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We are witnessing a fast-growing demand in vehicle electrification nowadays due to the

widespread environmental consciousness, stringent emission regulations, and carbon neu-

trality implementation. As one of the most promising energy storage and electrification

solutions, lithium-ion battery has been widely employed for electric vehicles (EVs) due to

its excellent properties like high energy density, low maintenance, and long cycle life. How-

ever, there still exist multiple critical challenges in using lithium-ion battery at large scale as

the major power source, such as reliability issues, safety concerns, and especially the range

anxiety. Several promising solutions have been explored in the EV industry to mitigate the

drawback of range anxiety, such as larger capacity with high energy density and ultra-fast

charging. All these approaches challenge the temperature sensitive battery system as a side

effect by bringing in extra overburdened waste heat. Given these concerns, battery ther-

mal management system (BTMS) plays an indispensable role in maintaining the maximum

temperature and temperature uniformity for EVs.

This dissertation proposes a novel J-type air-based cooling structure via re-designing con-

ventional U - and Z- type structures. Aiming to further improve the thermal performance,

a surrogate-based optimization framework with two-stage cluster-based resampling is de-

veloped for BTMS structural optimization. Compared with the U- and Z- type, the novel

vi



J-type structure is proved with significant advancements. Based on the optimized J-type

configuration, an operation mode switching module is designed to mitigate the temperature

unbalance by controlling the opening degree of two outlet valves. Tested by an integrated

driving cycle, results reveal that the J-type structure with its appropriate control strategy

is a promising solution for light-duty EVs using an air cooling technology.

Improving the energy efficiency is another potential approach to mitigate range anxiety.

In this dissertation, a model predictive control (MPC)-based energy management strategy

is developed to simultaneously control the BTMS, the air conditioning system, and the

regenerative power. A vehicle velocity forecasting framework is integrated with the MPC-

based energy management to further improve the energy efficiency. Deep learning and image-

based traffic light detection techniques have been leveraged for velocity forecasting. Results

show that the proposed energy management method has significantly improved the overall

EV energy efficiency.
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CHAPTER 1

INTRODUCTION

We are witnessing a fast-growing demand in vehicle electrification nowadays due to the

widespread environmental consciousness, stringent emission regulations, and carbon neu-

trality implementation. During the past decade, the global passenger electric vehicle (EV)

market penetration has increased from zero to nearly 4.5% with a number of more than 10

million by 2020. As one of the most promising energy storage and electrification solutions,

lithium-ion battery has been widely employed for EVs due to its excellent properties like

high energy density, low maintenance, and long cycle life. However, compared with internal

combustion engines, there still exist multiple critical challenges in using lithium-ion battery

at large scale as the major power source, such as reliability issues caused by temperature

sensitivity and gradual aging, safety concerns like catching fire or penitential explosion, and

especially the range anxiety resulted from low energy density and small capacity.

It can be concluded that the competitions between EVs and conventional internal com-

bustion engine vehicle actually lie on the endurance range. Multiple promising solutions

have been explored in the EV industry aiming to enhance the driving range and mitigate the

drawback of range anxiety, such as increasing the energy density of battery cell by testing

varying materials, building larger battery packages, employing ultra-fast charging technolo-

gies. All these approaches tend to challenge the battery system as an inevitable side effect

by generating extra overburdened waste heat. Note that the appropriate operating tempera-

ture for lithium-ion battery ranges between 20◦C and 45 ◦C. An extremely high temperature

caused by heat accumulation will jeopardize the performance, health status, and safety of the

battery pack. Given these concerns, battery thermal cooling/heating structural design, opti-

mization, and control have emerged as one of the essential research fields in EV applications

and innovations.
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The maximum operating temperature and the temperature uniformity are two of the

most important evaluation metrics for battery thermal management system (BTMS). A

large amount of research has been performed during the past decade to examine and explore

a wide range of heat transfer mediums integrated with its appropriate structure design and

optimization for BTMS. State-of-the-art heat transfer mediums include air, fluid, phase

change material, heat pipe, and an integration of them. All the mediums other than air and

fluid are still under laboratory experimental stages due to their complexities and unstability.

For air-based cooling technologies, optimizing the existing structure and further redesigning

new structures are two mainstream research directions in both academic and industry. A

large number of cooling structures have been developed for different types of battery under

varying operation scenarios. Some of these air-based structures have also been successfully

applied in EV industry. The air-based cooling technology was primarily utilized in hybrid

EVs to satisfy the thermal constraints for a small-size battery pack, such as the early models

of Nissan Leaf and Toyota Prius. Following the aforementioned advancements in the EV

industry with larger battery packs, the fluid-based cooling technology has been proved with

a higher thermal capacity to address the newly-rising challenges like fast charging. Although

the fluid-based thermal control approach is the most popular technology in practice, the air-

based cooling technology is still worth to be explored especially associated with its structure

optimization and optimal control strategies, due to its excellent performance for compact-size

or cost-competitive EVs.

Aiming to address the challenge of range anxiety, besides these improvements from the

view of battery power source like increasing battery capacity and fast charging, another

promising alternative solution is to improve the energy efficiency of varying on-board devices

at device/system level. As discussed above, these technical advancements focus more on the

hardware perspective, while the approach of improving the energy efficiency emphasizes

more on the control and optimization algorithm for EVs. Furthermore, improving the power
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allocation will also reduce the heat generation and thermal burden for the BTMS as a

return. Considering the energy regeneration from the braking system, the energy usage can

be potentially enhanced mainly from two aspects: (i) to optimize the discharging sequence

by scheduling the operations of different devices and subsystems to avoid overlapped high

power output based on real-time driving conditions; (ii) to fully utilize the regenerative

energy from the braking system rather than recharging back to the battery system. Apart

from the driving motor and its assisted subsystems that mainly depend on actual traffic

conditions, other primary systems, including the air conditioning system and BTMS, could

be operated with a more flexible energy-efficient schedule that incorporates with the fixed

driven power output jointly through load shifting.

To optimize the operation schedule, model predictive control is a promising approach

by considering the power demands of the driven motor system several steps ahead. The

sequential actions of energy allocation are obtained via solving the predictive optimization

problem to guarantee optimal energy usage, while retaining the system constraints from

electric, thermal, and fluid dynamic perspectives. As the forecasted inputs for predictive en-

ergy management algorithm, vehicle velocity forecasting is leveraged to estimate the power

demand of the driven motor and its assisting systems. For repeated commuting routes, the

piece-wise segmentation is a promising approach, in which the whole driving cycle is divided

into segments according to the locations of intersections and stops. Based on the cycle seg-

ments, a forecasting pool that consists of a collection of base forecasting models is established

to yield primary predictions. These basic forecasting results can be further improved via off-

line and on-line model selection and ensemble approach. Besides the predictive algorithm,

another feasible approach to improve the energy efficiency is to perform real-time energy

distribution integrating with the detected traffic light signal and velocity acceleration signal.

The traffic light detection-based real-time energy distribution is potentially an alternative

to the predictive algorithm for urban routes.
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The goal of this dissertation is to develop promising cooling structures and corresponding

control algorithms for BTMS to mitigate the range anxiety barriers by leveraging surrogate-

based optimization and data driven-based techniques. With the optimized BTMS cooling

structure and enhanced control implementations, the dissertation also aims to optimize the

energy efficiency for the whole EV via predictive control-based energy management with

real-time velocity forecasting and real-time energy allocation with traffic light detection.

The remainder of this dissertation is organized as follows. Chapter 2 presents the lit-

erature review on different related topics, including battery cooling structure design and

optimization, thermal control and energy management, individual velocity forecasting and

its impacts on energy management. Chapter 3 presents a comparative study and surrogate-

based optimization for a J-type air-based cooling structure. Chapter 4 develops a thermal

control strategy for J-type air-based BTMS. A model predictive control-based algorithm is

developed and implemented for energy management in Chapter 5, followed by individual ve-

hicle velocity forecasting in Chapter 6. The impacts of velocity forecasting on vehicle energy

management are investigated in Chapter 7. Conclusions and future work are discussed in

Chapter 8.
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CHAPTER 2

LITERATURE REVIEW1234

There are a variety of heat transfer mediums that have been employed to mitigate the thermal

impacts from battery charging and discharging, e.g., air, fluid, phase change material, heat

pipe, and a hybrid combination of the mediums. Compared with other thermal dissipation

approaches, the air-based cooling technology has always been one of the research priorities

due to its distinctive nature. A significant amount of research on air-based BTMS has been

performed in the literature, including the BTMS design, optimization, and control meth-

ods. Moreover, the energy management strategy also plays an important role in improving

the overall energy efficiency, especially integrated with vehicle velocity forecasting. In this

chapter, the technology advancements in these aspects will be comprehensively reviewed.

2.1 Battery Cooling Structure Design and Optimization

Air-based cooling technologies have been widely applied in EV industrial applications. Most

of the compact size EVs only employ passive air cooling as a trade-off between vehicle weight

and cruising capacity, so does the plug-in hybrid electric vehicle (PHEV) powered by lithium

iron phosphate (LFP) battery with more stable thermal characteristics. For example, Nissan

Leaf and BYD Song have successfully updated for several generations, and the passive cooling

1Y. Liu and J. Zhang (2019), Design A J-type Air-based Battery Thermal Management System through
Surrogate-based Optimization, Applied Energy, Vol.252, pp.113426. Reprinted with permission from Elsevier.

2Y. Liu and J. Zhang (2019), Self-adapting J-type Air-based Battery Thermal Management System via
Model Predictive Control, Applied Energy, Vol.263, pp.114640. Reprinted with permission from Elsevier.

3 c©2021 ASME. Reprinted, with permission, from Y. Liu and J. Zhang (2021), Electric Vehicle Battery
Thermal and Cabin Climate Management Based on Model Predictive Control, Journal of Mechanical Design,
Vol.143, Issue 3, 2021, pp.031705.

4 c©2021 ASME. Reprinted, with permission, from Y. Liu and J. Zhang (2021), A Repeated Commuting
Driving Cycle Dataset with Application to Short-term Vehicle Velocity Forecasting, Journal of Autonomous
Vehicles and Systems, 1-44
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systems have been proved to be reliable. PHEV with lithium nickel manganese cobalt oxide

(NMC) battery like Toyota Prius normally employs a fan-driven active air cooling system,

since NMC battery is more sensitive to temperature than the LFP battery in daily operations

[96].

2.1.1 Air-based Cooling Structure Design

These industrial applications also reveal the inadequacy of air-based BTMS like non-uniform

and limited heat dissipation capability, contamination from external cooling air, and poten-

tial noise or vibration. The majority of the existing literature on active pure air-based BTMS

focuses on structure design improvement and flow optimization, attempting to uniformize the

internal temperature profiles of the battery pack while retaining the maximum temperature

simultaneously. Based on the conventional structures like U - and Z-type, several structural

modifications of pure air-based BTMS have been developed in the literature. For example,

a simulation-aided comparative study of convectional U -type and Z-type ventilation struc-

tures was conducted by Park [66], in which irregular flow shapes like tapered manifolds were

proved to be effective. Based on the U -type configuration, a reciprocating structure with

two flip door was developed by Mahamud et al. [55], where a 72% temperature uniformity

improvement was yielded via changing the settings of the flow direction. A counterflow

arrangement developed by Xun et al. [94] was validated by computational fluid dynamics

simulations, suggesting that changing the flow direction periodically could improve the ther-

mal performance. The effects of driven-fan location were investigated by Wang et al. [90]

using both numerical simulation and experiments, which revealed that the top fan location

coupled with cubic arrangement outperformed other settings. A series-parallel mixed cooling

structure with aligned bank, staggered bank, and trapezoid configuration developed by Yang

et al. [95] was assessed, showing better thermal characteristics than the benchmark case.

Moreover, auxiliary devices or components that attempt to balance the flow rate were also
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testified with simulations or experiments, which implies that it is an effective and competitive

approach to meet the thermal expectations regarding maximum temperature and temper-

ature uniformity, such as the parallel ventilation structure with multiple vortex generators

and jet inlet developed by Shahid et al. [77], the straight-forward cooling configuration with

mist generator developed by Saw et al. [75], and other specific structures with assisting

components that seek to allocate the flow rate uniformly [32]. There hasn’t been any study

available to comprehensively compare the pros and cons of all the proposed structures.

Pure air-based BTMS may encounter thermal challenges under intense or instantaneous

working conditions like extreme fast charging and rapid acceleration, due to its limited ther-

mal conductivity [45]. Based on the specific heat differences between air and other mediums,

several studies have attempted to develop a hybrid cooling system by adding an extra inter-

mediate medium as a thermal buffer in between the battery cells and the cooling air. For

instance, a mixed phase changing material (PCM) system can be integrated with passive

air cooling, in which additional material can be added to the main PCM (paraffin for most

cases) to enhance the thermal conductivity, such as metal foams [69], graphene, expanded

graphite [43], and graphite of nanocomposite structure [37]. It is also reported that a PCM

system coupled with forced air cooling tends to yield more desired performances than pure

PCM or pure forced convective air cooling, especially for cases after a long time operation

[44]. Moreover, a hybrid heat pipe cooling system coupled with forced air ventilation is able

to effectively control the temperature field within an acceptable difference at the battery

pack level under abusive discharging conditions [12]. It is worth noting that though the

mixed cooling technologies have desirable potentials in mitigating the thermal concerns for

EVs, none of these studies have been reported to be successfully integrated into industrial

EV applications due to their complexity and instability.
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2.1.2 Air-based Cooling Structure Optimization

Based on these existing prototypes of pure or mixed air-based cooling structures, structural

configuration optimization is another feasible alternative to enhance thermal performances.

Several thermal or fluid dynamic characteristics like temperature limitation, uniformity, and

flow efficiency are usually treated as the optimization objectives based on different purposes.

The channel and manifold configuration optimization is one of the most straight-forward but

effective approach for any U - or Z-based parallel cooling structures. For example, a channel

size reconfiguration performed by Chen et al. [14] observed a 45% reduction of the maximum

temperature difference, in which the Newton method and a network-based flow model were

employed for the optimization. A similar channel size optimization for a U -type structure

was also conducted by Li et al. [42], where a parametric investigation regarding the channel

size was firstly performed before adaptive iterative optimization. Besides the traditional

iterative optimization approach, data-driven surrogate-based optimization integrated with

stochastic solvers has also been reported. For example, Wang et al. [91, 92] performed a

multidisciplinary optimization via genetic algorithm (GA) to modify a U -type BTMS by

taking into account both the thermal performance and the battery lifetime. The Pareto

frontier as an output indicated that the final configuration was yield as a trade-off between

the thermal performance and the cycle life during the decision-making process.

Given these concerns, this dissertation seeks to (i) design a novel air-based cooling struc-

ture (J-type) by integrating the basic U- and Z- structures, and (ii) optimize the setting of the

J-type structure using a two-stage adaptive cluster-based resampling method and surrogate-

based optimization.
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2.2 Thermal Control and Energy Management

2.2.1 Vehicle Thermal Control Strategy

There exist a large number of published studies focusing only on the optimization of the

geometry size or configuration for a single balanced steady state without any modification

and control strategies. The thermal performance has rarely been tested or verified under

dynamic operating conditions. As a result, when the battery condition changes, e.g., under

a dynamic driving condition, a fast charging schedule, or seasonal and regional temperature

variations, the thermal control system may possibly fail to work as effectively as its original

optimal design or even lead to critical issues like severe temperature imbalance and potential

safety concerns. Moreover, the aforementioned complex structures, as well as the side effects

that brought upon themselves, e.g., noise and vibration, are very challenging to be generalized

and applied in practice.

Developing an appropriate control strategy for the existing air-based BTMS structure is

another effective alternative at a higher level to achieve the goal of maintaining the operating

temperature and uniformity. It is also noticed in recent years that the research foci tend to

shift from the conventional steady-state structure design and modification to a dynamic inte-

grated control and optimization. However, since it generally involves with multidisciplinary

analysis, the emerging trend has a very limited number of studies available in integrating

appropriate control strategy with the current air-based structures at the system level. For

instance, Gao et al. [21] developed a fuzzy logic control unit for a straight-forward air-based

cooling system, whose results showed that the maximum temperature could be controlled

within expectations. He et al. [87] exploited the air-based reciprocating cooling with a

hysteresis control method to achieve optimal cooling effectiveness, which resulted in a de-

sirable 84% reduction in terms of the parasitic power consumption. Vatanparvar et al. [85]

developed a thermal and energy management methodology that optimized the utilization of
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battery and ultra-capacitor, and the control results showed significant improvements regard-

ing both the thermal performance and energy consumption. It can be summarized that the

control strategy for air-based BTMS can be implemented via straight-forward algorithms like

proportional–integral–derivative (PID) and fuzzy control, in which the airflow rate is usually

regarded as one of the major state variables, though the system inputs may differ. Through

a frequency or voltage modulation control for the cooling fan or compressor, the airflow rate

is able to be adaptively adjusted according to dynamic operating conditions. However, owing

to the intrinsic limitations of conventional U -type, Z-type, or other through-type structures,

controlling the airflow rate has a significant impact on temperature rise, but makes little

difference regarding the temperature uniformity, especially under large flow rate conditions.

In addition to the conventional control approaches, model predictive control (MPC) and

its family algorithms (e.g., constrained linear MPC, and nonlinear MPC) have been em-

ployed in several studies because of the unique characteristics, i.e., MPC forecasts steps

ahead to determine optimal control solutions. It is worth noting that the MPC for ther-

mal management usually involves with the power output and energy consumption of the

battery system. For instance, Masoudi et al. [59] extended the study of parallel cooling

using the model predictive control algorithm, in which a thermal improvement compared to

Toyota Prius baseline performance was observed. Tao et al. [83] used MPC to regulate the

refrigerant compressor and cooling air flow rate to keep an ideal cooling temperature for a

hybrid cooling system, and found that both the temperature uniformity and energy efficiency

could be improved significantly. Amini et al. [5] extended the existing work and presented

a hierarchical two-layer MPC scheme to schedule optimal thermal trajectories for the cabin

and battery cooling in hybrid electric vehicles. The aforementioned studies have revealed

the effectiveness of MPC and highlighted further potential applications in battery systems.

However, the majority of studies implemented the thermal control directly on pre-designed

air-cooling structures without further optimization, and there has not any control co-design
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approach reported in the literature to design a battery cooling system. Additionally, lumped

battery electric-thermal-fluid models were usually adopted for simplification, in which the

battery temperature was investigated only at the cell level. The temperature distribution at

the battery pack level has not yet been evaluated and validated with simulations or exper-

iments. Overall, by implementing system control on a fixed cooling structure, the battery

thermal performance has been significantly improved for dynamic cases but probably far

from optimum.

2.2.2 Vehicle Energy Management Strategy

It is also noticed that the battery charging/discharging with an instant high power output

may potentially shorten the cycle-life and affect the discharge power density [46]. From the

perspective of thermal control, a high power density tends to generate a large amount of heat

and bring about inevitable thermal impacts on BTMS. In consequence, it is reasonable to

optimize the discharging sequence of EVs by scheduling the operations of different devices to

avoid overlapped high power output based on real-time driving conditions. Moreover, judg-

ing from the energy perspective, investigations have also revealed that the energy used for

thermal control itself ranks third among all the consumptions for EVs, after the driven power

and the air conditioning system. Optimizing the discharging schedules of all the power con-

sumption sources is an essential and promising approach to enhance energy efficiency. Apart

from the driving motor and its assisted subsystems that mainly depend on actual traffic con-

ditions, other primary systems including the cabin climate control system /air conditioning

system (AC), as well as BTMS, can be operated with a flexible energy-efficient schedule that

incorporates with the fixed power outputs jointly through load shifting. It is worth noting

that there are similar energy management studies for plug-in hybrid electric vehicles, which

focuses more on apportioning the driven power between the internal combustion engine and

electric motor instead of the internal consumed energy distribution [39]. For EVs, this is a

fast-emerging research field but with very few publications available [59, 83, 5].
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Considering regeneration effects, discharge scheduling and optimization refer to two ap-

proaches: (i) optimize the operation sequences of different devices and subsystems to avoid

a peak demand; (ii) utilize the regenerated power directly instead of recharging the bat-

tery system. There exist similar studies in the literature regarding discharging scheduling

optimization for EVs [22]. However, the majority of previous studies were performed and

evaluated merely in terms of energy-saving using the aforementioned schedule optimization

approach [4]. Moreover, previous studies did not consider the side effects of the recharged

energy, as well as its corresponding thermal impact on the whole battery pack under dynamic

driving conditions [97].

To bridge these gaps, there are two directions that could be further improved: (i) de-

velop an intelligent thermal control algorithm for the novel BTMS structure (J-type); (ii)

develop an energy management strategy via MPC and taking into account the internal power

distributions.

2.3 Vehicle Velocity Forecasting

Short-term traffic forecasting has been extensively investigated in the past decade as a po-

tential feasible solution to mitigate the growing concern of traffic congestion, especially with

the advent of connected and automated vehicles (CAV), big data, artificial intelligence, and

internet of things [84, 86]. It has been shown that the traffic can be significantly improved by

integrating the existing road network with smart traffic light control and intelligent trans-

portation systems, based on the real-time traffic measuring and forecasting, such as the

traffic flow volume, traffic density, average traffic velocity, and travel time [36].

2.3.1 Network Traffic Forecasting

The majority of these studies usually focus on a broader scope of traffic forecasting, from

point-level, street-level, to network-level, serving to provide further insights for transporta-
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tion management and policy making. At the very-beginning stage, several statistic and ma-

chine learning-based algorithms were exploited for varying traffic conditions. For instance, as

a statistical analysis model, the auto-regressive integrated moving average (ARIMA) method

has been broadly adopted for point-level or street-level traffic forecasting [23]. ARIMA and

its families were usually adopted as a benchmark to be compared with other advanced

approaches, such as machine learning-based methods (e.g., support vector regression (SVR)

[89], back propagation artificial neural network (BPANN) [100], and radial basis function neu-

ral network (RBFNN)), probability-based methods (e.g., Kalman filter and hidden Markov

chain (HMM) [27]), and deep learning-assisted methods (e.g., long short-term memory net-

work (LSTM) [107, 40]). Among these reported methods, the probability-based Kalman

filter and HMM methods produced stochastic forecasts, while others produced deterministic

forecasts. Historical driving records are usually considered as the training dataset for fore-

casting. Though only the temporal relationship is taken into account, the aforementioned

algorithms are capable of predicting the traffic situations in most cases with reasonable

accuracy. It is also worth noting that there is no published literature that indicates the

superiority of any of these algorithms, due to diverse traffic data sources.

