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For nearly a century, detecting the genetic contributions to cognitive and behavioral phenomena 

has been a core interest for psychological research. Recently, this interest has been reinvigorated 

across many related domains including and especially psychiatric research. Furthermore, 

genotyping technologies (e.g., microarrays) that provide genetic data, such as single nucleotide 

polymorphisms (SNPs), are routinely available and easily accessible to almost any researcher. 

These SNPs—which represent pairs of nucleotide letters (e.g., AA, AG, or GG) found at specific 

positions on human chromosomes—are best considered as categorical variables. However, a 

categorical coding scheme can make difficult the analysis of their relationships with behavioral, 

diagnostic, or clinical measurements because most multivariate techniques developed for the 

analysis between sets of variables are designed for quantitative variables. Furthermore, there are 

many—not just one or a few—genetic contributions to complex behaviors and disorders such as 

substance abuse, thus requiring multivariate techniques to fully understand the many genetic 

contributions. To palliate this problem, I present a generalization of partial least squares (PLS)—
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a technique used to extract the information common to two different data tables measured on the 

same observations—called partial least squares correspondence analysis (PLS-CA)—that is 

specifically tailored for the analysis of categorical and mixed (“heterogeneous”) data types. I 

further extend PLS-CA with a ridge-like regularization called Smoothed PLS-CA (SmooPLS-

CA). SmooPLS-CA adjusts for overfitting and noise that can lead to the interpretation of 

spurious effects in high dimensional-low sample size data such as genetics and genomics. PLS-

CA and SmooPLS-CA were both applied to two genetic data sets within substance use disorders 

(SUDs) that focused on a large number of genes: an archived set (“discovery”) and an external 

set (“validation”). The goal of the two data sets were to discover markers of SUDs in one set, and 

then validate those markers in an independent and completed sequestered set. SmooPLS-CA 

showed no advantage over standard PLS-CA: bootstrap resampling techniques provided robust 

results regardless of regularization. Finally, multiple genes were identified as contributors to a 

broad case-control (i.e., SUDs vs. control group) effect. Some of the identified genes play key 

roles in the glutamatergic (e.g., GRIN2B) and dopaminergic systems (e.g., CCKBR), where 

other genes play complex or even undefined roles (e.g., PRKCE). In sum there are many robust, 

albeit small, genetic effects as opposed to only a few large effects that contribute to SUDs. 
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CHAPTER 1 

INTRODUCTION 

Substance use disorders (SUDs)—like many of the DSM-5’s criteria for diseases and 

disorders—are defined by a continuum (a.k.a., spectrum) that reflects the severity of the disease. 

While SUDs are defined differently for various types of substances (e.g., alcohol, stimulants, 

food), SUDs typically share many symptoms. These symptoms include behavioral and cognitive 

impairments because of substance use, often in social and work domains (DSM5, 2015; NIDA, 

2015). Other symptoms—and consequences—of SUDs also include lack of self-regulation 

(Baumeister & Heatherton, 1996; Beaton, Abdi, & Filbey, 2014; Khantzian, 2013), as well as 

increased use and craving, in general for SUDs (Everitt & Robbins, 2016; Volkow, Koob, & 

McLellan, 2016, Sinha, 2013; Tiffany & Wray, 2012) and for specific substances (Di Nicola et 

al., 2015; Filbey, Schacht, Myers, Chavez, & Hutchison, 2009b; Meule, Lutz, Vögele, & Kübler, 

2014). SUDs and their corresponding behaviors have substantial impact (such as medical and 

financial problems) on individuals, those around them, and society at large because—as noted by 

the National Institute on Drug Abuse (NIDA)—drug abuse has major economic effects (caused, 

e.g., by spanning purchase, health care, criminal costs, and lack of productivity) that exceed $700 

billion, and contributes to nearly 600,000 deaths per year in the United States alone (NIDA, 

2015). But, at the individual level, SUDs have an even higher cost evaluated by their impact on 

family, friends, and those who actually suffer from SUDs and addiction. Individuals with SUDs 

often must confront social, work, and financial issues, and even—in cases of particularly 

dangerous substances such as opiates and heroin—are putting at risk the health and lives of 
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themselves and, sometimes, others. For example, a rural part of southern Indiana has recently 

experienced an outbreak of H.I.V., due (almost exclusively) to intravenous drug use (Goodnough, 

2015). However, Indiana is not an isolated case; there has been a substantial increase in drug 

abuse—across all substances—through out the United States over the past decade (Jones, Logan, 

Galdden, & Bohm, 2015). 

People with SUDs have, for a very long time, been associated with the stigma of “lack of 

will power” (Lieberman, 2015). However, public attitude towards SUDs and drug abuse have 

changed substantially in recent years; to such a degree that it has been a topic of honest 

discussion and debate during the 2016 presidential primary, in a state particularly hard hit by 

addiction (New Hampshire; Keith, 2016). For example, marijuana is now seen by some as a safer 

substance to use than alcohol (Nutt et al., 2010; Pew Research Center, 2014). Furthermore, 

public attitude and policy are finally aligning, in part, with modern psychiatric science: SUDs—

like other psychiatric disorders—are diseases that are better served by treatment, not by jail time. 

In fact, Massachusetts—one of the places hit the hardest, in recent years, by drug abuse—has 

started to address these issues: The Gloucester police department, and other agencies, now grants 

amnesty for individuals suffering from opiate abuse (Beck, 2015). However, while there are a 

number of viable treatment options, the origins of SUDs and addiction in general remain poorly 

understood. 

SUDs are very heritable disorders (Agrawal et al., 2012). There have been numerous—

often family or twin—studies illustrating that SUDs, drug abuse—and even other forms of 

addiction, such as gambling—are explained by more than just environmental factors (Kendler et 

al., 2012). In fact, SUDs are believed to be, in part, biological (i.e., genetic) in origin (Loth, 
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Carvalho, & Schumann, 2011; Palmer et al., 2015; Uhl, 2004). Today, SUDs are often studied 

with candidate gene studies (i.e., one or just a few pre-selected genes), large-scale candidate gene 

panels (e.g., thousands of markers, as in Hodgkinson et al., 2008; Saccone et al., 2007; Beaton et 

al., in prep), and even genome-wide studies (Bierut et al., 2010; Wetherill et al., 2015).  

Genome-wide technology—intended to provide massive, but respectively sparse, 

genotypic data across the entire genome—was considered a “breakthrough” (Pennisi, 2007) that 

promised to improve our understanding of health, personality, individual differences, and even 

causal effects of genes (Stranger, Stahl, & Raj, 2011; Weiner & Hudson, 2002). The accessibility 

and low cost of genotyping array technology have led to an abundance of genome wide studies 

(GWAS) in numerous domains: GWAS central (www.gwascentral.org) lists 1,831 studies, 

NHGRI (and EBI; http://www.ebi.ac.uk/), lists 2,223 GWA studies, and the keyword “GWAS” 

generated over 47,800 hits on Google Scholar1. A substantial amount of GWAS growth can be 

attributed to studies in the neuropsychiatric domains, such as the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI), Psychiatric Genetics Consortium (PGC), and the Study of 

Addiction: Genetics and Environment (SAGE). Despite such a range of applications, large-scale 

genetics and genomics studies have yet to yield any “breakthroughs,” especially in substance 

abuse research (Hutchison, 2010). Furthermore, there have been varied results with relatively 

massive samples in other well-studied psychiatric disorders (such as schizophrenia: Arnedo et 

al., 2014; Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014; Sekar 

et al., 2016; The Network and Pathway Analysis Subgroup of the Psychiatric Genomics 

Consortium, 2015). 
                                                

1 All as of October, 2015. 
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Currently, there is a distinct shortage of (bio) statistically appropriate data-analytic tools 

designed by, and especially for, research in the genetics of SUDs. This is underscored by the 

somewhat recent NIDA executive summary—punctuated by a variety of funding calls since—

that expressed caution on the interpretation of genome-wide—and more generally, genetic—

studies for substance abuse populations (NIDA, 2010). In general, NIDA—and the field at 

large—have recognized that there are substantial drawbacks to current approaches and methods 

to detect the genetic contributions to SUDs.  

One potential issue is that SUDs—like many other complex psychiatric disorders and 

diseases—are likely to be, at the very least, oligogenic (“a few genes”) or, much more likely, 

polygenic (“many genes”). Yet, most studies use methods and tools that were designed around 

the “OGOD” (one-gene one-disorder) principle; an idea that is considerably outdated and nearly 

abandoned for complex traits, diseases, and disorders—see, for example Xiaolin Zhu, Need, 

Petrovski, and Goldstein (2014) where the authors point to many instances of one gene (at a 

time) that appears to contribute to many neuropsychiatric disorders. Often, the goals, methods, 

and tools still used in these studies are designed to find the best single marker (a.k.a., “causal 

variant”, and therefore use a series of univariate tests). Further complicating the matter, studies—

not just in SUDs, but across almost any genetic or genomic study—are often conducted with just 

two groups: a control group and a case group (e.g., a specific SUD). So, unfortunately, the 

growth in the number of large-scale genetics and genome-wide studies, with multiple groups—

especially in alcohol and drug addiction research—is not paralleled by a growth of better, more 

appropriate, and more rigorous statistical methods or tools designed to fully exploit these 

complex data sets. Thus, to fully exploit the complexity of genetics in SUDs, we must first 
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address several statistical and methodological issues. In my dissertation (as an extension of some 

of my current work: NIH F31DA035039), I intend to address some of these issues. Broadly, 

there are two aims of my dissertation: (1) develop better, more powerful, statistical techniques 

for genetic and genomic association studies for the behavioral and brain sciences, and (2) apply 

these techniques to identify a potential better set of genetic markers to characterize (general and 

specific contributions to) substance use disorders.  

1.1 Research Questions 

To address the issues of high-dimension, low sample size (HDLSS) genetic data, I 

extended a recently developed framework for multivariate analysis of genetic and genomic data: 

Partial Least Squares-Correspondence Analysis (PLS-CA; see Chapter 4; Beaton, Dunlop, et al., 

2016). In Beaton, Dunlop, et al., (2016) we established a multivariate framework—based on 

partial least squares—designed around the categorical nature of genetic (and many other, e.g., 

clinical, diagnostic) data types, but that can be adapted for use of mixed-data types (i.e., any 

combination of categorical, ordinal, continuous; Beaton, Dunlop, et al., 2016). Currently, PLS-

CA—like most other techniques— relies in part on post-hoc inference techniques to identify 

genetic markers of interest. However, the current trend in the statistical sciences—especially 

with respect to extremely high-dimensional data sets—is that some form of regularization (or 

sparsification) is not only beneficial for interpretation of high-dimensional data, but also better 

suited for over-fitting and ill-posed problems (Jolliffe, Trendafilov, & Uddin, 2003). Currently, 

there are only a few approaches that exist that could potentially enhance PLSCA with regularized 

(or sparsified) conditions (Allen, 2013; Josse, Chavent, Liquet, & Husson, 2012; Takane & 

Hwang, 2006; Verbanck, Josse, & Husson, 2013).  
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Given the statistical trends for HDLSS problems (e.g., regularization, sparsifcation), I 

have developed a new version of PLS-CA: Smoothed PLS-CA (“SmooPLS-CA”). Both PLS-CA 

and SmooPLS-CA are compared against one another and applied to a subset of genome-wide 

data from SUDs populations. The broadest aim of this dissertation is similar to some of my 

recent work (Beaton et al., in prep; NIH F31DA035039): With the right data and analytical tools, 

do we have sufficient power to detect genetic markers in (relatively) small sample sizes? In this 

study, I will first analyze (separately with PLS-CA SmooPLS-CA) data from a relatively small 

genome-wide data set (N = 431; from Dr. Francesca M. Filbey). The markers identified in this 

analysis will then be used in a completely sequestered, and much larger data set (original N > 

3,285; Study on Addiction: Genetics and Environment; SAGE). The SUD groups of interest in 

this dissertation are marijuana and nicotine users. The goal here is to see if we can, in a small 

data set, identify adequate genetic markers that will sufficiently predict SUD diagnosis in a much 

larger, excluded, data set (i.e., a validation step). My dissertation studies were as follows: 

1. Design and implement a theoretically sound approach to minimize the number of 

interpretable items, while also accounting for over-fitting with PLSCA (with respect to 

genetics). 

2. Application to genome-wide based data: 

a. Apply standard PLSCA and SmooPLS-CA to a relatively (for genetics) small sample 

data set; markers identified in either will be used to classify participants (with respect 

to their SUD or a control group) in an excluded data set. If power happens to be 

sufficient in the “small” analysis, classification should be reasonable in the excluded 

data set. 
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b. Compare which approach is more powerful: standard PLSCA vs. SmooPLS-CA (with 

post-hoc inference tests); this helps answer a statistical question about which pipeline 

is more powerful and directly addresses analytical tradeoffs (e.g., computational time 

vs. accuracy). 

Generally, genome-wide and large-scale genetics analyses are considered “sufficiently 

powered” when N ≥ 5,000. However, many branches of the NIH (and other agencies) have 

provided funding to collect genome-wide data to many researchers; although, almost no single 

researcher—especially in brain and behavioral sciences—can attain a sample size “sufficient” for 

a genome-wide study. My dissertation will address a broader, more important question: can we 

analyze small sample, large-scale genetic data sets and trust those results? If so, this will provide 

a practical and economical set of tools that can be used to investigate the genetic nature of 

complex neurological and psychiatric disorders.
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CHAPTER 2 

SUBSTANCE USE DISORDERS AND THEIR LIKELY GENETIC CONTRIBUTIONS 

Substance use disorders (SUDs)—like many of the DSM-5’s criteria for disorders—are 

defined by severity on a scale (DSM5, 2015), where the term “addiction” is reserved for a 

chronic state of extreme SUD severity (Volkow et al., 2016). Severe SUD states are often 

characterized by a desire to quit, but self-control (or self-regulation) is very low, and compulsive 

substance use is very high. Symptoms of SUDs often include behavioral and cognitive changes 

and impairments leading to impairments often in social and work domains (NIDA, 2015).  

SUDs are heritable (Agrawal et al., 2012), where the heritability of SUDs is in part 

biological (Uhl, 2004) and in part environmental (as assessed through family and twin studies; 

Kendler et al., 2012)—with upwards of 50% of SUDs explainable by genetic factors (Volkow, 

Wang, Fowler, & Tomasi, 2012). In recent years, the National Institute of Drug Abuse (NIDA) 

and the National Institute on Alcohol Abuse and Alcoholism (NIAAA) have placed a substantial 

amount of resources in, and have prioritized the study of human genetics and its contribution to 

SUDs (expressed by NIDA in NOT-DA-12-012). With a better understanding of the genetic 

mechanisms of substance abuse and addiction, researchers and clinicians could design better, 

more targeted treatments than those currently available (NIDA, 2010, p. iv). 

In this chapter, I provide a comprehensive literature review on the genetic contributions 

to marijuana and nicotine use disorders—with additional material from other SUDs and 

psychiatric and neurological disorders. I also provide additional reviews of specific models of 

SUDs (as they pertain to the genetics of SUDs), as well as genes related to various aspects of 

behavioral and brain research, with particular emphasis on psychiatric disorders. Parts of this 
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chapter are adapted from my qualifying thesis, my F31 grant application, and some on-going 

work (Beaton, Abdi, & Filbey, in prep) as well as Beaton, Filbey, & Abdi (2014). Beaton, D., 

Abdi, H., & Filbey, F. M. (2014) Unique aspects of impulsive traits in substance use and 

overeating: specific contributions of common assessments of impulsivity. The American journal 

of drug and alcohol abuse, 40(6), 463-475. http://dx.doi.org/10.3109/00952990.2014.937490 

reprinted by permission of Taylor & Francis LLC (http://www.tandfonline.com).  

2.1 Behavioral and physiological (neurological) aspects of SUDs and addiction 

There are a number of behaviors, as well as physiological and neurobiological changes, 

associated with SUDs and addiction. Some of these behaviors include craving for a substance 

(Filbey et al., 2009b; Volkow, Fowler, et al., 2010), risk-taking (DeWitt, Aslan, & Filbey, 2014; 

Fernie, Cole, Goudie, & Field, 2010), lack of self-regulation (Cole, Logan, & Walker, 2011; 

Heatherton & Wagner, 2011), and disruption in executive functions such as decision making 

(Bickel, Koffarnus, Moody, & Wilson, 2014; Ernst et al., 2003) and cognitive control (Dalley, 

Everitt, & Robbins, 2011; Pharo, Sim, Graham, Gross, & Hayne, 2011). SUDs also tend to co-

occur with stress and trauma-based disorders (Read et al., 2012; Tull, Gratz, Coffey, Weiss, & 

McDermott, 2013). 

One of the most studied behavioral types associated with SUDs: impulsivity (and 

associated aspects): a relatively complex trait often studied across many domains including 

personality disorders (Witt et al., 2010), and self-regulatory failures (Baumeister & Heatherton, 

1996) such as substance use and overeating disorders (Dawe & Loxton, 2004). In SUDs, high 

levels of impulsivity—which are believed to also be a risk factor for addiction (Kreek, Nielsen, 

Butelman, & LaForge, 2005)—may be associated with an increase in drug use (Perry & Carroll, 
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2008), alcohol use (Fernie et al., 2013), and pathologic substance abuse (Belin, Mar, Dalley, 

Robbins, & Everitt, 2008). High levels of impulsivity could also impact treatment strategies 

(Bankston et al., 2009). “Impulsivity” is a multifaceted and heterogeneous concept that includes 

aspects of disinhibition, inattention, sensation seeking, and deficits in decision-making (Evenden, 

1999). Prior work has shown traces of unique impulsivity traits associated to different substance 

users. For example, Meda et al., (2009) derived a five-factor model based on state and trait 

measures in healthy controls vs. “at-risk/addicted” participants, where Beaton et al., (2014) 

showed there are multiple, non-linear—and much more nuanced—facets to impulsivity in SUDs 

including traits unique to marijunana + nicotine co-users.  

While various concepts play a role in SUDs—either through initiation of use, or 

maintenance of use—such as impulsivity, stress, and dysregulation (Jentsch et al., 2014; G. Koob 

& Kreek, 2007), interoception (Naqvi & Bechara, 2010; Noël, Brevers, & Bechara, 2013), and 

exteroception (DeWitt, Ketcherside, McQueeny, Dunlop, & Filbey, 2015), there are two primary 

(and prominent) models of SUDs and addiction: (1) reward (“positive” reinforcement; Robinson 

& Berridge, 2008) and (2) stress (“negative” reinforcement; Koob & Le Moal, 2001; Koob & 

Kreek, 2007), which play substantial roles in (1) early and intentional use stages (i.e., initiation) 

and (2) maintenance of substance use (often related to withdrawal). 

The reward and stress hypotheses play important theoretical roles in the genetics of 

SUDs, because both the reward and stress circuits (mostly, the dopaminergic and corticoid 

systems) are highly involved in SUDs and addiction. Furthermore, we have a generally good 

understanding of the biology—and thus genetics—of the reward and stress circuits. Though, it is 

now more generally understood that, while these two systems are primary contributors (perhaps 
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to SUDs and addiction in general, not for specific SUDs), there are other (neural and genetic) 

contributors to SUDs and addiction including specific genetic systems for particular disorders 

(e.g., nicotinic receptors for nicotine, cannabinoid receptors for cannabis; Volkow & Muenke, 

2012; Volkow, Wang, Fowler, Tomasi, & Telang, 2011). Below I provide a brief description of 

these circuits to provide a context of why particular genes (1) have been proposed as candidate 

genes, (2) are almost routinely found in a variety of SUDs and psychiatric disorders, and (3) 

within both of these circuits have brought about two separate polygenic (i.e., multiple gene) 

panels to explain SUDs (and even other psychiatric disorders). 

2.1.1 The reward circuit 

The “reward circuit” (Feder, Nestler, & Charney, 2009; Volkow et al., 2011) is primarily 

a dopaminergic system. At the seat of the reward circuit are two key regions: the nucleus 

accumbens (NAc) and the ventral tegmental area (VTA); these regions regulate response to 

reward, and are the origin of dopaminergic cells, respectively. From here, the NAc and VTA 

feed into the dorsal striatum (which plays a role in aspects of cognition, e.g., executive function) 

and motor cortex (for actions). The NAc and VTA are, in part, top-down regulated by frontal 

regions (e.g., anterior cingulate cortex), and more medial structures involved in emotion, 

memory, and learning, such as the hippocampus and amygdala. To summarize, the reward circuit 

is important because it is largely believed that the top-down influence of the NAc and VTA can 

trigger a dopaminergic (reward) response, which, in turn, elicits an action to engage in reward 

seeking behavior (e.g., substance use; via dorsal striatum and motor regions, in the first stage as 

described in Volkow et al., 2016). While this is the “core” reward circuit, other regions—such as 

the precuneus—may also play a role in reward processing (Filbey & DeWitt, 2012). 
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2.1.2 The stress circuit 

The stress circuit is primarily a corticoid system (mostly regarded as a glucocorticoid, but 

there are also other corticoids involved, such as mineralocorticoid; Vogel, Fernández, Joëls, & 

Schwabe, in press, 2016). At the seat of the “stress” circuit is the hypothalamic-pituitary-adrenal 

(HPA) axis. The HPA axis—via the adrenal gland—releases glucocorticoids that regulate, or can 

be triggered by, other brain regions and “brain stress systems” (Koob & Le Moal, 2001; López, 

Akil, & Watson, 1999). Regions regulated by the HPA axis include, for example, the amygdala, 

hippocampus, prefrontal cortex, and—importantly—the NAc. This circuit is important because it 

is believed to be related to maintenance factors (as in stress-relief a.k.a. “self-medication”; 

second stage described in Volkow et al., 2016). This same “stress” circuit is also called the 

“resilience” circuit (Morrow & Flagel, 2015) as it may help to avoid further substance use as 

well as provide “resilience” (a.k.a. a protective factor) against other disorders (e.g., PTSD; Feder 

et al., 2009). 

2.2 Genetics of Substance Use Disorders 

The biological (including genetic) underpinnings of SUDs have been a primary concern 

in the field that has spanned almost four decades (Camps, 1972; Cruz-Coke, 1982; Devor & 

Cloninger, 1989). In 1989, the NIAAA began a study called the “Collaborative Study on the 

Genetics of Alcoholism” (COGA; http://grantome.com/grant/NIH/U10-AA008401-27)—related 

to another study included in this dissertation: “Study on Addiction: Genes and Environment” 

(SAGE)—which primarily addressed alcohol use disorders (at the time referred to as 

“alcoholism”), but also other—believed to be heritable—SUDs (Bierut, Dinwiddie, Begleiter, et 
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al, 1998). The clear familial transmission of several SUDs (with the help of the COGA study and 

its individual studies), spurred some of the earliest work—in alcohol use disorders—on specific 

genetic contributions (Heinz, Mann, Weinberger, & Goldman, 2001; Long et al., 1998). 

However, before the advent of inexpensive and widely-available genotyping platforms, 

some of the earliest studies—beyond alcohol use disorders—were twin and family studies 

designed to estimate the heritability of SUDs, as well as estimate the contributions from genetic 

and/or environmental factors (Kendler, Jacobson, Prescott, & Neale, 2003; Kendler, Prescott, 

Myers, & Neale, 2003)—a paradigm that is still employed today (Kendler, Sundquist, Ohlsson et 

al., 2012; Lynskey et al., 2012). Some important contributions of twin and family studies show 

combined genetic and environmental effects (Kendler, Schmitt, Aggen, & Prescott, 2008; Vrieze, 

Hicks, Iacono, & McGue, 2012).  

Shortly after many of the family and twin studies (up to the mid-to-late 2000s, and even 

in recent years), this work was extended to also estimate contributions of, and relationships with, 

behavioral (sometimes referred to as “phenotypic”) and other biological, physiological, and 

neurological (sometimes referred to as “endophenotypic”) measures (see, e.g., Meyer-

Lindenberg & Weinberger, 2006) in SUDs (Edenberg & Foroud, 2006; Palmer et al., 2015; 

Wetherill et al., 2015).  

Around the time of these large-scale family studies, genotyping, and in particular 

genome-wide, platforms became much more accessible (and usable) to researchers outside the 

biological sciences. In brain and behavioral sciences, one of the most typical types of genetic 

data—called single nucleotide polymorphisms (SNPs; pronounced “snips”)—lists the possible 

alleles of a nucleotide pair at a given position for the corresponding chromosomes (i.e., one 
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maternal and one paternal). In practice, SNPs are detected as their DNA nucleotide pairs, called 

genotypes. These genotypes are in general classified as the major homozygote, heterozygote, and 

minor homozygote (e.g., AA, AG, GG, respectively, assuming that AA is found more often than 

GG in the population of interest) where zygosity is determined by allele frequency (e.g., G is a 

minor allele because it is less frequent than A). The general form of SNPs is to consider A the 

major allele (most frequent), and a the minor allele, where AA is the major homozygote, aa the 

minor homozygote, and Aa the heterozygote. 

Studies have been performed with single or multiple (small and large scale) candidate 

(hypothesis-driven; relatively small) gene sets, or genome-wide (exploratory; very large) arrays 

(which primarily use SNPs) in nearly all SUDs such as cocaine (Bi, Gelernter, Sun, & Kranzler, 

2014; Gancarz et al., 2014), nicotine (Hancock, Reginsson, et al., 2015), heroin (Hancock, Levy, 

et al., 2015), and even comorbid disorders such as alcohol dependence and obesity (K.-S. Wang, 

Zuo, Pan, Xie, & Luo, 2015; L. Wang et al., 2013). In fact, a number of reviews outline the 

genetic (and other biological) contributions of SUDs, related disorders, and related traits 

(Bevilacqua & Goldman, 2011; Loth, Carvalho, & Schumann, 2011; Munafò & Flint, 2011). 

Though there has been a substantial amount of work to understand the genetic contributions to 

SUDs, results tend to be weak, inconsistent, or not replicable (Hutchison, 2010 p. 579), and 

sometimes originated from methods designed to work around some of the genetic complexities 

(e.g., “multilocus (genetic) profile scores”; as in Papiol et al., 2014). Even though there are 

inconsistencies within the literature—especially with respect to exact SNPs and genotypes, as 

well as magnitudes and directions of effects—there do appear to be a number of very likely 

genetic candidates for SUDs in general and even specific SUDs. 
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2.2.1 How do we know which genes to study? 

Many of the genetic markers of interest in SUDs and addiction come from a number of 

other physiological, biological, and (especially) neurobiological effects associated with SUDs, 

and in particular: reward and stress processes associated with SUDs and addiction. Studies of 

substance abuse and addiction regularly find brain regions that are strongly associated with 

particular neurotransmitter systems—especially those related to reward (Volkow, Wang, et al., 

2010; Volkow et al., 2011)—such as serotonergic, cholinergic, dopaminergic, and—to a lesser 

degree opioid—systems. Often, these studies show that brain regions associated with particular 

neurotransmitter systems work differently in substance abusing individuals (as compared to 

controls). Furthermore, these differences are apparent across many specific substances such as 

cocaine (Adinoff et al., 2010; Volkow, Fowler, et al., 2010), alcohol (Beck et al., 2009), 

marijuana (Filbey & DeWitt, 2012; Filbey et al., 2009b), nicotine (Bühler et al., 2010) and even 

food (Gearhardt et al., 2011; Horstmann et al., 2011). Given that a wide body of research 

implicates multiple neurotransmitter systems—across multiple substances—then it would follow 

that the genes that regulate these systems are likely contributors to substance abuse. Furthermore, 

a number of these neural systems have relatively well known genetic contributions. For example, 

some studies—in just alcohol abuse—revealed a diverse set of neural systems with genetic 

contributions across glucocorticoid (Desrivières et al., 2011), opoid (Bart et al., 2004), 

serotonergic (Kranzler, Hernandez-Avila, & Gelernter, 2002), and dopaminergic, as well as 

opioid (Filbey et al., 2008) systems. 
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2.2.2 Specific genes of nicotine abuse 

Like most SUDs, there appears to be a transmissible (or heritable) factor for nicotine use, 

abuse, and/or dependence within families (Buka, Shenassa, & Niaura, 2003) or other familial and 

social environments (Kendler et al., 2008). Primary and meta-analytic studies mention genes 

related to nicotinic acetylcholine receptors (nAChRs). The most common genes associated with 

nAChRs use the symbol prefix of CHRN (e.g., CHRNA5, CHRNB4)2. Markers for CHRN* genes 

are routinely implicated in nicotine use, abuse, and dependence. For example, both CHRNA6 and 

CHRNB3 (as candidate genes) have been associated with subjective responses (self-report of 

effects with respect) to tobacco use (Zeiger et al., 2008). Additionally, some of the strongest 

genome-wide (including meta-analytic) effects have been observed in a variety of nicotinic 

receptor genes (most are contained within chromosome 15): CHRNA6, CHRNB3, and CHRNA5 

(J. Z. Liu et al., 2010; TAG, 2010; Thorgeirsson et al., 2010), where CHRNA5 has shown some 

of the strongest effects with (subjective) response to tobacco usage (L.-S. Chen et al., 2012); all 

of these genome-wide nicotinic receptor effects reinforces some of the strongest effects observed 

in more narrow, candidate-like approaches with the CHRNA5/A3/B4 cluster (Greenbaum, Rigbi, 

Teltsh, & Lerer, 2009; Saccone et al., 2007). Importantly, SNPs in this same chromosomal region 

appear to play a role in nicotine addiction in both African American and European American 

populations (Culverhouse et al., 2014). Additionally, an earlier study showed that serotonin 

transporter and receptor genes (SLC6A4, HTR3A, HTR3B) also contribute to nicotine dependence 

in African American and European American cohorts (Yang et al., 2013).  

                                                

2 For the purposes of brevity, hereafter I use a wildcard symbol (*) in cases where multiple genes with the same “prefix” (e.g., 
CHRN*) are implicated in an effect. 
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In two of the most recent analyses—one of which was a genome-wide meta-analysis—

some “usual suspects” (i.e., the CHRNA5/A3/B4 group on chromosome 15) showed a strong 

effect on nicotine use, but markers associated with CHRNA4 showed the strongest association 

with nicotine dependence (via the Faegerstrom’s Test for Nicotine Dependence; Hancock, 

Reginsson, et al., 2015). Furthermore, a genome-wide meta-analysis derived set of candidate 

markers for polygenic risk scores (in the same CHRNA5/A3/B4 cluster, with some additional 

markers, e.g., EGLN2, ADAMTS7) also showed strong association with a variety of nicotine use 

phenotypes (e.g., initiation, dependence, family usage; see Belsky et al., 2013). CHRN* markers 

also appear to play a role in the mortality rates of smokers (Kupiainen et al., 2016).  

While CHRN* genes are some of the most reliable markers for nicotine usage and 

dependence, other genes appear to show similar effects: DRD4 has also been implicated as a 

mediating factor of subjective response to tobacco usage (after abstinence; Harrell et al., 2015). 

In fact, a variety of dopamine markers—including DRD1 (W. Lee et al., 2012) and the 

DRD2/ANKK1 cluster (Voisey et al., 2012)—have also been shown to either contribute to 

nicotine usage and dependence, or to interact with (or modulate) the effects of CHRN* genes in 

nicotine administration and attention paradigms (Ahrens et al., 2015; Breckel et al., 2015). 

Additionally, DRD4 genotypes appear to mediate reward to smoking cues in short-term abstinent 

smokers (Xu et al., 2014). Dopamine (receptor and transport) genes are critically important to 

neurological reward processing, and play a major role in a particular genetic panel for SUDs (see 

later section “The reward panel”). Beyond CHRN* and DRD* genes, Schlaepfer, Hoft, and 

Ehringer (2008) provide a review of co-addiction with nicotine, and suggest that CHRN* and 

GABA-ergic genes play a role in nicotine use and other SUDs (e.g., alcohol use disorders).  
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Though CHRN* genes typically appear to show the strongest effects and are reported 

most often in the literature (Ware & Munafò, 2014), some researchers have pointed to yet 

other—somewhat unexpected—genes. Jensen and Sofuoglu (2015) make a case for FKBP5—a 

gene, which plays a critical role in stress/resilience (especially with respect to childhood trauma 

and PTSD), and is an important gene in another genetic panel for SUDs (see later section “The 

stress/resilience panel”)—as a mediator of stress response during nicotine withdrawal. Finally, 

other markers—particularly glutathione transferase genes—have shown increased effects of 

anxiety in co-morbid nicotine and mood disorder populations (Nunes et al., 2014).  

In sum, research focused on nicotine use, abuse, and dependence, has yielded only a few 

promising candidate markers, though these markers are what would be expected for nicotine 

dependence (e.g., CHRN*), behavioral and neural effects of reward/craving (e.g., DRD*), and 

even the “stress” of quitting (e.g., FKBP5). 

2.2.3 Specific genes of marijuana abuse 

Marijuana misuse (including abuse and dependence) like nicotine use is known to be 

“transmissible” within families (Hopfer, Stallings, Hewitt, & Crowley, 2003). While 

environment certainly plays a role in marijuana use like it does for other substances, family and 

linkage studies showed specific genetic markers in the GABA-ergic and endocannabinoid 

systems (i.e., GABRA2 and CNR1, respectively) related to marijuana use within family probands 

(Agrawal et al., 2008). There also exist moderate and small effects in African Americans and 

European Americans, respectively, of NRG1 in cannabis dependence (Han et al., 2012). 

Furthermore, a primary endocannabinoid receptor—CNR1—has been shown as a likely 

candidate—because it is a target receptor for cannabinoids (Agrawal et al., 2009). CNR1 has also 
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been shown to work in conjunction with a gene that breaks down endocannabindoids—FAAH—

to influence withdrawal and craving effects (Haughey, Marshall, Schacht, Louis, & Hutchison, 

2008). Additionally, a number of markers have been suggested to play a role in chronic 

marijuana use (including abuse and dependence), including CNR1 and CNR2, FAAH, GABRA2, 

DRD2 (or ANKK1 due to locus proximity and gene-gene/protein-protein interactions), SLC6A3 

(previously known as DAT1), and OPRM1 (Agrawal & Lynskey, 2009). However, the only 

genome-wide association studies on cannabis dependence showed no (traditionally) significant 

effects, but some moderate effects of the ANKFN1 and FTO genes (Agrawal et al., 2011; 

Agrawal et al., 2014).  

Beyond these markers, there are few other candidate genes that have been studied. The 

ABCB1 gene—which may play a role in tetrahydrocannabinol distribution—was shown to 

increase the risk of cannabis dependence (Benyamina et al., 2009). Additionally, the DRD4 

gene—a prominent gene reward processing—plays a role in marijuana use (Vaske, Boisvert, 

Wright, & Beaver, 2013), as well as marijuana use and depression comorbidity (Bobadilla, 

Vaske, & Asberg, 2013). In fact, a number of other genes studied in marijuana use typically stem 

from comorbidities. The COMT gene—which is integral in the transport and degradation of 

dopamine (and other transmitters)—appears to influence age of onset and marijuana usage in 

schizophrenia (Estrada et al., 2011; Pelayo-Terán et al., 2010). Finally, a haplotype of the FK5BP 

gene—a prominent gene in stress/resilience, and as noted plays a role in many stress-related 

disorders—plays a small role in marijuana dependence in adolescents that were mistreated as 

children (Handley, Rogosch, & Cicchetti, 2015).  
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In sum, research focused on marijuana use, abuse, and dependence has identified multiple 

candidate markers. However, the most likely candidate markers appear to be related to 

cannabinoids (i.e., CNR1, CNR2, FAAH), to both the GABA-ergic (i.e., GABRA2) and 

dopaminergic (i.e., SLC6A3, DRD2, DRD4), and to a lesser extent the COMT systems. 

2.2.4 Genetics of related behavioral and neural traits, phenotypes, and endophenotypes 

Part of the motivation behind studying associated (with SUDs) traits, as opposed to strict 

categorical diagnoses/groups, is that strict categories may contain heterogeneous “diagnoses”; 

these ideas are inherent in the Research Domain Criteria (RDoC; 

https://www.nimh.nih.gov/research-priorities/rdoc/index.shtml; Yee, Javitt, & Miller, 2015). 

However, many DSM diagnoses are also moving towards “spectrums” and “dimensions” of 

severity (Weinberger, Glick, & Klein, 2015). The field of “imaging genetics” is based on the 

premise that, biologically, we should see a better explanation of variance from genes to brain 

function than we would from genes to behavior, or genes to diagnosis because brain function is 

“closer” to genetic function than behavior or diagnosis (Meyer-Lindenberg & Weinberger, 2006); 

though, it has been argued that with the correct set of behavioral instruments, it is possible to 

boost the genetic signal (Beaton, Dunlop, et al., 2016; Bloss, Schiabor, & Schork, 2010). 

However, the idea that something is “closer” to genetics is not without scrutiny (Iacono, 

Vaidyanathan, Vrieze, & Malone, 2014).  

Before reviewing the literature about genetic contributions to traits, phenotypes, and 

endophenotypes in SUDs we need to clearly define these terms. First, the standard dictionary 

definitions (Apple OSX dictionary application, accessed January, 2016) of trait and phenotype 

are: 



 

21 

• Trait: (1) a distinguishing quality or characteristic, (2) a genetically determined 

characteristic.  

• Phenotype: [a set of] observable characteristics of an individual resulting from the 

interaction of its genotype(s) with the environment. 

Endophenotype does not have a standard dictionary definition; its initial use can be traced back 

to the study of insects (John & Lewis, 1966) in order to parse apart what was believed to be two 

components of phenotypes based largely on chromosomal variation: external (exogenous) and 

internal (endogenous) phenotypes (exophenotype and endophenotype, respectively). To quote 

John & Lewis (1966): 

The endophenotype, by definition, does not affect the competitive efficiency or, therefore, 

the adaptedness of the individual; it affects the number and nature of the offspring and is, 

in consequence, the subject of retrospective selection. […] it is clearly time to examine 

more fully not the exophenotype but the endophenotype, not the obvious and external but 

the microscopic and internal, not the genic but the chromosomal. (p. 720) 

John and Lewis described endophenotypes as chromosomal variations (something that cannot be 

directly observed at the time) that could impact subsequent generations. This definition was 

loosely adapted for psychiatry by Gottesman and Gould (2003) to include almost anything that 

was not strictly a diagnostic category: 

An endophenotype may be neurophysiological, biochemical, endocrinological, 

neuroanatomical, cognitive, or neuropsychological (including configured self-report 

data) in nature. (p. 636) 
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However, Gottesman and Gould did provide some criteria for what an endophenotype is: 

1. The endophenotype is associated with illness in the population. 

2. The endophenotype is heritable. 

3. The endophenotype is primarily state-independent (manifests in an individual whether 

or not illness is active). 

4. Within families, endophenotype and illness co-segregate.  

[…] 

5. The endophenotype found in affected family members is found in nonaffected family 

members at a higher rate than in the general population. (p. 638) 

A broader re-interpretation of Gottesman and Gould’s definition is provided in (Ersche et al., 

2012): 

Endophenotypes are quantitative traits, mediating between the predisposing genes 

(genotypes) and the clinical symptoms (phenotypes) in complex disorders (p. 602) 

where quantitative traits tend to be some non-categorical measure used as a proxy for categories 

(i.e., diagnoses). Furthermore, there are other similar terms in the literature (e.g., quantitative 

trait, phenotype, intermediate phenotype) that are also used interchangeably where the definition 

has evolved into some measure believed to be “closer” to genetics than diagnostic category (e.g., 

Reitz & Mayeux, 2009): 

 In conclusion, given that the pathways from genotypes to end-stage phenotypes are 

circuitous at best, discernment of endophenotypes more proximal to the effects of genetic 

variation can improve statistical power and thereby be a powerful tool in the 

identification of genes linked to complex disorders. (p. 186) 
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Finally, an even broader definition of phenotype and intermediate phenotype has found its way 

into, mostly, neurological disorders (Vounou et al., 2012): 

[…] we identified voxels that provide an imaging signature of the disease with high 

classification accuracy; then we used this multivariate biomarker as a phenotype […] (p. 

700) 

This definition broadens the idea of “phenotype” with respect to the first dictionary 

definition of trait (“a distinguishing quality or characteristic”). Vounou and colleagues used a 

quantitative measure that best discriminates or identifies a priori groups as their “phenotype”; in 

this particular study the phenotype was “voxel-wise longitudinal changes” that best 

discriminated Alzheimer’s Disease from control groups (which was done before any genetic 

association), a procedure that violates Gottesman and Gould’s rules except the first (“associated 

with illness in the population”).  

While these are the (very open) definitions primarily used today, two common parts of 

the original definitions of a phenotype (and endophenotype) are that phenotypes must be genetic 

and heritable. In the literature at large, heritability often is not (or cannot be) computed. While 

some promising neural or behavioral patterns have been suggested as endophenotypes (implying 

genetic and inheritance components)—including working memory activation in the dorsolateral 

prefrontal cortex (DLPFC) in schizophrenia (Callicott et al., 2003; Potkin et al., 2009) and even 

impulsivity traits as measured by routinely used scales (Ersche, Turton, Pradhan, Bullmore, & 

Robbins, 2010; Robbins, Gillan, Smith, de Wit, & Ersche, 2012) or lab measures (Anokhin, 

Grant, Mulligan, & Heath, 2015)—these are far from confirmed as phenotypes or 

endophenotypes as initially defined.  
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Because of the inconsistency of definitions and the difficulty in estimating heritability, I 

will provide definitions to help distinguish these terms from one another (with respect to the 

brain and behavioral sciences, largely in the context of psychiatric, and to some extent 

neurological, disorders). Trait will be a largely umbrella term where genetics effects are either 

confirmed or suspected (direct or indirect) contributors to some measured effect. Thus, I provide 

the following two definitions: 

• Phenotype: (often directly) observable behavioral traits, with presumed genetic 

contributions, shown to be associated with particular, or common to a variety of disorders 

(e.g., impulsivity in SUDs, working memory performance in Schizophrenia); often 

measured with subjective or objective instruments. 

