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Behavioral/Cognitive

Resting-State Network Topology Differentiates Task Signals
across the Adult Life Span

Micaela Y. Chan,' Fahd H. Alhazmi,' ““Denise C. Park,' Neil K. Savalia,' and ““Gagan S. Wig'~
ICenter for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, 75235 and 2Department of Psychiatry,
University of Texas Southwestern Medical Center, Dallas, Texas, 75390

Brain network connectivity differs across individuals. For example, older adults exhibit less segregated resting-state subnetworks relative to
younger adults (Chan et al., 2014). It has been hypothesized that individual differences in network connectivity impact the recruitment of brain
areas during task execution. While recent studies have described the spatial overlap between resting-state functional correlation (RSFC) sub-
networks and task-evoked activity, it is unclear whether individual variations in the connectivity pattern of a brain area (topology) relates to its
activity during task execution. We report data from 238 cognitively normal participants (humans), sampled across the adult life span (20 -89
years), to reveal that RSFC-based network organization systematically relates to the recruitment of brain areas across two functionally distinct
tasks (visual and semantic). The functional activity of brain areas (network nodes) were characterized according to their patterns of RSFC: nodes
with relatively greater connections to nodes in their own functional system (“non-connector” nodes) exhibited greater activity than nodes with
relatively greater connections to nodes in other systems (“connector” nodes). This “activation selectivity” was specific to those brain systems
that were central to each of the tasks. Increasing age was accompanied by less differentiated network topology and a corresponding reduction in
activation selectivity (or differentiation) across relevant network nodes. The results provide evidence that connectional topology of brain areas
quantified at rest relates to the functional activity of those areas during task. Based on these findings, we propose a novel network-based theory
for previous reports of the “dedifferentiation” in brain activity observed in aging.
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Similar to other real-world networks, the organization of brain networks impacts their function. As brain network connectivity
patterns differ across individuals, we hypothesized that individual differences in network connectivity would relate to differences
in brain activity. Using functional MRI in a group of individuals sampled across the adult life span (20 - 89 years), we measured
correlations at rest and related the functional connectivity patterns to measurements of functional activity during two indepen-
dent tasks. Brain activity varied in relation to connectivity patterns revealed by large-scale network analysis. This relationship
tracked the differences in connectivity patterns accompanied by older age, providing important evidence for a link between the
topology of areal connectivity measured at rest and the functional recruitment of these areas during task performance. j

ignificance Statement

Introduction
Functionally distinct brain areas exhibit distinct patterns of con-
nections (Felleman and Van Essen, 1991). The activity and con-
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nectivity of a brain area are not mutually exclusive, as they often
constrain one another. For example, neural recording in both
nonhuman primates and felines has demonstrated how the spe-
cific inputs and outputs associated with a given brain area define
the range of its possible functions (Arieli et al., 1995; Tsodyks et
al.,, 1999). Research on connectivity has largely focused on
mapping distinctions in connectivity across brain areas to differ-
ences in their function (Ungerleider and Desimone, 1986). How-
ever, the connectivity patterns of brain areas (topology) exhibit
between-subject variability as well (Markov et al., 2011). It is
largely uncertain whether and how such intersubject differences
in connectivity affect brain function; the present report examines
this important question.

Noninvasive imaging has enabled researchers to examine the
link between areal connectivity and function in the human brain.
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Clustered patterns of connectivity measured at rest [resting-state
functional correlations (RSFCs); Biswal et al., 1995] have been
shown to overlap with task-evoked activation maps (Power et al.,
2011;Yeoetal.,2011; Tavor et al., 2016). Whereas the correspon-
dence between RSFC patterns and task-evoked activation maps
helps to elucidate the processing roles of particular brain areas,
graph theory has provided a formal framework to model the
brain as a large-scale network by simultaneously evaluating the
connections between multiple distributed brain areas (Bullmore
and Sporns, 2009; Wig et al., 2011). Network models of RSFC
patterns have revealed the presence of functionally distinct com-
munities (modules/subnetworks), some of which align with
known brain systems (e.g., default system, visual system; Petersen
and Sporns, 2015). Variations in the RSFC patterns of areas and
communities have been linked to differences in task-evoked
brain activity (Cole et al., 2013; Bertolero et al., 2015), aligning
with earlier animal work that demonstrated how distinctions in
connectivity relate to distinctions in processing demands.

The evidence thus far has established a link between RSFC
connectivity and task-related activity. It is uncertain whether and
how differences in large-scale brain network organization across
individuals moderates functional activity. One prominent and
common source of variation in both brain network organization
and functional activity has been observed across the healthy adult
life span (Grady et al., 1994; Park et al., 2004; Betzel et al., 2014;
Chan et al., 2014; Geerligs et al., 2015). Here, we leverage age-
related variability in brain network organization and task activity
to (1) understand how variation in the connectional topology of
brain areas may relate to variation in task-related activity across
multiple task- and stimulus-processing demands and (2) deter-
mine whether this topology—function relationship is stable across
individuals of different ages with documented differences in
brain network organization.

We focus on an important distinction in nodes that is imposed by
community organization, which is thought to reflect functional dif-
ferences. The presence of communities results in two types of nodes
with distinct connectional properties: “connector” nodes serve as
“bridges” between communities, whereas “non-connector” nodes
predominantly exhibit connections to nodes within their own com-
munity. Non-connector nodes are often viewed as being specialized
for performing particular processes—a community’s functional fo-
cus can be defined by the specialization of its non-connector nodes.
Connector nodes exhibit diverse interactions with various commu-
nities, resulting in broader roles involving information integration.
Consistent with these ideas, observations across various complex
systems have demonstrated important differences in how connector
and non-connector nodes process and disseminate information
(Guimera et al., 2005; Deng et al., 2012; Harriger et al., 2012). Does
information processing revealed by task activity respect a node’s dis-
tinct role in brain networks? How does this relationship alter across
the adult life span, which is accompanied by changes in brain net-
work organization? Functional activity may be agnostic to individual
differences in connectional topology. If patterns of connectivity are
related to function however, then topological distinctions of brain
areas may be a guiding framework for understanding variation in
functional activity across subjects, or vice versa.

