
COOPERATIVE COLLISION AVOIDANCE FOR AUTONOMOUS VEHICLES USING

MONTE CARLO TREE SEARCH

by

Dhruvkumar Patel

APPROVED BY SUPERVISORY COMMITTEE:

Rym Zalila-Wenkstern, Chair

Farokh B. Bastani

John H. L. Hansen

Jessica Ouyang

Copyright © 2021

Dhruvkumar Patel

All rights reserved

This dissertation is dedicated to my beloved Guru

Mahant Swami Maharaj, my wife, and my parents

for their endless love, encouragement, and support.

COOPERATIVE COLLISION AVOIDANCE FOR AUTONOMOUS VEHICLES USING

MONTE CARLO TREE SEARCH

by

DHRUVKUMAR PATEL, BTech, MS

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

December 2021

ACKNOWLEDGMENTS

I would like to express my profound gratitude to my supervising professor, Dr. Rym Zalila-

Wenkstern, who has shown me what I can achieve by pushing me beyond my perceived

limits time and again. She has not only been an amazing mentor but also family and

a good friend. I cannot express enough thanks to my dissertation committee, Professor

Farokh Bastani, Profesh John Hansen, and Professor Jessica Ouyang for their expert and

constructive feedback, and for devoting their invaluable time for my proposal and dissertation

defense. I am also grateful to previous graduate students from UTD MAVS lab, especially

Dr. Behnam Torabi and Dr. Mohammad Al-Zinati, who helped me with their expertise

whenever I needed. Finally, I want to express my gratitude to my friends who made the

challenging journey a pleasent experience for me.

December 2021

v

COOPERATIVE COLLISION AVOIDANCE FOR AUTONOMOUS VEHICLES USING

MONTE CARLO TREE SEARCH

Dhruvkumar Patel, PhD
The University of Texas at Dallas, 2021

Supervising Professor: Rym Zalila-Wenkstern, Chair

Autonomous vehicles require an effective cooperative action planning strategy in an emer-

gency situation. Most action planning approaches for autonomous vehicles do not scale well

with the number of vehicles. In this dissertation, we present COCOA (Cooperative Collision

Avoidance), an efficient cooperative action planning algorithm for autonomous vehicles in col-

liding situations. In COCOA, autonomous vehicles drive together in coalition formations for

information sharing and cooperation. When a coalition member detects a colliding situation

with a misbehaving vehicle, all coalition members explicitly cooperate to find conflict-free

action plans to avoid collisions with the misbehaving vehicle. COCOA employs a hierarchi-

cal decision-making approach where action planning is achieved at two levels: at the vehicle

level and at the coalition level. In emergency scenarios involving multiple coalitions, COCOA

employs a sequential and hierarchical decision-making approach. Leaders of the coalitions

in a coalition sequence cooperate to finalize action plans for their coalition members that

are free of inter-coalition conflicts. The COCOA algorithm is validated through extensive

realistic simulations in a multi-agent-based traffic simulation system.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF FIGURES . ix