However, some of these forecasting algorithms may not perform well for a large area with

complicated transportation networks and uncertain environmental factors. To alleviate this

arising challenge, advanced deep neural networks with topological feature embedding have

been employed to characterize the spatial-temporal characteristics in forecasting. Massive

efforts have been performed on convolutional neural network (CNN)-based algorithms [54],

which generally falls into two categories: convolution-based LSTM that integrates CNN and

LSTM [93, 102], and temporal graph convolutional networks that combine graph neural net-

work with gated recurrent units/networks [106, 53, 60]. By comparing with the reported

forecasting performance, these deep learning-based methods have shown overwhelming su-

periority over the aforementioned classic parametric or simple-structured machine learning-
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based approaches. This newly-emerging trend is very likely to continue in traffic forecasting

[18].

2.3.2 Individual Vehicle Velocity Forecasting

It should be noted that for the aforementioned studies, all the data has been collected from

a single or a series of fixed observation locations using sensors like inductive-loop detector,

wireless magnetometer, microwave radar, and video image processor. These studies empha-

size more on the networked vehicles rather than an individual passenger vehicle. However,

velocity forecasting for individual vehicles has drawn significant attention in the past decade,

especially along with the fast-growing demand for vehicle electrification. Velocity forecasting

plays a critical role in improving the energy efficiency for electric or hybrid vehicles. Gener-

ally, velocity forecasting serves as the system input for a model predictive control-assisted or

reinforced learning-based energy management system to optimize the charging/discharging

schedule, the regenerative power harvest, and the operation of an on-board air-conditioning

system, especially for repeated fixed routes inside or between cities [50, 5, 3, 108]. Addition-

ally, forecasted velocity is also regarded as an indispensable prerequisite to generate varying

scenarios and networked/individual vehicle ecosystem for multidisciplinary control Co-design

[92, 65].

There are generally three major discrepancies that the individual vehicle velocity forecast-

ing differs from the network traffic forecasting. First, individual vehicle velocity forecasting

utilizes the floating velocity trajectory as the data source instead of the network traffic

records. Second, individual vehicle velocity forecasting requires a significantly shorter pre-

diction horizon at seconds, compared to the network traffic forecasting at minutes or hours

timescales. Third, the networked traffic forecasting can be facilitated by local/cloud-based

powerful computing tools with sophisticated deep learning-based structures; while the veloc-

ity forecasting for individual vehicles tends to directly utilize on-board computing devices,

leaving no alternative but to implement computationally efficient forecasting algorithms.
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The traffic forecasting algorithms discussed above are still applicable and practicable to

individual vehicle velocity forecasting, which can generally be categorized into stochastic

and deterministic approaches. For instance, as one of the most popularly used stochastic

methods, HMM was modified by Jing et al. [29] with a fuzzy logistic model to predict

individual vehicle speed 8 seconds ahead, and Zhou et al. [109] developed a self-learning

multi-step Markov chain model based on simulated data. However, stochastic methods are

usually eclipsed by deterministic approaches regarding prediction accuracy. For example,

Sun et al. [82] revealed that RBFNN and ANN performed significantly better than HMM.

Liu et al. [47] reported similar results that both LSTM and ARIMA outperformed HMM

in 10 seconds ahead speed forecasting based on a real urban driving dataset. Moreover,

among all the deterministic methods, it seems that LSTM possesses prevailing advantages

for a same driving dataset. For instance, a comparative study between LSTM and other

deep learning-based algorithms like CNN and CNN-LSTM conducted by Rabinowitz et al.

[70] revealed that LSTM dominates other deep learning-based and machine learning-based

forecasting technologies with a considerable higher accuracy. The feasibility of embedding

LSTM on board has also been tested and verified by Gaikwad et al. [20] with an on-board

processor. Besides, other deep learning networks such as deep belief network and stacked

auto-encoder have also been investigated for speed forecasting for a highway speed dataset

[41].

Acting as an indispensable element, individual vehicle velocity forecasting has been deeply

integrated with the connected and automated system by leveraging vehicle-to-vehicle (V2V)

and vehicle-to-infrastructure (V2I) technologies. It is worth noting that the forecasting

performance can be further improved by considering the surrounding traffic situations via

vehicle-to-everything communications. For example, Moser et al. [61] and Zhang et al. [103]

proved that individual vehicle velocity forecasting could yield more accurate predictions by

knowing the states of traffic lights in advance. Upon perceiving the traffic conditions of the
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local area, velocity forecasting will become a dynamic process by choosing an optimal eco-

routing [72]. There is also a growing trend to predict the vehicle behaviors at intersections

including acceleration and deceleration, aiming to achieve optimal velocity trajectory for

energy control [13].

The electric vehicle industry has witnessed huge advancements in embedding with ad-

vanced driver assistance systems (ADAS) and predictive optimal energy management strate-

gies (POEMSs). However, one of the challenges is that the policy-making and construction

of intelligent transportation system are falling far behind the electrification and intellectual-

ization of passenger vehicles. It is still economically and technologically prohibitive to enable

all passenger vehicles being connected to the intelligent transportation system and receive

real-time traffic information. Based on the existing urban transportation infrastructure and

vehicle installations, how to improve the velocity forecasting accuracy is still a stringent and

challenging problem for vehicle energy management.

To further improve the performance of individual vehicle velocity forecasting, this dis-

sertation will: (i) generate a repeated driving cycle dataset and develop a hybrid velocity

forecasting algorithm using on-board GPS devices, and (ii) utilize image-based object detec-

tion techniques to identify the traffic light status to further improve the velocity forecasting

accuracy.
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CHAPTER 3

COMPARATIVE STUDY AND SURROGATE-BASED OPTIMIZATION

FOR A J-TYPE AIR-BASED COOLING STRUCTURE1

Air-based battery thermal management system (BTMS) has been widely employed in the

EV industry due to its remarkable advantages like lightweight, simple structure, and low

cost, especially for plug-in hybrid EVs where the battery system works only in low-duty

operation scenarios. The existing air cooling systems attempt to modify the configurations

of the channel and manifold to uniformize air flow rate with a lower pressure drop so as

to enhance the temperature uniformity and energy efficiency simultaneously. However, it

is challenging to achieve these goals with the conventional U - or Z-type BTMS with a

fixed structure under changing working conditions (e.g., discharging, charging, extreme fast

charging, etc.), especially for large battery packs. To address this challenge, this chapter

proposes a flexible air cooling structure, named J-type, emerging from the existing Z- and

U -type. The proposed J-type BTMS has two outlets with control valves, which adds more

cooling flexibility to the BTMS under varying battery working conditions. By controlling

the opening degree of the two valves simultaneously, the J-type BTMS can be adaptively

controlled in real time to modify the flow field to provide an optimal cooling strategy to the

whole battery pack.

A comparative parametric study among U -, Z-, and J-type structures is performed to

further explore the sensitivities and effects of key system parameters, e.g., channel size, man-

ifold configuration, charging/discharging rate, temperature, and cooling air flow rate. Based

on the parametric analyses, a suite of key design parameters and constraints are determined

to perform optimization. The grouped-channel optimizations of the three structures are per-

formed using surrogate-based optimization. The pros and cons of the novel J-type structure

1Y. Liu and J. Zhang (2019), Design A J-type Air-based Battery Thermal Management System through
Surrogate-based Optimization, Applied Energy, Vol.252, pp.113426. Reprinted with permission from Elsevier.
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are elaborated by comparing with the optimal U - and Z-type structures. A further J-type

optimization regarding the manifold configuration is also conducted to show that the optimal

settings of a BTMS vary with battery working conditions, and the J-type BTMS is capable

of switching BTMS modes with controlling valves and air flow rate in real time to satisfy

the cooling requirement. This study serves to develop a basic design concept of the J-type

structure and to establish a pioneering foundation for further BTMS control or co-design

framework.

3.1 Battery Electro-thermal Model

It is essential to establish a battery electro-thermal model before conducting the thermal

control studies. A comprehensive electro-thermal model helps to better understand the heat

generation mechanisms inside the battery, which serves to develop appropriate redesign and

optimization algorithms. Extensive studies have revealed that the volumetric heat gen-

eration rate of LIB is strongly influenced by the charging/discharging current, operating

temperature, state of charge (SoC) [2], and cycles.

3.1.1 Battery Thermal Model

A number of electrochemical/electrothermal models have been proposed in the literature to

interpret the thermal mechanism. First proposed by Bernardi, then improved by Rao and

Newman [73], a simplified LIB thermal model is expressed as:

Q̇ = I(V − Voc) + IT
∂Voc
∂T

(3.1)

where Q̇ represents the battery heat generation rate, V and Voc denote the cell voltage

and open circuit voltage, respectively. T is the battery cell operating average temperature,

∂Voc/∂T is named as the entropic heat coefficient, and I is the battery current, which is

defined as positive for charging and negative for discharging. The thermal model can be

18



established by measuring the entropic heat coefficient. The first term is irreversible, mainly

from the internal resistance ohmic losses, while the second term is reversible, known as the

entropic heat from chemical reactions.

For simplification, the internal cell condition is assumed to be homogeneous, and the heat

source derived above is assumed to be distributed uniformly inside the cell. Radiation heat

transfer is neglected here since the temperature difference is limited. With these assumptions,

the battery thermal behavior can be estimated using a lumped thermal model, as shown in

Eq. 3.2.

mCp
∂T

∂t
= Q̇− hA(Tcell − T∞) (3.2)

where m denotes the mass of battery cell, Cp is the average heat capacity, h represents

the convective heat transfer coefficient, A is the effective surface area, and T∞ is the free

stream temperature of the cooling media. This approach requires a precise measurement

of the dynamic heat by using either the method of accelerating rate calorimeter (ARC) or

isothermal heat conduction calorimeter (IHC).

3.1.2 Battery Equivalent Circuit Model

Compared to the electrochemical model, an equivalent circuit model is more straightforward

to characterize the relationship between battery electrical characteristics and its thermal

behaviors. Figure 3.1 shows the first order equivalent circuit, which consists of an ideal

voltage source, an internal ohmic resistance, and a parallel RC circuit. The RC circuit

is utilized here to interpret the dynamic response. All the parameters are contingent on

the SoC, operating temperature, and battery cycle. The mathematical expression of the

equivalent circuit is derived as follows:

vt = Voc − VD − Vo + VDe
− t−t0

τ (3.3)

where VD = I ·RD is the potential drop on the RC circuit, Vo = I ·Ro is the potential drop

on the internal resistance, and τ = RD · CD denotes the time constant.
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Figure 3.1: First order equivalent circuit for LIB

These parameters in Eq. 3.3 can be measured, extracted, and calculated with the method

of hybrid pulse power characterization (HPPC) test [98, 25]. In this study, Graphite/LiMn2O4

pouch battery cells with a capacity of 1.6 Ah, and a nominal voltage of 3.75 V are used for

experiments. A total of 200 groups of the characteristic data (Ro, RD, and CD) are ex-

tracted from various experimental settings. The heat generated by the resistances Ro and

RD is considered to be equal to the battery internal heat source. More details about the

experiment setup, parameters analyses, and results validation can be found in Ref. [99]. The

experimental data is then utilized to establish the battery electro-thermal model by using

a surrogate model, which consists of three input variables: the current, SoC, and operating

temperature.

3.1.3 Surrogate-based Electro-thermal Model

After k-fold cross-validation, a Kriging approximation with second order polynomial regres-

sion and exponential error estimation is utilized to create a surrogate model based on the

experimental data. A deterministic response G(I, SoC, T ) with three dimensional variables

is formulated with the Kriging surrogate model, given as:

G(I, SoC, T ) = F(λ, I, SoC, T ) +R(ω, I, SoC, T ) (3.4)
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where F is defined as the regression model with a second-order polynomial kernel, and R is

the approximation error, given as

F(λ, I, SoC, T ) = f(I, SoC, T )λ (3.5)

f(I, SoC, T ) = [1, IN , SoCN , TN , I
2
N , INSoCN , INTN , SoC

2
N , SoCNTN , T

2
N ] (3.6)

R(ω, I, SoC, T ) = r(I, SoC, T )ω (3.7)

r(γ, I, SoC, T ) = e(−γI |I−Iq |−γSoC |SoC−SoCq |−γT |T−Tq |) (3.8)

where f(I, SoC, T ) denotes a vector of the normalized variables with orders 0, 1 and 2,

in which the normalized variable is defined as αN = (α − µα)/σα, µ and σ are the mean

and standard deviation, respectively. Iq, SoCq, and Tq are training data. All the Kriging

parameters λ, ω, and γ are calculated by the generalized least squares estimation method

[52, 16].

Figure 3.2: The distribution of battery equivalent volumetric heat generation rate

Figure 3.2 shows the equivalent volumetric heat generation rate distribution with respect

to the operation current, SoC, and temperature. The electro-thermal model only covers

the feasible operation ranges of current and temperature for LIB, and 10 A is suggested as
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the critical safety current. It indicates that decreasing the operating temperature tends to

increase the internal resistance and thus induce a huge augment of heat generation rates.

The calorific value is comparatively low around 60% SoC. Additionally, the overall battery

thermal performance is more sensitive to the operating current than other parameters. This

electro-thermal model can be applied to both charging and discharging conditions since the

reversible heat is relatively smaller than the irreversible heat, especially under high current

conditions.

3.2 Numerical Comparative Study of Air-based Cooling Structure

Compared with the hybrid air-based BTMS, pure air cooling has incomparable advantages

in terms of stability, maintenance, and vehicle power-to-weight ratio. Existing air cooling

systems attempt to modify the configurations of the channel and manifold to uniformize

flow rate with a lower pressure drop so as to enhance the temperature uniformity and en-

ergy efficiency simultaneously. However, It is challenging to achieve these goals with the

conventional U - or Z-type BTMS with a fixed structure under changing working conditions

(e.g., discharging, charging, extreme fast charging, etc.), especially for large battery packs.

To address this challenge, this task develops a flexible air cooling structure, named J-type,

emerging from the existing Z- and U -type. The proposed J-type BTMS has two outlets

with control valves, which adds more cooling flexibility to the BTMS under varying battery

working conditions. By controlling the opening degree of the two valves simultaneously, the

J-type BTMS can be adaptively controlled in real-time to modify the flow field to provide

an optimal cooling strategy to the whole battery pack. In this task, we aim to provide

promising insights for the further optimization.
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3.2.1 Concept Design of a J-type Cooling Structure

By taking the advantages of both U -type and Z-type air-based BTMS, this paper proposes a

novel BTMS structure named J-type. A conceptual design of the J-type BTMS is illustrated

in Fig. 3.3. The J-type BTMS prototype consists of ten battery cells with geometry sizes of

151 mm in height, 65 mm in length, and 16 mm in width based on Ref. [66].
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Air
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J-mode
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Z-type U-type J-type

1 2 4 5 6 7 8 9 103

Figure 3.3: The conceptual design of a J-type air-based BTMS

As illustrated in Fig. 3.3, the size of channel and inlet manifold are first optimized under

multiple working conditions, while the air flow rate and the openness of the two outlet valves

will be adaptively controlled in real-time. By changing the air flow field via the openness of

the two outlet valves, BTMS is able to cool down the hot area, thereby ensuring the tem-

perature uniformity within a narrow range and improving the overall thermal performance.

Moreover, the concept design is readily extended and applied to the battery pack level, since

the concept module is arranged in a standard shape and can be extended from different

directions.

The J-type BTMS can easily switch to U -type by completely closing the Valve Z and

opening the Valve U , in which the front battery cells maintain a lower temperature than the

rear ones. Similarly, the J-type BTMS can also switch to Z-type, by closing the Valve U

and opening the Valve Z, which leads to better thermal performance for the rear battery

cells. In between the two extreme conditions, the system can optimally adjust the opening

degree of each valve based on the module temperature and battery working conditions.
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To evaluate the effectiveness of the proposed J-type BTMS, a comparative study is

performed among J-, Z-, and U -type BTMS. Three-dimensional (3D) computational fluid

dynamics(CFD) simulation models of the three types are built up in ANSYS Fluent with the

k-epsilon (k-ε) turbulence model. The total size of the models converges to around 1,700,000

elements after grid dependence analysis, as shown in Fig. 3.4. The mass flow rate inlet

and pressure outlet are selected as the inlet and outlet settings, respectively. The radiative

heat transfer is neglected here due to the very limited temperature difference. The battery

cell in the CFD model is assumed to have a uniform heat source and isdefined by a user-

defined function. A simulation takes approximately 25 minutes to converge on a six-core

workstation.

Figure 3.4: The CFD meshing of J-type air-based BTMS

A benchmark model with an even 3 mm channel size, an equal 6 mm inlet/outlet manifold

size, and an initial inlet mass flow rate 7.1 g/s is set up for comparisons among the three types

of BTMS. The initial temperature, discharging current, and SoC are set as 295 K, 3 C-rate,

and 1, respectively, which correspond to a heat generation rate of 33,800 W/m3. The J-type

outlet structure could be simplified into a tapered manifold for simulation convenience, as

indicated by the red dashed line in Fig. 3.3.
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3.2.2 Comparative Study

A collection of parametric studies among U -, Z-, and J-type structures are performed based

on CFD simulations, including the structural shape, controlled variables, and premodified

structure.

Effects of Structure Size

The BTMS structure uses three main parameters to define geometry size, i.e., channel in-

terspacing size, collecting manifold size, and distribution manifold size. The numerical and

experimental parametric studies of the U -type BTMS with respect to the channel size, equiv-

alent heat generation rate, and mass flow rate have been well conducted in the authors’

previous studies [49, 42]. In this study, comparative parametric analyses among the three

BTMS structures are performed to study and explore the sensitivity of BTMS to major

design variables under certain conditions, so as to provide fundamental understandings for

further BTMS optimization.
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Figure 3.5: Parametric analyses of channel size (U -Z-J-type, respectively)

Figure 3.5 shows the battery temperature distribution of U -type, Z-type, and J-type

with different channel sizes. The curves represent the face-weighted average temperature of

the battery pack. The maximum and minimum temperature of the same battery cell are

represented by the upper bar and lower bar that are connected with vertical line segments,
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respectively. It is seen that the temperature distributions of U -type and Z-type are similar

to each other, except that the distributions are opposite in terms of the maximum tempera-

ture location, in which the highest temperature of U -type occurs at the rear side, while the

highest temperature of Z-type is located at the front side. The J-type’s thermal performance

is always better than the U - and Z-type structures, since it comprises an extra ventilation

outlet. It also suggests that a narrow channel tends to uniformize the temperature distri-

bution and lower the temperature rise simultaneously. However, as a side effect, a narrow

channel may also lead to the augment of pressure drop and result in a higher pumping energy

consumption, as shown in Fig. 3.6a. This is one of the most critical design considerations

regarding maintenance and energy efficiency. Note that the parametric investigation mainly

emphasizes on the ultimate thermal performance of the battery pack, though the mass flow

rate and pressure drop vary from channel to channel.
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Figure 3.6: The pressure drop of different structures with respect to different key parameters

Figure 3.7 shows the relationship between the distribution manifold size and temperature

rise. It is impressive that the 3 mm distribution manifold reduces and uniformizes the

temperature distribution in both U - and Z-type. However, as shown in Fig. 3.6b, the 3

mm manifold almost triples in pressure drop compared to the benchmark cases, making it

unsustainable in energy consumption. For J-type as shown in Fig. 3.7, increasing the size of

the distribution manifold improves the thermal performance, and little difference is observed
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when the size is larger than 9 mm. Figure 3.6b also indicates that the distribution manifold

size for all three BTMS structures should be larger than 6 mm due to the significant augment

of pressure drop.
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Figure 3.7: Parametric analyses of distribution manifold spacing size (U -Z-J-type, respec-
tively)
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Figure 3.8: Parametric analyses of collecting manifold spacing size(U -Z-J-type, respectively)

In contrast to the distribution manifold, the collecting manifold performs differently, in

particular with a small manifold size, as shown in Fig. 3.8. Under the benchmark flow rate

condition, a 3 mm collecting manifold is too small for all the three structures, which results

in unexpected high temperature (Fig. 3.8) and pressure drop (Fig. 3.6c). For the U -type

BTMS, the 9 mm collecting manifold case performs the best regarding temperature rise and

uniformity. For Z- and J-type, little discrepancy is observed when the collecting manifold
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is larger than 12 mm, which implies that enlarging the manifold size does not help to lower

the temperature rise. Therefore, by analyzing Figs. 3.6−3.8, it is found that an appropriate

manifold size ranges between 6 mm and 12 mm, which should also satisfy the constraints

imposed by the entire battery pack volume and energy density.

Effects of Controlled Variables

Besides the structural parameters, controlled variables such as operating temperature, heat

generation rate, and air mass flow rate may also have strong influences on BTMS thermal

performance. The Graphite/LiMn2O4 battery is vulnerable to temperature. There is a

closed-loop coupled relationship between the operating temperature and the battery heat

generation rate, in which different operating temperature leads to varying heat generation

rates, and thus impacts the battery pack temperature. For simplification, the SoC and

battery current are fixed as 1 and 3 C-rate in simulations, respectively. Figure 3.9 shows the

effects of operating temperature on BTMS performance for U -, Z-, and J-type. It is seen

that the temperature rise is significantly less in high-temperature environment than that of

low-temperature environment, so does the temperature difference of the battery pack, since

the internal resistance tends to decline in high-temperature environments.
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Figure 3.9: Parametric analyses of operating temperature (U -Z-J-type, respectively)

As discussed in the previous section, there is a quadratic relationship between the battery

equivalent heat generation rate and the charging/discharging current. To study the effects of
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operation current, the SoC and operating temperature are set as 1 and 295 K, respectively.