Materials and Methods

Participants

Participants were recruited as part of the Dallas Lifespan Brain Study
(DLBS) from the Dallas—Fort Worth community and provided written
consent before participating. All study procedures were reviewed and
approved by the institutional review boards at the University of Texas at
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Table 1. Demographic information of final sample

Mean education
Age groups (years) N % female years (SD)
YA (20-34) 64 59% 16.44 (2.37)
ME (35-49) 51 65% 16.15 (2.17)
ML (50-65) 46 67% 16.98 (2.05)
OA (65-89) 77 60% 16.18 (2.38)

Dallas and the University of Texas Southwestern Medical Center. A total
of 266 participants completed a resting-state fMRI scan. Following a
rigorous data screening and cleaning procedure (see below for details of
preprocessing and quality control), data from 238 participants were
available for analysis in the final sample (see Table 1).

Imaging data acquisition

The DLBS collects a range of imaging modalities including a T1-weighted
structural MRI scan and seven functional MRI (fMRI) blood oxygen-
ation level-dependent (BOLD) scans. The fMRI scans a resting-state
scan with one run, and two experimental tasks, each with a different
number of runs. All brain scans were acquired with a Philips Achieva 3T
whole-body scanner and a Philips 8-channel head coil at the University of
Texas Southwestern Medical Center using the Philips SENSE parallel
acquisition technique.

Structural MRI (MPRAGE)

A T1-weighted sagittal magnetization-prepared rapid acquisition gradi-
ent echo structural image was obtained (TR, 8.1 ms; TE, 3.7 ms; flip
angle, 12° FOV, 204 X 256 mm; 160 slices with 1 X 1 X 1 mm voxels).
The scan duration was 3 min and 57 s.

Functional MRI

All BOLD scans were collected with the following parameters: TR, 2000
ms; TE, 25 ms; flip angle, 80° FOV, 220 mm; 43 interleaved axial slices
per volume; 3.5/0 mm (slice thickness/gap); in-plane resolution, 3.4 X
3.4 mm. For each functional run, five additional volumes were collected
at the beginning of each scan to allow for T1 stabilization. These five
volumes were discarded during preprocessing.

Word judgment scan (semantic task). Participants completed one
block-design run (231 volumes) of the semantic task. Participants viewed
128 words and judged whether each word referred to a living or nonliving
object. Participant’s responses were entered using a button box in their
right hand. Half of the stimuli were unambiguously living or nonliving
(e.g., horse, truck), whereas the other half of the stimuli were ambiguous
and harder to classify as living or nonliving (e.g., virus, sponge). Words
were organized into blocks such that there were eight unambiguous
blocks and eight ambiguous blocks, with each block containing eight
words. Within a block, each word was displayed for 2.5 s, followed by a
fixation cross for 0.5 s. All stimuli were presented in lowercase, white font
at the center of a black screen. A fixation cross was displayed for 6 s
between each block. In the present study, ambiguous and unambiguous
word conditions were modeled together as a “words” condition.

Scene classification scans (visual task). Participants completed three
event-related design runs (171 volumes each) of the visual task. Partici-
pants viewed colored images of outdoor landscapes and had to determine
whether there was water present in the scene (e.g., lake, river, ocean).
Participants’ responses were entered using a button box in their right
hand. Within each run, 32 images were presented for 3 s each (jittered
with an interstimulus interval ranging from 4 to 14 s, during which time
a white fixation cross was centrally presented on a black background).
All picture stimuli were obtained from a previously published study
(Gutchess et al., 2005) and presented at the center of a black screen. Half
of the stimuli (48 total across three runs) were scenes containing water in
the images. Although participants completed a surprise recognition test
outside of the scanner on these scene stimuli, the results of this memory
test are not incorporated into the present analysis. In the present study,
all pictures were modeled together to form a “visual” condition. A me-
chanical error occurred during the collection of the visual task for one
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participant, resulting in one less data point for analyses involving the
visual task.

Resting-state scan. Participants completed one run (154 volumes) of an
eyes-open fixation resting-state scan. Participants were instructed to stay
still and fixate on a white crosshair centrally presented on a black screen
for the duration of the scan. The experimenter verified that participants
complied with the instructions and did not fall asleep during the func-
tional scan via verbal confirmation.

Preprocessing

Structural MRI preprocessing

FreeSurfer 5.3 was used to process volumetric images into cortical surface
images. This process includes brain extraction, segmentation, generation
of white matter and pial surfaces, inflation of the surfaces to a sphere, and
surface shape-based spherical registration of the participant’s “native”
surface to the fsaverage surface (Dale et al., 1999; Fischl et al., 1999a;
Ségonne et al., 2005).

Automated FreeSurfer outputs were first visually inspected for poor
skull stripping, inclusions of vessels or other tissue that neighbor the
cortex, and insufficient intensity normalization obscuring the gray and
white matter boundary. Manual editing and rechecking were completed
as needed to account for the inaccuracies in the automated outputs
(Savalia et al., 2017).

A single deformation map for each individual was generated by com-
bining the (1) deformation map created when registering an individual’s
native surface to FreeSurfer’s fsaverage atlas and (2) the deformation
map for registering fsaverage-aligned data to a hybrid left-right fsav-
erage surface (fs_LR; Van Essen et al., 2012). Each individual’s native
FreeSurfer-generated output was then registered to fs_LR using the single
deformation map in a one-step resampling procedure.

Standard fMRI preprocessing

All BOLD images (task and resting-state) were processed to reduce arti-
facts. Images were corrected for (1) odd versus even slice intensity differ-
ences attributable to interleaved acquisition without gaps and (2) head
movement within and across runs. Realignment was completed within
each task (across multiple runs) by estimating the transformation matrix
for each functional frame relative to the first frame (of the first run if
there are multiple runs).