LIST OF TABLES . x

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND . 4

2.1 Autonomous Vehicle Technologies . 4

2.1.1 Technologies for Environment Sensing 4

2.1.2 Technologies for Localization . 5

2.1.3 Technologies for Vehicle Communications 6

2.2 Autonomous Vehicle Simulation . 8

2.3 Autonomous Vehicle Action Planning . 9

2.4 Related works . 11

2.4.1 Non AI-based approaches . 12

2.4.2 AI based approaches . 17

CHAPTER 3 COCOA ALGORITHMS FOR A SINGLE COALITION 22

3.1 Model Definition . 22

3.2 Hierarchical Approach . 23

3.2.1 CAV level approach . 23

3.2.2 Coalition level approach . 25

3.3 Algorithms . 26

3.3.1 Branching Factor Reduction . 26

3.3.2 Intelligent Action Selection . 29

3.3.3 Adaptive and Cooperative Reward Function 34

3.3.4 Coalition level decision making using Beam Search 38

CHAPTER 4 CASE STUDY FOR SINGLE COALITION ALGORITHMS 42

4.1 Case Study 1: Acceleration misbehavior . 42

4.2 Case Study 2: Break misbehavior . 45

vii

4.3 Case Study 3: Zigzag misbehavior . 48

CHAPTER 5 SINGLE COALITION ALGORITHMS EVALUATION
USING SIMULATION EXPERIMENTS . 51

5.1 Simulation Experimental Setting . 51

5.2 Tuning COCOA Parameters . 53

5.3 Reliability Evaluation . 55

5.4 Scalability Evaluation . 59

CHAPTER 6 COCOA ALGORITHMS FOR MULTIPLE COALITIONS 61

6.1 Model Definition . 61

6.2 General Approach . 61

6.3 Algorithms . 62

6.3.1 Primary coalition algorithm . 62

6.3.2 Secondary coalition algorithm . 64

CHAPTER 7 MULTIPLE COALITIONS ALGORITHMS EVALUATION USING SIM-
ULATION EXPERIMENTS . 67

7.1 Simulation Experimental Setting . 67

7.2 Parameter Tuning . 68

7.3 Reliability Evaluation . 69

7.4 Scalability Evaluation . 70

7.5 Trade-off Analysis . 71

CHAPTER 8 CONCLUSION . 73

8.1 Contributions . 73

8.2 Lessons learned . 74

8.3 Future Work . 75

REFERENCES . 76

BIOGRAPHICAL SKETCH . 81

CURRICULUM VITAE

viii

LIST OF FIGURES

2.1 CAV Sensing and Communication Technologies 5

2.2 Vehicle agents communicate within communication radius in MATISSE 9

2.3 Vehicle agent with long range RADAR and short range LiDAR in MATISSE . . 9

2.4 Four steps in a single iteration of Monte Carlo Tree Search 11

3.1 MCTS search tree for a coalition of 6 CAVs, the individual action space size
|Ai| = 5 and the planning horizon h = 3. For regular MCTS, the branching
factor equals 15625 and the size of the fully expanded tree ≈ 3.8 × 1012. For
COCOA, the branching factor equals 5 and the size of the fully expanded tree is
156. 26

3.2 cll and clr actions for CAV i at time tk . 36

4.1 Case Study 1: Acceleration misbehavior type 44

4.2 Case Study 2: Break misbehavior type . 46

4.3 Case Study 3: Zigzag misbehavior type . 49

5.1 Different types of misbehavior by the misbehaving vehicle 52

5.2 Scalability experiments: arrangement of CAVs in the coalition 53

5.3 Tuning CM parameter values . 54

5.4 Tuning CA parameter values . 56

5.5 β parameter values . 57

5.6 Reliability results . 58

5.7 Scalability results . 60

7.1 Misbehavior types for multi-coalition reliability evaluation 68

7.2 β parameter values for multi-coalition experiments 69

7.3 Reliability evaluation . 70

7.4 Trade-off analysis: 6 coalitions of 2 CAVs each (total 12 CAVs) 71

7.5 Success rate for different number of coalitions constructed out of 12 CAVs . . . 72

ix

LIST OF TABLES

2.1 Non-AI based Centralized Approaches . 14

2.2 Non-AI based Decentralized Approaches . 15

2.3 AI based (Decentralized) Approaches . 17

3.1 CAV Actions . 23

4.1 Acceleration misbehavior: Final actions chosen by coalition leader 45

4.2 Break misbehavior: Final actions chosen by coalition leader 47

4.3 Zigzag misbehavior: Final actions chosen by coalition leader 48

5.1 Optimal parameter values . 59

x

CHAPTER 1

INTRODUCTION

Ever since the 2004 DARPA Grand Challenge, much effort has been spent developing ad-

vanced sensor technologies and smart control systems to achieve high driving automation

levels. In 2014, the Society of Automotive Engineers established six driving automation levels

documented in the J3016 standard (Committee, 2016). At Level 0, a vehicle is human-driven

and has no autonomous capabilities. At Level 4, a vehicle is fully autonomous but can oper-

ate only in certain conditions (e.g., set areas, good weather conditions). At Level 5, a vehicle

is fully autonomous and can drive everywhere and in all weather conditions.

While existing autonomous vehicles (e.g., Tesla, Mercedes, GM, BMW, Audi) are Levels 2

and 3, researchers, manufacturers, lawmakers, and regulatory agencies are diligently working

on addressing the massive technological, regulatory, and social hurdles to achieve Levels 4

and 5 (Milakis, 2019; Johnson, 2017).

This work focuses on the study of Level 4 Connected and Autonomous Vehicles (CAVs).

A CAV is an autonomous vehicle capable of interacting and communicating with other

CAVs through short-range communication. CAVs dynamically form coalitions when they

are in proximity of each other. Coalition formation supports information sharing among

the coalition members to improve roadway safety (Siegel et al., 2018). We focus on CAVs

driving on highways and consider the case where a random CAV misbehaves due to technical

problems or unexpected environmental changes (e.g., roadblocks, torrential rains, etc.). This

research aims to define coalition-based cooperative planning strategies to avoid collisions.

