storage devices are

Bmin
n ≤ Bt

n ≤ Bmax
n , Pmin

B,n ≤ P t
B,n ≤ Pmax

B,n ,

where Bmin
n , Bmax

n are the rated lower and upper SOC levels, and Pmin
B,n , Pmax

B.n are the minimum

and maximum charging/discharging limits. Other constraints can be added for electric

vehicles (EVs), for example, a prescribed SOC Bt
n = Bmax

n at a particular time. If no

energy device is connected to a certain bus, the charging/discharging power and SOC are

fixed to zero: P t
B,n = 0, Bt

n = 0, for all n ∈ N\NB. We define the aggregate vectors

ptB := [P t
B,1, . . . , P

t
B,N ]ᵀ, and bt := [Bt

1, . . . , B
t
N ]ᵀ.

2.6.2 Data-based Stochastic OPF Implementation

We now use the methodologies presented in Part I Section IV, and the models of loads, RESs

and energy storage devices to develop a data-based stochastic AC OPF for solving a voltage

regulation problem. This stochastic OPF aims to balance the operational costs the total

CVaR values of the voltage magnitude constraints. We consider an operational cost that

captures electricity purchased by customers, excessive solar energy fed back to the utility,
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reactive power compensation costs and penalties for active power curtailment

J tCost(α
t,qtc,p

t
B, ξt) =

=
∑
n∈N

at1,n
[
P t
l,n + P t

B,n − (1− αtn)P t
av,n

]
+

+
∑
n∈N

at2,n
[
(1− αtn)P t

av,n − P t
l,n − P t

B,n

]
+

+
∑
n∈N

at3,n|Qt
n|+

∑
n∈N

at4,nα
t
nP

t
av,n.

We collect all decision variables into yt = {αt,qtc,ptB,bt}, and all RES and load forecast

errors into the random vector ξt. Now the MPC subproblems take the following form

Data-based Distributionally Robust Stochastic OPF

inf
yτ ,κτo ,

$1,n,$2,n

t+Ht∑
τ=t

{
E[ĴτCost] + ρ sup

Qτ∈P̂Nsτ

N∑̀
o=1

EQτ [Q̄τo ]
}
,

= inf
yτ ,κτo ,

$1,n,$2,n

λτo ,s
τ
io,ς

τ
iko

t+Ht∑
τ=t

{
E[ĴτCost] +

N∑̀
o=1

(
λoετ +

1

Ns

Ns∑
i=1

sτio

)}
, (2.22a)

subject to

ρ(b̄ok(κ
τ
o) + 〈āok(yτ ), ξ̂iτ 〉+ 〈ςiko,d−Hξ̂iτ 〉) ≤ sτio, (2.22b)

‖Hᵀςiko − ρāok(yτ )‖∞ ≤ λτo , (2.22c)

ςiko ≥ 0, (2.22d)

1

Ns

Ns∑
i=1

[
[(1− ατn)P̂ τ,i

av,n]2 + (Qτ
n)2 − S̄2

n +$τ
1,n

]
+

≤ $τ
1,nβ, (2.22e)

1

Ns

Ns∑
i=1

[
tan(θn)[(1− αtn)P̂ τ,i

av,n]− |Qτ
n|+$τ

2,n

]
+

≤ $τ
2,nβ, (2.22f)

Bmin
n ≤ Bτ

n ≤ Bmax
n , (2.22g)

Pmin
B,n ≤ P τ

B,n ≤ Pmax
B,n , (2.22h)

Bτ+1
n = Bτ

n + ηB,nP
τ
B,n∆, (2.22i)
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0 ≤ ατn ≤ 1, (2.22j)

∀i ≤ Ns, ∀o ≤ N`, n ∈ NR, k = 1, 2, τ = t, . . . , t+Ht,

where $τ
1,n, $τ

2,n, and κτo are CVaR auxiliary valuables, and λτo , s
τ
io, ς

τ
iko are auxiliary variables

associated with the distributionally robust Wasserstein ball reformulation. For simplicity,

the power factor constraints and apparent power limitation constraints are not treated as

distributionally robust constraints, and instead are handled using direct sample average

approximation.

Remark 2.1 (battery efficiency). To maintain convexity of the underlying problem

formulation and therefore facilitate the development of computationally affordable solution

methods, we utilized an approximate model for the battery dynamics with no charging and

discharging efficiency losses (2.22). At the expense of significantly increasing the problem

complexity, charging and discharging efficiencies can be accommodated as [217]

Bτ+1
n = Bτ

n + ηcP
τ
Bc,n∆− 1

ηd
P τ
Bd,n

∆,

where ηc, ηd ∈ (0, 1] denote the charging and the discharging efficiencies, respectively; P τ
Bc,n
≥

0 represents the charging rate and P τ
Bd,n

≥ 0 the discharging rate at time τ . Additional

constraints, however, are needed to ensure that the solution avoids meaningless solutions

where a battery is required to charge and discharge simultaneously; in particular, one can:

a) add a constraint P τ
Bc,n

P τ
Bd,n

= 0 [217]; or. b) introduce binary variables to indicate the

charging status (e.g., charging/discharging) of the batteries [136]. Either way, given the non-

convexity of the resultant problem, possibly sub-optimal solutions can be achieved (2.22).

In addition, exact relaxation methods under appropriate assumptions offer an alternative

way to maintain convexity of the charging problem; see [169, 83]. Extending the proposed

technical approach to a setting with binary variables or exact relaxation methods will be

pursued as a future research effort.
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Remark 2.2 (battery life). The degradation of energy storage systems may depend on

the depth of discharge and the number of charging/discharging cycles [84]. The battery

aging process is usually described by partial differential equations [218]; this is a practical

model for industrial applications, but it introduces significant computational challenges in

optimization tasks [287]. Additional optimization variables as well as penalty functions

could be included to limit the number of cycles per day and ensure a minimum state of

charge [17, 99, 200, 290, 147, 237, 295]. Pertinent reformulations to account for battery

degradation will be pursued in future research activities.

Remark 2.3 (voltage at slack bus). Similar to the majority of the works in the literature,

the voltage at the slack bus (i.e., substation) is considered as an input of the problem (and,

therefore, it is not controllable). However, it is worth noting that discrete variables modeling

changing the tap position of the transformer can be incorporated in (2.22); see e.g., [189, 190].

Branch and bound techniques can then be utilized to solve the problem.

2.6.3 Numerical results

We use a modified IEEE-37 node test feeder to demonstrate our proposed data-based stochas-

tic AC OPF method. As shown in Fig. 2.1, the modified network is a single-phase equivalent

and the load data is derived from real measurements from feeders in Anatolia, CA during

the week of August 2012 [19]. We place 21 photovoltaic (PV) systems in the network. Their

locations are marked by yellow boxes in Fig. 2.1, and their capacities are summarized in

Table 2.1. Based on irradiation data from [19, 2], we utilized a greedy gradient boosting

method [100] to make multi-step ahead predictions of solar injections, and then computed a

set of forecast errors from the dataset. In general forecast errors increase with the prediction

horizon. Other parameters of the network, such as line impedances and shunt admittances,

are taken from [309]. The total nominal available solar power
∑

n P
t
av,n and aggregate load

demand over 24 hours is also shown in Fig. 2.2.
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Figure 2.1. IEEE 37-node test feeder with renewable energy resources and storage devices.

Table 2.1. Capacities of inverted-based solar energy generations and energy storage devices
Node Sn [kVA] Node Sn [kVA] Node Bmax

n

4 150 7 300 9 100
9 300 10 600 10 100
11 660 13 360 28 50
16 600 17 360 29 250
20 450 22 150 32 250
23 750 26 300 35 120
28 750 29 300 36 200
30 360 31 600
32 330 33 750
34 450 35 450
36 450
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Figure 2.2. Total available solar energy and load demand.

The energy storage systems are placed with PV systems at certain nodes, as shown in

Fig. 2.1. Their locations and capacities are listed in Table 2.1. We select the capacities

in the range of typical commercial storage systems, or aggregate of 10-12 residential-usage

batteries (e.g., electric vehicles), which are connected to the same step-down transformer.

The lower limit of SOC, Bmin
n , is set to be zero for all batteries. The charging/discharging

rate P t
B,n is also limited by 10% of their respective energy capacity Bmax

n . Voltage limits

V max and V min are 1.05 p.u. and 0.95 p.u., respectively. The cost function parameters are

at1,n = 10, at2,n = 3, and at3,n = 3 and at4,n = 6. The decision making time period is 5 minutes.

Due to high PV penetration, overvoltage conditions can emerge during solar peak irradi-

ation. Given the real data available for the numerical tests, the numerical tests are focused

on alleviating over-voltage conditions via the proposed distributionally-robust tools. Other

constraints are approximated via sample average methods [171, 248, 72]; however, in general

it is straightforward to formulate other constraints as distributionally robust. The power

factor PF limit is 0.9 in (2.22f). The risk level parameter η is set to 0.01 for quantifying

1% violation probability of constraints (2.22e)-(2.22f). To emphasize the effect of sampling

errors, the number of forecast error samples Ns included in the training dataset Ξ̂Ns
t is lim-

ited to 30. The forecast errors are not assumed bounded, so the parameters of the support
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polytope Ξt := {ξt ∈ RNξ : Hξt ≤ d} are set to zero in (2.22b)-(2.22c). We solved (2.22)

using the MOSEK solver [11] via the MATLAB interface CVX [135] on a laptop with 16 GB

of memory and 2.8 GHz Intel Core i7. Solving each time step during solar peak hours with

distibutionally robust constraints takes 4.84 seconds. Note that our implementation is not

optimized for speed and in principle could easily be sped up and scaled to larger problems

since the problem is ultimately convex quadratic.

In our framework, there are two key parameters, ρ and ε, that explicitly adjust trade

offs between performance and constraint violation risk, and robustness to sampling errors.

Fig. 2.3 illustrates the basic tradeoffs between operational cost and CVaR values of voltage

constraint violations during a 24-hour operation for various values of ρ and ε. It can be

readily seen that as ρ increases, operational cost increases, but CVaR decreases since the

risk term is emphasized. Notice that with the increasing of ε, the estimated risk is higher

so that the solution is more conservative and leads to a lower risk of constraint violation;

larger Wasserstein balls lead to higher robustness to sampling errors. These parameters offer

system operators explicit data-based tuning knobs to systematically set the conservativeness

of operating conditions.

Fig. 2.4(a)-2.4(c) shows the aggregated solar energy curtailment and substation power

purchases for varying risk aversion ρ and Wasserstein radius ε. In order to prevent voltages

over 1.05 p.u., the available solar energy must be increasingly curtailed as the risk aversion

parameter ρ increases. As a result, the network must import more power from the substation.

The increasing curtailment of solar energy and purchase of power drawn from the substation

lead to significantly higher operational cost.

However, these decisions will also lead to more stable voltage profiles, as shown in Fig.

2.5. When ρ is small, there is almost no curtailment, causing overvoltages at several buses.

As ρ increases, more active power is curtailed, and all voltages move below their upper limit.

Similar comments apply for varying the Wasserstein radius ε. For example, fixing ρ and
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Figure 2.3. Tradeoffs between operational cost, conditional value at risk (CVaR) of voltage
constraints, and robustness to sampling errors for ε = 0.0000, 0.0005, 0.0010); parameters
ρ and ε are varied to tests different weighting settings and radii of the Wasserstein ball,
respectively. We present four views from different directions to avoid occlusion.

increasing ε also results in more curtailment and lower voltage magnitude profiles, which

leads to better robustness to solar energy forecast errors.

Finally, we evaluate out-of-sample performance by implementing the full closed-loop dis-

tributionally robust MPC scheme over the 24 hour period with a 15 minute planning horizon.

Monte Carlo simulations with 100 realizations of forecast errors over the entire horizon are

shown in Fig. 2.6. We subsampled new solar energy forecast errors from the training

dataset. The closed-loop voltage profiles based on MPC decisions for all scenarios at node

28 are shown (other nodes with overvoltages show qualitatively similar results). Again, it is

clearly seen that larger values of ε and ρ yield more conservative voltage profiles.
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Figure 2.4. Comparison of active power curtailment and power purchased from substation
for various values of risk aversion ρ and Wasserstein radius ε. As these parameters increase,
more active power from PV is curtailed and more power is drawn from the substation, leading
to a lower risk of constraint violation and a higher operating cost.

In summary, we conclude that the proposed data-based distributionally robust stochastic

OPF is able to systematically assess and control tradeoffs between the operational costs, risks,

and sampling robustness in distribution networks. The benefits of the open-loop stochas-

tic optimization problems are also observed in the closed-loop multi-period distributionally

robust model predictive control scheme.

2.7 N -1 Security Problem in Transmission Systems

In this section, we apply the proposed methodology from Part I in a transmission system

to handle N -1 line flow security constraints. The basic DC power flow approximation and
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Figure 2.5. Optimal network voltage profiles for varying ρ and ε. Overvoltages are reduced
as ρ increases.

Figure 2.6. Monte Carlo simulation results of the voltage profiles at node #28 resulting from
the full distributionally robust closed-loop model predictive control scheme. We validate that
in closed-loop larger values of ε and ρ yield more conservative voltage profiles.
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device modeling is discussed in Part I. Here, we also incorporate N -1 security constraints

and associated contingency reactions due to uncertain wind power injections.

2.7.1 System Model

We consider a transmission system with NG generators (e.g., conventional thermal and wind)

connected to bus subset NG ⊆ N . There are NL loads, Nl lines, and Nb buses. The outages

included for N -1 security consist of tripping of any single lines, generators or loads, yielding

Nout = NG+NL+Nl possible outages. We collect the outages corresponding to a generator, a

line and a load in different sets IG, Il, and IL. The outages in total are I = {0}∪IG∪IL∪Il,

where {0} indicates no outage.

The formulation of a N -1 security problem is based on the following assumptions: 1) the

power flow equations are approximated with DC power flow, as described in Part I (Section

V); 2) each wind farm is connected to a single bus of the network; 3) load forecasting is

perfect; 4) a single line outage can cause multiple generator/load failures.

The objective of the data-based distributionally robust stochastic DC OPF is to deter-

mine an optimal reserve schedule for responding to the wind energy forecast errors while

taking the network security constraints into account. We define P j
mis ∈ R for all j ∈ I as

the generation-load mismatch given by

P j
mis =


P j
L − P

j
G, if j ∈ {0} ∪ Il

+P j
L, if j ∈ IL

−P j
G, if j ∈ IG

,

where P j
L, P

j
G ∈ R denote the power disconnection corresponding to the outage j ∈ I. Define

PG ∈ RNG , and PL ∈ RNL as nodal generation and load injection vectors. For the generator

or load failures, the power disconnection P j
G or P j

L is corresponding to the components in

the vector PG or PL. In the case of line failures j ∈ Il, the power disconnection P j
G or P j

L
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is the sum of the power loss caused by multiple failures. If there is no power disconnection

caused by a line outage, or if j = 0 (no outage happens), the power mismatch is set to zero:

P j
mis = 0.

To respond to contingencies, we can also define another reserve policy response matrix

Rj,d
mis,t := [Rj,d

1 , . . . , Rj,d
t ]ᵀ ∈ Rt, so that the affine reserve policy becomes

udt = Dd
t ξt + Rj,d

mis,tP
j
mis + edt ,∀j ∈ I, d = 1, . . . , Nd. (2.23)

The general constraint risk function of the line flow in Part I (Section V, Equation (17c)) is

then given by

f

( Nd∑
d=1

Γ̃t,jd

{
rtd +Gt

dξt + Ct
d

[
Adtx

d
0 +Bd

t (Dd
t ξt

+Rj,d
mis,tP

j
mis + edt )

]}
− p̄t ≤ 0

)
, ∀j ∈ I,

(2.24)

where Γ̃t,jd ∈ R2Lt×t maps the power injection of each device in the case of j-th outage.

2.7.2 Data-based Stochastic OPF Implementation

We now use the modeling here and in Part I and the affine control strategy (2.23) to formulate

a data-based distributionally robust stochastic DC OPF for transmission systems that also

incorporate N -1 security constraints. The goal is to balance tradeoffs between cost of thermal

generation, CVaR values of the line flow constraints, and sampling error robustness. The

generation with reserve policy in the cost function is given by P d,t
G =

[
Dd
t ξt + edt

]
t
. The

operational cost of generators is

J tCost =
∑
d∈NG

c1,d[P
d,t
G ]2 + c2,d[P

d,t
G ] + c3,d,

which captures nominal and reserve costs of responding to wind energy forecast errors. The

N -1 security reserve cost is not included to simplify presentation, but this can also easily be

included in our framework as an additional linear cost [262].
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With the proposed modeling in Part I (Section V), the updated data-based stochastic

DC OPF is shown as follows. The decision variables are collected into yt = {Dt, et,Rmis,t}.

The random vector ξt comprises all wind energy forecast errors.

Data-based distributionally robust stochastic DC OPF

inf
yτ ,στo

t+Ht∑
τ=t

{
E[ĴτCost] + ρ sup

Qτ∈P̂Nsτ

N∑̀
o=1

EQτ [Qτo ]
}
,

= inf
yτ ,στo ,

λτo ,s
τ
io,ς

τ
iko

τ+Ht∑
τ=t

{
E[ĴτCost] +

N∑̀
o=1

(
λτoετ +

1

Ns

Ns∑
i=1

sτio

)}
, (2.25a)

subject to

ρ(bok(σ
τ
o ) + 〈aok(yτ ), ξ̂iτ 〉+ 〈ςτiko,d−Hξ̂iτ 〉) ≤ sτio, (2.25b)

‖Hᵀςτiko − ρaok(yτ )‖∞ ≤ λτo , (2.25c)

ςτiko ≥ 0, (2.25d)

1

Ns

Ns∑
i=1

Nd∑
d=1

[
Γ̃t,jd

{
rtd +Gt

dξ̂
i
t + Ct

d

[
Adtx

d
0 +Bd

t (Dd
t ξ̂

i
t

+ Rj,d

mis,t
P j

mis + edt )
]}
− p̄t

]
[t,t]

≤ 0, (2.25e)

Nd∑
d=1

[
(rtd + Ct

d(A
d
tx

d
0 +Bd

t e
d
t ))
]

[t,t]
= 0, (2.25f)

Nd∑
d=1

[
(Gt

d + Ct
dB

d
tD

d
t )
]

[t,t]
= 0, (2.25g)

∀i ≤ Ns, ∀j ∈ I, ∀o ≤ N`, k = 1, 2, τ = t, . . . , t+Ht.

2.7.3 Numerical Results

We consider a modified IEEE 118-bus test system [309] to demonstrate our proposed data-

based distributionally robust stochastic DC OPF shown in Fig. 2.7. For simplicity, we only

show results of a single-period stochastic optimization problem. As with the distribution
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network, it is straightforward to extend to multi-period closed-loop stochastic control using

MPC.

Figure 2.7. IEEE 118-bus test network with multiple wind energy connections.
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(a) Predicted tradeoffs between operational cost and
CVaR of line constraint violation.
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(b) Out-of-sample performance is demonstrated by
Monte Carlo simulation, with a controllable level of
conservativeness.

Figure 2.8. Five line flows are reported to illustrate the performance of the proposed data-
based distributionally robust stochastic DC OPF in a transmission system.
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Figure 2.9. Comparison of the coefficients of the policies and output powers of selected
generators for various values of risk aversion ρ and Wasserstein metric ε. As these parameters
increase, the risk of line flow constraint decreases at the expense of higher operational costs.

Three wind farms are connected to bus #1, bus #9, and bus #26, with the normal feed-

in power 500 MW, 500 MW, and 800 MW, respectively. The corresponding conventional

generators at bus #1 and bus #26 are removed. The wind power forecast errors are derived

from the real wind sampling data from hourly wind power measurements provided in 2012

Global Energy Forecasting competition (GEFCCom2012) [1]. The wind energy forecast

errors are evaluated based on a simple persistence forecast, which predicts that the wind

injection in the following period remains constant. It can be seen the forecast errors are

highly leptokurtic, i.e, that the errors have significant outliers that make the distribution

tails much heavier than Gaussian tails. We scale the forecasting errors to have zero mean

and the standard deviations of 200 MW, 200 MW and 300 MW for the wind farms at bus

#1, #9 and #26, respectively. We consider five key lines, which deliver the wind power from
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the left side of the system to the right, as marked by the red crosses in Fig. 2.7. The line

flow limits are shown in Table 5.1 and marked by gray dash lines in Fig.2.8(b).

Table 2.2. Five main channel lines data
# of line From bus To bus Line flow limitation [MW]

7 8 9 600
37 8 30 500
38 26 30 500
54 30 38 500
96 38 65 300

To simplify our presentation, only these five lines flows are handled with distributionally

robust optimization (2.25b)-(2.25d) in both directions; the remaining line flows are modeled

by N -1 security constraints (2.25e) with nominal CVaR and sample average approximation

(essentially equivalent to taking ε = 0), and no other local device constraint is included.

Additionally, we assume no bounds on the wind power forecast errors ξτ , hence H and d in

(2.25b)-(2.25c) are set to zero. It takes 10 seconds to solve (2.25) for each time step using

the MOSEK solver [11] via the MATLAB interface with CVX [135] on a laptop with 16 GB

of memory and a 2.8 GHz Intel Core i7.

Fig. 2.8(a) illustrates the solutions of the proposed data-based distributionally robust

stochastic DC OPF for varying risk aversion and Wasserstein radius. Once again, the nu-

merical results demonstrate fundamental tradeoffs between operational cost, CVaR values of

line constraints violations, and robustness to sampling errors. The conservativeness of the

generator policies are controlled by adjusting ρ and ε. By explicitly using the forecast error

training dataset and accounting for sampling errors, risks are systematically assessed and

controlled. Since the forecast errors are non-Gaussian, existing methods may significantly

underestimate risk [121]. Increasing ε provides better robustness to sampling errors and

guarantees out-of-sample performance. Note that CVaR values can be negative when the

worst-case expected line flow is below the constraint boundary.
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Fig. 2.8(b) illustrates the out-of-sample performance of the decisions via Monte Carlo

simulation. For every value of ρ utilized to obtain the results of Fig. 8(a), we i) sampled

(new) values from the training dataset, ii) implemented the decisions based on the solution of

the problem, and iii) calculated the empirical line flows. The dashed gray line indicates the

line flow limit. The number of scenarios for the Monte Carlo simulations is 1000. From the

simulation results, it is seen that larger ε ensures smaller line constraint violation for all lines

except line 38. This happens because the risk objective is the sum of all five CVaRs, and a

lower overall risk is achieved for certain values of ρ and ε by allowing higher risk of violating

the flow limit of line 38. In general, it is possible to prioritize certain important constraints

by weighting their associated risk higher compared to lower priority constraints. Again,

Monte Carlo simulations demonstrate that conservativeness can be controlled explicitly by

changing the Wasserstein radius ε and the risk aversion parameter ρ.