• Endophenotype: (often indirectly) observable neural traits, with presumed genetic 

contributions, shown to be associated with particular, or common to a variety of disorders 

(e.g., “reward circuit” activation in SUDs, ventricle size in schizophrenia); often 

measured with invasive and non-invasive technology (e.g., functional or structural 

imaging, electrophysiological recordings). 

With distinct definitions of phenotype and endophenotype we can now review the 

literature, in the context of SUDs, in a clearer way. However, these definitions are relaxed 

because: (1) there is no requirement of heritability estimates (though an effect may be genetic, it 

is not always inherited), even though it is well known that SUDs are quite heritable, and (2) 

some endo/phenotypes may exist separately from SUDs and thus could co-occur with SUDs. 
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2.2.4.1 Phenotypic-genotypic associations in SUDs 

A wide variety of genetic markers have been associated with behaviors common to 

SUDs. Though this dissertation focuses on marijuana and nicotine use, there are fewer 

phenotypic-genotypic studies on these groups than some other SUDs (e.g., cocaine, alcohol). 

However, the majority of studies include control groups, thus studies outside of the phenotypic-

genotypic associations in marijuana or nicotine still provide an expectation of what to expect in 

SUDs and especially in SUDs vs. control. 

“Rule breaking” is shown to be a mediating factor between GABRA2 and substance 

misuse (Trucco, Villafuerte, Heitzeg, Burmeister, & Zucker, 2014). MAOA and SLC6A4 (a.k.a., 

5-HTTLPR) magnify effects of depression in cocaine users (Moeller et al., 2014); DRD4 explains 

co-morbid depression and marijuana use (Bobadilla et al., 2013); and GST* genes are associated 

with higher anxiety in nicotine dependence (Nunes et al., 2014).  

Impulsive, sensation and novelty-seeking, and risk taking behaviors are common traits in 

SUDs, where some SUDs show distinct aspects of impulsivity (Beaton et al., 2014). In fact, 

impulsivity and related traits have been suggested as possible phenotypes or endophenotypes 

(Congdon & Canli, 2005; Robbins et al., 2012; Whelan et al., 2012) in SUDs, though the genetic 

origins of these behaviors have limited study outside of disordered populations. One such study 

showed that multiple genetic markers (COMT, DRD4, BDNF, SLC6A4, and ANKK1) contributed 

both on the whole (polygenic), and individually to various aspects of impulsivity (Carver, 

LeMoult, Johnson, & Joormann, 2014). Impulsivity is increased in marijuana-related problems 

with CNR1, but not FAAH (Bidwell et al., 2013), and even in adolescent populations (Buchmann 

et al., 2014), where OPRM1 genotypes explain an increase in both impulsivity and alcohol use 
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(Pfeifer et al., 2015). A complex interaction was observed between HTR2B, impulsivity, 

aggression, and alcohol use in Finnish founder populations (Tikkanen et al., 2015), and, finally, 

in a review, SLC6A4 (a.k.a. 5-HTTLPR) genotypes appear to increase the risk of both sexual risk 

behaviors and alcohol use disorders (Rubens et al., 2015).  

Like impulsivity, there are a number of other personality traits with suspected genetic 

contributions, though the findings there are also inconsistent. These genes are primarily 

dopaminergic and serotonergic (Munafò & Flint, 2011). There is also a suspected link between 

personality traits and resilience (“constraint”) against SUDs through a variety of brain circuits, 

which are linked to dopaminergic (receptors found in, e.g., VTA, reward circuit) and serotonergic 

genes (receptors found in, e.g., ACC, amygdala; Belcher, Volkow, Moeller, & Ferré, 2014)3. This 

brings up two points: (1) resilience is a likely phenotype, and (2) the brain regions involved—in 

SUDs, related traits, and resilience—could be likely phenotypes or endophenotypes. A number of 

studies have indeed shown genetic contributions to treatment options in SUDs, such as: treatment 

effects mediated by dopamine (Feldstein Ewing, LaChance, Bryan, & Hutchison, 2009) and 

serotonin in alcohol use disorders (Kenna et al., 2014), and also CREB (which mediates NPY a 

gene linked to the thalamus and satiation) effects on treatment efficacy in methamphetamine 

abusers (Heinzerling, Demirdjian, Wu, & Shoptaw, 2016).  

                                                

3 This paper offers yet another, very loose, definition of “endophenotype:” “The endophenotype concept is 

understood as simpler clues to genetic underpinnings than the disease syndrome itself, and involves the genetic 

analysis of any of a variety of biological markers (cognitive, neurophysiological, anatomical, biochemical, etc.) of 

the disease.” (p. 211) 
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As noted in Volkow et al. (2011) with respect to brain circuit disruptions and differences 

(compared to controls) routinely found in SUDs, we should expect to find contributions—to 

SUDs—from a generally wide array of genetic markers in the serotonergic, cholinergic, 

dopaminergic, and opioid systems. Thus, we should also expect that genes in these systems 

would contribute to brain changes or differences (endophenotypes), which could lead to 

behavioral changes (phenotypes), and thus result in a disorder. 

2.2.4.2 Endophenotypic-genotypic associations in SUDs 

The endophenotypic-genotypic associations in SUDs vary across a wide array of SUDs 

and trait behaviors (possible phenotypes) often linked to SUDs. Though the focus of this 

dissertation is on marijuana and nicotine use, there are fewer enodphenotypic-genotypic studies 

on these groups than some other SUDs (e.g., cocaine, alcohol). However, the majority of studies 

include control groups, thus studies outside of the endophenotypic-genotypic associations in 

marijuana or nicotine still provide an expectation of what to expect in SUDs and especially in 

SUDs vs. control. 

Some of the most studied associations are in cocaine users: SCL6A3 (DAT1) mediates 

craving, and neural response to craving, in (temporarily) abstinent users (Moeller et al., 2013), 

wide-spread contributions from dopamine, serotonin, and GABA-ergic genes to white matter 

degradation in cocaine users (Azadeh et al., in press, 2016) as well as contributions of both 

MAOA and SLC6A4 in aversive-related event-related potentials in cocaine users with depressive 

symptoms, which could impact treatment (Moeller et al., 2014). Monoamine transport genes 

(i.e., helpers of MAO-A and -B) also play a role in resting state connectivity in alcohol 

dependence (Zhu et al., 2015).  
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Early work on endophenotype-genotype associations in SUDs have shown that 

endocannabinoid markers—specifically CNR1—are associated with cue-elicited responses in 

alcohol (Hutchison et al., 2008), where particular alleles are associated with responsivity in 

prefrontal regions. There are also effects of CNR1 on prefrontal connectivity in conjunction with 

lower working memory performance (Colizzi et al., 2015). Furthermore, additional 

endocannabinoid markers—CNR1 and FAAH—have shown a number of effects in (as expected) 

marijuana use including mediating cue-elicited neural response, largely in the “reward circuit” 

regions (Filbey, Schacht, Myers, Chavez, & Hutchison, 2009a, p. 1), as well as differences in 

hippocampal and amygdala volumes associated with CNR1 and FAAH (Schacht, Hutchison, & 

Filbey, 2012), where FAAH alone has shown a relationship with lower white matter integrity—in 

cannabis users—in forceps minor and bilateral uncinate fasciculus (frontolimbic regions, see 

Shollenbarger, Price, Wieser, & Lisdahl, 2015)—regions also associated with the reward circuit. 

Other research implicates the DRD2 and PENK genes with (impulsive and neurotic) personality 

traits and amygdala activation (for impulsivity-related tasks) in cannabis dependence (Jutras-

Aswad et al., 2012). DRD4 repeat markers play a role in substance abuse—in particular 

marijuana and “hard drugs”—in psychiatrically hospitalized (for behavioral disorders) 

adolescents (Mallard, Doorley, Esposito-Smythers, & McGeary, 2016). A DBH SNP was 

associated with increased impulsivity, as well as decreased functional connectivity (in a reward 

circuit) in marijuana and cocaine users (who were under the influence of small doses; Ramaekers 

et al., 2015). Finally, in a recent review Moeller, London, & Northoff (2014) implicated many 

GABA-ergic related regions show substantial differences in SUDs (from controls) in resting state 

connectivity. 
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2.2.5 Expected and unexpected genetic contributions to SUDs 

Though this dissertation is concerned, primarily, with marijuana and nicotine cohorts, 

many of the previously mentioned genes have been shown, repeatedly, in SUDs and addiction 

studies both generally (vs. a control group), and specifically (e.g., within marijuana or cocaine 

use groups). Some examples of particular (and sometimes presumed mono-) genetic effects 

include dopamine in alcohol (Filbey et al., 2008; Kang et al., 2014), opioid markers in a wide 

array of studies including opiate abuse (Clarke et al., 2014), the severity of opiate withdrawal 

(Jones, Luba, Vogelman, & Comer, 2016), and methamphetamine abuse (Li et al., 2004). Even 

zinc finger (ZNF*) markers have been shown to have a role, separately, in comorbid alcohol use 

and opioid dependence (Ali et al., 2015), and again in heroin abuse (Hancock, Levy, et al., 2015; 

Sun et al., 2015). Furthermore, some of the most robust markers of substance abuse—across a 

wide array of SUDs, not just in nicotine use—tend to be nicotinic gene markers (Melroy-Greif, 

Stitzel, & Ehringer, 2015; Sherva et al., 2010). Interestingly, CB1 and CB2 (endocannabinoid 

markers) respectively, play roles in cocaine use in rats (McReynolds et al., 2015), and alcohol-

reward behaviors in (knock out) mice (Powers, Breit, & Chester, 2015), where a related gene—

FAAH—also showed evidence of regulation of nicotine withdrawal (Merritt, Martin, Walters, 

Lichtman, & Damaj, 2008), likely by breaking down endocannabinoids in a variety of brain 

structures (e.g., amygdala, hypothalamus; as shown in rats; Cippitelli et al., 2011).  

While much research has been done with a focus on small sets or single genetic markers, 

there are two relatively complex findings that can be gleaned from the literature: (1) very 

specific genetics of multi-substance use, or associated with general substance abuse, and (2) very 

specific genetic markers that, according to the literature, contribute to many traits associated with 
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SUDs or other neuropsychiatric disorders. Furthermore, several individual genes have been 

suggested as general risk factors for any SUD: OPRM1 (Schwantes-An et al., 2015), GABRA2 

and DRD2 (Kreek et al., 2005), as well as SLC6A4 (Belcher et al., 2014), usually because these 

genes are routinely found as significant contributors across a variety of SUDs.  

Usually, we can expect a particular gene (e.g., OPRM1, an opiate receptor) that matches 

the substance of interest to contribute to a particular SUD (e.g., heroin use), to quote Volkow and 

Mueke (2012): 

“Thus, the tetrahydrocannabinol (THC) in marijuana takes advantage of the cannabinoid 

receptor type 1 (CB1), heroin acts through mu opioid receptors and nicotine through 

nicotinic receptors; alcohol affects the dopaminergic system via multiple targets, 

including GABA, N-methyl-D-aspartate (NMDA), cannabinoid and serotonin receptors.” 

(p. 774-775) 

However, this is not always the case, and particular genes (e.g., OPRM1) may contribute to 

SUDs without “matching” a substance (e.g., cannabis dependence). For examples, CNR1 (an 

endocannabinoid receptor) and FAAH (that breaks down endocannabinoids) have been associated 

with heroin addiction (Proudnikov et al., 2010), OPRM1 (an opiate receptor) alters binding in 

various brain regions (e.g., amygdala, ACC) in tobacco smokers (Ray et al., 2011), and CHRNB3 

(a nicotinic receptor) has been associated with cannabis use (Agrawal et al., 2015). Notably, 

Agrawal et al., (2015) also found genetic associations between BDNF and smoking initiation, as 

well as associations between CHRNA5/A3 and nicotine/cannabis co-use. However, 

endocannabinoid receptors (especially CB1, a.k.a. CNR1) appear to contribute to a wide variety 

of reward processes and addiction (Parsons & Hurd, 2015). 
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To continue with unexpected genetic effects in SUDs, two well known genes outside of 

SUDs—ApoE and DISC1—have, quite curiously, been shown to play a role in unexpected ways: 

ApoE—the largest non-causative risk factor for Alzheimer’s Disease (Karch & Goate, 2015)—

has in fact been linked with smoking (Kalapatapu & Delucchi, 2013), where DISC1—named 

from “Disrupted in Schizophrenia 1” (Millar et al., 2000)—shows effects of cocaine use in rats 

(Gancarz et al., in press, 2016). Similarly, ApoB—in a similar fashion to ApoE, commonly 

associated with lipids and cholesterol—appears to mediate the relationship between bipolar 

disorder and binge-eating (Winham et al., 2014). 

In the same vein as Zhu et al., (2014), it would appear one gene can and often does 

contribute to many SUDs—and even other diseases or disorders, such as Alzheimer’s or 

schizophrenia. However, this section also makes clear that the direction of this relationship is not 

just “one gene” that appears to contribute to many disorders, rather, numerous genes that have 

been studied (often individually) all appear to contribute to one disorder. In fact, it is much more 

likely that multiple genes contribute to multiple disorders in a variety of complex ways (see 

Table 2.1 for a selective illustration of multiple genes that may contribute to multiple disorders). 
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Table  2.1 

Many genes, many disorders 

Gene Cannabis Nicotine Other Substances Multiple SUDS or 

SUDS + Other 

Disorders 

Other Neuropsychiatric 

Disorders 

COMT Tunbridge et al., 

2015 

Ashare et al., 

2013; Johnstone et 

al., 2007 

Ting Li et al., 2012; 

Schellekens et al., 2013; 

Tao Li et al., 2004; Mus et 

al., 2013 

Estrada et al., 2011; 

Pelayo-Terán et al., 

2010; C.-K. Chen, 

Lin, Chiang, Su, & 

Wang, 2014 

Goenjian et al., 2015; Inoue et 

al., 2015; Sampaio et al., 2015 

BDNF Agrawal et al., 2015 Lang et al., 2006; 

M. D. Li, Lou, 

Chen, Ma, & 

Elston, 2008 

Greenwald, Steinmiller, 

Śliwerska, Lundahl, & 

Burmeister, 2013; Chen et 

al., 2015; Corominas-Roso 

et al., 2015; Su et al., 2015 

Cheah et al., 2014 Suchanek, Owczarek, 

Kowalczyk, Kucia, & 

Kowalski, 2011; Timpano, 

Schmidt, Wheaton, Wendland, 

& Murphy, 2011 

DRD* Vaske, Boisvert, 

Wright, & Beaver, 

2013 

Lee et al., 2012; 

Voisey et al., 2012 

Clarke et al., 2014; Filbey 

et al., 2008; Kang et al., 

2014; Sullivan et al., 2013; 

Bousman et al., 2010 

Bobadilla, Vaske, & 

Asberg, 2013 

Watanabe, Shibuya, & 

Someya, 2015 

CNR1 Agrawal et al., 2009; 

Bidwell et al., 2013; 

Filbey, Schacht, 

Myers, Chavez, & 

Hutchison, 2009 

X. Chen et al., 

2008 

Proudnikov et al., 2010; 

Hutchison et al., 2008; 

Clarke, Bloch, et al., 2013; 

Okahisa et al., 2011 

Onwuameze et al., 

2013 

Juhasz et al., 2009; P. 

Monteleone et al., 2009; 

Palmiero Monteleone et al., 

2010; Tiwari et al., 2010 

OPRM1 N/A Ray et al., 2011; 

Zhang, Kendler, & 

Chen, 2006 

Drakenberg et al., 2006; 

Pfeifer et al., 2015; 

Heinzerling, McCracken, 

Swanson, Ray, & 

Shoptaw, 2012; Clarke, 

Crist, et al., 2013 

N/A Davis et al., 2011 

CHRN* Agrawal et al., 2015 Hancock et al., 

2015; 

Thorgeirsson et 

al., 2010 

Coon et al., 2014; Haller et 

al., 2014; Garcia-Ratés, 

Camarasa, Escubedo, & 

Pubill, 2007 

Lubke, Stephens, 

Lessem, Hewitt, & 

Ehringer, 2012; 

McEachin et al., 2010 

Hartz et al., 2011; Stephens et 

al., 2012 

Note. Some of the most studied genes in SUDs also appear in other neurological and 

psychiatric disorders (and vice versa). This table provides a brief overview of how, essentially, 

some of the most popular genes to study (rows) can be found in almost any domain of interest 

(columns). See also volume 33 of Neuropsychopharmocology with a special section dedicated to 

COMT: http://www.nature.com/npp/journal/v33/n13/index.html#Special-Theme:-Catechol-O-

Methyl-Transferase-(COMT),-Recent-Findings  
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2.2.6 Failures to replicate and non-significant findings. 

Even though some reviews (e.g., Bevilacqua & Goldman, 2011; Loth et al., 2011) imply 

strong genetic factors—with estimates of genetic contributions upwards of 50% (Volkow et al., 

2012, 2011)—other reviews express more caution with respect to the role of genetics in 

substance abuse, stating that “the predictive utility of the genetic factors studied to date is weak” 

(Hutchison, 2010, p. 579). In fact, there have been a number of failures in replication studies 

across SUDs, related disorders, and related traits. One of the earliest replication studies (Franke 

et al., 2001) failed to find an association in OPRM1 with either alcohol use or opiate addiction, 

as well as related. While this study was a non-replication, numerous studies since then have 

essentially found OPRM1 as a risk factor for SUDs, and in particular opiate use. However, these 

effects may not exist across a broad population. Recently, Rouvinen-Lagerström et al., (2013) 

found no association of OPRM1 with alcohol dependence in a Finnish population, though a 

related study showed “non-specific liability”  (i.e., general risk factor) of OPRM1 in SUDs 

(Schwantes-An et al., 2015). Similarly, there are also reported failures—of GABRA2—in Italian 

alcohol use populations (Onori et al., 2010). Recently, much more emphasis has been placed on 

“polygenic risk scores” or “multilocus (genetic) profile scores” (Nikolova, Ferrell, Manuck, & 

Hariri, 2011; van Eekelen et al., 2011). However, those too failed to replicate. In an attempted 

replication study, Hart et al., (2013) were unable to find the same effects they initially reported 

across as many as 12 (highly cited) prior studies (see Hart et al., 2013 for the list of studies). 

Finally, a number of weak effects have been reported through new studies and meta-analyses: 

ANKFN1 and FTO in cannabis use (Agrawal et al., 2011), SLC6A4 in alcohol use (Villalba et al., 

2015), and DRD2 effects in alcohol use (Munafò, Matheson, & Flint, 2007). 
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2.3 Several theoretical oligo- and polygenic panels for SUDs and Addiction 

In recent years—perhaps because of so many genes appear to play a role in so many 

diseases, disorders, and traits—there have been three proposed genetic panels (a.k.a. sets of 

genes) that are of particular interest in SUDs and addiction: (1) the “stress/resilience” panel 

(Feder et al., 2009), which is related to the hypothalamus-pituitary-adrenal (HPA) axis and stress 

circuit, (2) the “reward deficiency syndrome” (RDS) panel (Blum, Oscar-Berman, Demetrovics, 

Barh, & Gold, 2014)—which is purported to be a superordinate classification of many DSM 

disorders (and their respective behaviors; see the following RDS section for more details), and 

finally, (3) a panel (that actually predates the previously mentioned reward and stress panels) that 

was created by a variety of collaborators with close ties to NIAAA (Hodgkinson et al., 2008), 

called the “Addictions Array”—with 130 candidate genes (and ~12,000 SNPs) intended to target 

a wide array of SUDs. 

While they have been around for a considerable amount of time, none of these panels has 

been tested on the whole—usually just parts of each panel are used in mono- (single) or 

oligogenic (a few) candidate studies. Here, I will briefly discuss each of these panels, as well as 

one additional panel we refer to as the “substance-specific” panel, how they are related to one 

another, and how they are related to various aspects/models/theories of SUDs and addiction. 

2.3.1 The stress/resilience panel 

Feder and colleagues (2009) proposed a “psychobiolog[ical] and molecular genetic” 

model of “resilience.” Here, resilience means the ability to cope with stressful and/or traumatic 

situations (a.k.a. “stress-resistance”). As previously noted, stress is a critical part of some 
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theories of SUDs and addiction, as the inability to cope with stress (i.e., lack of resilience) and 

trauma could, (1) be a maintenance factor in SUDs, (2) lead to SUDs, or (3) lead to SUDs 

comorbid with other disorders. Feder et al., (2009) proposed these particular markers because of 

the neural regions largely responsible for response to stress, fear, and reward; these regions are 

part of three systems: the hypothalamus-pituitary-adrenal (HPA) axis, the “fear circuit,” and the 

“reward circuit.” Through these neural systems, a number of genetic markers are proposed 

largely due to how these systems signal within, and to one another. Broadly, Feder et al., (2009) 

suggest that noradrenergic, serotonergic, dopaminergic genes and even glucocorticoid receptor 

(GR) genes (e.g., NR3C1) play critical roles within these systems, in the context of stress 

response (and resilience).  

While the HPA axis actually includes a wide array of expressed genes, Feder et al., 

(2009) propose only a few specific genes (and gene markers)—almost all of which have a varied 

history in the SUDs and addiction literature. The specific markers proposed are (often specific 

SNPs or genotypes of): CRHR1, FKBP5, a very specific serotonin transporter gene (5-HTTLPR, 

more recently known as): SLC6A4, COMT (which, amongst other roles, degrades dopamine), 

NPY, BDNF, MAOA and EGR1 (formerly referred to as NGFI-A).  

While the stress/resilience panel is related to reward circuitry in the brain, it has little 

overlap with the reward panel (see Blum et al., 2014 and the next section). However, the 

stress/resilience panel is actually a subset of the “Addictions Array” (Hodgkinson et al., 2008; 

see Section 2.3.4). In general, the stress/resilience panel is considered promising because of the 

stress hypotheses of substance abuse, which suggests stress is a factor in initiation and/or 

maintenance of SUDs (Johnston, Linden, & van den Bree, 2015; Morrow & Flagel, 2016). 
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2.3.2 The reward panel 

Much more recently, Blum et al., (2014) have proposed a very specific genetic panel 

(under a trademark) titled the “Genetic Addiction Risk Score” (GARS™), which is based on a 

genetic model—based almost exclusively on the idea of “reward” via dopamine, and in particular 

DRD2—of multiple psychiatric disorders that includes substance abuse. The GARS panel is 

based on earlier work—referred to as “Reward Deficiency Syndrome” (RDS)—by Blum and 

colleagues (2000). The primary RDS behaviors (and analogous DSM disorders) are comprised of 

SUDs and addiction related disorders. But Blum and colleagues (2000, 2014) also include a 

variety of other behaviors (and disorders) supposedly subordinate to RDS. In 2000, Blum and 

colleagues suggested that: 

“Therefore lack of D2 receptors causes individuals to have a high risk for multiple 

addictive, impulsive and compulsive behavioral propensities, such as severe alcoholism, 

cocaine, heroin, marijuana and nicotine use, glucose bingeing, pathological gambling, 

sex addiction, ADHD, Tourette's Syndrome, autism, chronic violence, posttraumatic stress 

disorder, schizoid/avoidant cluster, conduct disorder and antisocial behavior.” (Blum et 

al., 2000) 

In 2014, Blum and some of the same colleagues suggested that behaviors (and disorders) 

subordinate to RDS include compulsive (e.g., body dysmorphia) or impulsive (e.g., Tourette’s 

Syndrome and Autism) behaviors, and personality disorders (e.g., paranoia and schizotypy; see 

Table 1 of Blum et al., 2014). While GARS is one of the few proposed polygenic panels, it is a 
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proprietary panel4 and has little-to-no formal evaluation in the literature, it was designed almost 

entirely based on literature reviews.  

The GARS™ is mostly based on the premise that the brain “reward circuitry” is 

dopaminergic, and so GARS™ focuses on the DRD2 gene. However, other dopamine receptor 

genes (i.e., DRD1, DRD3, and DRD4) are also suggested as possible molecular markers for 

“reward deficiency” and thus substance abuse. Similar to the resilience panel, the GARS panel 

also implicates (obviously) dopaminergic, and serotonergic systems. Specifically, both panels 

include MAOA, COMT, and SLC6A4. Blum et al., (2014) provide a specific list of the GARS 

panel, which includes: DRD1-4, DAT1 (better known as SLC6A3), 5-HTTLPR (better known as 

SLC6A4), OPRM1, GABRB35, MAOA, and COMT. However, throughout the review in this 

GARS proposal, several other markers are implicated in RDS (DBH, GABRA3, HTR1A, and 

HTR2A) but not included in the GARS panel. Finally, some markers are mentioned (more so in 

passing) and not strongly implicated (e.g., HTR3B, CNR1). For the purposes of this review, the 

GARS panel should be considered as two panels: (1) the core GARS panel: DRD1-4, SLC6A3 

(a.k.a. DAT1), SLC6A4 (a.k.a. 5-HTTLPR), OPRM1, GABRB3, MAOA, and COMT, and (2) the 

extended GARS panel: which is the core plus DBH, GABRA3, HTR1A, and HTR2A. While other 

markers are mentioned in the GARS paper, they are mentioned more so in passing, and not 

proposed—directly—as part of the RDS/GARS model. 

The GARS™/RDS panel proposes that, on the molecular level, there are broad disruptions 

of the reward circuitry (dopaminergic system), which predisposes individuals to “reward 
                                                

4 http://blogs.discovermagazine.com/neuroskeptic/2015/08/17/strange-world-reward-deficiency-syndrome-3/ 
5 Though, through a typo, it is suggested that it is GABRA3. It should be pointed out that this paper has a number of typos for 

genetic names and markers, amongst other typos and errors. 
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deficiency” disorders such as SUDs (and other “reward deficiency” disorders claimed by Blum 

and colleagues: such as autism, schizophrenia, and Tourette’s syndrome). The genes put forth in 

the GARS™ panel encompass genes expressed in a wide variety of reward circuit regions in the 

brain, which—as noted in prior sections—have shown effects in a number of SUDs, and 

associated (endo-)phenotypes. As previously noted in the “stress/resilience” panel section, there 

is little overlap between the “stress/resilience” and “reward” panels (only SLC6A4, COMT, and 

MAOA). But, the common genes between these two panels linked through a common trait: their 

role in dopamine transport and degradation. 

2.3.3 Genes specifically associated with substances (i.e., “substance-specific” panel) 

In on-going work (Beaton, Abdi, & Filbey, in prep) we propose a “substance-specific” 

panel that is, essentially, a selection of genetic markers related to particular substances of abuse. 

This is not a new idea: endogenous receptors are the usual targets of particular SUDs (see, e.g., 

Volkow & Muenke, 2012; Volkow et al., 2011, and the marijuana and nicotine sections with 

endocannabinoid and nicotinic genes). In previous work we used three substance use groups: 

marijuana, nicotine, and a comorbid marijuana/nicotine group. Here we selected all cannabinoid 

and (neuronal) nicotinic related genes (generally from a wide array of literature). We expected in 

this work that each substance-specific set of markers would be more related to their respective 

groups (e.g., endocannabinoid with the marijuana group) than to other substance-matched 

markers.  

Endogenous receptors are obvious candidate genes—for specific SUDs. While this is not 

a strict panel, per se, with respect to the groups in this dissertation and our on-going work, the 
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panel is comprised mostly of CNR1, CNR2, CHRNA*, and CHRNB* (nicotinic neuronal-type, 

not muscle-type receptor) markers. The same principles apply to other SUDs. 

2.3.4 The NIAAA “Addictions Array” panel 

The NIAAA panel (a.k.a., “Addictions Array”) is a very large set (130) of candidate 

genes that was actually turned into a commercial chip (via Illumina’s GoldenGate platform; page 

506 of Hodgkinson et al., 2008). The “Addictions Array” panel is a superset of the previously 

mentioned panels: The stress/resilience panel, the reward (GARS) panel, and the review-based 

“substance-specific panel” are subsets of the “Addictions Array” panel. Broadly, “Addictions 

Array” is comprised of 130 candidate genes that are linked through a variety of molecular and 

neural systems. Generally, the “Addictions Array” includes markers (i.e., single nucleotide 

polymorphisms, a.k.a. SNPS) for genes in 13 broad domains / systems aimed at the 

neurobiological underpinnings of endogenous receptors for particular psychoactive substances, 

signaling through various pathways, or a variety of other models/theories of SUDs and addiction 

(e.g., stress, circadian rhythms): (1) Cholinergic (e.g., CHRM), (2) Stress (e.g., NPY), (3) 

Adrenergic (e.g., ADRA), (4) Metabolism (e.g., ADH), (5) Dopaminergic (e.g., DRD2), (6) 

Serotonergic (e.g., HTR1), (7) GABA-ergic (e.g., GABRA), (8) opioid (e.g., OPRM1), (9) 

glycine (e.g., GLRB), (10) NMDA (GRIK), (11) cannabinoid (e.g., CNR1), (12) “signal 

transduction” (e.g,. MAPK), and, finally (13) “other” (e.g., BDNF, CLOCK). Interestingly, 

circadian rhythm genes (e.g., CLOCK) appear to interact with stress (via the HPA-axis) and 

reward across a variety of SUDs (Perreau-Lenz & Spanagel, 2015). This particular array is a 

compromise between (very large) candidate gene studies and (very small) genome-wide 

association studies. In fact, the “Addictions Array” is a direct predecessor to two recent genome-
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wide technologies: (1) the “PsychArray” (http://www.illumina.com/products/psycharray.html), 

which roughly comprisses half candidate genes and half exploratory SNPs across the genome; 

and thus aimed at studying a wide array of psychiatric disorders (in part, commissioned by the 

Psychiatric Genetics Consortium; http://www.med.unc.edu/pgc/), and (2) Smokescreen©, a 

technology much like the “Addictions Array” with 800k SNPs across “1000 nominated candidate 

genes”, which was made through a NIDA SBIR (http://grants.nih.gov/grants/guide/notice-

files/NOT-DA-16-013.html)6. 

The “Addictions Array” (as well as Smokescreen©) is a compromise between hypothesis 

(i.e., candidate) and exploratory (i.e., genome-wide) approaches to identify general and specific 

genetic markers most associated with SUDs. While most of these genes have been mentioned in 

the context of the prior panels (“stress / resilience”, “reward,” “substance-specific”), there are a 

number of other genes of interest (such as CLOCK and other genes associated with circadian 

rhythms; Falcón & McClung, 2009; Hasler, Smith, Cousins, & Bootzin, 2012; Parekh, Ozburn, 

& McClung, 2015). 

2.3.5 A final note on the panels 

A recent review on the “neuroscience of resilience,” with respect to addiction (Morrow & 

Flagel, 2016), provides a brief overview of genetic and epigenetic contributions to 

stress/resilience with respect to SUDs. Much more interestingly, Morrow and Flagel (2016) 

propose a new model of that integrates particular aspects of several existing models of substance 

abuse into a model that includes reward, stress, resilience (as a separate, protective factor), 
                                                

6 This is a fairly recent technology, and it does not appear that the full list of the 1031 candidate genes is published anywhere at 
this time. 
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developmental, neurobiological, and psychosocial factors. Morrow and Flagel propose an 

addiction “pipeline” where various genes may play a role (often through environmental 

interactions). These include stress (with HPA axis, as in the stress panel), reward (with respect to 

mostly dopamine and the ventral tegmental area), and plasticity/development (e.g., BDNF), 

where endogenous receptors (genes for receptors that bind with particular substances e.g., 

endocannabinoids for cannabis; nicotinic for nicotine) help mediate risk for, and resilience 

against, addiction. Coincidentally, a separate group has proposed that addiction can be 

characterized, at least in part, by combining the theoretical bases of the dopamine (reward; 

“positive” system) and stress (resilience; “negative” system) hypotheses, wherein both systems 

are influenced by genetics and environment (Johnston et al., 2015). Furthermore, a recent article 

has suggested the involvement of receptors much like glucocorticoid: mineralocorticoid (Vogel 

et al., 2016); while Vogel et al., (2016) presented cases for various stress-based disorders, which 

in some cases are co-morbid with or precede SUDs. In sum, while these models (Johnston et al., 

2015), especially the Morrow and Flagel (2015) model, are broader than their predecessors, they 

do incorporate many important genetic contributions on various systems, and how these systems 

work together both distinct from, and with respect to, SUDs and addiction. 

2.4 Some concluding remarks on the complexity of genetics in SUDs 

The prior sections have largely focused on the likely, unlikely, and even controversial 

(e.g., not replicable) genetic contributions to SUDs, addiction, common co-morbidities, and 

associated traits. The genetics of SUDs—and almost any neuropsychiatric disorder—are 

complex, and there are few explanations—besides attempts with “missing heritability” and 
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“endophenotypes”—to justify why so many genetic markers appear to play a role in so many 

different aspects of behavioral and brain sciences (or, again, why they appear to not play a role). 

This review highlighted a number of ways in which the genetics of SUDs (and other 

disorders) have been studied: mostly across a wide array of hypothesis-driven and candidate 

gene studies, some of the more exploratory (large scale and GWAS; most of which are simple 

case-control) studies, and finally correlates between genetics and the phenotypes (defined here 

has largely behavioral) and endophenotypes (defined here as largely neural or biological) in SUD 

populations. However, among the “well-delineated” sections in the review, there are many 

genetic markers that come up across many disorders (even far outside the SUDs and addiction 

literature; see Table 2.1).  

If one were to conclude based on the available literature, which genetic markers we are to 

expect as contributors to specific SUDs (e.g., marijuana or nicotine dependence), and/or SUDs in 

general (as compared to control), then we will find a large amount of studies to provide 

confirmatory, contradictory, or completely unexpected results. In fact, the review I have provided 

illustrates the exact nature of the genetic contributions to brains, behaviors, and their associated 

disorders and dysfunctions: it is extraordinarily complex. And yet, this complexity is 

unmatched—and at times ignored or impossible to achieve—when it comes to study design, 

methodological choices, and available tools. 

Part of this apparent dissonance in the literature may be a result of the field taking too 

narrow an approach to identifying genetics of SUDs—many genes we associate with particular 

SUDs were identified by studies of either (1) categorical classification of individuals, or (2) the 

behaviors most associated with those categorical classifications. If, in fact, these approaches are 
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too narrow to decipher the genetic contributions to SUDs and addiction, then it may help to use 

methods tailored to look at genetics more broadly, and/or to also include traits (phenotypes and 

endophenotypes) associated with SUDs. 

2.4.1 Current GWAS techniques can be resource-demanding or costly. 

Genome-wide technology was almost immediately considered a “breakthrough” (Pennisi, 

2007) that promised to improve our understanding of health, personality, individual differences, 

and even causal effects of genes (Stranger, Stahl, & Raj, 2011). The accessibility of genotyping 

array technology has led to an abundance of genome wide data across numerous domains. 

Despite the enthusiasm and abundance of genome-wide data, these studies failed to delivered on 

the GWAS promise, largely because statistical concerns (Visscher, Brown, McCarthy, & Yang, 

2012) and criticisms over lack of power (Cantor, Lange, & Sinsheimer, 2010). Consequently, the 

resulting trend leans towards using massive sample sizes (~200,000 for the largest one to date), 

~40,000 for Alzheimer’s (Hollingworth et al., 2011), and ~6,500 in Schizophrenia (Purcell et al., 

2009) as massive sample sizes became one of the only believed solutions to achieving a 

“breakthrough.” Yet, the NIMH has only (very) recently considered any GWAS to be such a 

“breakthrough” (NIMH, 2016). The study (Sekar et al., 2016)—which showed effects of C4 

genes (in Chromosome 6) for schizophrenia—came about because the authors leveraged 

resources across multiple research groups (including Psychiatric Genetics Consortium) with 

access to “65,000 [genome-wide samples], 700 postmortem brains, and the precision of mouse 

genetic engineering […]” (NIMH, 2016). However the Sekar (2016) study was preceded by three 

other (related) “breakthrough” studies: in schizophrenia (Schizophrenia Working Group of the 

Psychiatric Genomics Consortium, 2014), in schizophrenia and other psychiatric disorders (The 
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Network and Pathway Analysis Subgroup of the Psychiatric Genomics Consortium, 2015), and 

in “schizophrenias” (Arnedo et al., 2014); all of which implicated a variety of other genetic 

factors not necessarily common across all of these studies (including likely polygenic factors), 

although two of the studies (Schizophrenia Working Group of the Psychiatric Genomics 

Consortium, 2014; The Network and Pathway Analysis Subgroup of the Psychiatric Genomics 

Consortium, 2015) included common data with the Serak (2016) study. Contrary to these 

“breakthroughs,” two recent studies have shown null results in exactly these domains: The first 

was in a relatively small sample (N > 500; Voineskos et al., 2015) and the second (Franke et al., 

2016) was a massive sample that lead to an unexpected and extraordinary failure (to identify 

genetic correlates of brain imaging). Franke et al., (2016) amassed the largest schizophrenia 

samples to date (33,636 schizophrenia, 43,008 controls, with a total of 11,840 subjects providing 

subcortical brain imaging data) and concluded: 

“With a comprehensive set of analyses, we did not find evidence for notable genetic 

correlations, either at a high level (that is, common variant genetic architecture) or for 

single genetic markers. […] Similarly, we did not find evidence that common SNPs have 

pleiotropic effects on these MRI volumes and schizophrenia. Our results suggest 

alternative hypotheses that require consideration and refutation: that the volumetric 

differences observed in schizophrenia may be epiphenomena unrelated to its primary 

genetic causes, […]” (p. 420). 

Clearly, studies with extremely large samples, or those that use cross-species techniques 

demand incredible resources often not available to most researchers (even through collaborative 

efforts, unless collaboration can be done with team sizes from a few hundred to a thousand) and 
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yet even doing so does not necessarily reveal similar results (and in fact can yield null results). 

Some of the most distinct differences between these studies are not the study designs or samples 

(recall, at least three of the studies draw from the same data sets), but rather the methodological 

choices made during both quality control (preprocessing) and analytical stages of the studies. 

It has been proposed that, better methods (e.g., Cantor et al., 2010; Kemper, Daetwyler, 

Visscher, & Goddard, 2012), better quality control (Turner et al., 2011; Zuvich et al., 2011), and 

systematic approaches to genotype-phenotype results (Saccone et al., 2008), will provide better 

and more reliable results from genetic and genomic studies. Some of the suggested methods 

include leveraging additional information to help detect better “genetic signal” (Schifano, Li, 

Christiani, & Lin, 2013). If better methods can yield better results, then this now becomes a more 

cost-effective way to utilize (relatively) small genetic and genomic data sets. While some work 

has been done in this area (see the next chapter), several of these newer methods are completely 

impractical for most researchers to use. For example, Hibar, Stein, Kohannim, Jahanshad, 

Saykin, et al. (2011) recently proposed a “voxelwise GeneWAS”—which is an extension of 

similar methods (Shen et al., 2010), but the Hibar et al., (2011) method reduces the size of the 

genomic data as compared to the Shen et al., (2010) method—a technique that requires for its 

implementation: “[...] approximately 13 days” and parallel computing on “[...] a cluster of 10 

high performance 8-core CPU nodes [...]” because “[t]he total number of tests of association for 

vGeneWAS is very high (18,044 genes × 31,662 voxels).” 

Thus, in summary, we are left in quite a predicament if we expect SUDs—and related 

traits or disorders—to originate from complex and/or polygenic contributions. If we cannot 

possibly design a single study to meet all the expected criteria (e.g., sample size, population 
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diversity), then we have to rely on other ways to potentially increase power, and, perhaps this 

can be achieved with more sophisticated—and powerful—analytical methods. In this dissertation 

(see Chapter 5), I propose a new technique designed to increase power, and potentially provide 

higher quality results for SUDs (which are highly heritable, but the genetic results are 

notoriously weak).
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CHAPTER 3 

STATISTICAL METHODS FOR GENETICS ANALYSES 

Parts of this chapter are adapted from my qualifying thesis, my F31 grant application, and 

some on-going work (Beaton, Abdi, & Filbey, in prep) as well as Beaton, Dunlop, ADNI, & Abdi 

(2016). Copyright © 2015 American Psychological Association. Reproduced with permission. 

The official citation that should be used in referencing this material is Beaton, D., Dunlop, J., 

Abdi, H., & Alzheimer’s Disease Neuroimaging Initiative. (2016). Partial least squares 

correspondence analysis: A framework to simultaneously analyze behavioral and genetic data. 

Psychological Methods, 21(4), 621-651. http://dx.doi.org/10.1037/met0000053. This article may 

not exactly replicate the authoritative document published in the APA journal. It is not the copy 

of record. No further reproduction or distribution is permitted without written permission from 

the American Psychological Association. 

Interests in the genetic contributions to psychological traits date back over a century, and 

with these interests came advancements in measurement and assessment of genetic contributions 

to behavior. Thorndike (1905) made some of the earliest efforts “to make modern statistical 

methods current in psychology” (Sanford, 1908, p. 142) as well as genetics and was soon 

followed by Fisher (1919) who favored more formal approaches. Over a decade later, Thurstone 

(1934) proposed a multivariate factorial analysis—akin to multidimensional scaling—to 

understand cognitive abilities and personality traits. Thurstone (1934) proposed these 

approaches, in part, because he firmly believed “that the isolation of the mental abilities will turn 

out to be essentially a problem in genetics.”  
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And now again—just as in the early days of Thorndike or Fisher—new statistical 

methods are being developed to understand how genetics may contribute to brain structure and 

function, as well as to behaviors (or traits). Most of these modern statistical techniques—like 

Thurstone’s approaches—are multivariate in nature. Further, some of these recent techniques are 

specifically designed for simultaneous analysis of behavioral and genetic data (Bloss et al., 

2010)—mostly because doing so appears to increase the statistical power to detect genetic 

contributions to traits, behaviors, and phenotypes (van der Sluis et al., 2013; Schifano et al., 

2013; Seoane et al., 2014). This boost in power can be quite effective (and welcome) in 

psychological research where sample sizes cannot reach the large “standard” sizes for genome-

wide studies (N ≈ 5000).  