The problem of cooperative action planning for CAVs collision avoidance has been studied

in the literature. (Schwarting et al., 2018) extensively reviews many recent approaches for

cooperative action planning and motion planning for autonomous vehicles. AI-based and

non-AI-based methods have been proposed. AI-based approaches (Lenz et al., 2016),(Kurzer

et al., 018a),(Kurzer et al., 018b) generally formulate the planning process as a Markov

1

Decision Process (MDP). MDPs require enumeration over states and actions making them

impractical for large state spaces such as the CAV planning problem. The Monte Carlo Tree

Search (MCTS) (Coulom, 2006; Vodopivec et al., 2017) has recently shown promising results

in problems with very large state spaces (Silver et al., 2017), but is generally limited in the

number of agents.

We present Cooperative Collision Avoidance (COCOA), an MCTS-based algorithm for

CAV cooperative planning in colliding situations. In COCOA, a plan is defined as a sequence

of actions for a planning horizon and takes into account the continuously exchanged infor-

mation between coalition members. In this dissertation, we discuss COCOA in two contexts:

a single coalition and multiple coalitions. For single coalition decision-making, we propose

a two-step decision-making approach. When a misbehaving vehicle is detected, each CAV

uses the information exchanged with the coalition CAVs and executes COCOA to derive a

set of action plans to avoid collisions. Each CAV’s prioritized set of plans is sent to the

coalition leader, and in the second step, the leader selects the individual coordinated action

plans that are conflict-free, when possible.

For multiple coalitions decision-making, we propose a sequential decision-making ap-

proach. When a misbehaving vehicle is detected, the affected coalition executes COCOA

algorithm for a single coalition described above to generate action plans for its members and

sends these plans to its neighboring coalition. The neighboring coalition takes into account

the received plans of the previous coalition when generating plans for its members. These

sequential decision-making steps are carried out until the last coalition on the road has

finished generating plans for its members. The proposed algorithm is the first cooperative

collision avoidance algorithm that is applied to multiple coalitions. It improves upon the

state-of-the-art MCTS-based algorithms for CAVs by exponentially reducing the size of the

search tree and therefore allows for a scalable solution.

In the next chapter, we give the background knowledge for the topic of our research and

discuss related works. In Chapter 3, we formalize the problem and present the COCOA

2

algorithms for a single coalition. In Chapter 4, we present a case study to examine the be-

havior of COCOA algorithms for a single coalition. In Chapter 5, we evaluate the algorithms

for a single coalition using simulation experiments and present the results. In Chapter 6, we

present the COCOA algorithms for multiple coalitions, and in Chapter 7, we evaluate the

algorithms for multiple coalitions using simulation experiments.

3

CHAPTER 2

BACKGROUND

In this chapter, we give background knowledge on CAVs (Patel and Zalila-Wenkstern, 020b)

and discuss related works.

2.1 Autonomous Vehicle Technologies

A CAV is a complex automated system that integrates computing, communication, and

control technologies (Elliott et al., 2019). At a high level, a CAV must

1. be aware of its surroundings. Therefore it should be able to a) sense the environment

in which it is situated, and b) localize itself;

2. be able to communicate with adjacent vehicles and vehicles within the coalition;

3. be able to communicate with the infrastructure to obtain information such as road

conditions or emergency situations;

4. continuously assess risks and make autonomous decisions.

In order to fulfill these requirements, a CAV makes use of advanced sensing devices and

communication technologies (see Figure 2.1).

2.1.1 Technologies for Environment Sensing

The commonly used technologies for environment sensing include Ultrasonic sensors, RADAR,

LiDAR, and cameras. Ultrasonic sensors are used as vehicular sensors for near object detec-

tion. They provide direct distance measurements for very near range (i.e., up to 2 meters)

(Rasshofer and Gresser, 2005). The main advantage of ultrasonic sensors is their ability to

operate in poor weather conditions. LiDAR and RADAR are long-range detection systems

used to determine the distance, angle, and speed of vehicles, pedestrians, and obstacles (Zhao

4

Figure 2.1: CAV Sensing and Communication Technologies

et al., 2018). A LiDAR system can detect objects with higher accuracy than a RADAR but

its detection range is shorter and costs more (i.e., tens of meters for LiDAR versus up to 200

meters for RADAR) (Rasshofer and Gresser, 2005). Google, Uber, and Toyota rely heavily

on LiDARs. Tesla uses RADARs with cameras (Rasshofer and Gresser, 2005). Latest devel-

opments in LiDAR technologies have brought the costs down and have increased its range

significantly making it comparable to the RADAR range (Hawkins, 2020).

2.1.2 Technologies for Localization

A localization system identifies the location of a CAV on a global coordinate system. While

often inaccurate and unreliable, GPS is currently the most commonly used localization sys-

tem for CAVs, mainly due to its low cost and high availability. To address GPS limitations

companies have used additional technologies such as Inertial Motion Units (IMU) (Zhang

et al., 2012). The error of GPS integrated with IMU was found to be the root mean square

5

value of 7.2m, compared to 13.2m for GPS (Zhang et al., 2012). However, GPS integrated

with IMU is prone to error accumulation as the vehicle travels along its desired trajectory.