RSFC preprocessing

Additional preprocessing steps were used to reduce spurious variance
unlikely to reflect neuronal activity in RSFC data: (1) Multiple regres-
sion of the BOLD data was performed to remove variance related to
the whole brain (global) signal, ventricular signal, white matter sig-
nal, and their derivatives (six signal regressors derived from eroded
FreeSurfer masks), the six detrended head realignment parameters
obtained by rigid body head motion correction of the current frame
(#) and the previous frame (t — 1), and the squared estimates of t and
t — 1 motion parameters (the “Friston24” motion regressors; Friston
et al., 1996). (2) Bandpass filtering (0.009—0.08 Hz) was performed.
(3) Temporal masks were created to flag motion-contaminated
resting-state frames based on frame-by-frame displacement (Power et
al., 2014), calculated as the sum of absolute values of the differentials
of the three translational motion parameters (d;,, d;,, d;,) and three
rotational motion parameters («;, B, y;). Resting-state frames with
frame displacement (FD) >0.3 mm were removed. (4) The removed
frames were replaced by interpolated data to insure that artifacts from
discarded frames did not blur into the remaining data (Carp, 2013).
(5) Steps 1 and 2 were repeated on the resting-state time series with
interpolated data. (6) The interpolated frames were removed in the
final resting-state time series, which was used for correlation calcula-
tion. If <75 frames of data were available after frame removal (scrub-
bing), the participant was discarded from further analyses (see Table
1 for the number of participants in each age group after scrubbing).
Across the entire sample, the mean number of frames kept after scrub-
bing was 139 (min, 75; max, 154). While the number of frames kept
differed across cohorts (F; 534, = 4.789, p < 0.001), the results pre-
sented in the present manuscript are qualitatively similar when
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frames analyzed were equated across participants or when FD was
included as a covariate in the statistical models where age is a
predictor.

Including global signal regression as a part of the processing stream has
been an issue of considerable debate given the possibility of removing
genuine neural signals that are embedded in the global signal (Scholvinck
etal., 2010). However, considerable evidence has now demonstrated that
a major component of the global signal includes spatially nonspecific
signal artifacts, in which head motion can play a significant role (Satter-
thwaite et al., 2013; Power et al., 2014, 2017). As documented by both
others and us, older adults exhibit greater amounts of head movement
(Mowinckel et al., 2012; Van Dijk et al., 2012; Savalia et al., 2017), which
has been shown to systematically alter the correlation structure of
resting-state signals (Power et al., 2012; Satterthwaite et al., 2013; Yan et
al., 2013; Zeng et al., 2014). The minimization of this source of bias was
thus viewed as a priority to prohibit erroneous interpretation in any
cross-subject or cross-cohort comparison, especially when the variable of
interest (in our case, age) was systematically related to head motion
(Fagexcmean ep = 0.422, p < 0.001). It has been demonstrated that at
present, this is best achieved via regression of the global signal (Power et
al., 2014).

Mapping functional data to surfaces

Preprocessed resting-state data and fMRI task 3 volumes were registered to
the fs_LR (32 k) left and right hemisphere surfaces because of evidence of
better alignment of cortical anatomy when compared to linear or nonlinear
volume-based registration (Fischl et al., 1999b). The previously constructed
single deformation map for each individual was used for one-step resam-
pling of the functional data to the fs_LR surfaces. For each participant, func-
tional data from the volumetric gray matter ribbon were mapped to the
individual’s native surface mesh and then deformed to the fs_LR surfaces
using predefined single deformation map. Data were smoothed across the
surface using a Gaussian smoothing kernel (o = 2.55). Critically, transform-
ing participants’ functional data into fs_LR surface space enables time course
and 3 weight extraction from nodes that were defined and generated on the
same surface (Wig et al., 2014).

fMRI task analysis

fMRI task data were analyzed using the general linear model (GLM) in
SPM 8 (Wellcome Department of Cognitive Neurology; http://www.fil.
ion.ucl.ac.uk/spm/). For each task, the durations of each block/event and
runs were modeled, along with nuisance regressors (linear trends to
model signal drift, constants to model mean signal intensity in a run, and
the six head realignment parameters to model head movement). The 8
maps of each condition of interest were then surface mapped (for details,
see above, Mapping functional data to surfaces) to allow direct compar-
ison with surface-mapped RSFC data. Region-of-interest statistical anal-
yses of task data were performed on the mean fMRI 3 values extracted
from each of the putative area centers (349 disks; see below, Functional
area node identification) from the surface-mapped B maps. Nodes
within the default system were excluded from analyses related to task
activation to avoid conflation of patterns of task-evoked activation and
deactivation (Shulman et al., 1997). Results in the present manuscript
remain qualitatively similar when default system nodes were included in
all analyses.

Brain graph construction

Surface-mapped resting-state fMRI data were analyzed using a modifi-
cation of a previously published node set (Chan et al.,, 2014), whereby a
node-by-node correlation matrix (i.e., brain graph) was constructed for
each participant.

Functional area node identification

Brain graphs were constructed using a modified set of previously pub-
lished nodes (Chan et al., 2014). To construct these nodes, the locations
of putative area centers were first identified in a published surface-based
RSFC boundary map generated using data from younger adults (Wig et
al., 2014). To minimize locations of parcellation uncertainty (at the par-
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cellation map boundaries or borders), we focused on the local minima of
the boundary maps (i.e., centers of putative areas). A total of 441 area
centers were identified across the two hemispheres, with a criterion of
being at least 8 mm apart. Disks of 3 mm radius were created around each
of these surface locations to create nodes representing areal locations.

It has been pointed out that signal intensity may be poorer in certain
locations of the brain (e.g., anterior and inferior portions of the temporal
and orbital frontal cortex), potentially leading to lower quality of parcel-
lation in these areas (Wig et al., 2014). As nodes derived from these
locations may be inaccurately defined and/or exhibit unreliable signals,
nodes in locations of lower BOLD signal were identified and discarded
using the mean BOLD signal intensity map used to create the original
parcellation (Wig et al., 2014, their Fig. 8). After normalizing the whole
brain signal with a mode value of 1000 (Ojemann et al., 1997), nodes in
locations with mean BOLD signal intensity below 800 were discarded;
this resulted in a final node count of 349 across the two hemispheres.