The current investigation range is constrained between 1 C-rate and 3 C-rate, which equal

to 3,700 and 33,800 W/m3 for heat generation rate, respectively. As seen from Fig. 3.10, the

temperature rise presents a quasi-quadratic relationship with the C-rate current input. Both

U - and Z-type deteriorate as the heat generation rate increases. The J-type has significant

advantages over the other two types with high heat generation rates.
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Figure 3.10: Parametric analyses of charging/discharging current (U -Z-J-type, respectively)

The impacts of air mass flow rate on the performances are presented in Fig. 3.11. It

shows that the temperature rise is approximately linear to the mass flow rate for both the U -

and J-type BTMS. The only exception occurs at the rear side of Z-type: the temperature

dose not change significantly as the mass flow rate increases, due to that most of the cooling

air flows through the rear side channels.

Effects of Modified Structures

Extensive studies have been conducted in the literature, seeking to uniformly distribute the

flow rate [9, 88]. Specifically, the modified special structures with better fluid characteristics

for BTMS can be summarized into three types: uneven channels, tapered distribution man-

ifold, and tapered collecting manifold. Figure 3.12 shows the temperature distribution of

priori grouped-channel cases, in which the benchmark cases (i.e., 3 mm even channels) are
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Figure 3.11: Parametric analyses of mass flow rate (U -Z-J-type, respectively)

presented for comparisons. The channels are divided into three groups with combinations

of every 4, 3, and 4 channels in different interspacing sizes. Note that the numbers in the

legend (e.g., U 2-3-4) represents the sizes of grouped channels in mm, and U 3-3-3 denotes

the benchmark case with even channels for the U -type BTMS. It is seen that all grouped-

channel cases perform significantly better than the benchmark cases, where the temperature

rise is reduced and the uniformity is also improved. The pressure drop is slightly increased

for grouped-channel cases as shown in Fig. 3.13a.
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Figure 3.12: Parametric analyses of grouped-channel sizes

Figures 3.14 and 3.15 show the effects of tapered manifold modifications on the BTMS

performance. The geometry of a tapered manifold is defined by the heights of two ends,

as shown in the legend (e.g., 6-3 mm). The larger number represents the inlet size of the
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Figure 3.13: The pressure drop of different modified structures (B.:Benchmark cases)
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Figure 3.14: Parametric analyses of tapered distribution manifold size (U -Z-J-type, respec-
tively)
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Figure 3.15: Parametric analyses of tapered collecting manifold size (U -Z-J-type, respec-
tively)

distribution manifold or the outlet size of the collecting manifold. Note that it is infeasible

to have a smaller inlet for the distribution manifold or a smaller outlet for the collecting
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manifold in BTMS structure design, since it may generate back flows or eddies with extra

vibration and noise inside the manifold. It is observed that the tapered distribution manifold

(in Fig. 3.14) does not enhance the BTMS performance for U -type, while the tapered

collecting manifold (in Fig. 3.15) has improved the uniformity and lowered the temperature

rise for most cases. For the J-type BTMS with tapered manifolds, the tapered distribution

manifold has improved the uniformity, while the tapered collecting manifold does not show a

clear improvement. For Z-type, both the distribution and collecting tapered manifolds have

improved the uniformity and lowered the temperature rise. The pressure drop is strongly

affected by the manifold size, as illustrated in Fig. 3.13, and a structure with larger flow

channels generally leads to less pressure drop. The overall impacts of modified structures

are summarized in Table 3.1.

Table 3.1: Summary of the modified structures

Improvement (Y/N) U-type Z-type J-type
Grouped Channels Y Y Y

Tapered Distribution Manifold N Y Y
Tapered Collecting Manifold Y Y N

Based on the analyses performed above in this section, it is recognized that the geometry

of the flow field, the channel size and the manifold configuration in particular, has a significant

impact on the thermal performance and flow efficiency. The manifold configuration is highly

related to the pressure drop, and the appropriate size ranges between 6 mm and 12 mm.

Not all of the priori optimized structures can surely enhance the performance. For example,

the tapered distribution manifold does not improve the U -type performance, and so does

the tapered collecting manifold for the J-type structure.
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3.3 Surrogate-based Optimization of Air-based BTMS

Based on the parametric analyses above, it is recognized that the BTMS structure has re-

markable influences on system performance. BTMS is a complex system, especially when

considering modified structures and various working conditions, e.g., normal battery arrange-

ment with time-dependent electric characteristics, uneven channels with tapered manifolds

in steady stage, and J-type structure under real-time control conditions. To address the

computational challenges in BTMS structure optimization with expensive CFD simulations,

a surrogate-based optimization method is proposed in this study. The whole optimization is

divided into two stages: Stage 1 optimizes the grouped-channel size for all three types (U ,

Z, and J), and Stage 2 further optimizes the distribution and collecting manifolds under

different working conditions for the J-type BTMS.

3.3.1 Optimization Methodology

In this study, three groups of surrogate models are constructed based on a limited number

of high fidelity CFD simulations of U -, Z-, and J-type BTMS. To set up CFD simulations,

the 11 battery channels (as shown in Fig. 3.3) are divided into 4 groups with a layout

of 3-3-2-3 channels from the front side to the rear side. The 4 grouped-channel sizes are

considered as the design variables, ranging from 2 mm to 5 mm. In the process of design

of experiments (DoE), the optimal Latin Hypercube method is employed to generate these

experiment points and settings [80]. The paralleled manifolds and other controlled variables

remain the same as the benchmark case. A total of 500 simulations are conducted for each

type, 75% of which are utilized as the training data, and the rest are used for validation and

testing.

The surrogate-based optimization framework is illustrated in Fig. 3.16. Based on the

CFD simulation results, a large pool of surrogate models is first constructed, which consists

of 5 major groups with 62 surrogate models regarding different kernel functions or hyper
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parameters, e.g., Artificial Neural Network (ANN), Kriging/Gaussian Process Regression

(GPR), Support Vector Machine (SVM), Radial Basis Functions (RBF), and Polynomial

Response Surface (PRS). During the model training and selecting processes, a weighted

evaluating criterion of two metrics is adopted here to evaluate the accuracy using K-fold cross-

validation, which include the normalized maximum absolute error (NMAE) and normalized

root mean square error (NRMSE), as given by:

NMAE =
1

n

n∑
k=1

∣∣∣∣ ŷk − yk
ymax − ymin

∣∣∣∣ (3.9)

NRMSE =
1

ymax − ymin

√∑n
k=1 (ŷk − yk)2

n
(3.10)

where ŷ, y, ymax and ymin denote the corresponding estimated value, actual value, maximum

value, and minimum value, respectively. n is the number of test data used in evaluating the

performance. The top-ranked models are selected for optimization.

Other than these base surrogate models, a hybrid ensemble model are established with

multiple basic models after model evaluation, given as:

Yhybrid =
ns∑
i=1

wiŷi (3.11)

where wi and ŷi are the weight factor and estimated value of ith surrogate, respectively.

ns denotes the number of ensemble surrogate members. Note that the weight factors are

solved in the validation process. Then a local impact factor β, defined as the ratio between

the actual value and the hybrid model estimated value, is added based on the methodology

from the Extensive Adaptive Hybrid Function (E-AHF) in Ref. [104, 81] to further tune

surrogate estimates, as given in Eq. 3.12. This tunning step is only suggested for low-

dimensional cases, since the uncertainty brought by high-dimensional features may worsen

the hybrid surrogate estimation.

Yfinal = βYhybrid (3.12)
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Figure 3.16: The overall framework of adaptive surrogated-based optimization for BTMS

Based on the selected base and hybrid models, the genetic algorithm (GA) is adopted

here to solve the black-box optimization. It is worth noting that some of the optimization

solutions are very likely to lie on a very small region since they follow the same algorithm but

with hyperparameter variants. Given this concerns, during the adaptive resampling step, a

two-stage sampling method will be employed to generate more experiment points, in which

the first stage is to cluster the optimum candidate solutions, and the second stage is to

generate adaptive samples based on the clustered groups using a Gaussian mixture model

(GMM). The sampling probability is proportional to the size of clusters. Combining with the

obtained optimal solutions, these resampling points are then validated via CFD simulations.

By comparing with the previous resampling results, the convergence and stop criterion is

defined as:

Bias =

∣∣∣∣Y ∗k − Y ∗k−1Y ∗k−1

∣∣∣∣ ≤ 0.001 (3.13)
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where Y ∗k and Y ∗k−1 are the best optimization result after the k-th resampling and the (k-1)-th

resampling, respectively, and 0.001 is a predefined convergence tolerance. If the convergence

criteria is met, the whole process terminates, and the best result among all the resampling

trials will be regarded as the global optimum.

3.3.2 Stage I: Channel Size Optimization

In the first stage, the optimization objective is to minimize the maximum temperature Tmax =

f(x1, x2, x3, x4), and the range of the grouped-channel size is considered as constraints. The

optimization problem is formulated by:

arg min
x

Tmax = f(x1, x2, x3, x4)

subject to 2.0 ≤ xi ≤ 5.0 i = (1, 2, 3, 4)

(3.14)

where x1-x4 represent the grouped-channel size from the front to the rear side. Table 3.2

summarizes a subset of surrogate models with high accuracy from k-fold cross-validation.

The surrogate models for the three types of BTMS have a similar level of accuracy, since

they are all established based on fluid dynamics. However, the model accuracy decreases

slightly from U -, Z- to J-type as the complexities of physical models increase. The surro-

gate estimation and error of the ensemble model and selected member models are shown in

Fig. 3.21. Note that the ensemble model does not necessarily perform the best at every

local estimation due to the high nonlinearity of the problem. However, the ensemble model

captures the overall trend of the problem and provides the best global accuracy.

The whole process terminates after two rounds of resampling, as shown in Fig. ??, and

the resampled results converge to a small design range. The optimal results of the first and

second rounds are 304.989 K and 304.954 K, respectively, and the normalized bias decreases

to 1.4E-104. The best sample among all the resampling data is treated as the optimal

solution, as shown in Fig. 3.18. Compared with the case of even channels, it is seen that
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Table 3.2: Evaluation results of a subset of surrogate models

U-type Z-type J-type

Model-Kernel NMAE NRMSE NMAE NRMSE NMAE NRMSE

RBF-TPS 2.47 4.39 4.92 7.99 4.37 5.94

GPR-Matern32 2.49 4.09 3.49 5.60 4.11 5.57

RBF-Cubic 2.50 4.14 4.32 6.64 4.14 5.40

GPR-Ardmatern32 2.58 4.29 3.31 4.98 3.97 5.23

SVR-Polynomial 2.71 4.03 4.54 6.56 5.31 7.59

PRS-Cubic 2.87 4.09 4.64 7.11 4.27 5.59

KRG-Poly2gauss 3.01 4.62 4.61 6.67 4.73 6.41

SVR-RBF 3.02 4.26 4.54 7.92 5.38 7.12

ANN-RBFN 3.57 6.03 3.35 6.50 5.04 7.24
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Figure 3.17: Surrogate model estimation and error from both ensemble and individual mem-
ber models for J-type (only a portion of the scattered points are presented)

the maximum temperature has decreased from 307.18 K to 304.95 K, and the uniformity

(represented by standard deviation) has significantly improved from 1.46 K to 0.42 K.

Our previous studies have also considered the total volume, temperature standard de-

viation, and pressure drop to perform a multiobjective optimization [91, 48]. However,

according to the parametric studies above, it is found that both the volume and pressure
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Figure 3.18: The optimization and resampling results (U -Z-J-type, from left to right)

drop are highly related to the geometry size of the flow field. Once the mass flow rate and

other controlled variables are fixed, the temperature uniformity is indirectly reflected by the

maximum temperature. Though the parameters of pressure drop and temperature unifor-

mity are not directly modeled in the objective function, they are still regarded as reference

metrics to evaluate the BTMS performance.

The optimal thermal management system of all three types are summarized in Table

3.3. Compared with the benchmark case, the optimized U -type has a 35.3% reduction in

temperature rise, and a 63.4% improvement in temperature uniformity with a cost of 7.5%

augment in pressure drop. Similarly for Z-type, the temperature rise and temperature stan-

dard deviation decrease by 46.6% and 69.1%, respectively, while the pressure drop increases

by 5.0%. For J-type, the optimal arrangement has reduced the temperature by 31.18% and

improved the uniformity by 67.8%, but increased the pressure drop by 12.7%.

Figure 3.19 shows the CFD simulations of the three optimal designs. By comparing U -

and Z-type structures, it is seen that the optimal maximum temperature of U -type is 21%

lower than that of Z-type, but the pressure drop of U -type is 28% higher. Overall, U -type is

more competitive in temperature-sensitive cases, while Z-type is more competitive in energy

efficiency-sensitive cases. J-type has shown advantages in terms of both temperature and
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Table 3.3: The optimal designs of U -, Z-, and J-type BTMS

Design Variable (mm) Evaluation Criteria

Type x1 x2 x3 x4 Tmax(K) ∆T Tσ(K) ∆Tσ ∆P (Pa) ∆∆P

U -Benchmark 3 3 3 3 303.75 - 2.30 - 801.48 -

U -Optimum 2.01 2.14 2.81 3.86 300.66 -35.3% 0.84 -63.4% 862.20 7.50%

Z-Benchmark 3 3 3 3 308.41 - 4.11 - 592.70 -

Z-Optimum 4.96 2.51 2.14 2.01 302.16 -46.6% 1.27 -69.1% 622.34 5.0%

J-Benchmark 3 3 3 3 302.15 - 1.43 - 347.25 -

J-Optimum 2.74 2.66 2.13 2.02 299.98 -31.18% 0.46 -67.8% 391.28 12.7 %

pressure drop. Due to the space occupied by the extra outlet, J-type is more suitable in

volume-insensitive applications like hybrid EVs.

3.3.3 Stage II: J-type Structure Manifold Optimization

For the J-type BTMS as illustrated in Fig. 3.3, the system can optimally adjust the opening

degree of the two valves based on the module temperature and the air mass flow rate. The

openness degree of the two valves corresponds to the manifold size under a specific battery

working condition. The goal of performing manifold optimization here is to validate the

hypothesis that controlling the manifold size (via valves control) could further improve the

thermal performance under varying working conditions. In this study, based on the optimal

grouped-channel BTMS obtained from the previous optimization, a further step is performed

to optimize the manifold under two working conditions.

The four manifold sizes are considered as the design variables, as shown in Fig. 3.20.

The inlet of the distribution manifold is defined as b1+b2 to prevent backflow. Similarly, the
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(a) U -type

(b) Z-type

(c) J-type

Figure 3.19: CFD simulation results of the optimal designs of U-, Z-, and J-type BTMS

40



Inlet

Outlet U Outlet Z

b1 b2

b3b4 X1 X2 X3 X4

Figure 3.20: The second stage optimization of J-type BTMS

objective is to minimize the maximum temperature Tmax = f(b1, b2, b3, b4), given by:

arg min
b

Tmax = f(b1, b2, b3, b4)

subject to 0 ≤ b1 ≤ 9

3 ≤ b2 ≤ 7

0.5 ≤ b3 ≤ 15

0.5 ≤ b4 ≤ 15

(3.15)

The optimizations are performed under two different working conditions: (1) the bench-

mark condition, and (2) the comparative condition that has double heat generation rate and

double air flow rate compared to the benchmark condition. A number of surrogate models

are also constructed here using the same surrogate modeling method discussed in the pre-

vious section, and the performances are shown in Fig. 3.21. The entire process terminates

after two rounds of resampling and optimization. Figure 3.22 shows the optimization and

resampling results under both the benchmark and comparative conditions. It is seen that

the resampling under the comparative condition is not as concentrated as the benchmark

condition due to accuracy difference.

Table 3.4 highlights the optimal configuration results under the two conditions. By

comparison, the optimal manifold configuration varies between the benchmark and the com-

parative conditions. Thus, the optimal setting of BTMS changes with battery working
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Figure 3.21: Surrogate model evaluations of J-type under the benchmark condition
(only a portion of the scattered points are presented)
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Figure 3.22: The J-type manifold optimization process for the benchmark and comparative
conditions

condition, and an air-based BTMS with a fixed structure is unable to always work in its

optimal settings under changing working conditions. The proposed J-type cooling system

has introduced more flexibility with two controlling valves. Coupled with its optimal control

strategy, the J-type system is capable to adapt itself to the changing conditions.
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Table 3.4: The J-type optimized results under different conditions

Design Variable (mm) Benchmark condition Comparative condition

Types b1 b2 b3 b4 Tmax(K) Tσ(K) ∆P (Pa) Tmax(K) Tσ(K) ∆P (Pa)

J-stage1 0 6.0 6.0 6.0 299.98 0.46 391.28 301.9 0.86 1,233.3

J-stage2B 1.28 6.05 13.62 8.23 299.78 0.28 260.8 301.56 0.75 894.25

J-stage2C 2.5 6.55 11.31 10 300.1 0.37 261.9 300.66 0.34 690.4

J-stage1: optimal case in Stage 1 optimization
J-stage2B: optimal case in Stage 2 optimization under the benchmark condition
J-stage2C: optimal case in Stage 2 optimization under the comparative condition

To validate the optimized results, an experimental platform is established to study the

thermal performance of different pure-air based BTMS, in which different types of BTMS

can be shifted flexibly. As shown in Fig. 3.23, the platform consists of three parts, i.e., the

air and power supply section, the battery model section, and the measurement section. The

equivalent heat source of the battery cell is replaced with two heaters, which are controlled by

the DC power source. The detailed settings of the platform can be found in Ref. [49]. Several

groups of experiments are performed to mutually validate the benchmark and optimized

cases.

Power Input Data Acquisition Battery Module Air SupplyPressure Gage

Figure 3.23: The air-based BTMS experimental platform

Figure 3.24 compares the simulation and experimental temperature distributions for both

the benchmark and optimal cases. There are only small discrepancies observed between simu-
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lations and experiments, which is mainly attributed to the settings of temperature measuring

position. The maximum temperature in experiments is measured by a K type thermocouple

that is inserted deep inside the top part of an aluminum model cell, while the maximum

temperature is directly extracted from the lateral surface in simulations. Other potential

factors such as measurement accuracy, initial condition settings, the bias of grouped-channel

size, and CFD turbulence model, may also contribute to the small differences between sim-

ulations and experiments. Overall, the experiment results agree with the simulation results,

which further validates the parametric analysis and optimization results in this study.
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Figure 3.24: Comparing results between simulations and experiments (From left to right:
U -, Z-, and J-type)

3.4 Summary

This chapter proposed a novel J-type air-based battery thermal management system by

integrating the conventional U -type and Z-type structures. An electro-thermal model for

Lithium-ion battery was developed, based on which a comparative parametric study of sev-

eral structural and controlled variables was performed. It is recognized that the geometry of

the flow field has a significant impact on thermal performance and flow efficiency. Several

priori optimized structures like grouped-channel and tapered manifold were also investigated

to develop fundamental understandings for further optimization. Results showed that the
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tapered distribution manifold brings no improvements to the U -type structure, and so does

the tapered collecting manifold to the J-type structure.

A surrogate-based optimization framework was proposed, which consists of a surrogate

pool and a two-stage clustering-based resampling approach. Structural channel size opti-

mizations were first performed to improve the grouped-channel structures for U -, Z-, and

J-type battery thermal management system, in which the Gaussian mixed model resampling

method was adopted to improve the accuracy. The optimal results showed that there were

35.3%, 46.6%, and 31.18% reduction in the temperature rise for U -, Z-, and J-type, respec-

tively. A J-type manifold configuration optimization was also performed to further explore

the optimal settings of the system under different working conditions. It demonstrated that

the optimal settings of J-type structure vary across the working conditions, and the J-type

system is able to be adaptively controlled to the optimal settings by adjusting the two valves.

The simulations and optimizations were further verified by experiments.
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CHAPTER 4

THERMAL CONTROL STRATEGY FOR J-TYPE AIR-BASED BTMS1

To mitigate the gap between structural design and its corresponding control strategy, a novel

control-friendly J-type air-based BTMS has been proposed in Chapter 3. By integrating the

advantages of conventional U - and Z-type structures, the J-type structure is distinguished

by threefold: (i) there are two outlets in the J-type structure compared to one outlet in

the U - and Z-type structure; (ii) the flexibility of the controllability have been significantly

enhanced by employing two control valves to adjust the opening degree of each outlet simul-

taneously according to varying driving conditions; (iii) three control modes are predefined

for simplification and the temperature uniformity can be enhanced by switching between

different working modes, namely, U -, Z-, and J-mode. This chapter extends the control

strategy for the J-type BTMS conjointly and seeks to develop an adaptive control approach

for the air-based cooling system via a model predictive control (MPC) strategy. It is worth

mentioning that prior to any control implementations, the channels of the J-type structure

need to be pre-optimized by using a surrogate-based optimization algorithm, for the reason

that the J-type optimal configuration is able to uniformize the temperature distribution

within a narrow range and lengthen the operation time in J-mode with a higher efficiency.

4.1 Thermal Control System Modeling

In this chapter, we aim to establish the plant model and the controller model for the air-

based BTMS via neural network (NN), where the modeling data is obtained from transient

CFD simulations with a time step of 5 seconds. This model consists of three parts: the

plant, the controller, and a control mode switcher. It also employs a hybrid driving cycle as

the system input.

1Y. Liu and J. Zhang (2019), Self-adapting J-type Air-based Battery Thermal Management System via
Model Predictive Control, Applied Energy, Vol.263, pp.114640. Reprinted with permission from Elsevier.
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4.1.1 J-type Operation Mode Design

For the J-type structure, based on the framework developed in Chapter 3, we rearrange the

channels into 5 groups and performed a channel size optimization as a trade-off between

the optimization efficiency and computational complexity. Another purpose is to design a

J-type structure with an appropriate temperature distribution that enables flexible thermal

control, e.g., the maximum temperatures occur at the battery cells near the two outlets.