Therefore, the use of devices such as LIDAR may lead to more reliable results (Kuutti

et al., 2018). Researchers have also suggested the use of communication data to improve

localization accuracy (Kuutti et al., 2018).

2.1.3 Technologies for Vehicle Communications

Vehicular communication is a core requirement for CAVs. In order to provide Vehicle-to-

Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) capabilities, three main types of network-

ing approaches are commonly used (Siegel et al., 2018). These include mesh networking,

cellular networking and hybrid networking. We discuss each of the approaches below.

Mesh networking

A mesh network is a distributed network topology in which nodes connect with each other

directly and dynamically to efficiently route data to/from clients (Djukic and Valaee, 2018).

A vehicular ad-hoc network (VANET) is a vehicular mesh network that allows moving vehi-

cles to rapidly exchange safety messages with one another and with the traffic infrastructure

(Bhatia et al., 2018).

The key enabling communication technology for VANET is Dedicated Short Range Com-

munication (DSRC). DSRC is an open-source protocol for secure, high-speed wireless com-

munications. It supports high-speed data rates (up to 27 MB/s) and has a transmission

range of 100 to 1000 meters. Additionally, its low latency makes it a preferred wireless tech-

nology for road safety messaging. In the US, the Federal Communications Commission has

allocated 75 MHz of spectrum in the 5.9 GHz frequency to be used for mobility applications.

DSRC operates in this band and has been standardized as a communication protocol for

a variety of applications in Intelligent Transportation Systems (ITS). Nevertheless, DSRC

6

is limited by intermittent connectivity due to fast-moving vehicles and changing VANET

topologies (Abboud et al., 2016).

Cellular Networking

The latest development in cellular vehicular networking is Cellular Vehicle-to-Everything (C-

V2X) technology. C-V2X is being developed as part of the overall 3rd Generation Partnership

Project (Naik et al., 2019) to advance cellular systems from 4G to 5G technologies. 3GPP

is a union of seven telecommunications organizations, which work on next-generation 5G

standards. C-V2X developers plan to enable every DSRC capability in C-V2X and expand

them even further. C-V2X has a clear advantage over DSRC in V2I communications, since it

can leverage traditional cellular infrastructures and, unlike DSRC, does not rely on installing

new devices on the road networks for V2I capabilities (Ghafoor et al., 2019). According to

testing done by Qualcomm, C-V2X doubles the range of DSRC and increases the alert time

by a few seconds (Lucero, 2016).

Hybrid Networking

Several hybrid vehicular networking architectures have been proposed. The guidelines of

Communication Access for Land Mobile (Ernst et al., 2009) discusses a vehicular communi-

cation infrastructure that combines VANETs and centralized cellular networks. The hybrid

solution leads to a broader coverage area and high networking throughput. Other hybrid

solutions include the integration of mobile cloud computing and context-aware technologies

(Ahmad et al., 2017). These solutions have not been widely implemented and tested.

In this research, we consider a CAV equipped with the following:

• Short-range LiDAR that covers about 100 meters in all directions in a 360-degree

field-of-view.

7

• Long-range RADARs in front and back which cover the equivalent of 200 meters in an

18-degree field-of-view. The range and field-of-view values can be adjusted dynamically

to simulate medium-range.

• GPS for localization.

• DSRC for continuous communication with other CAVs within a maximum of 500-meter

range. This range can be dynamically changed. The continuously shared information

with surrounding vehicles includes vehicle position, heading, speed, and dimensions.

This configuration is the technical basis for the state-of-the-art CAVs available to date (e.g.,

Mercedes S500 and Audi A8).

2.2 Autonomous Vehicle Simulation

An agent-based simulation environment that supports sensing, autonomy, communication,

and decentralization is critical for a realistic assessment of autonomous vehicle algorithms.

We evaluate our algorithms in MATISSE 3.0, a microscopic multi-agent-based traffic simu-

lation system developed at the MAVS lab at UT Dallas (Torabi et al., 2018). In MATISSE,

vehicles and intersection controllers are modeled as virtual agents which perceive their sur-

roundings through sensors and continuously interact with one another.

The virtual CAV is implemented as an autonomous decision-making agent. It can dy-

namically sense the surrounding environment and other CAVs using simulated short and

long-range sensors (see Figure 2.3). It can also communicate with other virtual CAVs within

its communication radius through simulated V2V communication (see Figure 2.2). During

the simulation, the user can modify a CAV’s properties (e.g., sensor range, communication

radius, etc.) and behavior (e.g., speed) and witness the outcome in simulated real-time.