It is worth noting that the node set was created from an independent
data set of young adults (Wig et al., 2014). While it is possible that area
parcellation may differ across the healthy adult life span (Wig et al., 2012;
Han et al,, 2016; with preliminary work showing little significant differ-
ences), considerable emphasis was placed on ensuring cross-participant
alignment of anatomical features using surface-based registration. This
process followed an iterative procedure of extensive manual quality
checks and editing in combination with automated brain segmentation
using FreeSurfer (Savalia et al., 2017). As an additional step, areas were
modeled using nodes representing small disks localized to the putative
centers of brain areas as opposed to entire patches, given the greater
likelihood for an area’s border to exhibit across-participant variation
relative to its more central locations (Wig et al., 2011).

Edge definition: preparing RSFC data for connectivity analysis

For each participant, the resting-state fMRI time series of vertices within
each of the predefined nodes was extracted and the vertex-mean time
course was computed for each node. The cross-correlation of each node’s
time course with every other node’s time course was incorporated into a
node-to-node correlation matrix. Last, correlation coefficients were con-
verted into z-values using Fisher’s formula (Zar, 1996), resulting in the
final Fisher’s z-transformed r matrix (z-matrix) for each participant. The
z-matrix is a fully connected, weighted relatedness graph. Although neg-
ative edges have been shown to be useful in characterizing certain net-
work properties (Rubinov and Sporns, 2011), due to ambiguity in
interpreting negative correlations that followed necessary regression of
global signals as per the arguments above (Murphy et al., 2009; Gotts et
al., 2013; e.g., possible introduction of negative correlation), negative
edges were excluded from the z-matrices before all analyses, in accor-
dance with our previous study (Chan et al., 2014).

Identifying reliable age-group-specific functional systems
Infomap community detection

Community detection is a class of algorithms that specialize in finding
clusters/groups of similar objects in a graph. Age-group-specific commu-
nity assignments for brain nodes were determined by applying the Info-
map community detection algorithm on participant-averaged z-matrices
of each age group (Rosvall and Bergstrom, 2008; Fortunato, 2010).

Obtaining reliable age-group-specific community assignments

The present study focused on capturing regular patterns across both
graph edge densities (2-10%) and also participants within an age group.
Quantifying reliable assignments in this way minimizes the likelihood of
representing the potentially atypical graph properties driven by a single
individual or only present at a particular edge density. A bootstrap ap-
proach was used to generate reliable community assignments for each
age group across 2—10% edge densities with the following steps: (1) resa-
mpling with replacement was used to create 1000 bootstrapped age-
group mean z-matrices for each age group. (2) These bootstrapped mean
z-matrices were thresholded across 2-10% edge densities, creating 1000
matrices at each edge density, for each age group. (3) Community detec-
tion was performed on each thresholded bootstrapped mean matrix,
resulting in 1000 community assignments for each age group, at each
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edge density. The community assignments were labeled based on their
overlap with a set of published RSFC functional systems (Power et al.,
2011). Last, (4) at each edge density, the most common assignment
across the 1000 community assignments was selected as the node’s reli-
able assignment.

Several systems were not included in the association system categori-
zation due to too few node counts across multiple edge densities (e.g.,
salience system; superior temporal gyrus) or being near areas of poor
signal (e.g., inferior temporal pole, ventral frontal pole).

Defining node-level connectivity and identifying
system-specific connector and non-connector nodes

As used in previous studies of brain area connectivity (Power et al., 2013;
Coleetal., 2013; Bertolero et al., 2015), the participation coefficient (PC)
was used to quantify the extent to which a node is connected to other
systems proportional to its overall connection through the following
formula (Guimera and Nunes Amaral, 2005b; Rubinov and Sporns,
2010): PC; =1 — 3, [k (m)/k)?, where k!"(m) is the weighted con-
nections of node 7 with nodes in system m (a system that node 7 does not
belong to), and k;" is the total weighted connections node 7 exhibits. A
higher PC for a given node indicates proportionally greater connectivity
with nodes in other systems relative to that node’s total connections. The
PC of each node was calculated based on age-group-specific community
assignments in each of the 2-10% edge density matrices (see above,
Obtaining reliable age-group-specific community assignments).

Due to higher PCs in association systems than sensory—motor systems,
aPC threshold across the entire network would categorize the majority of
the nodes in associations systems as connector nodes instead of distin-
guishing the connector and non-connector nodes within each system.
Therefore, nodes were classified as connectors or non-connectors based
on the median PC of nodes within their system for each age group. A
node was labeled as a connector if its PC was greater than the median PC
of nodes in their own system, and as a non-connector if its PC was less
than or equal to the median PC of nodes in their own system. While we
focus here on the superordinate categorization of connector versus non-
connector node types in the present study, we also note that a finer
distinction can be made among non-connector nodes that discriminate
provincial hubs (i.e., non-connector nodes with many connections
within their own system) from peripheral nodes (Guimera et al., 2005).

Where appropriate, PC was also treated as a continuous variable (i.e.,
without categorizing nodes into connector and non-connectors). In
analyses involving PCs (i.e., both those treating PC as a continuous vari-
able and those using PC to define connector status), a node’s PC was first
calculated at each edge density (2-10%) and then these were summed
together to account for variations of graph configuration across edge
densities.

Computing activation selectivity

For each participant, a selectivity score was calculated based on the PC
and S activation across the participant’s nodes. The selectivity score was
quantified to determine how a node’s topology was associated with its
task activity using the following formula: selectivity = —1 X r(PC, ),
where r(PC, B) is the correlation coefficient across all nodes of PC and 3
estimates during a task. The coefficient was multiplied by negative one to
generate a score where a positive score reflected greater activation among
nodes with lower PCs (non-connector nodes), and a negative score re-
flected greater activation among nodes with higher PCs (connector
nodes). A score close to zero represents the absence of a relationship
between the nodes’ RSFC-defined topology and BOLD activity during
task performance.