Theoretically, the two outlet valves are expected to be continuously adjusted and con-

trolled according to the predefined optimal structure settings and battery operating condi-

tions. However, the implementation of continuous control may unnecessarily consume ex-

cessive energy and require a more powerful real-time computational capacity as well. Con-

sequently, it is reasonable to restrain the action interval or the change rate of the valve

opening level. According to the parametric studies in Ref. [51], only three structures and

their corresponding control modes are predefined in this paper for the sake of simplifica-

tion, namely, J-mode, Z-mode, and U -mode. The opening of the two valves under different

working modes are represented by the configuration sizes of their corresponding outlets, as

predefined in Table 4.1. The time intervals between switching actions among the three modes

are not predefined, which highly depends on the real-time condition.

Table 4.1: Predefined control mode settings

Control mode
Bottom inlet

(mm)
Left outlet

(mm)
Right outlet

(mm)

J-mode 6 6 6

U -mode 6 8 4

Z-mode 6 4 8

Based on the aforementioned predefined three operation modes, transient CFD simula-

tions are performed to generate the raw data during dynamic responses. Figure 4.1 shows

the framework of the transient flow simulation, where the model inputs It and SoCt stand
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for the Euclidean norm of current and the arithmetic average of SoCt within a single time

step, respectively; and Tt denotes the real-time battery temperature. In consequence, the

response output of the transient simulation is the dynamic temperature augments of the

battery cells labeled as 2, 4, 7, and 9 within a time step δt, namely, ([T2t, T4t, T7t, T9t]).

In this paper, the time step δt is set to be 5 s after comprehensive considerations of the

computational cost, algorithm, and simulation accuracy. Each transient simulation takes

approximately 45 min to converge on a six-core workstation. Note that the incoming cooling

air temperature is only limited to 300 K, and scenarios with varying incoming temperatures

are not yet considered in this study.

Initialization:

Data input:

UDF-based CFD Simulation Thermal model

Figure 4.1: The UDF framework of the transient flow CFD model

4.1.2 Battery Temperature Prediction Model

The overall framework of the J-type BTMS thermal control system is presented in Fig. 4.2.

In the primary stage concept design, the thermal control system prototype is implemented

in the absence of an actual battery pack system since it is not readily available. A battery

temperature prediction model is established here to represent the dynamic response of the

battery system, which is also referred to as the plant model. Owing to the complexity and

abusive assumptions of multi-channel parallel flow, it is impractical to estimate the dynamic

temperature distribution using an analytical approach. In this study, a data-driven approach

is adopted to implement the system identification, which reveals the multi-input multi-output
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(MIMO) relationship between the plant inputs (e.g., mass flow rate, initial temperature, and

equivalent battery heat source) and the plant outputs (e.g., the updated temperatures of

next time step), as defined by:

[T2t+1 , T4t+1 , T7t+1 , T9t+1 ] = f(Tave, ṁ, Ġ) + [T2t , T4t , T7t , T9t ] (4.1)

where Tave is defined as the average of the initial battery temperature. Note that the equiv-

alent heat source is calculated based on the initial electric characteristics and temperature

in each time step.

PID controller
NN-based 

Controller
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System

PID controller

PID controller
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Switcher

Temperature

Sensors
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Cycles
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Electro
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Figure 4.2: The thermal control framework of the J-type BTMS

According to the concept design, three control modes are predefined for different scenar-

ios. There are approximately 650 cases for each mode to be conducted with the transient

flow CFD model based on the optimized BTMS structure. Sixty percent of the cases are

generated using the Latin hypercube design of experiments algorithm, while the rest sam-

ples emphasize on the feasible design areas near the lower and upper bounds to increase the

accuracy of sensitive regions.

Several typical stochastic black-box algorithms have been developed for the data-driven

discrete time system identification, i.e., the auto-regressive moving average model, auto-

regressive moving average with exogenous input, sparse identification of nonlinear dynamics

with control, and neural network (NN) model [76, 11]. Since all the raw samples are ex-

tracted from CFD simulations separately and randomly, the back propagation NN approach
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is employed here with the Levenberg-Marquardt training algorithm to establish the plant

model. The hidden layers and neurons are determined by exhaustive searching after cross-

validation, as tabulated in Table 4.2, where the multivariate normalized maximum absolute

error (NMAE) and multivariate normalized root mean square error (NRMSE) are defined

as:

NMAEmv =
m∑
q=1

[αq(
1

n

n∑
k=1

∣∣∣∣ ŷqk − yqk
yqmax − yqmin

∣∣∣∣)] (4.2)

NRMSEmv =
m∑
q=1

[βq
1

yqmax − yqmin

√∑n
k=1 (ŷqk − yqk)2

n
] (4.3)

m∑
q=1

αq = 1
m∑
q=1

βq = 1 (4.4)

where m and n stand for the sample dimension and sample size, respectively. The coefficient

αq and βq are assigned with an equal weight, αq=βq=0.25.

Table 4.2: Plant model accuracy evaluation

Mode U -mode Z-mode J-mode

Layers&neurons [5,4] [7,5] [4,4]

NMAE(%) 6.31 6.28 7.72

NRMSE(%) 5.95 5.86 7.37

The mapping results are not as accurate as those of the surrogate models established

for structure optimization in Ref. [51], in which the training data is based on steady-state

simulation. The main reason is that transient simulations have a large number of cases that

have a relatively small mass flow rate, in which the channel flow rate distribution largely

differs from the benchmark case. Note that by adding more samples, the accuracy of the

plant model could be potentially further improved. Given the highly nonlinear nature of

fluid dynamics, the accuracy of the plant model via back propagation NN is reasonable and

acceptable to be integrated into the thermal control system.
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4.1.3 Neural Network-based Controller

As regards the controller, conventional control strategies like proportional-integral-derivative

(PID) control may be not adequate to satisfy the control performance requirement for a fluid

system. Advanced strategies like fuzzy logic control, adaptive neuro–fuzzy inference system,

artificial neural network (ANN), NN-based adaptive PID control, and PID NN, have been

successfully implemented in the literature [1]. Neural network is adopted here to construct

and tune the controller using the same training data from transient simulations, in which the

mass flow rate input is reversed as the output of the NN-based controller. The control goal

is to generate an appropriate mass flow rate based on the temperature bias and operating

mode, so as to closely follow the predefined temperature trajectory. Note that the actuator

(e.g., cooling fan or compressor) is not considered here, since the output of the controller is

same as the actuator. The relationships of the controller are expressed as:

ṁ = g(Tbias, Tave, Ġ)

Tbias = Tref −max(T2, T4, T7, T9)

Tave = (T2 + T4 + T7 + T9)/4

(4.5)

where the temperature bias is defined as the disparity between the reference temperature

Tref and the maximum temperature Tmax, and the operating temperature is represented by

the average temperature Tave. The feasible range and change rate of the mass flow rate

are constrained by the actuator’s actual operating limitations. Here, the constraints of the

NN-based controller are predefined as:

0 ≤ ṁ ≤ 0.014

|∆ṁ| ≤ 0.0035 (kg/s)

(4.6)

When the whole control system is put into practice, advanced adaptive self-tuning control

algorithms, e.g., model identification adaptive control and model reference adaptive control,

can be applied to adjust and improve both the plant model and the controller simultaneously

by integrating the simulated results and real measured data.
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4.1.4 Control Mode Switcher

As demonstrated in Fig. 3.3, the J-mode is designed for normal operation with higher

efficiency, while the U -mode does bring in a stronger heat dissipation capacity to the left

part, and the Z-mode acts similarly on the right part. By quasi-periodically switching among

the three modes, the temperature difference is expected to be fully constrained within a

reasonable range. The switch logic for U - and Z-mode is defined as:

|Tleft − Tright| = |max(T2, T4)−max(T7, T9)| ≥ Tuz (4.7)

where Tleft and Tright refer to the maximum temperature of the left and right parts, respec-

tively. The critical temperature for switching to U - and Z-mode is set as 0.5 K. When the

left part has a higher temperature, the working mode will be switched to U -mode, and vice

versa.

After three switches between the U - and Z-mode, the next action is to return back to

the J-mode, and a switching cycle completes, as given by:

|Tleft − Tright| ≤ Tj (4.8)

where the critical temperature switching to the J-mode (Tj) is set to be 0.2 K. Each

cycle traverses a J-, U -, Z-mode, and a half period of either U - or Z-mode in sequence, as

illustrated in Algorithm 2. The duration of a switching cycle highly depends on the dynamic

working conditions.

4.2 Case Study and Discussion

To test and validate the thermal control system, a hybrid driving cycle is employed as the

dynamic inputs, while a predefined temperature trajectory serves as the target for thermal

control. For a driving vehicle, the equivalent traction power can be estimated using the
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Algorithm 1: Control mode switching logic

Criterion U : Tleft − Tright ≥ Tuz
Criterion Z : Tright − Tleft ≥ Tuz
Criterion J : |Tleft − Tright| ≤ Tj
Initialization: Mode=J , Record=[J ]
while control prcoess contiunues do

if Criterion U & Mode 6= U then

Record⇐ [Record, U ]
Mode⇐ U

end
if Criterion Z & Mode 6= Z then

Record⇐ [Record, Z]
Mode⇐ Z

end
if Record==([J, U, Z, U ]||[J, Z, U, Z]) & Criterion J then

Record⇐ [J ]
Mode⇐ J

end

end

power expression, given by:

P =
V

1000η
[mgµcosα +mgsinα +

1

2
ρAfCdV

2 +m
dV

dT
] (4.9)

Note that the regenerative energy from the braking system with an efficiency of 0.8 will

be recharged back into the battery system instantly. Specific vehicle parameters and driving

cycle conditions are tabulated in Table 4.3, where the vehicle is assumed to be running on

a level road. For the electrical settings of the vehicle, the EV’s battery system consists of 6

battery modules in parallel, and every module has 110 battery cells in series. For the specific

open-circuit voltage (OCV)-SoC, polynomial regression model is adopted here to represent

the relationship between OCV and SoC, given as:

Voc = −40.2SoC6 + 138.6SoC5 − 186.2SoC4 + 123.5SoC3 − 42.4SoC2 + 7.5SoC1 + 3.32

(4.10)
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Table 4.3: EV specification and driving condition (TESLA Model 3)

Mass m 1,875 kg Road gradient α 0

Windward area Af 2.22 m2 Air friction Coeff Cd 0.24

Standard gravity g 9.8 m/s2 Motion efficiency η 0.98

Air density ρ 1.16 kg/m3 Rolling resistance µ 0.01

Velocity V - Regenerative Coeff ηr 0.8

In a dynamic process, the SoC is generally defined and calculated using the Coulomb

counting [17], as given by:

SoC = SoCint −
∫
Idt

Qc

(4.11)

where SoCint andQc denote the SoC at the initial stage and the battery capacity, respectively.

I is the battery current, which is positive for discharging and negative for charging.

To be consistent with the transient simulations, the time step is extended to 5 s (δt=5

s) for simulation and control convenience. The quadratic mean of current and the arith-

metic mean of SoC are derived to represent the initial electric characteristics for simulations.

Moreover, the reference temperature trajectory is supposed to be determined and adjusted

adaptively according to the real-time driving conditions, e.g., strenuous driving requires an

aggressive temperature augment trajectory, while a gradual rise temperature curve is suf-

ficient enough for smooth driving. In this paper, considering the driving cycles illustrated

above, the reference temperature trajectory consists of a climbing section from 303 K to 310

K in 50 min and a stable section of 310 K. The maximum temperature is expected to be

fully restrained within 313.15 K with a target temperature of 310 K.

4.2.1 Neural Network-based Control without Mode Switching

Based on the driving cycles as the system inputs, two control studies are conducted depend-

ing on whether the operation mode switching module is activated or not, in which the basic
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Figure 4.3: The profiles of equivalent charging/discharging current and SoC

control strategy without mode switching module is conducted as a benchmark. As defined

in Fig. 4.2, the mode switching module is bypassed. As a result, the battery system only

operates in J-mode. By applying the comprehensive driving test cycle, the dynamic temper-

ature distributions and mass flow rate are obtained, as shown in Fig. 4.4. It is observed that

the maximum temperature of the battery pack is able to follow the reference temperature by

controlling and adjusting the mass flow rate. However, the trend of temperature deviation

starts in approximately 2,500 s due to the accumulation of a large amount of heat, though

the mass flow rate has already been controlled and increased to its upper bound, as presented

in Fig. 4.5.

Another evaluation criterion, the temperature uniformity characterized by the tempera-

ture standard deviation, also deteriorates in the meantime, as shown in Fig. 4.5. It should

be noted that the J-type structure is optimized under the setting of approximately 52%

full mass flow rate. Under the full mass flow rate condition, the cooling effects are more

significant on the right part of the battery pack, making the heat dissipation of the 7th and

9th cells much stronger as shown in Fig. 4.4, due to the distinct nature of the optimized

J-type structure. Once the external heat source drops off, it is foreseeable that the maximum
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Figure 4.4: The battery temperatures and mass flow rate using the NN-based thermal control
without mode switching

temperature will be restored back to the reference temperature, while the lower temperature

will be kept at the current level.
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Figure 4.5: Temperature uniformity and equivalent heat source ( ∆Tmax is the temperature
difference between the maximum temperature of the left part and the right part, which
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It is seen from Fig. 4.4 that the maximum battery pack temperature difference under

the NN-based control without mode switching is 11 K, due to the temperature deviations

accumulated during the dynamic process. Our previous study has already shown the dis-

tinguished advantages of the J-type structure in terms of temperature uniformity compared

to the traditional U - and Z-type structures [51]. Thus the dynamic thermal performance

will be even worse for traditional structures, i.e., U -type and Z-type. There is scarcely any

solution to address this issue but to increase the mass flow. Instead of increasing the capacity

of mass flow rate, we will explore if the mode switching technique can further improve the

performance of BTMS in this study.
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Figure 4.6: The battery temperatures and mass flow rate using the NN-based thermal control
with mode switching

4.2.2 Neural Network-based Control with Mode Switching

Considering the mode switching module in the control framework as shown in Fig. 4.2, the

corresponding responses regarding the temperature and mass flow rate are calculated, as

shown in Fig. 7.8. Compared to the results without mode switching in Fig. 4.4, it is seen

that the temperature difference between T2 and T9 exceeds the switching threshold 0.5 K at
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around 900 s, the temperature difference stops increasing by switching the operation mode

from J-mode to U -mode, and followed by mode switching from U -mode to Z-mode, and

continues. The battery temperatures closely follow the reference trajectory during the entire

process, except under the intense driving conditions at around 3,000 s, where the battery

temperature slightly exceeds the predefined ceiling temperature.
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Figure 4.7: The mode switching details and battery temperature uniformity of the NN-based
control

The temperature uniformity under the NN-based control with mode switching is also

significantly better than that of the control without mode switching, as shown in Fig. 4.7.

In addition, Fig. 4.7 also shows the tendency of the temperature difference between the

left part and the right part during the entire transition process. Overall, we find that the

NN-based control with mode switching is able to control the maximum temperature and

balance the temperature uniformity simultaneously.

4.2.3 Neural Network-based Model Predictive Control

In this task, an MPC approach is employed to integrate with the NN-based control system.

As shown in Fig. 7.8, there exist very rapid changes to the mass flow rate, while the battery
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temperatures are well controlled according to the reference temperature. This is mainly due

to that the NN-based control strategy only considers the temperature bias of the last step

and the external input at the current step, and does not foresee the possible approaching

drastic changes in the external input. By foreseeing several steps ahead, the MPC approach

is expected to further improve the control performances in terms of thermal requirements

and energy efficiency.

The overall control framework is illustrated in Fig. 4.8, where the discrete time nonlinear

MPC module is added to forecast and optimize the controller output. The main objective

of MPC is to minimize the cost function as follows:

arg min
ṁ

J=
n+N∑
k=n

(αk

[2,4,7,9]∑
b=2

(Trefk−Tbk)2) +
n+N−1∑
k=n

βk(ṁk+1−ṁk)
2

subject to 0 ≤ ṁ ≤ 0.014

|∆ṁ| ≤ 0.0035

(4.12)

where n is the current control step, and N is the control horizon, here, N=4. The parameter

αk is a weight factor that reflects the relative importance of the temperature difference, while

the coefficient βk penalizes the relatively big changes in the mass flow rate. By adjusting

the two coefficients, different control strategies can be achieved for different purposes.

Owing to the high nonlinearity of the control problem, the genetic algorithm (GA) opti-

mizer is adopted here to solve the optimization problem by considering several steps ahead.

It should be noted that GA does not have high computational efficiency. For optimal con-

trol, to better balance the performance and computational efficiency, a local optimum (or a

better solution) is acceptable here as long as the performance is improved. The optimization

convergence criteria can be adjusted and tuned based on the time requirement and accuracy

settings.

The battery temperatures and mass flow rate with the NN-based MPC strategy is shown

in Figure 4.9. While the battery temperatures well follow the reference temperature at most
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Figure 4.8: The overall framework of the NN-based MPC strategy

of the time, there still exist deviations at several time periods, e.g., 400-1,000 s, 2,000-2,400

s, and after 3,200 s. The main reason is that the penalization term (i.e., the second term

in Eq. 5.8) dominates the cost function. Whenever the penalty cost of increasing the mass

flow rate prevails over that of the temperature deviation, the MPC strategy tends to reduce

the variability of the mass flow rate, so as to improve the smoothness of the thermal control

system as well as the energy efficiency. Similarly, the temperature changes during the mode

switching process and temperature uniformity are presented in Fig. 4.10. It is seen that the

temperature uniformity is 7.4% better than that without MPC, though the temperatures

deviate from the reference trajectory.

4.2.4 Discussion

To compare the energy performance, it is assumed that the cooling air is provided by an

axial flow fan for simplification, and the energy consumption of BTMS can be calculated by:

Np =

∫ n

0

ṁ∆P

ρη
dt (4.13)

60



0 1000 2000 3000 4000 5000
Time (s)

300

302

304

306

308

310

312

314

316

T
em

pe
ra

tu
re

 (
K

)

0

0.01

0.02

0.03

0.04

0.05

0.06

M
as

s 
fl

ow
 r

at
e 

(k
g/

s)

J U Z ZU J U UJ U Z U

Figure 4.9: The battery temperatures and mass flow rate with the NN-based MPC strategy
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Figure 4.10: The mode switching details and battery temperature uniformity of the NN-
based MPC strategy

where ∆P is the pressure augment of the fan, ρ is the air density, and η is the overall

efficiency (η=0.75).

The pressure augment relates to the mass flow rate, which can also be obtained via tran-

sient flow simulations. In this study, a support vector regression model is established to

represent the pressure augment as a function of the mass flow rate. The energy consump-

tion, as well as the maximum temperature and the temperature uniformity, is tabulated in
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Table 4.4. It is observed the NN-based control without mode switching fails to meet the

thermal requirements in terms of the maximum temperature and temperature uniformity.

In addition, by employing MPC, the energy efficiency has an approximately 15.8% improve-

ment compared to NN-based with mode switching, with a cost of slight deviation from the

reference temperature. Given the critical operation temperature is 313.15 K, it is reasonable

to employ the MPC strategy with a reference temperature of 310 K.

Table 4.4: Summaries of the three control strategies

Control strategy
Maximum

temperature (K)
Temperature

uniformity (K)
Energy

(J)

Control without
mode switching

316.10 5.81 51,384

Control with
mode switching

313.17 1.33 17,412

MPC with
mode switching

313.12 1.25 14,678

4.3 Summary

This chapter developed a self-adaptive intelligent air-based J-type battery thermal manage-

ment system via neural network-based model predictive control. Based on the optimized

structure and the established electro-thermal-fluid model, a large number of transient fluid

dynamics simulations were conducted for the three predefined operation modes (i.e., J-, Z-

, and U -mode) to build control models using the neural network algorithm. By applying

dynamic driving cycles, the impacts of mode switching was investigated in the case study.

Results showed that the NN-based control without mode switching failed to control the ther-

mal system in terms of both the maximum temperature and temperature uniformity, while

the NN-based control with mode switching was able to regulate the maximum temperature

within the critical safety temperature and balance the temperature uniformity within 1.5 K
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under varying working conditions. It was also found that there was a 15.8% energy efficiency

improvement by employing model predictive control.

It was verified that the developed self-adaptive BTMS control strategy was able to meet

the thermal requirements for battery system. However, the model predictive control in

this study emphasized more on the energy efficiency rather than the maximum temperature

control. More studies need to be performed on the two coefficients in model predictive control

to develop a balanced control strategy.
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CHAPTER 5

MODEL PREDICTIVE CONTROL-BASED ENERGY MANAGEMENT

STRATEGY FOR ELECTRIC VEHICLES1

Building on state-of-the-art thermal management strategies, this chapter seeks to investigate

the discharging scheduling and load shifting from the thermal perspective, in which the

process starts with a thermal control of the optimized battery pack and AC system, and

ends up with evaluations of systematic energy efficiency. The research objective is to develop

an MPC-based strategy to improve the overall energy efficiency and battery cycle-life while

well retaining thermal constraints of the battery pack. The established neural network-based

J-type air-based thermal control system is inherited from Chapter 4, in which both the plant

model and controller are established with data-driven models. By controlling the operation

mode and the mass flow rate simultaneously, the developed BTMS has been proved to be

able to maintain both the maximum temperature and the uniformity within expected ranges

simultaneously. Moreover, an air precooling module is added to the existing J-type BTMS

with extra cooling capability to mitigate thermal impacts from severe working conditions.

5.1 Dynamic Modeling for EVs

5.1.1 Air Conditioning System Model

It is essential to establish a dynamic electro-thermal model of the vehicle-mounted air con-

ditioning system for energy management. According to an auxiliary system impact report

from the Idaho National Laboratory [34], the air conditioning system may consume up to

30% of the traction battery energy for cooling, depending on the air flow volume, and the

temperature difference between the ambient environment and the cabin.