8

Figure 2.2: Vehicle agents communicate within communication radius in MATISSE

Figure 2.3: Vehicle agent with long range RADAR and short range LiDAR in MATISSE

2.3 Autonomous Vehicle Action Planning

Autonomous vehicle action planning is the task of determining the next CAV actions (e.g.,

speed up, brake, lane change etc.) in any given CAV state. A CAV state is a vector

containing CAV’s position, speed, steering angle, dimensions etc. Since the state space for

9

CAVs is extremely large, classical planning algorithms are not very efficient for the CAV

action planning problem (Andriotis and Papakonstantinou, 2019). Reinforcement learning

techniques from the AI domain have traditionally been used to solve different multi-agent

action planning problems. We explore a reinforcement learning technique known as Monte

Carlo Tree Search (MCTS) (Vodopivec et al., 2017), that has recently shown promising

results in the problems with very large state spaces such as the game of Go (Silver et al.,

2017).

MCTS is a simulation-based tree-search algorithm. Each CAV executes MCTS to build

a search tree iteratively (Lan et al., 2020). Nodes in the MCTS tree correspond to the

CAV states and edges correspond to the CAV actions. Each tree node stores two numerical

parameters, known as node value and node count. A CAV executes MCTS by first creating a

single node tree that stores the current CAV state and then performs many MCTS iterations

to explore this tree further. A single MCTS iteration consists of four steps (See Figure

2.4): Selection, Expansion, Simulation, and Backpropagation. MCTS makes use of a reward

function during its simulations. CAV actions that lead to colliding CAV states receive a

negative/lower reward, whereas CAV actions that lead to desirable CAV states receive a

positive/higher reward. Below we describe each of the above-mentioned four steps of a

single MCTS iteration:

• Selection: In the selection step, CAV starts from the root node and selects consequent

child nodes using some heuristic function defined over the node parameters (node value

and node count) until a leaf node is reached.

• Expansion: In the expansion step, CAV expands the leaf node by adding all possible

child nodes at that leaf node. Each child node corresponds to a distinct CAV action

available at the leaf node.

• Simulation: In the simulation step, CAV selects one of the expanded child nodes and

performs a Monte-Carlo simulation of CAV actions starting from that child node.

10

• Backpropagation: In the backpropagation step, the reward received at the end of the

simulation step is used to update the node values and the node counts in a reverse-path

from the leaf node to the root node.

Figure 2.4: Four steps in a single iteration of Monte Carlo Tree Search

The resultant MCTS tree can be used to select CAV’s next best action. Although the basic

version of MCTS handles the problem of a large CAV state-space, it does not scale well as

the number of CAVs grows. Additionally, it does not guarantee the collision-free solution of

CAV actions in some cases even if one exists (Schaeffer et al., 2009). As such, it needs to be

significantly improved upon for its application to the CAV action planning problem.

2.4 Related works

Many CAV collision avoidance methods have been proposed in the literature. We classify

these methods according to the decision-making (i.e., planning) approach, namely non AI-

based optimization and AI-based optimization and further categorize them as centralized or

decentralized. Centralized CAV collision avoidance systems are systems in which a centralized

computer is responsible for making collision avoidance decisions for vehicles. In decentralized

systems, the decision-making is performed individually by each CAV.

11

2.4.1 Non AI-based approaches

Centralized

Most conventional optimization-based approaches fall into this category. These approaches

formulate the trajectory planning problem for CAVs as a single, global optimization problem.

We list these approaches in Table 2.1. In these approaches, each vehicle typically has partial

knowledge of the environment. Each vehicle shares its state and/or trajectory information

with the centralized server. The centralized server has full knowledge of the environment.

The server uses the proposed optimization algorithm to find non-colliding trajectories for all

vehicles. The main difference is in the optimization method used by the server.

(Kessler and Knoll, 2019) proposes to use Mixed Integer Linear Programming (MILP)

with the collision constraints added to the MILP problem. In (Burger and Lauer, 2018),

authors propose to use Mixed Integer Quadratic Programming (MIQP) with the collision

constraints added to the MIQP problem. The main limitation of these approaches is their

inability to provide a solution in practically feasible computation time, especially in scenarios

with a large number of vehicles. (Schwarting and Pascheka, 2014) proposes to use a two-step

method to generate collision-free actions. In the first step, an egoistic action for each CAV

is derived. For each pair of CAVs that has conflicts, the lowest cost action combination is

chosen in the second step by generating all maneuver combinations. (Duering et al., 2014)

proposes a graph theory-based optimization approach. Each vehicle defines its reachable

target points (RTPs) and sends them to the server. The server checks these points for

collisions with other vehicles and static objects and defines safe target points (STPs), from

which final trajectories are generated using grid generation, path planning, and trajectory

planning. The main limitation of this approach is the large computation time required due

to high RTP density, a high number of STPs, and a high number of trajectory combinations.