Results

The connectional topology of areal nodes at rest differentiates
task-evoked activation

Young adult participants’ (n = 64, age = 20—34y) brain networks
were constructed using a node set consisting of 349 disks (3 mm
radius) built around putative area centers across the cortical sur-
faces of the two hemispheres (see Materials and Methods for
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Figure 1. Node topology as defined by brain connectivity at rest relates to activation selectivity as a function of task demands. A, Reliable community assignments (corresponding to distinct
functional brain systems) of younger adults at 4% edge density. B, PCof each node showing sensory—motor systems (e.g., visual and hand somatosensory system; black arrows) generally exhibited
lower PCs than association systems (e.qg., frontal—parietal control system at the center of the spring-embedded graph). ¢, RSFC-defined connector status of nodes at 4% edge density, defined within
each system. The majority of the nodes with fewer connections to other systems (non-connector nodes in red) are situated along the periphery of the network. Nodes that are not part of our
categorization of sensory—motor and association systems are colored gray in spring-embedded graphs depicting community assignments and connector status. D, Nodewise correlation between
each node’s overall connectedness to other systems (defined by PC, calculated across 2—10% edge densities) and its task-evoked functional activation (defined by mean (3 values) in both tasks
revealed that nodes with lower connectedness generally exhibited greater activation. E, RSFC-defined non-connector nodes exhibited greater task activation than RSFC-defined connector nodes in
both visual and semantic tasks. F, During the visual task, activation in non-connector nodes was greater than activation in connector nodes of sensory—motor systems but not association systems.
Conversely, during the semantic task, greater activation of non-connector versus connector nodes was observed both types of systems, but the effect was greater in the association systems. All error

bars represent SEs. *p << 0.05; *** p < 0.001.

details on node definition and brain graph construction). Edges
between all node pairs were derived by Fisher z-transformed
Pearson correlations that were calculated from their resting-state
time series. Reliable community assignments were first generated
with Infomap community detection using a bootstrap approach
that labeled the node set with community assignments across
2-10% edge densities. Community detection identifies highly in-
terconnected groups of nodes that are segregated from other
groups of nodes; in the brain network, a number of these com-
munities correspond to distinct brain systems that are hypothe-
sized to subserve distinct domains of information processing
(e.g., visual processing, task-level control). Accordingly, for the
remainder of this report, the term “community” will be used
when describing a general network property, whereas the term
“system” will be used when describing a functionally labeled
community in the brain. At a broader level of description, we
examined distinctions in activity and connectivity between two
types of systems: sensory—motor and association systems (Fig.
1A). Sensory—motor systems can be broadly categorized as those
systems that are engaged in neural coding and transformation of
incoming sensory and outgoing motor information, whereas as-
sociation systems are those systems that typically direct and inte-

grate information in a wide range of tasks and across multiple
modalities (Mesulam, 1990; Posner and Petersen, 1990).

The connector status of a node was operationalized by the node’s
participation coefficient (Guimera and Nunes Amaral, 2005a; Rubi-
nov and Sporns, 2010), which represents a node’s proportion of
connections to nodes in other communities relative to its total num-
ber of connections. Nodes identified with higher PCs typically serve
as connectors between communities. The functional activity of each
node was measured by calculating mean 3 estimates from GLMs
applied to two independent fMRI tasks. These tasks activated dis-
tinct sets of brain areas and largely reflected different domains of
cognitive processing: (1) a scene classification task (visual task), dur-
ing which participants judged whether pictures of outdoor scenes
contained water, and (2) a word judgment task (semantic task),
which required participants to determine whether a presented word
referred to a living or nonliving entity.

In general, nodes with lower PCs exhibited greater activity,
during both tasks (75, = —0.277, p < 0.001; 7y paniic = —0.193,
p < 0.001; Fig. 1D). While a node’s PC is a continuous measure,
it can be used to create a categorical distinction between connec-
tor nodes and non-connector nodes within each of the functional
systems (Guimera and Nunes Amaral, 2005a; Rubinov and
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Sporns, 2010). The median PC of each system was used to cate-
gorize nodes as either connector nodes (node PC > median sys-
tem PC) or non-connector nodes (node PC = median system PC;
Fig. 1B,C). In contrast to previous studies (Power et al., 2013;
Yeo et al.,, 2015), this categorization was implemented within
each system as opposed to across the entire brain network, thus
allowing us to distinguish and examine the topological and func-
tional differences of nodes relative to other nodes in their own
independent systems. RSFC-defined non-connector nodes ex-
hibited greater task-related activity across both the visual and
semantic tasks (F(, ¢,y = 113.78, p <. 001; post hoc t tests of each
task, visual task, t4,) = —7.65, p < 0.001; semantic task, #3, =
—10.53, p < 0.001; Fig. 1E). Critically, however, this effect exhib-
ited specificity with respect to the type of processing linked to
each of the brain systems and task demands. An ANOVA model
examining task-evoked activity as predicted by connector status
(connector vs non-connector node), type of fMRI task (visual vs
semantic), and system type (sensory—motor vs association sys-
tems) revealed that the magnitude of task activity (BOLD signal 3
estimate) was significantly predicted by all three main effects
(F162) > 33.06, p values =0.001; greater activity in non-
connector nodes, the visual task, and sensory—motor systems).
Importantly, the main effects were qualified by a significant
three-way interaction (F, 4,y = 64.00, p < 0.001), which demon-
strated that the greater activation of non-connector nodes (i.e.,
activation selectivity) was specific to the systems that were most
relevant to each of the tasks (Fig. 1F). To highlight the preferential
task activation of nodes based on their connectional topology, for the
remainder of this report we refer to the differential activation
of non-connector relative to connector nodes as activation
“selectivity.”

During the visual task, sensory—motor systems exhibited
greater activation selectivity (non-connector vs connector,
Mg = 2.65vs 1.67; t(55) = —7.79; p < 0.001) than the association
systems (non-connector vs connector, M,3 =0.84vs0.94; 4, =
2.61; p = 0.011). Follow-up analyses revealed that this effect was
prominent in the visual system (non-connector vs connector;
Mg = 6.02 vs 3.71) but not in other sensory—motor systems (i.e.,
hand somatosensory, mouth somatosensory, auditory; non-
connector vs connector, Mg = 0.15 vs 0.13). Conversely, for the
semantic task, association systems exhibited greater activation
selectivity (non-connector vs connector, Mg = 0.55 vs 0.11; t43
= —10.34; p < 0.001) than the sensory—motor systems (non-
connector vs connector, Mz = 0.23 vs —0.01; #(43) = —5.19; p <
0.001). Unlike the visual task, the semantic task’s effect of activa-
tion selectivity was not confined to a specific association system.
Post hoc analyses of individual systems revealed that multiple
association systems exhibited greater activation in non-
connector nodes than connector nodes (e.g., frontal parietal
system, ventral attention system, cingulo-opercular system,
dorsal attention system, and medial temporal parietal system;
fes) < —3.33;p = 0.001).

