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Abstract 
It is common for subjects to produce speech while performing 
a physical task where speech technology may be used. Variabil-
ities are introduced to speech since physical task can influence 
human speech production. These variabilities degrade the perf-
ormance of most speech systems. It is vital to detect speech 
under physical stress variabilities for subsequent algorithm pro-
cesssing. This study presents a method for detecting physical 
task stress from speech. Inspired by the fact that i-vectors can 
generally model total factors from speech, a state-of-the-art i-
vector framework is investigated with MFCCs and our previou-
sly formulated TEO-CB-Auto-Env features for neutral/physical 
task stress detection. Since MFCCs are derived from a linear 
speech production model and TEO-CB-Auto-Env features emp-
loy a nonlinear operator, these two features are believed to have 
complementary effects on physical task stress detection. Two 
alternative fusion strategies (feature-level and score-level fusi-
on) are investigated to validate this hypothesis. Experiments 
over the UT-Scope Physical Corpus demonstrate that a relative 
accuracy gain of 2.68% is obtained when fusing different fea-
ture based i-vectors. An additional relative performance boost 
with of 6.52% in accuracy is achieved using score level fusion. 
Index Terms: physical stress detection, i-vector, TEO-CB-
Auto-Env, AdaBoost 

1. Introduction 
Stress is an external aspect that impacts physical speech produ-
ction when people produce speech while performing secondary 
tasks. Addressing noise is not sufficient to overcome performa-
nce loss in actual noisy stressful scenarios for robust speech 
systems, even if noise is eliminated completely [1]. Speech 
production variability introduced by stress or emotion can 
severely degrade speech/speaker recognition accuracy [2-4]. 
Detection of paralinguistic information, such as physical task 
load, gender and cognitive load can guide human computer 
interaction systems to automatically understand and adapt to 
different users states and environments. Thus, this technique 
can be directly applied to stress level classification [5], as well 
as emotion surveillance. At the same time, it can also be 
employed as a front-end for spoken dialog systems, speaker 
diarization, speaker identification and automatic speech recog-
nition (ASR) systems. 

Table 1 shows an overview of factors which impact 
physical task stress detection.  Physical status (e.g. heart rate) is 
changing with exertion, which can be reflected in the 
corresponding speech [6]. The acoustic environment or noise 
level varies with different physical task scenarios, which could 
be sustained background noise in a typical 24-hour operating 

workplace or random noise in a gym. Even if we remove all 
external environmental factors, physical task stress still shows 
differences within speaker (e.g. the same speaker, different 
exercise durations give different stress load) and across speaker 
(e.g. the same task, different speakers show different stress load 
levels). These factors taken together make physical stress 
detection a challenging research task. 

Table 1: Influential factors for speech under physical task. 

  Physical Changes 
of Speaker 

   Noise type / 
   Environment  

Speaker 
     Variability  

● Heart rate ● Workplace ●Within speaker 
● Breathing ● Gym   
● Fatigue ● Constant ●Across speaker 
● Muscle control ● Random  

Due to importance of stress detection in real world speech 
applications, more attention has been drawn to this domain in 
the past decade [7,8]. Inspired by nonlinear speech production 
model, the Teager Energy Operator (TEO) based features have 
been well known to represent traits of stressed state by reflec-
ting variability in the excitation [2,7]. Linear speech production 
model based features such as MFCCs are still effective since th-
ey reflect excitation characteristics. In [9], low-level descriptors 
(LLD) features employing the OpenSMILE extractor were 
generated as input features for a baseline system on a similar 
task data.  

Speaker recognition systems based on i-vector extraction 
and PLDA classification are able to obtain relatively high 
accuracy and have become a mainstream framework for speaker 
identification tasks [10-14]. Inspired by the total variability 
modeling of speech, we focus on physical task stress detection 
using an i-vector framework. Performance on MFCCs and 
TEO-CB-Auto-Env features are explored. A fusion of these 
features at an i-vector level is considered to supplement perfor-
mance, since MFCCs and TEO-CB-Auto-Env are derived from 
different speech production models. Finally, score fusion 
employing AdaBoost is also employed to provide further perf-
ormance gain. 

The remaining sections are organized as follows: Sec.2 
presents a brief introduction to the physical task stress corpus 
used in the study. Sec.3 explains the i-vector framework imple-
mented. Fusion at the i-vector and score level are presented in 
Sec.4.  We report results and provide discussion in Sec.5.  Con-
clusions and future work are explored in Sec.6. 

2. UT-Scope Corpus 
This study employs the UT-Scope Physical task stress Corpus 
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Figure 1: TEO-CB-Auto-Env feature extraction.

for system development and evaluation. From the corpus details 
described in [15], physical task stress is introduced into speech 
by having subjects exercise on a Stamina Conversion II 
Elliptical/Stepper machine in the elliptical mode. There are 66 
speakers in the UT-Scope Physical Corpus. For this portion of 
the study, we employ 50 female speakers, each producing 35 
sentences under neutral and physical conditions. We consider 
the stress classification experiments in a speaker independent 
scenario. In each experiment, 40 speakers are used in the 
training set, and 10 subjects in the test set. Next, we rotate the 
training/test set, resulting in 5 speaker independent physical 
stress detection experiments where all speech and speakers are 
open test. For more details, please see Table 2. 