Fig. 2.9 illustrates the output powers and the coefficients of the reserve polices for selected

generators for different values of the risk aversion ρ and the Wasserstein radius ε. In order

to satisfy the limit on the line flows, the scheduled power output of some generators (mostly

located on the left side of the feeder or with cheaper cost profiles) are reduced as the risk

aversion parameter ρ increase. As a result, some of the generators (mostly located on the

right side of the feeders or with high cost profiles) increase the power injection to supply

the demand. With these settings, the risk of line flow constraint decreases as shown in

Fig. 2.8(b), at the expense of higher operational costs.

2.8 Conclusions

In this chapter, we have proposed a framework for the data-based distributionally robust

stochastic OPF based on finite dataset descriptions of forecast error distributions across

the power network. The method allows efficient computation of multi-stage feedback con-

trol policies that react to forecast errors and provide robustness to inherent sampling errors
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in the finite datasets. Tractability is obtained by exploiting convex reformulations of am-

biguity sets based on Wasserstein balls centered on empirical distributions. The general

framework is adapted to both distribution networks and transmission systems by allowing

general device models and utilizing different linearizations of the AC power flow equations.

We performed numerical experiments to balance overvoltages in distribution networks and

N − 1 security line flow risks in transmission networks. The flexibility of controllable de-

vices was exploited to balance efficiency and risk due to high penetration renewable energy

sources. In contrast to existing work, our method directly incorporates forecast error train-

ing datasets rather than making strong assumptions on the forecast error distribution, which

allows us to leverage distributionally robust optimization techniques to achieve superior out-

of-sample performance. Parameters in the optimization problems allow system operators to

systematically select operating strategies that optimally trade off performance and risk.

Supplementary Materials

Implementation codes for 1) data-based distributionally robust stochastic OPF and 2) data-

based distributionally robust stochastic DC OPF can be download from https://github.

com/TSummersLab/Distributionally-robust-stochastic-OPF.

Appendix

Pertinent reformulations of the probabilistic line flow constraints in transmission systems are

described in this section. Consider, for simplicity, the time period between [0, t] and rewrite

the line flow constraint as

E R
{ Nd∑

d=1

Γtd(r
t
d +Gt

dξt + Ct
dx

d
t )− p̄t

}
≤ 0,
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where xdt = Adtx
d
0 + Bd

t u
d
t and the affine reserve policies are udt = Dd

t ξt + edt . The CVaR

counterpart of each individual constraints is given by [cf. (2.18)]

inf
σto
Eξtmax

{[ Nd∑
d=1

Γtd(r
t
d +Gt

dξt + Ct
d(A

d
tx

d
0 +Bd

tD
d
t ξt

+Bd
t e
d
t ))− p̄t

]
o

+ σto

}
− σtoβ ≤ 0.

(2.26)

Since the decision variables {Dt, et, σ
t
o} enter as linear terms in (2.26), a compact expression

similar to (2.19) can be obtained; i.e.,

Qt
o

= max
k=1,2

[
〈aok(yt), ξt〉+ bok(σ

t
o)

]
,

where

k = 1,

ao1(yt) =

[[∑Nd
d=1 ΓtdC

t
dB

d
tD

d
t

]
o
,
[∑Nd

d=1 ΓtdC
t
dB

t
de
d
t

]
o

]
,

bo1(σto) =
[
− p̄+

Nd∑
d=1

Γtd(r
t
d +Gt

dξ + Ct
dA

d
tx

d
0)
]
o

+ σto − σtoβ,

k = 2,

ao2(yt) =

[
0ᵀ
Nξt
, 0

]
,bo2(σto) = −σtoβ,

for all o. Similar steps can be followed to obtain the constraints for each device and the

voltage magnitude.
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CHAPTER 3

OPTIMAL PUMP CONTROL FOR WATER DISTRIBUTION NETWORKS

VIA DATA-BASED DISTRIBUTIONALLY ROBUSTNESS1

In this chapter, we propose a data-based methodology to solve a multi-period stochastic op-

timal water flow (OWF) problem for water distribution networks (WDNs). The framework

explicitly considers the pump schedule and water network head level with limited infor-

mation of demand forecast errors for an extended period simulation. The objective is to

determine the optimal feedback decisions of network-connected components, such as nomi-

nal pump schedules and tank head levels and reserve policies, which specify device reactions

to forecast errors for accommodation of fluctuating water demand. Instead of assuming the

uncertainties across the water network are generated by a prescribed certain distribution, we

consider ambiguity sets of distributions centered at an empirical distribution, which is based

directly on a finite training data set. We use a distance-based ambiguity set with the Wasser-

stein metric to quantify the distance between the real unknown data-generating distribution

and the empirical distribution. This allows our multi-period OWF framework to trade off

system performance and inherent sampling errors in the training dataset. Case studies on

a three-tank water distribution network systematically illustrate the tradeoff between pump

operational cost, risks of constraint violation, and out-of-sample performance.

1This Chapter is based on work supported by the National Science Foundation (NSF) under grant
CMMI-1728605.

Chapter 3 in part is a reprint of material published or under review in:
c© 2020 Elsevier. Reprinted, with permission, from Y. Guo and T.H. Summers, “Distributionally robust

optimal water flow and risk management”, IFAC World Congress, Berlin, Germany 2020.
c© 2020 Elsevier. Reprinted, with permission, from Y. Guo, S. Wang, A. F. Taha and T.H. Summers,

“Optimal pump control for water distribution networks via data-based distributional robustness”, submitted
to Automatica, 2020.
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3.1 Introduction

Due to a broad range of future energy and environmental issues [155], water distribution

network operators are seeking improved strategies to deliver energy-efficient, reliable, and

high quality service to consumers [198]. However, the increasing complexity (e.g., due to high

dimensionality, nonlinearities, operation constraints and uncertainties) in municipal water

supply network operation is challenging the current management and control strategies and

may threaten the security of this vital infrastructure. Future urban water supply systems

will require more sophisticated methods to function robustly and efficiently in the presence

of this increasing complexity.

The flexibility of water flow manipulators (pumps and valves) in water networks has

been utilized to optimize various objectives, including production and transportation costs,

water quality, safe storage, smoothness of control actions, etc. [98, 75, 142, 292, 258, 65,

193, 294, 266, 265]. However, most optimal water flow control methods use deterministic

point forecasts of exogenous water demands, which neglects their inherent stochasticity. In

practice, the variation of water demands in real water distribution networks is high and

difficult to predict [113]. Further, as complexity of network topology increases [12], small

perturbations can cause significant performance decrease and even infeasibility of optimal

water flow problems [113].

Recent research on optimal water network operation has been shifting from deterministic

to stochastic models, since uncertainties (e.g., human usage, unexpected component failures,

climate change) are increasingly key factors in many sectors of water resource management

[12, 44, 113, 271, 231, 118, 198, 117, 268, 55, 232, 267]. Most stochastic formulations assume

that the uncertain water demands follow a prescribed distribution (e.g., Gaussian [268, 117]),

or enforce constraint for all possible water demand realization by assuming only knowledge

of bounds on uncertainties [113, 55], and then utilize robust optimization. In addition,

sampling-based stochastic optimization has also been applied to water flow manipulation
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problem [231] to quantify the probability of constraint violation based on an assumed data

generating mechanism. However, the underlying assumptions in these approaches can be

too strong or overly conservative, which can lead to underestimation or overestimation of

the actual risks, and therefore to ineffective operation. The methods based on chance-

constraints effectively only measure the frequency of constraint violations not the severity,

which can underestimate risk. The robust methods can enforce constraints for extreme and

highly unlikely uncertainty realizations, effectively overestimating risk. Furthermore, some

sampling-based methods are computational intensive due to their requirement of a large

numbers of samples. In practice, forecasts of water demand are never perfect, and their

distributions must be estimated from finite data.

In this chapter, we investigate a multi-period data-driven optimization problem to tackle

a stochastic optimal water flow (OWF) problem for optimal pump schedule and head man-

agement in water distribution networks (WDNs). The proposed framework uses the limited

information of water demand forecasting errors from a finite training dataset to explicitly

balance the tradeoffs between performance and the risk of constraint violations in the pres-

ence of large water demand variations. A preliminary version of this work present in [124];

here we significantly extend the work in several directions. The main contributions are:

1) We formulate a general multi-period distributionally robust optimal water flow problem

for optimal pump schedule and head management. The distributionally robust OWF

model predictive controller uses data-driven distributionally robust optimization [96]

to tractably obtain control decisions for network components at each stage. This

allows the data-driven distributionally robust MPC OWF controller to update the

water demand forecast with a finite time horizon and then re-compute the real-time

optimal decision based on the latest and future forecasting information. In general, this

OWF controller accepts the training data set from all forecasting frameworks and the

decisions can be robust to various ambiguity sets (i.e., moment-based or metric-based).
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In this chapter, we assume the unknown real data generating distribution is located in

a metric-based ambiguity set, which is constructed by a Wasserstein ball with constant

radius centered at an empirical distribution supported by the finite training dataset.

In contrast to other stochastic OWF formulations, this approach makes the resulting

control policies explicitly robust to the inherent sampling errors in the training dataset,

which leads to superior out-of-sample performance. We can appropriately parameterize

the ambiguity set to avoid the overly conservative decisions due to overfitting and finite

sampling.

2) To handle computationally difficulties with the nonlinear/nonconvex water network

hydraulics, we leverage a pertinent linear approximation of water network hydraulic

coupling (i.e., flow-head coupling) to promote a computationally-efficient stochastic

optimal water flow formulation for optimal pump control and nodal pressure manage-

ment. In contrast with the literature, we further establish a generic matrix linearization

in compact format between water flow and nodal head by re-defining a network Lapla-

cian matrix based on linearization coefficients. This provides a unified framework that

is applicable for approximation algorithms after linearization (i.e., successive lineariza-

tion algorithms or piece-wise linearization algorithms). We empirically observe that the

convergence of successive linearization algorithm provides an excellent approximation

to the nonlinear water flow.

3) The effectiveness and flexibility of our proposed stochastic water flow formulation are

demonstrated on a model of the Barcelona water distribution network. We illustrate

the inherent tradeoff between the system conservativeness and forecasting errors. The

results can help the operators to explicitly prioritize the tradeoff between the pump

operational efficiency and the risk of tank head constraint violation, and then develop

the appropriate control strategies to balance their our objectives and risk aversion.
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The rest of chapter is organized as follows: Section 3.2 describes a generic model of water

distribution networks, and the successive linearization approach; Section 3.3 presents the

general formulation of proposed data-based multi-period distributionally robust stochastic

optimal water flow problems. Section 3.4 specifies the proposed stochastic OWF to a stochas-

tic optimal pump schedule and head management. Section 3.5 demonstrates the flexibility

and effectiveness of the proposed methodologies via numerical experiments. Section 3.6 con-

cludes.

Notation: The inner product of two vectors a, b ∈ Rm is denoted by 〈a, b〉 := aᵀb, and

(·)ᵀ denotes the transpose of a vector or matrix. The Ns-fold product of distribution P on

a set Ξ is denoted by PNs , which represents a distribution on the Cartesian product space

ΞNs = Ξ× . . .×Ξ. We use Ns to represent the number of samples inside the training dataset

Ξ̂. Superscript “ ·̂ ” is reserved for the objects that depend on a training dataset Ξ̂Ns . The

cardinality of set J is denoted by |J |. The Kronecker product operator is defined as ⊗.

3.2 Hydraulic Model and Leveraging Linear Approximation

In this section, we consider a water distribution network model associated with active and

passive networked components, and then we leverage a pertinent linear approximation, which

leads to a novel network Laplacian-based matrix expression. This allows us to use successive

linearization to approximate the original nonlinear hydraulic relationship for several topolo-

gies. WDNs control actions include speeds of pumps and settings of valves. In the rest of

this section, we introduce the network and hydraulic modelling of networked components.

3.2.1 Network Modelling

We consider a water distribution network as a directed graph G(N , E) with a set N :=

{1, 2, . . . , N} of vertices. These vertices include junctions, reservoirs, and tanks that are

collected in sets J , S, and T , and N = J ∪ S ∪ T . Similarly, the set E ⊆ N × N of all
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links including the sets of pipes, pumps, and valves represented by I, M, and V so that

E = I ∪M∪V . Let N in
i and N out

i collect the supplying and carrying neighboring vertices of

ith node , respectively. We use qij ∈ R to denote the water flow through the link (i, j) ∈ E ,

and hi ∈ R+ denotes the head of node i ∈ N . We assume each pipe has the prescribed flow

direction and the actual flow direction on pipes are either following the assumption (qij ≥ 0)

or appearing in the opposite direction (qij < 0).

Junctions

The water demand is assumed to be a constant di(t) in gallons per hour (GPM), which is

applied for time interval t at junction i ∈ J . Mass conservation must be hold any time at

ith node ∑
j∈N in

i

qji(t)−
∑

j∈N out
i

qij(t) = di(t), ∀i ∈ J , (3.1)

where N in
i and N out

i are the sets of nodes supplying and carrying flow at ith junction, re-

spectively. If there is no water demand consumption for nodes i ∈ N\Nd, we have di(t) = 0

for all time slots. Here we define an aggregated vector d(t) := [d1(t), . . . , dN(t)]ᵀ ∈ RN .

Reservoirs

The set S collects all reservoirs in a water distribution network. We assume that all reservoirs

have infinite water resource supply, and that the head of each reservoir is a constant, which

can be treated as an operational constraint

hR
i = helv

i , ∀i ∈ S,

where helv
i represents the elevation for ith reservoir.
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Tanks

The head of tank at node i ∈ T at time t is represented by hTK
i (t). The dynamics of these

elements are given by the discrete-time difference equations

hTK
i (t+ 1) = hTK

i (t) +
∆t

ATK
i

∑
j∈N in

i

qji(t)−
∑

j∈N out
i

qij(t)

 , (3.2)

where ∆t is the duration of the time interval (t, t + 1]. The cross-section area of tank is

defined by ATK
i .

Pumps

The pumps provide head gain in the water distribution networks on the links (i, j) ∈ M

connecting the suction jth node and the delivery ith node. The head gain explicitly depends

on the pump flow and pump property. Now we consider the variable speed pump (VSP) in

the network, and the head gain is given by

hM
ij (t) = hi(t)− hj(t) = αijq

M
ij (t)2 + βijq

M
ij (t) + γij, (3.3)

where coefficients αij, βij, and γij are determined by the pump operation curve.

Pipes

The head loss of of pipe (i, j) ∈ I described via the empirical Chezy-Manning (C-M) is given

as follows

hP
ij = hi(t)− hj(t) = RCM,ijq

P
ij(t)

2, (3.4)

where the resistance coefficient is denoted by RCM,ij ∈ R++ and defined by [228]

RCM,ij = 4.66
LCM,ijC

2
CM

D5.33
CM,ij

.

Note that CCM ∈ R++ is the Manning roughness coefficient; DCM,ij ∈ R++ is the diameter

of pipeline in feet; and LCM,ij ∈ R++ is the length of pipeline in feet.
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Pressure Reduce Valves

There are several types of controllable valves in a water distribution network, such as pressure

reduce valves (PRVs), general purpose valves (GPVs) and flow control valves (FCVs), associ-

ated with different control variables: valve openness, pressure reduction, and flow regulation.

Here, we utilize PRVs to restrict the pressure to a certain difference φij ∈ R+, (i, j) ∈ V

along a pipeline when the upstream pressure at ith node is higher than the downstream jth

node

φij(t) = hi(t)− hj(t), (3.5)

where hi(t) the head of upstream junction and hj(t) is the head of downstream junction, and

the variable φij determines the energy conservation on pipeline (i, j). Note that no reverse

flow on PRVs is allowed, and the water flow through PRVs, qij, (i, j) ∈ V , is not determined

by (3.5), thereby depends on other network coupling constraints (3.1). The implementation

of valve control actions depends on valve construction. We refer interested readers to [98, 240,

213, 8, 253] for more details. The deployment of PRVs in water distribution networks can

promote the potential control availability. Here, we utilize a “smart” PRV, whose pressure

reduce setting can be optimized in the real time.

Network Operational Constraints

We specify several constraints on network states and inputs in our proposed stochastic OWF

problem to satisfy the physical operation limitation of water distribution networks (i.e., limits

of nodal heads, pipe flows and tank levels)

hmin
i ≤ hi(t) ≤ hmax

i , ∀i ∈ N ,

qmin
ij ≤ qij(t) ≤ qmax

ij , ∀(i, j) ∈ E ,

where hmin
i and hmax

i are the lower and upper heads on ith node and qmin
ij and qmax

ij are

minimum and maximum flows on link (i, j). We introduce a binary parameter zij(t) for link
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(i, j) to indicate the ON/OFF status of the controllable devices (i.e., pumps, valves). Then

the head coupling between two neighboring nodes can be modelled as follows

−M (1− zij(t))

≤ hij(t)− g(qij(t), φij(t)) ≤M (1− zij(t)) ,
(3.7)

where hij(t) := hi(t)−hj(t), g(·) is a general expression of (3.3), (3.4), and (3.5) as functions

of qij and φij, and M is a large positive constant. Note that when zij(t) = 1, the device

on link (i, j) is ON (i.e., qij(t) 6= 0), then the energy conservation constraints (3.3), (3.4),

and (3.5) hold on this link; otherwise zij(t) = 0, and the head at ith node and jth node are

decoupled. For the links without a controllable device (e.g., pipes), we let zij(t) = 1 for all

time intervals.

Table 3.1. Variable notations
Notation Description

hi Head at node i
hTK
i /hR

i Head at tank/reservoir i

hP
ij/φij

Head loss on the pipe/valve from
node i to node j

hM
ij

Head gain on the pump from
node i to node j

qij
Flow through on the link from

node i to node j

qMij /qPij/q
V
ij

Flow through on pump/pipe/valve from
node i to node j

3.2.2 Leveraging Linear Approximation of Hydraulic Coupling

The nonlinear energy conservation (3.7) renders the water flow formulation nonconvex. This

hinders the development of a computationally efficient stochastic optimal water flow problem

where distributionally robust optimization and risk measures can be utilized to balance

system performance and robustness. To that end, we provide a Laplacian-based linearization
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that utilizes the successive linearization algorithm to enable a highly accurate approximation

of the original nonlinear energy conservation (3.7).

The energy conservation (3.3), (3.4) and (3.5) can be concluded in a compact matrix

form

Bfh(t) = qᵀ(t)Nq(t) + Pq(t) + q0, (3.8)

where h(t) := [h1(t), . . . , hN(t)]ᵀ ∈ RN and q(t) := {qij(t)|(i, j) ∈ I ∪M} ∪ {φij(t)|(i, j) ∈

V} ∈ R|E| collect network states, e.g., head, flow, and valve settings. The constant matri-

ces/vector N ∈ R|E|×|E|, P ∈ R|E|×|E|, and q0 ∈ R|E| explicitly depend on the property of

pipelines, pump, and valves. The incident matrix of graph G is denoted by Bf ∈ R|E|×|N |,

having entries

Bf (n, i)

=


1 if flow in nth link is away from ith node

−1 if flow in nth link is towards ith node

0 if flow in nth link is not incident on ith node

.
(3.9)

The nonlinearities in (3.8) make the OWF problem non-convex and computationally

challenging. Therefore, in the rest of this subsection, we will seek to linearize (3.8) instead.

We express the flow as q = q̄ + ∆q, where q̄ ∈ R|E| is the nominal water flow vector, and

∆q ∈ R|E| captures disturbances around the nominal values. To lighten notation we omit

the time index in the discussion of linearization in this section. Substituting q = q̄ + ∆q

into (3.8), we have

Bfh = (q̄ + ∆q)ᵀ N (q̄ + ∆q) + P (q̄ + ∆q) + q0

+ q̄ᵀNq̄ + Pq̄ + (2q̄ᵀN + P) ∆q + ∆qᵀN∆q + q0.

Neglecting second-order terms in ∆q, (3.8) becomes approximately

Bfh ≈ q̄ᵀNq̄ + Pq̄ + q0︸ ︷︷ ︸
A

+ (2q̄ᵀN + P)︸ ︷︷ ︸
B

∆q,
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where matrices A,B ∈ R|E|×|E|. Now, we turn our attention to solving for the water flow

perturbation vector ∆q. Decomposing all energy conservation on each pipeline, we can write

the above linearization in the scalar form

hi − hj = aij + bij∆qij, ∀(i, j) ∈ E ,

where aij and bij denote the elements of A and B, respectively. The water flow perturbation

on each link is

∆qij =
1

bij
(hi − hj)−

1

bij
aij, ∀(i, j) ∈ E .

The sum of water perturbation carrying away from ith node is defined as ∆Qi ∈ R around

the nominal operation point q̄ given by

∆Qi =
∑
j

[
1

bij
(hi − hj)

]
−
∑
j

[
aij
bij

]
︸ ︷︷ ︸

Q̄i

, ∀i ∈ N . (3.10)

Note that the first term in (3.10) can be expressed using the network Laplacian matrix

L ∈ RN×N defined by the edge weights 1
bij

. The second term in (3.10) is the nominal

carrying flow Q̄i ∈ R at ith node. Then the linear energy conservation of water distribution

network in compact form is

Lh = ∆Q + Q̄,

where the network’s Laplacian matrix L has elements

Lij =


∑

l∼i
1
bil

if i = j

− 1
bij

(i, j) ∈ E

0 (i, j) /∈ E

.

We define two vectors as ∆Q := [∆Q1, . . . ,∆QN ]ᵀ and Q̄ := [{Q̄i ∈ R|Q̄i =
∑

j
aij
bij
}. Given

the incidence matrix defined in (3.9), the following energy conservation constraint holds as

a function of water flow perturbations

Lh = Bᵀ
f∆q + Q̄, (3.11)
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where the Laplacian-based compact form maps the water flow disturbance ∆q to the network

head h around the linearized point of nodal water carrying Q̄.

3.2.3 Verifying Feasibility of Laplacian Approximation

To validate the effectiveness and feasibility of the proposed Laplacian approximation, we

solve a water flow feasibility problem

WFP-0: min
h,∆q

0

subject to (3.1) and (3.11).

(3.12)

by utilizing successive linearization algorithm, and compare the solutions to the water flow

results from EPANET [228] modelled via the nonlinear energy conservation constraints (3.8).