Topological distinctions between connector and non-
connector nodes decrease with increasing age

The preceding observations suggest that both a node’s system
membership (i.e., whether it is in one of the sensory—motor sys-
tems or in one of the association systems) and topological posi-
tion within its system (e.g., connector vs non-connector) are
directly related to the nodes’ activation profile during perfor-
mance of goal-directed tasks. If the connector status of a node is
an important feature of network topology, differences in network
organization that have a bearing on dissociating connector and
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non-connector nodes should impact the differentiation of task
signals across individuals.

To directly test this prediction, we examined the relationship
between network organization and task activity in a sample of
participants that have been shown to exhibit robust variations in
the organization of their brain networks (Chan et al., 2014).
Older age is accompanied by both decreases in connectivity
within brain systems and increases in connectivity between sys-
tems. These patterns manifested as decreased system segregation
in older age. We incorporated the RSFC data from adult partici-
pants across the life span to examine age-related differences in the
distribution of connector and non-connector nodes and deter-
mine whether these differences may relate to variations in task-
evoked activity. The full sample included 238 health adults
ranging from 20 to 89 years old: younger adults (YAs), n = 64;
age, 20—34 years; middle early adults (MEs), n = 51; age, 35-49
years; middle late adults (MLs), n = 46; age, 50— 64 years; older
adults (OAs), n = 77; age, 65—89 years.

The presence of reliable community assignments was largely
similar across age, with the same prominent functional systems
consistently identified within each of the age groups (Fig. 2A).
Despite the broad similarities in system organization across the
four age groups, distinctions between connector and non-
connector nodes decreased with increasing age (Fig. 2B, C). An
ANOVA model examining PC (mean across 2-10% network
edge densities) in relation to age group (YA, ME, ML, OA) and
connector status (connector vs non-connector) revealed that
while older adults generally exhibited greater mean node PCs
than younger adults, non-connector nodes showed greater age-
related increases in their PCs compared to connector nodes,
yielding an interaction of age group by connector status: F; ,s,
= 24.89, p < 0.001 (Fig. 2D). The interaction occurred as a result
of diminished distinctions in the connectional topology between
connector and non-connector nodes among older adults com-
pared to younger adults (as displayed in Fig. 2C).

The selective activation of non-connector nodes decreases
with increasing age

How do the differences in connectional topology of brain areas
observed across healthy aging impact their recruitment during
goal-directed tasks? Based on the preceding observations, one
possibility is that the decreasing connectional distinctiveness be-
tween connector and non-connector nodes in older ages results
in decreasing activation selectivity during task performance. Al-
ternatively, the differences in connectional topology at rest may
have no relevance to task activation in older age. An ANOVA
model predicting task-evoked activity (mean 3 estimates) by
node type (connector and non-connector nodes), task (visual vs
semantic), and age group revealed a significant three-way inter-
action. Consistent with the hypothesis that connectional topol-
ogy is related to function, greater activation selectivity as a
function of connectional topology was found for younger com-
pared to older age groups, across both tasks (age group X task X
connector status, F, 533, = 3.36, p = 0.020; Fig. 3A)

This form of activation selectivity as a function of node topol-
ogy can be further visualized and quantified on a participant-by-
participant basis. In addition, to further highlight the specificity
of the observed relationship and differences across age, we corre-
lated each individual’s nodes’ PCs with their corresponding
BOLD activity. As expected, non-connector nodes exhibited
greater task-evoked activity, and this “selectivity” diminished in
older participants (Fig. 3B). To quantify activation selectivity in
relation to connectional topology, a selectivity measure was com-
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puted for each participant by correlating the RSFC-defined PCs
and BOLD activity of nodes; greater selectivity scores reflect
greater activation in nodes with low PCs (see Materials and Meth-
ods for a description of the calculation of selectivity score). As
expected from the significant main effect of connector status in
the previous ANOVA, the mean selectivity score for both tasks
was positive on average [ M,;q,1 = 0.73 (SD, 0.93) and M. aneic =
0.30 (SD, 0.88)], and increasing age was negatively correlated
with selectivity (7yisua = —0.36, p < 0.001; 7eermanic = —0.19,p =

0.003; for trends fitted with locally weighted scatterplot smooth-
ing (LOESS) curve, see Fig. 3C).

We established earlier how the activation selectivity of specific
tasks is constrained to the functional systems that mediate the
processing demands of the task (Fig. 1F). There is evidence that
age-related topological differences vary as a function of system
type (i.e., sensory—motor vs association systems; Chan et al.,
2014). If the functional recruitment of areas during a given task is
indeed related to the connectional topology of those areas that are



Chan et al. e Network Topology Differentiates Task Signals in Aging

A YA ME ML OA C
24 b | | el
154 el | = %
o 1 | c
B o5/ | 2
o 0- 1l
% 14 - . N .
N ‘ Iy | o
S [l L)
54 [ 3
[l D
.25+ I 1l i =
o —j— N | _T_ || M LK
Y L L v oy L ’ N N oy
F5F F&F F&& S
& ¢ o o oS
<% & Iox Y <4 &§ (<4 &
B YA ME ML OA
0.9
064
0.3 {5 ,7<,
g 0 — == S
0 (=== === —— IS
’32 0.3
g gg: — . = — — , — w
2 i —_— e = == (0]
R = -~ {F
0 | =— =
044 = = 3
-0.2+ o
0 25 50.75 0 .25.50.75 0 .25 .50.75 0 .25 .50.75
Participation Coefficient
Figure 3.