Here, I review the current statistical approaches to genetic and genomic association 

studies. First I present some standard approaches, and highlight particular multivariate and 

penalized (regularized or “sparsified”) methods and provide introductions to traditional methods, 

followed by more advanced—typically multivariate—methods; Specifically, I review Principal 

Components Analysis (PCA), Partial Least Squares (PLS), Canonical Correlation Analysis 

(CCA), discriminant analyses, Correspondence Analysis (CA), and finally regularization 

techniques. Each section presents the mathematics of one of these techniques, and a final section 

shows how these techniques are connected. Finally, this chapter concludes with a major point: 

SNPs are not inherently quantitative data, and treating them as such likely obfuscates true 

inheritance patterns, as well as complex polygenic effects (e.g., epistasis); This conclusion 

justifies the new technique developed in this dissertation (i.e., an extension of PLSCA; Beaton, 

Dunlop, et al., 2016). 
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The core of Chapter 3—which is a review of methodological development—has many 

references to the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and other large scale 

(often collaborative) projects (e.g., ENIGMA). The frequent references to ADNI, and other 

large-scale projects, in Chapter 3 are mostly because these types of projects—a large, (mostly) 

open access data set analyzed by thousands of researchers—have produced a large number of 

new techniques for genetic analyses. 

3.1 Traditional Approaches to (and Typical Problems in) Association Studies 

Some of the most common approaches to testing genetic or genomic associations is 

through univariate tests designed to identify SNPs of interest either in case-control studies (i.e., 

unpaired t-test), or with respect to quantitative traits (i.e., simple, mass-univariate regressions via 

contrasts, see, e.g., Frommlet, Bogdan, & Ramsey, 2016). While one factor ANOVAs or χ2 tests 

(independence, or goodness-of-fit) correspond to the actual design of SNP analyses (see Table 

3.1), it is most common to perform just simple regressions where SNPs are (numerically) 

recoded under genetic inheritance models (e.g., dominant, recessive) which nowadays is almost 

always the additive model (Balding, 2006)—though the sole use of additive models will miss 

certain effects (for more details, see the final section of this chapter and also Vormfelde & 

Brockmöller, 2007).  

Quite recently, especially in the brain and behavioral sciences, several new approaches 

have been proposed to link genetic markers to various brain or behavioral measures. These 

techniques—which were largely spurred by the ADNI project—generally try to follow brain 

imaging conventions (e.g., general linear models, or statistical parametric mapping; see L. Shen 

et al., 2010; Stein et al., 2010) or a combination of SPM and principal components regression 
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(Hibar, Stein, Kohannim, Jahanshad, Saykin, et al., 2011). But these techniques have several 

drawbacks and, in most cases are not powerful enough (especially with small sample sizes) or do 

not provide suitable (population) inference estimates (as explained in the following sections). 

3.1.1 Inference (and issues with current approaches) in association studies 

Nearly since the inception of GWAS there has been one methodological constant: the dreaded 

“standard” p-value7 for the field because a result is considered significant only if it reaches p ≤ 5 

× 10-8. This particular p-value is obtained as the value of p = .05 “Bonferroni corrected” for 1 

million comparisons (Fadista, Manning, Florez, & Groop, 2016).  

This “standard” value is used even for a study comprising fewer than one million gene 

(e.g., ~500k) or more than one million (e.g., ~15 million), or in some cases even for a single gene 

candidate gene. This particular threshold for a p-value has been challenged in recent years (X. 

Gao, Becker, Becker, Starmer, & Province, 2010)—in part because, often, studies cannot reach 

the standard significance threshold (e.g., Franke et al., 2016; Voineskos et al., 2015)—and 

criticized largely for one particular reason: even when not in linkage disequilibrium (relatively 

strong statistical association between two SNPs, which suggests non-independence between 

them), many SNPs are not independent but the Bonferroni correction assumes independence. 

7 This “standard” should be carefully reconsidered in light of particular “replication crises” and the ASA’s statement about how 
p-values are typically used (Wasserman & Lazar, 2016).
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Table  3.1 

Inheritance models and analyses 

Analysis or Model Major 

Homozygote 

Heterozygote Minor 

Homozygote 

Data Type 

Genotypes and their general representations for a variety of analytical and inheritance models. 

    HWEa AA Aa aa Categorical (3 levels) 

    Genotypica AA Aa aa Categorical (3 levels) 

    Dominant (D) Not D D D Categorical (dichotomous) 

    Recessive (R) Not R Not R R Categorical (dichotomous) 

    Heterozygous (H)b Not H H Not H Categorical (dichotomous) 

    Linear Additivec b b+r b+(2r) Quantitative (interval or ratio scale) 

    Multiplicativec b br br2 Quantitative (interval or ratio scale) 

Genotypes and their numeric representations for a variety of analytical and inheritance models. 

    HWE [1 0 0] [0 1 0] [0 0 1] Categorical (3 levels) 

    Genotypic [1 0 0] [0 1 0] [0 0 1] Categorical (3 levels) 

    Dominant (D) [0 1] [1 0] [1 0] Categorical (dichotomous) 

    Recessive (R) [0 1] [0 1] [1 0] Categorical (dichotomous) 

    Heterozygous (H)b [0 1] [1 0] [0 1] Categorical (dichotomous) 

    Linear Additivec b b+r b+(2r) Quantitative (interval or ratio scale) 

    Multiplicativec b br br2 Quantitative (interval or ratio scale) 

Note. HWE = Hardy-Weinberg Equilibrium. Note that, in general, many of these models are 

naturally categorical. aHere, for HWE and the genotypic model, SNPs are presented generally 

where ‘A’ is the major allele and ‘a’ the minor allele. The major homozygote, heterozygote, and 

minor homozygote are denoted ‘AA’, ‘Aa’, and ‘aa’, respectively. bThe model codes for the 

heterozygote as different from either homozygote. cWhere, b means “baseline” and r means 

“risk,” assuming the risk is associated strictly with the minor homozygote (if the risk should be 

on the major homozygote, the scale can be reversed where r is associated with the major allele). 
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Though there have been a number of counter-suggestions to the threshold of p = 5 × 10-8, 

not many—such as multistage approaches (G. Kang et al., 2015)—have stuck. One of the earliest 

suggestions comes from Hirschhorn and Daly (2005) who point to permutation tests as an 

alternative to the traditionally conservative threshold. However, it must be noted that 

permutation tests are exact tests, and therefore converge to distributional solutions when the data 

fit distributional assumptions (Berry, 2011) and so permutation tests require corrections just like 

the other tests. So, to help provide better estimates, Gao et al., (2010) developed a method based 

on principal components analysis (PCA) to determine the number of independent tests (instead 

of 1 million) and correct for that threshold. In similar fashions, conservative methods such as 

bootstrap and jackknife resampling (Faye, Sun, Dimitromanolakis, & Bull, 2011; Manor & 

Segal, 2013; Y.-H. Zhou & Wright, 2015) as well as false discovery rate (FDR) procedures 

(Storey & Tibshirani, 2003) have been suggested as ways to avoid the traditionally strict 

thresholds. Finally, a relatively new technique called “jackstraw” (Chung & Storey, 2015) 

combines several of these ideas: specifically, jackstraw combines PCA (to determine the number 

of likely independent dimensions), assessment of component similarity, permutation resampling 

of variables, and FDR corrections. However, many of these techniques still approach association 

studies in the same way and find the SNP with the largest effect where that SNP is usually 

assumed to be a, or even the “causal” SNP.  

The development and use of polygenic risk scores (Maher, 2015) have been on the rise 

since: (1) use in a major study (International Schizophrenia Consortium et al., 2009) and (2) the 

first (major) statistical assessment (Dudbridge, 2013) of such approaches. Polygenic risk 

scores—also sometimes referred to as “multi-locus (genetic) profile scores”—combine multiple 
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markers into a single variable, often through adding up “risk markers” usually based on known 

or estimated (via meta-analyses) risk scores. By reducing many markers to a single variable it is 

believed that the same conservative penalties for testing no longer exist, and thus a much more 

relaxed threshold is often used for polygenic risk score studies. Risk score studies are most 

frequently found in the behavioral and brain sciences, even though problems can occur when risk 

is empirically defined (see final section in this chapter). Finally, in addition to finding significant 

SNPs, association studies have been particularly concerned with “post association” results 

(Hiersche, Rühle, & Stoll, 2013; Saccone et al., 2008) because, sometimes, significant SNPs are 

difficult to interpret (i.e., they are not involved in what a researcher would have expected). Even 

though researchers have a variety of tools that are sensitive to p-values (as well as effect sizes 

and confidence intervals), they have sought better ways to analyze genetic and genomic 

association studies, and so have turned to multivariate approaches. 

3.2 Advanced Statistical Techniques in Association Studies 

In association studies, the more advanced and sophisticated techniques (e.g., multivariate 

or regularization approaches) are designed to boost power (or prediction). In addition, 

multivariate methods analyze how measures work together (Chi, 2012; Allison et al., 1998). 

Regularization, shrinkage, sparsification, and penalization techniques all minimize the number of 

variables to evaluate. The upcoming section covers several multivariate, regularization, and 

multivariate + regularization approaches used in a variety of genetic, genomic, transcriptomic, 

and related domains. The remaining sections focus on: principal components analysis, partial 

least squares (with some mentions of canonical correlation analysis and how the two are related), 

correspondence analysis, ridge regression, and the LASSO technique (as well as discriminant 
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analyses based on any of the aforementioned). However, while these are probably the most used 

techniques, these are not the only ones used in association studies. Some other examples include 

support vector techniques (Long, Gianola, Rosa, & Weigel, 2011; Mittag et al., 2012; Oliveira et 

al., 2014; Roshan, Chikkagoudar, Wei, Wang, & Hakonarson, 2011), self-organizing maps 

(Wellenreuther & Hansson, 2016), independent components analysis (Liu & Calhoun, 2014; 

Meda et al., 2010, 2012; Vergara et al., 2014), kernel methods (Ge et al., 2015; Yan et al., 2015), 

graph techniques (M. Kang et al., 2015), bivariate methods (Jiang, Li, & Zhang, 2014; Yarosh, 

Meda, Wit, Hart, & Pearlson, 2015; à la, generalized Kendall’s tau Simon, 1977), and 

multivariate regression (Guo et al., 2015; Lippert et al., 2011; O’Reilly et al., 2012; Schifano et 

al., 2013; van der Sluis, Posthuma, & Dolan, 2013; Zapala & Schork, 2006; X. Zhou & Stephens, 

2014), amongst several other techniques (see, e.g., Barrett, Taylor, & Iles, 2014; Frommlet et al., 

2016). 

3.2.1 Cleaning 

Even in early GWAS studies, population stratification effects were known to create 

problems. Population stratification is some inherent confound in the genetic structure of 

individuals, often due to geographical or ancestral effects, largely linked to self-reported racial 

(e.g., American Indian or Alaskan Native, Black/African American, White/Caucasian) and ethnic  

(i.e., Hispanic or Latino vs. not) identity. There are a few ways to correct for population 

stratification, but only a subset will be discussed here. Both PCA and multidimensional scaling 

(MDS) are now used routinely to identify, and then adjust for, population stratification (Liu, 

Zhang, Liu, & Arendt, 2013; Miclaus, Wolfinger, & Czika, 2009; Tian, Gregersen, & Seldin, 

2008; G. Tucker, Price, & Berger, 2014; D. Wang et al., 2009), which help remove confounding 
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factors that could lead to incorrect conclusions about genetic contributions to the disease, 

disorder, or trait studied.  

With respect to population structure identification and stratification, multivariate 

techniques are the simplest option (see, e.g., Figure 3.1, and Footnote 8) but the real utility of 

multivariate techniques was illustrated when a research group (Zuvich et al., 2011) learned that 

they had a stratification effect due to a chip sample: that is, someone in their research group had 

made a mistake with the output of genetic data (i.e., the strand orientation of some batches were 

in different formats); standard univariate techniques missed this problem while multivariate 

techniques revealed it.8 

3.2.2 Some Mathematical Notation 

Matrices are denoted with upper case bold letters (e.g., !), vectors with lower case bold 

letters (e.g., x); scalars are denoted by upper case italic letters (e.g., I), and indices by lower case 

italic letters (e.g., i). The identity matrix is denoted I. The transpose operation is denoted by a 

superscript T (e.g., !!) and the inverse of a matrix is denoted by the superscript -1 (e.g., !!!). By 

default, vectors are column vectors, and so a transposed vector is a row vector (i.e., x is a column 

vector but xT is a row vector). The diag{} operator transforms a vector into a diagonal matrix 

when applied to a vector and extracts the vector of the diagonal elements of a matrix when 

applied to a matrix. Writing side-by-side matrices or vectors (e.g., !!!) indicates ordinary 

matrix multiplication, when multiplication needs to be made explicit, we use the symbol “×”. 

8 In fact, we detected this exact same type of mistake in our own data: there was a “strand flip” because the orientation option was different from 

one batch to the other batches (see Figure 3.1 with MEG3 vs. F48, OB, MRN).
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Figure 3.1 The above figure shows the results of a Multiple Correspondence Analysis 

(MCA) on a subset of SNPs from our combined data set, after the most recent batch was 

processed (MEG3). Because of this MCA, we immediately noticed something wrong with the 

MEG3 batch vs. all other batches. With some help from Illumina and the lab we work with at 

UTSW, it was revealed to be the same issue as Zuvich et al., (2011): one of the output options in 

the software was flipped (from top to forward strand). While this strand orientation issue is 

detectable through univariate methods it is extremely difficult and time consuming, as it requires 

testing each SNP stratified by their chip sample. Clearly – it is much easier and more direct to 

just visualize with a multivariate technique. 

3.2.3 Principal Components Analysis 

The oldest and most popular multivariate technique—not just in genetic and genomic 

association studies, but arguably any field—is principal components analysis (PCA; Abdi & 

Williams, 2010; Jolliffe, 2002). PCA is a multivariate technique designed to identify the largest 

possible—orthogonal—sources of variance in a matrix. PCA is performed through the singular 

.F48

.OB

.MEG3

.MRN
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value decomposition (SVD), where a data matrix is preprocessed to have zero mean and 

unitary variance per column, is decomposed as: 

   

where  and are  (respectively) the left and right singular vectors—which represent rows 

(usually observations) and columns (usually variables), the singular vectors are orthonormal 

matrices and therefore , where is the identity matrix (1s on the diagonal, 0s off 

diagonal; i.e., all columns within each set of singular vectors are orthogonal to one another). The 

matrix  is diagonal with the diagonal elements— —being the singular values (all off 

diagonal values are 0), and the squared singular values— —are the eigenvalues 

(which give the variance per component). 

As noted before, PCA has been used to help correct (or adjust) for (overly conservative) 

multiple comparisons corrections (Chung & Storey, 2014; X. Gao et al., 2010; Tucker et al., 

2014). PCA is frequently used to analyze haplotypes, ancestry, and population structures (which, 

as noted, can be used to correct for population stratification). Some of the earliest uses of PCA 

(or MDS) originated in the work of Cavalli-Sforza (Cavalli-Sforza & Edwards, 1967; Menozzi, 

Piazza, & Cavalli-Sforza, 1978). Following Cavalli-Sforza, MDS (as well as both PCA and 

correspondence analysis) was suggested for conducting these types of analyses (Lessa, 1990); 

though there have been many recent studies with almost an identical approach (Homburger et al., 

2015; Z. Lin & Altman, 2004). However, PCA has also been a central tool for analyses (Chang & 

Keinan, 2014) because it is claimed: 1) to provide a boost in power (Duan et al., 2012), 2) to 

have the ability to detect gene-gene interactions (i.e., epistasis; Bhattacharjee et al., 2010) or, 3) 

to reduce the dimensionality of the data (Turgeon et al., 2016).  

!R

!!R =UΔVT

!U !V
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However, PCA has also been used to describe a number of techniques that are not really 

traditional PCA but are, rather, applications of or variations over the SVD. Among these 

applications of the SVD, principal component regression—which uses principal components as 

predictors in a multiple (univariate) regression—has been used with some success (Mei et al., 

2010), including a study of the ADNI data (Hibar, Stein, Kohannim, Jahanshad, Jack, et al., 

2011; and again, but, with a different name: Hibar, Stein, Kohannim, Jahanshad, Saykin, et al., 

2011). PCA has also been used as a first step before a discriminant analysis (“discriminant 

analysis of principal components”; Jombart, Devillard, & Balloux, 2010), and again as the core 

analytic technique called between gene sets (Frost, Li, & Moore, 2014). 

3.2.4 Canonical Methods: Canonical Correlation, Partial Least Squares, and 

Discriminant Techniques 

The primary goal of canonical techniques is to discover some optimum relationship 

between two data sets measured on the same individuals. There exist two major families of 

techniques for two table analyses: canonical correlation analysis (CCA; Hotelling, 1936; 

Thompson, 2005) and partial least squares (PLS; Wold, 1975, 1984). Both CCA and PLS 

generally look for the maximum information common between two data sets. Though the two are 

closely related, they optimize different criteria (McIntosh & Mivsic, 2013; Sun, Ji, Yu, & Ye, 

2009). Finally, it can be shown that CCA can be regarded as a particular case of PLS. CCA and 

(the core of) PLS are similar to PCA because they use the SVD to provide orthogonal slices of a 

matrix where the matrix is computed as the common information between two data matrices 

(e.g., a correlation or covariance matrix). 
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CCA, like many multivariate techniques, uses at its core the SVD and works as follows. 

If we have two data matrices, and , both measured on the same observations (rows) and 

assumed to be preprocessed in some way (usually column-wise mean-centered and unitary 

norm), we multiply them together such that , where is, generally, the correlation 

matrix between and . Next, we derive the two sets of constraints derived from and : 

 and , respectively. In the case of CCA, the generalized SVD (GSVD) 

would be performed on the matrix , where the constraints of  and are 

applied in the GSVD step. For more details on the GSVD see Chapter 4 for information on the 

GSVD, and see (Abdi, 2007) or the Appendix of (Greenacre, 1984). CCA is computed with the 

GSVD though for completeness, the SVD for CCA is performed on : 

  

with the constraints that  

   

The matrices  and are (respectively) the left and right singular vectors—which represent 

(respectively) rows (here: the variables of ) and columns (here: the variables of )—of , 

and is a diagonal matrix, where the diagonal values— —are the singular values. In 

canonical techniques, when one of the data tables is a simple design matrix (i.e., group coding), 

it is called a “discriminant” technique. In the CCA framework, if one table is a design matrix, 

this is the standard linear discriminant analysis (LDA). While both CCA and LDA have been 

used in association studies (e.g., Aebi et al., 2015; Biffani et al., 2015; Cahill & Levinton, 2015), 

they have not been employed as frequently as other methods but with one exception: when CCA 
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or LDA are used in a regularized framework. The most common regularized framework is 

“sparsified CCA” (Witten, Tibshirani, & Hastie, 2009). Witten and colleagues propose that the 

basis of sparsified CCA is diagonal matrices in place of  and (a.k.a., “diagonal penalized 

CCA”). In its simplest form, sparsified CCA would use identity matrices in place of  and 

—an operation equivalent to “partial least squares correlation” (as in the following two 

paragraphs, and Chapter 4). 

For canonical techniques, the other major “family” of techniques is the partial least 

squares (PLS) family. PLS techniques exist as regression (Tenenhaus, 1998; Abdi, 2010), path-

modeling (Tenenhaus et al., 2005; Vinzi et al., 2010), and correlation (McIntosh & Lobaugh, 

2004; Krishnan et al., 2011) types of methods with variations within each type. A variety of PLS 

approaches (mostly in the form of PLS regression) have been used to study genetics and 

genomics. The most common applications are in models of human diseases (Pérez-Enciso, Toro, 

Tenenhaus, & Gianola, 2003; Michaelson, Alberts, Schughart, & Beyer, 2010), traits in animals 

(e.g., cows, Bolormaa, Pryce, Hayes, & Goddard, 2010; Moser, Tier, Crump, Khatkar, & 

Raadsma, 2009), and traits in plants (e.g., crops, Y. Xu, Hu, Yang, & Xu, 2016). However, 

recent applications also appear in human populations for diseases (e.g., Crohn’s disease: Chun, 

Ballard, Cho, & Zhao, 2011; schizophrenia: Tura, Turner, Fallon, Kennedy, & Potkin, 2008; 

gene-gene and gene-environment interactions in endometrial cancer: T. Wang, Ho, Ye, Strickler, 

& Elston, 2009). Finally, a hybrid form of PLSR and PLS correlation, which used sparsification 

to help identify important variables, was used to detect genetic correlates of brain networks (Le 

Floch et al., 2012). 

!!WJ !!WK
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While the most common form of PLS used in genetics studies is PLS regression (PLSR), 

this dissertation focuses on PLS correlation (PLSC) and an extension thereof to categorical and 

mixed data types (Beaton, Dunlop, et al., 2016; Beaton, Kriegsman, et al., 2016). PLSC works as 

follows: if we have two data matrices, and , both measured on the same observations (rows) 

and assumed to be preprocessed in some way (usually column-wise mean-centered and unitary 

norm), we multiply them together such that , where is, generally, the correlation 

matrix between and . Then, just as in PCA, the SVD is performed on as:   

   

under the constraints that:  

    

Like in PCA and CCA, the matrices  and are the left and right singular vectors—which 

represent rows (here: the variables of ) and columns (here: the variables of )—of , 

respectively, where are the singular values and are the eigenvalues. Like CCA, 

the goal of PLSC is to identify common information between two data matrices, but the two 

techniques differ on what they optimize: CCA optimizes the relationship between two matrices  

( and ) with respect to their within matrix variances (  and ), where 

PLSC optimizes the relationship simply between two matrices ( and ), or, alternatively, CCA 

optimizes the correlation between two data sets where PLSC optimizes the covariance between 

two data sets. The relationship between PLSC and CCA is equivalent if for CCA we have  

and :  Thus the simplest form of 

sparsified CCA is essentially PLSC.  

!X !Y

!!R = XTY !R

!X !Y !R

!!R =UΔVT

!!UTU= I = VTV.

!U !V

!X !Y !R

!diag{Δ} !diag{Δ}
2

!X !Y !!!WJ = X
TX !!!WK = Y

TY

!X !Y

!!WJ = I

!!WK = I !!!U
TWJU=UTIU=UTU= I = VTV = VTIV = VTWKV.
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Finally, a very recent paper by Mitteroecker et al., (2016) proposed a framework (called 

“multivariate analysis for genotype-phenotype association”) to unify a number of techniques 

(e.g., CCA, redundancy analysis) via PLSC. Mitteroecker and colleagues note that PLSC 

(“maximizes covariance”) is the superordinate method to a number of methods to elicit specific 

types of genotypic-phenotypic relationships: redundancy analysis (“maximizes genetic effect”), 

reduced-rank regression (“maximizes genetic variance”), and CCA (“maximizes heritability”). 

However, PLS-CA (Beaton, Dunlop, et al., 2016)—specifically the mixed-modality 

version of PLS-CA (Beaton, Kriegsman, et al., 2016)—generalizes PLSC to any type of data 

(categorical, continuous, ordinal). When both data tables are quantitative PLS-CA gives the same 

results as PLSC. Because PLS-CA generalizes PLSC—as a specific case of the GSVD—PLS-

CA thus generalizes the framework outlined by Mitteroecker et al., (2016) but PLS-CA is more 

flexible with respect to inheritance models (see Chapter 4 and Appendix B of Beaton, Dunlop, et 

al., 2016). 

3.2.5 Correspondence analysis 

Up until this point, nearly all methods discussed in Chapter 3 are designed for the 

analyses of quantitative data (typically interval or ratio scale). This means that any study that 

used these techniques must have treated the genetic data—and likely some additional data, such 

as trait measures—as quantitative. To treat SNPs as quantitative is problematic because a SNP 

exists only as three genotypic categories: the major homozygote (AA), the heterozygote (Aa), and 

the minor homozygote (aa). Thus, if one were to use methods designed for analyses of interval, 

ratio, or even ordinal scale data, then certain assumptions must be applied to SNPs in order to 

transform them from categorical to numerical. Typically, SNP data are transformed under the 
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assumption of the “additive” model: emphasis should be placed on the minor allele. So, the 

genotypes of AA, Aa, and aa are thus represented (usually) by the numbers [0, 1, 2], respectively. 

However, if the genetic effect is not additive, then this transformation could either miss or 

mischaracterize the effect of a SNP (a more detailed discussion of these problems are discussed 

in this chapter, section 3.3). In order to analyze SNP data in their categorical format we require a 

technique designed to analyze categorical data. Categorical (and contingency) data are analyzed 

with χ2. For multivariate data, we require something more sophisticated than simple χ2: CA is 

like to PCA but suited for matrices comprised of categorical data. For CA, we have a matrix

and we compute two matrices: an observed matrix ( ) and an expected matrix (!ER ) just as for 

a χ2. First, we compute the observed matrix  as divided by the total sum of the table: 

 !!OR =R ×(1TR1)−1 ,   

where is a conformable vector of 1s. Next, from we compute (column) vectors of the 

marginal frequencies for the rows and columns, respectively called  “masses” (!m ) and 

“weights” (!w ): 

 !!m =OR1!and!w=1OR ,   

where is a conformable vector of 1s. We then compute the expected matrix from the masses and 

weights: 

 !!ER =mw
T.   

Just as in χ2, we compute the deviation of observed from expected: 

 !!ZR =OR −ER .   

!R

!OR

!OR !R

!1 !OR

!1
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From here, we used the GSVD with the constraint matrices of !!M= diag{m−1}  and 

!!W = diag{w−1} : 

 !!ZR =UΔV
T ,   

under the constraints that:  

 !!UTMU= I = VTWV.   

Just like in PCA!U ,!V , and!diag{Δ} are, respectively, the left singular vectors, right singular 

vectors, and singular values. When CA is applied to a contingency table (i.e., co-occurrences 

between two sets of categorical data) it as called “simple” CA or just CA. When CA is applied to 

a data table comprised of categorical variables—with observations on the rows and each level for 

all variables along the columns—the technique is called “multiple” CA (MCA).  

While CA is a natural technique to analyze relationships between multiple genotypes, it is 

rarely used: Applications of CA to genetics studies exists—almost entirely—outside of North 

America and in most cases very strictly within biology and ecology (mostly to understand 

genetic diversity of animals and plants within the same geographical regions). For example, CA 

has been used to study the genetic underpinnings of ancestry, population structures, population 

divergence, and possible hybridization of a variety of animals: Eurasian otters (Geboes, Rosoux, 

Lemarchand, Hansen, & Libois, 2016), llamas and alpacas (Kadwell et al., 2001), manatees 

(Luna, 2013), sea turtles (Vilaça et al., 2012), platypuses (Furlan et al., 2012), mountain pygmy 

possums (Mitrovski, Heinze, Broome, Hoffmann, & Weeks, 2007), Little penguins (Burridge, 

Peucker, Valautham, Styan, & Dann, 2015), and monk parakeets (Edelaar et al., 2015). 
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Even though CA has been applied more in plants and animals, there have been some 

notable uses for human populations, the first of which was Greenacre and Degos (1977) to 

understand the distribution of human leukocyte antigen groups across many populations. CA has 

also been used—like MDS and PCA—to understand human “back migration” via ancestral 

genetic markers (Cruciani et al., 2002). More importantly, CA has been used to understand 

genetic aspects of psychiatric diseases such as major depressive disorder (Suchanek et al., 2011), 

schizophrenia (Paul-Samojedny et al., 2010), and alcohol use disorder (Onori et al., 2010). 

3.2.6 Regularization techniques 

Most multivariate methods can suffer from a variety of problems if particular conditions 

are not met, for example: when the number of observations is smaller than the number of 

variables (which is almost always the case in neuroimaging, genetics, and “imaging genetics”). 

One of these problems is often described by the umbrella term of “over-fitting,” a name applied 

when a model appears to provide good results for a specific data set, but is more than likely 

fitting conditions specific to the data set (often times noise particular to the sample instead of the 

“true” underlying signal). To counteract over-fitting, a number of approaches are routinely used, 

such as cross-validation (e.g., jackknife or split half resampling), conservative resampling 

strategies (e.g., bootstrap), or approaches lumped under the generic term of “regularization” (a 

technique originally developed to handle the “multicollinearity” problem in multiple regression). 

Because several terms—such as regularization, sparsification, and shrinkage—have many uses, I 

will define several terms for use in this dissertation. 

1. Shrinkage: the process of making values, such as β coefficients, go toward zero; usually 

effects small values the most. 
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2. Penalization (term): a particular value added to or subtracted from estimates (e.g., β 

coefficients) to shrink these values (towards zero) to counteract some assumed bias.  

3. Regularization: any statistical approach meant to adjust for over-fitting through the use of 

penalization and shrinkage. 

4. Sparsification: a particular form of regularization where shrinkage is used to minimize 

the number of non-zero elements in an estimate; often an iterative process. For example, 

shrinking β coefficients under the constraint that only 1 coefficient can be non-zero. 

The most common and well-known regularization approaches are ridge regression (a.k.a., 

Tikhonov regularization (Hoerl & Kennard, 1970) and the LASSO (“least absolute shrinkage and 

selection operator”; Tibshirani, 1996). All these approaches are best understood from the 

perspective of ordinary least squares (OLS), as used, for example to estimate beta coefficients in 

multiple regression. OLS is defined as (Abdi, Edelman, Valentin, & Dowling, 2009; Chapter 24): 

 !y = XΒ+ ε    

where the estimation of β, assuming !X  is full rank, comes from: 

 !!β̂ = (XTX)−1XTy ,  

where in!!ŷ  is computed from  

 !!ŷ = Xβ = X(XTX)−1XTy ,   

and !!X(X
TX)−1XT  is the projection (or “hat”) matrix. In OLS, we want to minimize the error sums 

of squares, so, the estimation equation can be written another way:  

 !!(y−Xβ)
T(y−Xβ)=min.  



67 

For ridge regression we slightly modify the estimation equation to include a tuning parameter 

denoted λ:  

!!β̂
* = (XTX +λI)−1XTy ,

where!I is the identity matrix (1s on the diagonal, 0s off-diagonal) and when λ is 0, we have the 

same results as OLS. Written another way: 

!!(y−Xβ)
T(y−Xβ)+λβ Tβ =min.

Where!λβ
Tβ is called the penalty term for the standard OLS estimate for ridge regression. This

penalty is the L2-norm (a.k.a., Euclidean), multiplied by the tuning parameter λ, and often 

shown, more simply, as
!!
λβ Tβ = λ β

2

2
= λ βi

2

i
∑ . In a similar fashion to ridge regression, the 

LASSO also uses a penalty term with respect to this same minimization: 

!!(y−Xβ)
T(y−Xβ)+λ β

1
=min,

where 
!!
λ β

1
= λ βi

i
∑ , which is also known as the L1-norm (a.k.a., Manhattan, taxicab, or city-

block distance), multiplied by the tuning parameter λ. By contrast with OLS and ridge 

regression, the LASSO requires an iterative process to come to a solution, and in addition, both 

ridge and LASSO procedures require an iterative search to find the optimal value of λ. When λ is 

a small positive value, the regularization process—to quote Takane and Hwang (2003)—“works 

almost magically” (pg. 3) to provide better (and possibly more stable) estimates of !β̂
* . Thus, in

scenarios when the number of observations will almost always be lower than the number of 

variables (e.g., genomics, fMRI), we would likely benefit from techniques designed to handle 

(possibly) incorrect estimation, over-fitting, and collinearity. 
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3.2.6.1 Where it all began: practical and interpretable regularization with the SVD 

When it comes to multivariate analyses of high dimensional data, PCA is the standard 

technique because it combines the original variables into new orthogonal variables that explain 

most of the variance of the data. But with large numbers of variables (e.g., millions), it can be 

difficult to understand what a component means (Jolliffe, 2002), and thus a number of solutions 

were developed to help interpretation. In the early days of PCA and factor analysis, rotations 

were developed (see, e.g., Tucker, 1944) in order to try to force as many values as possible—per 

component—towards zero, thus leaving only a few “interpretable” values for each component. 

However, sometimes it is not sufficient to just rotate, because there are still: (i) many non-zero 

values, (ii) many values still exist above some acceptable threshold, or, which is the more likely 

scenario today, (iii) unique solutions do not exist. Thus, Jolliffe et al., (2003) proposed an 

extension of rotation and regularization procedures for PCA that incorporated the LASSO 

regression technique (Tibshirani, 1996, 2011), and called this new form of PCA “SCoTLASS” 

(short for “simplified component technique LASSO”). SCoTLASS explicitly minimizes the 

number of non-zero loadings per component and thus facilitates the interpretation of 

components. 

3.2.6.2 More modern approaches 

SCoTLASS was followed by a number of proposed solutions (for PCA) to meet two 

goals simultaneously: (1) avoid over-fitting (or some other form of mis-estimation), and (2) 

minimize the number of interpretable variables to consider. Some of the most well-known and 

popular techniques are sparse PCA (Zou, Hastie, & Tibshirani, 2006), sparse PCA-regularized 

SVD (a.k.a., sPCA-rSVD; Shen & Huang, 2008), and—one of the “go-to” approaches—

penalized matrix decomposition (PMD; Witten, Tibshirani, & Hastie, 2009), which was designed 
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for both PCA and CCA. Though there are a number of other similar approaches to regularized 

PCA (e.g., shrinking singular values: Verbanck et al., 2013; rotations: Trendafilov & Adachi, 

2014; or manifold optimizations: Genicot, Huang, & Trendafilov, 2015) most forms exist as 

ridge (Tikhonov) or sparsified (mostly via LASSO) PCA, multivariate regression, or related 

techniques (Allen & Maletić-Savatić, 2011; Gao et al., 2013; Hibar et al., 2015; Kohannim et al., 

2011; Kohannim et al., 2012; Liu et al., 2013; Sill, Saadati, & Benner, 2015; Vounou et al., 2012; 

Vounou, Nichols, & Montana, 2010).  

Like PLSC, CCA is a technique designed for the analysis of two data tables, where both 

techniques identify latent variables, but with a slightly different optimization criterion than PLSC 

(see Chapter 5). While both techniques are used for the analysis of genetic data, CCA is 

generally the more common technique used by behavioral and brain scientists (Chi et al., 2013; 

D. Lin et al., 2013; D. Lin, Calhoun, & Wang, 2014; Takane, Hwang, & Abdi, 2008; Jingwen 

Yan, Zhang, et al., 2014). There has also been recent development of sparse CCA approaches to 

include a third table that is used as a “guide” or “structure” (often applied via the observations), 

where in the “guide” or “structure” is some sort of targeted data or design matrix, or some 

preferred constraints (Du et al., 2016a; Yan, Du, Kim, Risacher, Huang, Moore, Saykin, & Shen, 

2014; Jingwen Yan et al., 2013). While a sparsified PLS has been used in these domains (Le 

Floch et al., 2012), the majority of work exists in other domains (Chun et al., 2011; Chun & 

Keleş, 2009), such as genomic analysis of French dairy cattle (Colombani et al., 2012). However, 

one major issue still remains surrounding all of regularized approaches and nearly all of 

previously mentioned (regularized) multivariate methods: they are all designed under the 

assumptions that data—especially SNPs—are continuous. 
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3.3 The nature of SNP data and SNP models 

Nearly all current methods and approaches to analyzing SNPs (alone or in conjunction 

with other data) treat SNPs as numerical data even though SNPs are inherently categorical 

variables. A SNP takes the general form of AA as the major homozygote, aa as the minor 

homozygote, and Aa as the heterozygote, where A is the major allele (most frequent of the two 

letters in a pair), and a the minor allele. The near universal standard of SNP coding, however, is 

in the form of [0,1,2], where it is most common to code 0 as the major homozygote—where there 

is no presumed risk—1 as the heterozygote, and 2 as the minor homozygote. This particular 

coding is referred to as the “additive model”, which assumes additive (and thus linear) effects on 

some trait. In some cases, however, an opposite coding is used—[2,1,0] for AA, Aa, and aa—

though it must be noted this just produces a sign flip compared to [0,1,2]. While the additive 

model is the most commonly used, it is only one of several possible models to estimate genetic 

effects associated with some trait. The next most common models are the dominant and 

recessive, respectively. Both the dominant and recessive models dichotomize SNPs based on the 

minor or major allele. The dominant model would be AA vs. {Aa + aa} where the recessive 

model would be {AA + Aa} vs. aa. The multiplicative model exists as a compromise somewhere 

between the additive model and either a dominant or recessive model: emphasis is still placed on 

the minor allele, but the difference between each genotype is not uniform. The rarest type of 

effect is a heterozygous effect, and is estimated with the heterozygous model, which treats the 

heterozygote as different from both homozygotes: Aa vs. {AA + aa}. Finally, what is probably 

one of the rarest models in use—even though it is the most general—is the “genotypic” model, 

where each genotype’s effect is estimated. A summary of these models is shown in Table 3.1.  
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Though the additive model is almost universally used, there exists a simple counter 

example to show the inadequacy of additive assumptions: the risk of Alzheimer’s Disease (AD) 

due to the ApoE gene is neither uniform nor linear (see e.g., Table 2 in Genin et al., 2011). 

Furthermore, “ApoE 4” gene alleles are considered risk factors for AD and the “ApoE 2” gene 

alleles are considered protective against AD (Corder et al., 1994). But, by contrast, “ApoE 2” is 

also a genetic risk factor for the inability to break down fats, and this inability could, in turn, 

predispose individuals to certain types of vascular diseases or obesity (Koopal et al., 2014). 

When risk factors are unknown, we—obviously—do not know (1) which direction, nor (2) how 

much risk is associated with which markers or diseases. So, applying these [0,1,2] values to 

SNPs is problematic because allelic counts do not represent how much of a SNP is present, but 

rather, only which allele pair is present (e.g., AA, AT, or TT). 

Thus far in the field, the [0,1,2] coding scheme is often used simply because most 

analytical methods are designed to handle numbers rather than qualitative data such as 

categorical or ordinal data. However, another part of the motivation is summarized by Balding 

(2006): 

“For complex traits, it is widely thought that contributions to disease risk from individual 

SNPs will often be roughly additive—that is, the heterozygote risk will be intermediate 

between the two homozygote risks.” (pg. 784) 

Another part of the motivation, also described by Balding (2006), is that “general tests”—which 

test all genotypes (à la one factor ANOVA), as opposed to [0,1,2] (à la regression, or as a 

contrast applied to the one factor ANOVA)—are less powerful than using an additive recoding 

scheme, and per the recommendation of Balding (2006): 
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“Using the Fisher test spreads the research investment over the full range of risk models, 

but this inevitably means investing less in the detection of additive risks.” (pg 785). 

Though, just before this statement in the same paragraph, Balding makes a strong point about 

model selection for SNPs: 

“There is no generally accepted answer to the question of which single-SNP test to use. 

We could design optimal analyses if we knew what proportion of undiscovered disease-

predisposing variants function additively and what proportions are dominant, recessive 

or even over-dominant. Lacking this knowledge, researchers have to use their judgment 

to choose which ‘horse’ to back.” (pg 785), 

and so implies that researchers must choose only one model to test—as opposed to using a 

general test. In their reply to Balding, Vormfelde and Brockmöller (2007) point out that if there 

are haplotypic effects, a [0,1,2] coding and subsequent test of each SNP individually will entirely 

miss the haplotype-phenotype relationship. Furthermore, in a separate study by Lettre, Lange, 

and Hirschhorn (2007)—conducted at almost the same time as these reviews and responses—

showed that the additive model is not necessarily a ubiquitous, catch-all coding scheme that 

provides the most (statistically) powerful way to detect the effects of SNPs. In fact, this coding 

scheme can be detrimental when the effects are, for example, recessive: an effect shown by 

Lettre et al., (2007; see their Figures 1 and 2) that illustrates that when the additive model is used 

for a (true) recessive effect, power is very low. The same problem occurs when recessive models 

are applied to (true) inheritance patterns that are either dominant or additive. Furthermore, if an 

effect is detected (i.e., significant; through a statistical test) with, for example, the additive model 

but the (true) inheritance is—as some cases shown in Lettre et al. 2007)—dominant, or even 
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heterozygous (not shown in Lettre et al.), then a researcher would conclude they have discovered 

an effect and would therefore commit two errors: (1) They would claim an effect was additive (a 

Type I error), while (2) missing the true effect (a Type II error). Thus, Lettre et al., (2007, p 361) 

point out that:  

“We also note that testing the three models [additive, dominant, and recessive] together 

provided slightly more power than testing the two degrees of freedom co-dominant 

[general] model alone (compare ‘Add+Dom+Rec’ with ‘Co-dominant’ in Fig. 2), but 

these approaches were fairly similar.” 

In fact, the similarity between the two options—three tests per SNP, vs. one test per SNP—had 

lead Lettre, et al. (2007, pg. 362) to conclude and recommend: 

[…] testing the co-dominant statistical model alone, or alternatively testing the additive, 

dominant, and recessive models together but using empirically determined significance 

thresholds to correct for testing multiple correlated genetic models. 

In more simple terms: if you want to know which SNPs are significant and what their likely true 

effects are, the more general tests should be used or one must test all inheritance models (and 

then correct for the increase in number of tests). Note, though, that with respect to genome-wide 

(or large scale candidate) studies, SNP tests are already very conservative (i.e., α = 5 × 10-8). If, 

on the genome-wide scale, we were to test all models, our already conservative threshold must 

become more conservative (i.e., a multiple comparisons correction applied to a multiple 

comparisons correction). Yet, it is extremely rare to find genome-wide (or even small and large 

scale candidate gene) association studies that use anything besides the additive model alone. 
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With respect to complex traits, conditions, diseases, and disorders, the almost exclusive 

use of the additive ([0, 1, 2]) model is, to some degree, perplexing given that many researchers 

believe that non-linear and non-additive polygenic effects are likely explanations for complex 

traits. For example, we turn to the ADNI, which is (relatively) open access data and has been 

studied by hundreds—or even thousands—of researchers at this point. The additive model is, 

without question, the only apparent one used on a large scale for genome-wide data (see, e.g., 

Potkin et al., 2009; Shen et al., 2010; Stein et al., 2011; Hibar et al., 2011; Shulman et al., 2013; 

Swaminathan et al., 2011; Meda et al., 2012; and Hohman, Koran, Thornton-Wells, & for the 

Alzheimer’s Neuroimaging Initiative, 2013). However, in other studies with the ADNI data, it 

has been made clear that linear additive effects are not necessarily the appropriate assumption. 