Table 2: Statistics of UT-Scope Corpus. 

   Set1   Set2   Set3   Set4   Set5 
 SNR/dB  33.28  36.87  36.07  35.84  37.78 
Duration/s   2.56   2.86   3.06   2.97   3.26 
Spk Count    10    10    10    10    10 

3. I-vector framework for stress detection 
Our proposed system for physical task stress detection utilizes 
the concept of i-vector modeling, which is proposed in [10,16]. 
By constraining the total variability into a lower dimensional 
total variability space, the i-vector is capable of effectively 
representing the variability factors within each speech utterance 
[16,17]. In this work, we attempt to model the speaker-
independent physical task stress using i-vectors. To compensate 
for MFCCs based i-vector, which is derived from linear speech 
production model, a nonlinear speech production model based 
frame-level feature entitled TEO-CB-Auto-Env [7] is invest-
igated to extract utterance-level features. 

3.1. Acoustic feature extraction 

� MFCCs: 
39-dimention feature vector (13 MFCC+△+△△). 

� TEO-CB-Auto-Env: 
The TEO profile obtained from the critical band based 
Gabor bandpass filter output is segmented on a short-term 
basis, Auto-correlation is applied after framing. Once the 
auto-correlation response is found, the area under the 
autocorrelation envelope is obtained and normalized. One 
area coefficient is obtained for each filter bank. This area 
coefficient is intended to determine the regularity of spee-
ch production, it has been shown to be large for neutral 
speech and low for speech produced under stressed 
conditions [7,18]. In this study, we employ an 18 
dimensional Gabor filterbank. Thus, 18 dimensional 
TEO-CB-Auto-Env features are extracted from each 

frame. Fig.1 shows a flow diagram of the TEO-based 
feature extraction. 

For each speaker independent experiment, a Universal 
Back-ground Model (UBM) with 256 Gaussian mixtures is 
trained using the training dataset outlined in Sec.2.  

3.2. I-vector extraction 
For utterance-level physical task stress detection, the i-vector 
modeling is given as:  

                                          ,� �M m Tw                                  (1)   

where M is the GMM supervector for an utterance, m is the 
stress-, utterance- and speaker-independent supervector obtain-
ed from UBM, T is the low rank total variability matrix 
representing the basis of the reduced total variability space, and 
w is the low rank factor loadings referred to as i-vector, which 
contain all factors related to physical stress and neutral condi-
tions. The rank of T determines the dimension of the derived i-
vector. In this work, 50, 100 and 200 dimensional i-vectors are 
examined because of the relatively short duration of each utter-
ance (2-3s) [19]. Fig. 2 gives the flow chart of this i-vector 
framework. 

 

Figure 2: Flow diagram of i-vector framework. 

4. Fusion in i-vector and score level 
To fully leverage the physical/neutral discriminative infor-
mation obtained from MFCCs and TEO-CB-Auto-Env features, 
system fusion is considered. Two different fusion strategies are 
examined in this section. 

4.1. I-vector level fusion 
Using the i-vector extraction described in Sec. 3, two kinds of 
i-vector are derived from each utterance, (i.e., MFCC-based and 
TEO-CB-Auto-Env based i-vectors). The new i-vector integra-
ting both MFCC and TEO-CB-Auto-Env acoustic information 
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is obtained by concatenating the two i-vectors together. The 
dimensionality is reduced to the original length using linear 
discriminative analysis (LDA) [11]. 

4.2. Score level fusion 
In practical binary classification as seen in Fig. 4, the decision 
is made by comparing the score difference of neutral (labeled 
with 1) and physical stressed speech (labeled with -1) with 0. 
Let us define S as the score difference, Sneu as the score of the 
neutral speech and Sphy as the score of physical stressed speech. 
Next, the decision is given by: 

                   
0

:
0neu phy

Neutral
S S S

Physical
��

� � � 	

             (2)   

With the score difference S, a score map for the two features 
is illustrated as Fig. 3. From the score distribution, a new 
boundary could be learned which is beneficial for final decision 
making. Therefore, a score level fusion can be treated as a 
pattern classification problem. The scores obtained from 
different i-vector systems (i.e., TEO-CB-Auto-Env i-vector, 
MFCC i-vector, and i-vector fusion of two features) can be used 
as new feature vectors of both supervised classification 
algorithms (support vector machine (SVM), boosting, etc.) and 
unsupervised classification algorithms (clustering algorithms 
such as K-means) [20,21,22]. 

 
Figure 3: Score map of neutral and physical stressed utteran-
ces. The line is the decision boundary.   