The overall successive linearization process is presented in Algorithm 1.

We empirically observe that the successive linearization algorithm for WDN in Algorithm

1 provides a nearly exact approximation of the nonlinear hydraulic dynamics (q,h) and flow

directions if the following assumptions holds

Assumption 1. The water distribution network G is a pure tree.

Assumption 2. Pumps and valves are all active, i.e., zij = 1,∀(i, j) ∈M∪ V.

The main purpose of this chapter is to seek the optimal pump schedules satisfied the

network constraints (e.g., flows and head limits) under network uncertainties. The proposed

stochastic OWF formulation is designed for the real-time optimal control, which is based

on the pre-determined operation status of all active devices, i.e., zij is not an optimization

variable in (3.7). Additionally, we assume the network topology is a pure tree. This ensures

that the successive linearization algorithm converges (3.12) to a nonlinear feasible point and

gives the correct directions of water flows.

2The EPANET network information source file contains the topology of water networks and the properties
of the hydraulic components (e.g., pipes, pump, tank and etc..).
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Algorithm 1 Successive Linearization Algorithm for Water Distribution Networks

Input:.EPANET Network Information .inp source file2, demand d, incidence matrix
Bf

Output: System operating points h∗ and q∗

1: Initialize: n = 0, initial nominal water flow q̄0 and Linearization error Err > δ
2: while Err > δ do
3: Calculate Laplacian Ln and flow carrying vector Q̄n for nth iteration
4: Solve WFP-0 for ∆q∗n and h∗n from (3.12)
5: Compute the linearization error, Err = ‖∆q∗n‖2

2

6: Update nominal water flow points q̄n+1 = q̄n + ∆q∗n
7: n = n+ 1
8: end while
9: return solutions q∗ = q̄n+1, h∗ = hn

Remark 1. (Hydraulic-Network Simplification). Our proposed framework focuses on op-

timal operation for water distribution networks instead of hydraulic design and analysis.

Therefore, we assume all networks are pure trees, where the proposed linearization approach

is highly effective. Many networks can be simplified or approximated as a pure tree network

using various techniques, which facilitates a higher-level interpretation of the main network

structure [207, 10].

Remark 2. (Successive Linearization Initialization). The initial nominal water flow q0

is an input of successive linearization algorithm for WDNs. We suggest here a possible

q0 for various components (e.g., pumps and pipes) to initialize Algorithm 1 for improved

convergence. For all pipes I in WDNs, the initial water flow is corresponding to the flow

speed 1 CFS [228]. The actual input initial water flow is adjusted based on the properties

of individual pipeline (i.e., length and diameter). The initial linearized water flow point of

pumps will come from the pump efficiency curve [258]

Eij = e1
ijq

2
ij + e2

ijqij + e3
ij, ∀(i, j) ∈M.
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The successive linearization of pumps starts from the most efficient point as

∂Eij
∂qij

= 2e1
ijqij + e2

ij = 0, q̄ij =
e2
ij

2e1
ij

, ∀(i, j) ∈M.

Empirical speaking, starting points satisfying the physical constraints often lead to a feasible

solution.

3.3 Data-based Multi-period Stochastic Optimal Water Flow

In this section, we formulate a stochastic OWF problem as a distributionally robust stochastic

optimal control problem. We first pose the problem generically to highlight the overall

approach, and in subsequent sections we incorporate the linearization of hydraulic modelling

in Section 3.2 for a tractable and computationally-efficient stochastic OWF. This framework

is more general than most stochastic OWF in the literature, which typically focus only on

individual or single-stage optimization problems, or has a less sophisticated approach for

explicitly incorporating uncertainties. Consider a multi-period data-driven distributionally

robust optimization problem

inf
π∈Π

sup
P∈P

EP
T∑
t=0

ht(xt, ut, ξt) (3.13a)

subject to xt+1 = ft(xt, ut, ξt) (3.13b)

ut = π(x0, . . . , xt, ξt,Dt) (3.13c)

(xt, ut) ∈ Xt (3.13d)

where xt ∈ Rn represent the state vector at time t that includes the internal states of all

elements (i.e., valves, tanks and pipes). Let ut ∈ Rm denote a control input vector that

includes inputs for all controllable components (e.g., pump output and valve settings). The

ξt ∈ RNξ denote random vectors in a probability space (Ω,F ,Pt) which includes forecast

errors of all uncertainties in the network.
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The goal of (3.13) is to find a optimal feedback policy that minimizes the expected

value of the system objective function ht : Rn × Rm × RNξ → R robust to the worst-

case distribution in the forecast error ambiguity set P . We consider a setting where the

objective function ht includes both operating costs and risks of violating various network

and device constraints and is assumed to be continuous and convex as functions of (xt, ut)

for any fixed ξt. The system dynamics function ft : Rn ×Rm ×RNξ → Rn models internal

dynamics of all network-connected components, such as water storage tanks. The general

feasible set Xt includes other network and device constraints, such as mass balance, energy

conservation, operational bounds on nodal heads and pipe flows (some constraints may be

modeled deterministically with respect to mean values and others may be included as risk

terms in the objective function).

Since the real distributions of forecast errors are never known in practice, we explic-

itly account for uncertainty in their distributions themselves by assuming that the real but

unknown distribution Pt belongs to an ambiguity set Pt of distributions which will be con-

structed from a forecast sampling dataset.We collect the forecast error over an operating

horizon t as ξt := [ξᵀ1 , . . . , ξ
ᵀ
t ]ᵀ ∈ RNξt, which has joint distribution P and corresponding

ambiguity set P .

In this multi-period stochastic OWF, we are seeking a series of closed-loop feedback poli-

cies in the form ut = π(x0, . . . , xt, ξ0:t,Dt) explicitly considering forecast errors describing

historical patterns, where the term Dt indicates all network component model information

and the parameterization of the ambiguity set of the forecast error distribution. This frame-

work allows for design of not only for current nominal reaction, but also reactions to future

uncertainty realizations. The policy function π maps all available information to control

actions and is an element of a set Π of measurable functions.
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3.3.1 Ambiguity Sets based on Wasserstein Metric

One of the main challenges for solving (3.13) is how to utilize our available information of

uncertainties to appropriately realize the distributions for a tractable problem reformulation.

There is a variety of ways to reformulate the general stochastic OWF problem (3.13) to

obtain tractable subproblems that can be solved by standard convex optimization solvers.

These include assuming specific functional forms for the forecast error distribution (e.g.,

Gaussian)[231] and using specific constraint risk functions, such as those encoding value at

risk (i.e., chance constraints)[117, 119], conditional value at risk (CVaR) [124], distributional

robustness[124], and support robustness[113]. In all cases, the out-of-sample performance

of the resulting decisions in operational practice ultimately relies on 1) the quality of data

describing the forecast errors and 2) the validity of assumptions made about probability

distributions. Many existing approaches make either too strong or too weak assumptions

that possible lead to underestimation or overestimation of risk.

In this chapter, we utilize a recently proposed tractable method [96] in a multi-period

data-based stochastic OWF, in which the ambiguity set is based on a finite forecast error

training dataset Ξ̂Ns via Wasserstein balls. Comparing with others existing ambiguity sets

[158, 272, 35, 278, 137, 95], Wasserstein balls offer the powerful out-of-sample performance

and provide the water distribution network operators to control the conservativeness of

the decisions, which promote the flexibility of water distribution network from a practical

perspective. We optimize an expected objective over the worst-case distribution in the

ambiguity set P , which can be formulated as a finite-dimensional convex program. The

decisions from this stochastic OWF provide an upper confidence bound under forecast errors

realization, quantified by the size of the ambiguity set (i.e., Wasserstein radius [96]).

The Wasserstein metric defines a distance in the space M(Ξ) of all probability distribu-

tions Q supported on a set Ξ with EQ[‖ξ‖] =
∫

Ξ
‖ξ‖Q(dξ) <∞.
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Definition 1 (Wasserstein Metric [143]). Given all distributions Q1,Q2 supported on Ξ, the

Wasserstein metric dW :M(Ξ)×M(Ξ)→ R+ is defined as

dW (Q1,Q2) :=

∫
Ξ

‖ξ1 − ξ2‖Θ(dξ1, dξ2),

where Θ represent a joint distribution of ξ1 and ξ2 with marginals Q1 and Q2, respectively,

and ‖ · ‖ indicates an arbitrary norm on RNξ .

The Wasserstein metric quantifies the “transportation costs” to move mass from one

distribution to another. The Wasserstein ambiguity set is defined by

P̂Ns :=

{
Q ∈M(Ξ) : dW (P̂Ns ,Q) ≤ ε

}
. (3.14)

This ambiguity set P̂Ns constructs a ball with radius ε in Wasserstein distance around the

empirical distribution P̂Ns on the training dataset. The radius ε can be chosen so that

the ball contains the true distribution P with a prescribed confidence level and leads to

performance guarantees [96]. The radius ε also explicitly controls the conservativeness of

the resulting decision. Large ε would produce decisions that rely less on the specific features

of the uniform empirical distribution supported by the training dataset Ξ̂Ns and improve

robustness to inherent sampling errors. We will discuss the use of this conservativeness

index for our stochastic OWF problem.

3.3.2 Data-based Distributionally Robust Model Predictive Control of Optimal

Water Flow

The goal of our data-based distributionally robust stochastic OWF framework is to interpret

and demonstrate inherent tradeoffs between efficiency and risk of constraint violations. Ac-

cordingly, the objective function comprises a weighted sum of an operational cost function

and a constraint violation risk function: ht = J tCost + ρJ tRisk, where ρ ∈ R+ is a weight that
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quantifies the network operator’s risk aversion. The operational cost function is assumed to

be linear or convex quadratic. The cost functions will be discussed in detail in Section 3.4.

The constraint violation risk function JRisk comprises a sum of the conditional value-at-

risk (CVaR) [227] of a set of N` network and device constraint functions. The conditional

value-at-risk is a well known and coherent risk measurement in finance [227]. Here we

introduce the CVaR risk metric to solve a MPC-based OWF engineering problem, due to the

large variation of water demand uncertainties. Minimizing the CVaR of constraint violation

limits both the frequency and expected severity of constraints. Specifically, we have

J tRisk :=

N∑̀
i=1

CVaRβ
P[`i(xt, ut, ξt)],

where β ∈ (0, 1] refers to the confidence level of CVaR under the distribution P of random

variable ξt. Intuitively, the constraint violation risk function JRisk could be understood as

the sum of networks and devices constraint violation magnitude at risk level β. The details

of CVaR constraint convex reformulation are shown in the next Section.

The general problem (3.13) will be approached with a distributionally robust model

predictive control (MPC) algorithm. MPC is a feedback control technique that solves a

sequence of open-loop optimization problems over a planning horizon Ht (which in general

may be smaller than the overall horizon T ). At each time t, we solve the distributionally

robust optimization problem over a set Πaffine of affine feedback policies using the Wasserstein

ambiguity set (3.14)

Distributionally Robust MPC for Stochastic OWF:

inf
π∈Πaffine

sup
P∈P̂Ns

EP
t+Ht∑
τ=t

JτCost + ρJτRisk (3.15a)

subject to xτ+1 = fτ (xτ , uτ , ξτ ) (3.15b)

uτ = π(x0, . . . , xτ , ξτ ,Dτ ) (3.15c)

(xτ , uτ ) ∈ Xτ . (3.15d)
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Only the immediate control decisions for time t are implemented on the controllable device

inputs. Then time shifts forward one step, new forecast errors and states are realized,

the optimization problem (3.15) is re-solved at time t + 1, and the process repeats. This

approach allows any forecasting methodology to be utilized to predict uncertainties over the

planning horizon. Furthermore, the forecast error dataset P̂Ns , which defines the center of

the ambiguity set P̂Ns , can be updated online as more forecast error data is obtained. It is

also possible to remove outdated data online to account for time-varying distributions.

In the rest of the chapter, we will use the specific model of water distribution networks

discussed in Section 3.2, where the subproblems (3.15) have exact tractable convex refor-

mulations as quadratic programs [96] and can be solved to global optimality with standard

solvers.

3.4 Chance-constraints and Distributionally Robustness Formulation

Following our proposed formulation above, we begin this section by introducing the state

space expression of WDN hydraulic dynamics, briefly discuss chance constraints, and describe

a convex reformulations of the stochastic optimal water flow problem based on conditional

value-at-risk and distributionally robust optimization.

3.4.1 Network Dynamics in State-Space Format

The WDN model discussed in the previous section can be summarized in a difference alge-

braic equation (DAE) model

x(t+ 1) = Āx(t) + B̄uu(t) + B̄vv(t), (3.16a)

d(t) = Ēuu(t) + Ēvv(t), (3.16b)

F̄xx(t) + F̄ll(t) = F̄uu(t) + F̄vv
P(t) + F̄φφ(t) + F̄0, (3.16c)
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where the decision variables {x, u, l, v, vP, φ} are defined in Table 3.2 and the constant

matrices {A,B,E, F} are derived from the hydraulic dynamics in Section 3.2. We detail

these constants in term of the Laplacian-based hydraulic model (3.11) in the Appendix.

The dynamics of tank head (3.2) is given in (3.16a), and the mass balance (3.1) and

linearized energy conservation (3.11) are summarized in (3.16b) and (3.16c), respectively.

For compact notation, we concatenate the states, inputs and demands over the planning

horizon as xt = [x(1)ᵀ, . . . , x(t)ᵀ]ᵀ ∈ RnTKt, ut = [u(0)ᵀ, . . . , u(t − 1)ᵀ]ᵀ ∈ Rnut, vt =

[v(1)ᵀ, . . . , v(t)ᵀ]ᵀ ∈ Rnvt, vP
t = [vP(1)ᵀ, . . . , vP(t)ᵀ]ᵀ ∈ Rnpt, lt = [l(1)ᵀ, . . . , l(t)ᵀ]ᵀ ∈ Rnlt,

φt = [φ(1)ᵀ, . . . , φ(t)ᵀ]ᵀ ∈ Rnφt and dt = [d(0)ᵀ, . . . , d(t− 1)ᵀ]ᵀ ∈ RNt, yielding

xt = Ax0 +Buut +Bvvt,

dt = Euut + Evvt,

Fxxt + Fllt = Fuut + Fvv
P
t + Fφφt + F0,

where It indicates a t-dimensional identity matrix

Eu = It ⊗ Ēu, Ev = It ⊗ Ēv, Fx = It ⊗ F̄x,

Fl = It ⊗ F̄l, Fu = It ⊗ Ēu, Fv = It ⊗ F̄v,

Fφ = It ⊗ F̄φ, F0 = It ⊗ F̄0,

A =



Ā

Ā2

...

Āt


, Bd =



B̄u 0 · · · 0

ĀB̄u B̄u
. . . 0

...
. . . . . .

...

Āt−1B̄u · · · ĀB̄u B̄u


,

Bv =



B̄ 0 · · · 0

ĀB̄v B̄v
. . . 0

...
. . . . . .

...

Āt−1B̄v · · · ĀB̄v B̄v


.
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Table 3.2. Variable description in DAE model

Notation Description Dimension
x a vector collecting heads at tanks nTK = |T |

l
a vector collecting heads
at junctions & reservoirs

nl = |J |+ |S|

u a vector collecting flow at pumps nu = |M|

v
a vector collecting flows
through pipes & valves

nv = |I|+ |V|

vP a vector collecting flows through pipe np = |I|
φ a vector collecting head loss on PRVs nφ = |V|

3.4.2 Cost Functions and Constraints

Multiple objective functions can be included in the stochastic optimal water flow problem

J t1 = u(t)ᵀHu(t)u(t) + fᵀ
u(t)u(t) + f0, (3.18a)

J t2 = ∆u(t)ᵀ∆u(t), (3.18b)

J t3 =
(
x(t)− V safe

)ᵀ (
x(t)− V safe

)
, (3.18c)

where (3.18a) captures the pump operational cost based on time-varying electricity tariffs.

The matrix Hu is positive semi-definite. The control input variation between consecutive

time slots (e.g., ∆u(t) := u(t) − u(t − 1)) can be also penalized in (3.18b) to avoid large

transient in pipes, and to satisfy treatment requirements. Additionally, tank management

requires a safety head level V safe to account for unexpected demand given in (3.18c).

The system constraints are introduced due to the physical nature of the decision variables

(i.e, x and u). We seek to enforce state and input constraints

umin ≤ ut ≤ umax, (3.19a)

xmin ≤ xt ≤ xmax. (3.19b)

where (3.19a) corresponds to actuator limits (e.g., pumps and valves) and (3.19b) captures

bounds on pipe flows, nodal heads and tank levels. Here, xmin and xmax denote the minimum
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and maximum admissible bounds of states. The lower and upper physical limits of actuators

are umin and umax, respectively. In general, these constraints can not be violated strictly due

to the mass conservation principles and physical restriction of components. For the rest of

this chapter, we assume that these hard bounds can be “softened” to non-physical upper and

lower bounds from a pre-specified safe operation zone, which can be violated probabilistically

but results in safety or operational risk [119].

3.4.3 Multi-Period Stochastic Optimal Water Flow

In a deterministic optimal water flow control problem, water demand uncertainty is not

explicitly considered. Since actual water demands can exhibit large variations and unpre-

dictability [44], we model demand stochastically as dt = d̄t + ξt, with a nominal predicted

value d̄ ∈ RNt and a zero-mean forecast error ξt = [ξᵀ1 , . . . , ξ
ᵀ
t ]ᵀ ∈ RNt from a probabil-

ity space (Ω,F ,Pξ). The distribution captures spatiotemporal variations and dependencies

among the demands.

To explicitly account for this stochasticity of water demands, we formulate the following

general stochastic optimal water flow problem to find an optimal strategy for responding

to forecast errors via an optimal control policy for the flow actuators ut = πt(ξt), where

πt : RNt → Rnut is a function from a set Πc of causal policies. Specifically, we consider a

multi-period optimal water flow problem with finite time horizon T

inf
πT∈Πc

T∑
τ=1

EPξ
[
Jτ (xτ , πτ (ξτ ), ξτ

]
, (3.20a)

subject to dT = EuπT (ξT ) + EvvT , (3.20b)

xT = Ax0 +BuπT (ξT ) +BvvT , (3.20c)

FxxT + FllT = FuuT + Fvv
P
T + FφφT + F0, (3.20d)

R
(
umin − πT (ξT )

)
≤ 0, (3.20e)

R
(
πT (ξT )− umax

)
≤ 0, (3.20f)
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R
(
xmin − xT

)
≤ 0, (3.20g)

R
(
xT − xmax

)
≤ 0, (3.20h)

where R donates risk measure, which maps a random variable to a real number and will be

described in more detail shortly. Note that this transformation can be different in general for

each constraint. For constraints that represent physical limits, we consider tightened non-

physical upper and lower bounds on states and inputs from a pre-specified safe operation

zone, which can be violated probabilistically but results in safety or operational risks [119].

Since optimizing over general policies makes problem (3.20) infinite dimensional, we optimize

instead over a set of affine control policies

uτ = Dτξτ + eτ , (3.21)

where eτ ∈ Rnuτ represents a nominal plan for pumps, and the block lower-triangular matrix

Dτ ∈ Rnuτ×Nτ ensures that the controller is causal. In this case, the input design variables

turn to an uncertainty feedback matrix Dτ and nominal input vector eτ . Unlike traditional

state-driven feedback control, the optimal feedback matrix Dτ acts as reserve policies of

pumps to respond to realized water demand variations ξτ .

Substituting the affine control policies into (3.20), the objective function (3.20a) becomes

convex quadratic in Dτ and eτ and depends on the distributional information of ξτ . Since

the policy is affine, the robust equality constraint (3.20b) is equivalent to

EuDT = 1, d̄T = EueT + EvvT . (3.22)

With affine policies, (3.20e)-(3.20h) become

R (DTξT + eT − umax) ≤ 0, (3.23a)

R (umin −DTξT − eT ) ≤ 0, (3.23b)

R (Ax0 +Bu(DTξT + eT ) +BvvT − xmax) ≤ 0, (3.23c)
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R (xmin − Ax0 −Bu(DTξT + eT )−BvvT ) ≤ 0, (3.23d)

We collect all above affine constraints inside the risk measures (3.23a)–(3.23d) into a set

V{1:T} of N` = 2T (nTK + nu) constraints, and the expressions inside the brackets can be

written in a general linear form ai(DT )ᵀξT + bi(eT ), where index i refers to each individual

constraint in V{1:T}.

3.4.4 Chance-Constraints

Using a Value-ar Risk measure, the OWF problem can be posed as a chance-constrained

optimization problem

inf
D,e

T∑
τ=1

EPξ [Jτ (xτ ,uτ , ξτ )] ,

subject to Pξ (ai(DT )ᵀξT + bi(eT ) ≤ 0) ≥ 1− β,

EuDT = 1, d̄T = EueT + EvvT ,

FxxT + FllT = FueT + Fvv
P
T + FφφT + F0,

∀i ∈ V{1:T},

where β ∈ R is the prescribed safety parameter or “risk budget” for the linear constraint in

set V{1:T}. The subscript {1 : T} of set V{1:T} indicates the set exclusively includes the state

and input constraints between time interval [1, T ]. If ξT is normally distributed, then it is

known that the chance constraint can be written as a second-order cone constraint [81, 49].

However, in general chance constraints only restrict the frequency of constraint violations,

not the severity. Since the real distribution is never known in practice, this approach can lead

to underestimation of actual risks and poor out-of-sample performance. In this chapter, we

leverage a data-driven distributionally robust optimization methodology to account for both

frequency and severity of constraint violation via conditional value-at-risk (CVaR) metric

without assuming a particular distribution.
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3.4.5 Stochastic OWF based on Distributionally Robust Optimization and Con-

ditional Value-at-Risk (CVaR)

We treat the constraints (3.23a)–(3.23d) with a risk measure derived from distributionally

robust optimization techniques. It is possible to allow some constraints to be reformulated

by other risk measures and optimization techniques, such as sample average approximation,

moment-based distributionally robust optimization, robust optimization and Gaussian-based

chance constraints. We restrict the model here only for Wasserstein metric distributionally

robust techniques, and leave potential combinations for the future work.

For simplicity, we consider the risk of each constraint individually; it is possible to consider

risk of joint constraint violations, but this is more difficult and we leave it for future work.

Recall each individual affine constraint between the finite time horizon Ht in the set V{t:t̄}

can be written in a compact form as follows. The [t, t̄] here refers to the finite time horizon

[t, t+Ht].

