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STABILITY, BIFURCATION, AND CONTINUATION THEORY

FOR PERTURBED SWEEPING PROCESSES

Lakmi Niwanthi Wadippuli Achchige, PhD
The University of Texas at Dallas, 2018

Supervising Professor: Oleg Makarenkov, Chair

This dissertation is devoted to the development of a qualitative theory of perturbed sweeping

processes, which are a combination of differential equations and a moving constraint. The

differential equations involved are always assumed Lipschitz continuous. As for the moving

constraint, several different situations are addressed: Lipschitz continuous in time, BV-

continuous in time, state-dependent, state-independent, with convex interior, with prox-

regular interior, bounded in time, periodic in time, almost periodic in time. We prove the

existence of local and global solutions as well as boundedness, periodicity, almost periodicity,

and asymptotic stability of solutions. Furthermore, we establish results on the occurrence

of periodic solutions from a switched boundary equilibrium and on bifurcation of cycles

from a regular boundary equilibrium. Concrete examples illustrate the main results of the

dissertation.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Historical Remarks

A perturbed Moreau sweeping process reads as

− ẋ(t) ∈ NC(t)(x(t)) + f(t, x(t)), x ∈ E (1.1)

with multivalued function t 7→ C(t) and vector valued funtion f : R×E → E (see Castaing

and Monteiro Marques [19], Kunze [39], Kamenskiy-Makarenkov [31], Edmond-Thibault

[26]), where NC(x) is the outward normal cone defined for nonempty closed convex set

C ⊂ E as

NC(x) =

 {ξ ∈ Rn : 〈ξ, c− x〉 ≤ 0, for any c ∈ C} , if x ∈ C,

∅, if x 6∈ C.
(1.2)

Here we consider E to be a finite-dimensional vector space. The unboundedness of the right-

hand-sides in (1.1) makes the classical theory of differential inclusions (see e.g., Aubin et al

[6], Kamenskii et al [33]) inapplicable.

Numerous applications can found in elastoplasticity (see e.g., Adly et al [3], Bastein et al

[7, 8], Gilles-Ulisse [29], Kunze [39]) as well as in problems of power converters Addi et al

[2] and crowd motion Maury-Venel [48]. In sweeping processes (1.1) coming from models

of parallel networks of elastoplastic springs (see e.g., Bastein et al [7, 8], Gilles-Ulisse [29],

Kunze [39]), C(t) represents the mechanical loading of the springs and f(t, x) stands for

those forces which influence the masses of nodes.

Existence and uniqueness: Fundamental results on the existence, uniqueness and dependence

of solutions on the initial data are proposed in Monteiro Marques [47, Ch. 3], Monteiro Mar-

ques [49], Valadier [61, 62], Edmond-Thibault [26], Castaing and Monteiro Marques [19],

Adly-Le [4], Brogliato-Thibault [15], Krejci-Roche [38], Paoli [54]. Dependence of solutions
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on parameters is covered in Bernicot-Venel [10] and Kamenskiy-Makarenkov [31]. Opti-

mal control problems for sweeping process (1.1) and equivalent differential equations with

hysteresis operator are addressed in Edmond-Thibault [26], Adam-Outrata [1] (which also

discusses applications to game theory), Brokate-Krejci [16]. Numerical schemes to compute

the solutions of (1.1) are discussed through most of the papers mentioned above.

When t 7→ C(t) is Lipschitz i.e.,

dH(C(t1), C(t2)) ≤ L|t1 − t2|, for all t1, t2 ∈ R, and for some L > 0,

where the Hausdorff distance dH(C1, C2) between two closed sets C1, C2 ⊂ Rn is defined as

dH(C1, C2) = max

{
sup
x∈C2

dist(x,C1), sup
x∈C1

dist(x,C2)

}
(1.3)

with dist(x,C) = inf {|x− c| : c ∈ C}, always leads (see e.g., Edmond-Thibault [26], [27]) to

the existence and uniqueness of an absolutely continuous solution x(t) for any initial condi-

tion (under natural assumptions on f). But in the case where t 7→ C(t) is a convex-valued

function of bounded variation doesn’t ensure solvability of (1.1) in the class of absolutely

continuous functions (see Adly et al [3] and references therein for application). That is why

an extended concept of the derivative (called Radon-Nikodym concept) is required in (1.1)

when the map t 7→ C(t) is a function of bounded variation, in which case equation (1.1)

is usually formulated in terms of differential measure dx of BV continuous function x and

Lebesgue measure dt as

−dx ∈ NC(t)(x) + f(t, x)dt, x ∈ E.

Existence and uniqueness of solutions as well as existence of a periodic solution to above

system has been established by Castaing and Monteiro Marques in [19]. The problem of

existence and uniqueness of solutions in the unperturbed case (f ≡ 0) was addressed in

Moreau [51], Monteiro Marques [49], Valadier [61]. Further state-independent extensions of
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the system were considered in Adly et al [3], Edmond-Thibault [27], Colombo and Monteiro

Marques [20].

Existence of a solution to state-dependent sweeping processes with Lipschitz (t, x) 7→ C(t, x)

and f ≡ 0 is proved by Kunze and Monteiro Marques ([40]) by introducing an implicit nu-

merical scheme to (1.1).

Due to challenges from crowd motion modeling (Maury-Venel [48]), the existence and unique-

ness of solutions to a sweeping process with a nonconvex set have been studied. The

main problem towards weakening the convexity of the set is the lack of a unique map

x 7→ proj(x,C). Therefore the concept of prox-regularity of sets came to the studies of

the sweeping process. For the space Rn, the set C(t) is η-prox-regular, if C(t) admits an

external tangent ball with radius smaller than η at each point of the boundary of C(t) (see

Maury-Venel [48, p. 150], Colombo and Monteiro Marques [21, p. 48]).

When the set is nonconvex, the monotonicity of x 7→ NC(x), i.e., the property 〈ξ−ξ′, x−x′〉 ≥

0, ξ ∈ NC(x), ξ′ ∈ NC(x′), x, x′ ∈ C may not hold. Therefore the proximal normal cone,

which has a relevant property of hypomonotonicity is used in sweeping processes with non-

convex sets (see Edmond-Thibault [26]).

We define the proximal normal cone N(C, x) to a nonempty closed set C at x as

N(C, x) = {ξ ∈ Rn : x ∈ proj(x+ αξ, C) for some α > 0}

where proj(x,C) is the set of closest points on C to the point x. When the set C is convex,

the proximal normal cone N(C, x) and the outward normal cone NC(x) coincide (see e.g.,

Maury-Venel [48, Remark 2.9]).

Colombo-Goncharov [20], Benabdellah [9], Colombo and Monteiro Marques [21] and Thibault

[59] studied the existence and uniqueness of solutions to non-perturbed sweeping process (i.e.,

(1.1) with f ≡ 0) with uniform prox-regular sets. And perturbed sweeping process is con-

sidered in Edmond-Thibault [26], [27]. A sweeping process with uniform prox-regular set
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values is appear for the crowd motion in Maury-Venel [48] with numerical simulations. Cao-

Mordukhovich [18] studied optimal control of a nonconvex perturbed sweeping process and

applied to the planar crowd motion model given by Maury-Venel [48].

In the model of crowd motion which introduced by Maury-Venel [48] using sweeping pro-

cesses, the constrained set C is a nonconvex constant set and the perturbation vector function

is time independent.

When defining the model, Maury-Venel [48] considered a group of N people whose positions

are given by x = (x1, x2, . . . , xN) ∈ R2N , where each person is identified as a disk with center

xi ∈ R2 and radius r.

Then by avoiding overlapping of people, the set of feasible configuration is defined as

C = {x ∈ R2N : ‖xi − xj‖ − 2r ≥ 0 for all i < j}. (1.4)

And the perturbed function U(x) = (U1(x), U2(x), · · ·UN(x)) represents the spontaneous

velocity of each person at the position x, i.e., Ui(x) is the velocity that i-th person would

have in the absence of other people.

Stability: Much less is known about the asymptotic behavior of solutions of perturbed sweep-

ing processes as t→∞. The known results in this direction are due to Leine-Wouw [41, 42],

Brogliato [13], and Brogliato-Heemels [14]. Applied to a time-independent sweeping process

(1.1) the statements of Leine-Wouw [41, Theorem 8.7] (or [42, Theorem 2]), Brogliato [13,

Lemma 2], and Brogliato-Heemels [14, Theorem 4.4] imply the incremental stability and

global exponential stability of an equilibrium, provided that f is strongly monotone, i.e.,

〈f(t, x1)− f(t, x2), x1 − x2〉 ≥ α‖x1 − x2‖2,

for some fixed α > 0 and for all t ∈ R, x1, x2 ∈ Rn. (1.5)

In particular, the results of Leine-Wouw [41, 42], Brogliato [13], Brogliato-Heemels [14] do

not impose any Lipschitz regularity on x 7→ f(t, x) and the derivative in (1.1) is a differential
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measure, which is capable to deal with solutions x of bounded variation.

Periodicity: The papers Kamenskiy-Makarenkov [31], Castaing and Monteiro Marques [19],

Kunze [39] show the existence of T -periodic solutions for T -periodic in time (1.1). Time-

periodically changing C and f are most typical in laboratory experiments for models of

parallel networks of elastoplastic springs (see Kamenskii-Makarenkov [30], Al Janaideh-Krejci

[5], Bastein et al [8]). However, the different nature of t 7→ C(t) and t 7→ f(t, x) makes it

most reasonable to not rely on the existence of a common period when the two functions

receive periodic excitations, but rather to use a theory which is capable to deal with arbitrary

different periods of t 7→ C(t) and t 7→ f(t, x).

While results on the existence of almost periodic solutions for differential equations are

available (e.g., in Trubnikov-Perov [60] and Zhao [64]) and used in applications, the existence

of almost periodic solutions to sweeping processes is not addressed in the literature. A series

of results on the existence and stability of almost periodic solutions to differential inclusions

is obtained in Kloeden-Kozyakin [34] and Plotnikov [35], but still for the case of bounded

right-hand-sides.

1.2 Outline of the dissertation

The dissertation is organized as follows. Chapter 2 consists of the results which we already

published in Kamenskiy at al [32]. Here we investigate the global existence, periodicity,

almost periodicity, global stability and response to additional perturbations of sweeping pro-

cesses with the monotonicity property (1.5). First, we establish the existence of a solutions

to (1.1) defined on the entire R under the assumption that both t 7→ C(t) and (t, x) 7→ f(t, x)

are uniformly Lipschitz functions, but without any use of the monotonicity assumption (1.5).

When (1.5) holds, we have (Theorem 2.2.2) the uniqueness and global exponential stability

of a solution defined on the entire R.
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Under the assumption that both t 7→ C(t) and t 7→ f(t, x) are almost periodic functions

and x 7→ f(t, x) is monotone in the sense of (1.5), we also show (Theorem 2.3.1) that the

unique global solution defined on the entire R is almost periodic. Here we follow Vesely [63]

to introduce the concept of almost periodicity for set-valued functions and for the respective

Bochner’s theorem. The results of Vesely [63] are developed for functions with values in an

arbitrary complete metric space and we take advantage of the completeness of the space of

convex closed non-empty sets equipped with the Hausdorff metric (see e.g., Price [55]) to

apply the concept of almost-periodicity to sweeping processes.

We also consider the sweeping process (1.1) with a parameter ε under the assumption that

the monotonicity condition (1.5) and almost periodicity of C and f only hold for ε = ε0.

The results of (Theorems 2.4.1 and 2.4.2) prove that the solutions to the perturbed sweeping

process with ε 6= ε0 and with an initial condition xε(0) ∈ C(0) approach any given inflation

of the solution x0 (as it is termed in Kloeden-Kozyakin [34]) when the values of time become

large and when ε approaches ε0. Instructive examples of Section 2.4.4 illustrate the domains

of applications of Theorems 2.4.1 and 2.4.2.

Chapter 3 is devoted to a nonconvex (prox-regular) extension of the stability result that we

obtained in Chapter 2 for convex set-valued functions.

Additionally to the assumptions of Theorem 2.2.2, we need that ‖f(t, x)‖ ≤ Mf , for some

Mf > 0 and all t ∈ R, x ∈
⋃
t∈R

C(t), in order to use the property of hypomonotonicity of the

prox-normal cone. And to obtain contraction of solutions of sweeping process (1.1), a lower

bound on the monotonicity constant α in (1.5) is imposed. Also in this chapter we study the

periodicity of solutions when input functions are periodic in (1.1) together with prox-regular

set-valued function t 7→ C(t). This is an analogue of the result of Castaing and Monteiro

Marques [19, Theorem 5.3] that was obtained in [19] for convex sets. Finally, Chapter 3

discusses asymptotic stability of periodic solutions.

Chapter 4 contains the sweeping process part of the results that we published in Makarenkov-
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Niwanthi [46]. In this chapter we study bifurcation of limit cycles from a boundary focus

equilibrium for sweeping processes (1.1) in E = R2, which takes the form ẋ

ẏ

 ∈ −NC(ε)(x, y) +

 f(x, y)

g(x, y)

 , (x, y) ∈ R2

where the constraint C is no longer moving in time but it now depends on a parameter ε.

First, in Proposition (4.2.1) we derive an equation of sliding along the boundary ∂C(ε) of

C(ε) for sweeping process and an equation for the stationary point of the equation of sliding.

We use these findings in Theorem (4.2.1) to establish the bifurcation of finite-time stable

limit cycles of the sweeping process from a focus equilibrium of the reduced system ẋ

ẏ

 =

 f(x, y)

g(x, y)

 ,

when the focus equilibrium collides with the boundary ∂C(ε) under varying ε.

We conclude the chapter by an illustrative example.

Chapter 5 we build upon the knowledge obtained over the previous chapters to advance the

field of sweeping processes with minimal regularity properties.

Here we study the existence of periodic solutions in the following state-dependent version of

sweeping process (1.1)

− ẋ ∈ NA+a(t)+c(x)(x) + f(t, x), x ∈ E, (1.6)

where a is a BV-continuous function and c : E 7→ E is a Lipschitz function.

Since solutions of (1.6) are no longer absolutely continuous when the constraint C(t) =

A+ a(t) + c(t) is only BV-continuous in time, a new concept of derivative (Radon-Nikodym

derivative) is used in Chapter 5 to define solutions to (1.6).

We prove the existence of solutions to (1.6) (Theorem 5.3.1) by introducing a new implicit

catching-up algorithm (5.15)-(5.18) which allows to construct a sequence {xn}n∈N of approx-

imations of the solution x of (1.6). We use the ideas of Kunze and Monteiro Marques [40] to
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prove that the implicit scheme admits a solution and the variational criterion by Castaing

and Monteiro Marques [19] to show that the limit of our scheme is indeed a solution.

The existence of T -periodic solutions to (1.6) if the right-hand-sides of (1.6) are T -periodic

is proved in Sections 5.4 and 5.5 by establishing that

d(I − P n, Q) 6= 0 (1.7)

for the Poincare maps P n of the n-th approximation of the catching-up scheme and suitable

Q ∈ E. Here d(I − P n, Q) is the topological degree of the map P n with respect to an open

bounded set Q (see Krasnoselskii-Zabreiko [36]). After we get the existence of a fixed point

for P n we pass to the limit as n → ∞ on the respective T -periodic solutions of sweeping

process (1.6) and get the existence of a T -periodic solution to (1.6) even though we don’t

know whether limn→∞ P
n(x) is uniform on Q or not. We offer global and local sufficient

conditions to ensure (1.7). The global sufficient condition is based on construction of such a

convex set Q which contains all possible values of the set A + a(t) + c(x(t)) for all possible

solutions of (1.6). In this way, we can show that P n(Q) ⊂ Q for sufficiently large n ∈ N,

which ensures (1.7). To design sufficient conditions that ensure the validity of (1.7) in a

desired region Q (local sufficient conditions), we are no longer allowed to enlarge Q as much

as we want, so we have to seek for alternative deformations of (1.7) that stick to the given

region Q. We go here by a continuation approach and replace (1.6) by a parameter dependent

sweeping process

− dx ∈ NA+a(t,λ)+c(x,λ)(x) + f(t, x, λ)dt, x ∈ E, λ ∈ R. (1.8)

Accordingly, the relation (1.7) gets replaced by

d(I − P λ,n, Q) 6= 0. (1.9)

We, therefore, assume that (1.7) corresponds to (1.9) with some λ = λ1 and prove the validity

of (1.9) for λ = λ1 building upon some good properties of P λ,n for λ = 0 combined with

8



nondegenerate homotopy between P λ1,n and P 0,n. As for possible good properties of P 0,n we

offer both topological (Theorem 5.5.1) and algebraic (Theorem 5.8.3) conditions.

The topological condition simply assumes that (1.9) holds for λ = 0, that leads us a standard

continuation principle, (Theorem 5.5.1).

To obtain easily verifiable algebraic conditions that ensure the validity of (1.9) for λ = 0,

we offer sufficient conditions for asymptotic stability of a point x0 of the target set Q. Such

an approach is based on the fact that the topological degree of a Poincare map in the

neighborhood of an asymptotically stable fixed point equals 1. However, just assuming that

x0 is an asymptotically stable equilibrium of (1.8) with λ = 0 is not of interest because it

leads to periodic solutions that don’t interact with the boundary of the constraint of (1.8)

when λ > 0. Such periodic solutions will simply be solutions of the differential equation

−ẋ = f(t, x, λ), x ∈ E, λ ∈ R.

That is why a non-equilibrium concept of an asymptotically stable point x0 is required to

design periodic solutions of (1.8) which are intrinsically sweeping (i.e., interact with the

boundary of the constraint of (1.8). Such a concept (called switched boundary equlibrium)

is introduced in Chapter 4 and the occurrence of periodic solutions near x0 is established in

Theorem (4.2.1).
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2.1 Introduction

In this chapter we assume f : R×Rn → Rn to be globally Lipschitz continuous in the sense

that

‖f(t1, x1)− f(t2, x2)‖ ≤ Lf‖t1 − t2‖+ Lf‖x1 − x2‖,

for all t1, t2 ∈ R, x1, x2 ∈ Rn, and for some Lf > 0. (2.1)

A similar property

dH(C(t1), C(t2)) ≤ LC |t1 − t2|, for all t1, t2 ∈ R, and for some LC > 0, (2.2)

is assumed for the nonempty closed convex-valued function t 7→ C(t), where dH is the Haus-

dorff distance, see (1.3).

In this chapter we prove that any sweeping processes (1.1) with almost periodic monotone

right-hand-sides i.e., with (1.5) admits a globally exponentially stable almost periodic solu-

tion. And then we describe the extent to which such a globally stable solution persists under

non-monotone perturbations specifically when the perturbation depend on a parameter con-

tinuously and integrally continuous.

We give the definition of an almost periodic function as follows (see e.g., Vesely [63], Levitan-

Zhikov [43]).

Definition 2.1.1. Let X be a complete metric space equipped with the metric d. A con-

tinuous function φ : R → (X, d) is almost periodic, if for any ε > 0, there exists a number

p(ε) > 0 with the property that any interval of length p(ε) > 0 of the real line contains at

least one point s, such that

d(φ(t+ s), φ(t)) < ε for t ∈ R.

We will be using the following Bochner’s theorem from Vesely [63] (see also Levitan-Zhikov

[43, p. 4]) when proving the almost periodicity of the unique solution.
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Theorem 2.1.1. Let X be a complete Banach space and φ : R 7→ X be a continuous

function. Then φ is almost periodic if and only if from any sequence {φ(t + sn)}n∈N, where

sn are real numbers, one can extract a subsequence {φ(t + rn)}n∈N, satisfying the Cauchy

uniform convergence condition on R; i.e., for any ε > 0, there exists l(ε) ∈ N with the

property that

d(φ(t+ ri), φ(t+ rj)) ≤ ε, t ∈ R for all i, j > l(ε), i, j ∈ N.