1 c©2021 ASME. Reprinted, with permission, from Y. Liu and J. Zhang (2021), Electric Vehicle Battery
Thermal and Cabin Climate Management Based on Model Predictive Control, Journal of Mechanical Design,
Vol.143, Issue 3, 2021, pp.031705.
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Energy Model

For simplification, the heat balance model of the electrical air conditioning system is estab-

lished separately with the air conditioner model and the thermal load model, and only the

temperature feature is considered in this study. There are three major energy consuming

components in the AC system, i.e., the compressor, the evaporator blower, and the con-

denser fan, as presented in Fig. 5.1. Regarding the air conditioner modeling, while a full

range component level AC simulation model provides more detailed evaluations of various

components with a higher accuracy, it is very challenging to manage the mathematical and

computational complexity in terms of phase-changing flow, thermodynamics, and heat trans-

fer [68]. Since this work emphasizes more on the energy perspective, the AC energy model

developed in Ref. [31] is adopted. The overall power consumption of the AC system can

be simplified and estimated using a ratio coefficient between the cooling capacity provided

and its corresponding power consumed by the AC system, which is also referred to as the

coefficient of performance (ηcop), given by:

ηcop=
Qac

Pac
= F(Tin, Tex, Plr) (5.1)

where ηcop is a function of the uniform internal and ambient temperatures, and the partial

load ratio Plr. The model is implemented using Gaussian process regression based on the

essential data from the study conducted by Pino et al. [67].

Thermal Load Model

For the thermal load model, several external and internal heat sources are generally identified

and considered in the cabinet thermal model, as illustrated in Fig. 5.2 and tabulated in

Table 5.1 after reasonable assumptions and simplifications. The cabin is assumed to be a

trapezoidal box that has a roof panel and an interior base, surrounded by windows. Solar

radiation as well as ambient air have significant impacts on internal climate via the roof
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Figure 5.1: The battery topology and main loads

panel and windows, or through window glasses. As regards the heat conduction via the roof

panel or windows, it is observed that the surface temperature may probably be higher than

the ambient or cabin internal temperature because of solar radiation. The heat conduction

from body shell to the cabin is estimated using a heat balance method, as given by:

Qcr = αIA− hexA((αI + Texhex +
Tin∑
δ
λ

+ 1
hin

)/(hex +
1∑

δ
λ

+ 1
hin

)− Tex) (5.2)

where hex denotes the convective heat transfer coefficients between the roof panel and exter-

nal ambient. hin denotes the convective coefficient between the roof panel and internal cabin.

I is the solar radiation, and α denotes the absorptivity. Tin and Tex are the cabin internal

air temperature and the ambient temperature, respectively. The heat conduction via win-

dows Qcw has a similar expression except the value differences of the radiation absorptivity,

thickness, and thermal conductivity of glasses [56].

A previous study [24] have found that the equivalent heat transfer coefficient between

the roof panel and the external ambient is highly related to the vehicle velocity, while the

solar radiative thermal load through windows highly depends on both the operation time in

a day and its relative whether condition. The radiation I is selected as 1,200 W/m2 in this

study. Part of the parameter settings in this model come directly from the AC simulation

toolbox coolsim developed by the National Renewable Energy Laboratory [33] and Ref. [56].
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Figure 5.2: The transient thermal model of a vehicle’s cabin

It is worth mentioning that the pre-cooling load serves as an accessibility option for BTMS.

When it encounters with extreme ambient temperatures or severe operation conditions such

as super fast charging and high-speed cruising, this feature is activated to provide a stronger

cooling capability towards thermal control via cooling down the approaching air. In general,

the control-oriented dynamic temperature response of the vehicle cabinet can be formulated

as follows.

Tin(k+1)=Tin(k)+
(Qcr+Qcw+Qr+Qh+Qf+Qs+Qb)−Qac

ρairVinCair
δt (5.3)

where the cabinet volume Vin equals to 3 m3, and δt denotes the time step in seconds. Note

that the hysteresis effects from both the power train and the liquid-loop are not considered

here. The adjustment of cabin air temperature is controlled by adjusting the total power

input for the AC system with basic control logistics. Detailed modeling and controlling of the

air conditioning system, including the compressor, the fan, and the condenser, are beyond

the research scope of this dissertation.
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Control Model

Based on the cabin thermal load model, a control-oriented AC thermal system can be estab-

lished. The cabin temperature is selected as the system output and the AC cooling capability

is chosen as the control variable, as formulated by:


ẋ =

(Qcr+Qcw+Qr+Qh+Qf+Qs+Qb)−u
ρairVinCair

y = x

(5.4)

where both x and y denote the cabin temperature Tin, and u represents the cooling capacity

Qac. A basic proportional-integral (PI) controller is developed to control the temperature

of the cabin temperature with a targeted value of 294 K. Parameters of the PI controller

are tuned based on the situation without the pre-cooling function. For the sake of energy

efficiency, limitations other than the targeted value are not imposed on the thermal control.

It is worth mentioning that the pre-cooling thermal load for BTMS, Qb, only activates

at a certain time, and the cabin climate control may probably be affected, since the cooling

capacity of the AC system is limited and the BTMS has a higher priority over the cabin

thermal management. When the maximum temperature of the battery pack exceeds 311.8

K, the pre-cooling function is activated, whereas it is deactivated after the temperature

declines back to 310 K. The constraints are formulated based on the limitations proposed

in Ref. [24], including an operation boundary and a changing rate limitation as follows:

0 ≤ Qac ≤ 4500ηcop

|∆Qac| ≤ 1000

(5.5)

5.1.2 BTMS Energy Consumption Model

In the concept design of the J-type BTMS, the cooling air is actuated by an air fan under

normal conditions. When the ambient temperature is higher than the predefined threshold
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or encountering severe operating conditions, a heat exchanger will be activated to pre-cool

the air, in which the coolant comes directly from the AC system, as shown in Fig. 5.1. The

fan power is estimated by:

Pbtms =
ṁPc
ρηc

(5.6)

where Pc is the pressure augment of the compressor, ρ is the air density, and ηc is the flow

efficiency. All the properties and parameters are obtained via CFD simulations, and the

relationship is approximated using a support vector regression model, as shown in Fig. 5.3.
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Figure 5.3: The relationship between the pressure augment and the mass flow flow rate for
U -, J-, and Z-type structures

Besides the aforementioned systems, other major subsystems and devices include the

power steering, the braking system, the lights, and the entertainments. Due to the complex-

ities under dynamic conditions, it is challenging to establish a comprehensive dynamic model

that consists of all these subsystems. In this paper, as a trade-off, only the driving motor

with regenerative function, the air conditioner, and the thermal control system are consid-

ered and modeled in detail, while other auxiliary devices are assigned with an estimated

fluctuated power that follows a normal distribution as follows.

Paux ∼ N (µ, α2) = N (1000, 250) (5.7)
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5.1.3 Energy Management Strategy

Based on the driven power model, the AC model, and the BTMS model, this study seeks

to develop an energy management strategy with high efficiency. The energy management

strategy aims to enhance the energy efficiency as well as the battery health performance

via an MPC algorithm, while retaining the constraints from the perspectives of thermal

limitations and electrical requirements. The considerations and approaches are predefined

in a twofold manner: (i) to avoid potential overlapping peaks by rescheduling the operation

of different devices; (ii) to mitigate the negative effects regarding the battery cycle-life in

recharging the battery by distributing the regenerative energy to auxiliary systems. By

adopting an MPC algorithm, the thermal control and centralized optimization framework is

formulated as:

arg min
Qac,ṁ

J=
n+N∑
k=n

(αk(Pdrvk+Pauxk+Pack+Pbsk)
2

+ βk(Trefk−Tbk)2 + ξk(Ttark−Tink)2)

subject to 0 ≤ ṁ ≤ 0.012

|∆ṁ| ≤ 0.003

0 ≤ Qac ≤ 4500ηcop

|∆Qac| ≤ 1000

(5.8)

where n is the current step, and N is the control horizon. Based on specific control purposes,

penalty coefficients αk, βk, and ξk are preset to attribute weights of the overall power con-

sumption, the control target temperatures of the cabin and the battery, respectively. The

soft constraints of the two subsystems are implemented via a real-time adjustment of the

corresponding coefficient, i.e., the temperature biases should be constrained within 0.5 K

and 1 K for BTMS and AC, respectively. Since the second term about the thermal control
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of the battery system involves safety concerns, a larger weighting, βk, is assigned to BTMS

compared with the AC system.

A particle swarm optimization (PSO) algorithm is employed to solve the problem, in

which PSO starts with the original direct control solutions of the two subsystem. It is worth

mentioning that the stochastic PSO approach is promising to obtain a reasonable solution

instead of a global optimum within limited calculation time by tuning different convergence

criteria.

5.2 Case Studies and Results

An integrated driving cycle that consists of the EPA urban dynamometer driving schedule

(UDDS), the world-harmonized light-duty vehicles test cycle (WLTC), and the highway

fuel economy driving schedule (HWFET) is directly utilized to test and validate the energy

management strategy. Combined with the power consumption from auxiliary devices, the

uncontrollable power consumptions, i.e., as the management system inputs, are presented in

Fig. 5.4. The sample time is set to be 5 s.

5.2.1 No Energy Management Strategy

A comparative case without any energy management strategy is conducted as the benchmark,

in which the BTMS and AC systems are operated separately based on their own conditions

without a global energy management strategy. For BTMS, the power consumption of the

last step is taken into consideration to calculate the heat generation rate for the current step,

and thus determine the mass flow rate, as shown in Fig. 5.5. The temperature distribution

of the battery pack along the dynamic process is presented in Fig. 5.6. It is seen that the

temperatures follow close behind the targeted reference trajectory via switching among the

J-, U -, and Z-mode. Due to the flow characteristic of Z-mode, the battery cells near the

right outlets have a stronger heat dissipation capability under large flow rate conditions.
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Figure 5.4: The power consumptions of tested driving cycles and auxiliary devices

The temperature uniformity deteriorates after 2,100 s, while the maximum temperature in

the 7th battery cell also decreases. At around 2,950 s, the pre-cooling module activates to

provide extra cooling capacity to cope with the large amount of heat generation. Overall,

the BTMS is capable to retain the temperature within an expected range.

For the AC, though the temperature of the internal air goes down in a fast manner, the

base temperature decreases very slowly because of limited convection heat transfer, as shown

in Fig. 5.7. The velocity variations may inevitably bring about fluctuations to the cabin

temperature as well as the power usage. Only a base load is required to balance the sensible

heat from solar radiation and the human body under normal operations.

5.2.2 Model Predictive Control-Based Energy Management Strategy

Based on the MPC algorithm, the forecast horizon is set to be 5 steps or 25 seconds. Aiming

to reduce the overall power usages, the power consumptions of BTMS and AC are scheduled

flexibly according to the real-time driving and auxiliary power usage. Both the BTMS and
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Figure 5.5: The BTMS properties without energy management
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Figure 5.6: The BTMS temperature distribution without energy management

AC have similar and accepted performances compared to that of no energy management,

as presented in Figs. 5.8 and 5.9. However, it is observed that the power consumption of

BTMS is reduced for the reason that the overall heat generation is reduced by lowering the

peak load, which is implemented by shifting the operation with AC, as shown in Fig. 5.10.
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Figure 5.7: The AC performance without energy management

For instance, the operation of AC almost completely terminates at around 200-300 s and

2,600-2,650 s to avoid overlapping with existing load peaks.
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Figure 5.8: The BTMS properties with MPC-based energy management

It is also seen that the regeneration power that recharges back to the battery system

is reduced by 4.3% from 8,809 J to 8,430 J per battery cell, at the cost of bringing about

extra fluctuations in the temperature controls of BTMS and AC system. The total energy

consumption also has a 6.5% improvement from MPC with a value of 23,800 J compared

to 25,500 J without any management strategy per battery. Moreover, the final stage SoC

with MPC is 0.5864 compared to 0.5653 for the system without control, which has a 3.8%
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Figure 5.9: The battery temperature distribution with MPC-based energy management
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Figure 5.10: The AC performance with MPC-based energy management

improvement. Note that the developed algorithm and control framework are also applicable

to liquid-based battery cooling system, since they share similarities in terms of fluidity and

controllability.

5.3 Summary

This chapter developed an MPC-based energy management strategy to control the electric

vehicle cabin climate system and battery thermal management system, simultaneously. A

battery thermal control model was developed using neural network, while the cabin air
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conditioning system was established with a proportional-integral control method. The energy

management strategy aims to reduce the values of load peaks, while retaining the constraints

of the BTMS and AC systems.

The MPC-based energy management strategy was tested using an integrated driving

cycle. Compared to the system with no energy management, no significant differences were

observed in terms of thermal properties and dynamic balance. However, from the perspective

of energy efficiency, simulation results revealed that there were a 4.3% reduction for the

recharging energy, and a 6.5% improvement for the overall energy consumption. It is shown

that the MPC-based energy management is a promising solution to enhance the overall

efficiency of EVs.
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CHAPTER 6

ENERGY MANAGEMENT-ORIENTED SHORT-TERM VEHICLE

VELOCITY FORECASTING1

To further improve the performance of individual vehicle velocity forecasting, a hybrid ve-

locity forecasting algorithm is developed in this chapter, by leveraging the fact that most of

the newly-released electric or hybrid vehicles are equipped with on-board GPS devices. To

validate the proposed algorithm, a repeated urban driving cycle dataset is first generated

by the same driver (with the same driving habits) in the area of Dallas, Texas. The driving

patterns between weekdays and weekends are investigated, and road segments are also iden-

tified. A forecasting pool that consists of multiple base forecasting algorithms is established,

and a localized model selection and ensemble framework is developed to dynamically choose

the appropriate forecasting models for each road segment. This chapter seeks to enhance

the forecasting accuracy with the currently available urban transportation infrastructure,

and the contributions are threefold: i) generate a publicly available commuting dataset with

repeated driving cycles for energy management and control Co-design; ii) develop a segment-

based vehicle speed forecasting model, in conjunction with a localized model selection and

ensemble framework.

6.1 Data Collection and Analyses

6.1.1 Data Collection

There exist several repeated driving cycles based on a fixed route published in the litera-

ture, such as the Connected Ann Arbor (A2) dataset [47], the Gothenburg driving dataset

[30], the CSU driving cycle [70], the MTU driving cycle [8], and the Fort Collins repeated

1 c©2021 ASME. Reprinted, with permission, from Y. Liu and J. Zhang (2021), A Repeated Commuting
Driving Cycle Dataset with Application to Short-term Vehicle Velocity Forecasting, Journal of Autonomous
Vehicles and Systems, 1-44
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driving cycle dataset [20]. However, few datasets are publicly available at the current stage.

Another piratical way to obtain repeated driving cycles is to extract the repeated routes

from large-scale traffic or vehicle energy consumption dataset that covers a certain period of

time, such as the Geolife Trajectories1, the vehicle energy dataset (VED) [64]2, the perfor-

mance measurement system (PeMS) dataset3, the Roma taxi dataset4, and the San Francisco

bay area taxi dataset5. These datasets are readily available online, but one of the promi-

nent drawbacks is that the extracted cycles are usually inconsecutive and scattered with a

very short period of time, making it challenging to be integrated with any predictive con-

trol implementation. Moreover, a large dataset with repeated routes is also beneficial to

route planning and decision-making for autonomous driving development. By capturing the

surrounding environment and analyzing dynamic traffic conditions via image recognition,

the autonomous driving system with improved confidence can be potentially advanced to a

higher level regarding reliability and safety for a specific repeated route in a limited area.[6]

To better understand the impacts of vehicle speed forecasting on energy management,

we have generated a Dallas repeated driving cycle (DRD) dataset6. In this dataset, dozens

of driving cycle tests have been performed on a fixed route in the Dallas area to simulate

a typical commuting route for passenger vehicles, which consists of an expressway test of 5

kilometers and a local urban road test of 20 kilometers, as shown in Fig. 6.1. The dataset

was acquired between December 2020 to January 2021 at around 4:45 PM to 6:00 PM, in

which each cycle takes approximately 30 minutes using a conventional internal combustion

1https://www.microsoft.com/en-us/download/details.aspx?id=52367

2https://github.com/gsoh/VED/blob/master/README.md

3https://archive.ics.uci.edu/ml/datasets/PEMS-SF

4https://crawdad.org/roma/taxi/20140717/

5https://crawdad.org/epfl/mobility/20090224/cab/

6Available at: https://github.com/UTD-DOES/Dallas-Repeated-Driving-Cycle-Dataset
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engine passenger vehicle. All the testing cycles were conducted with a fixed route by the

same driver with similar driving manners. It needs to be noted that some of the traffic signals

in this area are adaptively controlled in a daily or continuous real-time manner, according

to the progress report of a regional traffic retiming program [63]. More repeated commuting

cycles by different drivers are expected to be included in the DRD dataset in the coming

future.

Several critical dynamic driving parameters and indices are recorded using a GPS logger

(brand: Garmin, model: eTrex 10) and a camera. All the data are time-stamped with a

time interval of 1 second for the sake of accuracy and consistency, including the vehicle

velocity, altitude and longitude information, elevation, heading direction, and traffic light

picture/video. Compared with other datasets, one of the remarkable merits of this DRD

dataset is that it covers a broader set of road types with tens of intersections, and traffic

light images can be used as a potential tool for intersection waiting time prediction.

1

2 3
4

5

678910

11

12

13

14

16

15

17
18 UT  Dallas

Figure 6.1: The testing route of DRD repeated driving cycles, which is close to the University
of Texas at Dallas (The numbers indicate the positions for traffic congestion analyses.)
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6.1.2 Data Processing

As a preprocessing step, clustering plays an important role in improving forecasting accuracy.

For velocity forecasting using historical data, there are two general approaches to cluster

the data and identify major spatial-temporal patterns: i) cluster the cycles for pattern

recognition, split the grouped cycles into segments, perform another round of clustering for

the segments, and then establish the forecasting models; ii) skip the first-round clustering,

and follow the rest steps [15, 38]. Note that unsupervised clustering can be transformed

into supervised classification by manually labeling the data with expert knowledge, e.g., the

cycles can be classified directly into weekday and weekend/holiday conditions based on daily

driving experiences.

To quantify the traffic discrepancies between weekdays and weekends, a congestion index

εit (of a location i at time t) is modified here by comparing the measured floating vehicle

velocity with the free-flow velocity [62], as defined in Eq. 6.1.

εit =
sit
vit
− 1 (6.1)

where the parameter Sit represents the free-flow velocity defined by the maximum value

recorded, while vit represents the current vehicle velocity. A larger index εit indicates rela-

tively more severe traffic congestion. Here, a total of 18 locations away from the intersections

are selected randomly using the stratified sampling algorithm, as shown in Fig. 6.1. The

discrepancies between weekdays and weekends/holidays are illustrated in Fig. 6.2. It is seen

that there do not exist many significant differences between weekdays and weekends/holidays,

except for the saturated section ranging from location 2 to 5 on the upper-right corner, which

illustrates an improvement of the highway traffic on weekends and holidays. The possible

reason behind this phenomenon is the current remote-work environment due to the COVID-

19 pandemic. It is also noticed that the whole trip takes an averaged time of 1,801 seconds

on weekends and holidays, which is 193 seconds shorter on weekdays. By investigating the
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details of route segments, it is observed that moving through the intersections on weekdays

requires extra time, as shown in Fig. 6.3.
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Figure 6.2: A comparison of the congestion index between weekdays and weekends/holidays
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Figure 6.3: The velocity trajectories of typical driving cycles on weekdays and week-
ends/holidays (The location annotations are based on the weekday cycle.)

6.1.3 Intersection/stop Identification

Given the preceding analysis, the second clustering approach discussed in Section 6.1.2 (i.e.,

split the grouped cycles into segments, perform another round of clustering for the segments,
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and then establish the forecasting models) is employed here for feature identification in the

study. The driving cycles are directly divided into segments, followed by a time sequence

clustering of the segments if necessary. Specifically, all the intersections are extracted from

the route as separated segments because of their significant impacts on the whole driving

time. A location is identified as an intersection or a T-junction with stop/yield signs if it

is detected with a complete stop or low velocity (i.e., 10 km/h) more than twice. Once the

intersections are located, the routes in between will also be defined as independent cycle

segments. It is worth mentioning that there are two major reasons why traffic signal identifi-

cation is necessary rather than using the labeled data from public map sources directly: i) the

vehicles have a high probability of moving through some labeled intersections or T-junctions

without any interruption; ii) the vehicles need to wait for two rounds at some traffic lights

due to the heavy traffic conditions, resulting in another indirect hidden stop.

As can be seen from Fig. 6.4, the final location of a vehicle is scattered at an intersection,

depending on the traffic volume and its arrival time. The furthest point downstream among

all is treated as the location of the intersection. The primary step here is to organize the

stop points that belong to the same intersection or potential stop into a group. General

density or centroid-based machine learning-based clustering algorithms like K-means have

been tested however with unsatisfied performance, since it is challenging to determine the

appropriate number of clusters. In this study, we attempt to cluster the stop points using a

connectivity-based single linkage hierarchical clustering algorithm, in which only connections

with a coordinate distance smaller than the maximum threshold will be considered to form

a same group, i.e., 40 m for this DRD dataset. Given the specific velocity profile, the single

linkage approach has a great superiority regarding the accuracy over other clustering methods

for a relatively small dataset, as it determines a group in a more straight-forward manner by

merely using a hard distance threshold. The clustering results are also highlighted in Fig.