Hibar et al., (2013) state: 

“For many complex traits, the similarity of family members drops faster than would be 

expected as relatedness decreases [2]. This implies that there are non-additive (epistatic) 

interactions involved in the etiology of many complex traits.” 

Yet, Hibar and colleagues (2013) only discuss the additive model in their analyses, and again, 

Hibar et al., (2015) note:  

“Potential sources of the missing heritability might be caused by nonadditive effects like 

dominance and SNP-SNP interactions (Carlborg and Haley, 2004) and gene-by-

environment interactions (Visscher et al., 2008), and rare genetic variants (Manolio 

et al., 2009).” 

 However the authors only discuss the additive model in their analyses. And, in the ADNI 

data alone, a very high number of studies use only the [0, 1, 2] additive model, even though it is 
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generally accepted that there are complex genetic contributions to Alzheimer’s disease (as well 

as many other diseases and disorders). The sole use of [0, 1, 2] can also be seen in many other 

domains, such as: cognitive ability (Arden, Harlaar, & Plomin, 2007), behavioral disinhibition 

(Derringer et al., 2015), intelligence (Loo et al., 2012), obesity and depression (Hung et al., 

2014), personality traits (Kazantseva et al., 2015), onset of Alzheimer’s disease (Naj et al., 

2014), CSF Tau levels in Alzheimer’s disease (Cruchaga et al., 2013), as well as various 

domains of psychology (Mõttus et al., 2015; Carr et al., 2013). This use of [0,1,2] can also be 

seen in fields outside of psychology and neuroscience (Kathiresan et al., 2008; Lango Allen et 

al., 2010; Takeuchi et al., 2009). The use of [0,1,2] makes little sense for such a myriad of 

complex traits. As Lehner (2011) states (in the “Concluding Remarks” section; emphasis mine): 

 “It has been argued that phenotypic variation in a population could, in many cases, be 

accounted for by purely additive genetic models. However, this is only a theoretical 

possibility [101], and it contradicts both the demonstrated importance of epistasis in 

particular human diseases [102, 103, 104 and 105] and the pervasive epistasis that has 

been detected in model organisms and highlighted here. It is also somewhat inconsistent 

with patterns of sequence evolution [79, 81 and 106] and inconsistent with our 

understanding of molecular biology and the abundance of non-linear regulatory 

interactions [86]. Put simply, although they are very challenging to predict and detect in 

human populations because of a lack of statistical power [8 and 9], from what is currently 

understood about genetic architecture and biology, epistatic interactions between 

mutations are likely to be central to what makes us unique, both in health and disease.”  
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Thus, the additive model—while almost exclusively used—is not necessarily the best default 

approach, because it assumes that effects are uniform and linear, as well in the same direction, 

across all SNPs. Not only is this a problem for detecting genetic effects from individual SNPs, 

but it is also a problem when effects are polygenic and researchers use polygenic risk (a.k.a., 

multi-locus genetic profile) scores. 

In recent years, polygenic risk (multi-locus profile) scores have become a popular (and 

simple) tool to assess how multiple markers (usually SNPs) may together contribute to a variety 

of traits or disorders (e.g., Davis et al., 2013; Mõttus et al., 2015; Nikolova, Ferrell, Manuck, & 

Hariri, 2011; Stice, Yokum, Burger, Epstein, & Smolen, 2012; Hart et al., 2014; Papiol et al., 

2014). However, to truly estimate how a number of genetic markers should, essentially, be added 

up to create a single “risk” value, we require robust research on traits in advance, where we can 

estimate effect sizes (and directions) from either (1) meta-analytic strategies or (2) Bayesian 

estimates. However, if there is not enough information to apply particular effect sizes and 

directions to each marker, then polygenic scores must rely on empirically defined risk, which is 

usually the (empirical, from the data set) minor allele and SNPs are treated as [0,1,2]. In these 

cases if, for example, two SNPs with minor allele-defined (based on sample) “risks” contribute 

in an opposite way to some behavior or trait, then the effect is essentially nullified. Combining 

the same genotypes across two SNPs with the additive code would produce a “2” in three 

distinctly different configurations: 0 + 2 = 2, 1 + 1 = 2, and 2 + 0 = 2; there is no predictive 

power in this case. In fact, this exact pattern exists in one of the most well-known genes: ApoE. 

The ApoE gene alleles are usually genotyped through two SNPs: rs429358 is C/T, where 

the minor allele is C (dbSNP MAF: 0.150), and rs7412 is C/T, where the minor allele is T 
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(dbSNP MAF: 0.075). Table 3.2 shows a tabular format of ApoE gene alleles with respect to 

these two SNPs. Based on the unifying nomenclature in Zannis et al., (1982), and discussed in 

Nyholt, Yu, and Visscher (2008), to be ApoE E4/E4 requires a minor homozygote on rs429358 

and a major homozygote on rs7412. However it is likely that, for Alzheimer’s risk, the real 

genetic risk (due to ApoE) is likely only with respect to rs429358 (Bennet et al., 2010).  

Furthermore, different SNPs are likely to express different inheritance patterns, 

depending on the trait studied (and possibly even how that trait is measured, i.e., choice of 

instrument). As pointed out by Genin et al., (2011) for disease risk, ApoE does indeed show a 

non-linear effect that roughly matches a quadratic (ordinal) risk (from E2/2 ! E4/4). However, 

ApoE—with respect to Alzheimer’s disease—has shown a variety of different patterns across a 

number of different Alzheimer’s traits or phenotypes. Some of the clearest example of non-

additivity can be found in Lebedeva et al., (2012): Figure 2a shows a recessive (e.g., [0 & 1] > 2) 

effect of a haplotype on beta-amyloid levels, where Figure 2b shows an over-dominant (e.g., [0 

& 2] > 1) effect of a haplotype on beta-amyloid levels; Figure 3a and b show what appears to be 

an inverted U-shape effect contrary to what is typically considered an ordinal risk factor for 

Alzheimer’s Disease: E2/3 ! E2/4 ! E3/3 ! E3/4 ! E4/4. We can also see (in Levedeva and 

colleagues’ figures) that different levels of beta-amyloid—considered a likely pathological 

marker of AD—do not match the expected ordinal effect from least-risk associated ApoE allele 

(E2/3) to most (E4/4)—in fact, the first (E2/3) and last (E4/4) alleles have essentially the same 

relation to beta-amyloid. Next, they present the same data in the format of 0, 1, or 2 E4 alleles. 

Here again is the inverted U-shape and most resembles an over-dominant (heterozygous) 

model. This suggests that ApoE genotypes are related to a variety of phenotypes, 
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endophenotypes, and biomarkers under different inheritance models. Similar non-linear and non-

additive contributions of ApoE—to some trait or phenotype—can be also be seen in (to name just 

a few) Lautner et al. (2014), Linnertz et al. (2014), Soares et al., (2012), and Trabzuni et al., 

(2012), Stranger et al., (2005). Likewise, the following papers also show a variety of non-linear 

expression effects with respect to genotype (Gibbs et al., 2010, Figure 4; Zhang et al., 2008, 

Figure 3; Myers et al., 2007, Figure 3; Okamoto et al., 2011, Figure 2). Finally, when it comes to 

how a gene is expressed, it is, in most cases, tissue dependent (that is, gene expression varies 

based on where a particular gene’s expression is being measured). What will not vary, however, 

is the genotype. In fact, some of our own recent work shows how multiple genes are expressed 

quite differently all throughout the cortex (Cioli, Abdi, Beaton, Burnod, & Mesmoudi, 2014). 

Even though we did not analyze genotypes, the differential expression in various regions still 

aligns with the fact that a genotype does not necessarily reflect the same expression throughout 

the cortex. In this context, the same allele results in expression patterns corresponding to a 

variety of models simply depending on where expression was measured in the cortex. 

Finally, while many—especially multivariate—methods are “data-driven” these methods 

cannot operate free of hypotheses if an additive model is applied to all SNPs a priori. The 

application of the additive code could hinder “data-driven” techniques. Thus, in association 

studies of complex diseases, disorders, traits, and behaviors the inheritance model for a given 

SNP is rarely, if ever, known, and as such, if the inheritance model is not known, applying the 

same inheritance model to every SNP could be problematic. 
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Table  3.2 

ApoE Gene Allele, SNP, Additive Coding, and “Risk Factor” 

Genotypes E2 E3 E4 

 rs429358 rs7412 rs429358 rs7412 rs429358 rs7412 

E2 TT TT     

E3 TT CT TT CC   

E4 CT CT CT CC CC CC 

 

       Allelic E2 E3 E4 

 rs429358 rs7412 rs429358 rs7412 rs429358 rs7412 

E2 AA aa     

E3 AA Aa AA AA   

E4 Aa Aa Aa AA aa AA 

 

    Additive E2 E3 E4 

 rs429358 rs7412 rs429358 rs7412 rs429358 rs7412 

E2 0 2     

E3 0 1 0 0   

E4 1 1 1 0 2 0 

 

Note.    The three representations of ApoE: as SNP genotypes, as general allelic format, and the 

additive model. With respect to polygenic risk scores, ApoE2/2, ApoE4/4, and ApoE2/4 (or 

ApoE4/2) all compute to the same (minor allele-based) risk value of “2”. 
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CHAPTER 4 

THE STATISTICS OF PLS, CA, AND PLS-CA 

Parts of this chapter are adapted from my Beaton, Dunlop, ADNI, & Abdi (2016). 

Copyright © 2015 American Psychological Association. Reproduced with permission. The 

official citation that should be used in referencing this material is Beaton, D., Dunlop, J., Abdi, 

H., & Alzheimer’s Disease Neuroimaging Initiative. (2016). Partial least squares correspondence 

analysis: A framework to simultaneously analyze behavioral and genetic data. Psychological 

Methods, 21(4), 621-651. http://dx.doi.org/10.1037/met0000053. This article may not exactly 

replicate the authoritative document published in the APA journal. It is not the copy of record. 

No further reproduction or distribution is permitted without written permission from the 

American Psychological Association. 

4.1 The Generalized Singular Value Decomposition 

The singular value decomposition (SVD)—and by extension the Generalized SVD 

(GSVD)—is the core tool for many statistical and analytical techniques such as PCA, 

correspondence analysis (CA), discriminant analysis (DA), canonical analysis (CCA) and partial 

least square methods (PLS) to name only but a few methods. 

The SVD decomposes rectangular tables (Yanai et al., 2011). Typically, the rows of these 

rectangular matrices are observations, and the columns are variables (that describe the 

observations). The SVD produces orthogonal components (sometimes called dimensions, axes, 

principal axes, or factors) that are new variables computed as linear combinations of the original 

variables. Because components are orthogonal (i.e., two different components have zero 
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correlation), they can also be obtained as a simple geometric rotation of axes with respect to the 

original variables (Jolliffe, 2002). The first component always explains the maximum variance in 

the data and each following component explains the next largest possible amount of remaining 

variance under the condition that components are mutually orthogonal. 

Observations and measures are assigned values, called component (or factor) scores, for 

each component. Component scores reflect how much an observation contributes to the variance 

of a component. Additionally, component scores are often plotted to produce component maps 

(akin to scatter plots). These maps represent the relationship between observations, between 

measures, and some cases between observations and variables (Greenacre, 1984). In the maps, 

observations close to each other are similar and observations far apart differ. 

Recall that the SVD decomposes a data matrix R—with J rows and K columns—into 

three matrices: 

! = !!"!!, (4.1) 

where R has rank L, U is a J by L matrix of left singular vectors, V is a K by L matrix of right 

singular vectors, and ! is an L by L diagonal matrix where diag{!} stores the singular values. 

Furthermore, U and V are orthonormal matrices such that 

!!! = ! = !!!!. (4.2) 

Component scores for the J rows and K columns are computed as 

!! = !!"!!and !!! = !!", (4.3) 

and can be plotted—often with two components at a time—to produce component maps. As 

described by Greenacre (1984), Lebart et al., (1984), and Abdi (2007c), the GSVD generalizes 
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the standard SVD by imposing—on, respectively, the left and right singular vectors—constraints 

represented by positive definite matrices of sizes (respectively) J by J and K by K. These 

constraints matrices are often diagonal matrices and, when this is the case, they are usually called 

masses or weights. We denote the weights for the rows, !!, and the weights for the columns, 

!!. Decomposition of a matrix is the same as in Eq. 4.1 with the following constraints:  

 !!!!! = ! = !!!!!!, (4.4) 
 

where component scores for the J rows and K columns are computed as 

 !! = !!!!"!!and !!! = !!!!". (4.5) 
   

The GSVD is a very powerful technique and, with the correct selection of weights, can 

implement or generalize many techniques (e.g., correspondence analysis, multi-dimensional 

scaling, Fisher’s linear discriminant analysis, canonical correlation analysis). For a 

comprehensive list of techniques that the GSVD generalizes, see Appendix A of Greenacre 

(1984). 

4.2 Partial Least Squares (Correlation) 

 In this section I present a summary of partial least squares correlation (PLSC)—

sometimes also called Tucker’s inter-battery analysis (Tucker, 1958), singular value 

decomposition of the covariance between two fields (Bretherton et al., 1992), or co-inertia 

analysis (Dray, 2014), or even, recently, “multivariate genotype-phenotype” (MGP) analysis 

(Mitteroecker, Cheverud, & Pavlicev, 2016)—in order to (1) provide required background and 

(2) establish the concepts and notations we need for a novel generalization of PLSC to varied 

data types (Beaton, Dunlop et al., 2016; Beaton, Kriegsman et al., 2016). 
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PLSC analyzes the relationship between two data matrices of sizes (respectively) I by J 

and I by K, denoted (respectively) X and Y, that measure the same I observations (rows) 

described by (respectively) J and K quantitative variables (i.e., columns). The centered and 

normalized versions of X and Y are denoted !! and !!. The common information between these 

two data tables is represented by the matrices computed as: 

 ! = !!!!!and !! = !!!!!!. (4.6) 
 

This multiplication produces a J by K cross-product matrix (R) or correlation matrix (!!). In 

PLSC (Krishnan et al., 2011; McIntosh et al., 1996; Bookstein, 1994; Abdi & Williams, 2013) 

the variables are, in general, centered and normalized (i.e., matrices !! and !! are used) and 

therefore the matrix !! is used for further analysis. This matrix !! is decomposed with the 

singular value decomposition as:  

 !! = !!"!!, (4.7) 
 

where (1) L is the rank of !!, (2) ! is the J by L orthonormal matrix of left singular vectors, (3) ! 

is the K by L orthonormal matrix of right singular vectors, and (4) ! is an L by L diagonal matrix 

(i.e., the off-diagonal elements of !! are all 0) where the elements of the vector diag{!} are the 

singular values (ordered from the largest to the smallest). The squared singular values—called 

eigenvalues—express the variance of the data extracted by the components. In the PLSC 

nomenclature, the matrices ! and ! are also called saliences (Bookstein, 1994; McIntosh & 

Lobaugh, 2004; Krishnan et al., 2011). The matrices !" and !" are akin to component scores 

for PCA (Abdi & Williams, 2010) and CA (Abdi & Béra, 2014).  



 

84 

In PLSC, the original variables of !! and !! are linearly combined to create pairs of 

latent variables (each pair has one latent variable from !! and one from !!, see, Krishnan et al., 

2011; Abdi & Williams, 2010b). The coefficients of these linear combinations are given by the  

singular vectors of !!. The latent variables for !!!and !! are computed as  

 !! = !!!!!!!!and!!!!!! = !!!. (4.8) 
 

4.2.1 What does PLSC maximize? 

PLSC seeks two vectors of coefficients—denoted ! (resp. !)—that define a linear 

combination of the columns of !! (resp. !!) such that these two linear combinations—called 

latent variables, denoted !! (resp. !!), and computed as !! = !!! (resp. !! = !!!)—have 

maximal covariance as stated by:  

 δ = arg max(!!!!!) != ! arg max cov(!!!, !!) (4.9) 
 

under the constraints that the set of coefficients of the linear transformation for !! (resp. !!) 

have unit norm: 

 !!!!! = 1 = !!!!!!. (4.10) 
 

After the first pair of latent variables has been extracted, subsequent pairs are extracted under the 

additional condition that unpaired sets of latent variables are orthogonal:  

 !!,!! !!,!! = 0!when!! ≠ !′. (4.11) 
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The coefficients of the successive linear transformations (stored in matrices !!!and!!!) are 

obtained from the SVD of !!!(see Eq. 4.7) as shown by 

!!!!! = !!!!!!!!! = !!!!!! = !!!!"!!! = !!. (4.12) 

When ! = 1, the covariance between !! and !! has the largest possible value, when ! = 2, the 

covariance between !! and !! has the largest possible value under the constraints that the second 

pair of latent variables are orthogonal (as defined by Eq. 4.11) to the first pair of latent variables. 

This property holds for each subsequent value of !; for proofs, see, Tucker (1958) and Bookstein 

(1994), in addition to Section 3.1.2.3, Lebart et al., (1984) and Greenacre (1984). 

4.3 Partial Least Squares-Correspondence Analysis 

The properties of PLSC hold when matrices ! and ! contain quantitative variables (and 

therefore !! is a correlation matrix). However, SNPs and many types of behavioral data (e.g., 

surveys, clinical assessments, diagnostic groups) are inherently categorical. Here, I present and 

formalize a PLS method recently developed hat was designed to handle categorical data (Beaton, 

Filbey, & Abdi, 2013; Beaton, Dunlop et al., 2016) or “heterogeneous” (aka mixed) data 

(Beaton, Dunop, et al., 2016; Beaton, Kriegsman, et al., 2016), called “Partial Least Squares-

Correspondence Analysis” (PLSCA). The following section is adapted or directly taken from 

Beaton, Dunlop, et al., (2016). 

4.3.1 Formalization of PLS-CA 

PLSCA analyzes the relationships between two tables of categorical data (denoted ! and 

!) that describe the same set of I observations (i.e., rows). Both ! and ! store categorical 
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variables that are expressed with group coding (a.k.a. “disjunctive coding” or “indicator matrix 

coding,” see, e.g., Lebart et al., 1984; Greenacre, 1984), as illustrated in Table 2 of Beaton, 

Dunop, et al., (2016). With this coding scheme, the N levels of a categorical variable are coded 

with N binary vectors. The level describing an observation has a value of 1 and the other levels 

have a value of 0, and so the product !!! creates a contingency table. Contingency tables are 

routinely analyzed with χ2 statistical approaches and thus we developed PLSCA in such a χ2 

framework.  

First, compute the vectors of the proportional column sums for ! and !, and call these vectors 

masses: 

!! = (!!!")!!!×! !!! !and!!!! = !!!" !!!×!(!!!) (4.13) 

(with 1 being a conformable vector of ones). In PLSCA, each level of a variable is weighted 

according to the information it provides. Assuming that rare occurrences are more informative 

than frequent occurrences, these weights are computed as the inverse of the relative frequencies 

(masses) and stored in diagonal matrices computed as:  

!! = diag{!!}!!!!and!!!! = diag{!!}!! . (4.14) 

As in PLSC, the disjunctive data matrices ! and ! are, in general, pre-processed to have zero 

mean and unitary norm. Here, centered and normalized matrices are denoted !! and !!, and with 

!! and !! denoting the number of (original) variables (i.e., before disjunctive coding) for ! and 

! respectively, matrices !! and !! are computed as

!! = !!– (!(!!!!×!!!! ))!×!(!!!!
!
!)!! (4.15) 
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and 

!! = !!– (!(!!!!×!!!! ))!×!(!!!!
!
!)!!. (4.16) 

From here we compute !! as: 

!! = !!!!!!. (4.17) 

Then we decompose !! with the GSVD as 

!! = !!"!!with!!!!!! = ! = !!!!!!. (4.18) 

Similarly to PLSC, the latent variables are computed as weighted projections on the left and right 

singular vectors: 

!! = !!!!!!and!!!!!! = !!!!!, (4.19) 

where—by analogy with PLSC—!!!!and !!! are called saliences. PLSCA performs a 

maximization similar PLSC, namely that the first pair of latent variables have maximum 

covariance evaluated just as in Eq. 4.12, except under the constraints that u and v each have unit 

!!!-norm and !!-norm, respectively: 

!!!!!!! = 1 = !!!!!!!!.! (4.20) 

Just like with PLSC, after the first pair of latent variables has been extracted, subsequent 

pairs are extracted under the additional condition that unpaired sets of latent variables are 

orthogonal. The coefficients of the successive linear transformations (stored in matrices 

!!!and!!!) are obtained from the GSVD of !!: 

!!!!! = !!!!!!!!!!!!! = !!!!!!!!!! = !!!!!!"!!!!! = !!.! (4.21) 
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When ! = 1, the covariance between !! and !! has the largest possible value, when ! = 2, the 

covariance between !! and !! has the largest possible value under the constraints that the second 

pair of latent variables is orthogonal to the first pair of latent variables, and therefore:  

diag{!!!!!} = !diag{!}. (4.22) 

4.3.2 Links to Correspondence Analysis 

PLSCA can be seen as a generalization of PLSC for two categorical data tables, but also 

as an extension of Correspondence Analysis (CA; Abdi & Williams, 2010a; Greenacre, 1984; 

Lebart et al., 1984). Correspondence analysis, in turn, is often presented as a generalization of 

PCA to be used for qualitative data. PCA decomposes the total variance of a quantitative data 

table, whereas CA—as a generalized PCA—decomposes the χ2 of a data table because this 

statistic is analogous to the variance of a contingency table. First, CA computes ! (a contingency 

table) as: 

! = !!!!. (4.23) 

Next, CA computes two matrices related to !, referred to in the χ2 framework as observed (!!) 

and expected (!!). The observed matrix is computed as 

!! = !!×!(!!!")!!, (4.24) 

and the computation of expected values of ! (under independence) comes from the marginal 

frequencies of ! (which are also the masses—and relative frequencies of the columns—of!! and 

!, see Eq. 4.13):  
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!! = !!!!!
!. (4.25) 

Next, just as when computing the χ2, we compute the deviations: 

!! = !! − !!, (4.26) 

a formula which is equivalent to Eq. 4.17 and, so, !! can be decomposed according to Eq. 4.18. 

In CA, the component scores for the rows and the columns of a matrix (the J and K elements 

of!!)!are!computed!as: 

!! = !!!!"!!and!!! = !!!!". (4.27) 

Like in CA and PCA, several additional indices can be computed from the component 

scores. These indices are called contributions, cosines, and squared distances. Each of the indices 

provide additional information on how variables, from each variable set (J and K variables) 

contribute to the structure of the components. For more information, see Lebart et al. (1984), 

Greenacre (1984), Abdi & Williams (2010a), and Beaton et al., 2014.  

Component scores for the I observations, of both ! and !, can be computed via 

supplementary projections. The component scores for observations of ! and !, are projected as 

supplementary elements by projecting them onto their respective singular vectors. Specifically, 

the first step computes ! observed and ! observed, (cf. Eq. 4.24):  

!! = !×(!!!")!!!and!!! = !×(!!!")!!, (4.28) 

then !!!and !! are projected as supplementary elements: 

!! = !!!!!!! = !!!!!!!!!! = !!!!!!, (4.29) 

!! = !!!!!!! = !!!!!!!!!! = !!!!!!. (4.30) 
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Finally, we compute the latent variables—which are proportional to the supplementary 

projections obtained by re-scaling the component scores (in Eqs. 4.29 and 4.30): 

!! = !! ×!!
!
!  and  !! = !! ×!!

!
!. (4.31) 

Equivalently, the latent variables could be directly computed as: 

!! = !!!!!!! = !!!!!!!!and !!! = !!!!!!! = !!!!!!. (4.32) 

So, in conclusion—as the name Partial Least Squares-Correspondence Analysis 

indicates—the computations and rationale of the analysis can be interpreted either as a 

generalization of PLSC or an extension of CA. Both perspectives provide a basis of how to 

extend PLS-CA into a regularized version of PLS-CA. 
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CHAPTER 5 

SMOOTHED PARTIAL LEAST SQUARES-CORRESPONDENCE ANALYSIS 

Regularization is a somewhat broad term in statistics, used as an umbrella term for almost 

any techniques that addresses ill-posed problems. Generally, regularization techniques aim to 

improve stability of results, prevent overfitting, or aid interpretation. Parts of this chapter are 

adapted from Beaton, Dunlop, ADNI, & Abdi (2016). Copyright © 2015 American 

Psychological Association. Reproduced with permission. The official citation that should be used 

in referencing this material is Beaton, D., Dunlop, J., Abdi, H., & Alzheimer’s Disease 

Neuroimaging Initiative. (2016). Partial least squares correspondence analysis: A framework to 

simultaneously analyze behavioral and genetic data. Psychological Methods, 21(4), 621-651. 

http://dx.doi.org/10.1037/met0000053. This article may not exactly replicate the authoritative 

document published in the APA journal. It is not the copy of record. No further reproduction or 

distribution is permitted without written permission from the American Psychological 

Association. 

In practice, many regularization approaches shrink values (e.g., β estimates, component 

scores or loadings) toward zero. These approaches are popular because shrinking adjusts for 

biases (e.g., overfitting). Because values shrink toward or become zero, regularization can also 

make interpretation of the results easier (by reducing the number of variables to consider). The 

two most well known and commonly used forms of regularization are ridge (a.k.a. Tikhonov) 

and the LASSO, which are different forms of regularization (see definitions and equations in 

Chapter 3 for more details). While ridge and LASSO share a number of features and theoretical 

principles they are different techniques: Ridge regularization shrinks values towards zero—but 
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does not guarantee a minimal set of null values—whereas the LASSO guarantees a minimal and 

unique set of non-null values via L1-norm (but the LASSO is iterative which is a substantial 

drawback for large data sets). 

Because PLS-CA is designed for large data sets, a parsimonious regularization procedure 

is more suited for this technique. Therefore, I use ridge (i.e., Tikhonov) regularization as the 

basis to extend PLS-CA into a regularized method. Three approaches can be used to incorporate 

ridge-like regularization in PLS-CA (especially for large genetics data sets): (1) regularized χ2 

for SNPs (Li et al., 2014), (2) regularized multiple correspondence analysis (Takane & Hwang, 

2006), and (3) sparse and functional (a.k.a. “two-way”) PCA (Allen, 2013). 

5.1 Ridge OLS, Correspondence Analysis, and reguarlized SVD approaches 

Recall (see Chapters 3 and 4) that CA generalizes PCA to nominal data and decomposes 

a data matrix under the assumptions of independence: essentially, CA is a χ2 version of PCA. 

Therefore we can use some basic principles of χ2 and ridge regularization to understand how to 

regularize CA and thus PLS-CA. For convenience, the OLS and ridge OLS equations (from 

Chapter 3) are recalled below: 

!!β̂ = (XTX)−1XTy  and (5.1) 

!!β̂
* = (XTX +λI)−1XTy . (5.2) 

Before moving on we should also further define a projection matrix with respect to OLS (beyond 

what is provided in Chapter 3) as the concept is revisited for SmooPLS-CA. In OLS we estimate 

!!ŷ = Xβ̂ .  If we expand this with respect to Eq. 5.1 we have !!ŷ = Xβ̂ = X(XTX)−1XTy.  For OLS, we
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project !y  onto the orthogonal subspace defined by !!P= X(X
TX)−1XT.  We refer to !P  as a

projection matrix, and thus!!ŷ is the estimate of !y with respect to !P : !!ŷ =Py.  For ridge OLS we

define !!P
* = X(XTX +λI)−1XT ,  as a ridge projection matrix (cf Eq. 5.2).

Equations 5.1 and 5.2 include an inverse term [e.g., the term  (XTX)–1] and so can 

interpreted as having a “numerator” and a “denominator” (i.e., the inverse). In Eqs. 5.1 and 5.2, 

the denominators would be, respectively: !!(X
TX)−1 and , wherein the term in Eq. 

5.2 inflates the diagonal of  (compared to that in Eq. 5.1). The inflation of the diagonal 

boosts the sample size and forces the numerator (predicted)— —to exist within a larger 

subspace of the denominator (predictors)— . The inflation is because of the (diagonalized) 

tuning parameter— . This procedure reduces bias and improves the estimate of b. Ridge 

regularization forces the “numerator” to fit into a smaller subspace (with respect to the 

“denominator”). When it comes to PCA-like methods (based on the SVD), the generalized SVD 

(GSVD) is particularly suited for ridge-like approaches. 

When CA is interpreted in the standard “observed minus expected” χ2 framework, it starts 

with a contingency table ! and requires two matrices related to ! that are called the observed 

(!!) and expected (!!) matrices. The observed matrix is computed as: 

!! = !!×!(!!!")!!, (5.3) 

which is just ! divided by the total of all its entries. The computation of expected values of ! 

(under independence) comes from the relative marginal frequencies (row sums divided by total 

sum; column sums divided by total sum) of !:  

!!(X
TX +λI)−1 !λI

!!XTX

!!X
Ty

!!XTX

!λI
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 !! = !!!!!
! . (5.4) 

From the marginal probabilities, we also compute weight matrices: the inverse of these 

frequencies (masses) are stored in diagonal matrices:  

 !! = diag{!!}!!!!and!!!! = diag{!!}!! . (5.5) 

Next, just as when computing χ2, we compute the deviation of observed from expected: 

 !! = !! − !!, (5.6) 

For CA, we then decompose !! with the GSVD (SVD; see also Chapter 4) as 

 !! = !!"!!with!!!!!! = ! = !!!!!!. (5.7) 

The GSVD can be presented with the convenient “triplet notation” that integrates (1) data to be 

analyzed, (2) column constraints, and (3) row constraints as (for CA): .  

Here CA (through the GSVD) is closely linked to both χ2 and the OLS through the 

“numerator” and “denominator” analogy: Eq. 5.6 is equivalent to the numerator of χ2 whereas the 

weight matrices in Eq. 5.5 are equivalent to the denominator  (see Chapters 3 and 4). CA is a 

multivariate χ2 in that the deviations from independence matrix (Eq. 5.6) is the numerator and the 

observed value matrix is the denominator (Eq. 5.5). Furthermore, the numerator-denominator 

analogy suggests a regularization strategy for CA: regularize the weights in Eq. 5.5 because this 

forces the deviations (Eq. 5.6) into a larger subspace as if the sample size was larger. 

This chapter is outlined as follows. First, I present an alternate formulation of MCA, 

followed by an established form of regularized MCA (Takane & Hwang, 2006). Next, I present 

the relationship between sparse and functional (“two-way”) PCA (SFPCA; Allen, 2013) and the 

GSVD. With both RMCA and SFPCA, I propose an approach to regularize PLS-CA called 

“smoothed” (terminology used in Allen, 2013) PLS-CA (SmooPLS-CA, pronounced “Smooples-

!!!GSVD(ZR ,!WK ,!WJ )



95 

C-A”). Finally, I discuss the regularized χ2 approach of Li et al., (2014) and suggest a slightly

different—and more computationally efficient version of SmooPLS-CA. 

5.1.1 Regularized Multiple Correspondence Analysis 

Currently, there exists a particular form of regularized CA that respects the group-

structured nature of the variables (i.e., disjunctive tables): regularized multiple correspondence 

analysis (MCA; Takane & Hwang, 2006). In this section, I recreate the formulation of Takane 

and Hwang (2006), but within the notation and framework of PLS-CA, as established in Chapter 

4 (and in Beaton, Dunlop et al., 2016, and Beaton, Kriegsman, et al., 2016) in order to develop 

the RPLSCA framework. In multiple correspondence analysis (MCA) the data are first coded in 

a disjunctive format (see Table 5.1) and then analyzed with CA. The disjunctive form of a 

categorical table creates a block structure for the variables (columns) so that  can written as 

with each being a disjunctive matrix, that represents the 

presence (i.e., “1”) or absence (i.e., “0”) of each level for each item (variable).  MCA can also be 

reformulated differently from CA (as in Eqs. 5.3-5.7) as a version of centered, non-scaled, and 

weighted PCA—via the GSVD (see Secton 4.2)—of the matrix as follows.  

Call the centered version of . The MCA of would be: 

(5.8) 

where is a block diagonal matrix wherein ; or more simply, a diagonal matrix of 

the column sums of . This particular formulation of MCA in triplet notation is: 

.

!X

!!!
X = X1 X2 ... Xd XD

⎡
⎣

⎤
⎦ !!Xd

!X

!Z !X !X

!!!ZXWJ
−1 =UΔVT !with!UTIU= I = VTWJV

!!WJ !!!WJ ,d = Xd
TXd

!X

!!!GSVD(ZXWJ
−1 ,!WJ ,!I)
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Table  5.1 

Nominal and disjunctive formats of SNP data. 

 SNP1  SNP2 
Nominal        
    Subject 1 Aa  Aa 

    Subject 2 aa  Aa 

    Subject i Aa  aa 

    Subject I AA  AA 
 

 SNP1  SNP2 
 AA Aa aa  AA Aa aa 
Disjunctive        
    Subject 1 0 1 0  0 1 0 

    Subject 2 0 0 1  0 1 0 

    Subject i 0 1 0  0 0 1 

    Subject I 1 0 0  1 0 0 

Note.    Example of nominal, and disjunctive coding of illustrative SNPs referred to as SNP 1 and 

SNP 2. Here, both illustrative SNPs are presented generally where ‘A’ is the major allele and ‘a’ 

the minor allele. The major homozygote, heterozygote, and minor homozygote are denoted ‘AA’, 

‘Aa’, and ‘aa’, respectively. 

 
 

Though the equations here are different from the previously established CA approaches in this 

dissertation, this formulation provides an identical result within a constant scaling factor. With 

this particular formulation of MCA, the component scores are simpler to compute: 

   
and  

(5.9) 

  
.  

 
(5.10) 

 

!!FJ = VΔ

!!FI =UΔ
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MCA maximizes the variance (called inertia) of component scores—see Eqs. 5.9-10: 

  
!!!
argmax

f J

f J
TWJf J =δ

2 = argmax
fI

fI
TIfI ,     (5.11) 

under the following constraints applied to the left and right singular vectors: 

    (5.12) 

where . Rewriting Eq. 5.11 and 5.12 indicated that MCA optimizes  

    (5.13) 

where is the diagonal matrix of the eigenvalues (variance; see also the SVD procedure (cf. Eq. 

5.8). 

How do we regularize MCA? Recall that  inflates the diagonal of a predictor 

subspace—a procedure equivalent to increasing the sample size. In MCA, the sample size is 

directly reflected in  (the sum of each is the sample size).  

In 2006, Takane and Hwang formally defined a regularization procedure for MCA 

(“regularized MCA”; RMCA). RMCA is defined in a fashion similar to regularized OLS, where, 

initially, a regularization of  is defined as: 

 (5.14) 

where is the regularization parameter, and is a block-diagonal projection matrix. The block-

diagonal matrix is used here because has a block structure where within each , the presence 

of a variable for an individual is exclusive within the block, but not exclusive across the blocks. 

The matrix is defined per block as . However, this procedure can be 

!!!vl
TWJvl =1=ulTIul ,!and!vlTWJvl ' =0=ulTIul ' ,

!!l ≠ l '

!!!FJ
TWJFJ = ΔVTWJVΔ = ΔIΔ = Δ2 = ΔIΔ = ΔUTIUΔ = FI

TIFI ,

!Δ2

!λI

!!WJ !!!WJ ,d

!!WJ

!!!W(λ)J !=!WJ !+λPJ

λ
!!PJ

!X !!Xd

!!PJ !!!PJ ,d = Xd
T(XdXd

T)−1Xd
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simplified by using the centered matrix, where which is a standard 

projection matrix.  

Because there is a defined regularization on the columns, there is also a required 

regularization on the rows. In this particular formulation of MCA (see Eq. 5.8 and its respective 

triplet), the identity matrix tis the constraint applied to the rows. The regularized row constraints 

is formulated as: 

(5.15) 

where  is the Moore-Penrose inverse of . This regularization scheme corresponds to 

the analysis of the triplet:  The optimization of RMCA is similar to

MCA; namely, RMCA maximizes 

!!!
argmax

f J

f J
TW(λ)J f J =δ 2 = argmax

fI

fI
TΞ(λ)fI ,  (5.16) 

under the constraints that the component are normalized and orthogonal to each other: 

(5.17) 

where . Equivalently RMCA optimizes 

(5.18) 

Finally, Takane and Hwang (2006) propose that the regularization procedure can be further 

generalized (to incorporate, e.g., “degrees smoothness”) to allow for any block-diagonal matrix

, with the same block structure as , where Eqs. 5.14 and 5.15 would be rewritten as: 

(5.19) 

!!Z, !!!PJ = ZX
T(ZXZXT )−1ZX ,

!I

!!Ξ(λ)!=!I!+λ(ZXZX
T )+

!!(XX
T)+ !!XXT

!!!GSVD(ZWJ
−1 ,W(λ)J ,Ξ(λ)).

!!!vl
TW(λ)J vl =1=ulTΞ(λ)ul ,!and!vlTW(λ)J vl ' =0=ulTΞ(λ)ul ' ,

!!l ≠ l '

!!!FJ
TW(λ)JFJ = ΔVTW(λ)JVΔ = ΔIΔ = Δ2 = ΔIΔ = ΔUTΞ(λ)UΔ = FI

TΞ(λ)FI .

!B !X

!!!W(λ)J !=!WJ !+λB
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and
 

 

. 
(5.20) 

When  is 0, we have standard MCA. The effect of an increased can be seen in Figure 5.1; the 

first effects of note are that, as increases, the component scores for column and row scores 

smooth and begin to shrink toward 0 (Fig. 5.1a-b). Furthermore, the inertia (total variance) 

shrinks (Fig. 5.1c), and in most (but not all) cases the singular values shrink as well (Fig. 5.1d), 

where eventually results approach sphericity (i.e., approximately equal singular values). 

5.1.2 Sparse Functional Principal Components Analysis 

Currently, there exists a technique for PCA that allows for regularization—in the form of 

sparsification—and “smoothing” applied to both the rows and columns of a matrix. This 

technique is called sparse functional (a.k.a., “two-way”) PCA (Allen, 2013). SFPCA is a broadly 

defined method that encompasses a variety of regularization and smoothness approaches. Let us 

assume a Rank 1 problem (i.e., a single source of variance via e.g., PCA), where we have only 

one pair of (left and right) singular vectors and one singular value. Given a matrix,  (whose 

columns are centered and normalized), SFPCA maximizes: 

    (5.21) 

under the constraints that: 

    (5.22) 

The sparsity, regularization, and smoothness parameters of SFPCA are as follows. First, 

penalties (sparsity) applied to the singular vectors are defined by their respective , and the 

!!Ξ(λ)!=!I!+λ(ZXB
+ZX

T )+

λ λ

λ

!X

!!!
argmax!

u ,v
uTXv−αuPu(u)−α vPv(v),

!!!v
T(I+λ JWJ )v ≤1!and!uT(I+λIWI )u ≤1.

!!P*(*)
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regularization of the penalization is controlled by . Next, smoothness of the structure is

defined by respective their , and regularization of smoothness is controlled by . Allen

(2013) suggests that could be “second or fourth differences” matrices to control for the L2 

smoothness, but other smoothness constraints could be used. The inequality in the smoothness 

constraints (Eq. 5.22) does not require orthogonality (as per usual with the SVD) in Rank > 1 

problems because the penalization procedure corresponds to a non-linear problem. 

For the purposes of my proposed method—which is a regularization scheme a là Takane 

and Hwang (2006), for PLSCA—we can ignore part of Allen (2013)’s proposed approach; 

specifically, we are not concerned with the part of Eq. 5.21 that applies convex penalties and 

regularization of those penalties. Therefore, Eq. 5.21 can be rewritten (for our purposes) simply 

as a maximization that we can achieve through the plain singular value 

decompositions. Let us also define  just as in Eq. 5.14 and 5.15 and 

reminiscent of the ridge OLS in Eq. 5.2. Furthermore, if we require orthogonality and no longer 

assume a Rank 1 problem, Eq. 5.22 changes specifically to:  

(5.23) 

where, no longer under the assumption of a Rank 1 problem where , 

  (5.24)

Therefore, we can present a regularized “L2-ball smoothed two-way” (Eqs. 5.23–24) PCA 

with the following triplet notation:  Thus, we can think of RMCA as

an “L2-ball smoothed MCA”, where the constraints are defined under a χ2 metric. There is a final 

!α *

!!W* !λ*

!!W*

!!
argmax!

u ,v
uTXv;

!!W*(λ* )= I+λ*W* ,

!!!vl
TW(λ J )J vl =1!and!ulTW(λI )Iul =1

!!l ≠ l '

!!!vl
TW(λ J )J vl ' =0!and!ulTW(λI )Iul ' =0.

!!!GSVD(X ,W(λ J )J ,W(λI )I ).
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feature to present that, while not discussed by Allen (2013), can be incorporated into “L2-ball 

smoothed two-way” by way of RMCA. Takane and Hwang (2006)’s RMCA provides an 

approach to handle group or structured regularization; that is when distinct items (columns or 

rows) of a matrix should be grouped together during the regularization process. This is a 

requirement in MCA and RMCA by Takane and Hwang (2006), as multiple columns belong to a 

single variable (see Table 5.1). However, the same principle could be applied to any type of 

data—for PCA, MCA, or any related technique—where some a priori structure exists for the 

rows and/or columns. This broader group-regularization procedure can be performed with a 

block-diagonal matrix, as in Eq. 5.19 and incorporated into the smoothing matrices. 