Let ck(Rn) be the space of all closed bounded nonempty sets of Rn equipped with the

Hausdorff metric dH . Then the space (ck(Rn), dH) is a complete metric space (see e.g., Price

[55]). Therefore the definition (2.1.1) and Bochner theorem 2.1.1 for closed convex valued

continuous almost periodic function C also applicable.

Following Krasnoselskii-Krein [37] and Demidovich [23, Ch. V, §3], we say that f(t, x, ε) is

integrally continuous at ε = ε0, if

lim
ε→ε0

t∫
τ

f(s, x, ε)ds =

t∫
τ

f(s, x, ε0)ds, for all τ, t ∈ R, x ∈ Rn. (2.3)

The following theorem is used when we describe the stability of the attractor in the case of

the perturbation depend on the parameter integrally continuous.

Theorem 2.1.2. (Krasnoselskii-Krein [37]) Assume that F : R×Rk ×R→ Rn satisfies

(2.18) and that t 7→ F (t, u, ε0) is continuous for every u ∈ Rk. Consider a family of continuous

functions {uε(t)}ε∈R defined on an interval [τ, T ] such that uε(t)→ u0(t) as ε→ ε0, uniformly

on [τ, T ]. If F verifies the integral continuity property (2.3), then

lim
ε→ε0

t∫
τ

F (s, uε(s), ε)ds =

t∫
τ

F (s, u0(s), ε0)ds, for all t ∈ [τ, T ].

12



2.2 Existence of an unique globally exponentially stable bounded solution

Under conditions (2.1) and (2.2), for any initial condition x(t0) ∈ C(t0), the sweeping pro-

cess (1.1) with nonempty, closed and convex C(t), t ∈ R, admits (Edmond-Thibault [26,

Theorem 1]) a unique absolutely continuous forward solution x(t), in the sense that x(t)

satisfies (1.1) for almost all t ≥ t0.

Remark 2.2.1. If x0 is a solution to (1.1) defined on t ≥ t0, then x(t) ∈ C(t), for all t ≥ t0,

because NC(t)(x(t)) is undefined otherwise (the interested reader can see that Edmond-

Thibault [26, pp. 352–353] obtains the solution x(t) as x(t) = y(t) − ψ(t), where y(t) ∈

C(t) + ψ(t)). In particular, if ‖C(t)‖ ≤M for some M > 0 and all t ∈ R, then

for any solution x of (1.1) with initial contion x(t0) ∈ C(t0), ‖x(t)‖ ≤M, for t ≥ t0. (2.4)

Theorem 2.2.1. Let f : R × Rn × R → Rn satisfy the Lipschitz condition (2.1). Assume

that, for any t ∈ R, the set C(t) ⊂ Rn is nonempty, closed, convex and the map t 7→ C(t)

satisfies the Lipschitz condition (2.2). If C is globally bounded, then the sweeping process

(1.1) admits at least one absolutely continuous solution x0 defined on the entire R. The

solution x0 is globally bounded.

Proof. Step 1: Construction of a candidate solution x0 defined on the entire R. Let {ξm}∞m=1

be an arbitrary sequence of elements of Rn such that ξm ∈ C(−m), m ∈ N. Let xm(t) be the

solution to (1.1) with the initial condition xm(−m) = ξm. Extend each xm from [−m,∞) to

R by defining xm(t) = xm(−m) for all t < −m. By Edmond-Thibault [26, Theorem 1], the

functions of {xm(t)}∞m=1 share same Lipschitz constant Lk > 0 on each interval [−k, k], k ∈ N.

Letting {x0
m}∞m=1 = {xm}∞m=1, for each k ∈ N we can extract a subsequence {xkm(t)}∞m=1 of

{xk−1
m (t)}∞m=1 which converges uniformly on [−k, k]. By using this family of subsequences we

introduce a sequence {x∗m}∞m=1 by x∗m(t) = xmm(t). The sequence {x∗m}∞m=1 converges uniformly

on any fixed interval [−k, k], k ∈ N. Define x0(t) by x0(t) = lim
m→∞

x∗m(t).
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Step 2: Proof that x0 is indeed a solution. Let τ ∈ R and let v be a solution to (1.1) with

v(τ) = x0(τ). Assume v(t0) 6= x0(t0) for some t0 > τ , i.e., lim
m→∞

x∗m(t0) 6= v(t0). Then there

exists ε0 > 0, such that for each m ∈ N, there exists mk > m such that ‖x∗mk
(t0)−v(t0)‖≥ ε0.

On the other hand, by continuous dependence of solutions to (1.1) on the initial condition

(see Edmond-Thibault [26, Proposition 2]), there exists δ > 0 such that if ‖v(τ)−x∗m(τ)‖< δ

then ‖v(t)− x∗m(t)‖< ε0 for all m ∈ N with −m < τ (which ensures that x∗m(t) is a solution

of (1.1) for t ≥ τ) and t ∈ [τ, t0], see Fig. 2.1. But since v(τ) = x0(τ) = lim
m→∞

x∗m(τ), there

exists N ∈ N such that ‖v(τ)− x∗m(τ)‖< δ for each m > N . Then ‖v(t)− xm(t)‖< ε0 for all

m > N and t ∈ [τ, t0]. This contradicts lim
n→∞

x∗m(t0) 6= v(t0). Therefore v(t) = x0(t) for each

t ≥ τ . Hence x0 is a solution to (1.1).

The solution x0 is globally bounded by Remark 2.2.1.

 









x 0 

v 

x n 

x 

t 
t 0 

Figure 2.1. Illustration of the location of curves x0, v, and x∗m.

Theorem 2.2.2. Assume that the conditions of Theorem 2.2.1 hold. If f satisfies the

monotonicity condition (1.5) then (1.1) admits exactly one absolutely continuous bounded

solution x0 defined on the entire R. Moreover, x0 is globally exponentially stable.

The following proof is known (see e.g., Leine-Wouw [41, Theorem 8.7] and Leine-Wouw [42,

Lemma 2]), but we add a proof in terms of sweeping process (1.1) for completeness.

Proof. Step 1: Let x1 and x2 be solutions to (1.1) with the initial conditions x1(t0), x2(t0) ∈

C(t0). Assuming that t ≥ t0 is such that both ẋ1(t) and ẋ2(t) exist and verify (1.1), one has

〈−ẋ1(t)− f(t, x1(t)), x1(t)− x2(t)〉 ≥ 0.
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Therefore 〈−f(t, x1(t)), x1(t)− x2(t)〉 ≥ 〈ẋ1(t), x1(t)− x2(t)〉.

By analogy, −ẋ2(t)− f(t, x2(t)) ∈ NC(t)(x2(t)) implies

〈−ẋ2(t), x1(t)− x2(t)〉 ≤ 〈f(t, x2(t)), x1(t)− x2(t)〉. Therefore,

d

dt
‖x1(t)− x2(t)‖2 = 2〈ẋ1(t)− ẋ2(t), x1(t)− x2(t)〉

= 2〈ẋ1(t), x1(t)− x2(t)〉 − 2〈ẋ2(t), x1(t)− x2(t)〉

≤ −2〈f(t, x1(t)), x1(t)− x2(t)〉+ 2〈f(t, x2(t)), x1(t)− x2(t)〉

= −2〈f(t, x1(t))− f(t, x2(t)), x1(t)− x2(t)〉

≤ −2α‖x1(t)− x2(t)‖2

and by Gronwall-Bellman lemma (see Lemma 2.5.1 in the Appendix),

‖x1(t)− x2(t)‖2≤ e−2α(t−t0)‖x1(t0)− x2(t0)‖2, for a.e. t ≥ t0.

Since both x1 and x2 are continuous functions,

‖x1(t)− x2(t)‖2≤ e−2α(t−t0)‖x1(t0)− x2(t0)‖2, for all t ≥ t0. (2.5)

Step 2. Uniqueness of the bounded solution x0. Let v be another bounded solution of (1.1)

defined on the entire R. Then, given any τ ∈ R, the inequality (2.5) yields

‖x0(t)− v(t)‖2≤ e−2α(t−τ)‖x0(τ)− v(τ)‖2, for all t ≥ τ.

Thus ‖x0(t)− v(t)‖≤ 2Me−α(t−τ), for all t ≥ τ , where M is as defined in (2.4). Now we fix

t ∈ R and pass to the limit as τ → −∞, obtaining ‖x(t)− v(t)‖≤ 0. Thus x(t) = v(t) for all

t ∈ R.

Step 3. Global exponential stability of x0. Indeed, (2.5) implies that

‖x0(t)− v(t)‖≤ e−α(t−τ)‖x0(τ)− v(τ)‖,

for any solution v of (1.1) and for any t ≥ τ .
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Remark 2.2.2. The global boundedness of t 7→ C(t) is used in the proof of Theorem 2.2.1

just to conclude the boundedness of the global solution x0. Accordingly, the assumption of

global boundedness of t 7→ C(t) and the property of global boundedness of x0 can be simul-

taneously dropped in the formulation of Theorem 2.2.1. But assuming global boundedness

of t 7→ C(t) in Theorem 2.2.2 cannot be dropped as it is used in the proof in an essential

way (to establish the uniqueness of x0, not to just prove its global boundedness).

2.3 Almost periodicity of the unique bounded solution

Theorem 2.3.1. Let the conditions of Theorem 2.2.1 hold and let x0 be the unique abso-

lutely continuous bounded solution given by Theorem 2.2.1. If both the function t 7→ f(t, x)

and the set-valued function t 7→ C(t) are almost periodic, then x0 is almost periodic.

Proof. Let {hm}∞m=1 ⊆ R. We are going to prove that there exists {km(x)}∞m=1 ⊆ {hm}∞m=1

such that the sequence of

xm(t) = x0(t+ km), m ∈ N, t ∈ R, (2.6)

converges as m → ∞ uniformly in t ∈ R, which will imply almost periodicity of x0 by

Bochner’s theorem 2.1.1.

Step 1. The existence of {lm}∞m=1 ⊆ {hm}∞m=1 such that fm(t, x) = f(t + lm, x) converges

as m → ∞ uniformly. Since f(t, x) is almost periodic, then, for each x ∈ Rn, Bochner’s

theorem (see e.g., Levitan-Zhikov [43, p. 4]) implies the existence of {lm(x)}∞m=1 ⊆ {hm}∞m=1

such that the sequence of functions {f(· + lm(x), x)}∞m=1 converges in the sup-norm. The

standard diagonal method allows to construct {lm(x)}∞m=1 independent on x. Indeed, consid-

ering {xm}∞m=1 = Qn, we first construct sequences {lm(x1)}∞m=1 ⊇ {lm(x2)}∞m=1 ⊇ . . ., such

that each individual sequence {f(· + lm(x1), x1)}∞m=1, {f(· + lm(x2), x2)}∞m=1, . . . converges.

And then define {lm}∞m=1 ⊆ {hm}∞m=1 as lm = lm(xm), m ∈ N. Put

fm(t, x) = f(t+ lm, x), for all t ∈ R, x ∈ Qn, m ∈ N. (2.7)
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So constructed, {fm(·, x)}∞m=1 converges for each fixed x ∈ Qn. Let

f̂(t, x) = lim
m→∞

fm(t, x), for all t ∈ R, x ∈ Qn. (2.8)

By (2.1) both fm and f̂ are Lipschitz continuous with constant Lf on R × Rn and R × Qn

respectively. Now we extend f̂ from R × Qn to R × Rn by taking an arbitrary sequence

Qn 3 xk → x0 ∈ R, as k → ∞, and defining f̂(t, x0) = lim
k→∞

f̂(t, xk). The limit exists

because {f̂(t, xk)}∞k=1 is a Cauchy sequence for each fixed t ∈ R, which follows from Lipschitz

continuity of f̂ on R × Qn. Lipschitz continuity of f̂ extends from R × Qn to R × Rn by

continuity. The latter property also implies that

∥∥∥f̂(t, x0)− f̂(t, xk)
∥∥∥ ≤ Lf‖x0 − xk‖, for all k ∈ N.

Finally, to show that

fm(t, x)→ f̂(t, x) as m→∞, uniformly in t ∈ R, x ∈ Rn, (2.9)

we estimate fm(t, x)− f̂(t, x) as

∥∥∥fm(t, x)− f̂(t, x)
∥∥∥ ≤ ‖fm(t, x)− fm(t, x∗)‖+

∥∥∥fm(t, x∗)− f̂(t, x∗)
∥∥∥+

∥∥∥f̂(t, x∗)− f̂(t, x)
∥∥∥ .

Given x ∈ Rn and ε > 0, we choose x∗ ∈ Qn so close to x that ‖fm(t, x)− fm(t, x∗)‖ < ε/3

and
∥∥∥f̂(t, x∗)− f̂(t, x)

∥∥∥ < ε/3, for all m ∈ N, t ∈ R. By (2.8) we can now select m0 ∈ N

such that
∥∥∥fm(t, x∗)− f̂(t, x∗)

∥∥∥ < ε/3, for all m > m0 and t ∈ R. Thus, (2.9) holds.

Step 2. The existence of {km}∞m=1 ⊆ {lm}∞m=1, such that Cm(t) = C(t + km) converges

as m → ∞ uniformly. By Bochner’s theorem for almost periodic functions in pseudo-

metric spaces (see Vesely [63, Theorem 2.4]), there exists {km}∞m=1 ⊆ {lm}∞m=1, such that

{Cm(t)}∞m=1 is a Cauchy sequence in ck(Rn), which is uniform in t ∈ R. The convergence of

{Cm(t)}∞m=1 for each individual t ∈ R now follows from the completeness of ck(Rn) (Price
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[55, the theorem of §3]). The uniformity of the convergence in t ∈ R follows along the

standard lines. Indeed, let

Ĉ(t) = lim
m→∞

Cm(t).

Given ε > 0, fix m0 > 0 such that dH(Cm(t), Cm∗(t)) < ε/2 for all m > m0, m∗ > m0, and

t ∈ R. For each t ∈ R select m∗(t) > m0 such that dH

(
Cm∗(t)(t), Ĉ(t)

)
< ε/2. Then

dH

(
Cm(t), Ĉ(t)

)
≤ dH

(
Cm(t), Cm∗(t)(t)

)
+ dH

(
Cm∗(t)(t), Ĉ(t)

)
< ε/2 + ε/2 = ε,

for all m > m0, t ∈ R.

Note that (2.2) implies that Ĉ is globally Lipschitz continuous with constant LC .

Step 3: The uniform convergence of {xm(t)}∞m=1. The function xm, see (2.6), is a solution

to the sweeping process

− ẋ(t) ∈ NCm(t)(x(t)) + fm(t, x(t)). (2.10)

Along with (2.10) let us consider

− ẋ(t) ∈ NĈ(t)(x(t)) + f̂(t, x(t)). (2.11)

Both Ĉ and f̂ are globally bounded and globally Lipschitz continuous. Moreover, by using

(2.7) and (2.8) one concludes that f̂ satisfies the monotonicity property (1.5). Therefore,

by Theorem 2.2.1 the sweeping process (2.11) has a unique bounded absolutely continuous

solution x̂ defined on the entire R. Let t ∈ R be such that both ẋm(t) and ˙̂x(t) exist and

satisfy the respective relations (2.10) and (2.11). Define

vm = ẋm(t) + fm(t, xm(t)), v̂ = ˙̂x(t) + f̂(t, x̂(t)),

so that vm ∈ −NCm(t)(xm(t)), v̂ ∈ −NĈ(t)(x̂(t)).

Furthermore, introducing ∆m(t) = dH

(
Cm(t), Ĉ(t)

)
one has

um(t) ∈ Cm(t) ⊆ Ĉ(t) + B̄∆m(t)(0), û(t) ∈ Ĉ(t) ⊆ Cm(t) + B̄∆m(t)(0), for all t ∈ R.
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Therefore, xm and x̂ can be decomposed as

xm(t) = d̂(t) + sm(t), x̂(t) = dm(t) + ŝ(t),

where d̂(t) ∈ Ĉ(t), dm(t) ∈ Cm(t), ‖sm(t)‖≤ ∆m(t), ‖ŝ(t)‖≤ ∆m(t).

Let

wm(t) = ‖xm(t)− x̂(t)‖2.

Then,

1

2
ẇm(t) = 〈ẋm(t)− ˙̂x(t), xm(t)− x̂(t)〉

= 〈vm(t)− fm(t, xm(t))− v̂(t) + f̂(t, x̂(t)), xm(t)− x̂(t)〉

= 〈vm(t), xm(t)− dm(t)− ŝ(t)〉+ 〈v̂(t), x̂(t)− d̂(t)− sm(t)〉

−〈fm(t, xm(t))− f̂(t, x̂(t)), xm(t)− x̂(t).〉

By (1.2) we have 〈vm(t), xm(t) − dm(t)〉 ≤ 0 and 〈v̂(t), x̂(t) − d̂(t)〉 ≤ 0. Therefore, for a.a.

t ∈ R,

1

2
ẇm(t) ≤ −〈vm(t), ŝ(t)〉 − 〈v̂(t), sm(t)〉 − 〈fm(t, xm(t))− f̂(t, x̂(t)), xm(t)− x̂(t)〉

≤ ‖vm(t)‖·‖ŝ(t)‖+‖v̂(t)‖·‖sm(t)‖

−〈fm(t, xm(t))− fm(t, x̂(t)) + fm(t, x̂(t))− f̂(t, x̂(t)), xm(t)− x̂(t)〉.

Given ε > 0 we use the conclusions of Steps 1 and 2 to spot an m0 > 0 such that

‖ŝ(t)‖ ≤ ε0, ‖sm(t)‖ ≤ ε0,
∥∥∥fm(t, x̂(t))− f̂(t, x̂(t))

∥∥∥ ≤ ε0, for all m ≥ m0, t ∈ Rn.

Almost periodicity in t and the Lipschitz condition (2.1) imply that the function f(t, x) is

uniformly bounded when t ∈ R and ‖x‖ ≤ M, where M is as introduced in Remark 2.2.1.

Therefore, by Edmond-Thibault [26, Theorem 1], there exists L0 > 0 such that

‖vm(t)‖ ≤ L0, ‖v̂(t)‖ ≤ L0
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and by using (2.4) we can estimate ẇm(t) further as

1

2
ẇm(t) ≤ 2εL0 − 〈fm(t, xm(t))− fm(t, x̂(t)), xm(t)− x̂(t)〉+ 2εM,

for all m ≥ m0, a.a. t ∈ R.

By referring to the definition (2.7) of fm, one observes that fm satisfies the monotonicity

estimate (1.5), which implies

1

2
ẇm(t) ≤ 2ε(L0 +M)− α‖xm(t)− x̂(t)‖2 = 2ε(L0 +M)− αwm(t),

for all m ≥ m0 and a.a. t ∈ R.

Gronwall-Bellman lemma (see Lemma 2.5.1 in the Appendix) now allows to conclude that

wm(t) ≤ wm(τ)e−α(t−τ) + 2ε(L0 +M)

∫ t

τ

e−α(t−s)ds

= wm(τ)e−α(t−τ) + ε
2(L0 +M)

α

(
1− e−α(t−τ)

)
, t, τ ∈ R, m ≥ m0.

By passing to the limit as τ → −∞ one gets

wm(t) ≤ ε · 2(L0 +M)/α, t ∈ R, m ≥ m0.

Therefore, ‖xm(t) − x̂(t)‖→ 0 as m → ∞ uniformly in t ∈ R, and so x0 is almost periodic

by Bochner’s theorem.

Remark 2.3.1. To fulfill the assumption of global boundedness of t 7→ C(t) in Theo-

rem 2.3.1, it is sufficient to assume that C(t) is bounded for each individual t ∈ R. Indeed,

any almost periodic set-valued map C(t) with closed bounded values is globally bounded on

R, see e.g., Levitan-Zhikov [43, p. 2] or Vesely [63, Lemma 2.2].