In our study, the AdaBoost algorithm is employed to learn 
the pattern of the score distribution [23]. The idea behind 
AdaBoost is to construct a strong classifier out of a set of weak 
classifiers. A final decision is then given by: 

                                  
1

( ) ( ),
K

i i i i
i

S x h x�
�

��                             (3) 

where ( )i ih x is the weaker classifier of a given pattern ix , the 
value for ( )i ih x  is “yes” (+1) or “no” (-1) for binary 
classification, and i�  is the weight assigned to each classifier.   
When applying AdaBoost to our physical task stress detection 
system, we assume the MFCCs score S1 and TEO-CB-Auto-Env 
score S2 are presented by a weaker classifier respectively (Act-

ually, we can claim additional weaker classifiers to present a 
two-dimension feature, since third or high number classifiers 
are just the linear combination of first two classifiers).  By set-
ting the threshold ith to minimize the input training error, i�  
is calculated according to the adapt rule of AdaBoost algorithm. 
Greater details concerning of AdaBoost can be found in [20,23]. 
In our proposed system, K in Fig. 4 is set to 2 as shown. 

 
       Figure 4: Flow diagram of score fusion using AdaBoost. 

5. Experimental results 
In this section, we present experimental results of physical task 
stress detection with our proposed systems. First, we examine 
the influence of different i-vector dimensions. Five-fold cross 
validation is employed as described in Sec. 2. The results shown 
in Fig. 5 represent the average over 5 test sets. 100 dimensional 
i-vector for all three features always outperform 50 dimensional 
i-vector since 100 dimensional i-vectors can carry more 
information than 50, however the difference is small. As i-
vector dimension increases to 200, the performance does not 
always increase. In the following experiments, we set i-vector 
dimensionality to 100 for its relative stable performance. 

 
       Figure 5: Accuracy across different i-vector dimensions.  

In the score level fusion stage, a new score is given by (3), 
where ( )i ih x  is defined as: 

                             
1,

( ) ,
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i i
i i

i i

S th
h s

S th
�

� � � 	

                             (4) 
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In practice, we find that a weaker classifier such as Eq. (4) 
does not use the full information of score S1 and S2, where a ha-
rd decision boundary is obtained. From this observation, a 
“soft” boundary is given for practical classifiers. 

                                 
2

1
i i

i

S sign S�
�

� �
� ��
� �� �
�                                (5) 

By this modification of the decision making rule, an 
approximately +1% accuracy gain is achieved. We set 1�  as 
1.00 and 2�  as 0.55 (normalized by 1� ) which is obtained from 
the AdaBoost training of scores. 

 
Figure 6: System performance across 5 unique speaker set. We 
use scores from MFCC system and i-vector fusion system to 
perform score-level fusion.    

 
Figure 7: Detection performance on physical stressed speech 
employing MFCC based i-vector system. As described in Sec. 2, 
each speaker produces 35 utterances under physical task 
condition. We split them into three categories (i.e. Phy1 for 1-
12, Phy2 for 13-24 and Phy3 for 25-35). 

From the speaker independent physical stress detection 
experiments given in Fig. 6, we can see: a) both i-vector fusion 
and score fusion achieve reasonable performance, which show 
the effectiveness of MFCCs and TEO-CB-Auto-Env features 

and their complementary effects; b) compared to i-vector 
fusion, score fusion always performs better than single feature 
based systems, which shows the stability of our proposed 
approach; c) there is a greater than 10% percent accuracy 
difference between Set1 and Set5 indicates the variability 
across speakers; and d) although Set4 has lower SNR and 
shorter duration compared to Set2 and Set3 (see Table 2), the 
relative better detection performance further shows the across 
speaker variability of physical stress, which reflects a challenge 
in formulating a robust physical stress model. 

To examine the physical exertion level reflected by speech 
within each speaker, we split each speaker set into 3 parts over 
the exercise fine frame (e.g., begin, middle, end) and repeat the 
physical stress detection experiments. We assume the physical 
stress load follows in this order: Phy3>Phy2>Phy1, since the 
entire exercise time period follows in the same way. The results 
from Fig. 7 show: a) physical stress load increases with the 
exercise time period, which indicates the variability introduced 
by physical exertion level within each speaker with exception 
of Set1, others generally show increasing physical stress level 
over time; b) the results here show that effective physical stress 
detection is possible, and increasing levels of stress are seen 
across the exercise period; c) it should also be noted that 
corresponding heartrate monitoring during speech production 
for the UT-Scope Physical Corpus collection confirm the 
increased levels of physical task stress [6].   

6. Conclusions 
In this study, an i-vector based physical task stress detection 
system was proposed. MFCCs and TEO-CB-Auto-Env based 
features were investigated in an i-vector framework for stress 
detection tasks. Using i-vector fusion, a relative accuracy gain 
of +2.68% is obtained; by score fusion using the AdaBoost 
algorithm, a further relative +6.52% performance gain is 
achieved (both compared to best single feature system used in 
our study, e.g. MFCC based i-vector system). The i-vector 
dimensionality for our specific physical task stress detection is 
determined by parameter tuning. Variability across and within 
speakers was investigated. From the experiments presented in 
Fig. 7, it has been shown that approximate physical exertion 
level differences are represented in the speech signal. Future 
work will focus on physical stress level classification, 
especially over speakers given heart rate ground truth. Also, 
other variations such as gender, channel or age will be explored. 
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