5.2 How to regularize PLS-CA 

Now that we have established two regularized approaches to single data tables—Takane 

and Hwang (2006)’s RMCA and Allen (2013)’s SFPCA—we can now extend these ideas to the 

analysis of two tables (e.g., PLS) with a particular focus on categorical and mixed data types via 

PLS-CA (see Chapter 4). 

5.2.1 PLSC and PLS-CA 

Let us revisit the formulations of PLSC and PLSCA. Recall that PLSC maximizes the 

common information between two data tables. The maximization criteria equations are presented 

in Chapter 4, section 3.1, though they are copied here for convenience. Maximization is the 

covariance between two (normalized) data tables,   

   (5.25) 

!!ZX !and!ZY :

!!ZR = ZX
TZY =UΔV

T ,
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where the latent variables are computed as: 

(5.26) 

(a) 

(b) 

Figure 5.1    Takane and Hwang (2006)’s Regularized Multiple Correspondence Analysis, with 

the Nishisato data as provided in their paper, with regularization effects from λ = 0 (black) to λ = 

100 (red). (a) and (b) show the effects of increased λ on the row and column component scores 

for Components 1 (horizontal) and 2 (vertical), respectively. The component scores are shown 

within the constraints of λ = 0 (black dots). Relatively, as λ increases, component scores smooth 

and approach zero. This effect can be further seen in (c) and (d). 

!!LX = ZXU!and!LY = ZYV.
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(c) (d) 

 

Figure 5.1 cont’d Takane and Hwang (2006)’s Regularized Multiple Correspondence 

Analysis, with the Nishisato data as provided in their paper, with regularization effects from λ = 

0 (black) to λ = 100 (red). In (c), the effects of λ on the total variance (a.k.a., “inertia”) of the 

analyses are shown. As λ increases, total variance decreases. Finally, (d) the singular values (for 

the first 5 components) show that, generally, the first sources of variance (e.g., the first and 

second component) decrease rapidly in explained variance. As λ becomes large, the space 

becomes spherical (i.e., components explain approximately equal variance, as seen by the 

flattening of the scree plot). 

 

 

The goal of PLSC is to maximize the relationship between these latent variables, 

   (5.27) 

under the constraints of unit norm per singular vector, 

   (5.28) 
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and the additional orthogonality constraint between pairs of latent variables (and singular 

vectors) 

 !!,!! !!,!! = 0!when!! ≠ !′, (5.29) 

so that the pairs of latent variables provide maximal variance, conditional to the orthogonality to 

the subsequent pairs (i.e., via the SVD): 

 !!!!! = !!!!!!!!! = !!!!!! = !!!!"!!! = !!. (5.30) 

 

When ! = 1, the covariance between !! and !! has the largest possible value, when ! = 2, the 

covariance between !! and !! has the largest possible value under the constraints that the second 

pair of latent variables are orthogonal (as defined by Eq. 5.29) to the first pair of latent variables 

and so on for higher order latent variables. 

While standard, mixed-data, and the numerous variants of PLSCA have been formally 

defined in Chapter 4 (see also, Beaton et al., 2013, Beaton, Dunlop, et al., 2016, and Beaton, 

Kriegsman, et al., 2016), we need to define an alternative formulation of PLSCA that closely 

resembles RMCA, in order to extend PLSCA to Smoothed PLS-CA (“SmooPLS-CA”). We start 

in a fashion similar to Takane and Hwang (2006), with disjunctive matrices,  that have 

been centered  Next, we compute the column sums of  and then put these 

column sums into two diagonal matrices denoted (respectively)  Next, we compute

where we have PLS-CA as the analysis of the triplet:  

Like RMCA when compared to MCA, this formulation of PLSCA differs from PLSCA as 

presented in Chapter 4 by constant scaling factors. Here, the latent variables are computed as: 

!!X !and!Y ,

!!ZX !and!ZY . !!X !and!Y ,

!!WX !and!WY .

!!ZR = ZX
TZY , !!GSVD(WX

−1ZRWY
−1 ,!WY ,!WX ).
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   (5.31) 

The PLSC-style maximization here is the same as in both PLSC and PLSCA as presented in this 

chapter, and in Chapter 4, but aligns more closely with the reformulation based on RMCA (to 

match the more generalized maximization of SFPCA). First, we want to maximize the 

covariance between the latent variables, a problem stated as with the 

constraints that  and thus this problem is equivalent to (as SFPCA) solving:
 

 For PLS-CA, we add the orthogonality constraints expressed by, 

 and  where  Thus, this last problem is 

equivalent to 

   (5.32) 

where, per usual with the GSVD, the orthogonality are 

   (5.33) 

An alternative maximization can be presented as a CA or an MCA variance maximization 

problem, similar to Eqs. 5.11-5.13: 

   (5.34) 

5.2.2 Smoothed PLS-CA (“SmooPLS-CA”) 

 The goal of SmooPLS-CA is to extend PLS-CA into a two-way regularization via 

smoothness—like Allen (2013)—but for categorical data (though, PLS-CA can easily 

accommodate mixed data types)—like Takane and Hwang (2006). Therefore, to adhere to the 

!!LX = ZXU!and!LY = ZYV.!

!!argmax!cov(lX
TlY ),

!!lX
TlY =u

TZX
TZYv ,

!!
argmax!

u ,v
uTZRv.

!!!ul
TWXul =1= vlTWYvl !!!ul

TWXul ' =0= vlTWYvl ' , !!l ≠ l '.

!!LX
T LY =U

TZX
TZYV =UTZRV = Δ ,

!!U
TWXU= I = VTWYV.

!!!FJ
TWXFJ = Δ2 = FK

TWYFK .
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principles of PLS-CA and RMCA, the maximization problem is , under the 

(orthogonality) constraints that and also with the constraints imposed by the structured 

(i.e., disjunctive) nature of the data:
 

 First define the regularized 

(column-wise) weight matrices for  (respectively) : 

 (5.35) 

where !!PX = ZX
T(ZXZXT )−1ZX , !!PY = ZY

T(ZYZYT )−1ZY , and where!!W*  are diagonal matrices with the 

column sums of their respective disjunctive matrix. Next, the row regularization matrices for 

, are (respectively) defined as: 

 (5.36) 

Recall that the goal of regularization—and in the context of “smoothing”—we want to bring 

values closer to 0, while minimizing the noise, and thus the variance (see the Figure 5.1 for 

RMCA as a baseline of how regularization should work). The same goals with PLS-CA is 

obtained following Eq. 5.36, that describes row (i.e., observation) regularized versions of 

: 

 (5.37) 

When ,  and which would be the usual form of PLS-CA. 

Next, the cross-product matrix is computed as:  

 (5.38) 

!!argmax!cov(lX
TlY )

!!LX
T LY = Δ ,

!!!
X = X1 X2 ... Xd XD

⎡
⎣

⎤
⎦.

!!ZX !and!ZY

!!W(λX )X !=!WX+λXPX !and!W(λY )Y !=!WY+λYPY ,

!!ZX !and!ZY

!!Ξ(λX )X !=!I!+λX(ZXZX
T )+ !and!Ξ(λY )Y !=!I!+λY(ZYZYT )+ .

!!ZX !and!ZY

!!ΩX =Ξ(λX )X1/2ZX !!and!!ΩY =Ξ(λY )Y1/2ZY .

!λ* =0 !!W(λ* )* =W* , !!Ξ(λ* )* = I, !!Ω* = Z* ,

!!ΩR =ΩX
TΩY
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and so, SmooPLS-CA is equivalent to the analysis of  the triplet 

!!GSVD(W(λX )X
−1ΩRW(λY )Y−1 ,W(λY )Y ,W(λX )X ) .

What does SmooPLS-CA maximize? 

Like plain PLS-CA, SmooPLS-CA maximizes the covariance between latent variables. In 

SmooPLS-CA, the latent variables are computed as in PLS-CA: 

(5.39) 

and so the maximization problem corresponds to

. 

under the (orthogonality) constrains imposed on the columns: 

and  where 

Thus 

(5.40) 

with 

(5.41) 

Finally, just as in PLS-CA, an alternative maximization can be presented as either a smoothed 

(regularized) CA or MCA problem, where the eigenvalues give the inertia of the component 

scores: 

(5.42) 

!!LX =ΩXU!and!LY =ΩYV.!

!!
argmaxcov(lXTlY )= argmax!

u ,v
uTΩX

TΩYv = argmax!
u ,v

uTΩRv

!!!ul
TW(λX )Xul =1= vlTW(λY )Y vl

!!!ul
TW(λX )Xul ' =0= vlTW(λY )Y vl ' , !!l ≠ l '.

!!LX
T LY =U

TΩX
TΩYV =UTΩRV = Δ ,

!!U
TW(λX )XU= I = VTW(λY )YV.

!!!FJ
TW(λX )XFJ = Δ2 = FK

TW(λY )YFK .
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5.3 Examples of SmooPLS-CA 

In this section, I illustrate SmooPLS-CA with data from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI). This provides a basis for comparing SmooPLS-CA and PLS-

CA (defined in Beaton, Dunlop, et al. 2016), which used the same ADNI data. Following the 

illustration of how SmooPLS-CA works, I discuss the choices of as applied to both sides of

the analysis (selection of optimal is in the following section). 

5.3.1 SmooPLS-CA in action 

This example illustrates the behavior(s) of SmooPLS-CA as changes, with reference to

(which is the plain form of PLS-CA). This base example includes only the form of 

the single -value approach is the recommended baseline form of SmooPLS-CA in 

part because the ability to find two optimal ’s is not only computationally expensive, but may 

not be tractable. Therefore, the recommended baseline form of SmooPLS-CA makes the 

following changes to Eqs. 5.35-5.37: 

(5.43) 

(5.44) 

(5.45) 

Here, I present two examples of SmooPLS-CA with the ADNI data used previously in 

Beaton, Dunlop, et al., (2016): 1) standard SmooPLS-CA (behavioral data + genetic data) and 2) 

discriminant SmooPLS-CA (group data + genetic data). Following these two illustrations, I 

!λ*

!λ*

λ

!λ =0

!!λX = λY = λ; λ

λ

!!W(λ)X !=!WX+λPX !and!W(λ)Y !=!WY+λPY ,

!!Ξ(λ)X !=!I!+λ(ZXZX
T )+ !and!Ξ(λ)Y !=!I!+λ(ZYZYT )+ , !and

!!ΩX =Ξ(λ)X1/2ZX !!and!!ΩY =Ξ(λ)Y1/2ZY .
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provide an example of what happens when we only want to regularize one data set (e.g., 

genetics), when the non-regularized dataset has some sort of a priori structure that we do not 

want to shrink or alter. This subsection and its illustrations serve as a mechanistic description of 

SmooPLS-CA; and illustrate how to decide on the values of λ, which items are significant, which 

effects are reliable (how to interpret the results will be discussed in section 5.4 and onward). 

5.3.1.1 Standard SmooPLS-CA 

This example uses PLS-CA to analyze the relationships between behavioral data (the 

mini-mental state exam, clinical dementia rating, and geriatric depression scales) and genetic 

data (SNPs recoded as their genotypes) in order to identify which genotypes are most associated 

with particular types of behaviors. In PLS-CA, very rare items can influence the structure of the 

data by stretching the components (i.e., increasing the variance). While rare items can be useful 

(especially in genetics), they may also bias the overall structure and to regularization can palliate 

this problem. Figure 5.2 illustrates the behavior of SmooPLS-CA when the regularization 

parameter varies as: λX = λY = λ = [0, 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 75, 100], where λ = 0 is 

equivalent to plain PLS-CA, and as λ increases, (1) variance in the data decreases, and (2) 

smoothing becomes more evident as items move toward zero. While an increase of λ will smooth 

the structure, and brings far away (i.e., rare) items closer to zero, stable items are less susceptible 

to this effect. 

The effects of λ on the component scores can be seen in Figures 5.2a (rows, behavior) 

and 5.2b (columns, genotypes). As λ increases, the component scores of the items approach zero. 

In the behavioral data, there are some rare and unstable items that rapidly approach zero (top left 

in Figure 5.2a), whereas frequent, but stable, items barely move (upper right and lower left 
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quadrants, near origin in Figure 5.2a). The same can be also be seen in the genetics data (Figure 

5.2b)—the data of interest in this example. We want to smooth out instability in the genetics data 

in order to find the most reliable markers associated with behaviors (reliability is discussed in 

more detail in Section 5.4). The effects of regularization can also be observed with respect to the 

reduction of the overall variance as well the variance per component and both decrease as λ 

increases. Though in this example, as seen in Figure 5.2d, the proportion of variance per 

component retains its shape (unlike in RMCA, see Figure 5.1). Finally, the effect of increased λ 

can be seen in the latent variables, where the fit lines (Figures 5.2e and f), and correlation 

between latent variables (Table 5.2) increases as λ increases, thus showing more estimated 

similarity between latent variables. 

(a) (b) 

 
Figure 5.2    SmooPLS-CA data from Beaton et al., (2016) with λ = 0-100 (black to red). (a; b) 

show the effects of increased λ on the behavioral and genetic component scores for Components 

1 (horizontal) and 2 (vertical). Component scores are shown as λ = 0 (black dots). As λ increases, 

component scores smooth and approach zero. This effect can be further seen in (c) and (d). 
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(c) (d) 

(e) (f) 

Figure 5.2 cont’d    Smoothed Partial Least Squares-Correspondence Analysis (SmooPLS-CA) 

with the Behavior (BEH) + Genetic (SNPs) ADNI subset data from Beaton et al., (2016), with 

regularization effects from λ = 0 (black) to λ = 100 (red). In (c), the effects of λ on the total 

variance (a.k.a., “inertia”) of the analyses are shown. As λ increases, total variance decreases. 

Finally, (d) the singular values (for the first 5 components) show a rapid decrease. Though, 
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showing a different pattern than in RMCA, as λ becomes large, the components retain their 

shape, as opposed to becoming spherical. In both (e) and (f), the latent variables are shown 

(respectively) for LV1 and LV2. The lines show fit lines and as λ increases, so does the slope, a 

configuration which illustrates that increased λ makes for stronger relationships between the 

latent variables. Correlation values between LVs are shown in Table 5.2. 

 
Table  5.2 

Latent variable correlations for increased λ. 

 

BEH+GENETICS  GRP+GENETICS 

λ LV1 LV2  LV1 LV2 

0 0.4644 0.3974  0.4688 0.3828 

1 0.4660 0.3999  0.4700 0.3854 

2 0.4675 0.4024  0.4711 0.3878 

3 0.4688 0.4049  0.4722 0.3901 

4 0.4701 0.4073  0.4733 0.3923 

5 0.4714 0.4096  0.4743 0.3944 

10 0.4771 0.4200  0.4788 0.4040 

15 0.4821 0.4287  0.4829 0.4126 

20 0.4866 0.4362  0.4866 0.4203 

25 0.4908 0.4427  0.4901 0.4275 

50 0.5085 0.4673  0.5053 0.4569 

75 0.5229 0.4855  0.5180 0.4795 

100 0.5354 0.5005  0.5291 0.4977 

Note.    Correlation values between latent variables (from each data set) for both the behavioral + 

genetic data analysis (see Fig. 5.2) and group + genetic data analysis (see Fig. 5.3). As λ 

increases, the correlations between the LVs become stronger. 



 

113 

5.3.1.2 Discriminant SmooPLS-CA 

Here PLS-CA is used to analyze the relationship between group association and genetic 

data (SNPs recoded as their genotypes) in order to identify the genotypes most associated with 

each group (i.e., a discriminant analysis; classification). In this example, there are three groups 

(control, mild cognitive impairment, and Alzheimer’s disease); because there are three groups 

there are only two components. Again, we want to smooth out possible instability in the data, this 

time with a particular emphasis on the genetic data, because group association is consider a 

stable—and often static—variable. 

The effects of λ on the component scores are shown in Figures 5.3a (rows, groups) and 

5.3b (columns, genotypes). As λ increases column items approach zero, a pattern that suggests 

that the group variables—which move very little from their initial positions—are already quite 

stable. Like with the prior example (behavior + genetics), the inertia decreases as λ increases 

(Figure 5.3c), but that only the variance for the first component decreases as λ increases; the 

variance of the second component actually increases. This is because, like in the RMCA 

example, increased λ causes the space to become more spherical. Finally, it seems  that the 

regularization procedure does not make much of a difference from baseline, with respect to the 

latent variables (Figures 5.3e and f); though there is a reduction in noise, the fit does not improve 

(Figures 5.3e and f), but the similarity between latent variables does increase (Table 5.2). 

5.3.1.3 Asymmetric regularization for SmooPLS-CA 

The setup and results of the prior analyses invite a particular question: What if we do not 

want to shrink values of an already strong, and well-defined structure (e.g., behavioral data, 

group association)? Can we use the inherently strong structure in one set, while regularizing the 

other set (i.e., genetics)? 
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Both prior examples illustrate this type of problem. Let Y denote the genetics data and X 

denote the other set (i.e., behavior or group), if we re-do these analyses we have a fixed λ for X 

(λ = 0), but allow λ to increase for Y. So, what are the consequences of this asymmetric 

regularization? Figure 5.4 shows the effects of asymmetric regularization for the two prior 

analyses. The top of Figure 5.4 (a and b) shows the results when λ = 0 (for data sets a: behavior 

and b: groups). Both results show little-to-no movement of most items, in fact some items 

actually move further away from zero as λ increases for the genetics data set. Figures 5.4c and d 

show the effects of increased λ on the regularized set (i.e., genetics); the effects are similar to, 

but less dramatic than, those in the symmetric regularization analyses (Figures 5.2 and 5.3). 

Finally, the usual behavior of decreasing overall variance can be observed in Figures 5.4e and f, 

but again, the changes are less dramatic than the symmetric regularization analyses. 

Thus, in asymmetric SmooPLS-CA we see the non-regularized data stay relatively in the 

same position as standard PLS-CA, while the regularized data continue to shrink towards zero. 

This particular approach can be extremely useful when we do not want to shrink the variance in a 

known, well-defined data set, but we do want to minimize noise in a data set with little-to-no 

known structure. 
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(e) (f) 

 

Figure 5.3 Smoothed Partial Least Squares-Correspondence Analysis (SmooPLS-CA) with 

the Group (GRP) + Genetic (SNPs) ADNI subset data from Beaton et al., (2016), with 

regularization effects from λ = 0 (black) to λ = 100 (red). (a) and (b) show the effects of 

increased λ on the behavioral data (row) and genetic data (column) component scores for 

Components 1 (horiztontal) and 2 (vertical), respectively; though (a) does show very little 

change by comparison to 5.2(a). The component scores are shown within the constraints that λ = 

0 (black dots). Relatively, as λ increases, component scores smooth and approach zero. This 

effect can be further seen in (c) and (d). In (c), the effects of λ on the total variance (a.k.a., 

“inertia”) of the analyses are shown. As λ increases, the total variance decreases. Finally, (d) the 

singular values (there exists only 2 components) shows that only the first singular value always 

decreases, whereas the second eventually increases by comparison to λ = 0. In both (e) and (f), 

the latent variables are shown for LV1 and LV2, respectively. The lines show fit lines and as λ 

increases, the slope changes very little; the lack of change shows that there is little-to-no effect 

on the overall structure. However, as λ increases, the correlation between latent variables does 

indeed increase (see Table 5.2). 
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(e) (f) 

Figure 5.4 Smoothed Partial Least Squares-Correspondence Analysis (SmooPLS-CA) with 

the row items (left: behavioral data, right: group data) set at λ = 0 (top row) for the ADNI subset 

data from Beaton et al., (2016). Regularization effects from λ = 0 (black) to λ = 100 (red) were 

applied to the column items (genotypes). Panels a-d show Components 1 (horizontal) and 2 

(vertical). Compare (a) and (b) against Figures 5.2a and 5.3a, respectively. Generally, row items 

(top) do not move when λ = 0, but some items do move closer to 0, while others actually move 

further away. Compare (c) and (d) to Figures 5.2b and 5.3b. Generally, items still move toward 

0, but as λ increases, the move towards 0 is less dramatic than in Figures 5.2b and 5.3b. Finally, 

compare Figures (e) and (f) to Figures 5.2(d) and 5.3(d). The same general trend of decreased 

variance (overall and per component) still exists with a single fixed λ, but like the column items 

(c and d), the decrease is less dramatic than with equal λs for both sides. Not shown: latent 

variables, though the effects are like those observed in (c)-(f). 
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5.4 An Alternative form of SmooPLS-CA 

SmooPLS-CA is essentially a combination of Takane and Hwang (2006)’s RMCA and 

(part of) Allen (2013)’s SFPCA; this makes SmooPLS-CA a smoothed PCA with orthogonal 

components (like Allen) under the χ2 assumptions of CA, with specific λ-regularized constraint 

matrices for the data matrices (like Takane & Hwang). However, as pointed out by Allen (2013) 

smoothing can be an expensive procedure, especially as data matrices become very large. 

Additionally, the λ-regularized constraint matrices—which are square, block-diagonal matrices; 

see for example Eq. 5.43—could pose a problem for both multiplication (computational time) 

and storage (extremely large memory footprint). In fact, with very large data sets—such as large-

scale genetic and genomic data sets—this approach can be extremely difficult and expensive, or 

even impossible to implement. Therefore, we need a regularization procedure (like the 

established one) that is practical and does not require excessive resources. An ideal alternative 

for a regularized PLS-CA should require no more memory or computational power than standard 

PLS-CA. Thus, in this section, I provide an alternative form of SmooPLS-CA that has the same 

memory and computational requirements as standard PLS-CA while adhering to the general 

purpose of ridge regularization: to inflate the space from which we estimate. Consequently, this 

alternative form of SmooPLS-CA can be seen as a generalization of many techniques, and thus 

provides the basis of a family of regularized procedures (i.e., Multidimensional Scaling, PCA, 

CA, MCA, standard PLSC, and PLS-CA). 
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5.4.1 SmooPLS-CA as a form of regularized CA 

PLS-CA can either be viewed as generalization of PLSC to categorical and mixed-data 

types, or as a special case of CA (cf.  Chapter 4an also Eqs. 5.3-5.7). If we consider PLS-CA a 

special case of CA then we make less assumptions than in PLS-CA: (1) we may not know about 

the structure of individual observations, and (2) we may not know of or have any particular 

structure of the variables. Therefore, in these cases, we assume a simple contingency table and 

the problem becomes: “How do we regularize CA as applied to simple contingency tables?” This 

approach is referred to as “truncated” SmooPLS-CA 

To address this question we have to return to the basis of ridge regularization in OLS: 

!!β̂ = (XTX)−1XTy !vs.!β̂ * = (XTX +λI)−1XTy ,  where inflates the diagonal of  so that the 

estimates are made within a larger subspace. As previously noted, this inflates the effect of the 

observations (an effect sometimes called the “phoney data” principle; Basilevsky, 2009; Draper, 

Smith, Draper, & Smith, 1998).  

Currently there is only one form of regularized (standard and simple) χ2 (by Li et al., 

2014). Li and colleagues simply added a small inflation parameter to the denominator of the χ2 

equation. Thus, with the purpose of ridge regularization, and the proposed regularized χ2 of Li et 

al., (2014), we can define a simpler approach to SmooPLS-CA that still adheres to the framework 

of Allen (2013), while still being reminiscent of Takane and Hwang (2006). Let us begin from 

the perspective of CA wherein we have the original data matrices to form a contingency table: 

!!ZR = ZX
TZY where !ZR is a double centered contingency table and !!ZX !and!ZY are column-wise 

!λI !!XTX
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centered 0/1 matrices (typically these would be disjunctive matrices like in Table 5.1). Next, 

define inflated weight matrices: 

 !!W(λ)X =WX +λI!and!W(λ)Y =WY +λI,  (5.46) 

where there is just a single λ for both sets of weights, as in Eq. 5.43. The GSVD triplet for this 

alternative form is GSVD(W(λ)X−1ZRW(λ)Y−1 ,W(λ)Y ,W(λ)X ) . This alternative form requires less 

memory and computational requirements than the original proposed SmooPLS-CA (see Section 

XX), but ignores the a priori structure of variables in the weight matrices. This particular 

reformulation is more in line with simple correspondence analysis (as applied to a contingency 

table) than MCA, RMCA, PLS-CA, or SmooPLS-CA and thus the optimization should be 

considered more in line with that of Eq. 5.42. However, through the magic of the GSVD, the 

PLSC-style optimization of !!LX = ZXU!and!LY = ZYV ,!where!LX
T LY = Δ still holds. 

5.4.2 Similarities and Differences Between Formulations 

Having two formulations of SmooPLS-CA (i.e., one based on RMCA and one based on 

simple CA) invite the questions: How do these two approaches differ? What is lost or gained by 

using either approach? In the following section, I show the differences and similarities between 

standard SmooPLS-CA and truncated SmooPLS-CA. First, the discriminant version is presented 

followed by the behavioral + genetics version. 
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5.4.2.1 Standard vs. Truncated Discriminant SmooPLS-CA 

Figure 5.5 illustrates symmetric regularization approach (i.e., λX = λY = λ = [0, 1, 2, 3, 4, 

5, 10, 15, 20, 25, 50, 75, 100]) for the standard vs. truncated forms of Discriminant SmooPLS-

CA. Figure 5.5a shows that the genotype component scores for standard and Fig. 5.5b shows the 

truncated version of SmooPLS-CA. The two versions differ in their trajectories toward zero, 

where the truncated version is approaches zero faster than the stnadard version as λ increases 

(see Figures 5.5a, b, c, and f). Furthermore the standard, as opposed to the truncated, can exhibit 

erratic movements (see rs7099713_C.aa in Fig. 5.5c) before convergence towards zero begins, 

where this effect results in part from the constraints imposed on regularization (i.e., 

rs7099713_C.aa must move conditionally on rs7099713_C.Aa and rs7099713_C.AA, which are 

near 0 anyways). However, the overall difference between standard and truncated component 

scores are not that drastic, as seen in Fig. 5.5d each fit line is for each level of λ-regularization. In 

general, the component scores differ very little between the two approaches. In fact the 

correlations between the genotype component scores, as well as the latent variables (individuals 

projected onto the genotypes) are highly correlated (r > .88), and relatively low correlation 

values appear only in late components with high λ. Finally, the truncated version actually 

approaches zero much faster than the standard version (Fig. 5.5e); an effect that could be inferred 

from Figures 5.5a and b. 

Though the truncated version makes fewer assumptions and thus applies fewer 

constraints on the analysis, for the discriminant version there are negligible qualitative 

differences in how the method behaves. 
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(e) (f) 

 

Figure 5.5 Genotype component scores for standard (a) vs. truncated (b) SmooPLS-CA. 

Panels a-c show Components 1 (horizontal) and 2 (vertical). Standard shows a less drastic 

descent of component scores toward zero. Occassional erractic movements are highlighted in (c), 

where 4 (extreme) genotypes were selected to show this effect; in particular, ‘rs7099713_C.aa’ 

shows that small values in standard regularization do not immediately converge towards zero, 

where as they do in the truncated version. Relationship between standard and truncated versions 

of λ levels, via fit lines, are shown in (d), where (e) shows the correlation values between the 

standard and trucnated genotype component scores, as well as the latent variables (i.e., scores for 

the individuals). Finally, (e) shows how the standard vs. truncated approaches impact the inertia 

(i.e., total variance). 
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5.4.2.2 Standard vs. Truncated SmooPLS-CA 

Figure 5.6 illustrates symmetric regularization approach (i.e., λX = λY = λ = [0, 1, 2, 3, 4, 

5, 10, 15, 20, 25, 50, 75, 100]) for the standard vs. truncated forms of SmooPLS-CA. Like the 

discriminant forms (see previous section), the truncated version approaches zero faster than the 

standard for genotype component scores (Fig 5.6a vs. b for standard vs. truncated), behavioral 

scores (Fig 5.6c vs. d for standard vs. truncated), and the inertia (Fig 5.6h). The fit lines between 

the the standard and truncated approaches show high similarity (Fig 5.6e and f). Trajectories can 

be erratic at first (Fig 5.6g), but as λ increase, and values approach zero there is a stabilization of 

this effect. Finally, the latent variables between the standard and truncated SmooPLS-CA—much 

like the discriminant form—show a high similarity (Fig 5.6i and j), where the only correlations 

to reflect deviance between the models are late components with high λ; in general, correlations 

remain very high (r > .8). 
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(i) (j) 

 

Figure 5.6 Genotype component scores for standard vs. truncated SmooPLS-CA. Panels a-d, 

and g show Components 1 (horizontal) and 2 (vertical). Standard shows a less drastic descent of 

component scores toward zero. Similar to Figure 5.5, except this example is the behavioral + 

genetic data. In panels (a-d) we can see the standard version of SmooPLS-CA (a, c) vs.  the 

truncated version of SmooPLS-CA (b, d). In both casees—like in Figure 5.5—the standard 

version is slower to approach zero with some erratic movements. The truncated version more 

directly approaches zero. Panels (e) and (f) show the latent variable fits between the two; 

standard and truncated are highly similar. Panels (g) shows the similarity and differences in 

particular genotypes (‘rs429358_C.aa’ and ‘rs7099713_C.aa’) between standard and truncated; 

as λ increases, most values rapidly approach zero and converge across techniques. Panel (h) 

shows the inertia decreases as λ increases. Finally, the component scores (genetics, behaviors) 

and latent variables (individuals for genetics and behaviors) are shown in panels (i) and (j). 

Similar to Figure 5.5, the smoothed and truncated versions of SmooPLS-CA are virtually 

identical and only deviate as: (1) λ becomes very large and (2) later (likely noise) components 

are used.  
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5.5 Selection of λ and inference in SmooPLS-CA 

PLSCA is a multivariate descriptive (i.e., fixed-effect) technique, but, it can be 

complemented by a variety of inference tests. These inference tests are usually computed from 

non-parametric resampling methods (a.k.a., cross-validation) such as permutation and bootstrap 

(see Beaton, Dunlop, et al., 2016). Resampling methods generate a large number (e.g., 

thousands) of new data sets which are then used to derive the distributions of various statistics. 

The observed statistics are then compared against their resampling based distributions to 

determine if the observed effects are “significant.”   

However, while SmooPLS-CA can also use the same inference approaches as PLS-CA, 

there is an additional problem: how to select the best λ. Generally, as seen in Figures 5.2-5.4, and 

Table 5.2, as λ increases, the results are easier to interpret. If this were tru, then we could simply 

use the largest possible value of λ (without compromising numerical precision). However, very 

high values of λ suffer from the same drawback as very low values of λ or when λ = 0: 

overfitting. 

Overfitting happens when a particular method models idiosyncrasies or peculiarities in a 

specific data set, likely capturing particular forms of noise specific to these data, and (artificially) 

increasing performance. Thus if a model is overfit, the conclusions obtained from the analysis of 

a sample do not generalize to the population. To palliate this problem,  data-driven approaches 

are used to identify—for the data set of interest—the “best” λ (i.e., the best compromise between 

good results for the data set and good generalization to the population).  
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The following sections first present two of resampling-based inference approaches we 

can use to assess the stability, predictability, and thus replicability of effects. Next, I describe 

how Takane and Hwang (2006) and Allen (2013) approach selection to regularization 

parameters, and finally I propose an alternative criteria to Allen (2013)’s and Takane and Hwang 

(2006)’s approaches that is better suited for this dissertation. 

5.5.1 Split-half 

 Split-half resampling (SHR) is a compromise between leave-one-out (LOO) and 

bootstrap resampling. In SHR a data set is randomly split into two, and the same analyses are 

performed on each split (Strother et al., 2002). Each split is then compared with one another, 

either by predicting one set from the other, or estimating which effects are reproducible between 

the splits. Split-half resampling has been used primarily in neuroimaging research to provide: (1) 

an optimization of parameters, and (2) an estimate of both the quality of prediction (e.g., of 

individuals to their respective groups) and reproducibility (e.g., of components) for SVD-based 

and other multivariate techniques (Churchill, Spring, Afshin-Pour, Dong, & Strother, 2015). 

SHR can be used in PLS-CA to estimate the reproducibility of effects from one split to the other, 

as well as—if there are a priori groups—prediction estimation from one split to the other. 

5.5.2 Bootstrap 

The bootstrap is a resampling with replacement technique (Efron & Tibshirani, 1993; 

Chernick, 2008). In PLSCA, observations are assumed to represent a population of interest. New 

samples are generated by resampling (in general the observations) with replacement from the 

original sample (i.e., the rows of both X and Y are resampled with the same resampling scheme). 
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The distribution of the statistics computed from bootstrap resampling is a maximum likelihood 

estimation of the distribution of the statistic of interest (for the population of the observations). In 

addition, the bootstrap can be stratified (a.k.a. “constrained”) to resample within a priori groups 

(e.g., marijuana, nicotine, control). The bootstrap is used to derive two different types of 

inferential statistics: bootstrap ratios and confidence intervals. 

5.5.2.1 Bootstrap Ratio Tests 

Bootstrap ratios (BSR) originated in the neuroimaging literature (McIntosh & Lobaugh, 

2004) but are related to other tests based on the bootstrap (see Hesterberg, 2011, for “interval-t”) 

or on asymptotic theory (see Lebart et al., 1984, for “test-value”). The BSR test is a t-like 

statistic computed by dividing the bootstrap computed mean of a measure by its bootstrap 

derived standard deviation. Just as for the usual t-statistic, a value of 2 would (roughly) 

correspond to significance level of α = .05 [i.e., P (|t| > 2) ≈ .05] and can be considered as a 

critical value for a single null-hypothesis test. Corrections for multiple comparisons (e.g., 

Bonferroni) can be implemented when performing a large number of tests simply by increasing 

the BSR threshold to correspond to a particular α value (e.g., P (|t| > 3) ≈ .0013 or P(|t| > 4) ≈ 

3.17 × 10–5). 

5.5.2.2 Confidence Intervals 

Confidence intervals are created from percentile cut-offs of the bootstrap distributions. 

Confidence intervals are generated for anything with component scores except observations 

(because the observations are the units for resampling). Confidence intervals can be created for 

each measure (just like the BSR) or around groups of participants (e.g., marijuana, nicotine, 

control). Confidence intervals can be displayed on component maps as peeled convex hulls 

(Greenacre, 2007) or as ellipsoids (Abdi et al., 2009). When the confidence intervals of two 
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measures or groups do not overlap, these measures or groups are significantly different at the 

chosen level (Abdi et al., 2009). 

5.5.3 Selection of λ 

Both Takane and Hwang (2006) and Allen (2013) note that components-based 

regularization procedures should “greedily extract” (Allen, 2013) or “presuppose[s] we already 

know” (Takane & Hwang, 2006) the number of components before we perform regularization. 

This assumption is made because we must, for each λ, run the analysis again—a procedure likely 

to be time consuming especially with large data sets. When the number of components is very 

large, the number of relevant components should be estimated from the baseline (non-

regularized) analysis. However, the selection of λ is a procedure agnostic to the number of 

components; it simply helps reduce computational cost if the number of components are 

preselected.   

Both Allen (2013) and Takane and Hwang (2006) provide recommendations on how to 

select λ. Allen (2013) describes a combined approach to estimate (all four) regularization 

parameters using both (1) a minimal estimate of degrees of freedom for sparse penalization 

(through computing the trace of u and v from a model), and (2) a BIC criterion for the estimate 

of both u and v (separately). Takane and Hwang (2006) suggest several possible approaches, but 

ultimately present a simple approach based on K-folds cross-validation, where the dataset is split 

into K sets and in turn the k-th set is left out and predicted from the larger set. Once all K sets 

have been estimated, they are aggregated into a single matrix; the λ that produces the minimal 

difference (i.e., trace) between RMCA on the full set and all RMCAs of the predicted K-sets, is 

regarded as the “optimal” λ. Selection procedures in both approaches aim to find the best λ, 
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while minimizing the risk of overfitting (by minimizing error variance). While both approaches 

aim very broadly to capture a best estimate of the population—instead of the sample—neither 

actually address how predictive (i.e., classification) or reproducible the results are. 

5.5.3.1 Split half 

With the various types of data sets and study designs we could analyze, we actually have 

many types of questions we would like to answer: (1) How predictive are the results? (2) How 

stable are the results? (3) How reproducible are the results? In fact, not all of these questions 

apply to all problems: (1) we only care about classification accuracy if we have some a priori 

groups, (2) we (may) only care about stability to find the best items, and (3) we almost always 

want to ensure that our results generalize to the population. Different resampling techniques help 

us answer these questions in different ways. For the purposes of this dissertation, I used split-half 

resampling to estimate the selection of λ. The motivation to use split-half resampling was 

because: (1) the number of components in all analyses are guaranteed to be very few (see next 

Chapter for study outlines), and (2) I want to maximize predictive utility of genotypes between a 

discovery and a validation sample. 

The SHR approach can be used in two ways: (1) estimates of predictability (i.e., 

classification between splits; K-fold CV where K = 2), and (2) reproducibility of model 

configuration (i.e., similarity between splits). However, for this dissertation only the first 

approach (prediction) is used. With SHR, we want to predict one split-half data set (e.g., SH2) 

from the solution of the other split-half (e.g., SH1). By doing so, we can get random effects 

estimates of classification. Because SHR is repeated many times, we can estimate intervals of the 

prediction accuracy. 
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Prediction estimates via SHR can be used in two ways with PLS techniques: (1) on a 

whole model (i.e., component scores across all the components), or (2) on a component-by-

component basis (i.e., the latent variables scores). Both approaches are feasible when there are 

only a few components. However, the second approach is only feasible if a relatively small 

number of components are extracted and tested; this second case fits the same criteria of 

“greedily extract[ing]” or “presuppose[ing]” the number of components. Though as components 

increase, the prediction accuracy should decrease as later components are typically—especially 

through regularization—comprised of noise. 
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CHAPTER 6 

APPLICATION OF SMOOPLS-CA TO SUBSTANCE USE DISORDERS 

In this chapter, I present and discuss the results from the application of standard and 

SmooPLS-CA to genetics data of substance use disorders (SUDs). Two data sets were used: a 

discovery set and an independent validation set. The data sets comprised a panel of single 

nucleotide polymorphisms (SNPs) based on a large set of “knowledge-informed” or “literature-

based” candidate-genes. Parts of this chapter are adapted Beaton, Filbey, & Abdi (2014). Beaton, 

D., Abdi, H., & Filbey, F. M. (2014) Unique aspects of impulsive traits in substance use and 

overeating: specific contributions of common assessments of impulsivity. The American journal 

of drug and alcohol abuse, 40(6), 463-475. http://dx.doi.org/10.3109/00952990.2014.937490 

reprinted by permission of Taylor & Francis LLC (http://www.tandfonline.com). 

The broad goal of this dissertation was to identify (discovery) and then verify (validation) 

possible genetic markers of SUDs. Yet, there exists methodological challenges behind this goal. 

One challege is knowing the best study configuration to identify genetics of SUDs: case-control, 

group-based, or trait-based analyses. Another challenge is that large scale genetics studies rarely 

reach a sufficient sample size. Therefore, we require analytical approaches to help boost power. 

The expecation in this dissertation was that SmooPLS-CA would outperform standard PLS-CA 

and find “better” genetic markers of SUDs.  

Because of these challenges (i.e., study configuration, sample size), there were three sets 

of results from the discovery sample: (1) a case-control (control vs. any SUD) analysis, (2) a 

multi-group (control vs. marijuana vs. marijuana+nicotine vs. nicotine groups) analysis, and (3) a 

trait-based (self-reported impulsivity) analysis. Each study configuration was repeated for 
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standard PLS-CA and each iteration of SmooPLS-CA. Each set of results was then tested for 

predictive accuracy in an external data set (SAGE), in the hopes to find a “winning” 

configuration that outperformed all others.  

The various study configurations, standard vs. regularized, and discovery to prediction 

pipeline was designed to specifically answer three questions: (1) How does regularization help 

find better markers? (2) Which configuration is best (e.g., case v. control or impulsivity)? and, if 

those worked out, (3) Which specific SNPs, and which associated genes contribute to the 

identified effects? 

The results were not as expected. It appeared as though no set of genetic markers 

identified in the archived data were predictive in the external data set. Prediction was also low 

when the analysis pipelines were flipped: SAGE was used for discovery, and the archived data 

then used for validation. The overall lack of prediction suggested a failure to find genetic 

markers of SUDs. However, upon closer inspection of the archived-as-discovery and the SAGE-

as-discovery analyses, I noticed that both discovery analyses identified many common effects. In 

other words, common markers of SUDs were identified across archived and external data sets 

through independent analyses. In the end, all of the analyses in this dissertation—when 

understood together—answered the three primary questions as: (1) Regularization did not help: 

standard PLS-CA either outperformed SmooPLS-CA or the differences were negligible, (2) case-

control (i.e., CON vs. SUD) analyses provided the most generalizable results, and (3) several 

expected and several unexpected genes contributed to the CON vs. SUD effect. 
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This chapter is outlined as follows. First, I provide a description of the participants (e.g., 

demographics, usage), measures, and a brief description of preprocessing and quality control for 

these studies. Next, I provide an overview of the proposed, and also the “flipped,” analysis 

pipelnes. Then, I provide a description of the key results from the studies in this dissertation. 

Finally, I discuss the results, conclusions, and limitiations. 

6.1 Data Sets 

This study was approved by the University of New Mexico and The University of Texas 

at Dallas Institutional Review Boards. This dissertation includes two data sets: an archived 

(local) set and an external set (Study of Addiction: Genetics and Environment, a.k.a., SAGE: 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000092.v1.p1). Both 

sets are described in the following sections. However, because some analyses require 

preprocessing and quality control independently of others, some details of preprocessing and 

quality control are described whenever relevant. 

6.1.1 SNPs and genes of interest 

The archived data set used the Illumina Human OmniExpress chip with 709,362 SNPs. 