2.4 Stability of the attractor to non-monotone perturbations

In this section, we study the sweeping process

− ẋ(t) ∈ NC(t)(x(t)) + f(t, x(t), ε), (2.12)
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which satisfies the monotonicity condition (1.5) only when ε = ε0, i.e.,

〈f(t, x1, ε0)− f(t, x2, ε0), x1 − x2〉 ≥ α‖x1 − x2‖2,

for some fixed α > 0 and for all t ∈ R, x1, x2 ∈ Rn. (2.13)

2.4.1 The case where the dependence of the perturbation on the parameter is

continuous

Here we assume that

‖f(t1, x1, ε)−f(t2, x2, ε)‖ ≤ Lf‖t1−t2‖+Lf‖x1−x2‖, for all t1, t2 ∈ R, x1, x2 ∈ Rn. (2.14)

Theorem 2.4.1. Let f : R × Rn × R → Rn satisfy the Lipschitz condition (2.14) and the

monotonicity condition (2.13). Assume that, for any t ∈ R, the set C(t) ⊂ Rn is nonempty,

closed, convex and the uniformly bounded map t 7→ C(t) satisfies the Lipschitz condition

(2.2). Finally, assume that f(t, x, ε) is continuous at ε = ε0 uniformly in t ∈ R, x ∈ Rn. Let

x0 : R→ Rn be the unique solution to (2.12) with ε = ε0 provided by Theorem 2.2.2. Then,

given any γ > 0 there exists t1 ∈ R such that for any solution xε of (2.12) defined on [0,∞),

one has

‖xε(t)− x0(t)‖ < γ, t ≥ t1, (2.15)

for all ε sufficiently close to ε0.

We remind the reader that corresponding results for differential inclusions with bounded

right-hand-sides are known examples from Kloeden-Kozyakin [34].

The following lemma will be used iteratively throughout the rest of the chapter.

Lemma 2.4.1. Let xε be a solution of (2.12) defined on [τ,∞). Let x0 = xε0 . If (2.13) holds,

then, for a.a. t ≥ τ ,

‖xε(t)− x0(t)‖2 ≤ e−2α(t−τ)‖xε(τ)− x0(τ)‖2

−2

∫ t

τ

e−2α(t−s)〈f(s, xε(s), ε)− f(s, xε(s), ε0), xε(s)− x0(s)〉ds. (2.16)
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Proof. For a.a. t ≥ τ and ε ∈ R we have

d

dt
‖xε(t)− x0(t)‖2 = 2 〈ẋε(t)− ẋ0(t), xε(t)− x0(t)〉

≤ 2 〈−f (t, xε(t), ε) , xε(t)− x0(t)〉+ 2 〈f(t, x0(t), ε0), xε(t)− x0(t)〉

= −2 〈f(t, xε(t), ε)− f(t, xε(t), ε0), xε(t)− x0(t)〉

− 2〈f(t, xε(t), ε0)− f(t, x0(t), ε0), xε(t)− x0(t)〉

≤ −2α‖xε(t)− x0(t)‖2 − 2〈f(t, xε(t), ε)− f(t, xε(t), ε0), xε(t)− x0(t)〉

and the conclusion follows by applying the Gronwall-Bellman lemma (see Lemma 2.5.1 in

the Appendix).

Proof of Theorem 2.4.1. By Lemma 2.4.1 and (2.4) one has

‖xε(t)− x0(t)‖2 ≤ e−2αt‖xε(0)− x0(0)‖2

+

(
1

2α
− e−2αt

2α

)
max
s∈[0,t]

‖f(s, xε(s), ε)− f(s, xε(s), ε0)‖ ·M, (2.17)

from which the conclusion follows.

Remark 2.4.1. The estimate (2.15) can be extended to the entire R, if xε is defined on the

entire R (for example if xε is that given by Theorem 2.2.1). Indeed, in this case (2.17) can

be strengthened to

‖xε(t)− x0(t)‖2 ≤ e−2α(t−τ)‖xε(τ)− x0(τ)‖2

+

(
1

2α
− e−2α(t−τ)

2α

)
max
s∈[τ,t]

‖f(s, xε(s), ε)− f(s, xε(s), ε0)‖ ·M,

which gives

‖xε(t)− x0(t)‖2 ≤ 1

2α
max

s∈(−∞,t]
‖f(s, xε(s), ε)− f(s, xε(s), ε0)‖ ·M,

by passing to the limit as τ → −∞.
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2.4.2 The case where the dependence of the perturbation on the parameter is

just integrally continuous

In this section we assume that the following version of Lipschitz condition (2.1) holds:

‖f(t1, x, ε)− f(t2, x, ε)‖ ≤ Lε‖t1 − t2‖, for all t1, t2 ∈ R, x ∈ Rn, ε ∈ R\{ε0},

‖f(t, x1, ε)− f(t, x2, ε)‖ ≤ Lf‖x1 − x2‖, for all t ∈ R, x1, x2 ∈ Rn, ε ∈ R,
(2.18)

where Lε > 0 may depend on ε ∈ R and Lf > 0 is independent of ε ∈ Rn. The central

role in this section is played by a generalization of the theorem on passage to the limit in

the integral due to Krasnoselskii-Krein [37] (see also Demidovich [23, Ch. V, §3]). In the

statement of (2.1.2), we take k = n when referring to (2.18) and (2.3) in the context of the

function F .

We are now in the position to prove the main result of this section.

Theorem 2.4.2. Let f : R × Rn × R → Rn satisfy both the Lipschitz condition (2.18).

Assume that f satisfies the monotonicity condition (2.13). Assume that, for any t ∈ R,

the set C(t) ⊂ Rn is nonempty, closed, convex and the uniformly bounded map t 7→ C(t)

satisfies the Lipschitz condition (2.2). Finally, assume that f(t, x, ε) is integrally continuous

at ε = ε0. Then, given any γ > 0 there exists t1 ≥ 0 such that for any solution xε to (2.12)

defined on [0,∞) and for any t2 ≥ t1, one has

‖xε(t)− x0(t)‖ < γ, t ∈ [t1, t2],

for all ε sufficiently close to ε0.

Proof. Let us fix some closed interval [t1, t2] and assume that the statement of the theorem

is wrong, i.e., assume that there exists γ > 0 such that

max
t∈[t1,t2]

‖xεm(t)− x0(t)‖ ≥ γ (2.19)
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for some sequence εm → ε0 as m→∞. By (2.4), we can find τ < 0 such that

e−2α(t−τ)‖xεm(τ)− x0(τ)‖2 <
γ2

2
, for all m ∈ N, t ∈ [t1, t2]. (2.20)

In what follows, we show that the integral term of the estimate (2.16) can be made smaller

that γ2/2 on the sequence xεm as well. Since f(t, x, ε) is uniformly bounded and C satisfies

the global Lipschitz condition (2.2), by Edmond-Thibault [26, Theorem 1] we have the

existence of L0 > 0 such that

‖ẋεm(t)‖ ≤ L0, for all m ∈ N, and a.a. t ∈ [τ, T ]

where T > 0. Since the functions of {xεm(t)}m∈N are uniformly bounded according to (2.4),

the Arzela-Ascoli theorem implies that without loss of generality the sequence {xεm(t)}m∈N

can be assumed convergent uniformly on [τ, T ]. Introduce

F (t, (x1, x2)T , ε) = 〈f(t, x1, ε)− f(t, x1, ε0), x2〉 , um(t) =
(
xεm(t), e2αt (xεm(t)− x0(t))

)T
,

so that F : R× R2n × R→ Rn. Since f(t, x, ε) is integrally continuous at ε = ε0, then

lim
ε→ε0

t∫
τ

F
(
s, (x1, x2)T , ε

)
ds = 0, for all (x1, x2)T ∈ R2n, t ∈ [τ, T ].

Furthermore, the function F satisfies the same type of Lipschitz condition (2.18) as f does.

The Krasnoselskii-Krein theorem (Theorem 2.1.2), therefore, implies

lim
m→∞

t∫
τ

F (s, um(s), εm)ds = 0, for all t ∈ [τ, T ]. (2.21)

The conclusions (2.20) and (2.21) contradict (2.19) because of (2.16). The proof follows by

Lemma 2.4.1.
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2.4.3 A particular case: high-frequency vibrations

In this section we consider a sweeping process

− ẋ(t) ∈ NC(t)(x(t)) + g

(
t

ε
, x(t)

)
, (2.22)

where both t 7→ C(t) and t 7→ g(t, x) are almost periodic and we use Theorem 2.4.2 in order

to estimate the location of solutions of (2.22) for large values of time and for small values of

ε.

Since g is almost periodic in the first variable, the following property holds uniformly in

a ∈ R (see Bohr [12, p. 44])

g0(x) = lim
T→∞

1

T

T∫
0

g(τ, x)dτ = lim
T→∞

1

T

T+a∫
a

g(τ, x)dτ, (2.23)

where both limits exist. Therefore,

lim
ε→0

t∫
τ

g
(s
ε
, x
)
ds = lim

T→∞
(t− τ)

1

T

T+τT/(t−τ)∫
τT/(t−τ)

g(s, x)ds =

t∫
τ

g0(x)ds.

By the other words, the function

f(t, x, ε) =


g

(
t

ε
, x

)
, if ε 6= 0,

g0(x), if ε = 0,

is integrally continuous at ε = 0 in the sense of (2.3).

We arrive to following corollary of Theorems 2.3.1, Remark 2.3.1 and 2.4.2.

Corollary 2.4.1. Assume that, for each t ∈ R, the set C(t) ⊂ Rn is nonempty, closed,

convex, and bounded. Let t 7→ C(t) be an almost periodic function that satisfies the global

Lipschitz condition (2.2). Assume that, for each x ∈ Rn, the function t 7→ g(t, x) is almost

periodic and satisfies the global Lipschitz condition

‖g(t1, x1)− g(t2, x2)‖ ≤ Lg|t1 − t2|+ Lg‖x1 − x2‖, for all t1, t2 ∈ R, x1, x2 ∈ Rn.
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Finally, assume that for some α > 0 the function g0 given by (2.23) satisfies the monotonicity

condition

〈g0(x1)− g0(x2), x1 − x2〉 ≥ α‖x1 − x2‖2, for all x1, x2 ∈ Rn.

If xε is any solution of (2.22) defined on [0,∞), then uniformly on any time-interval [t1, t2]

with sufficiently large t1, the family {xε(t)}ε∈R converges, as ε → 0, to the unique globally

exponentially stable almost periodic solution x0(t) of the averaged sweeping process

−ẋ(t) ∈ NC(t)(x(t)) + g0(x(t)).

2.4.4 Instructive examples

The examples of this section illustrate how the results of this chapter are supposed to be

used in applications.

Example 2.4.1. Consider a one-dimensional sweeping process

− ẋ(t) ∈ N[sin(t),sin(t)+1](x(t)) + εx2(t) +
(

sin
(√

2 · t
)

+ 2
)
x(t). (2.24)

The sweeping process (2.24) satisfies the monotonicity property (1.5) when ε = 0. Theorems

2.3.1 and 2.4.1 imply that for any γ > 0 there exists t1 > 0 such that any solution xε of

(2.24) with xε(0) ∈ [0, 1] satisfies ‖xε(t)− x0(t)‖ ≤ γ for all t ≥ t1 and for all |ε| sufficiently

small, where x0 is the unique globally exponentially stable almost periodic solution to

−ẋ(t) ∈ N[sin(t),sin(t)+1](x(t)) +
(

sin
(√

2 · t
)

+ 2
)
x(t).

Example 2.4.2. Let us now show that the monotonicity of a sweeping process gets broken

by a high-frequency ingredient as follows

− ẋ(t) ∈ N[sin(t),sin(t)+1](x(t)) + sin

(
t

ε

)
x2(t) +

(
sin
(√

2 · t
)

+ 2
)
x(t). (2.25)
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The non-monotonic term sin

(
t

ε

)
no longer approaches 0 as it took place in Example 2.4.1

and Theorem 2.4.1 is inapplicable. However, sin

(
t

ε

)
approaches 0 as ε→ 0 integrally (i.e.,

in the sense of (2.3)) on any bounded time interval [t1, t2]. Therefore, Corollary 2.4.1 ensures

that given any γ > 0 there exists t1 > 0 such that for any t2 > t1 and for any solution xε of

(2.25) with xε(0) ∈ [0, 1] one has ‖xε(t) − x0(t)‖ ≤ γ on [t1, t2] for all |ε| sufficiently small,

where x0 is the unique globally exponentially stable almost periodic solution to the averaged

sweeping process

−ẋ(t) ∈ N[sin(t),sin(t)+1](x(t)) +
(

sin
(√

2 · t
)

+ 2
)
x(t).

To summarize, Examples 2.4.1 and 2.4.2 establish useful qualitative properties of non-

monotone sweeping processes without any need of actual computing of solutions. Numerical

computation of solutions of (2.24) and (2.25) (e.g., using the catch-up algorithm of Edmond-

Thibault [26]) is thus outside the scope of this chapter.

2.5 Appendix

The following version of Gronwall-Bellman lemma and its proof are taken from Trubnikov-

Perov [60, Lemma 1.1.1.5].

Lemma 2.5.1. (Gronwall-Bellman) Let an absolutely continuous function a : [0, T ]→ R

satisfy

ȧ(t) ≤ λa(t) + b(t), for a.a. t ∈ [0, T ], (2.26)

where b : [0, T ]→ R is an integrable function. Then

a(t) ≤ eλta(0) +

t∫
0

eλ(t−s)b(s)ds, for all t ∈ [0, T ].
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Proof. By introducing

ψ(t) = eλta(0) +

t∫
0

eλ(t−s)b(s)ds,

one has

ψ(t)e−λt −
t∫

0

e−λsb(s)ds = a(0)

and so

d

dt

ψ(t)e−λt −
t∫

0

e−λsb(s)ds

 = 0, for a.a. t ∈ [0, T ],

which implies

ψ̇(t)− λψ(t) = b(t) ≥ ȧ(t)− λa(t).

If now

u(t) = a(t)− ψ(t),

then u̇(t) ≤ λu(t) and so
d

dt

[
u(t)e−λt

]
= e−λt(u̇− λu) ≤ 0, i.e., u(t)e−λt ≤ u(0). Therefore,

u(t) ≤ 0 and

a(t) ≤ ψ(t) = eλta(0) +

t∫
0

eλ(t−s)b(s)ds.
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CHAPTER 3

GLOBAL STABILITY OF NON-CONVEX

MONOTONE SWEEPING PROCESSES

3.1 Introduction

Let C : R→ Rn be a set valued map which take nonempty closed values and f : R×Rn → Rn.

Now we assume our set C is nonconvex and the normal cone in sweeping process (1.1), NC(x)

is given (Edmond-Thibault [26], [27], Thibault [59], Maury-Venel [48]) as

NC(x) = {ξ ∈ Rn : x ∈ proj(x+ αξ, C) for some α > 0}.

r

𝜂

𝑟 > 𝜂

Figure 3.1. A η-prox-regular set

For the space Rn, the set C(t) is η-prox-regular, if C(t) admits an external tangent ball

with radius smaller than η at each x ∈ ∂C(t) (see Maury-Venel [48, p. 150], Colombo and

Monteiro Marques [21, p. 48]). A characterization of the normal cone for η-prox-regular sets

is hypomonotonicity property (Edmond-Thibault [26], [27], Thibault [59]), which is given as

〈ξ − ξ′, x− x′〉 ≥ −‖x− x′‖2 for ξ ∈ N(C, x), ξ′ ∈ N(C, x′) such that ‖ξ‖, ‖ξ′‖ ≤ η. (3.1)
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In this chapter we discuss stability of sweeping processes (1.1) with η-prox-regular set-valued

function C which is Lipschitz continuous i.e.,

dH(C(t1), C(t2)) ≤ LC |t1 − t2|, for all t1, t2 ∈ R, and for some LC > 0, (3.2)

where dH(C1, C2) be the Hausdorff distance between two closed sets C1, C2 ⊂ Rn given by

(1.3).

Also we assumed the Lipschitz continuity of f : R× Rn → Rn with Lf > 0

‖f(t1, x1)− f(t2, x2)‖ ≤ Lf‖t1 − t2‖+ Lf‖x1 − x2‖, for all t1, t2 ∈ R, x1, x2 ∈ Rn (3.3)

and strong monotonicity of f (1.5).

Also in this chapter we studied the periodicity of solutions when input functions are periodic

in (1.1) with prox-regular set-valued function C and exponential stability of this unique

periodic solution.

3.2 Existence of a unique global solution and it’s stability

Theorem 3.2.1. Let C : R→ Rd be a Lipschitz continuous function with constant LC and

C(t) is nonempty, closed and η-prox-regular for each t ∈ R. Let f : R × Rn → Rn satisfy

Lipschitz condition (3.3). Then the sweeping process (1.1) has at least one global solution

defined on the entire R.

Since the proof follows the same steps as in the proof of Theorem 2.2.1 we are not giving

the proof in this chapter.

Theorem 3.2.2. Let the conditions of Theorem 3.2.1 hold and LC ≥ 0 is as given by this

theorem. Let ‖f(t, x)‖ ≤ Mf , for all t ∈ R, x ∈
⋃
t∈R

C(t) where Mf ≥ 0 is a fixed constant.

Assume (1.5) holds with

α >
LC +Mf

η
. (3.4)
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Then the sweeping process (1.1) has a unique solution x0, defined on R. Furthermore the

global solution x0 is exponentially stable.

Proof. We note that by Edmond-Thibault [26, Proposition 1] for a solution x of (1.1) with

initial condition x(τ) = x0,

‖ẋ(t) + f(t, x(t)‖ ≤ ‖f(t, x(t)‖+ LC , for t > τ.

Then with the uniform bound Mf of f we have

‖ẋ(t) + f(t, x(t)‖ ≤Mf + LC , for all t > τ. (3.5)

Let x1, x2 be two solutions of (1.1) with initial conditions x1(τ), x2(τ) ∈ C(τ). Let t ≥ τ

such that ẋ1(t), ẋ2(t) exist.

Since −ẋ1(t) − f(t, x1(t)) ∈ NC(t)(x1(t)) and −ẋ2(t) − f(t, x2(t)) ∈ NC(t)(x2(t)), by hy-

pomonotonicity of the normal cone (3.1) and (3.5) we have

〈 −η
Mf + LC

(ẋ1(t) + f(t, x1(t)))− −η
Mf + LC

(ẋ2(t) + f(t, x2(t))),x1(t)− x2(t)〉

≥ −‖x1(t)− x2(t)‖2.

Then

‖x1(t)− x2(t)‖2− η

Mf + LC
〈f(t, x1(t))− f(t, x2(t)), x1(t)− x2(t)〉

≥ η

Mf + LC
〈ẋ1(t)− ẋ2(t), x1(t)− x2(t)〉,

and by (1.5)

η

Mf + LC
〈ẋ1(t)− ẋ2(t), x1(t)− x2(t)〉 ≤ ‖x1(t)− x2(t)‖2− ηα

Mf + LC
‖x1(t)− x2(t)‖2.

Thus we have

〈ẋ1(t)− ẋ2(t), x1(t)− x2(t)〉 ≤
(
Mf + LC

η
− α

)
‖x1(t)− x2(t)‖2,
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i.e.,
d

dt
‖x1(t)− x2(t)‖2≤

(
2(Mf + LC)

η
− 2α

)
‖x1(t)− x2(t)‖2.

Let ᾱ =
1

η
(Mf + LC − ηα). Then by Gronwall Bellman lemma (see Lemma 2.5.1) for t > τ

‖x1(t)− x2(t)‖2≤ e2ᾱ(t−τ)‖x1(τ)− x2(τ)‖2.

Thus

‖x1(t)− x2(t)‖≤ eᾱ(t−τ)‖x1(τ)− x2(τ)‖, fort > τ. (3.6)

Let x(t) be a global solution of (1.1) which exists by Theorem 3.2.1. Then (3.4) guarantees

that ᾱ < 0 and that x(t) is exponentially stable. It remains to observe that x(t) is the only

global solution. Indeed, let x̄(t) be another global solution. Then, for each t ∈ R we can

pass to the limit as τ →∞ in (3.6), obtaining ‖x(t)− x̄(t)‖ ≤ 0, so x = x̄.