Cti (Dt, et, ξt) = ai(Dt)
ᵀξt + bi(et), t ∈ [t, t̄],

where Cti (·) is the ith affine constraint in the set V{t,t̄}. The CVaR with risk level β of the

each individual constraint in the set V{t,t̄} is

inf
κti

Eξt

{
[Cti (Dt, et, ξt) + κti]+ − κtiβ

}
≤ 0, t ∈ [t, t̄], (3.25)

where κti ∈ R is an auxiliary variable [227]. The expression inside the expectation in (3.25)

can be expressed in the form with risk level β

Qti = max
k=1,2

[
〈aβik(Dt, et), ξt〉+ bβik(κ

t
i)

]
, t ∈ [t, t̄].

This expression is convex in (Dt, et) for each fixed ξt since it is the maximum of two affine

functions. Our risk objective function is expressed by the distributionally robust optimization
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of CVaR

Ĵ tRisk =

t+Ht∑
τ=t

N∑̀
i=1

sup
Qτ∈P̂Nsτ

EQτ max
k=1,2

[
〈aβik(Dτ , eτ ), ξ̂τ 〉+ bβik(κ

τ
i )

]
.

The above multi-period distributionally robust optimization can be equivalently reformulated

the following quadratic program, the details of which are described in [96]. The objective is

to minimize a weighted sum of an operational cost function and the total worst-case CVaR

of the affine constraints in set V{t,t̄} (e.g., nodal head and tank level).

Data-based Distributionally Robust MPC Stochastic OWF:

inf
Dτ ,eτκτi
v,vP,x,l,φ

t+Ht∑
τ=t

{
E[ĴτCost] + ρ sup

Qτ∈P̂Nsτ

N∑̀
i=1

EQτ [Qτi ]
}
,

= inf
Dτ ,eτκτi ,
λτi ,s

τ
io,ς

τ
iko

v,vP,x,l,φ

t+Ht∑
τ=t

{
E[Ĵ tCost] +

N∑̀
i=1

(
λiετ +

1

Ns

Ns∑
o=1

sτio

)}
, (3.26a)

subject to[
EuDt̄ − 1

]
[t,t̄]

= 0NHt , (3.26b)[
Euet̄ + Evvt̄ − d̄t̄

]
[t,t̄]

= 0NHt , (3.26c)[
Fxxt̄ + Fllt̄ − Fuet̄ − FvvP

t̄ − Fφφt̄ − F0

]
[t,t̄]

= 0NHt , (3.26d)

ρ(〈aβik(Dτ , eτ ), ξ̂
o
τ 〉+ bβik(κ

τ
i ) + 〈ςiko, zτ − Fτ ξ̂

o
τ 〉) ≤ sτio, (3.26e)

‖Fᵀ
τ ςiko − ρa

β
ik(Dτ , eτ )‖∞ ≤ λτi , (3.26f)

ςiko ≥ 0, (3.26g)

∀o ≤ Ns,∀i ≤ N`, k = 1, 2, τ = t, ..., t+Ht

where ρ ∈ R+ quantifies the water network operators’ risk aversion. This is a quadratic

program that explicitly uses the training dataset Ξ̂Ns
τ = {ξ̂oτ}o≤Ns . The risk aversion pa-

rameter ρ and the Wasserstein radius ετ allow us to explicitly balance tradeoffs between
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Figure 3.1. Flowchart of data-based distributionally robust stochastic OWF.

efficiency, risk and sampling errors inherent in Ξ̂Ns
τ . The support is modeled as a polytope

Ξτ := {ξτ ∈ RNξτ : Fτξτ ≤ zτ}. The constraint ςiko > 0 holds since the uncertainty set is

not-empty; on the other hand, in a case with no uncertainty (i.e, ςiko = 0), the variable λ

does not play any role and sτio = ρ(〈aβik(Dτ , eτ ), ξ̂
o
τ 〉+ bβik(κ

τ
i )).

Remark 3. There are three important tuning parameters in our proposed multi-period data-

based stochastic OWF (3.26) corresponding to different performance-risk tradeoffs, which all

function in the ways with their unique interpretation

• The Wasserstein radius ε improves out-of-sample performance and mitigates the

effects of inherent sampling errors, which here is our main focus. The decisions opti-

mize performance under the worst-case distributions within Wasserstein distance ε of

the empirical distribution in probability distribution space. A larger ε indicates less re-

liance on the specific training dataset Ξ̂ that describes the real unknown data-generating

distribution, which results in more conservative decisions. The superior out-of-sample

performance is achieved by this adjustable Wasserstein metric, as demonstrated in Sec-

tion 3.5.
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• Risk aversion ρ trades off the operational risk and the nominal operational efficiency.

The proposed stochastic OWF offers the system operators alternative strategies to run

the water distribution networks under different risk levels. The decisions under various

ρ achieve various risk levels. Meanwhile, the out-of-sample performance under fixed risk

aversion is controlled by the adjustable Wasserstein radius.

• CVaR risk level β indicates the risk level of constraints (3.23a)–(3.23d), which trades

off constraint violation magnitudes with nominal operational efficiency.

We fix the risk level parameter β of CVaR to highlight the effects of ε and ρ in the next

section. It would also be interesting to explore the additional effects of changing β; however,

we leave this discussion for future work.

Remark 4. (Successive Linearization for Stochastic OWF (3.26)). The data-based distribu-

tionally robust stochastic optimal water flow (3.26) at tth time interval is solved via successive

linearization algorithm discussed in Section 3.2. Since all coefficients and affine constraints

{A,B,E, F, aβik.b
β
ik} are derived from Laplacian-based network format (3.11), at each succes-

sive linearization iteration for certain time interval, we repeatedly obtain {A,B,E, F, aβik.b
β
ik}

in problem (3.26) based on the linearized updated {L, Q̄} until the linearized errors converge,

and move to the next time period. A flowchart of proposed data-based distributionally robust

stochastic OWF is demonstrated in Fig. 3.1.

3.5 Case Studies

We now demonstrate the effectiveness of the proposed framework with numerical experi-

ments. We use a networks model derived from a portion of the Barcelona drinking water

network [117]. There are 2 reservoirs, 4 water demands, 3 tanks, 2 pumps, 4 valves, and 20

junctions, the physical properties of nodes and links are given in Tables 3.3 and 3.4, respec-

tively. The nominal water demand pattern over 24 hours shown in Fig. 3.3(a) is derived from
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EPANET (a standard software package for analysis of drinking water distribution systems)

[228]. Four demands are located at nodes 8, 15, 16, and 17. Realization of demand fore-

casting errors are generated by evaluating the so-called persistence forecast on the EPANET

demand data, which predicts the water demand at the next time step to be equal to that at

the previous time step. The time-of-use (TOU) electricity price is given in Fig. 3.3(b).

We placed three tanks at Node 23, Node 24 and Node 25 to accommodate the water

demand uncertainties associated with the downstream nodes. The lower and upper tank level

in feet are restricted to hmin
i = 525 and hmax

i = 530,∀i ∈ T . Due to the inherent variability of

water demands, tank level constraint violations may occur. Given the forecasting error data

of water demand, the numerical tests are focused on reducing potential constraint violation

via proposed distributionally robust framework (3.26), and minimizing the operational cost

under certain risk aversion as well. To have a clear and straightforward presentation, only the

lower level constraints of three tanks are modelled in distributionally robust fashion (3.26e)–

(3.26g). Other constraints are handled via sample average approximation (SAA) [171, 36] or

deterministic approach, though it is easy reformulate other constraints with distributional

robustness.

No bound is enforced on water demand forecast errors, which implies the parameters

(i.e., z and F) of polytope supported set in (3.26e)–(3.26f) are set to zero. The variation of

forecast errors increases with the prediction horizon. The number of forecast error samples

in the training data set Ξ̂N
t is Ns = 100. The simulation takes 60 seconds or less to solve

DRO OWF with finite horizon Ht = 4 (hours) using MOSEK Solver [11] via the MATLAB

interface with CVX [135] on a laptop with 16GM of memory and a 2.8GHz Intel Core i7.

Fig. 3.4 visualizes the fundamental tradeoff between the conservativeness of constraint

violation and the water network operational costs during 24 hour operation under various

risk aversion ρ and Wasserstein radius ε. As we increase the Wasserstein radius ε, the pump

cost will increase as well, but leads to more conservative pumps schedule and lower risk of
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Figure 3.2. Barcelona drinking water network includes 25-node, 3 tanks and 2 reservoirs.

Table 3.3. Node setting of the barcelona water distribution network

Node Type
Base

Demand
(GPM)

Node Type
Base

Demand
(GPM)

1 Junction 0 2 Junction 0
3 Junction 0 4 Junction 0
5 Junction 0 6 Junction 0
7 Junction 0 8 Junction 100
9 Junction 0 10 Junction 0
11 Junction 0 12 Junction 0
13 Junction 0 14 Junction 0
15 Junction 100 16 Junction 100
17 Junction 100 18 Junction 0
19 Junction 0 20 Junction 0
21 Reservoir 0 22 Reservoir 0
23 Tank 0 24 Tank 0
25 Tank 0

tank constraint violation. A larger ε results in less constraint violation based on the inherent

sampling errors, and in turn guarantee the a stronger robustness performance, which will

ensure good out-of-sample performance. In addition, with increasing risk aversion ρ, the

CVaR of constraint violation is emphasized, which comes to a higher operational costs and

lower constraint violation.
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(a) Water Demand Pattern
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(b) Time-of-Use Price

Figure 3.3. Time-varying input profiles including water demand pattern and TOU electricity
price. The actual water consumption at each node depends on the based demand setting
shown in Table 3.3. The pump cost function is parameterized in proportional to TOU
electricity price.
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Figure 3.4. Tradeoffs between conservativeness of optimal decisions and pump operational
costs under various Wasserstein radius ε and risk aversion ρ.
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Figure 3.5. Optimal state trajectories of three tanks (i.e., Node 23, Node 24, and Node 25)
for varying Wasserstein radii ε. The dash lines indicate the upper and lower bounds on tank
head. The initial tank level for all three tanks is 525.1 feet. The risk aversion is set to
ρ = 2.8× 104.
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Figure 3.6. Comparison of optimal pump schedule for various value of Wasserstein radius
ε = 0.04, 0.08, 0.16 under certain risk aversion ρ = 2.8× 104.

Fig. 3.5 and Fig. 3.6 show the water level of tanks hTK
T and the optimal nominal pump

schedule eT over T−24 hours under varying Wasserstein radius ε. The tank head trajectories

and pump schedule are re-optimized at each timestep via the closed-loop MPC controller

based on the data-based uncertainty representation (i.e., a Wasserstein ball of distributions

of water demand forecast errors). To prevent the tank level decrease lower then 525 feet,

the pumps need to transport more water to tanks for accommodating the water demand

uncertainties. As the results, the pump are more active during the time-slots with higher

electricity costs, which leads a significant increase of operational costs. This leads to a safer

tank level profiles, as shown in Fig. 3.5. When ε is small, the water consumption mostly

come from tanks to maintain an economic operation, which cause the constraint violation

(e.g., Tank 23 when ε = 0.04). As we increase ε leading to a more conservative decision, all
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pumps sacrifice the operational efficiency and provide more water to increase the tank level

and support the water demands. The tank lower level constraints are satisfied due to the

better robustness to water demand forecast errors.

To demonstrate the effectiveness of the proposed framework (3.26), we also introduce

the EPANET built-in traditional Rule-based Control (RBC) scheme, which has been widely

employed for various water engineering problems. The RBC scheme shares the same control

constraints in (3.26), limits the water heads of three tanks (i.e., Tanks 23, 24 and 25) within

a prescribed safe range (i.e., [525, 530] ft) via binary ON or OFF status of pumps (i.e.,

Pumps 16 and 17). The time step to control pumps is set to one hour, which implies the

pumps check the water levels of tanks every hour and then perform control actions. Note

that Tanks 23 and 24 can only be controlled by Pump 16 while Tank 25 can be managed

by Pumps 16 and 17 simultaneously. Note that the water levels of Tank 23 and Tank 25

possibly direct Pump 16 to the completely conflict control actions (i.e., ON or OFF) if we

do not explicitly prioritize these two tanks. Therefore, we assign the level signal from Tank

23 is the priority for Pump 16 to take control actions if a conflict happens.

Fig. 3.7 illustrates the water levels of three tanks based on the RBC scheme via Monte

Carlo simulations. We randomly generate 100 scenarios of water demand forecast errors,

which follow the Gaussian distribution with zero mean and 20% standard deviation of nom-

inal water demand shown in Fig. 3.3(a). It readily seen that the RBC mechanism fails to

realize the water demand forecast errors, and can not successfully manage the tank heads

located at a prescribed safe bound. In general, it is very hard to parameterize the RBC

control scheme for low risk constraint violation guarantee under the large demand variation,

which is due to its decentralized control structure. The benefit of closed-loop multi-period

distributionally robust optimal water flow based on model predictive control scheme can be

clearly seen via the comparison to the RBC control framework.

In summary, we conclude that our proposed data-based distributionally robust OWF

framework can explicitly incorporate water demand uncertainties, and successfully control
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the tradeoff between operational efficiency, risk of constraint violation and out-of-sample

performance.

1 5 10 15 20 24
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Figure 3.7. State trajectories of tank head (i.e., Tank 23, Tank 24, and Tank 25) after
performing RBC via Monte Carlo simulation including 100 demand scenarios. The dash
lines indicate the upper and lower bounds on tank head.

3.6 Conclusion and Outlook

We propose a data-based distributionally stochastic robust optimal water flow based on

limited information from water demand forecasts. The framework creates and then leverages
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a successive linearization of hydraulic coupling for an efficient computation of multi-period

feedback control policies, which are robust to inherent sampling errors in the training dataset.

We explore the tractability of proposed multi-period OWF problem via the Wasserstein-

based distributional information of ambiguity set centered at the empirical distribution. The

effectiveness and flexibility has been demonstrated on a 25-node water distribution network

for the optimal water pump schedule and tank head management under water demand

uncertainties. The numerical results indicate that our proposed framework has superior out-

of-sample performance then existing control frameworks, and allows flexible parameterization

to systematically exploit the operating strategies of water pumps to explicitly tradeoff the

operational efficiency and constraint violations due to large water demand variations.

Future work includes

• exploring the flexibility and feasibility of the proposed data-based multi-period optimal

water flow under more general network topologies;

• developing a data-based distributionally robust control framework for optimal water

contamination control;

• including operational status of actuators as controllable variables for a distributionally

robust stochastic hybrid MPC OWF framework.

Appendix

Here we provide the constant matrices {A,B,E, F} shown in (3.16) in terms of the network

coefficients in the Laplacian-based linearization (3.11). Recall the tank level dynamics (3.16a)

x(t+ 1) = Āx(t) + B̄uu(t) + B̄vv(t),

where Ā is the nTK-dimension identity matrix and the last two terms on the right side are

re-organized in terms of the network incident matrix Bᵀ
f , the coefficient of tanks ATK

i and
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time interval ∆t

[
B̄u B̄v

]u(t)

v(t)

 =


∆t
ATK

1
· · · 0

...
. . .

...

0 · · · ∆t
ATK
nTK

 [Bᵀ
f ]{T }

︸ ︷︷ ︸[
B̄u B̄v

]

u(t)

v(t)

 .

The operator [·]{T } selects the ith-row of matrix Bᵀ
f , where all node i are collected in the set

T . Similarly, for mass balance d(t) = Ēuu(t) + Ēvv(t) we have

[
Ēu Ēv

]u(t)

v(t)

 = Bᵀ
f

u(t)

v(t)

 .
Finally, recall the mass conservation in DAE model (3.16c)

F̄xx(t) + F̄ll(t) = F̄uu(t) + F̄vv
P(t) + F̄φφ(t) + F0,

and re-write the above equation as follows

[
F̄x F̄l

]
︸ ︷︷ ︸

L

x(t)

l(t)


︸ ︷︷ ︸

h(t)

=

[
F̄u F̄v F̄φ

]
︸ ︷︷ ︸

Bᵀ
f


u(t)

vP(t)

φ(t)


︸ ︷︷ ︸

∆q(t)

+ F0︸︷︷︸
Q̄(t)

.

89



CHAPTER 4

OPTIMAL POWER FLOW WITH STATE ESTIMATION IN-THE-LOOP

FOR DISTRIBUTION NETWORKS1

In this chapter, we propose a framework for integrating optimal power flow (OPF) with state

estimation (SE) in the loop for distribution networks. Our approach combines a primal-

dual gradient-based OPF solver with a SE feedback loop based on a limited set of sensors

for system monitoring, instead of assuming exact knowledge of all states. The estimation

algorithm reduces uncertainty on unmeasured grid states based on a few appropriate online

state measurements and noisy “pseudo-measurements”. We analyze the convergence of the

proposed algorithm and quantify the statistical estimation errors based on a weighted least

squares (WLS) estimator. The numerical results on a 4521-node network demonstrate that

this approach can scale to extremely large networks and provide robustness to both large

pseudo-measurement variability and inherent sensor measurement noise.

4.1 Introduction

The increasing penetration of distributed energy resources (DERs) has provided more flex-

ibility to better explore the benefits of advanced smart grid technologies in distribution

networks. As the heterogeneous control strategies of grid-connected elements dominate dis-

tribution networks, many of the customers will become active and motivated end-users to

1This chapter is based on work supported by funding from US Department (DOE) of Energy Office
of Energy Efficiency and Renewable Energy Solar Energy Technologies Office under contract No. DE-EE-
0007998 and the National Science Foundation (NSF) under grant CMMI-1728605.

Chapter 4 in part is a reprint of material published or under review in:
c© 2020 IEEE. Reprinted, with permission, from Y. Guo, X. Zhou, C. zhao, T. Summers and L. Chen,

“Solving optimal power flow for distribution networks with state estimation feedback”, American Control
Conference, Denver, CO, USA 2020.

c© 2020 IEEE. Reprinted, with permission, from Y. Guo, X. Zhou, C. Zhao, L. Chen and T. Summers,
“Optimal power flow with state estimation in-the-loop for distribution networks”, submitted to IEEE Trans-
actions on Power Systems, 2020.
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optimize their own power usage via optimal power flow (OPF) methods [54, 85, 9, 18, 175].

This requires the power system control scheme to have real-time knowledge about the struc-

ture and state of the distribution network (e.g., operation states, netload variation, device

dynamics, network topology, etc.), and to provide the corresponding real-time responses

(e.g., optimal control inputs. set-points of DERs, etc.) for safe and efficient operation. How-

ever, the current distribution network control paradigm cannot satisfy the above requirement

due to an under-developed information feedback mechanism, and high expense of real-time

system states measurement. Future distribution systems will require more sophisticated and

tightly integrated control, optimization, and estimation methods for these issues.

Most OPF methods for distribution networks in the literature assume complete availabil-

ity of network states to implement various optimal control strategies [191, 50, 51, 182, 32,

247, 59, 209, 202, 192, 280, 3]. However, in practice network states must be estimated with a

monitoring system from noisy measurements, which itself is a challenging problem due to the

increasingly complex, extremely large-scale, and nonlinear time-varying nature of emerging

networks. To solve these issues, the recently proposed OPF frameworks [66, 304, 74, 166]

leverage measurement feedback-based online optimization method to loop the physical mea-

surement information back to OPF controllers, which adapt the OPF decisions to real-time

data to mitigate the effects of inherent disturbances and modelling errors. It is unrealistic

to have real-time physical measurements of system states at every corner of distribution

networks due to heavy communication burdens, end-user privacy concerns, and high costs.

In this chapter, we propose a more general framework than the existing OPF approaches,

which tightly integrates state estimation (SE) techniques [172, 80, 4, 79, 236] into online OPF

control algorithms for distribution networks. This OPF with SE in the loop framework al-

lows us to utilize a limited set of sensor measurements together with a power system state

estimator instead of exact knowledge of network states. The power system state estima-

tor, which may include data from the Supervisory Control and Data Acquisition (SCADA)
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system, phasor measurement units (PMUs), topology processor and pseudo-measurements2,

provides the best available information about network states [214, 5, 80, 79, 172, 293] and

in-turn enables implementation and enhances the performance of OPF controllers. Our ap-

proach allows OPF decisions to adapt in real-time time-varying stochastic DERs and loads,

and compensates for disturbances and modelling errors, since SE results utilize measurement

data from the actual nonlinear system response. The recent paper [210] studied the inter-

action between the dynamic state estimation (i.e., Kalman Filter) and the feedback-based

optimization scheme for voltage regulation in distribution networks. In our work, we mostly

focus on the gradient-based feedback optimization with static SE in the loop for large-scale

distribution networks

A preliminary version of this work appeared in [126], and here we significantly expand

the work in several directions. Firstly, we present a more comprehensive discussion on the

concept of OPF with SE in the loop. Then, we provide a statistical bound to show the

convergence, which explicitly includes the variance of SE in the loop for analysis. This work

also builds all numerical studies on an extremely large-scale 11,000-node distribution network

to demonstrate the flexibility. Finally, we present the numerical analysis of SE in the loop to

further promote its excellent robustness to measurement noises on OPF solvers. The main

contributions are as follows:

1) We formulate a general convex OPF problem subject to power flow equations and

network-wise coupling constraints. To integrate OPF with SE in the loop, we propose

a primal-dual gradient-based OPF algorithm with state estimation feedback. Instead

of requiring full knowledge of all system states, the controller utilizes at every gradient

step real-time monitoring information from state estimation results to inform control

2Due to the lack of real time measurement and stochasticity nature of power netloads in distribution
system state estimation, the nodal power injections are measured by their nominal load-pattern (i.e., the
real value plus zero-mean random deviations), so-called pseudo-measurement, whose information is derived
from the past records of load behaviors [236].
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decisions. Whereas OPF and SE problems for distribution networks have been widely

studied individually, none of the existing literature explores the connection and bridge

the gap between them. Here we are closing the loop between OPF and state estimation

in large-scale distribution networks, which guarantees full availability of state estimates

[112, 280]. This allows us to react to real-time information of system states with limited

number of deployed sensors. In principle, the framework allows a variety of state

estimation methodologies and control strategies in distribution networks. Here, we

illustrate the approach through a voltage regulation problem with voltage magnitude

estimation in the loop.

2) We leverage linear approximations of the AC power flow equations, to facilitate scalable

and computationally efficient OPF problems for SE feedback integration [74, 66, 304].

The voltage profile estimation uses a weighted least squares (WLS) estimator. Con-

vergence of the proposed gradient-based algorithm with state estimation feedback is

analytically established. Additionally, we quantify the statistical estimation errors of

the WLS estimator. This provides a measure of quality of the SE feedback associated

with a particular allocation of sensors across the network.