The SAGE set used the Illumina Human1Mv1_C BeadChips with 1,040,107 SNPs. However, in 

these studies do not use the entire set of available genome-wide SNPs but only a “knowledge 

informed” or “literature based” candidate approach to a large-scale genetic association study. I 

focused on a particular set of genes for two reasons: (1) the selected genes are the largely agreed 

upon genes where some contribution to SUDs should exist, and (2) one of the latest trends in 

large-scale genetic and genomic-association studies of complex traits or disorders either extract 
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genes of interest from a general chip (e.g., as in Ashen et al., 2016) or use a specialized chipset to 

target specific diseases and disorders or types of diseases and disorders, for examples: (1) both 

the NeuroX chip (Nalls et al., 2015), and the ONDRIseq chip (Farhan et al., 2016) have been 

designed to specifically target genes of neurodegenerative disorders, (2) Illumina offers a 

“PsychArray” (http://www.illumina.com/products/by-type/microarray-kits/infinium-

psycharray.html) that specifically targets genes associated with psychiatric disorders (e.g., 

schizophrenia, bipolar disorder), and (3) the chip that inspires this study: the “Addictions Array” 

(Hodgkinson et al., 2008; see also Section 2.3.4) was designed with a broad range of SUDs in 

mind. 

Therefore, like these studies, I used only SNPs that are associated with a large-scale, a 

priori defined set of genes. These genes are almost entirely those listed in NIAAA et al., (2008), 

but I have also included genes from other suggested, much smaller, panels (i.e., substance-

specific, reward, and stress-based panels; see Section 2.3). In total, there were 149 genes selected 

from this panel, though for all analyses, sex-based genes were excluded (e.g., MAO-A on Chr. X; 

see Section 6.3 on preprocessing). 

Because different chips have different SNPs, the selection procedure must be done based 

on gene names and Ensembl IDs. The selection of SNPs was done as followed. Given a set of 

human gene names (a.k.a., symbols) such as “COMT”, “GABRB3”, “CNR1”, all Ensembl IDs 

that correspond with those names were retrieved, such as “ENSG00000118432”, 

“ENSG00000093010”, and “ENSG00000166206”. From these Ensembl IDs, all possible 

associated SNPs (a.k.a., “variants”) were then retrieved. This procedure was done with the 

biomaRt package in R, using both the “gene mart” and “SNP mart” of the human genome build 
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from September 2015 (when this and related work began). From the list of all possible SNPs, 

only those SNPs that existed on a given chip (i.e., the archived or SAGE chips) were extracted 

for analyses. Additional details on the total number of SNPs are found in the subsequent sections 

and supplemental material. 

6.1.2 Archived (“discovery”) data 

The archived data set originally contained 475 participants across control and a number 

of SUD groups. These individuals were recruited to participate in studies on marijuana use, 

nicotine use, or binge-eating. However, for the focus of this study is psychoactive substance use 

disorders binge-eating participants were excluded. Furthermore, some of the participants did not 

have (suitably) complete genetic data and were therefore excluded. There were 431 participants 

included in these analyses. Participants were recruited from the general community in 

Albuquerque (NM) or Dallas (TX) and took part in a larger set of studies to determine markers 

of substance use disorders and addiction. Participants were excluded from the studies if they had 

(1) past or present diagnosis of a neurological disorder, (2) psychosis or other substance use

disorder besides their primary substance use disorder (assessed via the Psychotic Symptoms and 

Substance Use Disorders modules of the SCID), or (3) currently taking prescribed psychoactive 

medication. Non-using controls did not report any current regular use of illicit substances 

(including marijuana) within the past 6 months of recruitment. The control group is referred to as 

“CON” (n = 122). For the current study, the focus here is on psychoactive SUDs: nicotine 

participants (a.k.a., “NIC”; n = 74) self-reported current nicotine use of at least 10 cigarettes per 

day (positive use verified via breath CO monitor), where marijuana participants (a.k.a., “MJ”; n 

= 173) self-reported current marijuana use of at least 4 occasions per week over the previous 6 
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months (positive use verified via urinalysis). Within the marijuana recruitment group, we 

identified individuals that also used nicotine at least daily; these users are referred to as 

marijuana+nicotine co-use (a.k.a., “MJ+NIC”; n = 62).  

Participants within the groups were also assessed on several usage measures. The NIC 

group had a mean (SD) score of 4.247 (2.332) on the Fagerstrom’s Test for Nicotine Dependence 

(FTND). Marijuana dependence—for MJ and MJ+NIC groups—was assessed with the structured 

clinical interview for DSM-IV-TR (Research Version). Within the MJ group 61 individuals 

qualified as lifetime dependent, whereas 66 are qualified as currently dependent (35.26 and 

38.15% of the whole MJ group, respectively). Within the MJ+NIC group, 27 individuals 

qualified as lifetime dependent, whereas 25 qualified as currently dependent (43.548% and 

40.323% of the whole MJ+NIC group, respectively). To note, the SAGE data (see Section 6.1.3) 

recruitment was based primarily on alcohol use disorders. For comparable reference, lifetime and 

current alcohol dependence are also provided for the archived data. Very few individuals qualify 

for current alcohol dependence (less than 17% per group). Demographics and usage 

characteristics for these groups are provided in Table 6.1a. 
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Table  6.1 

Archived and SAGE Demographics and Depdendency. 
Groups 

(a) Archived data demographics. CON MJ MJ+NIC NIC 

Sex 

Female 72 57 13 27 

Male 50 116 49 47 

Ethnicity 

Hispanic or Latino 28 65 23 27 

Not Hispanic or Latino 91 108 39 47 

Race 

American Indian or Alaska Native 2 4 1 3 

Asian 25 2 1 1 

Black or African American 16 20 2 4 

White or Caucasian 55 88 38 39 

Multiracial/Other/No Response 13 34 6 10 

Alcohol Dependence 

Lifetime 14 54 29 26 

Current 0 24 10 4 

Groups 

(b) SAGE data demographics. CON MJ MJ+NIC NIC OTHER 

Sex 

Female 985 24 173 659 166 

Male 514 112 337 481 288 

Ethnicity 

Not Hispanic or Latino 1448 125 495 1104 432 

Hispanic or Latino 51 11 15 36 22 

Race 

Black or African American 380 56 178 339 146 

White or Caucasian 1113 80 331 800 308 

Multiracial/Unknown/No Response 6 0 1 1 0 
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Groups 

(c) SAGE dependency characteristics. CON MJ MJ+NIC NIC OTHER 

MJ. Dependence 

NO 1499 0 0 1140 454 

YES 0 136 510 0 0 

Nic. Dependence 

     NO 1499 136 0 0 454 

YES 0 0 510 1140 0 

Alc. Dependence 

     NO 1499 0 0 389 0 

YES 0 136 510 751 454 

Coc. Dependence 

     NO 1499 41 131 867 319 

YES 0 95 379 273 135 

Op. Dependence 

     NO 1499 115 385 1063 422 

YES 0 21 125 77 32 

Oth. Dependence 

     NO 1499 79 288 1012 405 

YES 0 57 222 128 49 

FTND 0.71 (1.454) 3.267 (2.466) 5.925 (2.4) 3.857 (3.238) 2.896 (2.644) 

Note.    Demographics of archived and SAGE data sets. (a) Provides the demographics of the 

archived data, where (b) provides the demographics of the SAGE data set. (c) Provides the usage 

characteristics by group configuration in the SAGE data (Bierut et al., 2010 and Agrawal et al., 

2011). For SAGE, only the CON group has dependency status of “no” across all dependence 

criteria. 
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Participants also provided self-assessments of impulsivity on two scales: the Impulsive 

and Sensation Seeking (ImpSS; Zuckerman, Kuhlman, Joireman, Teta, & Kraft, 1993) scale, and 

the Barratt’s Impulsivity Scale (BIS; Patton, Stanford, & Barrat, 1995). Both measures have been 

extensively studied in SUD populations (Beaton et al., 2014), and are typically regarded as a 

robust phenotype of SUD. For analyses, both impulsivity scales were recoded in a categorical 

format (i.e., disjunctive coding; see Table 5.1 for the SNPs example) for every question-response 

item. Very low frequency responses were combined with the next most similar response. In this 

particular data set some questions (1, 2, 5, 8, 12, 14, 16, 17, 18, 20, 21, 24) on the BIS had < 5% 

response rates on “Almost Always/Always” and were thus combined with “Often”. 

6.1.2.1 Missing data and simple imputation 

In the case of missing data—either missing SNPs or responses— per participant, the 

missing cells were replaced by the disjunctive mean. However, there was a subset of participants 

(n = 72; with n = 42 from CON and n = 30 from MJ) without impulsivity data. For these 

participants, the impulsivity data were entirely replaced by grand mean (not group mean) 

responses for the following reasons: (1) the grand mean does not add variance to the structure, 

but still allows for these individuals to be analyzed, especially with respect to the fact that (2) 

they had relatively complete—and thus useful—genetic data. Additional details of preprocessing 

and quality control, with a particular emphasis on genetics, can be found in Section 6.3. 

6.1.3 External (“validation”) data 

The external data set is an archived data set available through the NIH 

(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000092.v1.p1). The SAGE data is comprised of many 
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individual studies—and is an early exemplar of multi-site, collaborative, and eventually open 

access studies—each with a particular focus on alcohol use disorders for individuals and within 

families (Bierut et al., 1998). However, many individuals also have dependence on other 

substances, where most individuals qualify as co-dependent (two) or multi-dependent (many) 

classification. The SAGE data set has been used to investigate a variety of SUDs, and in 

particular the genetic associations of alcohol use (Bierut et al., 2010), nicotine use (Hancock et 

al., 2015), cannabis use (Agrawal et al., 2011, Agrawal et al., 2014), as well as broader and 

individual aspects of various substance use (Weatherhill et al., 2015). The original SAGE data 

set contains 4,121 individuals, wherein nearly 25% of individuals are related (i.e., family-based 

recruitment). Because family members tend to be more genetically similar to one another than 

non-related individuals (and thus would inflate frequency of genetic markers), all family-based 

recruited individuals within SAGE were excluded for this study.  

Because of the complex phenotypic (i.e., dependency status) data in the SAGE set, very 

few individuals qualify as a direct match to the individuals in the archived data set. As 

previously noted, the SAGE study was initially designed as a study of alcohol use disorders 

(AUD), thus the recruitment primarily focused on AUD individuals (and families) and control 

individuals. However, there was one exception to the recruitment of control individuals in 

SAGE: they could be nicotine dependent. Thus the control group in SAGE exists as two groups: 

non-using controls, and exclusively nicotine using “controls”. Additionally, during the 

recruitment stages of SAGE, many AUD individuals were also co- or multi-use or dependent in 

other ways (alcohol plus cannabis, nicotine, cocaine, opioids, and/or “other”).  
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But even with the complex (and often multi-) dependency statuses of SAGE individuals, 

it was still possible to create “roughly matched” (to the archived data) groups. Control 

individuals—for this study—had to be recruited as a control individual and had no dependency 

status otherwise. The nicotine individuals were required to have nicotine dependence but not 

marijuana dependence status. The marijuana individuals were required to have marijuana 

dependence but not nicotine dependence status. The marijuana+nicotine co-use individuals were 

required to have dependence for both. At this point, there are 5 mutually exclusive groups: 

control (CON), nicotine (NIC), marijuana (MJ), marijuana+nicotine co-use (MJ+NIC), and 

“OTHER” which were comprised of individuals with no {marijuana or nicotine} dependence, 

and {alcohol or cocaine or opioids or “other”} dependence. For this configuration, only some 

individuals in the NIC group were not alcohol dependent, though all individuals in the marijuana 

and marijuana+nicotine groups were also alcohol dependent.  

In the end, the groups were as such: CON (n = 1,499), MJ (n = 136), MJ+NIC (n = 510), 

NIC (n = 1,140), and OTHER (n = 454; comprised of individuals with alcohol or cocaine or 

opioid or “other” dependency, but not marijuana or nicotine). For a detailed list of demographics 

and dependency in the SAGE sample (for this study), see Table 6.1b and 6.1c. Because of the 

study configurations, either a set of “matched” individuals (CON, MJ, MJ+NIC, NIC; N = 3,285) 

or all individuals (CON, MJ, MJ+NIC, NIC, OTHER; N = 3,739) qualified for analyses, 

however these numbers fluctuate slightly based on which analysis was performed (due to 

preprocessing and quality control steps; for more details on these analyses, see Section 6.3).  
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The SAGE data available for download is a relatively complete data set, with only a 

small number of missing genotypic markers. Like in the archived data, missing data in SAGE 

were imputed to the grand mean. 

6.2 Proposed and “flipped” analysis pipelines 

The discovery and validation data sets are completely unique from one another and are 

henceforth referred to as “archived” (discovery set) and “SAGE” (validation set) respectively. 

Furthermore, the validation set (SAGE) was completely sequestered until all analyses were 

completed and finalized within the discovery set; this procedure precludes the inclusion of bias 

and ensures that the validation set is independent of the archived set. Therefore, both sets were 

preprocessed and analyzed separately, to ensure the integrity and independence of a predictive 

set. However, the sequestration did create some issues with respect to preprocessing and 

confound correction (which happens in the cases of true, independent replications). These issues 

are described in later sections. 

Figure 6.1 provides a schematic of the analysis pipelines. Figure 6.1a shows the original 

proposed pipeline with the archived data as a discovery set, and the SAGE data as a validation 

set. The motivation for small ! big discovery validation was to see if PLS-CA—in standard or 

regularized forms—could utilize small data effectively. The motivation behind the small data set 

as the discovery set is because a major issue within many fields right now is that sample sizes are 

regarded as “too small” to analyze large scale genetic data. Therefore, if standard or SmooPLS-

CA provides generalizable results (validated in SAGE), then we have a framework to analyze 

high dimensional, low sample size genetic association data. 
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However, as previously noted, the analyses in Phase 3 yielded very low prediction 

accuracies, thus implying that the genotypes discovered in Phases 1 and 2 were not sufficient 

contributors to SUDs. Because the low prediction accuracy in Phase 3 implied that either (1) 

there are no genetic contributions to SUDs or (2) something could be wrong in the analysis 

pipeline, I wanted to test a more typical pipeline: discovery with the large set (SAGE; N > 3,285) 

and validation with the small set (archived; N = 431). Figure 6.1b shows this alternative 

(“flipped”) pipeline. If the models in Phases 1 and 2 were bad because of the small sample, then 

prediction accuracy in the archived set should be high (or at least higher) based on models built 

in the SAGE set. 

But prediction accuracies in this flipped pipeline were also very low. The details of the 

results—and how the apparent failure to predict did not indicate a failure to identify replicable 

genotypes—are discussed in later sections. 

6.2.1 Proposed Phases 1 and 2: Discovery with standard and SmooPLS-CA 

Phases 1 and 2 included three base analyses on an archived data set with standard (Phase 

1) and smoothed (Phase 2) PLS-CA. Phase 1 acts as a baseline for analyses in Phase 2. Standard 

and SmooPLS-CA were performed on three configurations of the data between a set of candidate 

SNPs and: (1) a case-control analysis: CON vs. SUDs, (2) a multi-group analysis: CON vs. MJ 

vs. MJ+NIC vs. NIC, and (3) a trait-based analysis: the ImpSS & BIS (with no explicit group 

coding). These three configurations help answer the question: what is the best way to find 

genetic markers of SUDs? Phase 2 repeated these analyses, but with a regularization parameter 

applied to PLS-CA: λ = [1, 2, 3, 4, 5, 10, 15, 20, 25, 100].  
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(a)  

 
 

(b)  

 

Figure 6.1  (a) Proposed Studies Pipeline Schematic, and (b) “Flipped” Studies Pipeline 

Schematic. Panel (a) shows the schematic of the (intended) three analysis Phases. Phases 1 and 2 

are identical, except that Phase 2 uses regularized PLS-CA methods. The results from Phases 1 

and 2 are then tested in a validation set, where the external set will be used to (1) if the results 

identified in each analyses can be repeated in an external sample, and (2) identify which method 

in Phases 1 and 2 was the best method (via highest classification accuracy in Phase 3, based on 

results provided from Phases 1 and 2). Panel (b) shows an alternative to the proposed pipeline, 

where the larger data set (SAGE) was used as the discovery set, and the smaller set (archived) 

was used as validation. The “flipped” pipeline is essentially the same as the proposed, except 

there are no regularization analyses.  
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Recall that λ = 0 is standard PLS-CA. SmooPLS-CA answer the questions: Does 

regularization help identify better genetic markers of SUDs compared to standard PLS-CA? If 

so, to what degree does the model need to be regularized (i.e., which λ), and how does this 

regularized model differ from standard PLS-CA?  

Bootstrap resampling was used to identify which genotypes were significant contributors 

to each model, and thus those SNPs were selected for follow up analyses in Phase 3. In all 

analyses for Phase 1 and Phase 2, a “likely best” analysis was to be identified by highest 

(relative) random-effects prediction accuracy within the archived data. Prediction accuracy in 

Phases 1 and 2 was assessed with split-half resampling in part because it has a distinct advantage 

over other prediction frameworks for small samples: interval estimates of predication accuracy 

through the course of resampling. However, the actual tests of Phases 1 and 2 analyses are the 

prediction accuracies in Phase 3 (a validation set). 

6.2.2 Proposed Phase 3: Validation on external data (with standard PLS-CA) 

Phase 3 used standard PLS-CA in its discriminant analysis form (Beaton, Dunlop, et al., 

2016) on an external data set (SAGE) to both validate which genotypes are likely contributors to 

SUDs, and also to identify which configuration from Phases 1 and 2 produced the best set of 

predictive genetic markers. Only SNPs that were identified in Phases 1 and 2 were used in Phase 

3. To note, the genotypes in the validation phase were coded as they exist in the SAGE set, and 

were not coded to match the genotypes as they existed (via preprocessing) in the archived set. 

This was in part because the SAGE set was completely sequestered during Phases 1 and 2, thus 

making it a completely independent set from the archived set. Because of this sequestration, an 

exact prediction of one data set from the coefficients of the other (SAGE from archived or vice 
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versa) was not possible because of a particular step in preprocessing, which had to be applied to 

each set independently: confound correction (for race and ethnicity). Additionally, it is best at 

this stage of research inquiry to leave the data in a genotypic model for both discovery and 

prediction sets in order to identify—instead of assume—the most likely genetic effects (e.g., 

additive, dominant, recessive) in SUDs.  

Phase 3 was performed on the SAGE data set with group configurations comparable to 

the archived data set, and then expanded to include other SUDs. This is because SAGE data were 

initially collected as a way to identify genetic markers of alcohol use disorder (AUD; Beirut et 

al., 2010). However, as previously noted, SAGE has been used for a variety of other disorders. 

Phase 3 used leave-one-out (LOO) cross validation—instead of split-half—to assess 

random effects prediction accuracy. LOO works by predicting each individual—in turn—from 

an analysis that they were left out of. In this case, LOO provides an overestimate of prediction 

error due in part because it maximizes the size of the “training set” (Hastie, Tibshirani, & 

Friedman, 2013). Therefore, LOO in this case provides us with a likely “worst case scenario” of 

a real world application: how likely could we predict SUD from a given panel of genetic 

markers? Finally, bootstrap resampling was also used in Phase 3 to identify which, if any, 

genetic markers remain significant in Phase 3, and are thus more likely to generalize to the 

broader population of SUDs (both specific to the groups studied here, and in general). 

6.2.3 Flipped pipeline 

As previously noted, the prediction accuracies in Phase 3 were relatively low (see Section 

6.4 for details, and Table 6.6). Typically, studies that use independent discovery and validation 

samples often use the larger set for discovery and the smaller set for validation. In my 
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dissertation, I made the choice to use the smaller specifically to test if PLS methods are sufficient 

to detect effects in small samples. However, as previously noted, the failure of prediction could 

have been because of the small sample in the archived data or an overall issue with the analysis 

pipeline. Thus, to test if this were the case, I “flipped” the pipeline. Furthermore, I also excluded 

regularization analyses in this “flipped” pipeline, because the SAGE data set should not require 

the “boost” provided by regularization. The procedure to select SNPs—described in Section 

6.1.1—was also applied to the SAGE data set, and (because the chipsets were different) yielded a 

different set of SNPs than the archived set. For additional details on the SNPs selected for all 

analyses, see Section 6.3.  

A schematic of the flipped version of the pipeline can be found in Figure 6.1b. This 

flipped pipeline included slightly different analysis configurations to ask the same questions as in 

the proposed pipeline. “Flipped” Phase 1 was standard PLS-CA run on five configurations of the 

SAGE data: (1) a “matched” case-control (CON vs. matched SUDs), (2) case-control (CON vs. 

all SUDs), (3) a “matched” multi-group analysis (CON vs. MJ vs. MJ+NIC vs. NIC), (4) a 

“matched plus” multi-group analysis (CON vs. MJ vs. MJ+NIC vs. NIC vs. “other”), and (5) a 

dependency-based analysis where, instead of exclusive group classification, the actual 

dependency status was used; dependency status for all individuals was a “yes” or “no” across 6 

categories: alcohol, marijuana, nicotine, cocaine, opioids, and “other.” In the “flipped” Phase 1, 

only bootstrap resampling was performed in order to identify which genotypes were significant. 

The SNPs that corresponded with these genotypes were then extracted from the archived data, 

and—similar to proposed Phase 3—prediction accuracy of these SNPs were tested with LOO in 

two configurations: (1) archived CON vs. SUD and (2) archived multi-group.  
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Not only were the prediction accuracies in “flipped” Phase 2 low, but they were generally 

worse than in the proposed pipeline (archived ! SAGE). Details from the analysis pipelines can 

be found in Section 6.4 and onward, as well as the supplemental/appendix. 

6.3 Quality control, preprocessing, and data preparation 

Quality control and preprocessing were performed with plink (Purcell, 2007) and 

custom made code in R (R Core Team). All sex-linked SNPs (i.e., Chromosomes X and Y) were 

excluded. Standard qualities control parameters were the same for, and performed strictly within, 

their respective data set (archived or SAGE), for only the extracted subsets of SNPs:  both 

observations and SNPs had to have ≥ 90% call rates (i.e., complete data). SNPs had to have a 

minor allele frequency ≥ 5%. Because SNPs were recoded in a disjunctive format, there was an 

additional step for preprocessing. If a genotype (i.e., either the heterozygote or the minor 

homozygote) had less than 5% frequency it was combined with another genotype. If the minor 

homozygote was rare (≤ 5%), it was simply combined with the heterozygote (i.e., the dominant 

model). However, if the heterozygote was rare (≤ 5%), it was essentially treated as variant of 

“missing” data, and individuals with the heterozygote were recoded [.5 .5], thus giving equal 

weight to the major and minor alleles. 

Because individuals within each data set are from diverse racial and/or ethnic 

backgrounds, the data required stratification correction based on race and ethnicity for each 

individual set of data. Not only did this occur on the large sets (proposed Phases 1 and 2, and 

flipped Phase 1), but was also applied within the validation sets because different SNPs can be 

confounded with race or ethnicity in different ways. Typically, race and ethnicity confound 
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correction is done on the additive-model coded data (i.e., [0, 1, 2]) and an “eigen stratification” is 

performed. This “eigen stratification” is simply a PCA or MDS applied to the (presumed) 

quantitative data, and then components are individually inspected for confounding effects. 

Components that show race or ethnicity effects are then regressed out of the data (or the data are 

reconstructed from a lower rank representation of the data excluding those components). 

Because the data here are coded in a disjunctive form, correspondence analysis (CA) was used in 

place of PCA or MDS, and the same procedure (i.e., removal of components showing a 

confound) was performed. At their largest (i.e., the “discovery” versions of) the archived and 

SAGE data sets had 3,381 and 4,781 SNPs, respectively. The number of SNPs for the validation 

phases varied (so that each initial discovery set could be tested) but never exceeded 255 SNPs 

(recall the validation phases, see Figure 6.1). 

6.3.1 Archived “discovery” set 

Of the 709,362 original SNPs in the archived data there were a total of 4,472 associated 

with the 149 gene candidate panel. After quality control and removal of sex-linked SNPs, there 

were a total of 3,381 SNPs. The first 5 components were removed for race and/or ethnicity 

effects. The final matrix analyzed was 431 (participants) × 8771 (disjunctive genotypes).  

6.3.2 SAGE “discovery” set 

Of the 1,040,107 original SNPs in the SAGE data there were a total of 5,053 associated 

with the 149 gene candidate panel. After quality control and removal of sex-linked SNPs, the 

total number of SNPs were between 4,777 (for matched individuals) and 4,781 (for matched + 

“other” individuals), with 12,392 or 12,406 disjunctive genotypes (columns), respectively. The 
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first component was removed for race effects; no other components showed a confounding 

effect. 

6.4 Overview of results 

Because the majority of analyses (i.e., almost all of the regularized) did not differ much 

from one another and were similar to the baseline, and because the prediction accuracies were 

quite low for both the proposed and flipped pipelines, only a truncated version of the results are 

presented here. This section provides a high-level overview of all the analyses performed, and 

segues into a discussion section.  

6.4.1 Proposed Pipeline 

A truncated version of the results from Phases 1 and 2—because they were the same 

techniques and configurations, but with different λ parameters—is presented here. 

6.4.1.1 Phases 1 and 2 

Figure 6.2 presents the prediction accuracies (Fig. 6.2a) and number of significant 

bootstrap ratios (Fig. 6.2b) for the case-control (i.e., CON vs. SUD) configuration. Figure 6.2a 

shows that there was virutally no change in prediction accuracy as λ increased; in fact, the “best” 

model (via random-effects split-half resampling) was λ=2 and, on average, performed close to 

baseline, even though baseline had a higher lower bound estimate. All random-effects prediction 

accuracies were above chance. Figure 6.2b shows the total number of significant bootstrap ratios, 

which remained virtually unchanged at the more stringent threshold of |BSR| > 3. In sum, 

regularization had virtually no effect on the prediction accuracy. Regularization also had 

virtually no impact on the number of, as well as which genotypes were identified as significant. 



155 

The positive side of Component 1 (which was the only component in this analysis) was 

associated with the CON group, where the negative side was associated with the SUD group. 

Table 6.2 shows just the top (|BSR|  > 3.5 in the baseline λ=0 analysis) genotypes for the case-

control configuration, where a negative value means a genotype was more associated with the 

SUD group than the CON group. Note that the BSR values are also virtually identical for λ = 0, 

and the average from λ > 0. A larger table with all significant genotypes at |BSR|  > 3 can be 

found in the online supplemental material. 

Table  6.2 

Significant Genotypes from Archived Two Group Analyses. 
SNP Genotype BSR λ=0 BSR Mean λ > 0 Chr. Gene 

rs7188171 TT -4.079 -3.924 16 GRIN2A 

rs1396860 AA -3.84 -4.028 11 CCKBR 

rs1396860 GA+GG 3.84 4.028 11 CCKBR 

rs173766 AA -3.826 -3.787 5 GABRB2 

rs12441474 GG -3.791 -3.81 15 GABRB3 

rs2941023 GG -3.775 -3.734 11 CCKBR 

rs2929183 GG -3.616 -3.585 11 CCKBR 

rs3846448 CC -3.653 -3.445 4 ADH1C 

rs3846448 TC+TT 3.653 3.445 4 ADH1C 

Note.    Top significant genotypes from the two-group configuration (ranked by bootstrap ratio 

value). Even though the selection criteria for Phase 3 was |BSR| > 3, the threshold for this table 

was |BSR| > 3.5 in the baseline (i.e., λ=0) analysis. The full list of significant genotypes are 

available in the electronic supplemental material. Genes identified by NCBI2R package. Those 

in italics are closest genes through other resources (e.g., ALFRED). BSR λ=0 is the bootstrap 

ratio value for the baseline analysis, where BSR Mean λ > 0 is the average BSR value across all 

λ>0, because no single λ appeared to outperform one another or baseline (see Figure 6.3). 
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(a) 

(b) 

Figure 6.2 Two group analysis. BSR = Bootstrap ratio. Inference effects in the two-group 

configuration in archived data set. Figures show (a; top) split-half prediction (fixed and random) 

accuracies with error bars, and (b; bottom) shows the number of significant (via BSR) genotypes 

as λ increases for a threshold of |BSR| > 2 and |BSR| > 3. 
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Figure 6.3 presents the prediction accuracies (Fig. 6.3a) and number of significant 

bootstrap ratios (Fig. 6.3b) for the four group (i.e., CON vs. MJ vs. MJ+NIC vs. NIC) 

configuration. Random-effects prediction accuracies were above chance. This configuration 

provides the most striking example of the failure of regularization: Not only did prediction 

accuracy decrease as λ increased, but the value of λ = 0 gave the highest prediction accuracy for 

both fixed- and random-effects (Fig. 6.3a). The results from the significant number of BSRs 

shows that regularization more than likely just “pushed” the noise from high variance 

components to lower variance components, rather than eliminate noise. Baseline and regularized 

analyses were still virtually identical on prediction accuracy as well as which genotypes were 

identified as significant. From the four-group configuration, Component 1 was essentially the 

CON (positive side) vs. other groups (negative side). As λ increased, Component 1 become more 

strictly CON (positive side) vs. MJ (negative side). Component 2 was more associated with the 

NIC group (negative side), and Component 3 was more associated with the MJ+NIC group 

(negative side). However, these same associations can be found via the original component 

scores, and the BSRs for each group in just the baseline analysis. Table 6.3 shows just the top 

genotypes (|BSR|  > 3.5, in the baseline λ=0 analysis) for the four-group configuration. Note that 

the BSR values are also virtually identical for λ=0, and the average from λ>0. However, for 

Component 1, the λ=0 BSRs have a greater magnitude than λ>0, where the opposite is generally 

true for Components 2 and 3. A larger table with all significant genotypes at |BSR|  > 3 can be 

found in the online supplemental material. 
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Table  6.3 

Significant Genotypes from Archived Four Group Analyses. 

SNP Geno. 

BSR  

λ=0 C1 

BSR Mean  

λ>0 C1 

BSR  

λ=0 C2 

BSR Mean  

λ>0 C2 

BSR  

λ=0 C3 

BSR Mean  

λ>0 C3 Chr Gene 

rs7188171 TT -4.752 -4.047 

    

16 GRIN2A 

rs10217351 TT 

  

4.236 3.857 

  

9 MPDZ 

rs2036108 AA 

    

3.833 4.179 8 ADRA1A 

rs2941023 GG -3.983 -3.8 

    

11 CCKBR 

rs17683096 AA -4.264 -3.47 

    

16 GRIN2A 

rs35586628 TT 

  

-3.736 -3.959 

  

15 GABRA5 

rs220597 GG 

    

3.523 3.957 12 GRIN2B 

rs2929183 GG -3.794 -3.641 

    

11 CCKBR 

rs2350786 AG 

  

-3.685 

   

7 

CHRM2/ 

LOC349160 

rs28426996 GG 

  

-3.523 -3.757 

  

15 GABRA5 

rs1872688 AA 3.672 3.607 

    

16 ADCY7 

rs2113545 AG 

  

-3.587 

   

7 

CHRM2/ 

LOC349160 

rs10500373 CC -3.762 -3.407 

    

16 

LOC10537107

6/ 

GRIN2A 

rs9934026 TT 3.503 3.558 

    

16 ADCY7 

rs17087959 TT 

    

-3.605 -3.445 9 NTRK2 

rs17087959 CT+CC 

    

3.605 3.445 9 NTRK2 

rs2070673 AA 

    

3.52 3.514 10 CYP2E1 

rs6535594 GG 

  

-3.502 

   

4 NR3C2 

rs9926046 TT -3.888 -3.075 

    

16 GRIN2A 

rs17750208 AA -3.518 -3.232 

    

16 GRIN2A 

rs362817 CC 3.508 3.133 

    

6 GRM1 

Note.    C1 = Component 1, C2 = Component 2, C3 = Component 3.Top significant genotypes 

from the four-group configuration. Even though the selection criteria for Phase 3 was |BSR| > 3, 

the threshold for this table was |BSR| > 3.5 in the baseline (i.e., λ=0) analysis. The full list of 

significant genotypes are available in the electronic supplemental material. Genes identified by 

NCBI2R package. BSR λ=0 is the bootstrap ratio value for the baseline analysis, where BSR 

Mean λ > 0 is the average BSR value across all λ>0, because no single λ appeared to outperform 

one another or baseline (see Figure 6.3).  
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(a) 

(b) 

Figure 6.3 Four group analysis. BSR = Bootstrap ratio. Inference effects in the four-group 

configuration in archived data set. Figures show (a; top) split-half prediction (fixed and random) 

accuracies with error bars, and (b; bottom) shows the number of significant (via BSR) genotypes 

(or all components) as λ increases for a threshold of |BSR| > 2 and |BSR| > 3. 
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Figure 6.4 presents the prediction accuracies (Fig. 6.4a, b, c) and number of significant 

bootstrap ratios (Fig. 6.4d) for the impulsivity-based configuration. All fixed-effects prediction 

accuracies were above chance. For prediction—either with two groups, seen in Fig. 6.4a, or with 

four groups, seen in Fig. 6.4b—within the genetic latent variables alone, all (average) random-

effects prediction accuracies were below chance. For the joint (bi-dimensional) latent variables 

(one from impulsivity, one from genetics; see Figure 6.4c), prediction accuracy was above 

chance for fixed- and random-effects but only for the first component. Interestingly, when 

prediction was performed just within the genetic latent variables (Fig. 6.4a and b), as λ increased, 

performance generally decreased. The opposite is true for prediction within the joint latent 

variables: A higher λ increased prediction, but only for the first component. This effect maybe 

due to group association being highly collinear and predictive within impulsivity (see Beaton et 

al., 2014). Figure 6.4d shows the number of significant bootstrap ratios per component. Again, it 

is clear that regularization had little to no effect on the analysis. Table 6.4 shows just the top 

(|BSR|  > 3.5, in the baseline λ = 0 analysis) genotypes for the impulsivity configuration. 

Because an increased λ showed some effect on the first component, Table 6.4 shows BSRs for λ 

= 0, λ = 100, and the average where λ > 0 and λ < 100. Like previous analyses, the BSRs are 

virtually identical for changes in λ. The impulsivity analysis clearly performed much worse than 

the group-level analyses, and only identified four genotypes with |BSR|  > 3.5; these four 

genotypes are from 2 SNPs associated with the same gene: GABRB2. A larger table with all 

significant genotypes at |BSR|  > 3 can be found in the online supplemental material. 

 

 



161 

(a) (b) 

(c) (d) 

Figure 6.4 Impulsivity Analyses. BSR = bootstrap ratio. CON = control group. SUD = 

Substance use disorder (group). Inference effects in the impulsivity configuration in archived 

data set. Panels (a) and (b) show split half prediction accuracies (with error bars): (a; top left) 

shows prediction estimates for CON vs. SUD in the impulsivity genotype subspace, where (b; 

top right) shows prediction estimates for the four groups in the impulsivity genotype subspace. 

Panel (c; bottom left) shows prediction accuracy per latent variable (combination of impulsivity 
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and genotype scores) for the first two components in each configuration (four groups on top, two 

groups on the bottom). Note that only the first component appears to show an effect across λ, 

though there appears to be a slight effect of regularization (λ=100) for CON v. SUD. Panel (d) 

shows the number of significant (via BSR) genotypes (or all components) as λ increases for a 

threshold of |BSR| > 2 and |BSR| > 3. 

 

Table  6.4 

Significant Genotypes from Archived Impulsivity Analyses. 

SNP Genotype 

BSR 

 λ=0 C1 

BSR  

λ=100 C1 

BSR Mean  

 λ>0 & λ<100 C1 Chr. Gene 

rs13362062 CT+CC 3.907 3.862 3.871 5 GABRB2 

rs13362062 TT -3.907 -3.862 -3.871 5 GABRB2 

rs4921390 CT+CC 3.794 3.742 3.751 5 LOC105377694,GABRB2 

rs4921390 TT -3.794 -3.742 -3.751 5 LOC105377694,GABRB2 

 

Note.    C1 = Component 1. Top significant genotypes from the impulsivity configuration 

(ranked by bootstrap ratio value). Even though the selection criteria for Phase 3 was |BSR| > 3, 

the threshold for this table was |BSR| > 3.5 in the baseline (i.e., λ=0) analysis. The full list of 

significant genotypes are available in the electronic supplemental material. Genes identified by 

NCBI2R package. All significant SNPs are associated with GABRB2. Only BSRs of the first 

component are presented, but in this particular analysis, they are presented for BSR λ=0, BSR 

λ=100, and the mean of λ that was not 0 or 100. Only λ=100 appeared to show a small advantage 

(via prediction) over other λs, though, according to the bootstrap results presented here, provides 

no advantage to detect stable and significant genotypes (see also Figure 6.4).  
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6.4.1.2 Common SNPs in Phases 1 and 2 

Even though some analyses identified specific genotypes (i.e., different genotypes than 

the other analyses), there were some common genotypes across analyses. Table 6.5 presents all 

genotypes that were significant at |BSR|  > 3—in either standard or any regularized condition—

in at least two configurations (case-control, multi-group, or impulsivity-based) from Phases 1 

and 2. While the CON vs. SUD and multi-group analyses produced only 1 and 3 components 

respectively, the impulsivity based analyses produced many more. However, as noted in the 

previous section, only the first component of the impulsivity analysis was interpreted (i.e., a 

higher λ increased prediction, but only for the first component).  

Nearly all of the common genotypes were identified from the opposition between the 

CON and SUD groups. Furthermore, only 1 genotype was identified in the impulsivity-based 

analysis that was common with any another analysis. While there are a number of different 

genotypes across genes, in the archived data there appear to be only a few core genes that reflect 

a dissociation of CON vs. SUD, namely: GABRB2, GABRG2, GABRB3, CCKBR, GRIN2B, 

and GRIN2A. Finally, one gene in particular—but via different genotypes—came up in all 

analyses: PRKCE. 
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Table  6.5 

Significant Genotypes Across Archived Analyses 
 

    Two Groups  Four Groups  ImpSS   

SNP Geno. Chr. Gene Comp. 1 Comp. 1 Comp. 2 Comp. 3   Comp. 1   

rs1562653 AA 2 PRKCE 1 1 

   rs751237 GG 2 PRKCE 1 1 

   rs642200 CC 2 PRKCE 

   

1 1 

rs3846448 CC 4 ADH1C 1 

  

1 

 rs3846448 TC+TT 4 ADH1C 1 

  

1 

 rs1229979 CC 4 ADH1C 1 

  

1 

 rs1662037 GG 4 ADH1C 1 

  

1 

 rs1662033 TT 4 ADH1C 1 

  

1 

 rs17024437 AG+AA 4 NR3C2 1 

 

1 

  rs17024437 GG 4 NR3C2 1 

 

1 

  rs173766 AA 5 GABRB2 1 1 

   rs365054 CC 5 GABRG2 1 1 

   rs1396860 AA 11 CCKBR 1 1 

   rs1396860 GA+GG 11 CCKBR 1 1 

   rs2941023 GG 11 CCKBR 1 1 

   rs2929183 GG 11 CCKBR 1 1 

   rs7297761 GG 12 GRIN2B 1 1 

   rs12441474 GG 15 GABRB3 1 1 

   rs7188171 TT 16 GRIN2A 1 1 

   rs9927871 TT 16 GRIN2A 1 1 

   rs17683096 AA 16 GRIN2A 1 1 

   rs17670276 CC 16 GRIN2A 1 1 

   rs17670276 AC+AA 16 GRIN2A 1 1 

   rs9926046 TT 16 GRIN2A 1 1 

   rs4552023 CC 16 GRIN2A 1 1 

   rs10500373 CC 16 GRIN2A 1 1 

   
Note.    Common (significant) SNPs where at least 2 of the 3 configurations (two group, four 

group, impulsivity) identified a genotype as significant where either λ=0, or average λ where 

|BSR| > 3. This threshold choice was because regularization appeared to provide no substantial 

advantage; bootstrap estimates were relatively robust across all λ.   
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6.4.1.3 Predictions in Phase 3 

There were two goals in Phase 3, both considered a form of validation: (1) identify which 

analysis from Phases 1 and 2 had the highest prediction (a “winning model”) in Phase 3, and (2) 

which genotypes are also significant from the “winning model”.  

Because the standard and regularized results were identical in Phases 1 and 2 for all 

configurations, many SNP panels were made from the results. First, panels were derived from 

each configuration, where SNPs were selected if they had a genotype (in Phases 1 and 2) with 

|BSR|  > 3. Next, two panels were derived from each configuration: a standard set and a 

regularized set. Because no individual regularized iteration clearly outperformed any other, the 

regularized panels were derived from the average |BSR| value across λ = [1, 2, 3, 4, 5, 10, 15, 20, 

25, 100]; the threshold was still also |BSR|  > 3. At this stage, there would have been 6 separate 

panels to test. However, because all results were virtually identical, I created two more panels 

within each study configuration (i.e., within case-control, within multi-group, within impulsivity-

based): the intersection of standard and regularized SNPs with genotypes of |BSR|  > 3, and the 

union of standard and regularized SNPs with genotypes of |BSR|  > 3. One final panel was 

created: a “full” panel, where any SNP that was included in the previously mentioned panels was 

included in one large panel. Furthermore, each panel was then tested on 4 possible configurations 

of the external data: (1) CON vs. matched SUDs, (2) CON vs. matched MJ vs. matched MJ+NIC 

vs. matched NIC, (3) con vs. SUDs, and (4) CON vs. matched MJ vs. matched MJ+NIC vs. 

matched NIC vs. “other.” Thus, there were a total of 52 possible validation analyses. The 

prediction accuracy of these analyses is shown in Table 6.6. 
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As previously noted, prediction accuracies—especially the LOO accuracies—for Phase 3 

were very low. In general, the few LOO accuracies that were above chance were panels 

identified in the case-control, standard PLS-CA analyses in Phases 1 and 2, and tested best on 

case-control analyses in Phase 3. Furthermore, the best Phase 3 configuration appeared to be the 

“matched case”-control analyses, as this SAGE configuration had above chance LOO accuracies 

for all archived case-control panels, as well as the final “full” panel. However, these accuracies 

were barely above chance (chance = 50.37%, best LOO was 51.25%). Because each of these 

panels was small, and because the prediction accuracies were so low, it was not worthwhile to 

identify significant genotypes in the external set. 