Now we give a theorem about periodicity of the unique global solution established in Theorem

3.2.2. The proof follows the lines of Castaing and Monteiro Marques [19, Theorem 5.3], but

we include such a proof for completeness.

Theorem 3.2.3. The unique global solution x0 which comes from Theorem 2 is T-periodic,

if both maps t 7→ C(t) and t 7→ f(t, x) are T-periodic.

Proof. Note that a 7→ xa(T ) is a contraction mapping from C(0) to C(T ) = C(0), where xa

is the solution of (1.1) on [0, T ] with initial condition xa(0) = a ∈ C(0). Indeed, by (3.6),

for a, b ∈ C(0),

‖xa(T )− xb(T )‖≤ eᾱT‖a− b‖

where ᾱ < 0.

Then, since a 7→ xa(T ) is continuous on C(0) (see Edmond-Thibault [26, Proposition 2]), by

the contraction mapping principle on C(0) (see Rudin [57, p.220]), there exists x̄ : [0, T ]→

C(0) such that x̄(0) = x̄(T ) and satisfies (1.1) on [0, T ]. Since both t 7→ C(t) and t 7→ f(t, x)

are T -periodic, we can not extend x̄ to a T -periodic solution defined on R by T -periodicity.

Since the global solution x0 given by Theorem 3.2.2 is unique, we have the result.
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3.3 Example

Let the vector field f : R× R2 → R2 be given by

f(t, x) := αx, t ∈ R, x ∈ R2, (3.7)

where α > 0 is a fixed constant. We define the moving set C(t) using a function b ∈ C1(R,R)

which is bounded below by β ≥ 1 and admits a global Lipschitz constant Lb, i.e.,

|b(t1)− b(t2)| ≤ Lb|t1 − t2|, for all t1, t2 ∈ R. (3.8)

Define

C(t) := B̄1

⋂
Sb(t), S(t) =

{
x ∈ R2 : x2

1 +
x2

2

b(t)2
≥ 1

}
. (3.9)

where B̄1 is the closed ball of radius 1 and centered at (−1.5, 0).

 

 

1.5 1.0 2.5 1.0 2.0 0 

x2 

x1 

b(t) 

= C (t) 

(p(t),q(t)) 
b(s) 

(p(s),q(s)) 

1.5 1.0 1.0 2.0 0 

x2 

x1 

(p0,q0) 

1.0 

2.5 

Figure 3.2. Illustrations of the notations of the example. The closed ball centered at (−1.5, 0)
is B̄1 and the white ellipses are the graphs of S(t) for different values of the argument. The
arrows is the vector field of ẋ = −αx.

In order to apply Theorem 3.2.2, we will now analyze: i) strong monotonicity and uniform

boundedness of f(t, x), ii) Lipschitz continuity of C(t), iii) prox-regularity of C(t).
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i) The monotonicity and boundedness of f(t, x). Since 〈f(t, x) − f(t, y), x − y〉 = 〈αx −

αy, x− y〉 = α‖x− y‖2, f is strongly monotone with constant α and bounded on B̄1 ⊃ C(t)

by Mf = 2.5α.

ii) Lipschitz continuity of C(t). The boundary ∂B̄1 of B̄1 intersects the boundary ∂S(t) of

S(t) at a unique points (p(t), q(t)) with β(t) ≥ 0. Since

dH(C(t), C(s)) ≤ ‖(p(t), q(t))− (p(s), q(s))‖

(see Fig. 3.2), we now aim at computing the Lipschitz constants of functions p and q. Since

b ∈ C1(R, [1,∞)), the implicit function theorem (see e.g., Zorich [65, Sec. 8.5.4 Theorem 1])

ensures that p and q are differentiable on R. Therefore, by the mean-value theorem (see e.g.,

Rudin [57, Theorem 5.10]),

dH(C(t), C(s)) ≤ ‖(p′(tp), q′(tq))‖ · |t− s|, (3.10)

where tp, tq are located between t and s. To compute (p′(tp), q
′(tq)), we use the formula for

the derivative of the implicit function (Zorich [65, Sec. 8.5.4 Theorem 1])

(p′(t), q′(t))T = −
(
F ′(p,q)

)−1
(p(t), q(t), t)F ′t(p(t), q(t), t),

applied with

F (p, q, t) =

 (p+ 1.5)2 + q2 − 1

p2 +
q2

b(t)2
− 1

 .

Since

F ′(p,q)(p, q, t) = 2

 p+ 1.5 q

p
q

b(t)2

 , F ′t(p, q, t) =

 0

−2b(t)−3b′(t)q2

 ,

we get the following formula for the derivatives p′ and q′ p′(t)

q′(t)

 = − 1
1

b(t)2
(p(t) + 1.5)q(t)− p(t)q(t)

 q(t)

−(p(t) + 1.5)

 1

b(t)3
q(t)2b′(t).
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Noticing that the properties 1 + p(t) > 0 and −p(t)b(t)2 > 0 imply

1

b(t) · (p(t) + 1.5− p(t)b(t)2)
≤ 1

β · (−p(t)b(t)2)
≤ 1

β3|p0|
,

we conclude

|p′(t)| ≤ Lb
β3|p0|

, |q′(t)| ≤ Lb
β3|p0|

,

where p0 is such that p(t) ≤ p0 for all t ∈ R. Since b(t) ≥ 1, we can take p0 as the abscissa

of the intersection of ∂B̄1 with a unit circle centered at 0, i.e.,

p0 = −0.75,

see Fig. 3.2. Substituting these achievements to (3.10), we conclude

dH(C(t), C(s)) ≤ 4Lb
3β3
|t− s|,

which gives LC =
4Lb
3β3

for the Lipschitz constant of t 7→ C(t).

iii) The constant η in η-prox-regularity of C(t). We recall that C(t) is η-prox-regular if C(t)

admits an external tangent ball with radius smaller than η at each x ∈ ∂C(t) (see Maury

and Venel [48], Colombo and Monteiro Marques [21]). The points of ∂C(t)\∂S(t) admit an

external tangent ball of any radius. Therefore, to find η, which determines η-prox-regularity

of C(t), it is sufficient to focus on the points of ∂C(t)∩∂S(t). That is why, for a fixed t ∈ R,

we can choose η as the minimum of the radius of curvature through x ∈ ∂C(t) ∩ ∂Sb(t), see

e.g., Lockwood [44, p. 193].

Let us fix t ∈ R and use the parameterization P (φ) = (− cosφ, b(t) sinφ), φ ∈
[
−π

2
, π

2

]
,

for the left-hand side of the ellipse x2 + y2

b(t)2
= 1. Then, the radius of curvature R(φ) of

∂C(t) ∩ ∂S(t) at P (φ) is (see Lockwood [44, p. xi, p. 21])

R(φ) =
1

b(t)
(sin2 φ+ b(t)2 cos2 φ)

3
2 =

1

b(t)

(
b(t)2 + (1− b(t)2) sin2(φ)

) 3
2 .
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Observe that R decreases when |φ| increases from 0 to
π

2
. Indeed,

R′(φ) =
1

b(t)

3

2

(
b(t)2 + (1− b(t)2) sin2(φ)

) 1
2 (1− b(t)2 sin(2φ)

and R′(φ) = 0 only at φ = 0 on
(
−π

2
,
π

2

)
. Then since

R′′(0) =
1

b(t)

3

2
(2b(t))(1− b(t)2) < 0,

the function φ 7→ R(φ) attains the maximum on
[
−π

2
,
π

2

]
at φ = 0.
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Figure 3.3. The parameters φ0 and φ∗.

Therefore, the minimum curvature of ∂C(t) ∩ ∂S(t) is attained at the point (p(t), q(t)) as

defined in ii). Let φ0 be such that P (φ0) = (p(t), q(t)) and let φ∗ > 0 be such that the

second component P2(φ∗) of P (φ∗) equals 1, which exists because b(t) ≥ 1 (see Fig. 3.3).

Since q(t) ≤ 1, we have φ0 ≤ φ∗, and since φ 7→ R(φ) decreases as |φ| increases, we have

R(φ0) ≥ R(φ∗).

Since P2(φ∗) = 1 implies b(t) sinφ∗ = 1, we have sinφ∗ =
1

b(t)
and so

R(φ0) ≥ 1

b(t)

(
1

b(t)2
+ b(t)2

(
1− 1

b(t)2

)) 3
2

=
1

b(t)
· (1 + b(t)4 − b(t)2)

3
2

b(t)3
=

=
(
b(t)−

8
3 + b(t)

4
3 − b(t)−

2
3

) 3
2 ≥

(
b(t)

4
3 − b(t)−

2
3

) 3
2
.
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Noticing that the function b 7→
(
b

4
3 − b− 2

3

) 3
2

increases on [1,∞), we finally conclude

R(φ0) ≥
(
β

4
3 − β−

2
3

) 3
2
.

Therefore, C(t) is η-prox-regular with η =
(
β

4
3 − β− 2

3

) 3
2
.

Substituting the values of Mf , LC , and η into formula (3.4), we get the following statement.

Proposition 3.3.1. Let α > 0 be an arbitrary constant and b ∈ C1(R, [β,∞)) with some

β ≥ 1 and Lipschitz condition (3.8). If

α >

4Lb
3β3

+
5

2
α(

β
4
3 − β− 2

3

) 3
2

,

then, the global solution

x(t) = (−1, 0), t ∈ R,

of the sweeping process (1.1) with C(t) and f(t, x) given by (3.9) and (3.7), is globally

asymptotically stable.

As noticed earlier, b 7→
(
b

4
3 − b− 2

3

) 3
2

increases on [1,∞), so that the condition of Proposi-

tion 3.3.1 is a lower bound on β.

3.4 Appendix

Here we explain the inapplicability of Theorem 3.2.2 in the crowd motion model given by

Maury-Venel in [48].

According to the brief introduction about this model which we gave in our Chapter 1,

sweeping process can be written as
−ẋ ∈ N(C, x)− U(x)

x(0) = x0 ∈ C.
(3.11)
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Let’s consider the situation where there are only two people. Then by Maury-Venel [48,

Proposition 2.15], the set C in (1.4) is η-prox regular with η = r
√

2. Let’s take U(x) = −x.

Viewing (3.11) as (1.1), we get α = 1 in (1.5).

Then the condition (3.4) of Theorem 3.2.2 takes the form
√

2r > LC + Mf , where LC = 0

(because C in (3.11) doesn’t depend on t) and Mf satisfies ‖f(t, x)‖ = ‖x‖ ≤ Mf for each

x ∈ C. Therefore (3.4) implies Mf <
√

2r.

On the other hand, since ‖(0,−r)− (0, r)‖ = 2r, we have (0,−r, 0, r) ∈ C and so Mf must

verify Mf ≥ ‖(0,−r, 0, r)‖ =
√

2r.

Therefore Theorem 3.2.2 does not apply.
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4.1 Introduction

In this chapter we consider E = R2 and the perturbed sweeping process (1.1) in the form of ẋ

ẏ

 ∈ −NC(ε)(x, y) +

 f(x, y)

g(x, y)

 , (4.1)

where

C(ε) =
{

(x, y) ∈ R2 : H(x, y, ε) ≤ 0
}
, H ∈ C0,

is a nonempty closed time-independent µ-prox-regular set with fixed µ > 0, for all ε ≥ 0.

Here we establish a theorem on bifurcation of a finite-time stable limit cycle as ∂C(ε) collides

with a focus equilibrium of the vector field ẋ

ẏ

 =

 f(x, y)

g(x, y)

 . (4.2)

The only fact about C(ε) that we will effectively use smoothness of H in the neighborhood

of is that 0 ∈ ∂C(0), see Fig. 4.1.

 

 

C 
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y 
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y 
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C 

Figure 4.1. Examples of sets that can be used in sweeping process (4.1).

We will assume that f and g are C1 globally Lipschitz functions, so that for any initial

condition (x0, y0) ∈ C(ε), the sweeping process (4.1) admits a unique forward solution

(x(t), y(t)) ∈ C(ε) with (x(0), y(0)) = (x0, y0).
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4.2 Existence of finite-time stable limit cycles

We will be using the following proposition in the proof of the existence of finite-time stable

limit cycles.

Proposition 4.2.1. Consider f, g ∈ C2 and assume that H is twice continuously differen-

tiable in the neighborhood of the origin. Let the origin be an equilibrium of the subsystem

(4.2) and H(0) = 0. Let the coordinates be rotated so that H ′x(0) = 0 and H ′y(0) 6= 0.

Assume that

f ′x(0) 6= 0, g′x(0) 6= 0. (4.3)

Then, there exist r > 0 and ε0 > 0 such that for any 0 ≤ ε ≤ ε0 there exists a unique point

(A(ε), B(ε)) ∈ [−r, r]× [−r, r] which satisfies the property

H(x,y)(A(ε), B(ε), ε)

 f(A(ε), B(ε))

g(A(ε), B(ε))

 = 0, ε > 0. (4.4)

1) The point (A(ε), B(ε)) satisfies

(A′(0), B′(0)) =
H ′ε(0)

H ′y(0)

(
g′y(0)

g′x(0)
,−1

)
. (4.5)

2) The point (A(ε), B(ε)) splits

L =
{

(x, y) ∈ R2 : x, y ∈ [−r, r], H(x, y, ε) = 0
}

into two parts

Lsliding =
{

(x, y) ∈ R2 : x, y ∈ [−r, r], H(x, y, ε) = 0
}
∩

∩

(x, y) : H(x,y)(x, y, ε)

 f(x, y)

g(x, y)

 > 0


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and

Lcrossing =
{

(x, y) ∈ R2 : x, y ∈ [−r, r], H(x, y, ε) = 0
}
∩

∩

(x, y) : H(x,y)(x, y, ε)

 f(x, y)

g(x, y)

 < 0

 .

3) a) Any solution (x(t), y(t)) of sweeping process (4.1) with the initial condition

(x(0), y(0)) ∈ Lsliding can escape from Lsliding through the endpoints of Lsliding only

(i.e., through the two points of Lsliding\Lsliding).

b) While in Lsliding, the solution (x(t), y(t)) is governed by the following equation of

sliding motion  ẋ(t)

ẏ(t)

 = α(x(t), y(t), ε)

 −H ′y(x(t), y(t), ε)

H ′x(x(t), y(t), ε)

 , (4.6)

where

α(x, y, ε) =

(
−H ′y(x, y, ε), H ′x(x, y, ε)

) f(x, y)

g(x, y)


‖H(x,y)(x, y, ε)‖2

.

c) The equation

f(a, b) + λH ′x(a, b, ε) = 0,

g(a, b) + λH ′y(a, b, ε) = 0
(4.7)

for the equilibrium of (4.6) possesses a unique solution (a(ε), b(ε), λ(ε)) on L with

(a′(0), b′(0), λ′(0)) given by

H ′ε(0)

H ′y(0)

f ′y(0)

f ′x(0)
,−1,

1

H ′y(0)f ′x(0)
det

∣∣∣∣∣∣∣
f ′x(0) f ′y(0)

g′x(0) g′y(0)

∣∣∣∣∣∣∣
 . (4.8)

4) If

f(x,y)(0)

 A′(0)

B′(0)

 (A′(0)− a′(0))λ′(0) < 0, (4.9)
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then the vector

 f(A(ε), B(ε))

g(A(ε), B(ε))

 (tangent to L by definition) points outwards

Lsliding.

5) If condition (4.9) holds, then any solution (x(t), y(t)) of (4.1) with the initial condition

(x(0), y(0)) from the ((a(ε), b(ε)), (A(ε), B(ε)))-segment of Lsliding, escapes from Lsliding

in finite time through the point (A(ε), B(ε)).

6) The solution (x(t), y(t)) of (4.1) with the initial condition (x(0), y(0)) = (A(ε), B(ε))

leaves L towards

L− =
{

(x, y) ∈ R2 : H(x, y, ε) < 0
}

immediately under condition (4.9), in the sense that there exists ∆t such that t 7→

(x(t), y(t)) verifies (4.1) and (x(t), y(t)) ∈ L−, for all t ∈ (0,∆t].

Proof. The existence, uniqueness, and continuous differentiability of (A(ε), B(ε)) satisfying

(4.4) follow by applying the Implicit Function Theorem (see e.g., Zorich [65, Sec. 8.5.4

Theorem ]) to the function

F (A,B, ε) =


H(x,y)(A,B, ε)

 f(A,B)

g(A,B)


H(A,B, ε)

 ,

where we use that F (0) = 0 and det
(
F(A,B)(0)

)
6= 0 by the second of the assumptions of

(4.3).

1) Formula (4.5) follows by computing the derivative of F (A(ε), B(ε), ε) = 0 at ε = 0.

2) Follows from the uniqueness of (A(ε), B(ε)).
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3) a) Fix ε > 0. Let tescape ≥ 0 be the time when (x(t), y(t)) escapes from Lsliding,

specifically

tescape = max{t0 ≥ 0 : x(t) ∈ [−r, r], y(t) ∈ [−r, r],

H(x(t), y(t), ε) = 0, t ∈ [0, t0]}.

Assuming that neither |x(tescape)| = r, nor |y(tescape)| = r, we now show that

H(x,y)(x(tescape), y(tescape), ε)

 f(x(tescape), y(tescape))

g(x(tescape), y(tescape))

 ≤ 0, (4.10)

which coincides with the Statement 3a.

By the definition of tescape, for any δ > 0 there exist tδ ∈ [tescape, tescape + δ] such that

H(x(t), y(t), ε) < 0 for each t ∈ (tescape, tδ]. Since, the solution (x(t), y(t)) satisfies

(4.2) on (tescape, tδ], by Mean-Value Theorem

H(x(tδ), y(tδ)), ε) −H(x(tescape), y(tescape)), ε) =

H(x,y)(x(t∗δ), y(t∗δ), ε)

 f(x(t∗δ), y(t∗δ))

g(x(t∗δ), y(t∗δ))

 (tδ − tescape),

for some t∗δ ∈ (tescape, tδ).

This yields (4.10) as δ → 0 since H(x(tδ), y(tδ)), ε) < 0 for each δ > 0 and

H(x(tescape), y(tescape)), ε) = 0.

b) Consider some t0 > 0 such that (x(t), y(t)) ∈ Lsliding for all t ∈ [0, t0]. From the

definition of Lsliding we conclude that

H(x,y)(x(t), y(t), ε)

 ẋ(t)

ẏ(t)

 = 0, for a.e. t ∈ [0, t0],

where we use that the derivatives of solutions of (4.1) are defined for a.e. t only.
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Equation (4.6) now comes by projecting (4.1) on the vector

 −H ′y(x(t), y(t), ε)

H ′x(x(t), y(t), ε)

,

i.e.,

(
−H ′y(x(t), y(t), ε), H ′x(x(t), y(t), ε)

) f(t, x(t), y(t))

g(t, x(t), y(t))


=
(
−H ′y(x(t), y(t), ε), H ′x(x(t), y(t), ε)

) ẋ(t)

ẏ(t)

 ,

for a.e. t ∈ [0, t0]. Extension of (4.6) from a.e. t ∈ [0, t0] to all t ∈ [0, t0] follows from

the smoothness of (4.6).

c) To prove the existence and uniqueness of (a(ε), b(ε)), we apply the Implicit Function

Theorem to the function

G(a, b, λ, ε) =


f(a, b) + λH ′x(a, b, ε)

g(a, b) + λH ′y(a, b, ε)

H(a, b, ε)

 .

The determinant

det
(
G(a,b,λ)(0)

)
= det


f ′x(0) f ′y(0) 0

g′x(0) g′y(0) H ′y(0)

0 H ′y(0) 0

 = −H ′y(0)2f ′x(0)

doesn’t vanish by the first assumption of (4.3) and the formula

(a′(0), b′(0), λ′(0))T = −G(a,b,λ)(0)−1G′ε(0) (4.11)

for the derivative of the implicit function yields (4.8).