3) The effectiveness, scalability, flexibility and robustness of the proposed algorithm are

demonstrated on a 4521-node multi-phase unbalanced distribution network with 1043

(aggregated) netloads. With only 3.6% voltage measurement deployment, the inte-

grated OPF controller with SE feedback effectively regulates network voltage. The

distributed algorithm in [306] using linearized distribution flow (LinDistFlow) enables

scaling to extremely large networks. The numerical results also indicate that the pro-

posed OPF controller with SE feedback has excellent performance and robustness to

the inherent measurement noise and estimation errors.
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The rest of this chapter is organized as follows. Section 4.2 discusses the general concept of

OPF with SE in the loop for distribution networks. Section 4.3 formulates an OPF problem

and introduces gradient algorithm with state estimation feedback. Section 4.4 demonstrates

numerical results on voltage regulations and Section 4.5 concludes.

4.2 Optimal Power Flow with State Estimation in the loop

In this section, we propose an OPF solver with state estimation feedback. We first pose

a general problem to highlight the overall approach, and in subsequent sections we detail

the model, objectives, constraints and state estimator for a certain control and monitoring

purpose.

Consider the OPF problem for distribution networks

min
p,q

∑
i∈N

Ci(pi, qi) + C0(p,q), (4.1a)

s.t. g(r(p,q)) ≤ 0, (4.1b)

(pi, qi) ∈ Zi,∀i ∈ N , (4.1c)

where C0(p,q) is a cost function capturing system objectives (e.g., cost of deviation of to-

tal power injections into the substation from nominal values), the local objective function

Ci(pi, qi) captures the generation costs, ramping costs, active power losses, renewable curtail-

ment penalty, auxiliary service expenses and reactive compensation (comprising a weighted

sum thereof) at node i ∈ N . We then define a state vector r(p,q) ∈ RM denoting (combined)

electrical quantities of interests (e.g., voltage magnitude, current injections, power injection

at the substation, etc.), which depends on nodal power injections p := [p1, . . . , pN ]ᵀ and

q := [q1, . . . , qN ]ᵀ through power flow equations3. The constraint function g : RM → RNg

3The power flow relations may represent either full nonlinear power flow, SOCP relaxations, SDP relax-
ations, or various linearization. The general approach of OPF with SE in the loop can be adapted to various
(approximate) power flow mappings. In the rest of this chapter, we use a linearized power flow model to
illustrate the effectiveness of the proposed framework.
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models network constraints, including voltage magnitude, voltage angle, current injection

and line flows. The nodal power injections are constrained to convex and compact feasible

sets Zi.

Figure 4.1. The concept of solving optimal power flow with state estimation in the loop.

Problem (4.1) is typically solved assuming that all system states are available. However,

in practice, there is generally a lack of reliable measurement devices and communication

infrastructure in distribution networks, rendering these conventional OPF approaches im-

practical. Therefore, the main challenges for solving (4.1) in practice involve how to best

integrate estimates of current system states r and understanding tradeoffs between SE per-

formance and sensor deployment quality and OPF controller performance. We will tackle

these by integrating a state estimation feedback loop with a limited number of sensor mea-

surements. This allows the OPF controller to respond to real-time information and update

control decisions despite nodes without measurement in the grid. The overall approach is

illustrated in Fig. 4.1.

In our general framework, the SE techniques may determine the system states using

any or all of SCADA measurements, phasor measurement units (PMUs) measurements,
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pseudo-measurements and topology information to reduce estimation uncertainty. How to

fuse different sources of information into OPF formulations remains largely an open ques-

tion under exploration. We aim to indicate that there are many possibilities and research

direction to potentially improve control and optimization in distribution networks through

tight integration with SE. The increasing penetration of renewable energy resources and dis-

tributed generators enable the distribution networks with smart features, such as demand

response and distributed automation. This allows the networks turn to a more active and

complex system with fast system response. An efficient, real-time monitoring of distribution

networks should be looped into OPF controllers. In the rest of this chapter, we take the

voltage regulation problem with voltage estimation as an illustrative example, which is based

on a few PMU voltage measurements and netload pseudo-measurements.

4.3 Gradient-Based OPF Solver with State Estimation Feedback

4.3.1 System Modelling

Consider a distribution network denoted by a directed and connected graph G(N0, E), where

N0 := N∪{0} is a set of all “buses” or “nodes” with substation node 0 and N := {1, . . . , N},

and E ⊂ N × N is a set of “links” or “lines” for all (i, j) ∈ E . Let Vi := |Vi|ej∠Vi ∈ C

and Ii := |Ii|ej∠Ii ∈ C denote the phasor for the line-to-ground voltage and the current

injection at node i ∈ N . The absolute values |Vi| and |Ii| denote the signal root-mean-

square values and ∠Vi and ∠Ii corresponding to the phase angles with respect to the global

reference. We collect these variables into complex vectors v := [V1, V2, . . . , VN ]ᵀ ∈ CN and

i := [I1, I2, . . . , IN ]ᵀ ∈ CN . We denote the complex admittance of line (i, j) ∈ E by yij ∈ C.

The admittance matrix Y ∈ CN×N is given by

Yij =


∑

l∼i yil + yii if i = j

−yij (i, j) ∈ E

0 (i, j) /∈ E

, (4.2)
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where l ∼ i indicates connection between node l and node i, and yii is the self admittance

of node i to the ground.

Node 0 is modelled as a slack bus. The other nodes are modelled as PQ buses for which

the injected complex power is specified. The admittance matrix can be partitioned asI0

i

 =

y00 ȳᵀ

ȳ Y


V0

v

 .
The net complex power injection then reads:

s = diag(v)
(
Y∗(v)∗ + ȳ∗(V0)∗

)
, (4.3)

where superscript (·)∗ indicates the element-wise conjugate of complex vector v.

To facilitate computational efficiency using convex optimization, here we leverage a lin-

earization of (4.3) as follows:

r = Ap + Bq + r0, (4.4)

where the parameters A, B and r0 can be attained from various linearization methods, e.g.,

[30, 42, 102, 21]. In the rest of this chapter, the linearized coefficient matrices A and B are

fixed over times for simplification. From now on, we limit r(p,q) to the above linearized

power power (4.4). Recall that r ∈ RM represents certain electrical quantities of interests

(e.g., voltage magnitude, current injections, power injection at the substation, etc.).

4.3.2 OPF Formulation and Primal-Dual Gradient Algorithm

In this section, we introduce a general OPF problem and the pertinent gradient algorithm

with idealized measurement feedback4 from nonlinear power flow to reduce modelling errors.

The feasible operating regions Zi depend on the terminal properties of various dispatchable

devices, e.g., inverter-based distributed generators, energy storage systems or small-scale

diesel generators. We make the following assumptions.

4The “idealized” refers to the full measurement of vector r without noise.
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Assumption 3 (Slater’s condition). There exists a strictly feasible point within the operation

region (p,q) ∈ Z, where Z := Z1 × . . .×ZN , so that

g(r(p,q)) < 0.

Assumption 3 suffices strong duality for problem (4.1).

Assumption 4. A set of local objective functions Ci(pi, qi), ∀i ∈ N are continuously differen-

tiable and strongly convex as functions of (pi, qi), and their first order derivative are bounded

within their operation regions indicated as (pi, qi) ∈ Zi,∀i ∈ N ; The system-wise objec-

tive function C0(p,q) is continuously differentiable and convex with its first-order derivative

bounded. Furthermore, the constraint function g is continuously differentiable and convex

with bounded derivatives on its domain.

The regularized Lagrangian L for (4.1) is

L =
∑
i∈N

Ci(pi, qi) + C0(p,q) + µᵀg(r(p,q))− η

2
‖µ‖2

2, (4.5)

where µ ∈ R
Nµ
+ is the dual variable vector associated with the general inequality constraints

and we keep the feasible regions µ ∈ R
Nµ
+ and (p,q) ∈ Z implicit. To facilitate proof of

convergence, the Lagrangian (4.5) includes a Tikhonov regularization term −η
2
‖µ‖2

2 with a

prescribed small parameter η that introduces bounded discrepancy. The upshot of having a

regularized term in Lagrangian (4.5) is that the gradient-based approaches can be applied to

(4.5) to find an approximate solution of the original Lagrangian with improved convergence

properties. The discrepancy due to the regularized term discussed and quantified in [148].

Then to solve (4.1) we come to the saddle-point problem

max
µ∈RNµ

+

min
(p,q)∈Z

L (p,q,µ) , (4.6)
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which leads to an iterative primal-dual gradient algorithm to reach the unique saddle-point

of (4.6)

rk = Apk + Bqk + r0, (4.7a)

pk+1 =
[
pk − ε∇pL|pk,qk,µk

]
Z , (4.7b)

qk+1 =
[
qk − ε∇qL|pk,qk,µk

]
Z , (4.7c)

µk+1 =
[
µk + ε∇µL|rk,µk

]
R
Nµ
+
, (4.7d)

where ε > 0 is a constant stepsize to be determined and the operator [·]Z project onto the

feasible set Z = ×i∈NZi 5. The operator [·]
R
Nµ
+

projects onto nonnegative orthant.

The updates (4.7) are represented compactly by the mapping

Φ : {pk,qk,µk} 7→


∇pL|pk,qk,µk

∇qL|pk,qk,µk

−∇µL|rk(pk,qk),µk

 ,
so that (4.7) can be written as

xk+1 =
[
xk − εΦ(xk)

]
R
Nµ
+ ×Z , (4.8)

where xk := [(pk)ᵀ, (qk)ᵀ, (µk)ᵀ]ᵀ. Under Assumption 4, it can be shown [306] that Φ is

strongly monotone and Lipschitz continuous, i.e., it satisfies for all feasible points x1 and x2

and for some constants M > 0 and L > 0

(Φ(x1)− Φ(x2))ᵀ (x1 − x2) ≥M‖x1 − x2‖2
2, (4.9)

‖Φ(x1)− Φ(x2)‖2
2 ≤ L2‖x1 − x2‖2

2. (4.10)

We now have the following result

5We use the projection operator [·]Z in primal updates instead of [·]Zp and [·]Zq , since the feasible sets of
active and reactive power are not independent, but correlated based on the terminal apparent power limits.
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Theorem 1. Consider the primal-dual gradient algorithm (4.7) for the optimization problem

(4.1) based on the regularized Lagrangian (4.5). If the step size ε satisfies

0 < ε ≤ ε̄ < 2M/L2, (4.11)

for some ε̄, algorithm (4.7) converges to the unique saddle point of (4.5).

The optimization problem (4.1) and gradient algorithm (4.7) are based on a linearized

power flow to guarantee its convexity and prove convergence to the saddle point. However,

linearization errors cause the solution of (4.7) to be suboptimal or even infeasible for the

system with nonlinear power flow. To address this issue, feedback-based online optimization

methods [66, 31, 304] have been leveraged to reduce the effects of modelling error. In

particular, by replacing (4.7a) with following nonlinear power flow

rk = f(pk,qk), (4.12)

that obtained from the physical system, these measured values rk can be used, instead of an

approximate model, to update dual variables in (4.7d). Convergence to a bounded range of

the optimum can be analytically shown for such implementations, and this also facilitates a

real-time implementation that can track the time-varying grid conditions [74, 304].

However, one crucial issue of such feedback-based algorithm has been largely overlooked:

in practice, there are too few monitoring devices in distribution systems to measure all

components of r, and therefore it is not possible to directly implement feedback-based algo-

rithms to solve the problem (4.1). Our preliminary results [126] demonstrated that limited

knowledge of system states can lead the OPF controller to cause constraint violations.

To enable an implementation of feedback-based OPF algorithms in distribution networks,

and also to improve performance of algorithms that make use of “pseudo-measurements”, we

integrate a state estimation algorithm based on a sparse set of available measurements, before

performing the dual variable update (4.7d). This allows us to utilize improved information
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on the network state to make decisions, specifically improving information at nodes without

measurement of the grid where there are no direct measurements. Fig. 4.2 illustrates the

proposed OPF framework with state estimation in the loop.

Figure 4.2. The diagram of the proposed optimal power flow problem with SE in the loop.

4.3.3 State Estimation in the loop

We consider zk = [(pk)ᵀ, (qk)ᵀ]ᵀ the system states at iteration k, and the grid measurement

model

yk = h(zk) + ξk, (4.13)

where yk ∈ RL is a measurement vector received at time k comprising raw noisy measure-

ments from sensors and pseudo-measurements (which include real and reactive power injec-

tions, real and reactive power flow, and voltage magnitude and angles), and h : RM → RL

is a measurement function. The vector ξk ∈ RL models measurement errors, which are

assumed to be independent and identically distributed and subject to Gaussian distribution

N(0,Σ) where Σ ∈ RL×L
+ is a diagonal matrix. The pseudo-measurements are modeled as

sensor measurements corrupted by high-variance Gaussian noise based on historical data

(e.g., customer billing data and typical load profile) that provide rough information about

variations in the state of the grid [112].
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To estimate grid states from the available measurements, we consider the WLS estimator

[112, 280, 305]:

ẑk = argmin
zk

1

2

(
yk − h(zk)

)ᵀ
W
(
yk − h(zk)

)
, (4.14)

where the weight matrix is defined as W = Σ−1. The estimated quantities of interest

r̂k(ẑk) is uniquely determined by the states ẑk through power flow equations. Existence and

uniqueness of a solution to (4.14) require certain properties of the measurement function.

Definition 2 (Full Observability6[4, 281]). The system state is called fully observable if

zk = 0 is the only solution for h(zk) = 0, which allows a unique solution to (4.14).

Assumption 5. We assume that the distribution system state with measurements (4.13) is

fully observable.

Since distribution networks typically have only a sparse set of real-time measurements

from deployed sensors, we require enough pseudo-measurements to ensure full observability.

It is always possible to include enough pseudo-measurements to ensure full observability

and satisfy Assumption 5. The effectiveness combining real measurements and pseudo-

measurements has been observed in [305, 91].

Fig. 4.2 and Algorithm 1 illustrate and describe the proposed OPF controller with the

state-estimation feedback loop. Note that the step 2 in Algorithm 2 is not implemented in

the proposed OPF controller, but instead is a realization of the power system state’s physical

response rk resulting from gradient updates on nodal power injections (pk,qk). We utilize

SE in the loop to compute a state estimate r̂k, which then contributes to the update of dual

variables µk+1 in step 7. Our numerical experiments in Section 4.4 compare this approach

with the direct use of noisy measurements and pseudo-measurements without an estimation

scheme.

6This definition should be distinguished from observability of linear dynamical systems. Here, we limit the
definition of observability to power system static state estimation problems [236] throughout this manuscript.
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Algorithm 2 (OPF with SE in the loop)

Require: netload initialization (p0,q0) and µk

1: for k = 0 : K do
2: rk ← nonlinear power flow (pk,qk)
3: receive system measurement yk

4: estimate the system states ẑk based on yk and calculate the electrical quantities of
interest r̂k(ẑk)

5: pk+1 =
[
pk − ε∇pL(pk,qk,µk)

]
Z

6: qk+1 =
[
qk − ε∇qL(pk,qk,µk)

]
Z

7: µk+1 =
[
µk + ε∇µL(r̂k,µk)

]
R
Nµ
+

8: end for

4.3.4 Convergence Analysis

The computations and updates in steps 5-7 of Algorithm 1 are written more explicitly as

ẑk = argmin
zk

1

2

(
yk − h(zk)

)ᵀ
W
(
yk − h(zk)

)
, (4.15a)

pk+1 =
[
pk − ε

(
∇pC(pk,qk) +∇pC0(pk,qk) + Aᵀ∇rg(r)ᵀµk

)]
Z
, (4.15b)

qk+1 =
[
qk − ε

(
∇qC(pk,qk) +∇qC0(pk,qk) + Bᵀ∇rg(r)ᵀµk

)]
Z
, (4.15c)

µk+1 =
[
µk + ε

(
g(r̂k(ẑk))− ηµk

)]
R
Nµ
+
, (4.15d)

This iteration (4.15), associated with step 1 to step 7 in algorithm 1, is performed until

convergence.

As the state estimation in distribution networks has been widely discussed for different

applications [214], the existing literature shows that these type of methods lead to an accurate

and computationally efficient approximation under nominal operating condition.

For the purpose of performance analysis, we next define Φ̃(xk) as the gradient mapping

with nonlinear power flow feedback:

Φ̃ : {pk,qk,µk} 7→


∇pL|pk,qk,µk

∇qL|pk,qk,µk

−∇µL|r̃k(pk,qk),µk

 ,
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where the linearized power flow rk(pk,qk) is replaced with its nonlinear counterpart

r̃k(pk,qk) = f(pk,qk).

Finally, we define the gradient mapping with SE in the loop as Φ(xk), where the dual

variables are updated using the SE results r̂k from (4.14) to update the dual variables

Φ : {pk,qk,µk} 7→


∇pL|pk,qk,µk

∇qL|pk,qk,µk

−∇µL|r̂k(pk,qk),µk

 .
Assumption 6. There is a uniform bound on the squared error of the gradient update due

to state estimation, i.e., there exists α > 0 such that

E
[
‖Φ(xk)− Φ(xk)‖2

2

]
= σ2

k ≤ α, ∀xk. (4.16)

This bound always exists and is realistic due to the physical limits of network states. We

pose a general bound on the SE in the loop in Assumption 4 to understand how the noisy

measurements iteratively interact with the feedback optimization schemes. We define the

estimation error variance from SE in the loop of the saddle point of (4.6) as:

σ2
∗ := E

[
‖Φ(x∗)− Φ(x∗)‖2

2

]
.

Assumption 7. There is a uniform bound on the norm of the squared distance between

update with SE in the loop and the update that uses the actual nonlinear power flow in

(4.12), i.e., there exists ρ > 0 such that

‖Φ(xk)− Φ̃(xk)‖2
2 ≤ ρ, ∀xk. (4.17)

This discrepancy also includes the difference raised by the linear estimator and real values

based on the nonlinear power flow.
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Theorem 2. Suppose the step size ε satisfies the condition (4.11) from Theorem 1. Under

Assumptions 6-7, the sequence {xk} generated by Algorithm 1 satisfies

lim
k→∞

sup E
[
‖xk+1 − x∗‖2

2

]
=

ρ+ 3α

2M/ε− L2
, (4.18)

where x∗ = [(p∗)ᵀ, (q∗)ᵀ, (µ∗)ᵀ]ᵀ is saddle point of L in (4.6).

We refer the proof to the Appendix.

The result (4.18) from Theorem 2 provides an upper bound on the expected squared dis-

tance between the sequence {xk| xk := [(pk)ᵀ, (qk)ᵀ, (µk)ᵀ]ᵀ, k ≤ K,K → ∞} generated by

our proposed OPF with SE feedback algorithm (4.15) and the saddle point x∗ of (4.6). This

analytical bound indicates that our proposed approach has robust performance to estimation

errors and measurement noise.

1. Inherent Measurement Noise: The online measurements by PMUs are typically within

1% ∼ 2% of the actual values. The pseudo-measurements of active and reactive power

can be regarded as a rough initialization (with up to 50% variations in comparison to

actual values). These errors can be reduced through the estimation phase in (4.14),

which improves decisions from the OPF controller with SE feedback (4.15a), improving

robustness to measurement noise and power variability;

2. Linearization Approximation Errors: The OPF-phase (and some of state estimators)

in the proposed algorithm utilize the linearized power flow to promote computational

efficiency in gradient calculation. The discrepancy between linearized and nonlinear

power flow is quantified in (4.17) by ρ, when set-points (pk,qk) are realized by the

nonlinear network power flow.

Intuitively, this discrepancy depends on 1) the step size, the monotonicity and Lipschitz

coefficients; 2) the difference between nonlinear power flow and linearized power flow and
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3) a general bound on the covariance of the in the loop SE. Overall, the estimation errors

of the in-the-loop SE will not be iteratively accumulated with increasing number of OPF

iterations. Moreover, the bound characterized in (4.18) can be arbitrarily small if we choose

small enough ε.

Remark 5. (Feedback-based OPF). For solving an optimal power flow problem in a large-

scale distribution network, our methodology can effectively reduce the computational com-

plexity by adopting the linearized relationship in the problem formulation and compensating

the modeling error with the closed-loop feedback from the nonlinear model. State estimation

serves to bridge the gap between theoretic design where all quantities of interest are measured

and the reality where only a few nodes are equipped with measuring devices. Analytical char-

acterization of the model-based feedback algorithm for solving OPF can be found in a few

recent works [66, 74]. Extending the convergence analysis based on the nonlinear power flow

will be pursued as a future research effort.

4.3.5 Estimation Error Analysis

In this subsection, we analytically quantify the errors of the SE algorithm under a linearized

measurement model. A linear measurement model is given by

yk = Hzk + ξk,

where H ∈ RL×M is a measurement matrix that could be obtained by linearizing the non-

linear measurement function around a particular nominal operating condition.

For the linear WLS problem

min
zk

1

2

(
yk −Hzk

)ᵀ
W
(
yk −Hzk

)
,

the closed-form analytical solution is given by ẑk = (HᵀWH)−1 HᵀWyk. When the matrix

HᵀWH is non-singular (which occurs when W is positive definite and H is full column
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rank), the estimate can be expressed as

ẑk = (HᵀWH)−1 HᵀWHzk + (HᵀWH)−1 HᵀWξk

= zk + (HᵀWH)−1 HᵀWξk.

The WLS estimator is unbiased (since E
[
ẑk
]

= zk due to the noise being zero mean), and the

variance is given by Var
[
ẑkj
]

=
∑n

i=1 Γjiσ
2
i , where Γji denotes the ji-th element of the Γ =

(HᵀWH)−1 HᵀW, and σ2
i is the ith diagonal element of the measurement covariance matrix

Σ. The confidence intervals for components of the state estimate ẑk can be constructed as

ẑkj ± c
√

Var
(
ẑkj
)

= ẑkj ± c

√√√√ n∑
i=1

Γjiσ2
i ,

where c can be chosen based on the prescribed confidence level. In addition to the bound in

Theorem 2, the confidence intervals provide a numerical performance metric on the severity

of estimation errors within the OPF control loop. In the next section, we will use this analysis

to quantify estimation errors from voltage measurements and netoad pseudo-measurements.

4.4 Numerical Results

In this section, we use a modified three-phase unbalanced 11,000-node distribution network

shown in Fig. 4.3 to demonstrate the effectiveness and scalability of the proposed OPF

solver with SE in the loop. We model the primary loads of this system in detail and merge

the secondary loads into distribution transformers, which lumps the system into a 4521-

node distribution network. This extremely large system is divided into 5 clusters and then

we utilized a spatially distributed optimization algorithm for computational affordability.