6.4. A group consisting of fewer than three points is ignored and will not be treated as an

intersection or a stop, given a low stopping probability of 5.8% (2/34).
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Figure 6.4: Intersection detection using the velocity profile and its location on a map. The
left figure shows the locations of intersections after identification. The onward route before
the first stop sign has been removed, so has the return route. Annotations 1 and 2 illustrate
that these two intersections are equipped with traffic lights but will be ignored as a normal
straight road due to a low stopping probability. Annotation 3 shows no stops have been ever
detected even though there is a traffic light. Annotation 4 indicates that vehicles are very
likely to stop moving somewhere between two intersections because of heavy traffic, which
may be regarded as a stop.

However, the computational complexity may increase considerably when applying the

method to a large repeated driving cycle dataset. Given its temporal and spatial nature, a

semi-supervised iterative approach is employed aiming to improve the computation efficiency.

The clustering process begins with a single driving cycle, which is then clustered using a

maximum distance threshold as discussed above. By adding new cycles, the new clustering

outcomes get updated iteratively using a divide and conquer method. The proposed method

seeks to avoid unnecessary coordinate distance calculations, as illustrated in Fig. 6.5.

6.1.4 Road Segment

To better model the velocity trajectory passing through an intersection, besides the final

stopping location, it is also crucial to identify the deceleration and reacceleration processes
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Figure 6.5: The sketch of an iterative clustering method for a large dataset. (Detailed
processes: after clustering the kth point in Cycle−Q into the existing Nth group, the (k+1)th
point only needs to calculate its distance with groups starting from Nth. Once it is clustered,
i.e., into the (N+ i)th group, an additional distance with the (N+i+1)th group needs to be
conducted to confirm that the new point does not belong to the next group, otherwise, the
(N+i)th group will be combined with the (N+i+1)th group to form another group.)

and divide the routes into varying segments, as illustrated in Fig. 6.6. An intersection

segment consists of a deceleration, a waiting, and a reacceleration process, while a normal

road segment refers to a continuous move at a steady speed. When it comes to the local

street with a lower speed limit and a smaller traffic volume, i.e., a stop sign, the deceleration

and acceleration prepossess are captured with a very similar pattern, i.e., same stopping

locations and almost equal waiting time.

Following the principle discussed above, the whole cycle is divided into 42 segments using

location coordinates, and a portion of the segments are presented in Figs. 6.7 and 6.8. It is

seen from the figures that within a same road segment, the velocity patterns may still differ,

especially for intersection segments. However, it is observed from Fig. 6.8 that the trends

of velocity trajectories versus location for intersection segments are more uniformed than

that versus time in Fig. 6.7. The possible discrepancies are mainly due to the waiting time

for traffic lights. Thus, no further clustering is implemented in this study. We also assume

that the final stopping location may have considerable influences on the waiting time at an

intersection, which is crucial to vehicle energy management and will be further investigated

in the following section.
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Figure 6.6: The schematic diagram for road segment division
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Figure 6.7: Segment velocity trajectory vs. time (top: Segments 9-12; bottom, Segments
13-16 (see Fig. 6.3), cycle size: 34)
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Figure 6.8: Segment velocity trajectory vs. location (top: Segments 9-12, bottom: Segments
13-16 (see Fig. 6.3), cycle size: 34)
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6.2 Base Forecasting Methods and Results

From the perspective of energy management with a specific driving route, it is expected that

accurate traffic forecasting, including the averaged velocity, the deceleration and acceleration

processes could significantly enhance the efficiency via energy scheduling and planning. In

this study, we construct a forecasting model pool that consists of a collection of stochastic

and deterministic methods based on their popularity and performance, i.e., LSTM, HMM,

ANN, SVR, and a similarity-based method, with varying kernels, training algorithms, and

hyper parameters. However, due to a very short prediction and action time interval (e.g.,

5 seconds for most of the predictive energy management implementations [50, 5, 4, 65]),

it remains challenging to include all the submodels simultaneously for short-term velocity

forecasting. The best subset of models are preselected in the training-validation stage using

two evaluation metrics, i.e., the mean absolute error (MAE) and the root-mean-square error

(RMSE), expressed as:

MAE =
1

n

n∑
i=1

|ŷi − yi| (6.2)

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (6.3)

where ŷi and yi are the forecasted and actual value of sample index i, respectively.

Via the model preselection, only five models are employed to forecast the velocity for each

road segment. In this process, a total of 23 randomly-selected driving cycles (i.e., renamed

as Cycle 1-23) are utilized for training, and another 5 cycles (i.e., Cycle 24-28) are used for

validation.
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6.2.1 Stochastic Approach

Hidden Markov chain is a discrete-time stochastic memoryless process to model a sequence

of events, in which the future state or action only depends on the current state. The chaining

process is characterized by a set of implicit hidden states S and its transition probabilities

matrix A, and each aij represents the probability of moving from a state i to a new state j,

s.t.
∑N

j=1 aij = 1, ∀i, which is also referred to as the Markov assumption, expressed as:

P (si|si−1, si−2, ·, ·, ·, s1) = P (si|si−1) (6.4)

Another fundamental assumption of HMM is that the explicit observation O only relies

on the state that generates the observation with a probability of B = [bj(Ot)]. Starting

with an initial probability distribution over states π, an HMM process can be modeled as

λ = (A,B, π).

To apply HMM for velocity prediction, it is required to transform the historical speed

records into a set of observations indexed by integers. If the numbers of states and obser-

vations are known and set to be equal, the probability matrix A and B can be solved by

calculating the frequency counts of a labeled state transition among all the transitions or

a specific observation among the observations. In this study, the DRD dataset contains a

very limited number of data points, posing challenges in directly solving this problem, as

the matrix might be singular.

To enhance the accuracy, two data augmentation techniques for time series are leveraged

to expand the existing dataset, including the weighted dynamic time warping barycenter

averaging (w-DBA) and Gaussian noise injection. The w-DBA is accomplished via assigning

varying weight factors to a set of similar temporal sequences measured using the dynamic

time warping (DTW) [71], as given by:

Tnew(n) = ωbTbase(n) +
4∑
i=1

ωiD[Tbase(n), Ti(m)] (6.5)
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where Tbase and Ti are the basic sequence to be augmented by its selected ith sequence with

similarity. [ωb, ωi] denotes the assigned weight factor consistently with the DTW normalized

distances, s.t.
∑
ωj = 1. Here, it is predefined as [0.4, 0.18, 0.16, 0.14, 0.12] through trials

for simplification. D[·] represents the DTW alignments between two time sequences, i.e.,

the nth element of the base sequence may align with the mth element or several continuous

mth-pth elements of a similar sequence, where the value of D[·] equals to Ti(m) or the average

of sequence Ti(m)−Ti(p). The main motivation of adopting the w-DBA approach is that

the new augmented sequence keeps the same length as the original base sequence but with

reasonable variations.

Gaussian noise injection is another popular and alternative augmentation approach for

time sequences, defined as:

Tnew = Tbase +N (µ, σ2)

s.t. |
N∑
i=1

N (µ, σ2) |≤ 0.02L
(6.6)

where N (µ, σ2) represents a zero-mean normal distribution with a variance of 0.8 (µ = 0,

σ2 = 0.8), and L denotes the total length of the sequence. The motivation why a variance

of 0.8 is chosen is to generate a series of noises, 98% of which lie on an appropriate range

of [−2, 2]. The constraint here is to confine the total length of augmented noises within an

acceptable range, making the total distance remains unchanged for each segment after data

augmentation. Figure 6.9 illustrates the comparison between the original sequence and the

augmented sequences. It is observed that adding the Gaussian noise may bring in a larger

fluctuation than the w-DBA method, but overall, the augmented series stays in step with

the general trend. Through these processes, the training dataset has tripled to 69 sequences

compared to the original dataset.

Regarding the HMM training, we obtain a model by employing the Baum-Welch algo-

rithm that treats the hidden states as implicit variables using an expectation maximization
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Figure 6.9: A comparison among the base, the w-DBA augmented, and the Gaussian noise
(GN) augmented sequences (left: Segment 9, right: Segment 10)

algorithm, and the detailed derivation and explanation can be found in Ref. [10]. After

the model is trained, the prediction procedure uses a sequence of velocity as the observation

input, and a dynamic programming (i.e., Viterbi) algorithm as the solver to acquire the most

probable state path. The prediction results are achieved one step ahead along the Markov

chain within the variant constraints.

The forecasting task in this study is to predict the vehicle velocity 10 seconds ahead,

where approaches with different step windows can be used, e.g., 5 steps ahead with a 2-second

interval or 2 steps ahead with a 5-second interval. The reason to adopt these recursive multi-

step approaches is that most of the decelerations and accelerations in the DRD dataset occur

within 12 seconds, and it is challenging for a one-step 10-second ahead direct prediction to

capture these processes using HMM.

Table 6.1 tabulates the validation performances across the original and the augmented

datasets. The recursive 2-step approach achieves an approximately 3% higher accuracy than

the 5-step method using these two datasets. The accuracy discrepancies are mainly due to

error accumulations, where a double recursion performs better. Moreover, considerable en-

hancements are also observed after leveraging the data augmentation approaches. However,

there still exist drastic fluctuations in the HMM forecasting as shown in Fig. 6.10, especially

during the deceleration and stop states, which may lead to undesired disturbances when
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applying to the energy management system. The possible reasons for causing these dras-

tic fluctuations and discrepancies are threefold: (i) the transformation of original data into

discrete positive integers may potentially lead to non-ignorable accuracy loss; (ii) both the

transition and observation matrices are sparse in nature, which can be mitigated by accumu-

lating a much larger number of driving cycles as the implementation of data augmentation

indicates; (iii) for the 2-step method, only 3 previous observations/velocities (i.e., [Ot−10,

Ot−5, Ot]) are used as the model input. Additionally, the single HMM model built on the

whole cycle is investigated, yielding an undesirable outcome with an MAE of 3.49 m/s and an

RMSE of 5.38 m/s based on the original dataset, which is approximately 30% worse than the

segment-based approach. The results also further validate the necessities and effectiveness of

the segment analysis discussed in Section 6.1. It is worth noting that there are multiple ways

to implement HMM in velocity forecasting, e.g., treating the acceleration/deceleration speed

as the observable states, real-time updated transition matrix, higher-order Markov chain

model, and subdivided HMM models for varying driving conditions [109, 82, 47]. However,

due to the huge diversity of driving datasets, no comparative study has been reported yet

regarding the performance of these different approaches in the literature.

Table 6.1: Segment-based HMM accuracy analysis

Original Dataset Augmented Dataset

HMM Model 5-step 2-step 5-step 2-step

MAE (m/s) 2.68 2.55 2.61 2.47

RMSE (m/s) 4.39 4.22 4.30 4.07

6.2.2 Deterministic Approaches

Long short-term memory model (LSTM) is an improvement over the recurrent neural net-

work (RNN) with feedback connections designed to address the long-term dependency chal-

lenge when modeling sequential events by propagating through time. In addition to the
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Figure 6.10: 2 steps ahead HMM forecasting based on a 5-second interval for Cycle-28

existing structures of RNN like hidden states, LSTM employs a novel layer, named the cell

states, to selectively store the previous event information, making it capable of alleviating

the vanishing/exploding gradient issue. In this study, a typical LSTM structure with a forget

gate is employed to forecast velocity 10 steps/seconds ahead, which takes approximately 300

epochs to converge. Given the sequence length of the dataset, the LSTM model adopts a

deep learning structure with one hidden layer after random search. The number of hidden

units is narrowed down within the range of 180 to 260, varying from segment to segment.

To avoid potential overfitting, the model also employs the settings of bidirectional layer and

dropout layer with a dropout rate of 0.5. Three popular training algorithms are considered

here, i.e., stochastic gradient descent (SGD), adaptive moment estimation (Adam), and root

mean square propagation (RMSprop), which provides important properties of spatial and

temporal locality.

Compared to LSTM, feed forward artificial neural network with back-propagation and

SVR are other two popular machine learning-based estimation methods that mainly consider

spatial properties. For temporal forecasting, we utilize the past 10 sequential steps/seconds

record as the input to estimate the velocity 10 seconds ahead. We take into account three

training algorithms for ANN, i.e., the standard Levenberg-Marquardt (LM), variable learning

rate gradient descent (GDX), and resilient back-propagation (RP), in which a fully connected
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two-layer structure is empirically predefined with a maximum size of 30 neurons for each

layer. Similar to the ANN settings, we diversify and examine the model by utilizing three

different kernels for SVR based on their popularity, i.e., linear, polynomial, and Gaussian

kernels. Other hyperparameters like the penalty weight factor and intensive parameter are

optimized and determined based on the validation dataset.

In addition, given the temporal and spatial repetition nature of the DRD dataset as dis-

cussed in Section 6.1, a similarity-based estimation approach is proposed here by comparing

the similarities. This method takes the previous multiple steps and the real-time position

(i.e., the GPS longitude and latitude, and the elevation data as supplementary) as the inputs

to retrieve the most similar historical sequences near the location. In contrast to the DTW

algorithm, since all the sequences are extracted in the same length, the sequence similarity

can be attained directly by calculating the Euclidean distance expressed as:

Dist =

√√√√ 1

n

n∑
i=1

αi(Si − Ti)2 (6.7)

where S and T are the test sequence and the ranked historical sequences, respectively. n

denotes the total length of the two sequences, and here, n is set to be 10. α is a set of

unequal weighted factor assigned to different steps, where the latest steps have a larger

weight. According to the similarity ranking, the most similar sequences are selected, and

the new forecast can be integrated as:

Tfore(t+ 10) =
3∑
i=1

βiTi(t+ 10) (6.8)

where β is an equal weight factor for generalization, s.t.
∑
βj = 1. The selected cycle

number is narrowed down to 3 with the best performance.

The global performance using the original dataset is compared and tabulated in Table

6.2. Prior to outcome analyses, it is worth mentioning that RMSE is more sensitive than
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MAE to large bias or outliers due to the squaring operation. When it comes to this driving

cycle dataset, the cruising segments tend to yield relatively smaller absolute differences, while

larger biases/residuals normally occur at intersections. Accurate forecasting at intersections

is more likely to produce a smaller RMSE. To evaluate the model performance, it is very

necessary to report both metrics.

As a piece-wise approach, the segment-based approach dominates the whole cycle-based

method for all machine learning models. It is also seen that the diversified submodels

with different kernels or training algorithms vary in global accuracy. Given the limited

processing time, only the LSTM-sgd, ANN-lm, SVR-Gaussian, and the similarity-based

method are selected to perform velocity forecasting. It is worth noting that LSTM models

have relatively lower accuracies comparing to the ANN approaches, especially in the piece-

wise segment-based forecasting, while LSTM dominates other algorithms in similar studies

[47, 70]. There are two possible reasons that may account for this discrepancy: i) The

majority of the sequence lengths in this study merely range from 15 to 60 after segmentation,

while the sequence lengths in Ref. [47] are around 700; ii) The LSTM models are pre-trained

offline based on the historical records, which will not be updated during the cycle velocity

forecasting given the on-board computational limitations. The detailed forecast results of the

best submodels are shown in Fig. 6.11. Less fluctuations are observed using deterministic

methods compared to the stochastic HMM method in Fig. 6.10.

It needs to be noted that all the deterministic models are based on the original dataset,

since no significant improvements are observed by using the augmented dataset. For example,

the MAE of ANN-lm and SVR-Gaussian methods using augmented dataset are 2.19 m/s

and 2.21 m/s, respectively, which are slightly worse than those using the original dataset.

Considering the unique nature of the DRD dataset, one of the possible reasons is that the

data augmentation techniques employed in this study are not forecasting-oriented [7].
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(a) Cycle-based forecasting results using LSTM and ANN
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(b) Forecasting biases using LSTM and ANN
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(c) Cycle-based forecasting results using SVR and similarity
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(d) Forecasting biases using SVR and similarity

Figure 6.11: Forecasting results of Cycle-28 using deterministic methods
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Table 6.2: Deterministic forecasting model accuracy

Segment-based Cycle-based

Metrics (m/s) MAE RMSE MAE RMSE

LSTM-adam 2.36 4.01 2.79 3.89

LSTM-sgd 2.26 3.23 2.91 4.18

LSTM-rmsprop 2.29 3.74 2.78 3.83

ANN-lm 2.15 3.17 2.69 3.78

ANN-gdx 2.35 3.31 3.15 4.34

ANN-rp 2.19 3.14 2.79 3.89

SVR-linear 2.21 3.38 2.74 4.32

SVR-poly 2.49 3.73 3.14 4.87

SVR-Gaussian 2.16 3.42 2.65 3.91

Similarity 2.25 3.71 2.25 3.71

Note: Bold values indicate the best MAE or RMSE within each category; Bold italic values
indicate the best MAE or RMSE among all models.

6.3 Localized Model Selection and Ensemble Approach

As illustrated in Figs. 6.10, 6.11, and 6.12, we have observed that the accuracies of the

forecasting models differ from segment to segment. To further improve the forecast perfor-

mance based on these individual models, ensemble models and dynamic model selections are

two widely-used second-stage approaches. As a higher-level forecast algorithm, an ensemble

model aggregates the predictions of certain diverse base models and results in a final output

using averaged or weighted methods, while an online dynamic model selection could deploy

an optimal individual model via methods such as reinforcement learning or Bayesian up-

dating [57]. This section will comparatively investigate ensemble and online model selection

methods, aiming to develop an enhanced forecasting model with a higher generalization and

accuracy. Due to the lack of available data, we reuse the validation dataset (Cycle 24-28)
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together with a set of new data (Cycle 29-31) for the model training if needed, and the

remaining portion of the DRD dataset (Cycle 32-34) is used for testing.
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Figure 6.12: The segment-based model error distribution of Cycle-32

6.3.1 Single Model Selection

The segment-dependent probability approach is an offline individual model selection method

that only considers the prior probabilities for different segments, and directly utilizes the base

model with the maximum likelihood for prediction. One of the prominent advantages of this

method is that no online training is required and the model can be updated offline. Only

the selected base model is implemented for prediction, which saves computing time. The

probability distribution calculated via frequency count is illustrated in Fig. 6.13, which

results in an improved MAE of 1.99 m/s and a deteriorated RMSE of 3.29 m/s, compared

to the best single base model (i.e., ANN) with an MAE of 2.07 m/s and an RMSE of 3.11

m/s for this DRD dataset. The results indicate that this offline model selection method may

not be an appropriate solution for this problem.

In contrast to the offline probability-aided method, a persistence approach directly utilizes

the dominating model of the last segment as the forecasting model for the current segment.

A training process is unnecessary but it entails the implementations of all the submodels

pre-selected in Section 6.2. As shown in Fig. 6.12, the accuracy ranking differs in both cycles
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Figure 6.13: The normalized discrete prior probability distribution of base models for Cycle-
32 . (The model numbers 1-5 indicate the HMM, LSTM, ANN, SVR, and SIM model,
respectively. The models with an MAE difference threshold of 0.2 m/s are counted as the
top models.)

and segments, the intersection segments in particular. However, the performance of a prior

dominating model is not likely to change dramatically in its next step prediction. The base

model ranking and the dynamic model selection are illustrated in Fig. 6.14, which success-

fully chooses the top two models with a ratio of 59% (23/39). Considerable improvements

are observed with an averaged MAE of 2.02 m/s and an RMSE of 3.07 m/s.
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Figure 6.14: The base model ranking and selected models using the persistence method for
Cycle-32

An enhanced online model selection is accomplished via extending the evaluation interval

several steps backward rather than only a single step. The optimal base model is selected

and updated dynamically and continuously in a certain rolling window. Reinforcement

learning-based algorithms like Q-learning are one of the widely-used solutions that have
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been successfully developed in the literature to determine the optimal base model for wind

and solar forecasting [19]. However, one of the barriers is that the Q-learning based model

selection requires a large amount of dataset and intensive online model updating. Another

implementable alternative is possibility-based algorithms like Bayesian model selection [74].

Similarly, in this study, given the piece-wise nature of the segment-based velocity forecasting,

we develop a probability-based second-order Markov chain model that takes into account the

two previous states to determine the optimal base model, as expressed by:

P (si|si−1, si−2, ·, ·, ·, s1) = P (si|(si−1, si−2)) (6.9)

where the state si represents the best base model. In contrast to the HMM model discussed

in Section 6.2.1, the transition matrix is achieved explicitly via frequency counting. Only

the best-performing model of each segment is considered, and if the transition probability is

a null set, it can be replaced with the best model of the last step as described previously.

Similar to the probability approach, this method witnesses a significant enhancement on

MAE (1.93 m/s), but a worse RMSE (3.16 m/s), meaning more larger variations have been

brought into the forecasting.

6.3.2 Ensemble Model

Instead of utilizing a single prediction, ensemble forecasting combines a set of diverse models

to mitigate the forecasting fluctuations and improve the robustness, and a linear ensemble

model is given by:

Mensemble =
N∑
i=1

ωiMi (6.10)

where ωi denotes the weighting factor, s.t.
∑
ωi = 1. Note that the weighting factor can

be determined via optimization, and this study adopts an equal-weighting scheme for a

generalization purpose. Combining all the five base models, the achieved MAE and RMSE
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are 1.95 m/s and 2.89 m/s, respectively, and a remarkable improvement has been observed

in terms of RMSE compared to base models.

6.3.3 Hybrid Approach

From the aforementioned comparative studies, it is found that the online and offline model

selection methods tend to improve the MAE but deteriorate the RMSE, while the ensemble

approach tends to enhance the RMSE and decrease the fluctuations. As illustrated in Fig.

6.15, in this subsection, we integrate the offline probability-aided and online Markov chain

model (MM)-based model selection methods with the equal-weighted ensemble approach,

aiming to further improve the performance of velocity forecasting.
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Figure 6.15: The prediction framework for short-term velocity forecasting

Based on the probability-based model, the top three base models rather than the best

single one are integrated together using an ensemble method. The combined offline model

yields an MAE of 1.89 m/s and an RMSE of 2.93 m/s. It is also noticed that there are

non-negligible discrepancies for the performance among different cycles. The reason is that

the offline probability model heavily relies on the historical data, making it challenging to

adapt itself to the real-time driving conditions.