Selectivity

Selectivity

J. Neurosci., March 8, 2017 - 37(10):2734 -2745 « 2741

Visual Task D Visual Task
. , g
o
1 \ 3
> 3
:'g 0 S :g:
3 2 z
173
B 1 g
)
0 I}
-

20 40 60 80

Age
Semantic Task
?
2 2
o
> 1 3
E 0 (— g
k3] 9
(9]

T 2 &
2 3
1 g-
2 o———¢

. : : 20 40 60 80

20 40 Age 60 80 Age

Age-related differences in activation selectivity in relation to task demands and system type. A, Across the four age groups, non-connector nodes exhibited greater activity than

connector nodes in both tasks, with diminished differences observed in OAs. Error bars represent SEs. B, Nodewise correlation between PCand (3 (calculated at 2-10% edge densities) within each
individual revealed generally negative relations, with older adults exhibiting a weaker PC—3 relation. Data at different densities are presented as separate regression lines. C, Younger adults
exhibited positive selectivity score [—1 X r(PC, B)], reflecting greater BOLD activation among nodes with lower PCs, where this effect approaches zero (no preferential activation of either type of
node) in older adults. D, The age-related differences in selective activation were observed more prominently in the sensory—motor systems during the visual task (top), and in the association systems
during the semantic task (bottom). In A and B, y-axes of the two tasks are scaled differently to enable better display of the differences between connector and non-connector nodes during the

semantic task.

important for the task’s processing requirements, there should be
a direct relationship between the variations in a node’s connec-
tional topology and its task-evoked activity across participants.
To address this, selectivity scores for each participant’s sensory—
motor and association systems were calculated separately for
each task. A GLM predicting selectivity scores by age (continu-
ous), system type (sensory—motor vs association), and task (vi-
sual vs semantic) yielded a significant three-way interaction
(age X task X system type, F; ,35 = 26.35, p < 0.001). Age-
related differences in selectivity of connectional topology were
primarily related to the systems relevant to the task demands. Post
hoc analyses revealed that age-related differences in selectivity
during the visual task were observed in the sensory—motor sys-
tems but not association systems (7sensory-motor = —0-385, p <
0.001 VS 7yq0ciation — 0.013, p = 0.846; Fig. 3D). Conversely, age-
related differences in selectivity during the semantic task were
significant in the association systems but not sensory—motor sys-
tems (Fyensory-motor = —0-105, p = 0.106 VS 7yiociation = —0.256,
p << 0.001). The results highlight the specificity of the relationship
between age-related differences in RSFC-defined node topology
as a function of system type and selectivity of task activation, and
can be further appreciated in the visualization of brain network
connectivity and activation patterns presented in Figure 4.

Discussion

Investigations of brain organization and information processing
typically focus on structure and function at specific spatial scales
(e.g., areas, systems) or individual features (e.g., task-evoked ac-
tivity, connectivity). The present findings offer evidence for a
relationship between a brain area’s topological organization at
rest and its functional recruitment during task performance. In a
sample of younger adults, we first demonstrated that the topol-
ogy of a given node as defined by RSFC network patterns

predicted the node’s magnitude of task-evoked activity. RSFC-
defined non-connector nodes, identified by relatively greater
predominance of connections to nodes within their own func-
tional system relative to other nodes of the same system, exhib-
ited greater brain activity than connector nodes defined within
each system. This selective activation was specific to task-relevant
systems. To test whether this relationship persists across
networks with different topological organization and areal re-
cruitment, we extended our analyses to include participants rep-
resenting the adult life span from ages 20-89 years; these
participants had previously been shown to exhibit differences in
their RSFC network topology (Chan et al., 2014). We found re-
duced topological distinctions between system-specific connec-
tor and non-connector nodes in adults with increased age. The
reduced topological distinctions observed in older adults corre-
spond to reduced differentiation of connector versus non-
connector nodes during task performance. The results provide
evidence that network topology observed at rest may play arole in
constraining functional activity of brain areas. Furthermore, the
findings provide a novel network-based hypothesis to explain
numerous observations that have highlighted a “dedifferentia-
tion” of brain activity prominently observed in aging cohorts of
individuals (Grady et al., 1994; Cabeza, 2002; Park et al., 2004).

The connectional topology of nodes relate to their function

In many real-world networks, a node’s function is largely deter-
mined by its patterns of connections (Guimera et al., 2005; Har-
riger et al., 2012). In brain networks, there is evidence that nodes
that serve as bridges between communities or systems may be
functionally different from nodes with a preponderance of con-
nections to nodes within their own system. For example, across
the entire brain network, brain areas (nodes) that exhibited many
connections to areas in systems other than their own were shown
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Figure 4.  Older adults exhibit reduced activation selectivity in relation to differences in node connectivity patterns. Spring-embedded graphs (4% edge density) depict the (1) RSFC-defined
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deactivations as well (task-induced deactivation is greater in younger adults).

to be functionally more diverse, exhibiting greater probability to
activate during a large variety of tasks (Bertolero et al., 2015).
Consistent with this, brain systems exhibiting greater connectiv-
ity across the entire brain (e.g., associative and control systems;
Cole et al., 2013) are more likely to be engaged during cognitive
tasks that place different processing demands on distinct func-
tional systems, suggesting greater functional flexibility for areas
in these association systems (Yeo et al., 2015). In these prior
reports, the topological properties of nodes have been charac-
terized at a global level. While this approach has served to
highlight important distinctions in processing, it is agnostic to
the community organization of a network that may contain
nodes with similar processing roles across distinct communi-
ties. The present observations serve to illustrate how nodes
with similar roles can be present across distinct functional
systems, and that these similarities predict functional re-
sponses across varying tasks.