The details of multi-phase power flow modelling and the feasibility of distributed algorithm

were discussed in our companion paper [306]. Here, we focus on closing a loop between

OPF and SE to solve a general OPF problem. We explore a tradeoff between sensing
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Figure 4.3. A 11,000-node distribution network. This testbed is constructed by connecting an
IEEE 8,500-node distribution network and an EPRI Ckt7 test feeder at PCC. The primary
side of this modified feeder is modelled in detail, while the loads on secondary side are
merged into distribution transformers. This lumps the 11,000-node testbed into a 4521-node
distribution network.

and communication effectiveness and performance of OPF controllers in an extremely large

network.

We consider a voltage regulation problem where the electrical quantities of interests

is voltage magnitude. In particular, we specify the vector r to voltage magnitude vector

r := |v| := [|v1|, . . . , |vN |]ᵀ ∈ RN
++ and consider

OPF-V: min
p,q,|v|

∑
i∈N

Ci(pi, qi) + C0(p,q),

s.t. |v| = Ap + Bq + |v0|,

v ≤ |v| ≤ v̄,

(pi, qi) ∈ Zi,∀i ∈ N .
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(a) normal bound (b) tighter bound

Figure 4.4. Voltage profile of OPF controller with SE in the loop. The black dash line
indicates the lower voltage bound, i.e., 0.95 p.u.. After we utilize a tighter bound [0.96, 1.05]
to compensates the inherent errors of SE in the loop, the voltage profile on the right then
meets the constraint.

The inequality constraints capture the lower and upper bounds (v, v̄) of voltage magnitudes.

In particular, we take linear approximation for AC power flow to express |v| as a linear

function of power injection (p,q). The coefficient matrices (A,B) of the linearized voltages

and normalized vector |v0| can be attained from numerous linearization methods, e.g., [22,

30, 102]. The gradient-based OPF controller (4.15) utilizes the online voltage magnitude

measurement and voltage estimation to make the system converge. We consider a cost

function Ci(pi, qi) = (pi−p0
i )

2 +(qi−q0
i )

2 that minimizes the deviation of the power setpoints

(pi, qi) from their nominal/preferred level (p0
i , q

0
i ) for node i. The system objective function

C0(p) penalizes the deviation of the total active power injection P0(p) at substation from

its preferred values P̃0 with a small weighted factor as C0(p) = α(P0(p) − P̃0)2. Here, we

choose a very small α = 0.0005 so that we focus on the voltage regulation.

The default voltage profile of system in Fig. 4.3 without any control7 is given by OpenDSS

[90] shown in blue dots in Fig. 4.4. The voltage limits v̄ and v are set to 1.05 and 0.95 p.u.

7We disable all rule-based control of voltage regulators, local capacitors and low-voltage transformers,
etc., and then only solve the nonlinear power flow.
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This particular network has a significant under-voltage situation. We implement Algorithm

1 to solve the above voltage regulation problem, while minimizing the objective. We consider

distributed energy resources (DERs) with box constraints. The default netload settings can

be found in [90, 94]. No storage device, PV and distributed diesel generator is included

here for simplicity. Note that the proposed framework has the generality and flexibility to

additionally include these controllable devices for various control objectives.. No storage

device, PV and distributed diesel generator is included here for simple demonstration. Note

that the proposed framework has the generality and flexibility to additionally include these

controllable devices for various control objectives.

To have a clear picture of voltage level for OPF controller, most of the literature assumes

that we have full knowledge of the real-time voltage information, which requires an unrealis-

tic sensor deployment, extreme communication, and huge investment. To tradeoff these two

issues and facilitate a practical OPF controller for acceptable performance, we randomly de-

ploy voltage magnitude measurements at 3.6% of the nodes with measurement noise subject

to Gaussian distribution with zero mean and 1% standard deviation. We also have the load

pseudo-measurements for all nodal injections (i.e., active and reactive power) with significant

noise (e.g., zero mean and 50% standard deviation of real values), which will guarantee the

full observability of SE in the loop. The voltage information of the whole network will be fed

back to OPF controller based on the voltage estimation results. The estimated active and

reactive power in distribution networks are the primary estimation variables from the SE in

the loop. The estimated voltage magnitudes are determined by the primary estimation via

nonlinear power flow. The detailed problem formulation of voltage magnitude estimation for

distribution networks can be found in our companion paper [305]. Note that the simulation

is conducted on a desktop with AMD Ryzen 7 2700X Eight-Core Processor CPU@3.7GHz,

64GM RAM, Python 3.7 and Windows 10. We implement Algorithm 1 with the step-size

7× 10−4 for primal updates and 1× 10−3 for dual.
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Fig. 4.4 visualizes the voltage profile regulated by the OPF controller with SE in the loop.

In order to prevent voltage from failing below 0.95 p.u., the netloads must be curtailed based

on the SE feedback information. The voltage of most nodes (i.e., orange dots) have been

bounded within [0.95, 1.05]. There are few voltages just located across the lower bound with

slight variations. This is due to the feedback signal containing the voltage estimation errors.

To understand the severity of these estimation errors due to sensor noise and large variation

of pseudo-measurement, we use the analysis in Section 4.3.5 to quantify the statistical esti-

mation error numerically. Fig. 4.5 and Fig. 4.6 visualize the average and maximum errors of

voltage estimation, and the comparison with analytically calculated confidence intervals over

each OPF gradient step. Most of average errors over 1000 OPF iterations are bounded by

the 99% confidence interval. For comparison purpose, we launch an ideal situation where the

OPF solvers explicitly implement decisions based on the noisy measurement of all voltage

magnitudes. The noises of the raw measurements are subjected to the Gaussian distribution

with zero mean and 1% standard deviation of their true values. Based on the numerical

analysis in Fig. 4.5, we conclude that having SE in the loop will significantly reduce errors

due to inherent measurement noise compared to direct use of raw measurements. Also, the

proposed SE in the loop can mitigates the effects of measurement errors on OPF controller

performance.

To resolve the feedback estimation errors and further improve the performance of OPF

controllers, we give a tighter lower bound (i.e., [0.96, 1.05]) based on the statistical analysis

of SE errors. As a result shown in Fig. 4.7, the network curtails more netloads to achieve a

more conservative voltage profile, which leads to a higher operational cost. We emphasize

that there is always a tradeoff between: 1) cost of the measurement system (e.g., number of

deployed sensors, communication infrastructure) and 2) OPF controller performance (e.g.,

robustness, feasibility and optimality). In general, our proposed approach provides utilities

and system operators a framework to systematically design OPF controllers under a limited

set of sensor measurements.
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Figure 4.5. Comparison of estimation errors between SE in the loop and the use of raw
voltage measurements. The running average of average/maximum errors show that the SE
in the loop yields less error than using raw measurements.

Figure 4.6. Comparison of the average estimation errors with different confidence intervals
over 1000 OPF iterations.
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Figure 4.7. Total cost with SE in the loop over 1000 OPF iterations.

Overall, we conclude that the proposed OPF controller with SE feedback is able to

systemically reduce estimation error of voltages at unmeasured nodes, successfully achieve

voltage regulation, and improve robustness to measurement and estimation errors. The

benefits of closing the loop between OPF controllers and state estimators can be clearly

observed from the perspectives of effectiveness, robustness and efficiency.

4.5 Conclusions and Outlooks

In this chapter, we proposed a general optimal power flow controller with state estimation

feedback to facilitate the operation of modern distribution networks. The controller depends

explicitly on the state estimation results derived from system measurements. In contrast to

existing works, our method utilizes a feedback loop to the OPF controller to estimate the

system voltages from a limited number of sensors rather than making strong assumptions on

full observability or requiring full state measurements. The performance of our design is an-
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alyzed and numerically demonstrated. The numerical results demonstrate the effectiveness,

scalability, and robustness of the proposed OPF controller with SE in the loop.

Our results on OPF problem launched an initial step towards closing a loop between

control and state estimation in power systems. There are several lines of future works that

can extend the present results in various ways to more fully explore the benefits, and discover

the limitations of having SE in the loop for OPF controllers. Future work includes

• performance evaluation of various OPF formulations with different SE techniques in

the loop;

• optimal sensor placement with SE in the loop for better OPF performance;

• OPF & SE in the loop co-design considering the estimation errors for a more efficient

communication structure in a real network;

• convergence analysis based on the nonlinear power flow setting;

• performance discussions with different distributed algorithms, e.g., ADMM;

• extension with the time-varying power flow linearization.
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Appendix

Proof of Theorem 2

Now we are ready to show the convergence of Algorithm 2. The expected distance between

the generated sequence {xk+1} and the saddle point of L can be characterized as:

E
[
‖xk+1 − x∗‖2

2

]
≤ E

[
‖xk − εΦ̃(xk)− x∗ + εΦ(x∗)‖2

2

]
= E

[
‖xk − εΦ̃(xk) + εΦ(xk)− εΦ(xk)− x∗ + εΦ(x∗)

+ εΦ(x∗)− εΦ(x∗)‖2
2

]
≤ E

[
‖xk − εΦ(xk)− x∗ + εΦ(x∗)‖2

2 + ε2‖Φ̃(xk)− Φ(xk)‖2
2

+ ε2‖Φ(x∗)− Φ(x∗)‖2
2

]
= E

[
‖xk − εΦ(xk) + εΦ(xk)− εΦ(xk)− x∗ + εΦ(x∗)

+ εΦ(x∗)− εΦ(x∗)‖2
2 + ε2‖Φ̃(xk)− Φ(xk)‖2

2

+ ε2‖Φ(x∗)− Φ(x∗)‖2
2

]
≤ E

[
‖xk − εΦ(xk)− x∗ + εΦ(x∗)‖2

2

]
+ E

[
ε2‖Φ(xk)− Φ(xk)‖2

2 + 2ε2‖Φ(x∗)− Φ(x∗)‖2
2

]
+ ε2‖Φ̃(xk)− Φ̄(xk)‖2

2

≤ E
[
‖xk − εΦ(xk)− x∗ + εΦ(x∗)‖2

2

]
+ ε2

(
ρ+ σ2

k + 2σ2
∗
)

≤ E
[
‖xk − x∗‖2

2

]
+ E

[
‖εΦ(xk)− εΦ(x∗)‖2

2

]
− 2ε

(
Φ(xk)− Φ(x∗)

)ᵀ (
xk − x∗

)
+ ε2

(
ρ+ σ2

k + 2σ2
∗
)

≤
(
ε2L2 − 2εM + 1

)
E
[
‖xk − x∗‖2

2

]
+ ε2

(
ρ+ σ2

k + 2σ2
∗
)
,

(4.20)

where the first inequality is due to the non-expansiveness of the projection operator, the

next two inequalities depend on the triangle inequality, the fourth inequality comes from
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(4.16)–(4.17), and the last two inequalities are because of the strong monotonicity (4.9)

and Lipschitz continuity (4.10) of the operator Φ. Next, we let ∆ = ε2L2 − 2εM + 1 and

recursively implement the steps above until k = 0 to have

E
[
‖xk+1 − x∗‖2

2

]
≤ ∆k+1‖x0 − x∗‖2

2 + ε2
(
ρ+ 2σ2

∗
)(1−∆k+1

1−∆

)
+ ε2

k∑
i=0

∆k−iσ2
k (4.21a)

< ∆k+1‖x0 − x∗‖2
2 + ε2 (ρ+ 2α)

(
1−∆k+1

1−∆

)
+ ε2

1−∆k+1

1−∆
α. (4.21b)

By applying the SE estimation variance bound in Assumption 6, (4.21a) is relaxed to (4.21b).

Then we have the step size chosen as 0 < ε ≤ ε̄ < 2M/L2 from Theorem 1, which leads

to 0 < ∆ ≤ ε̄2L2 − 2ε̄M + 1 < 1. As k → ∞, ∆k+1 on the right-hand-side in (4.21b) will

vanish. Given such ∆ and any feasible initial point x0, we let k approaches the infinite and

take supreme on the right side of (4.21b) to get the expectation of this discrepancy as

lim
k→∞

sup E
[
‖xk+1 − x∗‖2

2

]
=

ρ+ 3α

2M/ε− L2
.

This concludes the proof.
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CHAPTER 5

A PERFORMANCE AND STABILITY ANALYSIS OF LOW-INERTIA

POWER GRIDS WITH STOCHASTIC SYSTEM INERTIA1

Traditional synchronous generators with rotational inertia are being replaced by low-inertia

renewable energy resources (RESs) in many power grids and operational scenarios. Due to

emerging market mechanisms, inherent variability of RESs, and existing control schemes, the

resulting system inertia levels can not only be low but also markedly time-varying. In this

chapter, we investigate performance and stability of low-inertia power systems with stochastic

system inertia. In particular, we consider system dynamics modeled by a linearized stochas-

tic swing equation, where stochastic system inertia is regarded as multiplicative noise. The

H2 norm is used to quantify the performance of the system in the presence of persistent

disturbances or transient faults. The performance metric can be computed by solving a gen-

eralized Lyapunov equation, which has fundamentally different characteristics from systems

with only additive noise. For grids with uniform inertia and damping parameters, we derive

closed-form expressions for the H2 norm of the proposed stochastic swing equation. The

analysis gives insights into how the H2 norm of the stochastic swing equation depends on 1)

network topology; 2) system parameters; and 3) distribution parameters of disturbances. A

mean-square stability condition is also derived. Numerical results provide additional insights

for performance and stability of the stochastic swing equation.

1This chapter is based on work supported by the National Science Foundation (NSF) under grant CMMI-
1728605.

Chapter 5 in part is a reprint of material published in:
c© 2019 IEEE. Reprinted, with permission, from Y. Guo and T.H. Summers, “A performance and sta-

bility analysis of low-inertia power grids with stochastic system inertia”, American Control Conference,
Philadelphia, USA 2019.
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5.1 Introduction

Environmental and sustainability concerns are forcing unprecedented charges in the modern

electric power system. The continued replacement of traditional synchronous generators by

renewable energy sources (RESs) in power systems is raising concerns about their stability.

As the penetration levels of RESs reach substantial fractions of total generation, power

systems will require more low-inertia RESs to participate in frequency and voltage control.

The inherent variability of RESs can produce high amplitude and persistent disturbances,

which may adversely affect stability. Due to emerging market mechanisms and deregulated

existing control schemes of RESs, the resulting system inertia levels can not only be low but

also markedly time-varying. This system-level inertia variation together with unpredictable

RESs and net loads make frequency control and power system stabilization more challenging.

Future power systems need more sophisticated stochastic dynamic models and stochastic

control methods for stability and performance analysis.

Many issues of power system stability have been well studied in recent decades through

mathematical analysis and computational techniques [60, 58, 152, 28, 249, 211, 195, 86,

179, 6]. However, many of the underlying assumptions and models must be called into

question in the context of low- and variable-inertia power systems. The decreasing system

inertia results in higher rate of change of frequency, which requires controllers to respond

faster to the system dynamics. In addition, the intermittent disturbances from RESs are

spatially distributed over power networks, which requires that performance and stability

analysis consider various grid topologies and the diverse dynamics of various grid-connected

components.

Many challenges and related solutions for low-inertia power grid stability have been high-

lighted and discussed in [254, 255, 151, 274, 250]. Recently, stability analysis and control

techniques have been proposed and have demonstrated their effectiveness for system stabiliza-

tion [23, 78, 303, 88, 37, 249, 211, 86, 307, 243, 67, 252, 238, 302, 183, 71, 165, 6, 187, 7]. Vir-
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tual inertia emulation is an approach to control the terminal behavior of inverter-interfaced

RESs to mimic inertial response of conventional synchronous machines [23, 78, 303, 88, 37].

Recent works on virtual oscillators have shown that oscillator-based control strategies have

advantages in faster response and global convergence [67, 252, 238]. Also, distributed control

methodologies have been implemented on generation and load sides to provide effective ways

for frequency stabilization [88, 302, 183, 71, 165]. Recent stability analyses have demon-

strated that the efforts to maintain synchronous stability in low-inertia power grids depend

on grid structure, node dynamics and coupling strength [249, 211, 86, 307, 243].

Overall, this line of research has explored useful solutions for the well recognized issues

in low-inertia power systems. However, a large portion of unpredictable RESs will possible

cause the system inertia to be not just low but also significantly time-varying. A few recent

analysis consider the effects of system inertia variability raised by RESs [6, 7, 187, 212], but

none of works explicitly consider a rigorous performance and stability analysis with respect

to a stochastic system inertia model. As the inverter-based RESs dominated the generation,

some RESs are required to participate in frequency and voltage control in a low/no-inertia

power grid. The time-varying system inertia profiles and the heterogeneous allocation of

inertia can lead to destabilizing effects, which complicates and challenges stability analysis

and stabilization control in power systems.

In this chapter, we investigate performance and stability of low-inertia power systems with

stochastic system inertia. In particular, we consider system dynamics modeled by a linearized

stochastic swing equation, where stochastic system inertia is regarded as multiplicative noise.

The main contributions are as follows:

• We consider the frequency dynamics of a low-inertia power grid as a stochastic linear

system with both multiplicative (due to inertia variations) and additive noise (due to

power injection disturbances), which connects stability analysis of a linearized swing

equation with a generalized Lyapunov equation.
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• We quantify the system H2 norm in terms of various outputs, which measures system

performance in the presence of multiplicative and additive disturbances. The closed-

form H2 norm of a homogeneous power grid is derived and discussed. In contrast to

existing work with only additive disturbances, we observe that the system H2 norm

depends in fundamentally different ways on 1) network topology; 2) system parameters;

3) distribution parameters of disturbances, and is sensitive to system inertia variation

for certain outputs.

• A mean-square stability condition is also derived for the stochastic linear system, which

indicates that a low-inertia grid can be destabilized in a second-order sense by inertia

variability. Numerical results also indicate that a lower inertia grid with larger system

inertia variance is less robust to disturbances.

The rest of the chapter is organized as follows: Section 5.2 introduces a stochastic lin-

earized swing equation to model power systems with stochastic system inertia. Section 5.3

develops the system H2 norm of the stochastic swing equation for three particular outputs

and derives a second-order stability condition. Section 5.4 presents some numerical results

to illustrate the theory. Section 5.5 concludes the chapter and points out several possible

future research directions.

5.2 Problem Formulation

5.2.1 System Modelling

Consider a power network G with N + 1 nodes (buses) V = {0}∪ {1, . . . , N} connected by a

set of edges (transmission lines) E ⊂ {V×V}. We assume the power network is Kron-reduced

[87], where each node represents an equivalent generator2 with state variables (e.g., voltage

2The equivalent generator can be interpreted as the aggregate terminal interaction dynamics of a power
system sub-area. Note that the equivalent generator here characterizes the dynamics of a group of grid-
connected components (e.g., traditional generators and inverter-based generators) as a synchronous machine.
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magnitude |Vi| and voltage angle θi) and parameters (e.g., rotational inertia Mi, damping

coefficient βi). The index 0 is reserved for the grounded node/bus in a Kron-reduced power

network. We consider the following swing equation to model the generator dynamics of each

bus i

Miθ̈i + βiθ̇i = Pm,i − Pe,i, ∀i = 0, 1, . . . , N, (5.1)

where Pm,i refers to the mechanical power from the synchronous generator, and Pe,i represents

the electrical power injection of the generator. The nominal power injection at bus i is given

by the power flow equations

Pe,i = gii|Vi|2 +
∑

(i,j)∈E

gij|Vi||Vj| cos(θi − θj)

+
∑

(i,j)∈E

bij|Vi||Vj| sin(θi − θj).
(5.2)

where gij and bij denote the line conductance and the line susceptance, respectively. The

shunt capacity at bus i is gii. The admittance matrix Y ∈ C(N+1)×(N+1) has elements

Yij =


∑

l∼i(gil − jbil) + gii if i = j

−(gij − jbij) (i, j) ∈ E

0 (i, j) /∈ E .

The admittance matrix can be written in compact matrix form

Y = (LG + g)− jLB,

where LG and LB are the conductance matrix and the susceptance matrix, and g := diag{gii}

is a diagonal matrix of bus shunt capacitors. The Laplacian matrices LB and LG comprise

the weights of the line susceptance bij and the line conductance gij in the Kron-reduced

network, respectively.
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The dynamic model (5.1)-(5.2) is often linearized around an operating point, which allows

the study of system response in the presence of small faults or persistence disturbances

around the linearization point. We use the linearized “DC power flow model”, neglecting

the line reactance, to approximate (5.2), which assumes |Vi| ≈ 1 and |θi − θj| � 1. Detailed

analysis and applications of the DC power flow approximation are discussed in [215]. Then

the system dynamics (5.1) becomes

Miθ̈i + βiθ̇i ≈ −
∑

(i,j)∈E

bij(θi − θj) + Pm,i. (5.3)

We then shift the equilibrium point of (5.3) to the origin and write it in state-space form

θ̇ = ω

Mω̇ = −LBθ −Dω +W,

(5.4)

where θ = [θ1, . . . , θN ]ᵀ and ω = [ω1, . . . , ωN ]ᵀ. The inertia matrix and damping matrix

are defined as M := diag{Mi}, D := diag{βi}. The standard approach to analyze (5.3)

considers various disturbances as additive noise W driving the system away from its current

equilibrium point. The remainder of this chapter considers both multiplicative and additive

disturbances in (5.4).

5.2.2 Frequency Dynamics with Multiplicative and Additive Noise

Here we consider inertia variations caused by RESs, which are modeled by treating the system

inerta matrix as multiplicative noise rather than simply a constant. The inertia parameter

at each node Mi can be modeled as a independent Wiener processes on a probability space

(Ω,F , P ) with mean M̄i and variance σ2
i [199]. The nominal inertia matrix is defined as

M := diag{M̄i}, and we rewrite (5.4) as a stochastic linear system with both additive and

multiplicative noise θ̇
ω̇

 =

 0 I

−(M−1 + δM−1)LB −(M−1 + δM−1)D


θ
ω

+

 0

ηI

W. (5.5)
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The matrixM−1 := diag{M̂−1
i } collects the mean values of the inverse distribution of M̄i on

the diagonal, and the additive noise W represents independent white-noise with zero mean

and unit variance, scaled by η. Each diagonal element of the matrix δM−1 := diag{δi} is

modeled as an independent Wiener process with zero mean and variance σ̂2
i . For simplicity,

we write (5.5) in a generalized form with outputs as a multi-input multi-output stochastic

linear system with multiplicative noise

ẋ = A0x+
N+1∑
i=1

Aiδix+BW,

y = Cx,

(5.6)

where,

A0 =

 0 I

−M−1LB −M−1D

 , Ai =

 0 0

−RiLB −RiD

 ,

B =

 0

ηI

 , x =

[
θᵀ, ωᵀ

]ᵀ
.