4) Case I: λ′(0) < 0, which combined with (4.9) gives

f(x,y)(0)

 A′(0)

B′(0)

 (A′(0)− a′(0)) > 0. (4.12)
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Furthermore, λ′(0) < 0 implies that (a(ε), b(ε)) ∈ Lsliding for all ε > 0 sufficiently

small. Sub-case 1: A′(0) < a′(0) (i.e., (A(ε), B(ε)) is the left endpoint of Lsliding). In

this case (4.12) yields f(A(ε), B(ε)) < 0, i.e., the vector

 f(A(ε), B(ε))

g(A(ε), B(ε))

 points to

the left.

Sub-case 2: By analogy, when A′(0) > a′(0), the assumption (4.12) implies

f(A(ε), B(ε)) > 0.

Case II: λ′(0) > 0. Can be considered by analogy taking into account that λ′(0) > 0

implies that (a(ε), b(ε)) ∈ Lcrossing for all ε > 0 sufficiently small.

5) The dynamics of (x(t), y(t)) is described by one-dimensional smooth equation of sliding

motion as long as (x(t), y(t)) ∈ Lsliding. Part 4) implies that the vector field of the

equation of sliding motion on Lsliding points towards the endpoint (A(ε), B(ε)) at all

the points of Lsliding close to (A(ε), B(ε)). Therefore, if we assume, by contradiction,

that the solution (x(t), y(t)) doesn’t reach (A(ε), B(ε)) in finite-time, then the sliding

vector field must possess an equilibrium on the ((a(ε), b(ε)), (A(ε), B(ε)))-segment of

Lsliding, which contradicts the uniqueness of equilibrium (a(ε), b(ε)).

6) Let (x(t), y(t)) be the solution of (4.2) with the initial condition

(x(0), y(0)) = (A(ε), B(ε)). By the definition of (A(ε), B(ε)), there exists ∆t > 0 such

that H(x(t), y(t), ε) < 0 for all t ∈ (0,∆t]. Therefore, (x(t), y(t)) is the solution of

(4.1) on (0,∆t]. Therefore, (x(t), y(t)) is the solution of (4.1) on [0,∆t], because the

definition of the solution (4.1) requires the validity of (4.1) for (x(t), y(t)) in a.e. time

instances t only.

Now for ε > 0, we consider the following change of variables u(t)

v(t)

 =
1

ε

 x

y


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to brings (4.2) to the form u̇

v̇

 =
1

ε

 f(εu, εv)

g(εu, εv)

 , H(εu, εv, ε) < 0. (4.13)

Along with system (4.13) we consider the following reduced system u̇

v̇

 =

 fx(0) fy(0)

gx(0) gy(0)


 u

v

 , if Hy(0)v +Hε(0) < 0, . (4.14)

and we arrive to the following result about the limit cycles of sweeping process (4.1).

Theorem 4.2.1. Consider f, g ∈ C2 and assume that H is twice continuously differentiable

in the neighborhood of the origin. Let the origin be an equilibrium of the subsystem of (4.2)

and H(0) = 0. Assume that the coordinates are rotated so that H ′x(0) = 0 and H ′y(0) 6= 0.

Let the assumption (4.9) of Proposition 4.2.1 hold with (A′(0), B′(0)) and (a′(0), b′(0), λ′(0))

given by (4.5) and (4.8) respectively. Let the assumption (4.3) of Proposition 4.2.1 holds.

Finally, assume (u0(t), v0(t)) the solution of reduced system (4.14) with the initial condition

(u0(0), v0(0)) = (A′(0), B′(0)) meets v = B′(0) at time T0. If

u0(T0) ∈ (min{a′(0), A′(0)},max{a′(0), A′(0)}) in the case when λ′(0) < 0,

u0(T0) 6= A′(0) in the case when λ′(0) > 0,
(4.15)

then for all ε > 0 sufficiently small, the sweeping process (4.1) admits a finite-time stable

stick-slip limit cycle (xε(t), yε(t))→ 0 as ε→ 0.

Proof. Step 1. Let t 7→

 U(t, u, v, ε)

V (t, u, v, ε)

 be the general solution of system (4.13). Introduce

F (T, ε) =
1

ε
H

(
εU

(
T,
A(ε)

ε
,
B(ε)

ε
, ε

)
, εV

(
T,
A(ε)

ε
,
B(ε)

ε
, ε

)
, ε

)
.

Computing F (T, 0) we get

F (T, 0) = H ′y(0)V (T,A′(0), B′(0)) +H ′ε(0)
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where

(U(T,A′(0), B′(0)), V (T,A′(0), B′(0)))

=

(
lim
ε→0

U

(
T,
A(ε)

ε
,
B(ε)

ε
, ε

)
, lim
ε→0

V

(
T,
A(ε)

ε
,
B(ε)

ε
, ε

))
and

V ′t (T,A
′(0), B′(0)) = lim

ε→0
V ′t

(
T,
A(ε)

ε
,
B(ε)

ε
, ε

)
= lim

ε→0

1

ε
g

(
εU

(
T,
A(ε)

ε
,
B(ε)

ε
, ε

)
, εV

(
T,
A(ε)

ε
,
B(ε)

ε
, ε

))

= (g′x(0), g′y(0))

 U(T0, A
′(0), B′(0))

V (T0, A
′(0), B′(0))

 .

Similarly

U ′t(T,A
′(0), B′(0)) = (f ′x(0), f ′y(0))

 U(T0, A
′(0), B′(0))

V (T0, A
′(0), B′(0))

 .

Thus (U(T,A′(0), B′(0)), V (T,A′(0), B′(0))) satisfies (4.14). Therefore, F (T0, 0) = 0 and

since

F ′t(T0, 0) = H ′y(0)V ′t (T0, A
′(0), B′(0)) =

= H ′y(0)(g′x(0), g′y(0))

 U(T0, A
′(0), B′(0))

V (T0, A
′(0), B′(0))


= H ′y(0)(g′x(0), g′y(0))

 U(T0, A
′(0), B′(0))

B′(0)

 ,

we have F ′t(T0, 0) 6= 0 from (4.5) and (4.15).

Therefore the existence of Tε such that F (Tε, ε) = 0 follows by applying the Implicit Function

Theorem, which in turn implies that (xε(t), yε(t)), solution of (4.2) with initial condition

(A(ε), B(ε)), meets H(x, y, ε) at t = Tε. i.e., H(xε(Tε), yε(Tε), ε) = 0.
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Step 2. Condition (4.15) implies that (xε(Tε), yε(Tε)) belongs to the segment of Lsliding.

Therefore by Proposition (4.2.1), (xε(t), yε(t)) reaches (A(ε), B(ε)) along Lsliding in a finite

time.

Note that (xε(Tε), yε(Tε)) ∈ ((a(ε), b(ε)), (A(ε), B(ε))) when λ′(0) < 0 ensures, the solution

(xε(t), yε(t)) reaches to (A(ε), B(ε)).

Step 3. Stability follows from convergence of (A(ε), B(ε)) and (a(ε), b(ε)) to the origin as

ε→ 0.

4.3 Example

We illustrate the theorem considering the following sweeping process ẋ

ẏ

 ∈ −NC(ε)(x, y) +

 ax− by

bx+ ay

+M(x, y), (4.16)

where a, b > 0, M is any C2-functions such that M(0) = M ′(0) = 0 and C(ε) = C−ε

 0

1


with nonempty µ-prox-regular set C satisfying

∂C =
{

(x, y) ∈ R2 : H(x, y) = 0
}
, H ∈ C0,

with such a function H which is continuously differentiable in the neighborhood of the origin,

H(0) = 0 and H(x,y)(0, 0) =

 0

1

.

In order to check the assumptions of Theorem 4.2.1, we calculate (A′(0), B′(0)) and

(a′(0), b′(0), λ′(0)) from (4.5) and (4.8). Then we have

(A′(0), B′(0)) =
(
−a
b
, 1
)

(a′(0), b′(0), λ′(0)) =

(
b

a
, 1,−a

2 + b2

a

)
. (4.17)
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This gives

−a2 − b2

b
· −a

2 − b2

ab
· −a

2 − b2

a

for the left-hand-side of (4.9). Therefore, assumption (4.9) always holds.

To prove the existence of (u0(t), v0(t)), the solution of reduced system (4.14) with the initial

condition (u0(0), v0(0)) = (A′(0), B′(0)) such that (u0(t), v0(t)) meets v = B′(0) in a finite

time T0 and to check the condition (4.15) we have to compute r = P (A′(0)) = P
(
−a
b

)
where

P is the Poincaré map of linear system (4.14) induced by the cross-section v = −Hε(0)
Hy(0)

=

B′(0) = 1. The linear system (4.14) corresponding to (4.16) is u̇

v̇

 =

 au− bv

bu+ av

 . (4.18)

Using that a solution of (4.18) is given by

u(t) = eat cos(bt), v(t) = eat sin(bt), (4.19)

we build the following solution of (4.18)

u0(t) =
ea(t−t0) cos(bt)

sin(bt0)
, v0(t) =

ea(t−t0) sin(bt)

sin(bt0)
, bt0 = arccot

(
−a
b

)
,

which verifies the property (u0(t0), v0(t0)) = (A′(0), B′(0)).

It is impossible to find the intersection of solution (u0(t), v0(t)) with v = 1 explicitly, so

we propose an explicit approach that relies on the observation that an intersection of any

solution of (4.18) with u = 0 is computable explicitly.

Since arccot
(
−a
b

)
∈
(
π
2
, π
)
, the first intersection of this solution with u = 0 occurs at

bt = π
2

+ π, which gives

y∗ = v0

(
1

b
· 3π

2

)
= −exp

(
a

(
1

b
· 3π

2
− t0

))
1

sin(bt0)
.

Now we assume that the intersection of (u0(t), v0(t)) with v = 1 occurs at some point u = r

and use (4.19) to compute y∗ in terms of r.
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Specifically, using (4.19) we build a solution

u0(t) =
ea(t−t0) cos(bt)

sin(bt0)
, v0(t) =

ea(t−t0) sin(bt)

sin(bt0)
, bt0 = arccot(r),

which verifies (u0(t0), v0(t0)) = (r, 1) .

Since arccot(r) ∈ (0, π), the intersection of (u0(t), v0(t)) with u = 0, v < 0, must had

occurred earlier at time bt = π
2
− π, which gives

y∗ = v0

(
1

b
·
(
−π

2

))
= − exp

(
a

(
1

b

(
−π

2

)
− t0

))
1

sin(bt0)

for the respective point of intersection with u = 0. Now equaling y∗ and y∗, observing that

1

sin(arccotα)
=
√
α2 + 1, and taking the natural logarithm of both sides of the equality, one

gets the following implicit formula for r :

a

b
· 3π

2
− a

b
arccot

(
−a
b

)
+

1

2
ln

(
1 +

a2

b2

)
=

=
a

b

(
−π

2

)
− a

b
arccot(r) +

1

2
ln(1 + r2).

(4.20)

0.2 0.4 b

a

r 

 

6 

4 

2 

Figure 4.2. The solution of (4.20).

The graph of the implicit equation (4.20) is given in Fig. 4.2, from which we conclude

that the solution (u0(t), v0(t)) returns back to the cross-section v = 1 at the value r
(
a
b

)
=

(u0(T0), v0(T0)) which increases monotonically with a
b
.
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Our goal now is to establish (4.15). Based on (4.17), λ′(0) < 0.

In this case assumption (4.15) takes the form

r = u0(T0) <
b

a
.

Since r 7→ −a
b
arccot(r) + 1

2
ln(1 + r2) is a monotonically increasing function, we can combine

the later inequality with (4.20) to obtain

a

b
· 3π

2
− a

b
arccot

(
−a
b

)
+

1

2
ln

(
1 +

a2

b2

)
<

<
a

b

(
−π

2

)
− a

b
arccot

(
b

a

)
+

1

2
ln

(
1 +

b

a

)2

.

(4.21)

Now we arrive to the following corollary of Theorem 4.2.1.

Corollary 4.3.1. If a
b

satisfies

a

b

(
4arctan

a

b
− 3π

)
> 2 ln

a

b
(which gives approximately

a

b
< 0.29),

then for all ε > 0 sufficiently small, the sweeping process (4.16) admits a finite-time stable

stick-slip limit cycle (xε(t), yε(t)) that shrinks to the origin as ε→ 0.
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CHAPTER 5

A CONTINUATION PRINCIPLE FOR PERIODIC BV-CONTINUOUS

STATE-DEPENDENT SWEEPING PROCESSES

5.1 Introduction

Here we investigates the initial-value and periodic problems to the following state-dependent

version of (1.1)

− dx ∈ NA+a(t)+c(x)(x) + f(t, x)dt, x ∈ E, (5.1)

where a is a BV-continuous function and c : E 7→ E is a Lipschitz function.

In order to prove existence of periodic solutions, we will be also using a continuation approach

and replace (5.1) by a parameter dependent sweeping process

− dx ∈ NA+a(t,λ)+c(x,λ)(x) + f(t, x, λ)dt, x ∈ E, λ ∈ R. (5.2)

5.2 Definition of solution

In what follows, B([0, T ]) is the family of Borel subsets of [0, T ]. A Borel vector measure

on [0, T ] is a map µ : B([0, T ]) → E such that µ (∪∞n=1Bn) = Σ∞n=1µ(Bn) for any sequence

{Bn}∞n=1 of mutually disjoint elements of B([0, T ]), see Recupero [56, §2.4] or Dinculeanu

[25, Definition 1, §III.14.4, p. 297].

According to Dinculeanu [25, Theorem 1, §III.17.2, p. 358] (in our case it was according to

Recupero [56] who phrased it clearly), any BV-continuous function x : [0, T ]→ E admits a

unique vector measure of bounded variation dx : B([0, T ]) → E (called Stieltjes measure in

Dinculeanu [25]) such that for every 0 < t1 < t2 < T we have

dx((t1, t2)) = x(t−2 )− x(t+1 ), dx([t1, t2]) = x(t+2 )− x(t−1 ),

dx([t1, t2)) = x(t−2 )− x(t−1 ), dx((t1, t2]) = x(t+2 )− x(t+1 ),
(5.3)
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where

x(t−) = lim
τ→t−

x(τ), x(t+) = lim
τ→t+

x(τ), 0 < t < T.

A vector Borel measure dµ is called continuous with respect to a scalar Borel measure dν

(or simply dν-continuous), if limν(D)→0 µ(D) = 0, see Diestel-Uhl [24, p. 11]. If a vector

measure dµ is dν-continuous then, according to Radon-Nikodym Theorem [24, p. 59] there

is a dν-integrable function g : [0, T ] 7→ E such that

dµ(D) =

∫
D

g dν, for all D ∈ B([0, T ]).

In this case, the function g is called Radon-Nikodym derivative of dµ with respect to dν

(or density) and is denoted by
dµ

dν
. Furthermore, according to Moreau-Valadier [53, Propo-

sition 1] (see also Valadier [61, Theorem 3]), the Radon-Nikodym derivative
dµ

dν
can be

computed as

dµ

dν
(t) = lim

ε→0, ε>0

dµ([t, t+ ε])

dν([t, t+ ε])
, dν − a.e. on [0, T ]. (5.4)

We will use the following definition of the solution of (5.1) (Castaing and Monteiro Marques

[19, §1]).

Definition 5.2.1. A BV continuous function x is called a solution of (5.1), if there exists

a finite measure dν for which both differential measure dx and Lebesgue measure dt are

dν-continuous, and such that

−dx
dν

(t) ∈ NA+a(t)+c(x(t))(x(t)) + f(t, x(t))
dt

dν
(t), dν − a.e. on [0, T ].

5.3 Existence of solutions

It is customary (see Kunze and Monteiro Marques [40, Theorem 6]) to assume that the initial

condition q of sweeping process (5.1) satisfies

q ∈ A+ a(0) + c(q). (5.5)
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However, it will be convenient for our analysis to define solutions of (5.1) for any initial

condition q ∈ E, that we will term a generalized initial condition. We take advantage of the

fact, that for contracting map c, the equation

v = proj(q, A+ a(0) + c(v))

always has a solution v = V (q) (see Lemma 5.6.2) and V ∈ C0(E,E).

The main result of this chapter is the following Theorem 5.3.1 on the existence of solutions

to (5.1). As itself, the theorem won’t lose anything by dropping the generalized initial

condition concept. However, considering the generalized initial conditions will be convenient

for applications of Theorem 5.3.1 to the problem of the occurrence of periodic solutions from

a boundary equilibrium, that we consider in this chapter later (Theorem 5.8.3).

Theorem 5.3.1. Assume that A ⊂ E is a nonempty closed convex bounded set, a : [0, T ]→

E is BV-continuous on [0, T ], x 7→ c(x) is globally Lipschitz with Lipschitz constant 0 <

L2 < 1, and (t, x) 7→ f(t, x) is Caratheodory in (t, x) with respect to Lebesgue measure

and globally Lipschitz in x. Then, for any generalized initial condition q ∈ E, the sweeping

process (5.1) admits a solution, defined on [0, T ], with the initial condition x(0) = V (q).

In particular, sweeping process (5.1) admits a solution on [0, T ], for any initial condition

x(0) = q, where q satisfies (5.5).

5.4 Global existence of periodic solutions

In this section we offer a result saying that, under the conditions of Theorem 5.3.1, sweeping

process (5.1) always has a periodic solution, if the right-hand-sides are T -periodic.

Theorem 5.4.1. Assume that conditions of theorem 5.3.1 hold and let L2 ∈ (0, 1) be the

Lipschitz constant of c as introduced in theorem 5.3.1. Denoting by ξ ∈ E the unique

solution of c(ξ) = ξ, consider the set

Ω =
⋃

t∈[0,T ]

Ωt, Ωt =
⋃

b∈A(t)

{
x : ‖x− ξ‖ < ‖b‖

1− L

}
.
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Then sweeping process (5.1) admits a solution t 7→ x(t) such that

x(T ) = x(0) ∈ Ω. (5.6)

In particular, t 7→ x(t) is a T -periodic solution of (5.1), if both t 7→ a(t) and t 7→ f(t, x) are

T -periodic.

Remark 5.4.1. Throughout this chapter we prefer to work with functions defined on [0, T ]

only. When saying t 7→ x(t) is a T -periodic solution of (5.1), we mean that t 7→ x(t) becomes

a T -periodic solution after all functions are extended to R by T -periodicity.

5.5 Continuation of periodic solutions

This section considers a λ-dependent sweeping process (5.2) for measures dx and dt, and dis-

covers how the existence of periodic solutions for λ > 0 can be concluded from an appropriate

knowledge about (5.2) at λ = 0.

We will assume that BV-continuity of a of Theorem 5.3.1 holds uniformly with respect to λ,

i.e.,

var(a(·, λ), [s, t]) ≤ var(ā, [s, t]), λ ∈ [0, 1],

where ā : [0, T ]→ R is a BV continuous function.
(5.7)

The map V λ for (5.2) now depends on the parameter λ and is defined as the unique solution

(according to Lemma 5.6.2) of the equation

v = proj(q, A+ a(0, λ) + c(v, λ)).

We will call sweeping process (5.2) T -periodic, if

a(t+ T, λ) ≡ a(t, λ), f(t+ T, x, λ) ≡ f(t, x, λ).

In what follows, d(I − P̄ , Q) is the topological degree of the vector field I − P̄ on an open

bounded set Q ⊂ E, see e.g., Krasnoselskii-Zabreiko [36].
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Theorem 5.5.1. Assume that T -periodic sweeping process (5.2) possesses the following

regularity:

I) The setA ⊂ E is nonempty, convex, closed, and bounded. The function a satisfies (5.7).

The function x 7→ c(x, λ) is globally Lipschitz with Lipschitz constant 0 < L2 < 1.

The function (t, x) 7→ f(t, x, λ) is Caratheodory in (t, x) with respect to Lebesgue

measure and globally Lipschitz in x, and both the Lipschitz constants are independent

of λ ∈ [0, 1]. Furthermore, a, c, and f are continuous in λ ∈ [0, 1] uniformly with

respect to t ∈ [0, T ] and x ∈ E.