100



Regarding the Markov chain-based model, we further modify this approach by taking

into account the top 2 models in each state, st = {Mti,Mtj}, i, j ∈ [1, 2, 3, 4, 5]. Determined

by maximum likelihood, the newly adopted models are highly related to the performances

of the previous two model, as illustrated in Fig. 6.16 and expressed as:

Mt = argmax(Mt)P (Mt|[Mt−2,Mt−1]) (6.11)

During the training process, we explore 8 scenarios for training and 4 scenarios for testing

Training Testing

Figure 6.16: The dynamic model selection sketch using second order Markov Chain

(only 2 states are considered for testing, and the third state is the one to be predicted) in

forming a Markov chain [st−2, st−1, st]. Especially, a larger factor is assigned to emphasize

the sequences with top models. The final forecasts are aggregated by averaging the outputs

of the four testing scenarios, which produces dominating results with an MAE of 1.87 m/s

and an RMSE of 2.92 m/s. This is also the best forecasting output obtained. Compared to

the single ANN model, both the MAE and RMSE have been significantly improved by 9.7%

and 6.1%, respectively.

By comparison, it is found that the hybrid approaches combining the individual model

selection and ensemble methods perform better than other approaches, as illustrated in

Table 6.3. Though the Markov chain-based model averaging algorithm tends to produce

more desirable results, given its training and updating expenses, it is more reasonable to

implement the offline probability-based model averaging method in practice as a trade-off

between the forecasting accuracy and computational efficiency within a control interval of

5 seconds. However, its feasibility in practical applications still requires further on-board
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testing and validation, when the control interval is shorten to 1 or 2 seconds, aiming to

achieve more accurate and sensitive controls. Moreover, due to the very limited volume of

the DRD dataset, its generalization also needs to be further verified with more accumulated

cycles.

Table 6.3: A performance comparison among the individual model selection, ensemble, and
hybrid approaches

Data source Cycle-32 Cycle-34 Averaged

Model MAE RMSE MAE RMSE MAE RMSE

ANN-base 1.94 2.87 2.13 3.37 2.07 3.11

LSTM-base 1.97 2.80 2.16 3.17 2.09 3.00

Persistence 1.86 2.79 2.03 3.19 2.02 3.07

Probability 1.67 2.60 2.04 3.44 1.99 3.29

2nd HMM 1.71 2.76 2.10 3.49 1.93 3.16

Ensemble 1.81 2.61 1.94 2.97 1.95 2.89

Prob-averaging 1.75 2.59 1.90 3.05 1.89 2.93

MM-averaging 1.67 2.56 1.99 3.14 1.87 2.92

Note: Bold values indicate the best MAE or RMSE among different approaches.

6.4 Estimation of Intersection Waiting Time

The most challenging forecast task comes from the intersection segments, where the traffic

conditions as well as the operations of individual vehicles are complicated, and it is chal-

lenging to fully capture the stochastic natures. The forecasting accuracy can be significantly

improved if the waiting time could be accurately predicted. According to the discussions in

Section 6.1.4, it is assumed that the waiting time at an intersection is highly related to the

final stopping location at roughly the same period of a day.

Given this consideration, all the intersections as well as the waiting time are extracted

from the DRD dataset, and ANN models are established to further estimate the waiting time.
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This approach utilizes 21 cycles for training, 7 cycles for validation, and the rest 6 cycles

for testing. The hyperparameters like the number of layers and neurons are determined via

grid search. The actual and estimated waiting times of Cycle 31-34 are compared in Fig.

6.17, yielding an averaged MAE of 19.08 seconds and an RMSE of 27.22 seconds. This is

an acceptable outcome with such a limited set of data samples, given the purpose of waiting

time estimation is to optimize the short-time scheduling of onboard systems, such as the

air conditioning system and battery cooling/heating system, to avoid overlapping with the

energy demand from motor start and reacceleration.

The waiting time highly depends on the arrival time or the remaining time in a traffic light

cycle. The assumption behind the ANN approach is that the arrival time can be estimated

based on the vehicle’s location under a constant traffic volume condition. However, the

vehicle locations are heavily affected by the actual accumulated in-between space, making

the waiting time challenging to be accurately estimated. Without the implementation of any

connectivity devices, An alternative way to further improve the estimation accuracy is to

analyze the traffic signal via image detection embedded in the auto-driving module, which

is actually mounted available in most newly-released electric vehicles.
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Figure 6.17: The estimated waiting time vs. the actual waiting time
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6.5 Summary

This chapter generated a repeated urban driving cycle dataset at a fixed route in the Dallas

area. Based on the data preprocessing and intersection identification, a cycle segmentation

was conducted to provide location-dependent segmental data for improving velocity forecast-

ing. A segment-based velocity forecasting model pool was developed to perform 10 seconds

ahead forecasting, which takes into account the HMM, LSTM, ANN, SVR, and similarity

methods. Results showed that the segment-based forecast dominated the whole cycle-based

approach with great advantages. Especially, significant improvements have been observed

using the ANN method with a 24% reduction for MAE and a 15% decrease for RMSE.

To further improve the forecasting accuracy, a comparative study regarding the individ-

ual model selection, ensemble approach, and a combination of them was performed. Results

showed that a 9.7% improvement was obtained by leveraging the localized second-order

MM-based averaging methods. However, it is more reasonable to implement the offline

probability-based model averaging method in practice due to its high computational effi-

ciency. An ANN-based intersection waiting time estimation model was also established and

validated with acceptable accuracy. It is foreseeable that the improvements in both velocity

forecasting and waiting time estimation will lead to better energy management, especially

for electric or hybrid vehicles.
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CHAPTER 7

VEHICLE ENERGY MANAGEMENT VIA TRAFFIC LIGHT DETECTION

AND SEGMENTAL VELOCITY FORECASTING

The segmental velocity forecasting approach developed in Chapter 6 reveals the challenges

to forecast the velocity at intersection segments only using the velocity data. To mitigate

this concern, this chapter seeks to develop a YOLO-V2-based object detection deep network

to recognize the traffic lights in advance, and leverage the detected signals to establish a

forecasting model that integrates with the probability-based hybrid forecasting approach.

Results prove that the traffic light detection-based forecasting model can significantly im-

prove the forecasting accuracy for intersection segments. Based on the forecasting velocity

5-20 seconds ahead, the effectiveness of the MPC-based energy management strategy is

further evaluated with a liquid-based battery thermal control system. Moreover, a traffic

light-based real-time energy management framework is developed to directly contro l the

power demand from the AC system. Simulation results suggest that this method could be a

competitive alternative compared to these predictive energy management strategies.

7.1 Short-term Velocity Forecasting via Traffic Light Detection

It is worth noting that the forecasting horizon for predictive energy management varies with

the control algorithm as well as the computing capability. Especially, for multi-horizon and

hierarchical predictive control, the controllers utilize varying forecasting horizons for different

control layers and devices. Another important factor that has great impacts on predictive

controls is the control interval, which usually equals to the forecasting time step. Given

these considerations, the short-term velocity forecasting in this chapter mainly focuses on

5-20 seconds ahead forecasting.
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7.1.1 Localized Hybrid Model for Short-term Velocity Forecasting

Building on the aforementioned segmentation and basic forecasting approaches, a forecasting

framework has been constructed with a two-stage structure to perform the short-term veloc-

ity forecasting. In the first stage, a forecasting sub-model pool that consists of a collection

of stochastic and deterministic methods is established, including LSTM, ANN, SVR, HMM

trained with augmented data, and a similarity-based method, as illustrated in Fig. 7.1.

Figure 7.1: The framework of short-term vehicle velocity forecasting based on traffic light
recognition and driving cycle segmentation

Similarly, as the model evaluation indicated in Table 6.3, the second stage hybrid ap-

proach only integrates the offline probability-aided ensemble model due to the limitation in

computation cost, aiming to further improve the forecasting accuracy via mitigating poten-

tial fluctuations and uncertainties. The probability-aided averaging model takes advantage

of the historical statistic model ranking and directly ensembles the best three base models
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for a specific driving segment, given as:

Mprob =
N∑
i=1

ωiMi (7.1)

where ωi denotes an equal weighting factor with a generalization purpose for all the divided

segments, s.t.
∑
ωi = 1. Compared with the Markov chain-based dynamic model selection

method discussed in Chapter 6, the biggest difference between these two hybrid models lies

on the number of base model that is required for each segment. The dynamic Markov Chain

model needs a real-time online ranking among all the base models, while the probability-

aided model can update the models offline based on the recorded velocity data. This stage

reuses the Stage-I validation dataset combining a collection of new data (Cycle 29-31) for

training, while the rest cycles (Cycle 32-34) are used for testing.

A performance comparison among these methods is tabulated in Table 7.1. Two matrices

including MAE and RMSE are employed here for performance evaluation. Compared with

the base models, it is observed from the table that the hybrid method can further improve

the accuracy of multi-horizon forecasting. However, it is also noticed that the improvements

tend to decline as the forecasting horizon increases, which results in a worsen RMSE for 20

seconds ahead forecasting.

Table 7.1: Comparisons among different forecasting methods for 5-20 seconds ahead fore-
casting

Lead Time 5 seconds 10 seconds 15 seconds 20 seconds

Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE

ANN 1.22 1.88 2.07 3.11 2.50 3.61 2.81 3.93

LSTM 1.34 1.97 2.09 3.00 2.36 3.37 2.74 3.82

Prob-averaged 1.16 1.87 1.89 2.93 2.26 3.34 2.72 3.85

Besides the hybrid model attempts, we also recognize that the velocity profiles at in-

tersections can be generally classified into three groups, i.e., moving forward at a constant
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velocity, passing through with deceleration, and completely stop, as illustrated in the in-

tersection velocity model in Fig. 7.1. As a widely used data mining technique, extensive

surveys have implied that forecasting can be significantly enhanced via accurate classifica-

tion [58]. A traditional physical model-based classification method is developed in this study

to divide the velocity sequences with unequal length, which directly utilizes the predefined

deceleration, reacceleration, and stop processes as a classification threshold. We have also

tested the hierarchical classification algorithm integrated with dynamic time warping and

obtained similar results. Using the base models to forecast the velocity 5 seconds ahead,

an averaged improvement of 0.11 m/s regarding MAE is observed for all the intersection

segments compared to an original MAE of 1.80 m/s. Possible reasons for achieving such

a limited enhancement can be attributed to the dataset size and the unbalance of varying

groups, which also means the limitations could be mitigated by enlarging the dataset.

7.1.2 Short-term Velocity Forecasting via Traffic Light Detection

As discussed above, intersection velocity classification could be leveraged to improve velocity

forecasting. However, in practice, it is extremely challenging to classify the unknown future

velocity sequence by merely using the velocity data. For the vast majority of situations,

we notice that the aforementioned three scenarios at intersections are strongly associated

with the traffic light signals, as presented in the intersection velocity model. Moreover, it

is observed that a green light usually leads to a steady running with high velocity, while a

vehicle tends to stop at red/yellow lights. For the deceleration and reacceleration scenario,

it can either be a green light at heavy traffic conditions or an ending red light followed by

a green light. Given this consideration, in this chapter, we aim to develop an image-based

indication framework for velocity forecasting by detecting and identifying the extra traffic

control light signals via object detection.

Extensive studies have been conducted on traffic light detection by leveraging convolution

neural networks (CNNs) in the emerging field of autonomous driving, covering a broad range
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of deep learning structures such as the R-CNN family (Fast R-CNN, Faster R-CNN, and

Mask R-CNN), the YOLO (you only look once) family (v1-v5), the single shot detection

(SSD) family, and the Retina-net family [28]. Since the motivations of this study emphasize

on the impact of traffic light detection on vehicle velocity forecasting, a one-stage YOLO-v2

network with pre-trained network structures is directly employed here after modification.

Compared with other networks, YOLO-V2 possesses an effective classification backbone

with 19 convolutional layers and 5 max-pooling layers, which provides an accurate detecting

precision while maintaining a high processing rate.

For this DRD dataset, all the traffic lights are horizontally installed with the same light

arrangements for different colors, making it possible to directly detect the traffic light and

its corresponding colors. Approximate 1,100 images are extracted from the driving cycles for

labeling. To prevent potential recognition errors during the cycle, we not only label a single

group of lights but also combine and label two nearby groups of lights as a whole. As a result,

a traffic light and its color are recognized only when both objects have positive feedbacks.

The model receives an averaged precision of 0.845 and an averaged recall of 0.567. Compared

to the reported accuracies around 94% in the literature [101], this basic model still needs

further improvements. Possible reasons and potential improvements are twofold: i) we have

empirically labeled all the vague images for forecasting-oriented purposes to identify traffic

lights as early as possible, which brings in a large amount of misleading noises; ii) the images

in this study were taken in a 3X optical zoom using a household camera device, making the

images in an undesirable relative low quality. However, we still obtain inspiring results in

traffic light detection: the model is able to detect the traffic light with its correct color at a

distance of approximately 100 meters away in a straight road with no slopes, which is also

5 to 6 seconds ahead of an intersection at a constant cruising speed. It is worth noting that

the confidence score threshold in this study is set as 0.38 as a trade-off between detection

accuracy and exploration. Although there may be potential misidentifications, e.g., detect
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other objects as a single group of traffic lights, the object detection model is still able to

yield desirable outcomes with the implementation of labeling other groups of lights nearby.

Given the intersection velocity model and classification discussed above, the detected

traffic light signal can act as a classification and mode indicator for the short-term velocity

forecasting. Three different scenarios and their corresponding models are predefined accord-

ing to the indicator outcome, as illustrated in Algorithm 2. For simplification, we only use

ANN to establish these models. Especially, we find out that the reacceleration delay is highly

related to the stopping location, which can be empirically calculated by a sum of the drivers’

reaction time:

td = αD/6.5 + β (7.2)

where D represents the distance between the vehicle and the intersection. α and β are

two coefficients depending on drivers’ patterns and vehicle performance. Here, α and β are

selected as 1.18 and 2, respectively. Note that this model varies with location, time, and

whether condition in particular.

The forecasting differences between the probability-based hybrid method and traffic light

detection-assisted method are compared in Fig. 7.2. By comparing the 5 seconds ahead

forecasting, it is seen that the traffic light detection-assisted method results in a significant

improvement from 1.56 m/s to 0.78 m/s regarding MAE for this specific intersection. The

improvement mainly comes from the deceleration process where the red light signal acts

as an indicator to directly determine the ongoing stopping scenario, while there are still

unavoidable forecasting delay in the reacceleration process. For other scenarios, only very

small enhancements are observed by adopting this traffic light detection-assisted method.

The overall improvement for the whole driving cycle is limited with an averaged 0.02 m/s

reduction for MAE. Note that there is no significant improvement for the 10 seconds ahead

forecasting using the light detection-assisted approach, since most of the deceleration and

reacceleration processes occur within or around 10 seconds. Multiple potential approaches
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Algorithm 2: Intersection Velocity Model via traffic Light Detection - Mode Indicator
Scenario-1: Moving forward at a constant velocity, Model: M1
Scenario-2: Passing through with deceleration, Model: M2
Scenario-3: Completely stop, Model: M3-1 for deceleration, M3-2=0 for waiting, M3-3
for reacceleration

Inputs: Detected traffic light: {green, red, yellow}
Velocity input: [vt−1, vt], a = vt − vt−1

Definition: a <= −1.2 m/s2 deceleration ; a >= 1.2 m/s2 acceleration (once detected,
the status will be memorized)

Switch light color
Case green

If no red signal detected previously & deceleration detected Then Scenario-2: M2
end

If no red signal detected previously & deceleration undetected Then Scenario-1:
M1 end

If red signal detected previously Then Scenario-3: M3-3 end
Case yellow

If no green signal detected previously Then Scenario-3: M3-1 end
If green signal detected previously & deceleration undetected Then Scenario-1:

M1 end
If green signal detected previously & deceleration detected Then Scenario-3:

M3-1 end
Case red

If deceleration detected Then Scenario-3: M3-1 end
If vt <= 1 m/s Then Scenario-3: M3-2 end

could be employed to further enhance 10-second ahead forecasting, e.g., enlarge the traffic

light detection distance with high-quality images, detect and analyze driving behavior of the

vehicles ahead, and develop more accurate reacceleration models. Overall, as a promising

indicator, the image-based traffic light detection could be leveraged to improve the energy

efficiency in a twofold manner: i) traffic light detection tends to increase the forecasting

accuracy for short-term velocity forecasting; ii) it also has the potential to act as a mode

trigger to activate or terminate the functions and operations of devices in advance in a

predictive energy management strategy.

The short-term velocity forecasting of 5-20 seconds ahead are readily available for energy

management, as illustrated in Fig. 7.3. The velocity forecasts will be regarded as the system

input to implement the MPC-based energy management. For predictive energy management,
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indicates a worsen section for 10 seconds ahead forecasting)

the forecasting results are extracted based on the control interval. For example, only the

velocity data of 5-20 seconds ahead are required for a 5-second interval, and other velocity

data can be calculated via explicit fractal interpolation.
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Figure 7.3: Multi-horizon velocity forecasting for the whole driving cycle

112



7.2 Vehicle System Modeling

There are various systems integrating and working as a whole in an electric vehicle from

the perspective of electric, thermal, and energy control, including: the main battery system,

the vehicle motor system, the air conditioning system, the battery thermal control system,

and the cooling functions for varying components. This section attempts to develop control-

oriented models for the systems discussed above, aiming to provide a comprehensive overview

for further energy management. Note that some of the models have been established with

more details in Chapter 5, and this section tends to emphasize more on the improvements

on different parts.

7.2.1 Vehicle Battery System

For an electric vehicle, the battery pack serving as the only energy source is designed with

the capability to provide sufficient energy to satisfy the power demand from varying devices

and subsystems. At the battery pack level, based on the first-order lumped equivalent circuit

model, the effective power output from the battery pack to the power bus can be calculated

as:

Pb2bus = UbI = (Vocv − I
N∑
i=0

Ri)I (7.3)

where Vocv denotes the open-circuit voltage, Rb =
∑
Ri represents the total internal resis-

tance of a battery pack that consists of the polarization resistance and Ohmic resistance.

The internal resistance R should be dynamically determined, which highly depends on the

operating temperature T , state of charge (SoC), and current I. These parameters can be

extracted using hybrid pulse power characterization (HPPC) [98]. For the sake of simplifi-

cation, within a short time of period at a steady operating condition, Both the temperature

and SoC can be treated as a fixed constant. Equation 7.3 is regarded as a quadratic equation
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with only one variable I, and the current can be calculated as:

I(SoC, T )) =
Vocv −

√
V2
ocv − 4RbPb2bus
2Rb

(7.4)

From the perspective of power users, the total effective power output also equals to the

sum of all the power demands from subsystems, as given by:

Pb2bus = Psum = Pdrv+Paux+Pac+Pbs (7.5)

where Pdrv, Paux, Pac, and Pbs are the power for driving motor, auxiliary devices, air condi-

tioning system, and battery thermal control system, respectively.

The open-circuit voltage Vocv has a positive correlation relationship with SoC, which can

also be estimated using a polynomial regression model:

Vocv = P · Ssoc

Ssoc = [SoC6 · · · SoC2, SoC, 1]T
(7.6)

where P denotes a regression matrix that equals to [-40.2, 138.6, -186.2, 123.5, -42.4, 7.5, 3.3]

for a specific Lithium manganese oxide (LMO) battery based on the study in Ref. [99]. The

battery SoC changes as the battery discharges and charges dynamically, as defined using the

Coulomb counting by:

SoCt+1 = SoCt ±
1

Qc

∫ t+1

t

Idt (7.7)

where Qc is the original nominal battery capacity.

Moreover, from the perspective of energy balance, it is claimed that the waste energy or

power loss in the form of sensible heat can be attributed to the internal resistances, expressed

as:

Ġ(T, SoC, I) =
I2Rb(T, SoC, I)

V
(7.8)
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where Ġ and V are the volumetric heat generation rate and total battery volume, respectively.

Based on the raw experimental data, the electro-thermal model is established using a Kriging-

based model, and the details of the thermal model can be found in Chapters 3 and 5. Based

on the above models, a battery system with a capacity of 50 kWh is investigated in this

study, which consists of a total of 7200 LMO battery cells. Each battery has a nominal

capacity of 1.8 Ah with a nominal voltage of 3.75 v. All the data is adopted from the studies

in Refs. [98, 99].

7.2.2 Vehicle Dynamic System

For a running vehicle, the equivalent traction power consists of four major terms: the rolling

friction, gravitational potential, air friction, and vehicle acceleration, defined as:

Pdrv=
1

ηm
(mgvµ+

1

2
ρAfCdv

3 +m
dv

dt
v +mg

dh

dt
) (7.9)

where µ=0.01 and Cd=0.24 are the rolling resistance and air friction coefficient, respectively.

The windward area of a vehicle Af is set as 2.22 m/s, and the vehicle mass m equals to 1,

875 kg for a specific passenger vehicle. h denotes the altitude, which is non-negligible for

an urban driving cycle with varying terrain and highway overpasses. It is also revealed that

the motor power efficiency ηm is highly dependent on the motor rotating speed and torque

output, ranging from 0.8 to 0.95 for varying conditions [26]. Here, ηm is also set as a constant

with an average efficiency of 0.90.

During deceleration or downhill driving conditions, the regenerative braking system is

activated to harvest the extra kinetic energy, with a predefined averaged efficiency of 80%

(ηr) of the kinetic energy back to the power bus in this study. The driving power is negative

when regeneration occurs according to the definition in Eq. 7.3, expressed as:

Pr2bus=ηmηr(mgvµ+
1

2
ρAfCdv

3 +m
dv

dt
v +mg

dh

dt
) (7.10)
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The regenerative energy may either be utilized directly for AC and BTMS, or be recharged

back to the battery pack. How and when to optimally distribute the regenerative energy

needs prompt solutions. This is also one of the major contributions in this study.