The matrix A0 ∈ R2(N+1) characterizes the nominal system with average inertia and damping

ratio. We define an inertia disturbance allocation matrix Ri ∈ RN+1 in Ai ∈ R2(N+1)

associated with each bus i. The elements in Ri are all zeros except for one diagonal element

rii = 1, which maps the corresponding inertia disturbance δi onto bus i. If the inertia

variation at bus i is insignificant, we set Ri = 0 to remove the inertia disturbance at ith

bus. In the following, we refer to the stochastic system input/output mapping (5.6) as

Σ = (A0, Ai, B, C). This stochastic linear dynamical model allows us to investigate the

effects of phase angle deviations and frequency changes in the presence of both additive

and multiplicative disturbances around the original operating point. To assess the system

stability and evaluate the performance of (5.6), we consider the following three outputs [211]:

Phase cohesiveness. This output quantifies real power losses due to phase differences

caused by the fluctuations from the nominal operating points [249]. The resistive losses on
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transmission lines during transients or due to persistent disturbances can be expressed in

terms of Laplacian matrix LG

Ploss =
∑

(i,j)∈E

gij(θi − θj)2 = θᵀLGθ.

Expressed in terms of the output, we have Ploss = yᵀy with

y =

[
L

1
2
G 0

]
x.

It is worth to note that the stochastic linear system (5.6) driven from the linearized swing

equation neglects the line resistances. The output matrix with conductance matrix LG can

capture resistive losses arising from (5.6).

Frequency. To quantify frequency deviations due to faults or disturbances, we have the

output y = [0, I]x.

Phase cohesiveness & frequency. This output quantifies both phase and frequency

performance with the output matrix

y = diag{L
1
2
G, κI}x,

where κ ∈ R+ trades off phase angle and frequency deviations.

In this chapter, we use the system H2 norm to quantify the system performance under

above three outputs. The system H2 norm is the root-mean-square value of the output when

the system is driven by multiplicative and additive noise inputs. It has been widely studied

in power system models with additive noise [211, 212, 249, 138].

5.3 Coherency Performance Metric

5.3.1 System Reduction

The stochastic swing equation model (5.6) and associated performance outputs consist of

two key Laplacian matrices: the conductance matrix LG and the susceptance matrix LB,
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which both have a zero eigenvalue associated with the eigenvector 1. The Laplacian struc-

ture implies (5.6) is not asymptotically stable, but the subspace corresponding to the zero

eigenvalue does not appear in the output [249]. The physical interpretation of this zero

eigenvalue is that we lack a grounded reference bus in the power network. Therefore, we

consider the grounded Laplacians by deleting the kth row and column of LG and LB, respec-

tively, yielding L̃G and L̃B. The states in the reduced system θ̃ and ω̃ are obtained by simply

removing the kth element of the original vectors, which can be interpreted as grounding bus

k, with θk and ωk forced to zero for the voltage references. Then the grounded system Σ̃ can

be expressed as

˙̃x = Ã0x̃+
N∑
i=1

Ãiδix̃+ B̃W̃ ,

ỹ = C̃x̃,

(5.7)

where,

Ã0 =

 0 I

−M̃−1L̃B −M̃−1D̃

 , Ãi =

 0 0

−R̃iL̃B −R̃iD̃

 ,
B̃ =

 0

ηI

 , x̃ =

[
θ̃ᵀ, ω̃ᵀ

]ᵀ
.

The kth row and column of matrices M, Ri and D are also discarded in the reduced power

system (5.7), which are then written as M̃, R̃i and D̃, respectively. We assume the power

network G in our problem is connected so that the grounded Laplacians L̃G and L̃B are

symmetric positive definite. Thus, all eigenvalues of matrix Ã0 are located in the open left

half of the complex plane. We will detail the system stability with finite H2 norm in the

present of multiplicative noise in the next subsection.

5.3.2 Performance Metric and Stability Conditions

The system H2 norm is the root-mean-square value of the output when the system is driven

by multiplicative and additive noise inputs. For the system Σ̃ = (Ã0, Ãi, B̃, C̃), the squared
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H2 norm is given by

‖Σ̃‖2
H2

= Tr(B̃ᵀQ̃B̃), (5.8)

where Q̃ is the observability Gramian [76]. The observability Gramian Q̃ can be interpreted

as the steady-state output covariance [259], which has a stochastic integral expression [299].

When a finite positive semidefinite observability Gramian Q̃ exists, it can be attained by

solving the following generalized Lyapunov equation (5.9) [144, 76, 299]

Ãᵀ
0Q̃+ Q̃Ã0 +

N∑
i=1

σ̂2
i Ã

ᵀ
i Q̃Ãi = −C̃ᵀC̃, (5.9)

which also implies the system is second-moment bounded (i.e., mean-square stable), resulting

in the finite H2 norm.

The Gramian obtained from this generalized Lyapunov equation is used to compute the

H2 norm of system (5.7), which explicitly incorporates both multiplicative and additive noise.

The multiplicative noise can be removed by letting σ̂2
i = 0 in (5.9), yielding a standard Lya-

punov equation. In contrast to systems with only additive noise, there are differing notions

of stability when multiplicative noise is present. In particular, even when the mean value of

the state is stable, (i.e., Ã0 is stable), the covariance of the state may be unstable due to the

multiplicative noise, in which case the H2 norm becomes infinite. When the multiplicative

noise variances are sufficiently small, the system will have second-moment bounded (i.e.,

be mean-square stable). We have the following second-order stability definition, which is

equivalent to existence of a finite positive semidefinite solution to the generalized Lyapunov

equation and finiteness of the corresponding H2 norm [76].

Definition 3. (Second-moment boundedness). The system (5.7) is called second moment

bounded, or mean square stable, if there exists a positive constant α such that

lim
t→∞

E[x̃(t)ᵀx̃(t)] ≤ α, ∀x̃(0) ∈ RN .
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Remark 6. (Computation of H2 norm for non-homogeneous power grids). The generalized

Lyapunov equation (5.9) is linear in Q̃ and can be solved directly using vectorization and

Kronecker products, yielding

vec(Q̃) = −

(
Ãᵀ

0 ⊗ I + I ⊗ Ãᵀ
0 +

N∑
i=1

Ãᵀ
i ⊗ Ã

ᵀ
i

)−1

vec(C̃ᵀC̃).

For the standard Lyapunov equation, factorization methods can be used to exploit the struc-

ture of the equation and achieve superior computational complexity. However, these methods

cannot be easily applied to the generalized Lyapunov equation, and alternative methods have

been studied [27, 77, 15, 43], e.g., using Krylov subspaces, semidefinite programming, or

differential equations for the state covariance matrix.

To gain additional insights into the effects of multiplicative noise on power networks, we

now consider computation of the H2 norm for power networks with homogeneous nominal

inertia and damping. The inverse inertia perturbation at each bus is an independent stochas-

tic process, which has identical mean and variance M̂i = M̂ , σ̂2
i = σ̂2,∀i. The damping ratio

is also assumed to be identical D = βI. We will derive a closed-form expression for the H2

norm of the stochastic system (5.7), which allows us to highlight several insights regarding

system performance with inertia disturbances.

Theorem 3. (H2 norm for homogeneous power grids). Consider an N-generator power

system with both multiplicative and additive noise specified by parameters Σ̃ = (Ã0, Ãi, B̃, C̃)

that define the input-output mapping shown in (5.7). Suppose the inertia and damping are

homogeneous, i.e., M̂i = M̂ , σ̂2
i = σ̂2,∀i and D = βI. Consider also a general output matrix

C̃ =

J̃ 1
2 0

0 K̃
1
2

, where matrices J̃ and K̃ are positive definite. Then the squared H2 norm

is given by

‖Σ̃‖2
H2

=
1

M̂2
Tr
[
P̃−1

(
M̂J̃L̃−1

B + K̃
)]
, (5.10)

where P̃ =
[(

2β

M̂
− σ̂2β2

)
I − σ̂2M̂L̃B

]
.
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Proof. See the Appendix.

Remark 7. (H2 norm for specified outputs). We have the following expressions for the H2

norm of system (5.7) for the three specific outputs mentioned in Section II:

Phase cohesiveness (C̃ = [L̃
1
2
G, 0])

‖Σ̃‖2
H2

=
1

M̂
Tr
(
P̃−1L̃GL̃

−1
B

)
.

Frequency (C̃ = [0, I])

‖Σ̃‖2
H2

=
1

M̂2
Tr
(
P̃−1

)
.

Phase cohesiveness & frequency (C̃ = diag{L̃
1
2
G, κI})

‖Σ̃‖2
H2

=
1

M̂2
Tr
[
P̃−1

(
M̂L̃GL̃

−1
B + κ2I

)]
.

Corollary 1. (Second-moment bounded (Mean-square stability) condition). The power sys-

tem in (5.7) with both multiplicative and additive noise is second-moment bounded (mean-

square stable) and has finite H2 norm if and only if

σ̂2 <
2β

M̂
[
β2 + λmax(L̃B)M̂

] , (5.11)

where λmax(L̃B) denotes the largest eigenvalue of Laplacian matrix L̃B, and σ̂2 is the variance

of the inverse distribution of M .

Proof. Since Ã0 is stable, the (standard) Lyapunov equation obtained when the inertia vari-

ance σ̂2 = 0 has a finite positive definite solution, and the corresponding H2 norm is finite.

As σ̂2 increases, the smallest eigenvalue of the P̃ matrix defined in the H2 norm expression

decreases (and thus largest eigenvalue of P̃−1 increases), causing the H2 norm to increase.

When σ̂2 approaches a critical value where P̃ goes from being positive definite to being sin-

gular, the H2 norm approaches infinity, and the system has unbounded second moment when

the smallest eigenvalue of P̃ is zero. Examining the condition where the smallest eigenvalue

of P̃ is zero yields the condition that guarantees bounded second moment.
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We will provide discussions of this Corollary in the context of our numerical results in

the following section.

5.4 Numerical Results

The results derived in the previous section indicate that the H2 norm of a power system

with both multiplicative and additive noise depends on 1) the system topology (via the

Laplacians LB and LG); 2) the nominal system parameters (via the nominal inertia and

damping coefficients ); and 3) the distribution parameters of the multiplicative and additive

disturbances. In this section, we present numerical simulations to analyze stability and to

evaluate performance for three different outputs. Consider an interconnected power network

with four areas (e.g., with homogeneous inertia M and damping ratio β) shown in Fig.5.1.

We assume this power network is Kron-reduced and single-phase equivalent, with line data

given in Table 5.1.

Figure 5.1. A four-area interconnected power system.

Remark 8. (Approximation of the inverse distribution of M). To facilitate interpretation of

insights derived from our previous analysis in terms of distribution parameters of M instead

of the inverse distribution M−1, we seek to express the parameters (e.g., M̄ and σ2) of the
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Table 5.1. Line impedance parameters
line E(i, j) (1,2) (2,3) (3,4) (4,1)

rij 0.4 0.5 0.6 0.28
xij 0.386 0.294 0.596 0.474
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1.2
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(a) phase cohesiveness output
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(b) frequency output
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(c) phase cohesiveness & frequency output κ = 10

Figure 5.2. Comparison of the squared H2 norm of the stochastic system Σ̃ with three
outputs under various values of M̄ and inertia variance, quantified by σ

M̄
, for damping ratio

β = 1. The results are normalized by the H2 norm with only additive noise, i.e., σ2 = 0, [cf.
[211, 249]].
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original distribution M in terms of parameters (e.g., M̂ and σ̂2) of the inverse distribution

M−1. An approximate formula. commonly known as the δ-method (based on a Taylor series

expansion [26]), can be used to estimate the mean and variance of M−1 considering variations

around the mean value M̄ [194]. This yields an approximation of the distribution parameters

of M−1 give by M̂−1 ≈ M̄−1, σ̂2 ≈ σ2

M̄4 . The H2 norm of the system (5.7) with the phase

cohesiveness output is then approximated by

‖Σ̃‖2
H2
≈ 1

M̄
Tr

([(
2β

M̄
− σ2β2

M̄4

)
I − σ2

M̄3
L̃B

]−1

L̃GL̃
−1
B

)
.

The H2 norm (5.7) for the other outputs can be similarly approximated. We emphasize that

this approximation is only to facilitate interpretation; it is possible but less intuitive to work

with the inverse inertia distribution.

Fig.5.2(a) shows the H2 norm for the phase cohesiveness output with increasing variance

of inertia disturbances σ2. In contrast to the additive noise case, where the H2 norm of (5.4)

is independent of the system inertia [249, 211], the analytical (Theorem 1) and numerical

results in Fig.5.2(a) demonstrate that the H2 norm is strongly dependent on the nominal

system inertia and its distribution. The results in Fig.5.2(a) also demonstrate that a low-

inertia power grid with larger inertia disturbance incur more resistive power losses in the

presence of persistent disturbances or transient events. Fig.5.2(b)-Fig.5.2(c) shows that the

H2 norms of systems with frequency output and phase cohesiveness & frequency output

are also increasing functions of mean and variance of the system inertia disturbance. The

system will suffer a larger stability degradation in the presence of stronger system inertia

disturbance. The results from Fig.5.2(a)-Fig.5.2(c) also indicate that a power system with

lower inertia is less robust to system inertia disturbances. In particular, the degradation of

performance and stability margin is more severe in a power grid with less rotational inertia.

The analysis and numerical results indicate that the grid topology (via the Laplacians)

plays an essential role in system stability. The first moment stability criteria (mean stability)
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requires the second smallest eigenvalue of Laplacian matrix LB to strictly larger than zero.

Interestingly, the mean-square stability condition requires an upper bound on the largest

eigenvalue of Laplacian matrix LB

λmax(LB) <
2β − M̂σ̂2β2

σ̂2M̂2
.

The mean and mean-square stability criteria provide a theoretical boundary on grid topology

in terms of system coefficients and the distribution parameters of inertia disturbance (mean

and variance). The mean-square stability condition indicates that highly connected power

grids are more sensitive to multiplicative noise, which contrasts with the mean stability

condition, where increasing algebraic connectivity improves stability robustness.

5.5 Conclusion and Outlooks

In this chapter, we proposed a stochastic swing equation with both multiplicative and ad-

ditive noise to study low- and variable-inertia power system through the system H2 norm.

The H2 norm can be computed by solving a generalized Lyapunov equation. For grids with

homogeneous inertia and damping ratio, we derived an analytical expression of the H2 norm

for various performance outputs. In contrast to the additive case, inertia variations may

cause second-moment instability, even when the state mean is stable. Further, the perfor-

mance metrics always depends on physical properties (via the nominal inertia, damping ratio,

inertia distribution parameters) and network structure (via the susceptance matrix). Nu-

merical results also indicate that the low-inertia grids are vulnerable to large system inertia

disturbances.

Ongoing works and potential future research directions include 1) more detailed stability

analysis based on various performance metrics; 2) further numerical and analytical discussion

of the stochastic swing equations and 3) design of optimal controllers for low- and variable-

inertia grids with stochastic system inertia.
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Appendix

Proof. (of Theorem 3). The squared H2 norm of (5.7) is given by

‖Σ̃‖2
H2

= Tr
(
B̃ᵀQ̃B̃

)
, (5.12)

where Q̃ is the observability Gramian, which can be obtained by solving the generalized

Lyapunov equation

Ãᵀ
0Q̃+ Q̃Ã0 +

N∑
i=1

σ̂2
i Ã

ᵀ
i Q̃Ãi = −C̃ᵀC̃.

The system matrices include the homogeneous inertia M̂ , inertia variance σ̂2, and damping

coefficient β. We substitute B̃ in (5.12) and partition the Gramian as Q̃ =

Q̃1 Q̃0

Q̃ᵀ
0 Q̃2

. Due

to the structure of the system matrices, the squared H2 norm of system Σ̃ becomes

‖Σ̃‖2
H2

=
1

M̂2
Tr
(
Q̃2

)
. (5.13)

Expanding the generalized Lyapunov equation yields− 1

M̂
L̃BQ̃

ᵀ
0, − 1

M̂
L̃BQ̃2

Q̃1 − β

M̂
Q̃ᵀ

0, Q̃0 − β

M̂
Q̃2

+

− 1

M̂
Q̃0L̃B, Q̃1 − β

M̂
Q̃0

− 1

M̂
Q̃2L̃B, Q̃ᵀ

0 −
β

M̂
Q̃2


+σ̂2

L̃BQ̃2L̃B, βL̃BQ̃2

βQ̃2L̃B, β2Q̃2

 =

−J̃ , 0

0, −K̃

 ,
(5.14)

and the diagonal blocks are

− 1

M̂
L̃BQ̃

ᵀ
0 −

1

M̂
Q̃0L̃B + σ̂2L̃BQ̃2L̃B = −J̃ , (5.15a)

Q̃0 −
β

M̂
Q̃2 + Q̃ᵀ

0 −
β

M̂
Q̃2 + σ̂2β2Q̃2 = −K̃. (5.15b)

Since L̃B is nonsingular, the above two equations can be rearranged as

−L̃BQ̃ᵀ
0L̃
−1
B − Q̃0 + σ̂2M̂L̃BQ̃2 = −M̂J̃L̃−1

B (5.16a)
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Q̃0 + Q̃ᵀ
0 +

(
σ̂2β2 − 2β

M̂

)
Q̃2 = −K̃. (5.16b)

Adding (5.16a) to (5.16b) and multiplying by −1 gives

− Q̃ᵀ
0 + L̃BQ̃

ᵀ
0L̃
−1
B + P̃ Q̃2 = M̂J̃L̃−1

B + K̃, (5.17)

where P̃ =
[(

2β

M̂
− σ̂2β2

)
I − σ̂2M̂L̃B

]
. Then multiplying by P̃−1 and taking the trace gives

Tr
(
P̃−1

[
L̃BQ̃

ᵀ
0L̃
−1
B − Q̃

ᵀ
0

])
+ Tr

(
Q̃2

)
= Tr

[
P̃−1

(
M̂J̃L̃−1

B + K̃
)]
.

We will show that the first term in the above equation is zero. We define P̃ =
[
aI − bL̃B

]
,

where a = 2β

M̂
− σ̂2β2 and b = σ̂2M̂ . It can be seen that P̃−1 and L̃B commute by expanding

the term
[
I − b

a
L̃B

]−1

in a Neumann series

P̃−1L̃B =
[
aI − bL̃B

]−1

L̃B =
1

a

[
I − b

a
L̃B

]−1

L̃B

=
1

a

∞∑
k=0

(
b

a
L̃B

)k
L̃B = L̃BP̃

−1.

(5.18)

Since P̃−1L̃B = L̃BP̃
−1, it follows that

Tr
(
P̃−1

[
L̃BQ̃

ᵀ
0L̃
−1
B − Q̃

ᵀ
0

])
= 0, (5.19)

Tr
(
Q̃2

)
= Tr

[
P̃−1

(
M̂J̃L̃−1

B + K̃
)]
. (5.20)

Finally, substituting Tr(Q̃2) into (5.13) leads to

‖Σ̃‖2
H2

=
1

M̂2
Tr
[
P̃−1

(
M̂J̃L̃−1

B + K̃
)]
, (5.21)

which concludes the proof.
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CHAPTER 6

STOCHASTIC DYNAMIC PROGRAMMING FOR WIND

FARM POWER MAXIMIZATION 1

Wind plants can increase annual energy production with advanced control algorithms by

coordinating the operating points of individual turbine controllers across the farm. It re-

mains a challenge to achieve performance improvements in practice because of the difficulty

of utilizing models that capture pertinent complex aerodynamic phenomena while remaining

amenable to control design. We formulate a multi-stage stochastic optimal control problem

for wind farm power maximization and show that it can be solved analytically via dynamic

programming. In particular, our model incorporates state- and input-dependent multiplica-

tive noise whose distributions capture stochastic wind fluctuations. The optimal control

policies and value functions explicitly incorporate the moments of these distributions, estab-

lishing a connection between wind flow data and optimal feedback control. We illustrate the

results with numerical experiments.

6.1 Introduction

Wind energy is an important component of future energy systems to meet growing energy

demands. As wind power continues to account for a larger portion of the world-wide energy

portfolio, the optimal operation of wind farms offers both challenges and opportunities to

further improve performance at the levels of single turbines, wind farms, and power grids.

Due to nonlinear aerodynamic interaction through wakes and unpredictable wind variations,

1This chapter is based on work supported by the National Science Foundation (NSF) under grant CMMI-
1728605, and partially funded by The University of Texas at Dallas Office of Research through the SCI
program.

Chapter 6 in part is a reprint of material published in:
c© 2020 IEEE. Reprinted, with permission, from Y. Guo, M. Rotea and T.H. Summers, “Stochastic

dynamic programming for wind farm power maximization”, American Control Conference, Denver, USA
2020.
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future optimal control strategies for wind farms will require sophisticated models to capture

and manage stochastic wind fluctuations.

Maximizing the wind power capture has been discussed in the scope of wind turbines

[203, 284, 204, 196] and wind farms [235, 140, 146, 244, 181, 241, 150, 132, 38, 41, 47, 46, 64,

233, 105, 110, 106, 229, 139, 289, 185, 206]. In Region 2 operation (below-rated wind speed),

the wind plant is operated to maximize the power output. In this regime, there are inherent

tradeoffs between the wake of upstream turbines and the power extracted from downstream

turbines. Due to this aerodynamic coupling, maximizing total power of wind farms cannot

be achieved by myopically maximizing the power output for each individual wind turbine

in the array [245]. Therefore, depending on layout and wind conditions, it may be essential

to have a coordinated control framework for wind farms to determine the optimal control

strategy for each wind turbine to improve annual energy production.

Many challenges and related solutions for wind farm power maximization have been

highlighted and discussed in [203]. Recent control strategies for optimal operation have been

proposed using both model-based [41, 105, 110, 229, 140, 146, 244, 181, 241, 150, 132, 38],

and model-free strategies [64, 185, 206, 106, 289]. Model-based strategies provide solutions

that typically have faster response times than model-free approaches. However, the models

used for control design can deviate from actual wind field and turbine characteristics in

practice, which can limit the effectiveness of model-based control strategies. The reader

is referred to the introduction in [64], and the references therein, for further discussion on

model-based and model-free strategies for wind plant power maximization.