Assume, that the existence of a T -periodic solution for λ = 0 is given in the following

extended way:

II) There exists an open bounded Q ⊂ E such that, when λ = 0, the solution of (5.2)

is unique for any initial condition x(0) ∈ V 0(Q), none of the elements of V 0(∂Q) are

initial conditions of T -periodic solutions of (5.2) with λ = 0, and for the Poincare map

P 0 of (5.2) with λ = 0 one has

d(I − P 0 ◦ V 0, Q) 6= 0.

Finally, assume the following homotopy through λ ∈ [0, λ1]:

III) There exists λ1 ∈ (0, 1] such that sweeping process (5.2) doesn’t have periodic solutions

x with initial condition x(0) ∈ V λ(∂Q), λ ∈ [0, λ1].

Then, for any λ ∈ [0, λ1], sweeping process (5.2) admits a T -periodic solution x with the

initial condition x(0) ∈ V λ(Q).

Note, for λ > 0, we don’t know whether or not the solutions of the sweeping process (5.2)

are uniquely defined by the initial condition or depend continuously on λ. That is why

the statement of the theorem is not a direct consequence of II) as it usually happens in

57



topological degree based existence results. In particular, we cannot establish any type of

continuity of solutions as λ→ 0. That is why the next theorem is not a direct consequence

of Theorem 5.5.1.

Theorem 5.5.2. Assume that sweeping process (5.2) is T -periodic. Assume that conditions

I) and II) of Theorem 5.5.1 hold. Then, there exists λ1 > 0 such that condition III) of

Theorem 5.5.1 holds, and, therefore, for any λ ∈ [0, λ1], sweeping process (5.2) admits a

T -periodic solution x with the initial condition x(0) ∈ V λ(Q).

5.6 The catching-up algorithm and proofs of the abstract existence results

This section contains proofs of Theorems 5.3.1-5.5.2. The proof of the existence of solu-

tions is based on the implicit catching-up scheme (5.15)-(5.18) which newly introduce in

(section 5.6.3), which in turn relies on the following two ideas: (i) Castaing and Monteiro

Marques change of the variables [19, Theorem 4.1] that converts (section 5.6.1) the perturbed

sweeping process (5.2) with differential measure dx into a non-perturbed sweeping process

(5.9) for the derivative du
|du| with respect to the variation measure |du| of du; (ii) Kunze and

Monteiro Marques lemma ([39, Lemma 7]) to resolve (Lemma 5.6.2) the implicit catching-up

scheme (5.15)-(5.18) with respect to the implicit variable. Furthermore, our Lemma 5.6.2

extends Kunze and Monteiro Marques [39, Lemma 7] by proving continuous dependence

of scheme (5.15)-(5.18) on initial condition, that gave us continuity of Poincare maps P λ,n

(section 5.6.4). The convergence of the scheme (5.15)-(5.18) is established in section 5.6.5

where we prove (Lemma 5.6.4) convergence of the approximations {un}n∈N of solution u of

(5.9) and then prove (Lemma 5.6.5) convergence of the respective approximations {xn}n∈N

of solution x of sweeping process (1.8). In other words, Lemma 5.6.5 states that the change

of the variables of Castaing and Monteiro Marques [19, Theorem 4.1] is continuous with

respect to time-discretization. Finally, a result by Monteiro Marques [49, p. 15-16] (which
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is also Proposition 6 in Valadier [61]) is used to prove (Theorem 5.6.1 of section 5.6.6) that

the limit of catching-up scheme (5.15)-(5.18) is a solution of (1.8).

5.6.1 An equivalent non-perturbed formulation of the perturbed sweeping pro-

cess

Recall, that for a BV-continuous function u : [0, T ] → E, the variation measure |du| (also

called modulus measure) is defined, for any D ∈ B([0, T ]), as (see Diestel-Uhl [24, Defini-

tion 4, p. 2], Recupero [56, §2.4])

|du|(D) =

= sup

{
∞∑
n=1

‖u(Dn)‖ : D =
∞⋃
n=1

Dn, Dn ∈ B([0, T ]), Di ∩Dj = ∅ if i 6= j

}
.

For a BV-continuous function u : [0, T ] → R, the differential measure du is always |du|-

continuous (it follows, for example, from Diestel-Uhl [24, Theorem 1] ), i.e., a |du|-integrable

density
du

|du|
is well defined. Moreover, according to Castaing and Monteiro Marques [19,

Theorem 4.1], if x is a solution of the perturbed sweeping process (5.2), then the BV con-

tinuous function u defined by

u(t) = x(t) +

∫ t

0

f(τ, x(τ))dτ (5.8)

is a solution to the non-perturbed sweeping process

− du

|du|
(t) ∈ NA+a(t,λ)+c(x(t),λ)+

∫ t
0 f(τ,x(τ),λ)dτ (u(t)), |du| − a.e. on [0, T ]. (5.9)

Lemma 5.6.1. Assume that (t, x, λ) 7→ f(t, x, λ) is Caratheodory in (t, x) with respect

to Lebesgue measure and is globally Lipschitz in x with Lipschitz constant independent of

t ∈ [0, T ] and λ ∈ [0, 1]. Then, for any BV continuous u : [0, T ] → E, the equation (5.8)

admits a unique BV continuous solution x : [0, T ]→ E.
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Lemma 5.6.1 is a direct consequence of Lemma 5.6.5 that we prove below.

Combining Castaing and Monteiro Marques [19, Theorem 4.1] and Lemma 5.6.1, we can

formulate the following equivalent definition of the solution of (5.2).

Definition 5.6.1. A BV continuous function x is called a solution of perturbed sweeping

process (5.2), if the function u given by (5.8) is a solution of the non-perturbed sweeping

process (5.9).

5.6.2 An example

To illustrate the concept of sweeping process for measures, we consider a simple example

− dx ∈ N[0,1]+a(t)(x), t ∈ [0, 1], (5.10)

where a(t) is a non-decreasing BV-continuous function.

Since a(t) is BV-continuous on [0, 1], the variation measure |da| is a possible measure on

[0, 1], then, by the uniqueness of vector measure (see Section 5.2),

da = |da|. (5.11)

Case 1: t 7→ a(t) is absolutely continuous. When the function a(t) is absolutely continuous,

the sweeping process (5.10) admits the solution x(t) = a(t) with respect to Lebesgue measure

dt. Indeed, according to properties (5.3) and (5.4) of the differential measure da, the Radon-

Nykodim derivative
da

dt
(t) computes as

da

dt
(t) = lim

ε→0+

da([t+ ε, t])

dt([t+ ε, t])
= lim

ε→0+

a(t+ ε)− a(t)

ε
= ȧ(t), dt− a.e. on [0, 1], (5.12)

(in other words, Radon-Nikodym derivative of an absolutely continuous function is the reg-

ular derivative). And since a(t) is a non-decreasing function, we conclude that ȧ(t) ≥ 0

dt−a.e. on [0, 1]. To prove that

−da
dt

(t) ∈ N[0,1]+a(t)(a(t)), dt− a.e. on [0, 1],
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(i.e., to prove that the function a(t) and the measure dt form a solution of (5.10) as per

Definition (5.2.1)), it remains to observe that

N[0,1]+a(t)(a(t)) = (−∞, 0].

Note, when t 7→ a(t) is absolutely continuous, the differential measure da admits a Radon-

Nykodim derivative
da

|da|
(t) and, by (5.11),

da

|da|
(t) = lim

ε→0+

da([t+ ε, t])

|da|([t+ ε, t])
= 1, t ∈ [0, 1]. (5.13)

Since −1 ∈ (−∞, 0], the function t 7→ a(t) is a solution of (5.10) also with respect to the

measure |da|.

Case 2: t 7→ a(t) is not absolutely continuous. An absolutely continuous function t 7→ a(t)

admitted a Radon-Nykodim derivative with respect to dt because, for absolutely continuous

a(t), da is dt-continuous (see Proposition (5.6.1) in the end of this example).

When t 7→ a(t) is not absolutely continuous, the differential measure da is not necessary dt-

continuous. Indeed, consider for example the triadic Cantor function a(t) defined over the

triadic Cantor set C as follows (see e.g., Stein-Shakarchi [58, p. 8, 38]). We remove the open

interval I1 = (1/3, 2/3) from [0, 1] and then again we remove middle third intervals I2 from

remaining set [1, 1/3]∪ [2/3, 1]. By removing middle third from remaining set repeatedly, we

get the Cantor set C. Then

[0, 1] = C ∪
∞⋃
i=1

Ii.

The Cantor function is defined continuously and as it takes a constant value on the interval

Īi. By countable additivity of |da|,

1 = |da|([0, 1]) = |da|(C) +
∞∑
k=1

|da|(Ik),

and, since a is constant on each Ik, 1 = |da|(C) = da(C), see (5.11). But, dt(C) = 0 (see e.g.,

Stein-Shakarchi [58, p. 17]), so that da is not dt-continuous (see Diestel-Uhl [24, Theorem 1,

p. 10]).
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At the same time, the differential measure da of the triadic Cantor function t 7→ a(t) is

|da|-continuous by (5.11) and the respective Radon-Nykodim derivative is given by (5.13),

so that t 7→ a(t) is still a solution of (5.10) with respect to the variation measure |da| by the

same argument as in case 1.

The next fact is known. It can be obtained from the inverse of the Radon-Nikodym theorem

(see Moreau [52, p. 53]). We, however, include a direct proof for completeness.

Proposition 5.6.1. If a : [0, T ] → R is an absolutely continuous function then da is dt-

continuous.

Proof. Fix ε > 0. We have to show that there exists δ > 0 such that

dt(D) < δ ⇒ |da(D)| < ε for each D ∈ B([0, T ]).

By absolute continuity of a, we can choose δ > 0 such that for any finite sequence

{(si, ti)}ni=1 ⊂ [0, T ] of pairwise disjoint sub-intervals, we have

n∑
i=1

|ti − si| < 2δ ⇒
n∑
i=1

|a(ti)− a(si)| < ε.

Let now D ∈ B([0, T ]) be such that dt(D) < δ.

Approximate D by a finite sequence {(si, ti)}ni=1 ⊂ [0, T ] of pairwise disjoint intervals, so

that

D ⊂
n⋃
i=1

(si, ti) and dt

(
n⋃
i=1

(si, ti)

)
< 2δ.

Then we have

|da(D)| ≤ |da

(
n⋃
i=1

(si, ti)

)
| ≤

n∑
i=1

|a(ti)− a(si)| < ε.
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5.6.3 The catching-up algorithm

For each fixed n ∈ N, we partition [0, T ] into smaller intervals by the points {t0, t1, ..., tn} ⊂

[0, T ] defined by

t0 = 0, tn = T, ti+1 − ti =
T

n
, i ∈ 1, n.

In what follows, we fix some initial condition

x(0) = u(0) = q,

where q satisfies

q ∈ A+ a(0, λ) + c(q, λ), (5.14)

and use the ideas of Definition 5.6.1 in order to construct pieceiwise-linear functions un

and xn (linear on each [ti, ti+1]) that serve as approximations of the solutions u and x of

Definition 5.6.1. The construction will be implemented iteratively through the intervals

[ti, ti+1] starting from i = 0, and moving towards i = n− 1.

Denoting

un(0) = q, xn(0) = q, uni = un(ti), x
n
i = xn(ti), i ∈ 0, n,

we apply the implicit iterative scheme

uni+1 = proj

uni , A+ a(ti+1, λ) + c

uni+1 −
ti∫

0

f(τ, xn(τ), λ)dτ, λ


+

ti∫
0

f(τ, xn(τ), λ)dτ

 , (5.15)

xni+1 = uni+1 −
ti∫

0

f(τ, xn(τ), λ)dτ, (5.16)

un(t) = uni +
t− ti
ti+1 − ti

(uni+1 − uni ), t ∈ [ti, ti+1], (5.17)

xn(t) = xni +
t− ti
ti+1 − ti

(xni+1 − xni ), t ∈ [ti, ti+1], (5.18)
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successively from i = 0 to i = n − 1. Next lemma uses the idea of the implicit scheme of

Kunze and Monteiro Marques ([40, Lemma 7]) and it proves that for each i ∈ 0, n− 1 we

can extend the definition of un and xn from [0, ti] to [0, ti+1] according to (5.15)-(5.18).

Lemma 5.6.2. Consider a set-valued function

C(s1, s2, u, ξ) = A+ ã(s1, ξ) + c̃(s2, u, ξ), s1, s2 ∈ [0, T ], u ∈ E, ξ ∈ W,

where A ⊂ E is a nonempty closed convex bounded set, ã : R×W → E, c̃ : R×E×W → E,

and W is a finite dimensional Euclidean space. Assume that

var(ã(·, ξ), [s, t]) ≤ var(ā, [s, t]), ξ ∈ W,

where ā : [0, T ]→ R is a BV continuous function,

and (s, ξ)→ ã(s, ξ) is continuous in ξ ∈ W uniformly in s ∈ [0, T ]. Assume that (s, u, ξ) 7→

c̃(s, u, ξ) is continuous in ξ ∈ W uniformly in (s, u) ∈ [0, T ] × E and satisfies the Lipschitz

condition

‖c̃(s, u, ξ)− c̃(t, v, ξ)‖ ≤ L1|s− t|+ L2‖u− v‖,

for any s, t ∈ [0, T ], u, v ∈ E, ξ ∈ W,

with L1 > 0 and L2 ∈ (0, 1). Then, for any τ1, τ2, s1, s2 ∈ [0, T ] and any u ∈ E there exists

an unique v = v(τ1, τ2, s1, s2, u, ξ) such that

v ∈ C(τ1, τ2, v, ξ) and v = proj(u,C(τ1, τ2, v, ξ)). (5.19)

Moreover, v ∈ C0([0, T ]× [0, T ]× [0, T ]× [0, T ]× E ×W,E). If, in addition,

u ∈ C(s1, s2, u, ξ),

then

‖v − u‖ ≤ var(ā, [s1, τ1]) + L1|τ2 − s2|
1− L2

. (5.20)
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Lemma 5.6.3. Let C be a convex set of E. Then, for any vectors u, c ∈ E,

‖proj(u,C)− proj(u,C + c)‖ ≤ ‖c‖.

Proof. From the definition of projections v1 = proj(u,C) and v2 = proj(u,C + c) we have

(see e.g., Kunze and Monteiro Marques [40, §2])

u− v1 ∈ NC(v1) and u− v2 ∈ NC+c(v2). (5.21)

Since v2 − c ∈ C and v1 + c ∈ C + c, we conclude from (5.21) that

〈u− v1, v2 − c− v1〉 6 0 and 〈u− v2, v1 + c− v2〉 6 0,

or, rearranging the terms,

〈v1 − u, v1 − v2〉 6 〈u− v1, c〉 and 〈u− v2, v1 − v2〉 6 〈v2 − u, c〉 .

Finally, we add both inequalities together and get

〈v1 − v2, v1 − v2〉 6 〈v2 − v1, c〉 6 ‖v1 − v2‖ · ‖c‖,

which implies the statement.

Proof of Lemma 5.6.2. Step 1. The existence of v(τ1, τ2, s1, s2, u, ξ). Define F ∈ C0(E,E)

as F (v) = proj(u,C(τ1, τ2, v, ξ)). Using Lemma 5.6.3, we have

‖F (v1)− F (v2)‖ =

= ‖proj(u,A+ ã(τ1, ξ) + c̃(τ2, v1, ξ))− proj(u,A+ ã(τ1, ξ) + c̃(τ2, v2, ξ))‖ ≤

≤ ‖c̃(τ2, v1, ξ)− c̃(τ2, v2, ξ)‖ ≤ L2‖v1 − v2‖, (5.22)

so the existence of v = v(τ1, τ2, s1, s2, u, ξ) with the required property (5.19) follows by

applying the contraction mapping theorem (see e.g., Rudin [57, Theorem 9.23]).
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Step 2. Continuity of v(τ1, τ2, s1, s2, u, ξ).

To prove the continuity of v, let v = v(τ1, τ2, s1, s2, u, ξ) and v̄ = v(τ̄1, τ̄2, s̄1, s̄2, ū, ξ̄) where

s1, s2, s̄1, s̄2 ∈ [0, T ], τ1, τ2, τ̄1, τ̄2 ∈ [0, T ], ξ, ξ̄ ∈ W and u, ū ∈ E.

First observe that

‖v̄ − v‖ =

= ‖proj(ū, A+ ã(τ̄1, ξ̄) + c̃(τ̄2, v̄, ξ̄))− proj(u,A+ ã(τ1, ξ) + c̃(τ2, v, ξ))‖

≤ ‖proj(ū, A+ ã(τ̄1, ξ̄) + c̃(τ̄2, v̄, ξ̄))− proj(u,A+ ã(τ̄1, ξ̄) + c̃(τ̄2, v̄, ξ̄))‖

+ ‖proj(u,A+ ã(τ̄1, ξ̄) + c̃(τ̄2, v̄, ξ̄))− proj(u,A+ ã(τ1, ξ) + c̃(τ2, v, ξ))‖.

Since for any nonempty, closed, convex set C ⊂ E and any vectors ū, u ∈ E, we have (see

e.g., Mordukhovich-Nam [50, Proposition 1.79])

‖proj(ū, C)− proj(u,C)‖ ≤ ‖ū− u‖, (5.23)

then, using also Lemma 5.6.3, we conclude that

‖v̄ − v‖ ≤ ‖ū− u‖+
∥∥ã(τ̄1, ξ̄) + c̃(τ̄2, v̄, ξ̄)− ã(τ1, ξ)− c̃(τ2, v, ξ)

∥∥ ≤
≤ ‖ū− u‖+

∥∥ã(τ̄1, ξ̄)− ã(τ̄1, ξ)
∥∥+ var(ā, [τ1, τ 1]) +

+‖c̃(τ̄2, v, ξ̄)− c̃(τ2, v, ξ)‖+ L1|τ̄2 − τ2|+ L2‖v̄ − v‖, (5.24)

so that the required continuity of v(τ1, τ2, s1, s2, u, ξ) follows from 0 ≤ L2 < 1.

Step 3. Proof of the estimate (5.20).

Assuming that u ∈ C(s1, s2, u, ξ), we have follow the lines of (5.24) to get

‖v − u‖ = ‖proj(u,C(τ1, τ2, v, ξ))− u‖ = min
v̄∈C(τ1,τ2,v,ξ)

‖u− v̄‖.

But C(s1, s2, u, ξ) = A + ã(s1, ξ) + c̃(s2, u, ξ) and C(τ1, τ2, v, ξ) = A + ã(τ1, ξ) + c̃(τ2, v, ξ).

Therefore,

min
v̄∈C(τ1,τ2,v,ξ)

‖u− v̄‖ ≤ ‖ã(s1, ξ) + c̃(s2, u, ξ)− ã(τ1, ξ)− c̃(τ2, v, ξ)‖ ≤

≤ var(ā, [s1, τ1]) + L1|τ2 − s2|+ L2‖u− v‖, (5.25)
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which implies (5.20). The proof of the lemma is complete.

Remark 5.6.1. On the validity of Lemma 5.6.2 when A + c(t, ξ) is replaced by a more

general term A(t, ξ).

One can observe that estimate (5.22) holds also in the case where A + ã(t, ξ) takes a more

general form A(t, ξ). Furthermore, if dH(A1, A2) is the Hausdorff distance between nonempty

closed sets A1, A2 ⊂ E and A(t, ξ) satisfies

dH(A(s), A(t)) ≤ var(ā, [s, t]), (5.26)

then (5.25) holds as well since

min
v̄∈C(τ1,τ2,v,ξ)

‖u− v̄‖ ≤ dH(A(s1, ξ) + +c̃(s2, u, ξ), A(τ1, ξ) + c̃(τ2, v, ξ)).

To summarize, the existence of v(τ1, τ2, s1, s2, u, ξ) (Step 1) and the estimate (5.20) (Step 3)

still hold, if A+ ã(t, ξ) is replaced by A(t, ξ) satisfying (5.26).