(Manzinger et al., 2017) proposes to use a pre-defined maneuver template approach. A

12

maneuver template describes the continuous dynamics of a set of vehicles along with several

constraints. The server checks the off-line calculated maneuver templates to match with the

current traffic scene with specific initial and feasibility constraints. The maneuver template

with the lowest cost specifies the cooperative maneuver. The main limitation of this approach

is that it may require a very large number of off-line calculated maneuver templates to cover

all possible traffic situations. In (Wang et al., 2018), the authors propose a cloud computing-

based solution that uses parallel processing. The vehicle trajectory planning problem is

formulated as a centralized Quadratic Programming (QP) problem. The authors apply the

Alternating Direction Method of Multipliers (ADMM) (Boyd et al., 2011) to decompose the

centralized optimization problem. A network of computing nodes solves the decomposed

centralized optimization problem. The results show that the parallel processing method is

slower than the same method without parallelization for up to 25 vehicles.

Nakamura et al. (2020) presents a short-term trajectory generation algorithm with the

formal guarantee of collision avoidance using an SAT (Satisfiability) solver. A central server

formulates the collision avoidance problem as a constrained integer programming problem.

In this formulation, trajectories are discretized and represented using a set of waypoints.

Each waypoint represents the vehicle status, i.e., position, velocity, and acceleration (later-

ally and longitudinally) at a discrete time step. Optimization variables are boolean variables

that represent if a vehicle should accelerate or not at each time step. These boolean variables

are defined for both lateral and longitudinal directions. Constraints for collision avoidance

between two vehicles, constraints for collision avoidance between a vehicle and an obstacle,

and constraints to reach a specific goal state are added to the integer programming prob-

lem. The optimization objective is defined as the minimization of the travel time. This

optimization problem is solved using CP-SAT solver from Google OR-Tools software. Two

methods are introduced to reduce the computation time. In the first method known as the

grouping method, vehicles are grouped into disjoint sets of interacting vehicles. Trajectory

13

Table 2.1: Non-AI based Centralized Approaches

Approach
Knowledge Data acquisition

Optimization
method

Central CAVs Central CAVs
Full Part. Full Part. V2I V2V V2I Sensors

(Kessler
and Knoll,
2019)

X X X X X MILP

(Duering
et al.,
2014)

X X X Graph the-
ory

(Schwarting
and
Pascheka,
2014)

X X Exhaustive
search

(Burger
and Lauer,
2018)

X X X X MIQP

(Manzinger
et al.,
2017)

X X Maneuver
template

(Wang
et al.,
2018)

X X X X ADMM

(Nakamura
et al.,
2020)

X X X X SAT

optimization is performed for each disjoint set separately. In the second method known as

the collision checkpoint method, optimization is carried out after every specific number of

discrete time steps instead of after every time step. Knowledge of the dynamic environment

including all vehicles states is acquired using V2V and V2I communication. The main limita-

tion of this approach is its inability to provide a solution in real-time, especially in scenarios

with a large number of vehicles.

We consider (Nakamura et al., 2020) state-of-the-art in centralized approaches, as it

gives the formal guarantee of collision avoidance whenever possible. Additionally, it also

reduces computation time by 98% using the collision checkpoint method compared to using

14

Table 2.2: Non-AI based Decentralized Approaches

Approach
CAV knowledge CAV data acquisition Optimization

methodFull Partial V2V V2I Sensors Not mentioned
(Duering
and
Pascheka,
2014)

X X Exhaustive
search

(Krajewski
et al.,
2016)

X X X Graph the-
ory

(Gao et al.,
2019)

X X X Potential
field

(Bellan
and
Wartnaby,
2020)

X X X Nonlinear
optimization

the centralized approach without this method. Although centralized approaches provide

optimal solutions, they are computationally expensive and not scalable.

Decentralized

(Duering and Pascheka, 2014) presents a brute force algorithm that performs an exhaustive

search on all maneuver combinations for all CAVs. Each CAV derives all possible maneuvers

for itself and associates cost for each maneuver using a cost function. The list of maneu-

vers and associated costs are shared with all other CAVs using V2V communication. Each

CAV then goes over all possible joint combinations of maneuvers to find the collision-free

combination with the lowest cost. Decision-making is performed at the vehicle level. Each

CAV has full knowledge of the static and dynamic environment. Knowledge of the dynamic

environment is acquired using V2V communication. Coordination is achieved explicitly us-

ing V2V communication. The main limitation of this approach is its inability to handle a

large number of CAVS and the fact that the solution is not better than any centralized ap-

proach as the same exhaustive computation is carried out by each CAV. In their later work

15

(Pascheka and Duering, 2015), authors added the “memory of cost” parameter for each CAV

without changing the core algorithm. This parameter helps with the cases when one CAV

is consecutively preferred over the other in multiple decision-making steps. (Pascheka and

Duering, 2015) has same limitations as (Duering and Pascheka, 2014).