7.2.3 Air Conditioning System

Compared to conventional internal combustion engine (ICE) vehicles, the air conditioning

system in EVs differs in multiple perspectives: i) In winter conditions, a heat pump type

AC system for EVs has predominant advantages on energy efficiency toward conventional

AC with positive temperature coefficient heaters (PTC), while ICE can directly utilize the

waste heat from the engine without any auxiliary devices; ii) Compared with ICE, there

are several extra thermal loads for EVs , e.g., battery thermal control, motor cooling, and

converter cooling; iii) The AC compressor in ICE is propelled by the engine, while it is

powered by the battery pack in EVs. All these unique characteristics have led to a heat

pump type AC with more complicated structures and larger cooling/heating capacity for

EVs, as illustrated in Fig. 7.4.
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5 6
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Figure 7.4: A simplified AC cooling mode for EVs. 1: BTMS pump, 2: BTMS
chiller/evaporator, 3: battery pack, 4: AC evaporator, 5: compressor, 6: BTMS three-
way value, 7: condenser, 8: BTMS radiator, 9: cooling fan/blower for different systems, 10:
expansion valve

There are dozens of simplified conventional AC models developed in the literature using

component-based dynamic thermal-fluid models or energy-based mathematical methods [35].
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For vehicle energy evaluation, linear control-oriented models are constructed using numerical

approaches [5, 24]. In our previous study [50], we have also established a linear mathematical

AC model only with cooling mode based on the simplified AC model developed by Pino et

al. [67] and the Simulink-based CoolSim platform developed by the National Renewable

Energy Laboratory [33]. This control-friendly model consists of three parts, i.e., the AC

cooling/heating capacity model, the vehicle cabin thermal load model, and the AC energy

control model. From the view of energy, the relationship between the overall power con-

sumption and the cooling/heating capacity provided can be modeled using the coefficient of

performance (CoP) (ηcop), defined as:

ηcop=
Qac

Pac
= F(Tin, Tex, Plr) (7.11)

where Qac and Pac are the cooling/heating capacity and the power consumed, respectively.

For a specific AC system, the CoP ηcop highly depends on the operating parameters, including

the internal temperature, the external temperature, and the partial load ratio Plr. The CoP

for cooling ranges from 1.8 to 4.5, when the partial load ratio is larger than 0.2; the maximum

CoP of the heating mode that can be achieved is only around 1.5 at a sub-zero temperature.

The heat pump tends to lose its advantages in energy efficiency at a -20 ◦C low temperature

compared to PTC [105]. We also notice that besides the two-phase refrigerant, the other heat

transfer medium of the evaporator is cabin air, while it is the cooling liquid for the BTMS

heat exchanger. According to the refrigerant-based BTMS study conducted in [79], the

CoP discrepancies for different external heat transfer mediums are limited and neglectable

for energy-level modeling. In this study, the same CoP model is utilized for the sake of

simplification.
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Figure 7.5: The coefficient of performance of the cooling mode

For the cabin thermal load model, there are several external and internal heat loads

identified after assumptions. The detailed modeling can be found in Chapter 5. The transient

thermal model of the vehicle cabin is formulated as:

Tin(k+1)=Tin(k)+
(Qcr+Qcw+Qr+Qh+Qf+Qs)−(Qac−Qbat)

ρairVinCair
δt (7.12)

where δt is the time step. Tin(k) denotes the cabin air temperature and is regarded as

the state variable, and Qac is treated as the control variable. It is worth noting that the

thermal inertia of the AC system has not been considered from a long-run energy balancing

perspective, i.e., the sensible heat of pipe or devices and the thermal inertia of the chiller.

As a result, a basic proportional-integral (PI) controller can be developed to maintain the

cabin temperature within a comfortable zone.

7.2.4 Battery Liquid-based Thermal Management System

Battery Pack Thermal Model

As discussed in the literature review chapter, there are multiple thermal control technologies

developed aiming to maintain the battery temperature within an appropriate range. Based

on the widely-used liquid cooling technology, we have developed a phase change material
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(PCM)-assisted plate cooling battery thermal control system, as illustrated in Fig. 7.6.

Each battery module consists of three liquid cooling plates vertically, and in between are

two battery layers. Multiple modules can be arranged to form a whole battery pack in

the horizontal direction. The flow field consists of two sets of symmetric S-shape cooling

channels, and the spaces in between are filled with PCM, aiming to improve the thermal

performance of the cooling plate. The predefined paraffin-based RT42 PCM material has a

phase-transition temperature range of Ts (41 ◦C) to Tl (42 ◦C), meaning that the PCM is

solid below Ts, liquid above Tl, and mushy (solid/phase) in between the temperature range

[78]. The liquid fraction β of the PCM is defined as:

Coolant
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Figure 7.6: The sketch of liquid cooling structure. The whole battery pack consists of three
battery modules. Each module has two battery layers and three cooling plates in the vertical
direction. The battery layer has a size of 40 mm in thickness, consisting of 5 battery bricks.
Each brick is 0.39 m in length and 0.26 m in width, and the spaces in between have thermal
insulation materials with a thickness of 5 mm.

β =



0 Tp < Ts

Tp− Ts
Tl− Ts

Ts 6 Tp 6 Tl

1 Tp > Tl

(7.13)

where Tp denotes the averaged temperature of the PCM, which can be used to estimate the

status of PCM. The motivations of adding the PCM as a supplementary here are twofold:
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i) PCM is used as a thermal storage buffer to prevent any potential severe thermal impacts

under intense driving conditions; ii) PCM can store a large amount of latent heat under cold

temperature environment, saving considerable amount of energy from thermal preservation,

especially after long time driving.

Multiple parameters are required to present a specific dynamic state of the battery pack

system, such as the temperature of battery bricks (Tb1, Tb3, Tb5), the temperature of PCM

sections (Tpcm1, Tpcm3), and the temperature of cooling plate (Tplate), as indicated in Fig. 7.6.

Three parameters are regarded as the system inputs, including the battery inlet temperature

Tcool btm in, the mass flow rate ṁcool of the coolant, and the volumetric heat generation rate

Ġ. The system state updates by iteration following new system inputs, as illustrated in Fig.

7.7.

+ =

State k State k+1

System 

Inputs

Figure 7.7: The states and inputs of the liquid-based thermal system

To evaluate and identify the dynamic response of the system, a total of 1,000 computa-

tional fluid dynamic (CFD) simulations are performed via the commercial software ANSYS

Fluent with the k−ε turbulence model. The CFD model has a meshing size of 3,500,000

after mesh dependency analysis, taking approximately 25 minutes to simulate a 5-second

transient thermal behavior on a 12-core 1.6 GHz workstation. Based on the simulated data,

a feed-forward multi-input multi-output (MIMO) neural network with three hidden layers is

employed here to model the dynamic response. Determined by Bayesian optimization, the
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numbers of each layer are set as [100, 79, 41], which yields an RMSE of 1.5% and an MAE

of 1.2%. The next system state estimated via neural network-based black-box is expressed

as:

[Tb1, Tb3, Tb5, Tpcm1, Tpcm3, Tplate]k+1=

[Tb1, Tb3, Tb5, Tpcm1, Tpcm3, Tplate]k+N1−1([Tb1, Tb3, Tb5, Tpcm1, Tpcm3, Tplate]k, [Tcool btm in, ṁcool, Ġ])

(7.14)

In addition, the BTMS outlet coolant temperature can also be estimated as another output

using the same MIMO model, given as:

Tcool btm out = Tcool btm in +N1−2([Tb1, Tb3, Tb5, Tpcm1, Tpcm3, Tplate]k, [Tcool btm in, ṁcool, Ġ]) (7.15)

BTMS Control Model

As illustrated in Fig. 7.4, two kinds of heat sink are designed for different conditions, in-

cluding an AC-based chiller that works in high temperature environments or intense charg-

ing/discharging conditions, and a fluid-air radiator that operates in an environment with a

relatively low temperature. Compared with the AC-connected chiller, a radiator has signifi-

cantly higher energy efficiency by directly dissipating the waste heat into environment where

there exists a big temperature difference.

Under high temperature conditions, the chiller is the only alternative for thermal control.

As demonstrated in Eq. 7.12, the chiller model is defined using the energy balance equation,

given as:

Qbat = ṁcool (Tcool chl in−Tcool chl out)Ccool (7.16)

where Tcool in and Tcool out are the inlet and outlet temperature of the BTMS coolant, re-

spectively. From the view of efficiency, the coolant mass flow rate ṁcool is supposed to be
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adaptively adjusted via the speed control of coolant pump for varying operating conditions.

It is worth noting that controlling the coupled variables is very challenging, which requires

a detailed dynamic thermal-fluid model to determine the mass flow rate and the coolant

temperature at the chiller outlet simultaneously. Here in this study, for the sake of sim-

plification, the mass flow rate is fixed at its maximum volume (ṁ=0.9 kg/s) via an on-off

control. The coolant temperature at the chiller outlet can then be determined by Eq. 7.16.

As regards the BTMS, a thermal control strategy is expected to address the temperature

gap between the real-time temperature and the pre-defined temperature control trajectory,

defined as:

∆Tgap = ave([Tb1, Tb3, Tb5])− Tbat ref (7.17)

From the CFD simulations, we notice that the battery temperatures between two states

change when the coolant is running at a specific mass flow rate and inlet temperature, as

described in Eq. 7.14. The relationship can be extracted and expressed as:

∆Tbat dif = ave([Tb1, Tb3, Tb5]k)− ave([Tb1, Tb3, Tb5]k+1)

∆Tbat dif =N1−3([Tb1, Tb3, Tb5, Tpcm1, Tpcm3, Tplate]k, [Tcool btm in, ṁcool, Ġ])

(7.18)

In a control process, ∆Tbat dif is treated as an obtained value after control actions, while

∆Tgap is the control target. The anticipated coolant temperature at the BTMS inlet is

predicted as follow:

Tcool bat in =N2−1([ave(Tb1, Tb3, Tb5), Tpcm1, Tpcm3, Tplate]k, [ṁcool, Ġ,∆Tgap]) (7.19)

where the multi-input single-output (MISO) controller model can also be regarded as an

inverse function of Eq. 7.14. Similar to the plant model, the neuron numbers of each layer

are determined as [53, 28,12] via Bayesian optimization, yielding an RMSE of 3.4% and an

MAE of 2.8%. By substituting Eq. 7.2.4 into the chiller model as depicted in Eq. 7.16, the

122



cooling demand of BTMS can be determined. Additionally, the power consumption of the

coolant pump can be estimated based on Eq. 7.20:

Ppump = ṁcool∆ppre/ρcoolηpump (7.20)

where ηpump and ∆ppre represent the pump efficiency and the pressure drop of the battery

system, respectively. ρcool is the coolant density.

7.3 Energy Management and Case Study

7.3.1 MPC-based Energy Management for Daily Commute

Similar to the MPC-based energy strategy investigated in Chapter 5, based on the subsystem

models established above, an MPC strategy is developed here with a cost function given as:

arg min
Pcab,Pbat

J=
n+N∑
k=n

(αk(Pdrvk+Pauxk+Pcabk+Pbatk + Ppumpk)
2

+ βk(Trefk−Tbat avek)2 + ξk(Ttark−Tcab ink)2)

subject to Qcab = Pcabηcop

Qbat = Pbatηcop

0 ≤ Qcab ≤ 5000

0 ≤ Qbat ≤ 5000

|∆Qcab| ≤ 1000

|∆Qbat| ≤ 500

(7.21)

where Pcab and Pbat are the AC power consumption for the cabin thermal control system and

battery thermal management system, respectively. The power allocations within the AC

system can be implemented via value and flow direction controls, and here, we only focus

on the optimization at the system level. Pbat is the power demand from battery coolant

pump, which is relatively small compared to the AC system. Note that the coefficients are
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adaptive to different conditions and are determined using other driving cycles. This problem

is also solved via the particle swarm optimization algorithm, due to the highly non-convex

and nonlinear characteristics, and a local optimum instead of a global optimum is expected

given a limited computational time.

Based on the 5-20 seconds ahead velocity forecasting for a daily commute route, the initial

system parameters are set with an exterior temperature of 310.15 K and a battery SoC of

0.95. The cabin temperature is targeted at 294.15 K, while the battery control temperature

aims at 313.15 K. The upper bound of the battery is set to be 317.15 K, leaving a large

margin for thermal impacts considering the usage of PCM.

The simulation results of the real-time control and the MPC-based approach are presented

in Fig. 7.8 and Fig. 7.9, respectively. The PCM remains fluid status for most of the time

during the driving cycles since the temperature is well constrained around the target value.

We observe that the final value of SoC decreases from 0.95 to 0.8818 with the MPC, while the

real-time control yields an SoC of 0.8806. Compared with the real-time control, only limited

improvement is obtained via MPC for this specific driving cycle, i.e., less than 2% regarding

the energy efficiency calculated by SoC. We also verified the results based on the real velocity

data rather than forecasting. It is known that the MPC strategy is less effective for a steady

driving stage with cruising speed, but performs well for varying conditions. Given this

consideration, four potential reasons may account for this observation: (i) Compared to the

hybrid driving cycles that consist of UDDS, WLTC, and HWFET cycles, this Dallas driving

cycles are considerably smoother and have fewer intersections and complete stops. (ii) The

waste heat dissipation from the battery system lies on the AC system, and combining the

cooling demand from the cabin side, the AC system is running at a high load ratio. The AC

load is also very close to the regenerative power, leaving limited space for load shifting. (iii)

The control action interval is 5 seconds, making the AC system less responsive to the varying

powertrain demands, so does the coolant pump with on-off control. (iv) The solutions are
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local optima rather than global optima for a nonlinear non-convex problem due to the very

limited computational time of 4 seconds.
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Figure 7.8: The performance of real-time control based energy management
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Figure 7.9: The performance of MPC-based energy management
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7.3.2 Real-time Energy Management Using Traffic Light Detection

As discussed above, the MPC-based energy management has its drawbacks during steady

driving conditions, especially when using nonlinear and non-convex models for complicated

systems. It is also identified that the load shifting mainly occurs on changing conditions, i.e.,

the deceleration and reacceleration processes at intersections. Given these considerations,

we aim to develop a real-time energy control framework to avoid the overlapping among

peaks and to reuse the regenerative power instead recharging back to the battery pack. For

example, if a deceleration is known, the system is motivated to decrease the power demand

of the AC system by defining a higher target temperature prior to that, then the AC system

can be powered by the regenerative energy during the deceleration. On the other hand, when

a reacceleration is predicted, the system tends to lower down the manipulated temperature

to avoid overlapping of different loads.

The image-based traffic light detection method developed in Section 7.1, in conjunction

with real-time acceleration signals, is utilized here as the mode indicator to update the

control parameter settings. At an intersection, the vehicle is able to activate the low-demand

mode based on the vehicle locations. Given the largest detection threshold of 100 meters

in our model, the distance for low-demand mode activation is set as 250 meters, which

is approximately 12-13 seconds in prior to an intersection at a cruising speed. It is worth

noting that accurate traffic light recognition can be achieved as far as 130-150 meters away as

reported in the literature [101], which is about 7-8 seconds ahead for a cruising scenario and

more than 20 seconds ahead for a completely stop scenario. The following implementation

of this detection-based energy management method is based on the aforementioned obtained

detection results in this chapter.

Similar to the pseudo-code described in Algorithm 2, base on the detected traffic light

signals, two major scenarios are predefined with a sequence of energy allocation actions:

(i) For a green light signal, the vehicle tends to the low-demand model is deactivated and
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switched back to the normal control. (ii) For red-light conditions, the AC system is expected

to reuse the regenerative power as more as possible instead of recharging back to the battery

system during deceleration. For the waiting section, the system needs to determine an

averaged AC power demand based on the waiting time estimation. The AC system continues

working in a relative higher-power manner to lower down the temperature in prior to the

intersection. As a result, the AC system avoids overlapping with the power demand from

the driving system during reacceleration. The system switches back to the normal control

mode when leaving an intersection, as indicated in Fig. 7.10. It is worth noting that the

traffic light can act as an early termination signal, i.e., a green light detected in front of an

intersection suggests switching back to normal control directly.

N/A Red Traffic Light Detected Green N/A

 M2

 M1

 M1

 M3

M1: decrease AC power
M2: increase AC power
M3: normal control

Figure 7.10: The sketch of a traffic light detection-based energy management strategy for
intersection

In this study, the AC energy consumed by the battery thermal system remains unchanged

due to its limited total volume. The AC energy for the cabin is adjusted based on the

aforementioned principle. The simulation results of the modified control are presented in

Fig. 7.11. Compared with the real-time energy distribution, the main differences come from

the intersections. As a trade-off, the final stage SoC is improved by approximately 2.5% to

0.8823, at the cost of introducing more variations to the cabin temperature. Compared to

the MPC-based energy management, the traffic light detection-based energy management
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Figure 7.11: The performance of traffic light detection-based energy management

has very similar performance for a smooth driving cycle. Given its computational efficiency,

it is anticipated that the traffic light detection-based method could be a potential alternative

for vehicle energy management.

7.4 Summary

This chapter developed a deep learning-based YOLO V2 traffic light detection framework, to

improve the accuracy of short-term vehicle velocity forecasting, especially for 5-seconds ahead

forecasting. According to the model evaluation conducted in Chapter 6, a probability-based

offline hybrid model was employed to perform 5-20 seconds ahead velocity forecasting. Be-

sides the thermal model established in Chapter 5, this chapter also established a liquid-based

battery thermal management system via transient CFD simulations. An MPC approach was

employed to optimize the energy efficiency. Moreover, we also evaluated the feasibility of

leveraging image-based traffic light detection to modify real-time energy distribution. Re-

sults revealed that the traffic light detection-aided real-time control could be a potential

alternative to vehicle energy management for urban commuting routes.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this dissertation, we have comprehensively discussed the challenges in electric vehicles

and developed corresponding solutions, from the perspective of thermal control and energy

optimization. To address the temperature uniformity problem at the battery pack level, we

have developed a J-type air-based cooling structure via optimization and its corresponding

thermal control method with an operation mode switching mechanism. To improve the

energy efficiency, we have also further developed model predictive control-based and real-

time traffic light detection-based energy management strategies to schedule power allocation

at the device level.

In Chapter 3, we developed a novel J-type air-based cooling structure based on the ex-

isting conventional U - and Z-type structures. The J-type structure has two outlets with two

control valves, while the conventional U -type and Z-type only have one outlet. By changing

the opening degrees of two control valves, the J-type structure can be flexibly switched to

either U -type or Z-type. To quantify the electric-thermal inputs for cooling structures, an

electric-thermal model for Lithium-ion battery was first established using experimental data

via a Kriging surrogate model. Based on the established electric-thermal model, compara-

tive studies among the U -, Z-, and J- type structures were then performed to evaluate the

impacts of basic structural and control parameters via CFD simulations. Aiming to optimize

the thermal performances, we developed a two-stage cluster-based resampling optimization

framework via a collection of surrogate models and successfully applied it to structure opti-

mization. The results revealed that the J-type structure has prevailing advantages towards

the U - and Z-type structure regarding thermal performances and pressure drop. Especially,

we found that the J-type structure is flexible to adapt the settings by controlling the opening

degree of the two control valves under varying working conditions.
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In Chapter 4, inspired by flexible settings of the J-type structure, we established data-

driven neural network-based plant and controller models via transient CFD simulations to

validate the dynamic performance of the whole thermal management system. To balance

the temperature distribution within a battery pack, we also developed an operation mode

switching module to quasi-periodically switch the operation mode by controlling the two

outlet valves. Moreover, an MPC-based thermal control strategy was employed aiming to

improve the energy efficiency in thermal management. Simulation results revealed significant

improvements by comparing with the original benchmark control implementations.

In Chapter 5, we extended the MPC-based approach to energy management by simulta-

neously controlling the vehicle cabin climate system and the J-type air-based BTMS. The

energy management aimed to reduce the load peaks by rescheduling the operations of vary-

ing devices and directly reusing the regenerative power rather than recharging back to the

battery system, while retaining the thermal constraints of BTMS and AC systems. As the

second largest power consumer, the air conditioning system model was established based on

both the cabin thermal mode and the BTMS pre-cooling model. By comparing with the

conventional real-time energy allocation, an overall improvement of 6.5% was observed using

the MPC-based approach regarding the energy efficiency under a known dynamic driving

model, and the MPC-based management strategy was proved as a promising solution to

enhance the battery efficiency for electric vehicles.

In Chapter 6, to evaluate the effectiveness of the MPC-based energy management ap-

proach to practical velocity forecasting, we generated a repeated commuting driving cycle

dataset in the Dallas area, aiming to simulate a typical urban commuting route and provide

insights for individual vehicle velocity forecasting. During the pre-processing, a piece-wise

segmentation approach was employed using the identified intersections and potential stops.

Then based on the piece-wise data, a velocity forecasting pool with a collection of forecast-

ing algorithms was established, including ANN, SVM, LSTM, HMM, and similarity-based
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methods. To further improve the forecasting accuracy, multiple higher-level probability-

based ensemble models were developed using off-line and on-line dynamic model selection

techniques.

In Chapter 7, the forecasted multi-horizon velocity data was utilized as the system input

to validate a liquid-based predictive energy management approach. An imaged-based traffic

light detection framework was developed to improve the forecasting performance for inter-

section segments based on a deep learning-based YOLO V2 network. To model the dynamic

systems of an EV, a liquid-based battery thermal control system with PCM was established

via CFD simulations. Then an MPC-based approach was employed to optimize the energy

efficiency. Moreover, the feasibility of leveraging image-based traffic light detection to mod-

ify real-time energy distribution was also evaluated. Results revealed that both the traffic

light detection-aided real-time control and MPC-based energy management could be applied

to urban commuting routes.

The potential extension of this dissertation includes: (i)reduce the computational com-

plexity by linearizing the system or employing decentralized MPC approaches, (ii) adopt

a hierarchical multi-system vertical model predictive control algorithm to strengthen the

control for the BTMS and cabin AC system, (iii) develop advanced traffic light recognition

systems to improve the vehicle energy efficiency.
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APPENDIX
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