On the other hand Monteiro Marques [47, Proposition 4.7, p. 26] implies that

‖proj(u,C)− proj(u,D)‖ ≤
√

2(dist(u,C) + dist(u,D)) ·
√
dH(C,D), (5.27)

which could potentially help to obtain other versions of Lemma 5.6.2, that we don’t pursue

here.

Corollary 5.6.1. Assume that condition I) of Theorem 5.5.1 holds. Then, for any (q, λ)

satisfying (5.14) the implicit scheme (5.15)-(5.18) is solvable iteratively from i = 0 to i = n−1

and the respective iterations xni = xni (q, λ) and uni = uni (q, λ) are continuous in (q, λ) on

E × [0, 1]. Moreover,

‖uni+1(q, λ)− uni (q, λ)‖ ≤ var(ā, [ti, ti+1]) + L1T/n

1− L2

, i ∈ 0, n− 1,

where L1 > 0 and L2 ∈ (0, 1).
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Proof. Let ξ = ((ξ1, ξ2, · · · , ξn+1), ξn+2) ∈ En+1 × R be defined as

ξi = xni−1, i ∈ 1, n+ 1 , ξn+2 = λ.

Therefore, the rule (5.18) defines a function Ψ : En+1 × R → C0([0, T ], E) that relates

ξ ∈ En+1 × R to a piecewise linear function xn(t) defined on [0, T ]. The statement of the

Corollary 1 now follows by applying Lemma 5.6.2 with

c̃(s, u, ξ) =

u− s∫
0

f(τ,Ψ(ξ)(τ), ξn+2)dτ, ξn+2

+

s∫
0

f(τ,Ψ(ξ)(τ), ξn+2)dτ,

ã(s, ξ) = a(s, ξn+2).

The proof of the corollary is complete.

5.6.4 The Poincare map associated to the catching-up algorithm

Even though we cannot ensure the existence of a Poincare map for sweeping process (5.2),

we can associate the following Poincare map

P λ,n(q) = xn(T )

to the approximations xn of the catching-up algorithm (5.15)-(5.18). Corollary 5.6.1 allows

to formulate the following property of the map P λ,n.

Corollary 5.6.2. Assume that condition I) of Theorem 5.5.1 holds. Consider an open

bounded set Q ⊂ E. Then, for each fixed λ ∈ [0, 1] and n ∈ N, the Poincare map q 7→ P λ,n(q)

is continuous on Q.

5.6.5 Convergence of the catching-up algorithm

Let (un(t, q, λ), xn(t, q, λ)) be the solution (un(t), xn(t)) of the catching-up algorithm (5.15)-

(5.18) with the parameter λ ∈ [0, 1] and the initial condition un(0) = xn(0) = q.
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Lemma 5.6.4. Assume that condition I) of Theorem 5.5.1 holds. Consider a sequence

(λn, qn) → (λ0, q0) as n → ∞ of [0, 1] × E satisfying (5.14) for each n ∈ N. Then, there

exists a subsequence {nk}k∈N such that {unk
(t, qnk

, λnk
)}k∈N converges as k →∞ uniformly

in t ∈ [0, T ].

Proof. Step 1. Boundedness of {un(t, qn, λn)}n∈N. Let uni , i ∈ 0, n, be the approximations

given by (5.15)-(5.18) with q = qn and λ = λn. By Corollary 5.6.1,

‖un(t, qn, λn)‖ ≤ ‖qn‖+
1

(1− L2)
(var(ā, [0, T ]) + L1T ) ,

so the sequence {un(t, qn, λn)}n∈N is bounded uniformly on [0, T ].

Step 2. Equicontinuity of {un(t, qn, λn)}n∈N. Fix ε > 0. Since var(ā, [s, t]) → 0 as

|s− t| → 0 (see e.g., Lojasiewicz [45, Theorem 1.3.4]), we can choose δ1 > 0 such that

var(ā, [s, t]) + L1(t− s)
1− L2

<
ε

3
, for all 0 ≤ s ≤ t ≤ T with t− s < δ1. (5.28)

Fix some 0 ≤ s ≤ t ≤ T satisfying t − s < δ1 and denote by is, it ∈ 0, n− 1 such indexes

that

s ∈ [tis , tis+1], t ∈ [tit , tit+1].

Then we can estimate ‖un(t)− un(s)‖ as follows:

‖un(t)− un(s)‖ ≤

≤ ‖un(s)− un(tis+1)‖+ ‖un(tis+1)− un(tit)‖+ ‖un(tit)− un(t)‖ ≤

≤ var(un, [tis , tis+1]) + var(un, [tis+1, tit ]) + var(un, [tit , tit+1]).

The second term is smaller than ε/3 by (5.28) right away. Assuming that n ≥ T/δ1, the

property (5.28) ensures that first and third terms are each smaller than ε/3 as well. So we

proved that

‖un(t)− un(s)‖ < ε, for all 0 ≤ s ≤ t ≤ T with t− s < δ1, and n ≥ T/δ1.
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Since there is only a finite number of n ∈ N with n < T/δ1, we can find δ2 > 0 such that

‖un(t)− un(s)‖ < ε, for all 0 ≤ s ≤ t ≤ T with t− s < δ2, and n < T/δ1.

Letting δ = min{δ1, δ2}, we finally obtain

‖un(t)− un(s)‖ < ε, for all 0 ≤ s ≤ t ≤ T with t− s < δ, and n ∈ N.

The conclusion of the Lemma now follows by applying the Arzela-Ascoli theorem (see e.g.,

Rudin [57, Theorem 7.25]).

Remark 5.6.2. Establishing the existence of a converging subsequence {xnk
(t, qnk

, λnk
)}k∈N

needs more work compared to what we did in the proof of Lemma 5.6.4 because the direct

corollary of (5.16)

xni+1 − xni = uni+1 − uni +

∫ ti

ti−1

f(τ, xn(τ), λ)dτ

doesn’t imply uniform boundedness of xn(t, qn, λn), n ∈ N, directly.

To prove the convergence of {xnk
(t, qnk

, λnk
)}k∈N we will now extend the discrete map (5.17)

to such an operator Fn : C([0, T ], E) → C([0, T ], E) whose fixed point is exactly t 7→

xn(t, qn, λn). The convergence of xnk
will then follow from the continuity of Fn in n at

n =∞.

Let us define Pn : C([0, T ], E)→ En+1, l− : En+1 → En+1 and Qn : En+1 → C([0, T ], En+1)

as

Pn(x) =

(
x(0), x

(
T

n

)
, ..., x

(
(n− 1)

T

n

)
, x(T )

)
, x ∈ C([0, T ], E),

[l−(y)]1 = 0 , [l−(y)]i = yi−1 , i ∈ 2, n+ 1 , y ∈ En+1 ,

Qn(y)(t) =
t− ti−1

1/n
yi+1 +

ti − t
1/n

yi , y ∈ En+1 , t ∈ [ti−1, ti), i ∈ 1, n,

Qn(y)(tn) = yn+1 , y ∈ En+1, since tn = T.
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For a fixed λ ∈ [0, 1] and a continuous function u : [0, T ] → E, we introduce a continuous

extension of (5.17) as

(Fnx)(t) = (QnPnu)(t)− (Qnl
−PnJ) (t), t ∈ [0, T ],

where J(t) =
t∫

0

f(τ, x(τ), λ)dτ.
(5.29)

Then, for x ∈ C([0, T ], E) satisfying x = Fnx, one has

x(0) = (QnPnu)(0)−
(
Qnl

−PnJ
)

(0) = [Pnu]1 − [l−PnJ ]1 = u(0)− 0,

x(t1) = [Pnu]2 − [l−PnJ ]2 = u(t1)− [PnJ ]1 = u(t1)− J(0) = u(t1),

x(t2) = u(t2)− J(t1),

. . .

x(tn) = u(tn)− J(tn−1).

Therefore, if un and xn are given by (5.15)-(5.18), then, letting u = un in (5.29), the fixed

point x of Fn verifies x(ti) = xn(ti), i ∈ 0, n. And, since the function t 7→ (Fnx)(t) is linear

on [ti, ti+1], i ∈ 0, n− 1, we conclude xn = x. In other words, if u in (5.29) is given by u = un,

then xn is the unique fixed point of Fn.

Lemma 5.6.5. Assume that the conditions of Lemma 5.6.1 hold. Then, there exists α > 0

and L ∈ (0, 1) such that

‖Fn(x1)− Fn(x2)‖∗ ≤ L‖x1 − x2‖∗, n ∈ N,

for any x1, x2, u ∈ C([0, T ], E), λ ∈ [0, 1], and

‖x‖∗ = max
t∈[0,T ]

e−αt‖x(t)‖.

Moreover, for each x, u ∈ C([0, T ], E), and λ ∈ [0, 1], one has

lim
n→∞

‖Fn(x)− F (x)‖ = 0, where F (x)(t) = u(t)−
∫ t

0

f(τ, x(τ), λ)dτ,

where ‖ · ‖ is the max-norm on [0, T ] and F is a contraction in the norm ‖ · ‖∗.
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Proof. Step 1. Using the definition of Qn, l−, and Pn, we have

(Qnl
−PnJ)(ti−1) = [l−P nJ ]i = [PnJ ]i−1 = J(ti−2), i ∈ 2, n+ 1.

So that

(Fnx)(ti) = u(ti)− J(ti−1).

Fix i ∈ 1, n− 1 and choose any t ∈ [ti, ti+1]. Then,

‖Fn(x1)(t)− Fn(x2)(t)‖ ≤

≤ max {‖Fn(x1)(ti)− Fn(x2)(ti)‖, ‖Fn(x1)(ti+1)− Fn(x2)(ti+1)‖} =

= max

{∥∥∥∥∫ ti−1

0

f(τ, x1(τ), λ)dτ −
∫ ti−1

0

f(τ, x2(τ), λ)dτ

∥∥∥∥ ,∥∥∥∥∫ ti

0

f(τ, x1(τ), λ)dτ −
∫ ti

0

f(τ, x2(τ), λ)dτ

∥∥∥∥} ≤
≤ L̄

∫ ti

0

‖x1(τ)− x2(τ)‖dτ ≤ L̄

∫ ti

0

eατ‖x1 − x2‖∗dτ,

where L̄ > 0 is the global Lipschitz constant of x 7→ f(t, x, λ) and α > 0 is an arbitrary

constant. Therefore,

e−αt‖Fn(x1)(t)− Fn(x2)(t)‖ ≤ L̄

α

(
eα(ti−t) − e−αt

)
‖x1 − x2‖∗ ≤

L̄

α
‖x1 − x2‖∗,

which holds for any t ∈ [0, T ]. The case t ∈ [0, t1] can be considered along the same lines.

This proves the contraction part of the lemma.

Step 2. To prove the convergence part, fix i ∈ 1, n− 1 again and consider t ∈ [ti, ti+1].

Since (QnPnu)(ti) = u(ti), we have

‖(QnPnu)(t)− u(t)‖ ≤ ‖(QnPnu)(t)− (QnPnu)(ti)‖+ ‖u(t)− u(ti)‖ ≤

≤ ‖u(ti+1)− u(ti)‖+ ‖u(t)− u(ti)‖,

so that the convergence of (QnPnu)(t) to u(t) as n→∞ follows from continuity of u.

The convergence of (Qnl
−PnJ)(t) follows same lines.
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Indeed, since (Qnl
−PnJ)(ti+1) = J(ti), one has

‖(Qnl
−PnJ)(t)− J(t)‖ ≤

≤ ‖(Qnl
−PnJ)(t)− (Qnl

−PnJ)(ti+1)‖+ ‖J(t)− J(ti)‖ ≤

≤ ‖J(ti−1)− J(ti)‖+ ‖J(t)− J(ti)‖

and the convergence of (Qnl
−PnJ)(t) to J(t) as n→∞ follows from continuity of J(t).

The proof of the lemma is complete.

Corollary 5.6.3. Assume that condition I) of Theorem 5.5.1 holds. Let {nk}k∈N be the

subsequence given by Lemma 5.6.4 (which ensures the convergence of {unk
(t, qnk

, λnk
)}k∈N).

Consider the limit

u(t) = lim
k→∞

unk
(t, qnk

, λnk
).

Let x(t) be the solution of the respective equation (5.8) (which exists according to

Lemma 5.6.1). Then {xnk
(t, qnk

, λnk
)}k∈N converges uniformly in t ∈ [0, T ], and

x(t) = lim
k→∞

xnk
(t, qnk

, λnk
). (5.30)

Proof. The conclusion follows from the inequality

‖x− xn‖∗ = ‖F (x)− Fn(xn)‖∗ ≤ ‖F (x)− Fn(x)‖∗ + ‖Fn(x)− Fn(xn)‖∗ ≤

≤ ‖F (x)− Fn(x)‖∗ + L‖x− xn‖∗,

where L ∈ (0, 1) is given by Lemma 5.6.5.

5.6.6 Verifying that the limit of the catching-up algorithm is indeed a solution

Theorem 5.6.1. Let the conditions of Corollary 5.6.3 hold and let u(t) and x(t) be as given

by this corollary. Then, u(t) is a solution of sweeping process (5.9) with the parameters x(t),

λ = lim
k→∞

λnk
, and the initial condition u(0) = lim

k→∞
qnk

. Accordingly, by Definition 5.6.1, x(t)

is a solution of perturbed sweeping process (5.2).
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Proof. Let φ(t), t ∈ [0, T ], be an arbitrary continuous selector of the moving set of (5.9),

i.e.,

φ(t) ∈ A+ a(t, λ) + c(x(t), λ) +

∫ t

0

f(τ, x(τ), λ)dτ, t ∈ [0, T ].

According to Monteiro Marques [49, p. 15-16] (see also Valadier [61, Proposition 6]) it is

sufficient to prove that∫ t

s

〈φ(τ), du(τ)〉 ≥ 1

2

(
‖u(t)‖2 − ‖u(s)‖2

)
, 0 ≤ s ≤ t ≤ T, (5.31)

which we now establish using the ideas of Kunze and Monteiro Marques [40].

Without loss of generality we will assume that {nk}k∈N = N, and replace nk, k ∈ N, by

n, n ∈ N in the formulation of the theorem. Fix t > 0 and select i ∈ 0, n− 1 such that

t ∈ [ti, ti+1]. Introduce ĉn(t) as

ĉn(t) = proj

(
φ(t), A+ a(ti+1, λn) + c(xni+1, λn) +

∫ ti

0

f(τ, xn(τ), λn)dτ

)
.

Then, by (5.15) and by convexity of A, we have (see e.g., Kunze and Monteiro Marques [40,

formula (4)])

〈un(ti+1)− un(ti), un(ti+1)− ĉn(t)〉 ≤ 0, t ∈ [ti, ti+1],

from where

〈un(ti+1)− un(ti), un(t)− ĉn(t)〉 ≤

≤ 〈un(ti+1)− un(ti), un(t)− un(ti+1)〉 ≤ ‖un(ti+1)− un(t)‖2,

or

〈un(ti+1)− un(ti), ĉn(t)〉 ≥ −‖un(ti+1)− un(ti)‖2 + 〈un(ti+1)− un(ti), un(t)〉 ,

for any t ∈ [ti, ti+1]. Using the linearity of un on [ti, ti+1], we conclude

〈ĉn(t), un(t̄i+1)− un(t̄i)〉 ≥

≥ 〈un(t), un(t̄i+1)− un(t̄i)〉 − 〈un(t̄i+1)− un(t̄i)), (un(ti+1)− un(ti))〉 ,
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for any ti ≤ t̄i ≤ t ≤ t̄i+1 ≤ ti+1. Therefore, denoting τj,k = t̄i +
(
j + 1

2

) t̄i+1−t̄i
k

for j ∈

{0, 1, · · · , k − 1}, one has (same approach is used in part (ii) of the proof of Monteiro

Marques [47, Theorem 2.1, p. 12, second formula from below])∫ t̄i+1

t̄i

〈ĉn(τ), dun(dτ)〉 =

= lim
k→∞

k−1∑
j=0

〈
ĉn (τj,k) , un

(
t̄i + (j + 1)

t̄i+1 − t̄i
k

)
− un

(
t̄i + j

t̄i+1 − t̄i
k

)〉
≥

≥ lim
k→∞

k−1∑
j=0

〈
un (τj,k) , un

(
t̄i + (j + 1)

t̄i+1 − t̄i
k

)
− un

(
t̄i + j

t̄i+1 − t̄i
k

)〉
+Rn,

where the reminder Rn is given by

Rn = − lim
k→∞

k−1∑
j=0

〈
un

(
t̄i + (j + 1)

t̄i+1 − t̄i
k

)
−

− un
(
t̄i + j

t̄i+1 − t̄i
k

)
, un(ti+1)− un(ti)

〉
=

= −〈un(t̄i+1)− un(t̄i), un(ti+1)− un(ti)〉 .

Therefore, ∫ t̄i+1

t̄i

〈ĉn(τ), dun(dτ)〉 =

= lim
k→∞

k−1∑
j=0

〈
un(τj,k), u

′
n(τj,k)

t̄i+1 − t̄i
k

〉
+Rn =

=
1

2
lim
k→∞

k−1∑
j=0

(
d

dτ
‖un(τ)‖2

)∣∣∣∣
τ=τj,k

· t̄i+1 − t̄i
k

+Rn =

=
1

2

∫ t̄i+1

t̄i

d

dτ
‖un(τ)‖2dτ +Rn =

1

2

(
‖un(t̄i+1)‖2 − ‖un(t̄i)‖2

)
+Rn.

This result can now be used to estimate the required integral (5.31) as follows∫ t

s

〈ĉn(τ), dun(dτ)〉 ≥ 1

2

(
‖un(t)‖2 − ‖un(s)‖2

)
+R, (5.32)

where

|R| ≤ var(un, [s, t]) · max
i∈0,n−1

‖un(ti+1)− un(ti)‖.
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But according to Corollary 5.6.1,

var(un, [s, t]) ≤
var(ā, [s, t])

1− L2

+
L1|t− s|
1− L2

.

Therefore, the desired statement (5.31) follows from (5.32) by passing to the limit as n →

∞ (the passage to the limit is valid e.g., by Monteiro Marques [47, Theorem 2.1(ii)-(iii)]

combined with formula (26) of p. 7 of the same book).

The proof of the theorem is complete.

5.6.7 Proof of Theorem 5.3.1 (sweeping process without a parameter)

Theorem 5.3.1 is a direct consequence of Theorem 5.6.1. One just view sweeping process

(5.1) as sweeping process (5.2) with λ = 0.

Remark 5.6.3. Using Remark 5.6.1, Theorem 5.3.1 can be directly extended to sweeping

processes of the form

− dx ∈ NA(t,λ)+c(x,λ)(x) + f(t, x, λ)dt, x ∈ E, λ ∈ R, (5.33)

where A is a set-valued function with nonempty closed convex bounded values that satisfies

the property

dH(A(s, λ), A(t, λ)) ≤ var(ā, [s, t]), λ ∈ [0, 1],

where ā : [0, T ]→ R is a BV continuous function.
(5.34)

5.6.8 Proofs of Theorems 5.5.1 and 5.5.2 (sweeping process with a parameter)

Proof of Theorem 5.5.1. Step 1. First we prove that there exists N > 0 such that

d(I − P λ,n ◦ V λ,n, Q) is defined for n ≥ N and λ ∈ [0, λ1]. Assuming the contrary, we get a

sequence nk →∞, λk → λ0 ∈ [0, λ1], and a converging sequence {qk}k∈N ⊂ ∂Q such that

P λk,nk ◦ V λk,nk(qk) = qk, k ∈ N. (5.35)
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Applying Lemma 5.6.4, Corollary 5.6.3, and Theorem 5.6.1 we conclude that q0 =

limk→∞ qk ∈ ∂Q is the initial condition of the T -periodic solution (5.30) of sweeping process

(5.2) with λ = λ0, which contradicts conditions III) of Theorem 5.5.1.