(Krajewski et al., 2016) proposes a graph theory-based approach. A two-step method

based on the A* graph search algorithm is proposed for collision avoidance at urban inter-

sections. In the Trajectory Layer (TL) step, each CAV computes its unique trajectory using

A* search to minimize the cost. In the Negotiation Layer (NL) step, all CAVs approaching

the intersection share their trajectories with each other. Each CAV decides its own group

based on the conflicting trajectories. Each CAV performs A* search again to compute a new

trajectory with the collision avoidance constraints. This two-step process is repeated until

the collision-free trajectories are found. The decision-making is performed at the vehicle level

in this approach. Each CAV has access to full knowledge about the static environment and

partial knowledge about the dynamic environment. Knowledge about other vehicles and the

static environment is acquired using V2V and V2I communication. Coordination is achieved

explicitly between CAVs using V2V communication. The main limitation of this approach is

that vehicle groups are created at the beginning of the algorithm based on collisions detected

at the beginning but they are not updated later. In subsequent phases, new collisions may

occur between CAVs of different groups due to the updated trajectories.

(Gao et al., 2019) proposes an artificial potential field approach for a convoy of CAVs.

Each CAV formulates the environment representation that contains an artificial repulsive

potential function for each of the CAVs and obstacles. Each CAV uses a gradient descent

method to derive its trajectory in this environment of repulsive potential functions that allow

the CAV to avoid collisions with the other CAVs and the obstacles. However, this approach

does not induce a complex cooperative behavior needed for many conflicting scenarios.

(Bellan and Wartnaby, 2020) proposes a desired-versus-planned approach. Each CAV

derives and broadcasts two trajectories: a planned trajectory that it is currently following

16

Table 2.3: AI based (Decentralized) Approaches

Approach
CAV knowledge CAV data acquisition Optimization

methodFull Partial V2V V2I Sensors Not mentioned
(Lenz
et al.,
2016)

X X MCTS

(Kurzer
et al.,
018a)

X X MCTS

(Kurzer
et al.,
018b)

X X MCTS

(Kurzer
et al.,
2020)

X X MCTS

(Kurzer
et al.,
018b)

X X X Actor-critic

COCOA X X X MCTS

and the desired trajectory that it wants to follow. When a different CAV receives this

information, it checks if it can accommodate the first CAV’s desired trajectory and broadcasts

its updated trajectory. A cost-based non-linear optimization problem is solved to generate

the updated trajectories. The authors tested this approach for two CAVs in an actual road

test. Although this approach is successful for two CAVs in simple conflicting situations, it is

not scalable to more than two CAVs as the algorithm takes many replanning steps for each

CAV to converge.

2.4.2 AI based approaches

In AI-based approaches, each CAV performs decision-making by learning the value of an

action in its current state. Systems in this category are decentralized, i.e., each CAV deter-

mines the value of available actions individually using implicit or explicit cooperation with

other CAVs.

17

(Lenz et al., 2016) proposes a decision-making approach based on Monte-Carlo Tree

Search (MCTS). A CAV has access to full knowledge of the road network and acquires data

about other CAVs using sensors. Each CAV performs an MCTS algorithm which includes

the classical four steps, i.e., selection, expansion, simulation and backpropagation (Browne

et al., 2012). In the search tree, a node refers to a joint state of all CAVs, an edge refers to a

single CAV action, and a sequence of edges from the root node corresponds to actions taken

by all CAVs. At the end of the algorithm, each CAV executes the action having the highest

action value at the root node. The approach was evaluated on scenarios involving up to

three cooperative vehicles. The main limitation of this approach is scalability. For a larger

number of CAVs, the MCTS tree grows exponentially in depth and becomes computationally

expensive.

(Kurzer et al., 018a) applies MCTS to cooperative driving formulated as a Semi Markov

Decision Process (SMDP). Similarly to (Lenz et al., 2016), each CAV executes the classical

four steps of MCTS. A node in the tree refers to a joint state of all CAVs and an edge

refers to joint action. To reduce the tree depth, this work uses macro actions defined as

sequences of primitive actions. For each macro action, a policy determines the start state

and the number of primitive actions to be executed before it ends. In the MCTS selection,

expansion and simulation steps, all simulated CAVs select macro actions according to their

policies until primitive actions are chosen, and then determine the next joint state using

joint primitive actions. In the backpropagation stage, the value of each node of the tree is

updated using the cumulative reward. Each CAV chooses a macro action according to the

maximum reward at the root of the tree. The approach was evaluated on scenarios involving

up to three CAVs. Similarly to (Lenz et al., 2016), the main limitation of this approach

is scalability as the MCTS tree grows exponentially, but in width, for a larger number of

CAVs.