The categorization of nodes based on the distinctions in
their topological patterns relative to other nodes in the same
functional system (community) revealed corresponding differe-
nces in connectional topology and task-evoked activity across
individuals of different ages. Throughout the entire brain net-
work, RSFC-defined non-connector nodes of each system exhib-
ited greater task-evoked activity, relative to connector nodes.
Importantly, this activation selectivity was most prominently ob-
served in functional systems relevant to the processing demands
of specific tasks that are mediated by those systems (i.e., the visual

system in relation to the visual classification task, and the associ-
ation systems in relation to the semantic task; Fig. 1F, Fig. 4). This
specificity suggests that distinctions in connectional topology
across nodes may be an important feature for establishing func-
tional specialization, although we comment further on the direc-
tion of the influence below. Consistent with this general theme,
recent work that has highlighted how structural connectivity can
predict the activation of brain areas that are sensitive to process-
ing specific stimulus categories (Saygin et al., 2016).

More broadly, the present work also aligns with emerging
observations of other real-world networks, which have demon-
strated how a node’s topology is strongly linked with its func-
tional specialization (Deng et al., 2012; Harriger et al., 2012;
Turkina et al., 2016). An extension of this relationship predicts
that disruptions in topological distinctions across nodes should
result in a breakdown in their functional specialization. In our
observations of brain networks, breakdowns in topological
distinctions between brain areas that led to discrimination
of connector and non-connector nodes were associated with cor-
responding reductions in the selective activation of non-
connector nodes. We hypothesize that this reduction in
selectivity underscores a reduction in functional specialization
across different node types. This link between node topology and
specialization exhibits interesting parallels in other network do-
mains, such as networks of manufacturing (Turkina et al., 2016),
thus bolstering support for the inferred relationship.
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Aging is accompanied by a breakdown in the differentiation
of task signals over the brain network

The wide age range of our participant sample (20—89 years) al-
lowed examination of differences in network connectional topol-
ogy in relation to task-evoked brain activity. By using fMRI tasks
that engaged distinct functional systems, we were able to high-
light the specificity of the relationship between task activity and
connectivity as a function of system type.

Presently, it is unclear whether the current observations are a
consequence of the RSFC network constraining task activity, task
activity sculpting the organization of RSFC networks, or a bidi-
rectional relationship between the two. A number of studies have
documented experience-dependent changes in specific RSFC
patterns (Lewis et al., 2009; Albert et al., 2009; Harmelech et al.,
2013). These observations, in combination with studies docu-
menting age-related differences in RSFC have led to Hebbian-
based hypotheses for the emergence of RSFC (Dosenbach et al.,
2010; Wig et al., 2011). While we have largely framed our obser-
vations as a reflection of networks constraining task demands, it
is equally possible that (age-dependent) differences in the speci-
ficity of areal recruitment may lead to differences in patterns of
RSFC network patterns. One intriguing possibility is that a basic
set of functional connections that are initially established from an
individual’s genetic and natal environment (Doria et al., 2010
Fransson et al., 2011) are recurrently sculpted into more (or less,
as in senescence) specific topologies due to changes in neural
activity associated with learning, environmental exposure, and
basic neurophysiology (for review, see D’Esposito et al., 2003;
Reuter-Lorenz and Park, 2014). In turn, the sculpted functional
connections encourage functional responses that conform to
these connections. Future studies using longitudinal data will
enable us to explore how the brain’s functional topology and
activity influence one another over time.

While the direction of influence between topology and activity
is currently unclear, the observed associations between age-
related differences in RSFC topology and task activity indicate a
coupling between a brain area’s connectional properties and its
function. By establishing a relationship between RSFC-defined
topology and information processing of brain areas, the present
results help to inform long-standing observations describing age-
related reduction in the differentiation of task-evoked activation
(Grady et al., 1994; Park et al., 2004). This dedifferentiation has
been used to describe different age-related observations: (i) de-
creased specificity, where older adults exhibited less category spe-
cific activation in brain areas that were sensitive toward specific
stimuli in younger adults (Park et al., 2004; Voss et al., 2008), (ii)
and differential recruitment or decreased selectivity, where older
adults activated additional brain areas compared to younger
adults while performing the same tasks (Logan et al., 2002;
Cabeza, 2002; Gutchess et al., 2005; Morcom et al., 2007). The
present observations offer a possible account for the latter. Pre-
vious work has linked age-related differences in areal recruitment
to anumber of sources including behavioral differences (Logan et
al., 2002; Hedden and Gabrieli, 2004; e.g., strategy) or a decreased
ability of older adults to inhibit activations in brain areas that
were irrelevant to the tasks (Logan et al., 2002; Lustig et al., 2003;
Persson et al., 2007). Here, we suggest that one previously unrec-
ognized source of the variance might be related to the topological
differences observed in resting-state networks, which could im-
pact the distinctions (differentiation) of task-evoked activity
across brain areas. We propose that age-related differences in
functional topology provide a unique and complementary
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network-based explanation for the widely observed effect of
age-related dedifferentiation in functional activity.

Although it is beyond the scope of the present manuscript to
investigate how other neurobiological variance may contribute to
the observed effect, age-related changes in brain structure are a
highly probable source (Reuter-Lorenz and Park, 2014). Reduced
white matter integrity (Burzynska et al., 2010), white matter hy-
perintensities (Gunning-Dixon and Raz, 2000), and amyloid de-
position (Dickson et al., 1992) have all been shown to both
disrupt functional connections among highly connected areas
(Buckner et al., 2009; Mormino et al., 2011) and impact brain
activity (Nordahl et al., 2006; Sperling et al., 2009). These sources
of degradation may encourage the reconfiguration of functional
connections between previously less connected nodes of a brain
network as observed here. It is currently unclear whether there is
differential burden on connector versus non-connector nodes;
the present results provide motivation for future inquiry regard-
ing the age-related interaction between structural degradation
and functional topology.

Conclusion

The present results provide evidence that, within specific systems,
RSFC-defined topological patterns of brain areas relate to selec-
tive (or differentiated) functional responses under varying
stimulus- and task-processing demands. Age-related differences
in brain network organization were used as a source of variation
to further examine these relationships across individuals. The
results revealed how distinctions in the topological patterns of
brain networks may account for patterns of age-related reduc-
tions in the observed differentiation of brain activity. Although
the present study focused on differences associated with healthy
adult aging, the implication of the current findings extends to a
more general understanding of the relationship between patterns
of brain network topology and associated function.
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