6.4.2 Flipped Pipeline 

Because the results in the proposed pipeline yielded such poor predictive accuracy, an 

alternative “flipped” pipeline was performed. This flipped pipeline did not include any 

regularization (see Figure 6.1b). Furthermore, the “flipped” pipeline was, essentially, a test of 

whether building models on small data was not sufficient for prediction in a larger data set. 
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Table  6.6 

Prediction accuracy from archived to SAGE. 
Archived Configuration 

Two Group Four Group ImpSS 

SAGE Configuration Panel FIXED LOO FIXED LOO FIXED LOO 

CON v. {MJ, NIC, MJ+NIC} λ=0 53.811* 50.9756* 55.5793* 51.25* 53.7805* 50.5793* 

Chance: 50.3696 ave(λ>0) 53.2317* 50.7927* 54.6037* 49.939 51.2805* 46.3415 

Union 53.6585* 50.6402* 55.8841* 51.0366* 53.3841* 50.3659 

Intersection 53.4451* 50.7622* 53.628* 50.1524 50.5488* 45.8232 

Full : 

FIXED: 56.4939* 

LOO: 50.4878* 

CON v. MJ vs. NIC vs. MJ+NIC λ=0 27.9268 24.2683 29.878 24.1159 25.061 21.7988 

Chance: 35.4683 ave(λ>0) 26.5854 23.3232 27.378 22.4695 21.9512 19.4207 

Union 27.5 23.7195 30.6402 24.2378 24.3293 21.372 

Intersection 26.9817 23.811 26.189 22.4085 21.8598 19.7561 

Full : 

FIXED: 32.439 

LOO: 24.4817 

CON v. SUD λ=0 53.2815* 51.4332 54.7013* 51.1117 53.2012* 50.4152 

Chance: 51.9383 ave(λ>0) 53.3351* 51.1117 54.3263* 50.6295 51.1385 47.6025 

Union 53.5494* 51.0046 56.0139* 50.442 52.9869* 49.8795 

Intersection 53.4155* 51.4064 53.3619* 49.9866 50.4956 47.0131 

Full : 

FIXED: 55.88* 

LOO: 50.817 

Five Groups λ=0 21.9395 18.7249 24.6451 18.0284 20.4661 17.6266 

Chance: 28.855 ave(λ>0) 21.2965 18.1088 22.2073 16.3943 18.6981 15.7514 

Union 21.9127 18.2695 25.0737 18.3231 20.1179 16.8765 

Intersection 21.1894 18.0552 21.0019 16.7961 19.1267 16.0729 

Full : 

FIXED: 26.2523 

LOO: 18.082 

Note.    Phase 3 predictions (based on panels from Phases 1 and 2 in the archived data). Because 

SAGE had several configurations and there were three panels, there were many possible analyses 

to perform. Prediction accuracy is presented here for those possible analyses, where λ=0 

indicates baseline, ave(λ>0) indicates averaged regularization results, union indicates the union 
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of λ=0 and ave(λ>0), intersection indicates the intersection of λ=0 and ave(λ>0) for each possible 

analysis. Full indicates the entire set of SNPs identified across all analyses. In general, only two 

group configurations presented results that were above chance (indicated with *). 

6.4.2.1 Discovery with the SAGE data  

The SAGE-as-discovery set included six analyses (see proposed pipeline, and Table 6.1): 

(1) “matched” case-control, (2) full case-control, (3) “matched” multi-group, (4) multi-group, (5)

a dependency-based analysis (not yet discussed), and (6) the combined (“all”) SNPs. Because 

each individual could—and in nearly all cases does—have multiple dependencies, a dependency-

based analysis was also run. The dependency-based analysis exists somewhere between the 

impulsivity-based analysis in terms of structure (in Phases 1 and 2), and discriminant analyses; in 

the dependency case, each individual is allowed to belong to multiple groups. 

In nearly all SAGE-as-discovery analyses, the same general effect as in the archived-as-

discovery was observed: the first component generally dissociates control from SUD groups. For 

that reason, only the significant genotypes—with a threshold of |BSR|  > 3.5—on the first 

component, across all analyses here, are presented in Table 6.7. Genotypes with |BSR|  > 3—on 

the first component only, for each analysis—can be found in the online supplemental material. 
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Table  6.7 

Significant Genotypes from the “SAGE-as-discovery” analysis 

SNP Geno. Chr. Gene 2M 4M 2 5 Dep 

rs10865212 GT 2 PRKCE -3.6335 

    rs1008400 TC 16 FTO 4.386 3.8281 

   rs11076017 TC 16 FTO 4.9859 4.5966 4.0686 

  rs363538 CC 21 GRIK1 3.5502 

    rs363510 TT 21 GRIK1 3.5678 

    rs2832431 CC 21 GRIK1 3.6982 

    rs10802779 TC 1 LOC105373225,CHRM3 

 

-3.7362 

   rs610529 CT 9 ALDH1A1 

 

3.5609 

   rs10772703 TC 12 GRIN2B 

 

-3.7598 

   rs220563 AA 12 GRIN2B 

 

3.6608 

   rs541098 AG 15 AVEN/CHRM5 

 

3.5319 3.5742 4.5997 

 rs6800622 CA 3 GSK3B 

  

3.6912 

  rs1732170 GA 3 GSK3B 

  

3.7254 

  rs1719894 GA 3 GSK3B 

  

3.6468 

  rs9813864 TC 3 GSK3B 

  

3.6912 

  rs6795653 TC 3 GSK3B 

  

3.7889 

  rs2319398 GT 3 GSK3B 

  

3.7659 

  rs13321783 TC 3 GSK3B 

  

3.543 

  rs6438552 AG 3 GSK3B 

  

3.7718 

  rs6792572 AC 3 GSK3B 

  

3.6218 

  rs9873477 AG 3 GSK3B 

  

3.7307 

  rs9878473 TC 3 GSK3B 

  

3.8229 

  rs7644234 GT 3 GSK3B 

  

3.7643 

  rs12630592 GT 3 GSK3B 

  

3.7451 

  rs17204878 GT 3 GSK3B 

  

3.866 

  rs334563 GT 3 GSK3B 

  

3.7799 

  rs334533 GA 3 GSK3B 

  

3.8817 

  rs7026417 CT+CC 9 NTRK2 

  

-3.648 

  rs7026417 TT 9 NTRK2 

  

3.648 

  rs980365 GG 12 GRIN2B 

  

-3.8258 

  rs3121819 GG 1 GABRD 

   

3.6015 

 rs3121819 AG+AA 1 GABRD 

   

-3.6015 

 rs6545976 TG 2  

   

-3.5102 

 rs4586906 GT 4 GABRB1 

   

-3.6008 

 rs1519480 CT 11 BDNF-AS 

   

-3.6205 

 rs1519480 TT 11 BDNF-AS 

   

3.6417 

 rs1984490 CT 1 FAAH 

    

4.3623 

rs6703669 TC 1 FAAH 

    

4.4378 
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rs17361936 TC 1 FAAH 4.6422 

rs17361950 TC 1 FAAH 4.1166 

rs12624279 AA 2 FOSL2 3.5295 

rs6719779 CT 2 PRKCE -3.7158

rs6578750 GG 11 CCKBR 4.1651

rs7175581 AA 15 CHRNA7 3.7155

Note.    Bootstrap ratios (BSRs) and corresponding information for genotypes on the first 

component across each SAGE analysis configuration (2M = Two matched groups, 4M = Four 

matched groups, 2 = Two groups, 5 = Five groups, Dep = Dependency analysis). Interestingly, 

some of the SNPs and genes found here were also found in the previous (archived) analyses, but 

had poor predictive accuracy in the SAGE data (see Table 6.6). 

6.4.2.2 Validation with the archived data 

Like the proposed pipeline, the flipped pipeline included a “validation” phase. For the 

flipped pipeline, panels were built with the SAGE data, and then tested on the archived data. 

Prediction accuracy—from discovery to validation—in the flipped pipeline was generally worse 

than the proposed pipeline (Table 6.8). This effect is striking because it is unexpected: usually 

models are built on large test sets—mostly because this increases power—and then tested on 

smaller sets, often yielding suitable predictions. Yet, the flipped pipeline (big set ! small set) 

had worse prediction accuracy than the proposed pipline (small set ! big set). Only two 

analyses—on two different configurations—showed prediction accuracy above chance: (1) the 

SAGE dependence model SNPs could predict (above chance) CON v. SUD in the archived data, 

and (2) the SAGE four matched group model could predict (above chance) the four groups in the 

archived data. See Table 6.8 for prediction accuracies. 
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Table  6.8 

Prediction accuracies on archived (from SAGE). 
CON v. SUD Local Data CON v. MJ v. MJ+NIC v. NIC 

SAGE Configurations CHANCE FIXED LOO CHANCE FIXED LOO 

CON v. {MJ, MJ+NIC, NIC} 59.4124 59.3968* 54.0603 29.1412 37.587* 27.1462 

CON v. MJ v. MJ+NIC v. NIC 59.4124 68.2135* 55.6845 29.1412 47.7958* 29.6984* 

CON v. SUD 59.3553 64.6512* 56.0465 29.2104 37.2093* 26.7442 

CON v. MJ v. MJ+NIC v. NIC v. OTHER 59.3553 64.6512* 56.0465 29.2104 37.2093* 26.7442 

Dependence 59.4124 73.7819* 61.7169* 29.1412 57.5406* 28.0742 

Full 59.4124 81.2065* 58.4687 29.1412 67.0534* 27.8422 

Note.    Prediction accuracies on archived data from the SAGE models (use significant genotypes 

identified in SAGE data to predict group configurations in archived data). Because SAGE and 

the archived data sets each have several possible configurations, each are tested and shown here 

based on SAGE model (rows) and group configuration in the archived data (columns). Full 

indicates the entire set of SNPs identified across all analyses. 

6.5 Are the panels really this bad? 

The low prediction accuracies in both pipelines suggest the absence of predictive genetic 

markers of SUDs (within the proposed, large-scale panel; see Section 6.2-6.4) and therefore 

perhaps no genetic contributions to SUDs. Moreover, the proposed panel is generally comprised 

of genes that are (i) strongly suspected, or (ii) have already been shown in the literature, to 

contribute to SUDs (see Chapter 2); yet it appears that there was no prediction from the panels 

devised during the (proposed and flipped) discovery phases. Thus, the question then becomes: 

are the panels created in the discovery analyses really this deficient at predicting SUDs 

compared to other panels? 

To answer this question, a final panel—based on independent (of this dissertation) 

analyses of SAGE—was created and then tested. For this panel, we turn to the work of Agrawal 
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et al., (2011) and Agrawal et al., (2014). The SAGE data were used in both studies, but unlike 

my dissertation, Agrawal and colleagues used genome-wide data. Both studies emphasized 

cannabis use: via dependence (Agrawal et al., 2011) and via phenotypic characteristics (Agrawal 

et al., 2014). While in their work there was no traditionally significant GWAS SNP (p < .05-8), 

Agrawal and colleagues did report top SNPs in both papers; though some of those SNPs do show 

relatively strong—albeit “not significant”—effects. 

6.5.1 An external SNP panel 

A final panel was created based on the top listed SNPs in Agrawal et al., (2011) and 

Agrawal et al., (2014). The SNPs in both studies by Agrawal and colleagues had no overlap with 

the proposed panel (see Chapter 2, and Sections 6.2-6.4), thus making this panel an excellent 

candidate for a final test of prediction in SUDs. 

The goal was to validate the SNPs identified in the studies by Agrawal and colleagues in 

the archived data set. The primary validation criterion, like in all other validation steps, was 

based on predictive accuracy. Again, random-effects prediction accuracies were very low and in 

general, below chance (Table 6.9). However, with some creative restructuring of groups to match 

the intended studies of Agrawal and colleagues (i.e., cannabis use), two configurations were just 

above chance: (1) CON v. {MJ, MJ+NIC}, which excluded the NIC group entirely, and (2) CON 

v. MJ v. {NIC, MJ+NIC}, where a single “nicotine” group was made from the NIC and MJ+NIC 

groups. Neither configuration was in the original analyses, nor intended as part of study 

recruitments, and only tested as a set of possible configurations. Regardless, prediction 

accuracies were still barely above chance. 
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Table  6.9 

Prediction accuracy in “archived” from an external panel. 
Agrawal et al., Panels CHANCE FIXED LOO 

Original configurations 

CON v. {MJ, NIC, MJ+NIC} 59.4124 64.6512* 58.8372 

CON v. MJ v. NIC v. MJ+NIC 29.1412 37.6744* 27.907 

Possible configurations 

{MJ, MJ+NIC} v. {CON, NIC} 50.4094 58.8372* 49.5349 

CON v. {MJ, MJ+NIC} 54.9489 64.8876* 56.7416* 

CON v. MJ v. {NIC, MJ+NIC} 34.0809 47.2093* 38.8372* 

CON v. NIC v. {MJ, MJ+NIC} 40.6894 45.3488* 33.7209 

Note.    A final test of prediction accuracy with a set of (small effect) SNPs associated with 

cannabis and/or nicotine use independently discovered in Agrawal et al., (2011) and Agrawal et 

al., (2014). These tests were performed to assess whether the previous predictions were poor 

because of the SNPs or because of other factors. The prediction accuracy for these SNPs was 

also very poor, with only random-effects model with accuracy above chance. To note, neither of 

the original group configurations showed adequate prediction, only “possible” configurations, 

where groups were restructure to test all the possible configurations of cannabis & nicotine use 

to best match the expected results of Agrawal et al., (2011) and Agrawal et al., (2014). 

6.5.2 Common effects in discovery analyses 

In both the proposed and flipped discovery analyses, the first component dissociated 

control from SUDs. However, upon close inspection of significant genotypes and their associated 

genes, it became clear that the first component is not the only commonality. 

Table 6.10 presents the significant SNPs with |BSR|  > 3: (i) in at least one configuration, 

(ii) on any component, and (iii) for both the archived-as-discovery and SAGE-as-discovery

analyses. Both sets “as-discovery” were essentially the same analyses applied to two independent 

data sets. In total, there were 7 common SNPs identified in each discovery phase. These SNPs 
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were associated with the following genes: CHRM3, PRKCE, DRD3, GRM1, NTRK2, and 

GRIN2A. One SNP— rs1562653—was associated with PRKCE and identified in the archived 

data set for the case-control, and multi-group analyses, then again in the SAGE set for the 

dependency-based analysis. 

Furthermore, one of the most apparent effects was the dissociation of control from SUDs 

on the first component of nearly all analyses (besides the obvious case-control analyses). Thus, I 

decided to identify which genes, through their associated genotypes, were significant for both the 

archived-as-discovery (regularized or non-regularized) and SAGE-as-discovery analyses but 

only on the first component. Table 6.11 shows which genes were identified at |BSR| thresholds 

of 3.5, 3.25, and 3 for both sets-as-discovery phases. Of the genes listed in Table 6.11, the 

strongest CON v. SUD effects were associated with the following genes: GRIK1 and GRIN2B, 

which both have |BSR|  > 3.5. However, some genes at a lower threshold—i.e., PRKCE at 

3.25—also appear to be major contributors to the effect (see Section 6.6 for the discussion).
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Table  6.10  

Common SNPs across analyses. 

   
LOCAL SAGE 

SNP Chr Gene Two Group Four Group Imp. aaaa   Two Matched Four Matched Two Group Five Group Dep. 

rs6703930 1 CHRM3 1 1 

rs1562653 2 PRKCE 1 1 1 

rs167771 3 DRD3 1 1 

rs362817 6 GRM1 1 1 

rs1307279 9 NTRK2 1 1 

rs17087959 9 NTRK2 1 1 

rs7195732 16 GRIN2A 1 1 

Note.    Common SNPs across any discovery (not predictive) analysis for both the archived and 

SAGE sets, with a bootstrap ratio (BSR) threshold of |BSR| > 3. Though the chipsets differ quite 

a bit, there were some common SNPs, and of those common SNPs, these 7 were identified as 

significant. The SNP rs1562653 (and its corresponding gene: PRKCE) is of particular interest 

here, because it was identified in both group configurations (two, and four) in the archived data, 

and the dependency-based analysis in the SAGE data. Nearly all other SNPs here show a 

significant effect in the archived four group configuration, and either the SAGE four (matched) 

group, or dependency analysis. 



176 

6.6 Discussion 

The goals of this dissertation were to (1) extend partial least squares-correspondence 

analysis with regularization in order to increase power to detect effects in relatively small sample 

sizes, and possibly with that extension, (2) find a suitably predictive set of genetic markers for 

SUDs. This dissertation did not appear to achieve that goal. Through two separate discovery-

validation pipelines (proposed, then flipped), and even one post-hoc panel (Agrawal and 

colleagues), there were no panels of genetic markers that reached a suitable level of prediction. 

Additionally, Phases 1 and 2 show that regularization made no difference for prediction or 

identification of significant genotypes compared to baseline. 

 Embedded within the broad goal of identifying sutiably predictive genetic markers of 

SUDs, was a methodological challenge: Rarely can a data set—and especially the data sets used 

in this dissertation—reach a sample size required for large-scale genetics analyses of complex 

phenotypes, traits, or disorders. Therefore, we need some methodological approach that can 

handle (relatively) small sample sizes, that also avoids false-positives. The methodological goal 

of this dissertation was to extend an already powerful method—partial least squares-

correspondence analysis—with regularization, in order to make it more powerful. As results in 

Phases 1 and 2 show, regularization made virtually no difference—for prediction or 

identification of significant genotypes—compared to baseline. 
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6.6.1 Common effects 

Nearly every analysis revealed the same type of effect: presence vs. absence of SUDs. In 

the cases of group-based analyses the effect was presence of substance use (SUDs) vs. absence 

of substance use (control). Presence vs. absence of substance use was either the explicit goal of 

the analysis (i.e., case-control) or just so happened to appear (i.e., first components in multi-

group analyses). This effect also existed, obviously, in the dependence-based (SAGE) analyses. 

And finally, the presence vs. absence effect also appeared in the impulsivity analysis (archived 

data); as research has shown, individuals with SUDs typically display moderate to high levels of 

impulsivity, while non-using controls display low levels (Beaton et al., 2014). Thus, one of the 

strongest conclusions to draw from these studies is that it is highly likely that genetic differences 

exist between control and SUDs. The control v. SUD effect suggests possible protective and risk 

factors. Furthermore, the control vs. SUD effect was not just a simple common factor: there were 

specific genes that contributed to this effect (see Section 6.6.2). 

The next strongest conclusion to draw is that a small number of genotypic markers may 

suffice to explain such complex phenomena as the genetic bases of: (1) control vs. SUD or (2) 

individual SUDs. In every validation analysis—from archived to SAGE included somewhere 

between 12 and 107 SNPs each, and from SAGE to archived included somewhere between 20 

and 255 each—prediction accuracy was either below or barely above chance. Such a low 

prediction is odd, given that many other neurological or psychiatric disorders appear to have a 

strong genetic basis (e.g., schizophrenia, Alzheimer’s disease, and alcohol use disorder) and are 

considered polygenic. Therefore, complex disorders—such as SUDs in general, or specific 

SUDs—could be the product of extremely complex interactions between a very large number of 
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genes, and/or between multiple systems (e.g., genes and environment). Furthermore, like other 

polygenic disorders, the genetic effects may not be large effects, but rather reflect the 

combination of a high number of small (with a few large) effects. However, because this could 

lead to false positives, simply identifying a large number of small, or even moderate, effects 

from a single analysis is not a suitable approach to find robust, and likely replicable, genetic 

markers of SUDs, as that could lead to false positives. Some form of replication is required if 

small-to-moderate effects are to be believed. 

Thus, through independent analyses—namely, the archived-as-discovery and SAGE-as-

discovery—a number of small-to-moderate genetic contributions became apparent. 

6.6.2 Likely genes of the control vs. SUDs effect 

A number of genes identified in Table 6.11 are already very well known to SUDs, such as 

the GABR* family of genes, DRD2, SLC6A4, OPRM1, and HTR2A (see Chapter 2, as these are 

already reviewed). Furthermore some genes—such as TH and MPDZ—are known, albeit to a 

lesser extent than, for example DRD2, in the SUD literature. For earlier reviews, see (Palmer & 

de Wit, 2012; Paus, Keshavan, & Giedd, 2008), though more recent work exists (Aurelian, 

Warnock, Balan, Puche, & June, 2016; Kruse, Walter, & Buck, 2014). Therefore, instead of a 

discussion on genes that are already well-known in the genetics of SUDs research, I will focus 

my discussion on five particular genes that showed (1) at least moderate effects, and more 

importantly, (2) came up in multiple analyses: GRIK1, CCKBR, GRIN2A, GRIN2B, and 

PRKCE. The observed effects of these genes also further support the conclusion that there is a 

general control vs. SUD effect. 
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Table  6.11 

Genes with genotypes above BSR thresholds in both “as-discovery” analyses. 
BSR Threshold 

Gene > 3.5 > 3.25 > 3.0

GRIN2B 1 1 1 

CCKBR 1 1 1 

GRIK1 1 1 

PRKCE 1 1 

GRIN2A 1 1 

HTR2A 1 1 

GABRB1 1 1 

MPDZ 1 1 

CHRM3 1 

NTRK2 1 

TH 1 

SLC6A3 1 

DRD2 1 

OPRM1 1 

GABRB3 1 

GABRG3 1 

Note.    Common genes (identified via SNPs), at a variety of thresholds, that appeared in both the 

archived-as-discovery (regularized or non-regularized) and SAGE-as-discovery analyses. Only 

the first component was selected here because, when taken together, all results point towards a 

broad effect of CON v. SUD genetic effects, with only small (possible) genetic effects for each 

particular group. The genes here likely best reflect the CON v. SUD effects. 
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6.6.2.1 GRIK1 

While GRIK1 does not appear in any of this chapter’s tables for the archived analysis, it 

does appear in supplemental material. GRIK1 has only one genotype in the archived multi-group 

analysis, but several in the archived case-control (see online supplmental material). However, in 

the “matched” case-control SAGE analysis, GRIK1 shows several moderate effects (Table 6.7). 

GRIK1’s name is derived from “Glutamate Ionotropic Receptor Kainate Type Subunit 

1”. GRIK1 encodes for glutamate receptors (glutamate is, in general, excitatory see here: 

http://www.genecards.org/cgi-bin/carddisp.pl?gene=GRIK1). There are few studies that show an 

effect of GRIK1 in SUDs, and most show effects of alcohol use disorder (Kranzler et al., 2016). 

See also (Jones, Comer, & Kranzler, 2015) for a review.  

However, a relatively early work in the genetics of SUDs research showed that GRIK1 

was one of the contributing genetic factors separating control from SUDs (Johnson et al., 2008). 

What made the work of Johnson and colleagues so unique is that they had a volunteer sample 

that was ethnically and racially matched with an epidemiological sample across a number of 

SUDs (e.g., nicotine, methamphetamine, and polysubstance). Furthermore, both Johnson et al., 

(2008) and this dissertation are unique in that samples were not restricted—as they usually are—

to European American and occasionally African American individuals.  

Finally, GRIK1 has been linked to both suicidal behaviors (Sokolowski, Wasserman, & 

Wasserman, 2015) and mood disorders (Deo et al., 2013). The Deo et al., (2013) study included 

individuals with diagnoses of “major depressive disorder, dysthymia, or bipolar disorder”. 

Furthermore, Deo et al., note that, while most cases were major depressive, a large proportion of 

cases were also co-morbid for alcohol use disorder or other SUDs. 



181 

This dissertation shares two properties with the Deo et al., (2013) study. First both studies 

were a “large-scale candidate gene analysis”, where Deo and colleagues explicitly used the 

NIAAA “addictions array” (Hodgkinson et al., 2008), I created a panel based on that same array. 

Second, studies used genetic models besides the typical additive code (specifically, Deo et al., 

use dominant and recessive). More interestingly, Deo et al., (2013) also found effects of genes 

common with this dissertation besides GRIK1: CHRM3, NTRK2, GRM1, DRD2, GABRG2, 

and—two that are discussed here—GRIN2B and PRKCE. 

6.6.2.2 CCKBR 

Of the five genes to discuss, CCKBR was frequently a top contributor in the archived 

data (Tables 6.2 and 6.3), but not as frequently in the SAGE data (Table 6.7). However, the 

effects of this gene are particularly intriguing. Not only were the only effects of CCKBR in the 

archived data on the first component, but only contributed to the dependency-based analysis in 

SAGE. Furthermore, the BSR values of the CCKBR genotypes are amongst the highest 

throughout all analyses.    

CCKBR’s (an initialism of “Cholecystokinin B receptor”) regulates peptides in the brain 

(http://www.genecards.org/cgi-bin/carddisp.pl?gene=CCKBR). CCKBR has also been shown—

in mice—to regulate dopamine release (Altar & Boyar, 1989). 

CCKBR is rarely identified in SUDs literature. Tyndale (2003) suggested that there were 

weak effects of CCKBR for alcohol and nicotine use. CCKBR could regulate cocaine use—

albeit in rat models (Lull, Freeman, Vrana, & Mash, 2008). However, CCKBR (like GRIK1) is a 

risk factor for comorbid depressive and alcohol use disorders (Kertes et al., 2011), suicide in 

bipolar disorder (Costa et al., 2015), and panic disorders (Wilson, Markie, & Fitches, 2012). 
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6.6.2.3 GRIN2A and GRIN2B 

Both GRIN2A and GRIN2B were amongst the top significant genes (via many 

genotypes) in the archived multi-group analysis, especially on Component 1 (see Table 6.3), and 

survived the threshold of |BSR|  > 3.5 for both the archived multi-group analysis and archived 

case-control analysis (see Table 6.5). Furthermore, GRIN2A was significant in the archived 

case-control analysis. Subsequently, we see both genes as top contributors (to the first 

components) in the matched multi-group and full case-control in the SAGE-as-discovery 

analysis (Table 6.7). Finally, a specific SNP— rs7195732—was significant in the archived 

multi-group, and SAGE “matched” case-control analyses.  

GRIN2A and GRIN2B (acronyms of “Glutamate Ionotropic Receptor NMDA Type 

Subunit 2: A and B) are both, like the GRIK1 gene previously mentioned, involved with 

glutamate receptors. Both GRIN2A and GRIN2B have been of interest, or shown significant 

results in: alcohol disorders (Chen et al., 2015), disorders comorbid with alcohol or substance 

use disorders (Dalvie, Fabbri, Ramesar, Serretti, & Stein, 2016; Edwards et al., 2012), and 

psychiatric disorders more broadly (Abdolmaleky, Thiagalingam, & Wilcox, 2005). GRIN2A 

has also been associated with heroin and cocaine use (Levran et al., 2016). GRIN2B has been 

associated with opioid use (Xie et al., 2014). However, GRIN2B has shown effects in a number 

of interesting areas. One area in particular is addictions in Parkinson’s Disease (Ceravolo, 

Frosini, Rossi, & Bonuccelli, 2010). Finally, GRIN2B has been linked to a variety of 

physiological and SUD traits (Nikpay et al., 2012). 
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6.6.2.4 PRKCE 

While there were no top contributor genotypes (i.e., |BSR|  > 3.5) to any archived 

analysis, genotypes associated with PRKCE showed effects in every archived analysis (see 

online supplemental material). Furthermore, PRKCE genotypes did appear as top contributors 

(i.e., |BSR|  > 3.5) to both the “matched” case-control analysis and the dependency-based 

analysis in the SAGE-as-discovery set. Furthermore, a particular SNP— rs1562653—also came 

up in three analyses: archived case-control, archived multi-group, and SAGE dependency-based. 

The effects of PRKCE in all analyses were the most interesting. Table 6.12 shows all 

genotypes from PRKCE significant at |BSR|  > 3 and only for the respective first components; 

every “as-discovery” analysis had significant PRKCE genotypes for at least the first component. 

The effects of PRKCE are, generally, lower than most other genotypes and below the “top 

contributor” threshold of |BSR|  > 3.5. However, common and unique genotypes contribute to the 

control vs. SUD effect in every discovery analysis, and so in all analyses, this gene always had at 

least one significant genotype for a control vs. SUD effect. 

PRKCE’s (an initialism of “Protein Kinase C Epsilon”) is part of a larger PKC* gene 

family. While PRKCE’s role is unclear—PRKCE and the PKC family appear to play many roles 

(Dekker & Parker, 1994)—it does appear to play a role in many cardiac-related functions 

including ischemia and anxiety (http://www.genecards.org/cgi-bin/carddisp.pl?gene=PRKCE).  

PRKCE has been studied in animal models of SUDs (Lesscher et al., 2009; Newton et al., 

2007; Newton & Messing, 2006). Effects of PRKCE have been observed in opioid dependence 

(Levran et al., 2015), alcohol use disorders (Han et al., 2013; Rodd et al., 2006), alcohol 
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consumption in younger populations (Adkins et al., 2015), broader SUD phenotypes (Uhl et al., 

2008), and even pathological gambling (Lang et al., 2016). 

Additionally, several studies already mentioned in this discussion section also presented 

effects of PRKCE: physiological, obesity-related, and SUDs traits (Nikpay et al., 2012), mood 

disorders (Deo et al., 2013) a possible contributor to suicidal behaviors (Sokolowski et al., 2015), 

alcohol use disorders (Chen et al., 2015), and—like GRIK1—effects across: (i) research and 

epidemiological samples, (ii) race and ethnicity, and (iii) many SUDs (Johnson et al., 2008). 

Though PRKCE was identified in both samples in the Johnson et al., (2008) study, it did not 

meet the final criteria for significance: an effect that shows perhaps—like in this dissertation—

there are many robust, albeit small, effects as opposed to only a few large effects. 

6.6.2.5 Genetic commonalities across many neuro-psychiatric disorders 

Some of the strongest and most replicable genotypes found in the studies within this 

dissertation are not amongst the “usual” or expected genotypes in SUDs. The majority of genetic 

studies on SUDs focus either on particular systems—dopaminergic via, e.g., DRD2—or target 

endogenous genes—such as cannabinoid for cannabis, nicotinic for nicotine, and opioid receptor 

genes for opioids (see Chapter 2). However, the results of this dissertation—with respect to 

which genotypes—are very clear: there are other, unexpected, genes involved too. Nearly all of 

these unexpected genes (i.e., CCKBR, GRIK1, GRIN2A, GRIN2B, and PRKCE) have shown 

some effects in the SUD literature before, albeit far fewer than more popular (to study) genes. 

Furthermore, as already noted, these unexpected genes also appear in a variety of other 

psychiatric disorders.  
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In sum, the genetics of SUDs—and other neurological or psychiatric disorders—appear 

to be very complex. This complexity is likely rooted in concepts of polygenic—many genes 

contribute to one trait—or even pleiotropic—many genes contribute to many traits—in nature 

(Kendler et al., 2012; Latvala, Kuja-Halkola, D’Onofrio, Larsson, & Lichtenstein, 2016; 

O’Donovan & Owen, 2016). Thus, we have to move away from supposing simpler genetic 

explanations of these disorders, and with that move away, we must also move towards more 

sophisticated analytical approaches—like those in this dissertation—designed specifically to 

detect complex genetic contributions. 

6.6.3 Methodological discussion 

Recall that one of the primary goals of this dissertation was to address methodological 

issues of small sample sizes—and thus potential false positives—for large-scale genetics 

analyses. Typically, when sample sizes are too small, robust estimation techniques should be 

used in order to avoid “ill-posed problems” and of the issues that come with those “ill-posed 

problems” (e.g., rank deficiency). Therefore, PLS-CA (Beaton, Dunlop, et al., 2016), was 

extended with a “ridge-like” approach (à la Takane & Hwang, 2006) that combines and 

generalizes the concepts of regularized multiple correspondence analysis (Takane and Hwang, 

2006) and the smoothed approach to two-way functional PCA (Allen, 2011). In all analyses, 

resampling procedures were performed to (1) determine prediction accuracy, and (2) identify 

likely robust effects; these resampling procedures provided inferential, as opposed to descriptive, 

estimations of the observed effects. 
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Table  6.12 

Significant PRKCE Genotypes. 
Archived SAGE 

SNP genotype 2G 4G Imp M2G M4G 2G 5G DEP 

rs10169469 TG 

   

-3.033

rs10865212 GT -3.633 -3.198 -3.284

 rs11674329 CA 

 

-3.305

rs11677077 CC 3.206 

 rs2245633 CC 

 

-3.059

rs608139 CT+CC -3.07 -3.123

rs608139 TT 3.07 3.123

 rs6719779 CT 

 

-3.716

rs7557421 AG+AA 3.05 

rs7557421 GG -3.05

 rs935653 CC -3.344

rs935653 TC+TT 3.344

rs12622193 AC+AA 3.083 

rs12622193 CC -3.083

 rs1562653 AA -3.334 -3.139

rs4557033 GG -3.007

 rs642200 CC 

 

-3.005

rs666334 CC 3.306 

 rs751237 GG -3.237 -3.098

rs7581914 GG 3.122 

Note.    All SNPs and genotypes from the PRKCE gene—for Component 1—across all data-as-

discovery analyses. While there were no common genotypes across the archived and SAGE (“as-

discovery”) sets for Component 1, there were a high number of significant PRKCE genotypes for 

each and across both analyses. However, common significant genotypes exist within each 

analysis. 
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As previously noted, regularized PLS-CA—as a ridge regularized approach— decreased 

variance, while forcing the component scores closer to zero (i.e., “shrinkage”). However, it did 

not provide any of the expected advantages (i.e., better estimation) a regularized method should. 

In the end, SmooPLS-CA provided no advantage over standard PLS-CA for this dissertation. 

6.6.3.1 Failure of regularization 

Phases 1 and 2 (standard PLS-CA and SmooPLS-CA, respectively) suggested that there 

were slight but inconsequential differences in the bootstrap identified genotypes between phases. 

Furthermore, prediction accuracies were either comparable, or in some cases better in standard 

PLS-CA. Taken together, it would appear as though regularization failed. Phase 3 confirmed this 

failure: no advantage was afforded by regularization from discovery to validation.  

The failure of regularization is not an expected behavior, as regularization is a technique 

designed specifically to boost power for situations exactly like those in this dissertation: small 

sample sizes, high-dimensional, and often noisy data. Therefore, instead of the perspective that 

regularization has failed, perhaps we could consider that PLS is already a powerful technique 

and does not require regularization. 

6.6.3.2 Robustness of PLS & Resampling 

There have been two recent studies with partial least squares that help explain why 

standard PLS-CA appeared to be as good as, and in some cases better than SmooPLS-CA. 

The first study comes from imaging genetics (Grellmann et al., 2015). In their study, 

Grellmann and colleagues used simulated data—to control the “ground truth” of SNP-voxel 

associations—and tested three techniques: partial least squares (correlation), sparse canonical 

correlation analysis (à la Witten et al., 2009), and “Bayesian inter-battery factor analysis” (a 

Bayes version of IBFA à la Tucker, 1958). As noted in Chapter 3, Section 3.2.4, Grellmann et 
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al., (2015) showed that standard PLS outperformed the other two techniques, under the condition 

that the number of variables greatly exceeded the sample size, that is: PLSC did a better job at 

identifying SNP-voxel associations under very high dimensionality, where sparse CCA 

performed well when the number of variables was small. Furthermore, Grellmann et al., (2015) 

also showed that even when sparse CCA was the superior technique, that sparse CCA and PLSC 

performed at comparable levels. Finally, Grellmann and colleagues also showed that PLSC, 

regardless of dimensionality, usually detected effects within a few, and sometimes only one, 

component. This dissertation and Grellmann et al., (2015) together suggest that a “standard” PLS 

technique is better than or equal to comparable regularized methods for these particular 

domains. 

The next study is by Churchill et al., (2014), with further support from an unpublished 

study (Churchill, personal communication, January 2016). Churchill and colleagues were 

studying the effects of pipeline choices on functional neuroimaging, with an emphasis on 

maximizing prediction and reproducibility. In both works the support vector machine—a 

standard predictive technique—maintained high prediction, but low reproducibility. In their 2014 

work, Churchill et al., showed that PCA, as opposed to regularized techniques, maximized 

reproducibility. Furthermore, in their unpublished work, they also included discriminant (a.k.a., 

“mean-centered”) PLS that is (a between-class covariance technique). In their unpublished work, 

a slightly modified (estimable) linear discriminant analysis and discriminant PLS produced the 

most reproducible effects, well beyond other techniques. Taken together, the work of Churchill 

and colleagues, as well as this dissertation suggest that PLS is not a suitable technique to build 

highly predictive models. However, the results from the PLS models are highly reproducible. 
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Reproducible effects are precisely what we observed when both the archived and SAGE data sets 

were treated as “discovery” (i.e., the same analysis applied to two independent sets) and 

produced highly similar results, yet could not adequately predict group relationships. 

Finally, SmooPLS-CA worked the way it was supposed to: component scores, especially 

of distant outliers, shrunk towards zero and thus eliminated potentially spurious effects, and only 

the strongest signals per component remained far from zero. However, when used in conjunction 

with resampling-based inference techniques, there was no substantial difference between 

standard and SmooPLS-CA to detect significant genotypes. At least in these studies, it seems that 

regularization approximates and eventually converges to the same information provided by 

BSRs: unstable items shrink towards zero (have non-significant BSRs), whereas stable items stay 

in place (have significant BSRs). 

6.7 Limitations and conclusions 

At first it appeared that there were null effects from both the proposed and flipped 

pipelines. However, upon closer inspection it was clear that there were some moderate-to-strong 

reproducible effects. These effects were genotypes from the same genes that contributed to a 

separation of control from SUDs. Though these reproducible effects were discovered with 

independent analyses via PLS-CA, there are some limitations that should be discussed. 

First, the archived and SAGE sets are not entirely comparable. The SAGE study focuses 

on alcohol use disorders, and so, the non-control participants were alcohol dependent. In 

addition, many individuals in the SAGE set are co- or polysubstance users—an artifact of an 

early, multi-site data set—and this makes the study of any one SUD difficult. In an opposite 

sense, the archived data had relatively clean study groups—an “artifact” of recruitment—with 
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extremely low incidence of alcohol dependence. In the end, the closest comparable groups across 

the archived and SAGE were only the control groups. And while the primary effect observed in 

this dissertation appears to be control vs. SUD, I do not believe it is entirely due to the group 

configurations. Some of the multi-group analyses performed relatively well—within discovery 

stages—and even some of the genotypes of later (i.e., not the first) components showed common 

genotypes (see online supplemental material for all genotypes with |BSR|  > 3).  

Another possible limitation was with respect to the proposed Phase 3: perhaps a more 

robust approach for prediction should have been used in this phase. While this is reasonable, 

there is no other available statistical method for strictly categorical data. To use another method 

would result in using only the additive model, and thus limit all genetic assumptions to be strictly 

linear and additive. 

Another limitation is that the two data sets had different chipsets for SNPs. This actually 

made the transition from discovery phases to validation phases difficult. Not all SNPs discovered 

could be validated. However, it would appear as though the parallel analyses (i.e., same analysis 

applied to two independent sets) are a very reasonable work around to different chip sets. 

Furthermore, the two parallel analyses—where one data set is completely sequestered from the 

other—actually matches how replication analyses would be performed.  

Finally, there is a major issue that ties together all the limitations: confound correction. In 

genomics, the usual approach to confound correction is that after standard quality control and 

preprocessing have been completed, a multivariate assessment of the individuals is made. This 

multivariate assessment is almost exclusively PCA (a.k.a., “eigen stratification”). Next, either 

sets of individuals are excluded (which now changes minor allele frequencies and missingness) 
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or more commonly, genomic components are removed from the data set. There are two issues 

with confound correction. First, in order to have a unified confound correction, the data sets 

would have to be combined, cleaned, preprocessed, and then separated into a “discovery” and 

“validation” sample. This is akin to a training/testing paradigm. But doing so in genetics will 

create another problem: When the data sets are cleaned through the same pipelines, they are no 

longer independent. The next issue is that when data sets are left as independent data sets, 

confound correction will be different in each set. As noted in the supplemental methods, the 

archived-as-discovery data had five components removed, where as the SAGE-as-discovery had 

only removed one component. Furthermore, confound correction was applied to every panel in 

Phase 3 individually: Every unique set showed a slightly different confounding factor. This, 

therefore, made Phase 3 a very time consuming process. In the end, it was not an easy choice, but 

I believe that a complete sequestration—like I did—is the best way forward. While it precluded 

me from actually predicting SAGE data from the archived models, this is also the same scenario 

independent researchers would face in replication attempts. 

While there were limitations, I do not believe them to hinder the results of these studies. 

In fact, some limitations—such as keeping data completely independent—made for a stronger set 

of results: the same effects and genotypes were observed in separate analyses of separate data. 
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Beaton, D.​, & Valova, I. (2007). RADDACL: A Recursive Algorithm for Clustering and Density 
Discovery on Non-linearly Separable Data. In Neural Networks, 2007 (pp. 1633-1638). Presented 
at the International Joint Conference on Neural Networks, 2007. IJCNN 2007. 

2006 
Beaton, D.​, & Hegedus, S. (2006). Constructing an Architecture for an Interactive Education 
Database - Issues of Design and Implementation. Presented at the IADIS Web Applications and 
Research. 

  
Beaton, D.​, Valova, I., MacLean, D., & Hammond, J. (2006). Convergence and Optimization 
Study of a Growing Parallel SOM Through a Genetic Algorithm. In 25th Digital Avionics 
Systems Conference, 2006 IEEE/AIAA (pp. 1-9). Presented at the 25th Digital Avionics Systems 
Conference, 2006 IEEE/AIAA. 

2005 
Beaton, D.​, & Valova, I. (2005). Alzheimer's detection using neural network techniques and 
enhanced EEG measurements. In Circuits, Signals, and Systems. Presented at the IASTED 
International Conference on Circuits, Signals and Systems, Marina Del Rey, CA, USA. 