In this chapter, we focus on wind power maximization in Region 2. The work presented

here generalizes the simple actuator disk model (ADM) utilized in [229] to a stochastic

version and pose a multi-stage stochastic optimal control problem for wind farm power

maximization. The stochastic actuator disk model balances complexity and tractability by

incorporating unsteady aerodynamic phenomena into the distributions of random variables
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in the model. Estimates of the statistics of these distributions can then be exploited in the

control algorithm to improve overall efficiency of the farm in the presence of stochastic wind

flow.

Our main contributions are as follows:

• We formulate a multi-stage stochastic optimal control problem for wind farm power

maximization and show that it can be analytically solved via dynamic programming.

In particular, our model generalizes that of [229] by incorporating state- and input-

dependent multiplicative noises to capture the uncertain wake effects of wind turbines.

The stochastic version of the ADM relaxes a strong assumption of a deterministic

ADM, such as steady wind over the rotor disk. In contrast to existing work, the

proposed stochastic multi-stage formulation allows us to maximize the wind farm power

by explicitly incorporating information about the probability distributions of wind

fluctuations into control decisions.

• By solving the proposed multi-stage stochastic optimization, we show that the optimal

feedback control policies for the turbines are linear with respect to upstream wind

velocity, but in contrast to [229], the optimal gain coefficients depend explicitly on

the statistics of the multiplicative noises, which can be estimated from high-fidelity

wind flow simulations or experimental data. This provides a direct connection between

statistical properties of the unsteady wind flow physics and the optimal feedback control

of wind farms. We also show that for the stochastic ADM with both multiplicative

and additive noise, the optimal policies are nonlinear.

The framework, while elementary for real-world applications, illustrates a rigorous pro-

cess for incorporating flow statistics into the wind farm power maximization problem. The

dependence of control solutions on the statistics of the wind fluctuations makes intuitive
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sense, as one cannot expect a single control algorithm to be optimal under a range of un-

steady wind conditions. In future work, we will extend the stochastic approach presented in

this chapter to more representative, yet tractable, models of the flow physics and loads as

done in [233].

6.2 Problem Formulation

Our model is a generalization of the one in [229], which utilizes the actuator disk model

(ADM) [48, 184]. Let P denote the power extracted by an ideal turbine rotor, let F denote

the force done by the wind on the rotor, let V0 denote the free stream upwind velocity, let

V denote the wind velocity at the disk, and let V1 denote the far wake velocity. The ADM

model is then

P = FV, (6.1a)

F = ρA(V0 − V1)V, (6.1b)

V = V0 − u, (6.1c)

V1 = V0 − 2u, (6.1d)

where ρ is the air density, A is the rotor swept area, and u ≥ 0 is the reduction in air velocity

between the free stream and the rotor plane, which can be interpreted as a control input.

In practice, u can be controlled by adjusting the angular rotor speed or the collective blade

pitch angle.

Deterministic Model: We consider a one-dimensional cascade of wind turbines, illus-

trated in Fig. 6.1. We assume that the wind direction is along the row of turbines and is

not varying. The ADM model given in (6.1) can be written in state-space form by letting

xk and xk+1 denote the wind velocity upstream and downstream of the k-th turbine (i.e.,

xk = Vk in (6.1d), for k = 0, 1). The scalar control input for the k-th turbine is denoted by

uk, which is the controllable wind velocity deficit at the rotor disk, and yk is an output to
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Figure 6.1. A cascade of N wind turbines; k = 0 indicates the most upstream location.

estimate the power extraction of turbine k (i.e., yk = Vk − uk in (6.1c)). Then the velocity

Vk+1 in the far wake of the rotor (6.1d) and the rotor effect at the disk in velocity (6.1c)

can be written as below in (6.2a) and (6.2b). The power extraction of the k-th wind turbine

using ADM model (6.1) in state-space expression is given in (6.2c)

xk+1 = xk − 2uk, (6.2a)

yk = xk − uk, (6.2b)

pk(yk, uk) = 2ρAy2
kuk, (6.2c)

where the control input is constrained by uk ∈ [0, 1
2
xk] so that the wind velocity in the far

wake remains positive. To simplify the notation, we eliminate the constant in (6.2c) and

come to the constant-free turbine power function `(xk, uk), which will serve as a stage cost

in our subsequent multi-stage optimal control problem

`(xk, uk) = (xk − uk)2uk. (6.3)

Note that this function is jointly cubic in the state and control input. Further details of this

model may be found in [229].

Stochastic Model: The simple model described above captures basic wind farm tur-

bine interactions. But it fails to capture stochastic wind fluctuations that are also relevant
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to optimizing the total power output. High fidelity computational fluid dynamic models

offer extreme detail of flows but are cumbersome to incorporate into high-level operational

decision making. Therefore, we consider here a stochastic extension of the deterministic

actuator disk model above that can capture more complex phenomena, such as stochastic

wind fluctuations, while remaining computationally tractable.

Figure 6.2. Stochastic actuator disk model and stream-tube diagram for wind power ex-
traction. The solid and dashed lines indicate the wind field mean and associated stochastic
variations, respectively, which relate to the moments of the multiplicative variations param-
eters ak and bk.

ψk = −
3Qk+1Σb,kµa,k − 2 +

√
(3Qk+1Σb,kµa,k − 2)2 − 3(Qk+1Γb,k + 1)(3Qk+1Σa,kµb,k + 1)

3(Qk+1Γb,k + 1)
,

(6.4a)

Qk = (1− ψk)2ψk +Qk+1

(
Γa,k + Γb,kψ

3
k + 3Σb,kµa,kψ

2
k + 3Σa,kµb,kψk

)
. (6.4b)

The stochastic actuator disk model is given by

xk+1 = akxk + bkuk, (6.5)

where ak ∼ Pa,k is a state multiplicative random variable and bk ∼ Pb,k is an input multi-

plicative random variable. The model is illustrated in Fig. 6.2. We assume that the random

variables ak and bk are independent for all k and independent of each other. This model cap-

tures stochastic wind fluctuations. In particular, the multiplicative noises ak and bk provide
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a simple model for the inherent stochasticity of far wake recovery. We assume that moments

up to order three of each of the distributions Pa,k,Pb,k are known (or can be estimated from

high-fidelity simulation or experimental data). For the state mean dynamics to match the

deterministic model (6.2a), we can set E[ak] = 1, E[bk] = −2.

6.3 Stochastic Optimal Control for Wind Power Maximization

The objective of the operator is to select control inputs u0, ..., uN−1 to maximize the aggregate

power of the wind turbine cascade given by the sum of (6.3) over all turbines. However, since

in the stochastic model the states (and therefore the power outputs) are random variables, we

maximize the expected aggregate power and search for closed-loop feedback control policies

that specify control inputs as a function of the state xk. In particular, we seek to solve the

multi-stage stochastic optimal control problem

max
π0,...,πN−1

E
N−1∑
k=0

(xk − uk)2uk, (6.6)

where the decision variables πk(·) are the control policies (i.e., uk = πk(xk)), and the ex-

pectation is taken with respect to the random variable sequences ak, bk. As in [229], we

will show that the optimal policies are linear and the optimal value functions are cubic. In

contrast to [229], the parameters of both the optimal policies and value functions depend on

the moments of the distribution of the random variables in the model. We have the following

main result.

Theorem 4. Consider the wind farm power maximization problem for a cascade of N iden-

tical turbines modeled with the stochastic actuator disk model (6.5), (6.6). Let x0 denote the

free stream velocity entering the cascade. The distributions of ak and bk are described by

their raw moments up to third order, namely their means µa,k, µb,k, second (raw) moments

Σa,k, Σb,k and third (raw) moments Γa,k, Γb,k. Under these assumptions, the optimal feedback
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control policies are linear in the state and given by

u∗k = π∗(xk) = ψkxk, k = 1, ..., N − 1, (6.7)

where the gain coefficients ψk are given in (6.4a) and the backwards recursion (6.4b) for

k = N − 1, ..., 0 with initialization QN = 0. The maximum power produced by the wind farm

as a function of initial upstream wind velocity is given by

P ∗0 (x0) = 2ρAQ0x
3
0, (6.8)

where ρ is the air density, A is the rotor swept area, and Q0 is the initial value of the

backwards recursion (6.4b) with QN = 0.

Proof. The dynamic programming algorithm [24, 33] for solving stochastic optimal control

problems is given by the recursion

G∗k(xk) = max
uk∈[0, 1

2
xk]

E
{
`(xk, uk) +G∗k+1 (xk+1))

}
,

π∗(xk) = arg max
uk∈[0, 1

2
xk]

E
{
`(xk, uk) +G∗k+1 (xk+1))

}
,

(6.9)

where G∗k(xk) represents the optimal (normalized) wind farm power from turbine k as a

function of the state xk, with initialization G∗N(xk) = 0. We first solve the last tail sub-

problem at k = N − 1 with G∗N(x) = 0. We have

∂`(xN−1, uN−1)

∂uN−1

= (xN−1 − uN1)(xN−1 − 3uN−1) = 0,

for which the policy u∗N−1 = 1
3
xN−1 is the unique maximizer and satisfies the constraint

uN−1 ∈ [0, 1
2
xN−1]. Substituting this optimal policy back into the value expression yields the

optimal power function

G∗N−1(xN−1) =
4

27
x3
N−1.
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Note that this function is a cubic in the state. Accordingly, we parameterize the optimal

power functions as G∗k(xk) = Qkx
3
k and consider a general step in the backward recursion.

To obtain the optimal policy, we define the function inside the maximization operation

Gk(xk, uk) := (xk − uk)2uk +Qk+1E
[
(akxk + bkuk)

3
]
. (6.10)

Expanding the second term and taking the expectation by utilizing the (raw) moment in-

formation from the distributions of ak and bk, and then taking the partial derivative of

Gk(xk, uk) with respect to uk gives a quadratic polynomial in uk. As above, one of the roots

of this polynomial corresponds to the unique maximizing input, which is a linear function

of the state. Carrying out the algebra yields

u∗k = π∗(xk) = ψkxk, (6.11)

where the gain parameters ψk are given in (6.4a). Note that the optimal policies all satisfy

the constraints on uk. To obtain a backwards recursion for the value function coefficients

Qk, we substitute u∗k = ψkxk back into (6.10)

G∗k(xk, u
∗
k) = Qkx

3
k

=(xk − u∗k)2u∗k +Qk+1E
[
(akxk + bku

∗
k)

3
]
.

(6.12)

Since u∗k is linear in xk, the optimal value functions are cubic in the state. Matching the

coefficients on both sides of (6.12), we come to (6.4b). Eq. (6.8) follows from (6.12) for

k = 0, (6.6) and (6.2c), which concludes the proof.

Remark 9. (Optimal policies and value functions with central moments.) The random

variables ak and bk can also be described by their higher-order central moments, namely

their variances σ2
a,k, σ

2
b,k and skewnesses γa,k, γb,k. The optimal linear state feedback control

policies can also be written in terms of central moments instead of raw moments by using

Σ = σ2 + µ2, Γ = σ3γ + 3σ2µ+ µ3. (6.14)
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π∗N−2(x) =

−
∆k +

√
∆2
N−2 − 3(QN−1Γb,N−2 + 1)

[
(3QN−1Σa,N−2µb,N−2 + 1)x2 + 3QN−1Σc,N−2µb,N−2

]
3(QN−1Γb,N−2 + 1)

,

where, ∆N−2 = (3QN−1Σb,N−2µa,N−2 − 2)x.
(6.13)

Corollary 2. Under the assumptions of Theorem 1, we define the efficiency η` of the `-th

sub-array2 by

η` := E

[
P`

1
2
ρAx3

`

]
, (6.15)

where x` is the free stream velocity entering the subarray cascaded turbines from ` to N − 1

and P` denotes the aggregated power from the `-th subarray of wind turbines. The optimal

efficiency η∗` of the l-th sub-array has the form

η∗` = 4Q`, ∀` ∈ {0, . . . , N − 1}, (6.16)

which is achieved with the optimal control sequence u∗` , . . . , u
∗
N−1 , where Q` is calculated

from (6.4b).

Proof. The maximum power produced by the N − ` turbines is

P ∗` = 2ρAQ`x
3
` , (6.17)

under the optimal control sequence u∗` , . . . , u
∗
N−1 with Q` computed via (6.4b). We substitute

the optimal power (6.17) into (6.15) and obtain (6.16), which concludes the proof.

Next, we consider a stochastic actuator disk model with both multiplicative and additive

noise, which allows a more general description of uncertainty in wind fluctuations. Interest-

ingly, in contrast to classical linear quadratic problems, when additive noise is included the

2The efficiency η` defined here quantifies the energy extraction of sub-array ` compared to energy in the
wind entering the sub-array. Note that due to aerodynamic wake coupling, it is possible for the optimal
efficiency of the sub-array to exceed the efficiency obtained by independently setting individual turbine
induction factors to achieve the single-turbine Betz limits.
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optimal policies are no longer linear in general, and so the optimal value functions are no

longer cubic. This highlights a computational limitation with this more general model that

makes the approach more difficult to implement in practice.

Theorem 5. (Stochastic actuator disk model with additive noise.) Consider the stochastic

ADM (6.5) with additive noise

xk+1 = akxk + bkuk + ck, (6.18)

where ck ∼ Pc is a zero-mean additive random variable with second moment Σc,k and third

moment Γc,k. In the penultimate tail subproblem, the optimal policy has the nonlinear form

π∗N−2(x) = δx+
√
α + βx2

for some constants δ, α, and β; the exact expression is given in (6.13). As a result, the

corresponding optimal value function at turbine location N − 2 is non-cubic, and so the

remaining optimal policies and value functions are nonlinear and non-cubic, respectively.

Proof. Consider again the dynamic programming recursion (6.9). Since G∗N(x) = 0, the last

tail subproblem is identical to that in Theorem 1, so that G∗N−1(xN−1) = 4
27
x3
N−1. Consider

now the penultimate tail subproblem for k = N − 2

GN−2(x, u) = (x− u)2u+
4

27
E
[
(akx+ bku+ ck)

3
]
. (6.19)

Taking the expectation of the second term by utilizing the (raw) moments of ak, bk and

ck, and then taking the partial derivative with respect to u and setting to zero yields a

quadratic optimality condition in u. Carrying out some algebra as above, it turns out that

the roots of this polynomial are no longer linear in the state, in contrast to the results in

Theorem 1. The optimal control policy is thus a nonlinear function of state of the form

π∗N−2(x) = δx +
√
α + βx2 for some constants δ, α, and β. The exact expression for the
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maximizing control input derived from the quadratic optimality condition is given in (6.13).

It can also be seen that when the additive noise variance Σc,k is zero (i.e., the additive noise

is absent since it also has zero mean), then α = 0 and we recover the linear policy of of

Theorem 1 since x ≥ 0. Finally, these observations also lead to the conclusion that none

of the remaining optimal policies and value functions are linear and cubic, respectively, and

will in fact become increasingly complicated as the recursion proceeds backward toward the

beginning of the array.

6.4 Numerical Experiments

To illustrate our results, we consider a cascade with N = 10 identical turbines to analyze the

performance of the optimal gain sequence {ψ0, . . . , ψ9} for the proposed stochastic actuator

disk model. As is commonly done in the literature [48, 184], we refer to these gains as

induction factors. The stochastic model parameters ak and bk are all independent of each

other and spatially homogeneous (µa,k = µa, µb,k = µb, σa,k = σa, σb,k = σb, γa,k = γa and

γb,k = γb, ∀k)3.

Fig. 6.3 illustrates the optimal induction factor sequence {ψ0, . . . , ψ9} and Fig. 6.4

depicts the optimal efficiency η∗` under different standard deviation values of the input-

dependent multiplicative noise bk. The induction factors in Fig. 6.3 are normalized by 1/3,

which is the value achieving the Betz limit for a single isolated turbine [48]. We set the

mean value µa to 1, and the skewness to zero. Fig. 6.4 demonstrates that the optimal array

efficiency improves with increasing variance on bk. This result is intuitively reasonable, in

the sense that higher variability of the velocity deficits in the far wake may lead to increased

power extraction. We speculate that this multiplicative stochastic perturbation on the ve-

locity deficit may provide a mathematically simple way of capturing physical phenomena

3To have clearer interpretation of our results, we discuss the results in the terms of central moments. No
additive noise is considered in this section.
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Figure 6.3. Normalized induction factors defined as ψk
1/3

for deterministic model (µa = 1, µb =

−2) and stochastic model with various values of input-dependent multiplicative noise stan-
dard deviation (µa = 1, σa = 0, µb = −2, σb > 0, γa = 0 and γb = 0).
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Figure 6.4. Comparison of optimal efficiency η` for deterministic model (µa = 1, µb = −2)
and stochastic model with various values of input-dependent multiplicative noise standard
deviation (µa = 1, σa = 0, µb = −2, σb > 0, γa = 0 and γb = 0).
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such as mixing or entrainment, which are known to promote energy extraction [257, 234]

Note also that the case σb = 0 reproduces the results for the deterministic ADM model in

[229]. It should be noted that as the standard deviation σb is increased, the induction factors

increase. That is, the leading upstream turbines are working more as the multiplicative noise

is increased; which again is consistent with the conventional wisdom that the more turbulent

the wind is the closer the turbines should be to their isolated optimum set point [63]

Figs 6.5 and 6.6 provide the optimal induction factor sequence and efficiency under dif-

ferent standard deviation values of the state-dependent noise on ak, and without input-

dependent noise (i.e., bk is fixed and constant for all k). Both figures demonstrate that the

optimal induction factor sequence from the stochastic actuator disk model also increases the

efficiency and improves performance under larger variations.

To match the expected wind velocity of the conventional deterministic ADM, the mean

value of the state-dependent noise should be set to unity (i.e., µa = 1) [229]. However,

having µa = 1 together with a non-zero variance in the state-dependent multiplicative noise

ak leads to null optimal induction factors for leading upstream turbines, since in this case

the model essentially predicts that additional energy will be injected into the wake further

downstream. This indicates that the parameters in the stochastic ADM should be carefully

calibrated based on measured data in order to capture appropriate (possibly heterogeneous)

spatio-temporal flow variations and obtain reasonable control policies for the array. To appro-

priately incorporate stochasticity of the wind flow, we set the mean value of ak to µa = 0.99,

and vary the standard deviation σa to describe statistical fluctuations. The key observation

is that regardless of the value of µa, the proposed approach improves efficiency with increas-

ing variance by exploiting statistical knowledge of wind field fluctuations and incorporating

this information into optimal control policies for wind farm power maximization.

The stochastic actuator disk model of a wind farm with cascaded wind turbines captures

stochastic wind fluctuations. By definition, the optimal control laws derived from stochastic
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Figure 6.5. Normalized induction factor defined as ψk
1/3

for deterministic model (µa =

0.99, µb = −2) and for stochastic model with various values of state-dependent multiplicative
noise standard deviation (µa = 0.99, σa > 0, µb = −2, σb = 0, γa = 0 and γb = 0).

1 2 3 4 5 6 7 8 9 10

0.6

0.62

0.64

0.66

0.68

Figure 6.6. Comparison of optimal efficiency η` for deterministic model (µa = 0.99, µb = −2)
and stochastic model with various values of state-dependent multiplicative noise standard
deviation (µa = 0.99, σa > 0, µb = −2, σb = 0, γa = 0 and γb = 0).
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dynamic programming achieve superior performance to laws derived from a deterministic

model of the same complexity, allowing the turbines to recognize and react to the particular

wind field characteristics. Data derived directly from measurements or simulations can be

incorporated directly into the control law to improve the aerodynamic efficiency a wind farm

for specific wind fluctuation statistics. It is worth emphasizing that more work is necessary

to incorporate tractable noise models that are consistent with the flow physics; this chapter

is a first step in this direction.

6.5 Conclusions and Outlooks

We have formulated a multi-stage stochastic optimal control problem for maximizing the

power output of a one dimensional wind farm array and shown that it can be solved ana-

lytically via dynamic programming. The optimal control policies depend explicitly on the

statistics of multiplicative noise, which can be related to stochastic wind fluctuations.

Our results provide an initial step toward defining a wind farm control strategy that

tractably incorporates statistical knowledge of stochastic wind fluctuations. However, there

remain several lines of future work that can extend the present results in various ways to

more fully understand the possibilities and limits for maximizing annual energy production.

Our future work will involve

(a) utilizing more realistic wake models;

(b) estimating necessary statistics from high-fidelity numerical simulations and experimen-

tal data;

(c) performance evaluation of the policies on high-fidelity models, which may improve the

results in [234];

(d) considering more realistic array geometries;
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(e) exploring computationally efficient approximation of nonlinear optimal control strate-

gies; if needed.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

In this dissertation, we discuss the challenges of having stochastic optimization and opti-

mal control in complex networked systems with large variation uncertainties. An important

challenge is how to design noise-aware control strategies with limited information of uncer-

tainties, which is able to successfully tradeoff the system performance, operation efficiency,

robustness and complexity. To address this problem, it is crucial to incorporate the proba-

bility distribution information into performance analysis and the optimal control policies for

various objectives.

In Chapter 2 and Chapter 3, we formulated a data-based distributionally robust stochastic

optimal control problem to have optimal scheduling in power systems and water networks.

The proposed optimal control strategies are completely based on finite training dataset

of uncertainties (i.e., renewables and water demands), instead of assuming the prescribed

probability distributions. The main contribution of our approach is that the conservativeness

of optimal decisions is explicitly controllable, which successfully tradeoffs the efficiency of

system operations, risk of operational constraint violations, inherent sampling errors within

training dataset and the out-of-sample performance.

In Chapter 4, we presented an optimal power flow solver in power systems with state

estimation feedback to promote the practical implementation of existing OPF formulations

for the extreme large-scale distribution networks (i.e., 11,000-nodes), in the case without

reliable and efficient measurement infrastructure. We analytically demonstrated the conver-

gence of the proposed gradient-based algorithm and numerically demonstrated the robust

performance to the measurement noises and estimation errors.

In Chapter 5 and Chapter 6, we considered the linear systems with multiplicative noises

to incorporate the probability distribution information of modelling errors for performance
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analysis and optimal feedback controller design. A closed-form mean-square stability crite-

ria was established for low-inertia power grids, as function of network topology, moments

information of multiplicative noises and system parameters. The optimal control sequence

were developed for wind farm power maximization, which explicitly connected the wind flow

data and optimal feedback control.

In general, this dissertation developed a data-based noise-aware optimal control frame-

work via the distributionally robust optimization and the feedback control techniques. The

optimal scheduling and feedback control policies were established for the vital municipal

networked infrastructures (i.e., power systems, water networks and wind farms), based on

the limited probability distribution information extracted from the finite sampling dataset

of uncertainties.
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