The conclusion of Step 1, in particular, implies that

d(I − P λ,n ◦ V λ,n, Q) = d(I − P 0,n ◦ V 0,n, Q), n ≥ N, λ ∈ [0, λ1].

Step 2. Here we use assumption II (uniqueness) of Theorem 5.5.1 to conclude that

P 0,n ◦ V 0,n(q)→ P 0 ◦ V 0(q), as n→∞,

uniformly with respect to q ∈ Q. Thus, we can diminish N > 0 in such a way that d(I −

P 0,n ◦ V 0,n, Q) = d(I − P 0 ◦ V 0, Q), n ≥ N, which gives

d(I − P λ,n ◦ V λ,n, Q) 6= 0, n ≥ N, λ ∈ [0, λ1].

Therefore, for each λ ∈ [0, λ1] there exists qn ∈ Q such that the approximations

{xn(·, qn, λ)}n≥N are T -periodic, so this sequence has a convergent subsequence which con-

verges to a T -periodic solution of (5.2) with initial condition q = limnk→∞ qnk
as n → ∞

according to Corollary 5.6.3.

The proof of the theorem is complete.

The proof of Theorem 5.5.2 follows the lines of the proof of Theorem 5.5.1. The only

difference is in the beginning of Step 1, which now proves the existence of both N > 0 and

λ1 ∈ (0, 1] such that d(I − P λ,n ◦ V λ,n, Q) is defined for n ≥ N and λ ∈ [0, λ1]. Assuming

the contrary, we get a sequence nk → ∞, λk → 0 ∈ [0, 1], and a converging sequence

{qk}k∈N ⊂ ∂Q such that (5.35) holds, that leads to the existence of a T -periodic solution to

sweeping process (5.2) with λ = 0, contradicting condition II) of Theorem 5.5.1. The rest of

the proof of Theorem 5.5.2 follows the proof of Theorem 5.5.1 just literally.
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5.7 Proof of the theorem on the global existence of periodic solutions

To prove Theorem 5.4.1 we will use the following well-known result (see e.g., Krasnoselskii-

Zabreiko [36, Theorem 6.2]):

Theorem 5.7.1. Let P̄ : E → E be a continuous map and let Q ⊂ E be an open bounded

convex set. If P̄ (Q) ⊂ Q and if P̄ doesn’t have fixed points on ∂Q, then

d(I − P̄ , Q) = 1.

Proof of Theorem 5.4.1. Let Ω1 be the 1-neighborhood of Ω. Since Ω is convex, then Ω1

is convex as well. We will view sweeping process (5.1) as sweeping process (5.2) with λ = 0.

So we consider the map

P 0,n(x) = P 0,n(V (x)),

where P 0,n is as introduced in Section 5.6.4 and V is as introduced in Section 5.3. We claim

that

P
0,n

(Ω1) ⊂ Ω, for all n ∈ N. (5.36)

We have V (x) ∈ Ω by the definition of the map V. Then, according to the catching-up

scheme (5.15)-(5.18), we have that

xni+1 ∈ A+ a(ti+1, 0) + c(xni+1), i.e., xni+1 ∈ Ωti+1
, i ∈ 0, n− 1,

and so xn(T ) ∈ ΩT , which implies (5.36).

Using the continuity of P 0,n (Corollary 5.6.2) and V (Lemma 5.6.2) along with Theorem 5.7.1,

we get the existence of qn ∈ Ω such that P 0,n(qn) = qn, which implies

P 0,n(qn) = qn, n ∈ N,

because V (qn) ∈ Ω. In other words, we have xn(T, qn, 0) = xn(0, qn, 0) for all n ∈ N. Now,

Theorem 5.6.1 applied with λn = 0, implies the existence of a convergent subsequence

{xnk
(t, qnk

, 0)} whose limit x(t) is solution of (5.1) with the required T -periodicity property

(5.6). The proof is complete.
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5.8 Existence of periodic solutions in the neighborhood of a boundary equilib-

rium (the theorem and its proof)

This section is devoted to establishing conditions for the validity of d(I − P λ,n, Q) 6= 0 at

λ = 0 in a neighborhood Q of a switched boundary equilibrium x0. Specifically, we assume

that, for λ = 0 sweeping process (1.8) takes the form

− ẋ ∈ NA(x) + f0(x), x ∈ E, (5.37)

and discover conditions for asymptotic stability of x0 ∈ ∂A. In particular, in section 5.8 we

extend the two-dimensional approach of Chapter 4, Makarenkov and Niwanthi Wadippuli

[46] and derive a differential equation of sliding motion along ∂A, for which x0 is a regular

equilibrium whose stability can be investigated (Theorem 5.8.2) over the eigenvalues of the

respective linearization. Assuming that the real parts of these eigenvalues are negative we

conclude that d(I − P 0 ◦ V0, Q) = 1 and establish (Theorem 5.8.3) the existence of T -

periodic solutions near x0 for all BV-continuous state-dependent sweeping processes (1.8)

that approaches (5.37) when λ→ 0.

This section uses the following extension of Theorem 5.7.1 (see e.g., Krasnoselskii-Zabreiko

[36, Theorem 31.1]):

Theorem 5.8.1. Let P̄ : E → E be a continuous map and let Q ⊂ E be an open bounded

set. If (P̄ )m maps Q strictly into itself for all m ∈ N sufficiently large, then

d(I − P̄ , Q) = 1.

The main assumption of this section is that sweeping processes (5.2) reduces to

− ẋ ∈ NA(x) + f0(x), x ∈ E, (5.38)

when λ = 0 and that (5.38) posses a switched equilibrium on the boundary ∂A (as was

earlier introduced in Kamenskii-Makarenkov [31] in 2d). To introduce the definition of a
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switched boundary equilibrium x0 ∈ ∂A, we assume that in some neighborhood Q ⊂ Rn of

x0 the boundary ∂A is smooth and can be described as

∂A ∩Q = {x ∈ Q : H(x) = 0}, where H ∈ C1(Rn,R).

Definition 5.8.1. A point x0 ∈ ∂A is a switched boundary equilibrium of sweeping process

(5.38), if

H(x) > 0, for all x ∈ Q\A,

and

H ′(x0) = αf(x0) for some α < 0.

As the definition says, x0 is not an equilibrium of f , however the next two lemmas imply

that the solution of (5.38) with the initial condition at x0 don’t leave x0.

If x0 is a switched equilibrium, then Q can be considered so small that

〈f(x), H ′(x)〉 < 0, for all x ∈ ∂A ∩Q. (5.39)

The next lemma claims that ∂A ∩Q is a sliding region for the sweeping process (5.38).

Lemma 5.8.1. Let x0 ∈ ∂A be a switched equilibrium of (5.38) and let Q ⊂ E be such a

neighborhood of x0 that (5.39) holds. Consider a solution x of (5.38) with an initial condition

x0 ∈ ∂A ∩ Q. Let t1 > 0 be such that x(t) ∈ Q for all t ∈ [0, t1]. Then x(t) ∈ ∂A for all

t ∈ [0, t1].

Proof. Let us assume, by contradiction, that there exists tescape ∈ [0, t1] where x(t) escapes

from ∂A, i.e.,

tescape = max{t0 ≥ 0 : x(t) ∈ Q,H(x(t)) = 0, t ∈ [0, t0]} < t1.

By the definition of tescape, for any δ > 0 there exist tδ ∈ [tescape, tescape + δ] such that

H(x(t)) < 0 for each t ∈ (tescape, tδ]. Since, the solution x(t) satisfies ẋ(t) = −f0(x(t)) on

(tescape, tδ], by the Mean-Value Theorem

H(x(tδ))−H(x(tescape) = −H ′(x(t∗δ))f0(x(t∗δ))(tδ − tescape),
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for some t∗δ ∈ (tescape, tδ). This yields

H ′(x(tescape))f0(x(tescape)) ≥ 0,

as δ → 0, contradicting (5.39).

The proof of the lemma is complete.

As it happens in the theory of Filippov systems (see Filippov [28]), the dynamics of (5.38)

in the sliding region is described by a smooth differential equation. Indeed, let us introduce

the differential equation

−ẋ = f̄(x),

where f̄(x) = f0(x)− πH′(x)(f0(x)) and πL(ξ) =
1

‖L‖2
〈ξ, L〉L.

(5.40)

Next lemma says that (5.40) is the equation of sliding motion for sweeping process (5.38) in

the neighborhood of switched equilibrium x0 ∈ ∂A0.

Lemma 5.8.2. Let the conditions of Lemma 5.8.1 hold and let x(t) be the sliding solution

x(t), t ∈ [0, t1], of sweeping process (5.38) as introduced in Lemma 5.8.1. Then x(t) is a

solution of (5.40) on [0, t1].

Proof. Fix t ∈ [0, t1] such that ẋ(t) exists. Then, from (5.38),

−ẋ(t) = αH ′(x(t)) + f0(x(t)), with some α > 0,

or

αH ′(x(t)) = −πH′(x(t))(f0(x(t))) +
[
−f0(x(t)) + πH′(x(t))(f0(x(t)))

]
− ẋ(t). (5.41)

From the definition of πL(ξ) we have

〈
−f0(x(t)) + πH′(x(t))(f0(x(t))), H ′(x(t))

〉
= 0.

On the other hand, from Lemma 5.8.1,

〈ẋ(t), H ′(x(t))〉 = 0.
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Therefore, taking the scalar product of (5.41) with H ′(x(t)), we get

α = − 1

‖H ′(x(t))‖2
〈f0(x(t)), H ′(x(t))〉 ,

which completes the proof.

Lemma 5.8.2 implies that the boundary ∂A is an invariant manifold for the differential equa-

tion (5.40). The definition (5.40) reduces the dimension of the image of f0 by 1. Therefore,

the image of the map f̄ acts to a space of dimension dimE − 1, which implies that one

eigenvalue of the Jacobian f̄ ′(x0) is always zero.

We now offer an asymptotic stability result which can be of independent interest in applica-

tions of perturbed sweeping processes.

Theorem 5.8.2. Let x0 ∈ ∂A be a switched equilibrium of (5.38). If real parts of dimE− 1

eigenvalues of the Jacobian f̄ ′(x0) are negative, then x0 is a uniformly asymptotically stable

point of sweeping process (5.38).

Proof. Step 1. Convergence to ∂A. Let Br(x0) be a ball of radius r centered at x0. Let us

show that there exists r > 0 such that for any ξ ∈ Br(x0) ∩ A, the solution t 7→ X(t, ξ) of

ẋ = −f0(x) (5.42)

with the initial condition X(0, ξ) = ξ reaches ∂A at time some time τ(ξ) > 0. The proof

will be through the Implicit Function Theorem applied to

F (t, x) = H(X(t, x)).

We have F (0, x0) = 0 and Ft(0, x0) = −H ′(x0)f0(x0) 6= 0 by the definition of switched

equilibrium. Therefore, Implicit Function Theorem (see e.g., Rudin [57, Theorem 9.28])

ensures the existence of ξ → τ(ξ) defined and continuous on a sufficiently small ball Br(x0)

and such that τ(x0) = 0.
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It remains to show that τ(ξ) > 0 for all ξ ∈ Br(x0) ∩ A. Since, according to the definition

of switched equilibrium, H ′(x0)T is a normal to A pointing outwards to A, it is sufficient to

prove that τ(ξ) > 0 for ξ = x0− λH ′(x0)T with all λ > 0 sufficiently small. So we introduce

a scalar function

G(λ) = τ(x0 − λH ′(x0)T )

and want to prove that G′(0) > 0. Using the formula for the derivative of the implicit function

(see Rudin [57, Theorem 9.28])

τ ′(x0) = −(H ′(x0)f0(x0))−1H ′(x0)

and so

G′(0) = −(H ′(x0)f0(x0))−1H ′(x0)(−H ′(x0)T ) = H ′(x0)f0(x0)‖H ′(x0)‖2,

which is indeed positive according to Definition 5.8.1.

Finally, let us fix ξ ∈ Br(x0)∩A and let x(t) be the solution of (5.38) with the initial condition

x(0) = ξ. Since the conclusion of the Implicit Function Theorem comes with uniqueness, we

have that X(t, ξ) 6∈ ∂A, t ∈ [0, τ(ξ)). Therefore, X(t, ξ) = x(t), for any t ∈ [0, τ(ξ)), which

implies that limt→τ(ξ) X(t, ξ) = limt→τ(ξ) x(t) and so x(τ(ξ)) ∈ ∂A.

Step 2. Convergence along ∂A. Lemmas 5.8.1 and 5.8.2 combined with the negativeness

of real parts of dimE − 1 eigenvalues of f̄ ′(x0) imply that there exists an neighborhood

x0 ∈ Q ⊂ E such that any solution of (5.38) with the initial condition x(0) ∈ Q ∩ ∂A

converges to x0 along ∂A as t → ∞ and the convergence is uniform with respect to the

initial condition.

Making now r > 0 in Step 1 so small that ∪ξ∈Br(x0)X(τ(ξ), ξ) ∈ Q (which is possible by

continuity of ξ → τ(ξ)), we combine Step 1 and Step 2 to conclude that any solution of

(5.38) with x(0) ∈ Br(x0) approaches x0 as t→∞.

The proof of the theorem is complete.
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We are now in the position to combine theorems 5.5.2, 5.7.1, and 5.8.2 when the following

condition holds for (5.2) at λ = 0 :

a(t, 0) ≡ 0, c(x, 0) ≡ 0, f(t, x, 0) ≡ f0(x) with f0 ∈ C1(E,E). (5.43)

Theorem 5.8.3. Assume that condition I) of Theorem 5.5.1 holds. Assume, that for λ = 0

sweeping process (5.2) is smooth autonomous, i.e., satisfies (5.43). If real parts of n − 1

eigenvalues of f̄ ′(x0) are negative for some switched equilibrium x0 ∈ ∂A, then there exists

λ1 > 0 such that for all λ ∈ (0, λ1] sweeping process (5.2) admits a periodic solution xλ(t)→

x0 as λ→ 0.

Proof. Let P̄ (x) = P 0(V 0(x)). By Theorem 5.8.2, there exists an open bounded set x0 ∈

Q ⊂ E such that (P̄ )m maps Q strictly into itself for all m ∈ N sufficiently large. Therefore,

Theorem 5.8.1 ensures that condition II) of Theorem 5.5.1 holds, so Theorem 5.5.2 applies.

Similar to Theorem 5.8.3 results have been obtained for ordinary differential equations by

Berstein-Halanai [11] and Cronin [22].
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CHAPTER 6

CONCLUSION

In this dissertation, we established new results on the existence, periodicity, almost period-

icity, stability, and bifurcations of solutions of the perturbed sweeping process (1.1). Our

stability results assume that the right-hand-side of (1.1) is Lipschitz continuous and the con-

straint is state-independent, while the existence results assume minimum regularity such as

just BV-continuity in time and dependence on the state in the constraint. In what follows

we discuss conclusions for each chapter of the dissertation.

Chapter 2: Here we established the existence and global exponential stability of bounded

and almost periodic solutions to perturbed sweeping process (1.1) with globally Lipschitz

monotone right-hand-sides.

When the right-hand-sides of (1.1) are non-monotone, but close to monotone, we discovered

that all the solutions to (1.1) are close to the unique bounded (or almost periodic) solution

of the respective monotone sweeping process for large values of time. In particular, we

initiated the development of the averaging theory for Moreau sweeping process (1.1) with

high-frequency almost periodic excitation g

(
t

ε
, x

)
, where only monotonicity of the average

g0(x) = lim
T→∞

1

T

T∫
0

g(s, x)ds is required. This result can be used for the design of vibrational

control strategies for Moreau sweeping processes (see e.g., Bullo [17] for the respective theory

in the case of the differential equation).

Building upon the modeling approach of Bastein et al ([8], [7]) the results of the chapter can

help in predicting the long-term response of elastoplastic materials to combined excitation

of forces of different periods. Further potential applications of the results of this chapter are

in studying the dynamics of a circuit involving devices like diodes, thyristors and diacs (see

Addi et al [2]) when ampere-volt characteristics (for the set function) and voltage supply (for

the perturbation) receive time-periodic excitations of different periods. Such a study will

require extending our theory to sweeping processes with state-dependent convex constraints.

85



Chapter 3: In this chapter, we introduced a framework that can be used for extending the

results of Chapter 2 to sweeping processes with non-convex constraints. We further proved

the existence of at least one bounded global solution to perturbed sweeping processes with

so-called prox-regular moving set C(t).

We then proved that the unique global solution is periodic when t 7→ C(t) and f 7→ F (t, x)

are periodic with the same period. Following the lines of Chapter 2, the ideas of the present

work can be extended to almost periodic solutions and to sweeping processes with small

non-monotone ingredients.

An illustrative example has been also provided. At the same time, we indicated why the

current approach is not capable to deal with the crowd motion model, which can be used for

the development of an alternative approach.

Chapter 4: In Chapter 4 we initiated the development of bifurcation theory for sweeping

process (1.1). We established a result on bifurcation of limit cycles in a suitable version of

(1.1) in R2 from a boundary equilibrium of focus type. In particular, we derived an equation

of sliding along the boundary of a unilateral constraint and observed that the action of the

unilateral constraint is equivalent to an action of an orthogonal vector field pointing towards

the unilateral constraint from the outside.

In this way, we linked the development of bifurcation theory for sweeping processes to the

analysis of differential equations with discontinuous right-hand-sides (Filippov system, see

Filippov [28]).

Chapter 5: In this chapter, we considered sweeping processes (1.1), which are just BV-

continuous in time and contain a state-dependent ingredient in the moving constraint. By

extending the implicit catching-up scheme of Kunze and Monteiro Marques [40] to perturbed

sweeping processes, we proved solvability of BV-continuous state-dependent sweeping pro-

cesses with a Lipschitz dependence on the state.

We further used topological degree arguments to establish the existence of periodic solutions
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to sweeping processes of this type. The analysis is carried out for the simplest possible mov-

ing set C(t) = A + a(t) + c(x) throughout the entire chapter, that allowed us to focus on

the development of core mathematical ideas rather than on its possible generalizations. We

explained in Remarks 5.6.1 and 5.6.3 how the existence result (Theorem 5.3.1) immediately

extends to the moving set of the form C(t) = A(t) + c(x). We don’t know whether or not an

alternative approach (for example, formula (5.27) quoted from [47, Proposition 4.7, p. 26])

can deal with any more general state-dependent moving constraints.

The existence of a T -periodic solutions to a sweeping process with T -periodic right-hand-

sides and convex moving set would be an immediate result when uniqueness and continuous

dependence of solutions on initial conditions hold. The difficulty we overcame when proving

the existence of periodic solutions comes from the fact that uniqueness and continuous depen-

dence on initial conditions of solutions of BV-continuous state-dependent sweeping processes

is still an open question even when the dependence on the state is Lipschitz continuous (for

state-independent sweeping processes, the uniqueness and continuous dependence is estab-

lished e.g., in Castaing and Monteiro Marques [19] and Adly et al [3]).

The second part of the chapter concerned sweeping processes with a parameter λ, for which

we developed a topological degree based continuation principle. As an application of the

continuation principle, we proved the occurrence of periodic solutions at a specific location

is a neighborhood of a switched boundary equilibrium. Specifically, we assumed that for

λ = 0, the sweeping process is autonomous and admits an asymptotically stable switched

boundary equilibrium x0. We then proved the occurrence of T -periodic solutions from x0

when the parameter λ increases and the sweeping process becomes non-autonomous (and

T -periodic).

The condition for asymptotic stability of x0 can be replaced by assuming that the topo-

logical index of x0 is different from 0. Such a condition can be also expressed in terms

of the eigenvalues of the linearization f̄(x0) of sliding differential equation (5.40), see e.g.,

Krasnoselskii-Zabreiko [36, Theorem 6.1] and [36, Theorem 7.4].
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We anticipate that the results of the dissertation will play a stimulating role in the develop-

ment of a qualitative theory of perturbed sweeping processes.
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