 
Technical Reports 
2009 

Hegedus, S., Dalton, S., Brookstein, A., ​Beaton, D.​, Moniz, R., Fishman, B., Roschelle, J., Penuel, 
W. (2009). Scaling Up SimCalc Project: Diffusion of a Research-Based Initiative in Terms of 
Sustainability and Spread (Technical Report No. 02). N. Dartmouth, MA, USA: James J. Kaput 
Center for Research and Innovation in STEM Education. 
 
Fishman, B., Penuel, W., Hegedus, S., Moniz, R., Dalton, S., Brookstein, A., ​Beaton, D.​, et al. 
(2009). What Happens When The Research Ends? Factors Related to Sustainability of 
Research-based Initiative (Technical Report No. 04). Menlo Park, CA, USA: SRI International. 

 
Theses & Dissertations 
2017 

Dissertation 
Beaton, D. ​(2017). Implementing Appropriate Multivariate Methods for Higher Quality Results 
from Genome-wide Association Studies in Substance Abuse Populations. Dissertation in 
Cognition and Neuroscience, Behavioral and Brain Sciences, The University of Texas at Dallas. 
Committee: ​H. Abdi​, ​F.M. Filbey​, K. Rodrigue, R. Golden. 

2012 
Qualifying thesis 
Beaton, D. ​(2012). Partial Least Squares-Correspondence Analysis Reveals the Genetic Correlates 
of Impulse and Addiction. Qualifying Thesis in Cognition and Neuroscience, Behavioral and 
Brain Sciences, The University of Texas at Dallas. Committee: ​H. Abdi​, ​F.M. Filbey​, M.D. Rugg. 

2008 
Master’s thesis 
Beaton, D.​ (2008). Bridging Turing Unorganized Machines and Self-organizing Maps for 
Cognitive Replication. Master’s Thesis in Computer Science, University of Massachusetts at 
Dartmouth. Committee: ​I. Valova​, H. Xu, X. Zhang 

2007 
Master’s project 
Beaton, D.​ (2007). A neural network based-system for classification of EEG data correlating to 

https://scholar.google.com/citations?user=rw1kVRcAAAAJ
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neural or cognitive impairment. Master’s Project in Computer Science, University of 
Massachusetts at Dartmouth. Committee: ​I. Valova​, L. Shen, X. Zhang 

 
Refereed Abstracts 
2016 

Beaton, D., ​Dunlop, J., Abdi, H., Filbey, F.M. (2016). Endocannabinoid, GABA-ergic, and 
dopaminergic contributions to neural response of different reward types. Presented at International 
Imaging Genetics Conference, Irvine, CA. -- ​Awarded 3rd Prize. 
 
Beaton, D., ​Palombo, D.J., Bacopulos, A., Todd, R.M., Mueller, D.J., Anderson, A.K., Abdi, H., 
Levine, B. (2016). Genetic associations of objective and subjective measures of autobiographical 
memory. Presented at Cognitive Neuroscience Society, New York, New York. 
 
Alhazmi, F.,​ Beaton, D., ​Abdi, H. (2016). Identifying latent semantic groups of studies and their 
corresponding brain regions from the NeuroSynth database. Presented at Cognitive Neuroscience 
Society, New York, New York. 
 
Dutcher, A., Kmiecik, M.J., ​Beaton, D.​ (2016). Analyzing multi-block data: A tutorial of Multiple 
Factor Analysis in R. Presented at Southwest Psychological Association, Dallas, TX.  
 
Beaton, D., ​Abdi, H. (2016). Reproducible components through split-half resampling: another 
look at stopping rules. Presented at Southwest Psychological Association, Dallas, TX.  

 
2015 

Abdi, H., ​Beaton, D., ​Saporta, G. (2015). Generalizing partial least squares and correspondence 
analysis methods to predict categorical and heterogeneous data. Presented at Correspondence 
Analysis and Related Methods, Naples, Italy.  
 
Beaton, D., ​Dunlop, J., Abdi, H., Filbey, F.M. (2015). Specific effects of FAAH and CNR on 
neural response to different reward types. Presented at Organization for Human Brain Mapping. 
Honolulu, HI. 
 
Cioli, C., Abdi, H., ​Beaton ​, ​D.,​ Burnod, Y., Mesmoudi, S. (2015). Human cortical gene 
expression matches the properties of functional networks:a hierarchical approach. Presented at 
Organization for Human Brain Mapping. Honolulu, HI. 

 
Williams, L.J., Kim, H.,  Fitzpatrick, K., ​Beaton, D.​, Abdi, H., Bjornson, B. (2015). Ascertaining 
atypical individual patterns from group mental rotation networks in epileptic children. Presented at 
Organization for Human Brain Mapping. Honolulu, HI. 
 
Faso. D., ​Beaton., D.​ (2015). Complementary and alternative approaches to ​p​-values: Intervals, 
Effect Sizes, and Practical Advice. Presented at Southwestern Psychological Association. Wichita, 
KS. 
 
Beaton, D.,​ Faso, D., Sasson, N., Abdi, H. (2015). An Introduction to Permutation and Bootstrap 
Resampling. Presented at Southwestern Psychological Association. Wichita, KS. 

2014 
Krishnan, A., et al., (2014). Meta-analysis of neuroimaging data in a multivariate framework: A 

https://scholar.google.com/citations?user=rw1kVRcAAAAJ
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barycentric hellinger discriminant analysis (BAHEDA) approach. Presented at Society for 
Neuroscience 2014. Washington, D.C. 
 
Krishnan, A., Atzil, S., Satpute, A., ​Beaton, D., ​Ruzic, L., Abdi, H., Wager., T., Barret, L. (2014). 
MULTIVARIATE META-ANALYSIS: SEARCH FOR CONSISTENT MIND-BRAIN  
CORRESPONDENCE ACROSS ​THE ​NEUROIMAGING LITERATURE. Presented at Society 
for Affective Science 2014. 
 
Cioli, C., Mesmoudi, S., ​Beaton, D.​, Rudrauf, D., Abdi, H., Burnod, Y. (2014).  Integration of 
functional cerebral networks and genetic expression: the dual intertwined rings architecture of the 
cerebral cortex. Presented at Computational Neuroscience 2014. 
 
Beaton, D., ​Dunlop, J., Filbey, F., M., Abdi, H. (2014). ​ConcatPLS: PLSC for one continuous 
data set and one categorical data set​.  ​Presented at Partial Least Squares and Related Methods 
2014. Paris, France. 
 
Beaton, D.,​ Bernard, A., Abdi, H., Saporta., G. (2014). An integration of partial least squares and 
sparsified multiple correspondence analysis for genetic data.​ ​Presented at Partial Least Squares 
and Related Methods 2014. Paris, France. 
 
Beaton, D., ​Dunlop, J., Abdi, H. (2014). An ExPosition of Bootstrap and Permutation for 
Principal Components Analyses.​ ​Presented at ​the SWPA 2014. San Antonio, TX. 
 
Faso, D.,​ Beaton, D., ​Sasson, N., M., Abdi, H. (2014). An introduction to ANOVA in R. 
Presented at ​the SWPA 2014. San Antonio, TX. 
 
Beaton, D., ​Dunlop, J., Filbey, F., M., Abdi, H. (2014). Partial Least Squares for mixed-data 
analysis in Imaging Genetics.​ ​Presented at ​the Tenth International Imaging Genetics Conference, 
Irvine, CA. 

2013 
Levine, B., Bacopulos, A., Anderson, N.D., Black, S.E., Davidson, P.S.R., Fitneva, S.A., 
McAndrews, M.P., Spaniol, J., Jeyakumar, N., Abdi, H., ​Beaton, D.,​ Owen, A.M., & Hampshire, 
A. (2013). Validation of a Novel Computerized Test Battery for Automated Testing. Poster 
presented at Canadian Stroke Congress, October 17-20, 2013, Montreal, Quebec. 
 
Beaton, D., ​Filbey, F., M., Abdi, H. (2013). Partial Least Squares Correspondence Analysis 
Reveals Genetic Correlates of Impulsivity and Addiction. Presented at Southwestern 
Psychological Association Annual Meeting, Ft. Worth, TX. ​Awarded first prize in Society for 
Applied Multivariate Research ​. 
 
Faso, D., ​Beaton, D., ​Abdi, H., Sasson, N. J., Pinkham, A. E. (2013). Distinct Visual Patterns in 
Clinical Populations Identified by Partial Least Squares. Presented at Southwestern Psychological 
Association Annual Meeting, Ft. Worth, TX. ​Awarded third prize in Society for Applied 
Multivariate Research ​. 

 
Rieck, J. R., ​Beaton, D ​., McDonough, I., Abdi, H, Park, D. C. (2013) Dissociating age-related 
patterns of neural activity along the ventral visual stream during face and object processing. 
Presented at Twentieth Cognitive Neuroscience meeting, San Francisco, CA.  

https://scholar.google.com/citations?user=rw1kVRcAAAAJ
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=rw1kVRcAAAAJ&citation_for_view=rw1kVRcAAAAJ:nZcligLrVowC
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=rw1kVRcAAAAJ&citation_for_view=rw1kVRcAAAAJ:nZcligLrVowC
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Wong, J., de Chastelaine, M., ​Beaton, D.,​ Abdi, H., Rugg, M. D. (2013). Dissociation between 
item-item and item-context memory associations. Presented at Twentieth Cognitive Neuroscience 
meeting, San Francisco, CA.  
 
Beaton, D., ​Dunlop, J., Filbey, F. M., Abdi, H. (2013). Connecting Connectivity: Revealing the 
genetic influences of brain networks in a substance abuse population.​ ​Presented at ​the Ninth 
International Imaging Genetics Conference, Irvine, CA. 

2012 
Beaton, D., ​Filbey, F. M., Abdi, H. (2012). ​Integrating genetic, neuroimaging and behavioral data 
with correspondence analysis: An illustration in addictive populations. Presented at ​the Eighth 
International Imaging Genetics Conference, Irvine, CA. [​PDF ​] 
 
Rieck, J. R., ​Beaton, D.​, Krishnan, A., Abdi, H., & Park, D. C. (2012). Older adults show less 
neural differentiation for processing human, primate, and cat faces in ventral temporal cortex. 
Poster presented at the Cognitive Aging Conference, Atlanta, GA. 
 
Chin Fatt, C. R., ​Beaton, D., ​Abdi, H. (2012). DISTATIS: Three-way metric multidimensional 
scaling and its extensions. Presented at the Classification Society Annual Meeting 2012, 
Pittsburgh, PA. 
 
Schwarz, A.L., van Kleeck, A., ​Beaton, D., ​Horne, E., Ahn, L., MacKenzie, H. (2012). Capturing 
Decision-Making: SLPs' Criteria for Selecting Preschool Read-Aloud Storybooks. Presented at 
American Speech-Language-Hearing Association Annual Meeting 2012, Atlanta, GA. 

2011 
Rieck, J., ​Beaton, D., ​Krishnan, A., Abdi, H., Park, D. (2011). Identifying Patterns of Neural 
Activity During Visual Category Processing in Young and Old Adults with Multi-Block 
Barycentric Discriminant Analysis. Presented at Society for Neuroscience 2011, Washington, D.C. 
 
Beaton, D.​, Abdi, H. (2011). Partial Least Squares-Correspondence Analysis (PLS-CA): A New 
Method to Analyze Common Patterns in Measures of Cognition and Genetics. Presented at 
NeuroInformatics 2011, Boston, MA. [​PDF ​] 

 
Beaton, D.​, Abdi, H. (2011). Partial Least Squares-Correspondence Analysis (PLS-CA): A new 
approach to link measures of cognition and genetics. Presented at MathPsych 2011, Boston, MA. 
[​PDF ​]. 
 
Beaton, D.​, Abdi, H. (2011). Integrating Partial-least Squares and Correspondence Analysis for 
Genetics-based Cognition Research. Presented at the Seventh International Imaging Genetics 
Conference, Irvine, CA. [​PDF ​] 
 
Sasson, N. J., Dichter, G. S., ​Beaton, D.​, Bodfish, J. W. (2011). Adults with and without Autism 
Differ In Their Emotional Responses to Non-Social Images Related to Circumscribed Interests. 
Presented at International Meeting for Autism Research 2011, San Diego, CA. 

 
2010 

Beaton, D.​, Abdi, H. (2010). Predicting behavior from genetics with correspondence analysis. 
Presented at the 43rd Annual Conference of the Society for Mathematical Psychology, Portland, 

http://utd.edu/~derekbeaton/attachments/PostersTalks/SMP_Su2011.pdf
http://utd.edu/~derekbeaton/attachments/PostersTalks/IIG8_S2012.pdf
https://scholar.google.com/citations?user=rw1kVRcAAAAJ
http://utd.edu/~derekbeaton/attachments/PostersTalks/IIG7_S2011.pdf
http://utd.edu/~derekbeaton/attachments/PostersTalks/NeuroInformatics_F2011.pdf
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OR. [​PDF ​] 
2009 

Beaton, D.​, Valova, I., & MacLean, D. (2009). Color Objects Distinction with TurSOM. 
Presented at the International Conference on Cognitive and Neural Systems, Boston, MA. 
 
Keenan, B., ​Beaton, D.​, Le, V., Akbari, Y., Hee Lee, J., Parekh, T., Antes, T., et al. (2009). 
MicroRNA Profiling Can Distinguish Normal From Neoplastic Urothelium. Presented at the 78th 
Annual Meeting of the New England Section of the American Urological Association, DC. 
  
Le, V., Juan, D., ​Beaton, D.​, Keenan, B., Akbari, Y., Hee Lee, J., Parekh, T., et al. (2009). 
Evaluating miRNA Expression Integrity in FFPE Samples with qRT-PCR by Using 
Patient-matched Formalin-fixed and Fresh-frozen Tissues from Renal Cell Carcinoma (RCC) 
Patients. Presented at the 78th Annual Meeting of the New England Section of the American 
Urological Association, Washington, DC. 
 
Akbari, Y., ​Beaton, D.​, Keenan, B., Le, V., Parekh, T., Hee Lee, J., Antes, T., et al. (2009). 
Assessing the Potential of the Htert Cell Line as a Model of Normal Bladder Urothelium via 
Analysis of miRNA Expression. Presented at the 78th Annual Meeting of the New England 
Section of the American Urological Association, Washington, DC. 

 
Unpublished/Not Refereed Abstracts & Posters 
2013 

Levine, B., Bacopulos, A., Anderson, N.D., Black, S.E., Davidson, P.S.R., Fitneva, S.A., 
McAndrews, M.P., Spaniol, J., Jeyakumar, N., Abdi, H., ​Beaton, D.,​ Owen, A.M., & Hampshire, 
A. (2013). Validation of a Novel Computerized Test Battery for Automated Testing. Poster 
presented at the 23rd Annual Neuroscience Conference: Brain Plasticity and Neurorehabilitation, 
March 2-4, 2013, Toronto, Ontario. 

2012 
Beaton, D., ​Dunlop, J., Filbey, F. M., Abdi, H. (2012). Connecting Connectivity: A Brief 
Overview of Methods to Combine Multiple Data Types in Connectivity Analyses.​ Neural 
Computation 201​2, Hanover, NH. 

2011 
Beaton, D., ​Abdi, H., Dunlop, J., Krishnan, A., Buschbaum, B. (2011). An ExPosition into Neural 
Computation with the SVD in R.​ ​Neural Computation 2011​, Hanover, NH. [​PDF ​] 

 
Beaton, D.​, Abdi, H. (2011). Partial Least Squares-Correspondence Analysis (PLS-CA): A New 
Method to Reveal Common Patterns in Measures of Memory and Genetics. Neuroscience of Stress 
and Memory Conference, Dallas, TX. [​PDF ​] 

 
Beaton, D.​, Abdi, H. (2011). Linking Genetics and Cognition with Partial-Least Squares and 
Correspondence Analysis: A Study of the ADNI Cohort. Dallas Aging and Cognition Conference, 
Dallas, TX. [​PDF ​] 

2010 
Beaton, D.​, Abdi, H. (2010). Integrating Partial-least Squares and Correspondence Analysis for 
Genetics-based Cognition Research. Presented at the Greater Dallas Human Brain Imaging 
Retreat, Dallas, TX. [​PDF ​] 

2009 
Dalton, S., Brookstein, A., Hegedus, S., & ​Beaton, D. ​(2009). Democratizing Access to Core 

http://utd.edu/~derekbeaton/attachments/PostersTalks/ImagingRetreat_F2011.pdf
http://utd.edu/~derekbeaton/attachments/PostersTalks/SMP_Su2010.pdf
http://utd.edu/~derekbeaton/attachments/PostersTalks/NSC_S2011.pdf
http://haxbylab.dartmouth.edu/meetings/ncworkshop12.html
https://scholar.google.com/citations?user=rw1kVRcAAAAJ
http://haxbylab.dartmouth.edu/meetings/ncworkshop11.html
http://haxbylab.dartmouth.edu/meetings/ncworkshop11.html
http://utd.edu/~derekbeaton/attachments/PostersTalks/NeuroComp_Su2011.pdf
http://utd.edu/~derekbeaton/attachments/PostersTalks/DACC_S2011.pdf
http://haxbylab.dartmouth.edu/meetings/ncworkshop12.html
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Mathematics Across Grades 9-12: A Longitudinal Study. Presented at the Sigma Xi 2009, Poster, 
University of Massachusetts at Dartmouth. 

2005 
Beaton, D.​, & Valova, I. (2005). Alzheimer's Detection with EEG and ICA. Presented at the 
Sigma Xi 2005, Poster, University of Massachusetts at Dartmouth. 

 
 

 
Software 

R 
Beaton, D. ​(2013). prettyGraphs: publication style graphics (Version 2.1.5) [Software]. Available 
from http://cran.r-project.org/web/packages/prettyGraphs/index.html or 
http://code.google.com/p/exposition-family/source/browse/#svn%2FPackages 
 
Beaton, D., ​Chin Fatt, C., R., Abdi, H.​ ​(2013). ExPosition: Exploratory analysis with the singular 
value decomposition (Version 2.8.19) [Software]. Available from 
http://cran.r-project.org/web/packages/ExPosition/index.html or 
http://code.google.com/p/exposition-family/source/browse/#svn%2FPackages 
 
Beaton, D., ​Dunlop, J., Abdi, H.​ ​(2013). InPosition: Inference tests for ExPosition (Version 
0.12.7) [Software]. Available from http://cran.r-project.org/web/packages/ExPosition/index.html 
or http://code.google.com/p/exposition-family/source/browse/#svn%2FPackages 
 
Beaton, D., ​Rieck, J., Chin Fatt, C., R., Abdi, H. ​ ​(2013). TExPosition: Two-table ExPosition 
(Version 2.6.10) [Software]. Available from 
http://cran.r-project.org/web/packages/TExPosition/index.html​ ​ or 
http://code.google.com/p/exposition-family/source/browse/#svn%2FPackages 
 
Beaton, D., ​Rieck, J., Abdi, H. ​ ​(2013). TInPosition: Inference tests for TExPosition (Version 
0.13.6) [Software]. Available from ​http://cran.r-project.org/web/packages/TExPosition/index.html  
or http://code.google.com/p/exposition-family/source/browse/#svn%2FPackages 
 
Chin Fatt, C., R., ​Beaton, D., ​Abdi, H. ​ ​(2013). MExPosition: Multi-table ExPosition (Version 
2.0.3) [Software]. Available from ​http://cran.r-project.org/web/packages/MExPosition/index.html 
or http://code.google.com/p/exposition-family/source/browse/#svn%2FPackages  
 
Beaton, D.​, Chin Fatt, C., R., Abdi, H. (2013). DistatisR: DiSTATIS Three Way Metric 
Multidimensional Scaling (Version 1.0) [Software]. Available from 
http://http://cran.r-project.org/web/packages/DistatisR/index.html​ or 
http://code.google.com/p/exposition-family/source/browse/#svn%2FPackages 

 
Awards 

Funding 
2016-2018 

Ontario Neurodegenerative Disease Research Initiative (ONDRI) Postdoctoral Scholar.  
ONDRI Scholars Announced 

2013-2016 
NIH NRSA #F31DA035039-01A1.  

http://code.google.com/p/exposition-family/source/browse/#svn%2FPackages
http://code.google.com/p/exposition-family/source/browse/#svn%2FPackages
https://scholar.google.com/citations?user=rw1kVRcAAAAJ
http://ondri.ca/news/ondri-scholars-announced
http://http//cran.r-project.org/web/packages/DistatisR/index.html
http://cran.r-project.org/web/packages/TExPosition/index.html
http://cran.r-project.org/web/packages/MExPosition/index.html
http://code.google.com/p/exposition-family/source/browse/#svn%2FPackages
http://cran.r-project.org/web/packages/TExPosition/index.html
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Implementing Appropriate Multivariate Methods for Higher Quality Results from Genome-wide 
Association Studies in Substance Abuse Populations. 

2014 
Neuroimaging Training Program (NITP) Summer Fellowship 

UCLA. ​Course details.  
Invited Guest: Department of Psychology, University of Chester 

Invited guest on behalf of Dr. Ljubica Damjanovic (Santander Visiting Fellowship 
Award). 
March 08-16, 2014 -- ​CANCELLED due to funding limitations. 

2011 
Student Travel Award(s): 

NeuroInformatics 2011. [​link​] 
Society for Mathematical Psychology: MathPsych 2011 

2010 
Student Travel Award: 

Society for Mathematical Psychology: MathPsych 2010 
2008 

NSF Grant #0812995: East Asia Pacific Summer Institute Fellow. [​link​] 
Graduate Institute of Network Learning Technology, National Central University, Jhong-Li, 
Taiwan. Host advisor: Tak-Wai Chan, Ph.D. 
http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0812995 

 
Paper/presentation/misc. Awards 
2017 

Merit Abstract Award​: OHBM 2017 
Beaton D.,​ Bartha R., Black S.E., Casaubon L., Dowlatshahi D.,  Hassan A.,  Kwan D., Levine B., 
Mandzia J., McLaughlin P., Orange J., Peltsch A., Ramirez J., Roberts A., Sahlas D., Saposnik G., 
Swartz R., Symons S., Troyer A., Strother S.C., ONDRI Investigators (2017). Vascular cognitive 
impairment subgroups show distinct aspects of preserved cognition. To be presented at OHBM 
2017, Vancouver, BC, Canada. 

 
Most promising project: ​BrainHack Global Toronto 
Rieck, J., ​ Beaton, D.​: MARINeR: ​M​ultivariate ​A​nalysis and ​R​esampling ​I​nference for 
Ne​uroimaging in ​R.​ https://github.com/derekbeaton/BrainHack_TO_2017/tree/master/MARINeR 

2016 
Third prize in poster competition 
Beaton, D., ​Dunlop, J., Abdi, H., Filbey, F.M. (2016). Endocannabinoid, GABA-ergic, and 
dopaminergic contributions to neural response of different reward types. Presented at International 
Imaging Genetics Conference, Irvine, CA. 

2013 
First prize in Society for Applied Multivariate Research. 
Beaton, D., ​Filbey, F. M., Abdi, H. (2013). Partial Least Squares Correspondence Analysis 
Reveals Genetic Correlates of Impulsivity and Addiction. Presented at Southwestern 
Psychological Association Annual Meeting, Ft. Worth, TX. 
 
Third prize in Society for Applied Multivariate Research. 
Faso, D., ​Beaton, D., ​Abdi, H., Sasson, N. J., Pinkham, A. E., (2013). Distinct Visual Patterns in 
Clinical Populations Identified by Partial Least Squares. Presented at Southwestern Psychological 

http://www.nsfsi.org/awardee_list_/2008_awardee_list
http://www.neuroinformatics2011.org/about/travel-awards
http://www.brainmapping.org/NITP/Summer2014.php
https://scholar.google.com/citations?user=rw1kVRcAAAAJ
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Association Annual Meeting, Ft. Worth, TX.  
2012 

Meritorious Poster Submission ​(1 of 48 Meritorious Posters out of 1138 posters) 
Schwarz, A. L., van Kleeck, A., ​Beaton, D., ​Horne, E., Ahn, L., MacKenzie, H. (2012). Capturing 
Decision-Making: SLPs' Criteria for Selecting Preschool Read-Aloud Storybooks. Presented at 
American Speech-Language-Hearing Association Annual Meeting 2012, Atlanta, GA. 

2008 
Best Paper 
Valova, I., ​Beaton, D.​, MacLean, D. (2008). Role of Initialization in SOM networks - study of 
self-similar curve topologies. In ASME Press Series on Intelligent Engineering Systems Through 
Artificial Neural Networks. Presented at the ANNIE 2008, St. Louis, MO, USA. 

 
Professional Relationships and Duties 

Committees 

● 2017 Program Chair​ for Society for Applied Multivariate Research (at Southwestern 
Psychological Association). 

● 2016 Program Chair​ for Society for Applied Multivariate Research (at Southwestern 
Psychological Association). 

● 2015 Program Chair​ for Society for Applied Multivariate Research (at Southwestern 
Psychological Association). 

Ad-hoc Reviewer 
● The American Journal of Drug and Alcohol Abuse 
● Research in Autism Spectrum Disorders 
● Food Quality and Preference 
● IEEE Transactions on Neural Networks and Learning Systems 
● Symposium Series on Computational Intelligence (SSCI) 2013 
● International Joint Conference on Neural Networks (IJCNN) 2010-2014 

Member 
● Organization for Human Brain Mapping (2015-Present) 
● Cognitive Neuroscience Society (2015-Present) 
● Foundation for Open Access Statistics ​ (FOAS; 2013-Present) 
● Society for Applied Multivariate Research (SAMR; 2013-Present) 
● Southwestern Psychological Association (SWPA; 2012-Present) 
● Society for Mathematical Psychology (SMP; 2010-Present) 
● International Neural Network Society (INNS; 2007-2009) 
● National Council of Teachers of Mathematics (NCTM; 2006-2008) 

Mentorship 
● Rachelle ​Akpanumoh (linear models for single nucleotide polymorphisms; Summer 2014) 
● Fahd Alhazmi (univariate vs. multivariate tests for single nucleotide polymorphisms, multivariate 

mega-meta semantic analyses of neuroimaging databases; Summer 2014-Present) 
● Libby ​Damjanovic (multivariate and non-parametric analyses for surveys; September 02-12, 2014) 

Public service 
Wikipedia 

○ Substantial update to ​Generalized Singular Value Decomposition 
○ Substantial update to ​Correspondence Analysis 
○ Minor additions to ​Principal Component Analysis 
○ Minor clarification to ​Rv coefficient 

http://en.wikipedia.org/wiki/Correspondence_analysis
http://www.swpsych.org/about_contact_affiliate.php
http://en.wikipedia.org/wiki/RV_coefficient
http://www.swpsych.org/about_contact_affiliate.php
https://scholar.google.com/citations?user=rw1kVRcAAAAJ
http://en.wikipedia.org/wiki/Principal_component_analysis
http://en.wikipedia.org/wiki/Generalized_singular_value_decomposition
http://www.swpsych.org/about_contact_affiliate.php
http://www.foastat.org/
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Professional Experience 

2016-present 
Postdoctoral Fellow ​, Rotman Research Institute, Baycrest Health Sciences and Ontario Neurodegenerative 
Disease Research Initiative.  
 
2013-2016: 
NRSA Predoctoral Fellow ​,​ ​School of Behavioral and Brain Sciences, The University of Texas at Dallas.  
 
2009-2017: 
Graduate Assistant​, School of Behavioral and Brain Sciences, The University of Texas at Dallas (Hervé 
Abdi, Ph.D.) 
Responsibilities ​: Development of software tools, statistical modeling/analysis, pattern classification, pattern 
recognition, functional neuroimaging, behavioral measures, genomics. 
 
2009-2013: 
Teaching Assistant​, School of Behavioral and Brain Sciences, The University of Texas at Dallas (Dana 
Roark, Ph.D.; Daniel Krawczyk, Ph.D.; Hervé Abdi, Ph.D.; Joseph Dunlop, M.S.; Noah Sasson, Ph.D.; 
Gail Tillman, Ph.D.) 
Responsibilities ​: Grading, material reviews, class lectures, course content. 
 
2008-2012: 
Contract Biostatistician/Bioinformatics Analyst​, General Urology Lab, Boston University Medical 
Center (Louis Liou, MD) 
Responsibilities ​: Statistical analyses, development of software tools. 
 
2008-2009: 
Research Associate​, James J. Kaput Center for Research and Innovation in Mathematics Education 
(Stephen Hegedus, Ph.D.) 
Responsibilities ​: Data collection, teacher training, software development/testing, statistical analysis. 
 
2007-2008: 
Research Assistant​, James J. Kaput Center for Research and Innovation in Mathematics Education 
(Stephen Hegedus, Ph.D.) 
Responsibilities ​: Data collection, teacher training, software development/testing. 
 
2006-2008: 
Research Assistant,​ Neural and Adaptive Systems Lab (Iren Valova, Ph.D.) 
Responsibilities ​: Development and analysis of neural algorithms, authorship. 
 
Teaching Assistant​, Computer and Information Sciences Department, University of Massachusetts at 
Dartmouth (Iren Valova, Ph.D.; Li Shen, Ph.D.; Ryan Robidoux, MS) 
Responsibilities ​: Grading, curriculum design, teaching. 
 
2004-2007: 
Research Assistant​, SimCalc Projects (James Kaput, Ph.D.; Stephen Hegedus, Ph.D.) 
Responsibilities ​: Software development/testing, data collection, teacher training. 
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Teaching Experience 

2015 
Teaching Assistant/Co-instructor​: Univariate and Multivariate Analysis in R (Graduate course). 
Instructor ​: Hervé Abdi, Ph.D. 
Guest Lectures ​: Research Methods in Behavioral and Brain Sciences III (Graduate course). 
Topics ​: PCA, PLS, Discriminant Methods, Clustering, etc... 
Instructor ​: Hervé Abdi, Ph.D. 

2014 

Guest Lectures ​: Research Methods in Behavioral and Brain Sciences II (Graduate course). 
Instructor ​: Hervé Abdi, Ph.D. 
Guest Lectures ​: Cognitive Science (Graduate course). 
Topic​: Alan Turing and his contributions to cognitive science. 
Instructor ​: Alice O’Toole 

2013 
Teaching Assistant/Co-instructor​: Univariate and Multivariate Analysis in R (Graduate course). 
Instructor ​: Hervé Abdi, Ph.D. 
Guest Lectures ​: Univariate and Multivariate Analysis in R (Graduate course). 
Topics ​: R, PCA, MDS, PLS, Discriminant Methods, Multi-block methods, Clustering, etc... 
Instructor ​: Hervé Abdi, Ph.D. 
Teaching Assistant​: Research Methods in Behavioral and Brain Sciences III (Graduate course). 
Instructor ​: Hervé Abdi, Ph.D. 
Guest Lectures ​: Research Methods in Behavioral and Brain Sciences III (Graduate course). 
Topics ​: PCA, PLS, Discriminant Methods, Clustering, etc... 
Instructor ​: Hervé Abdi, Ph.D. 
Teaching Assistant​: Research Methods in Behavioral and Brain Sciences II (Graduate course). 
Instructor ​: Hervé Abdi, Ph.D. 
Guest Lectures ​: Cognitive Science (Graduate course). 
Topic​: Alan Turing and his contributions to cognitive science. 
Instructor ​: Alice O’Toole 

2012 
Teaching Assistant​: Research & Evaluation Methods (Undergraduate course) 
Instructor ​: Gail Tillman, Ph.D. 
Guest Lectures ​: Research & Evaluation Methods (Undergraduate course) 
Topics: t​-tests, ANOVAs 
Instructor ​: Gail Tillman, Ph.D. 
Teaching Assistant/Co-instructor​: Univariate and Multivariate Analysis in R (Graduate course). 
Instructor ​: Hervé Abdi, Ph.D. 
Guest Lectures ​: Univariate and Multivariate Analysis in R (Graduate course). 
Topics ​: R, PCA, MDS, PLS, Discriminant Methods, Multi-block methods, Clustering, etc... 
Instructor ​: Hervé Abdi, Ph.D. 
Teaching Assistant​: Research Methods in Behavioral and Brain Sciences III (Graduate course). 
Instructor ​: Hervé Abdi, Ph.D. 
Guest Lectures ​: Research Methods in Behavioral and Brain Sciences III (Graduate course). 
Topics ​: PCA, PLS, Discriminant Methods, Clustering, etc... 
Instructor ​: Hervé Abdi, Ph.D. 
Teaching Assistant​: Research Methods in Behavioral and Brain Sciences II (Graduate course). 

https://scholar.google.com/citations?user=rw1kVRcAAAAJ
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Instructor ​: Hervé Abdi, Ph.D. 
Guest Lectures ​: Research Methods in Behavioral and Brain Sciences II (Graduate course). 
Topics:​ Correlation, regression, ANOVA 
Instructor ​: Hervé Abdi, Ph.D. 
Guest Lectures ​: Cognitive Science (Graduate course). 
Topic​: Alan Turing and his contributions to cognitive science. 
Instructor ​: Alice O’Toole 

2011 
Teaching Assistant​: Research Design & Analysis (Undergraduate course). 
Instructor ​: Noah Sasson, Ph.D. 
Guest Lectures ​: Research Design & Analysis (Undergraduate course) 
Topic: ​Communicating Research in Research Design & Analysis 
Instructor ​: Noah Sasson, Ph.D. 
Teaching Assistant/Co-instructor​: Univariate and Multivariate Analysis in R (Graduate course). 
Instructor ​: Hervé Abdi, Ph.D. 
Guest Lectures ​: Univariate and Multivariate Analysis in R (Graduate course). 
Topics:​ Intro to R, ANOVA, Bootstrap, Permutation Tests, PCA in R Course 
Instructor ​: Hervé Abdi, Ph.D. 
Teaching Assistant​: Research Methods in Behavioral and Brain Sciences III (Graduate course). 
Instructor ​: Hervé Abdi, Ph.D. 
Guest Lectures ​: Research Methods in Behavioral and Brain Sciences III (Graduate course). 
Topics:​ Multi-block Analysis, STATIS, Clustering 
Instructor ​: Hervé Abdi, Ph.D. 
Teaching Assistant​: Research Methods in Behavioral and Brain Sciences II (Graduate course). 
Instructor ​: Hervé Abdi, Ph.D. 
Guest Lectures ​: Research Methods in Behavioral and Brain Sciences II (Graduate course). 
Topics:​ Correlation, regression, ANOVA 
Instructor ​: Hervé Abdi, Ph.D. 
Guest Lectures ​: Cognitive Science (Graduate course). 
Topic​: Alan Turing and his contributions to cognitive science. 
Instructor ​: Alice O’Toole 

2010 
Teaching Assistant​: Research Methods in Behavioral and Brain Sciences III (Graduate course). 
Instructor ​: Hervé Abdi, Ph.D. 
Guest Lectures ​: Research Methods in Behavioral and Brain Sciences III (Graduate course). 
Topics: ​Statistical Analyses Using R. 
Instructor ​: Hervé Abdi, Ph.D. 
Teaching Assistant​: Research Methods in Behavioral and Brain Sciences I (Graduate course). 
Instructor ​: Joseph Dunlop, MS 
Teaching Assistant​: Cognitive Psychology (Undergraduate course).  
Instructor ​: Daniel Krawczyk, Ph.D. 

2009 
Teaching Assistant​: Experimental Projects (Undergraduate course). 
Instructor ​: Dana Roark, Ph.D. 
Guest Lectures ​: Advanced Research Methods: Statistical Analysis Using R. 
Topics ​: PCA, FactoMineR, Clustering 
Instructor ​: Hervé Abdi, Ph.D. 
Guest Lectures ​: Research Methods in Behavioral and Brain Sciences III. 

https://scholar.google.com/citations?user=rw1kVRcAAAAJ


CURRICULUM VITAE 
UPDATED: 3.25.2017 Google Scholar Page 

 

Topics ​: Clustering 
Instructor ​: Hervé Abdi, Ph.D. 

2008 
Teaching Assistant/Lab Instructor​: Introduction to C Programming (Undergraduate course).  
Instructor ​: Ryan Robidoux, M.S. 
Teaching Assistant​: Video Game Design (Undergraduate course).  
Instructor ​: Iren Valova, Ph.D. 
Guest Lectures ​: Video Game Design (Undergraduate course). 
Topic:​ Proprioception and Haptics in Gaming 
Instructor ​: Iren Valova, Ph.D. 
Teaching Assistant​: Artificial Intelligence (Undergraduate course). 
Instructor ​: Iren Valova, Ph.D. 
Guest Lectures ​: Artificial Intelligence (Undergraduate course). 
Topics:​ Neural Computation 
Instructor ​: Iren Valova, Ph.D. 

2007 
Teaching Assistant/Lab Instructor​: Introduction to C Programming (Undergraduate course).  
Instructor ​: Ryan Robidoux, M.S. 
Teaching Assistant​: Artificial Intelligence (Undergraduate course). 
Instructor ​: Iren Valova, Ph.D. 
Guest Lectures ​: Artificial Intelligence (Undergraduate course). 
Topics:​ Neural Computation 
Instructor ​: Iren Valova, Ph.D. 

 
 
2006 

Teaching Assistant/Lab Instructor​: Procedural Programming with C (Undergraduate course).  
Instructor ​: Li Shen, Ph.D. 
Guest Lectures ​: Data Mining and Knowledge Discovery (Undergraduate course). 
Topic:​ Hierarchical clustering  
Instructor ​: Iren Valova, Ph.D. 

 
Conferences, Workshops, & Presentations 

2016 
● Twelfth International Imaging Genetics Conference, 2016 

○ Poster presentation -- awarded 3rd prize. 
2015 

● Organization for Human Brain Mapping, 2015 
○ Three posters (one first author) 

● Southwest Psychological Association, 2015 
○ Workshop: ​An Introduction to Permutation and Bootstrap Resampling​. 
○ Workshop: ​Complementary and alternative approaches to ​p​-values: Intervals, Effect 

Sizes, and Practical Advice. 
2014 

● Partial Least Squares and Related Methods, 2014 
○ Two talks 

● Southwest Psychological Association, 2014 (​workshop materials ​) 
○ Workshop: An ExPosition of Bootstrap and Permutation tests for Principal Components 

https://code.google.com/p/exposition-family/source/browse/Workshops/SWPA_2014
https://scholar.google.com/citations?user=rw1kVRcAAAAJ
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Analyses. 
○ Workshop: An Introduction to ANOVA in R. 

● Tenth International Imaging Genetics Conference, 2014 
○ Poster presentation 

2013 
● Southwest Psychological Association, 2013 

○ Poster presentation 
● Ninth International Imaging Genetics Conference, 2013 

○ Poster presentation 
2012 

● Neural Computation, 2012 
○ Poster Presentation 

● Partial Least Squares and Related Methods, 2012 
○ Talk 

● Eighth International Imaging Genetics Conference, 2012 
○ Poster presentation 

2011 
● Society for Neuroscience, 2011 

○ Poster Presentation 
● NeuroInformatics, 2011 

○ Poster Presentation 
● Neural Computation, 2011 

○ Poster Presentation 
● Society for Mathematical Psychology, 2011 

○ Talk 
● Neuroscience of Stress and Memory Conference, 2011 

○ Data Blitz 
● Dallas Aging and Cognition Conference, 2011 

○ Poster presentation 
● Seventh International Imaging Genetics Conference, 2011 

○ Poster presentation 
2010 

● First Annual Greater Dallas Human Brain Imaging Retreat, 2010 
○ Poster presentation 

● Society for Mathematical Psychology, 2010 
○ Poster presentation 

2009 
● International Joint Conference on Neural Networks, 2009 - Atlanta, GA 

○ Two poster presentations 
● International Conference on Cognitive and Neural Systems, 2009 - Boston, MA 

○ Poster presentation 
2007 

● Executive Briefing Center, Apple Inc, Cupertino, CA 
○ Presentation of SimCalc materials, software and curriculum 

● International Joint Conference on Neural Networks, 2007 - Orlando, FL 
○ Poster presentation 

● National Council of Teachers of Mathematics 2007 – Atlanta, GA 
○ Several workshops (SimCalc software) 

https://scholar.google.com/citations?user=rw1kVRcAAAAJ
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● T3 ("T-Cubed", Teachers Teaching with Technology)  – Chicago, IL. 
○ SimCalc booth operator 

2006 
● International Association for the Development of the Information Society: Web Applications and 

Research  
○ Paper presentation 

● SRI TexTeam Scale Up 2006 (SimCalc representative) 
○ Technology/Curriculum Instructor (June – Edinburg, TX; August – Ft. Worth, TX) 

2005 
● International Association of Science and Technology for Development: Circuits, Signals and 

Systems 2005 – Marina Del Rey, CA. 
○ Paper presentation 

● National Council of Teachers of Mathematics 2005 – Denver, CO 
○ SimCalc workshop 

● T3 ("T-Cubed", Teachers Teaching with Technology) 2005 – Washington, D.C. 
○ SimCalc booth operator 

2004 
● Association of Teachers of Mathematics in New England 2004 – Providence, RI 

○ SimCalc workshop 
 

Relevant Courses Taken 
Graduate 

● Face Processing (UT Dallas) 
● Neuroimaging Training Program (UCLA) 
● Perception (UT Dallas) 
● Cognitive Neuroscience of Human Memory (UT Dallas) 
● Cognitive Development (UT Dallas) 
● Research Methods in Behavioral and Brain Sciences III (UT Dallas) 
● Advanced Research Methods: Statistical Analysis Using R (UT Dallas) 
● Fundamentals of Functional Neuroimaging (UT Dallas) 
● Complex Systems (New England Complex Systems Institute) 
● Neural Computing (UMass Dartmouth) 
● Bioinformatics (UMass Dartmouth) 
● Artificial Intelligence (UMass Dartmouth) 
● Data Mining and Knowledge Discovery (UMass Dartmouth) 
● Computational Theory (UMass Dartmouth) 
● Computer Graphics (UMass Dartmouth) 

 
Undergraduate 

● Bioinformatics (UMass Dartmouth) 
● Image Processing and Analysis (UMass Dartmouth) 
● Artificial Intelligence (UMass Dartmouth) 
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