18

(Kurzer et al., 018b) uses a version of MCTS algorithm known as decoupled-UCT (Tak

et al., 2014) to solve cooperative driving problem formulated as a decentralized Markov De-

cision Process (Dec-MDP). Vehicle trajectories are approximated using quintic polynomials

and the continuous action-space is not discretized. Each CAV executes the classical four

steps of MCTS. A few extensions are introduced to the MCTS algorithm to deal with prob-

lems that arise from the large size of the continuous action space. (1) Semantic grouping

method allows each vehicle to group its actions at each state into nine action groups. During

the MCTS selection step, an action group is selected first at each state and then a vehicle

action is selected from the selected action group. (2) In the progressive widening method,

each vehicle starts with a small size of predefined action-space at each state initially. As the

state is visited more often during the execution of MCTS, more actions are added to the

state’s action-space using a guided search method. (3) Authors introduce the kernel update

method to mitigate the problem of not visiting all states in the tree due to the large action

space. This method is used during the backpropagation phase. In this method, the node

values and the visit counts of all the states similar to the current state are also updated after

being weighted by a state similarity measure. This approach was evaluated on two road

scenarios involving up to three cooperative vehicles. The main limitation of this approach is

its scalability as the action space of each state and nodes in the MCTS tree grow significantly

with the number of vehicles.

In their later work (Kurzer et al., 2020), authors propose a preprocessing step for MCTS.

A heuristic model over vehicle actions is learned from a synthetic driving dataset. The learned

model is plugged back into DeCoC-MCTS to steer the algorithm towards more promising

areas of the action space. The authors show that MCTS with the heuristic model has a

higher success rate than the baseline MCTS in some scenarios.

(Yuan et al., 2020) proposes an actor-critic-based method called Cooperative Deep De-

terministic Policy Gradients (Co-DDPG) to solve the MMDP. The authors propose that

19

CAVs share the learned MMDP parameters with each other to improve the collision avoid-

ance success rate. The algorithm was tested on scenarios involving up to three CAVs. The

main drawback with the decentralized reinforcement learning-based approaches that have

an individual reward function with implicit cooperation is that the collision avoidance is

only guaranteed when all CAVs reach Nash equilibrium, i.e., they all find the same solution.

Another drawback is scalability in the number of agents.

We consider (Kurzer et al., 018b) state-of-the-art in AI-based decentralized approaches

as it uses continuous action-spaces for vehicles as opposed to a pre-defined finite set of

actions. They also introduce several extensions to MCTS to overcome the problems arising

due to the large size of continuous action spaces. This allows for higher flexibility for vehicle

trajectories using continuous actions without increasing the computational complexity of

MCTS. The main limitation of current MCTS-based approaches is their limited scalability

in the number of CAVs. Another major limitation of MCTS is that Nash equilibrium is

necessary for a collision-free solution, but is not always guaranteed. This leads to collisions

in many situations.

In this dissertation, we present Cooperative Collision Avoidance (COCOA) algorithm

for the cooperative action planning for coalitions of CAVs in colliding situations. We use

a partially-decentralized approach for the COCOA algorithm. We propose a hierarchical

decision-making method where decision-making is performed at two levels: at the CAV level

and at the coalition level. Cooperation is achieved explicitly among CAVs in a coalition using

V2V communication. Additionally, cooperation among different coalitions is also achieved

explicitly using V2V communication. The unique contributions of our approach are:

• It is the first algorithm in our knowledge to achieve cooperative collision avoidance for

multiple coalitions of CAVs.

20

• It introduces a novel hierarchical decision-making method for the cooperative action

planning of CAVs in a single coalition with explicit cooperation through V2V commu-

nication.

• It introduces a novel sequential decision-making method for the cooperative action

planning of multiple coalitions with explicit cooperation through V2V communication.

• It introduces a branching factor reduction method for MCTS that reduces MCTS tree

size exponentially to improve scalability (Patel and Zalila-Wenkstern, 020a).

• It introduces an intelligent action selection strategy for MCTS to improve reliability

(Patel and Zalila-Wenkstern, 021a).

• It introduces a novel idea of updating the weights of the CAVs reward functions in

MCTS dynamically based on coalition states (Patel and Zalila-Wenkstern, 021b) to

further improve reliability.

• It uses a simple coalition-level decision making algorithm to find a non-colliding se-

quence of actions for a planning horizon when possible as opposed to one action at a

time, thus removing the possibility of inevitable future collisions.

• It has been thoroughly tested and evaluated against state-of-the-art approaches in

MATISSE 3.0, a large-scale multi-agent-based simulation system.

21

CHAPTER 3

COCOA ALGORITHMS FOR A SINGLE COALITION

3.1 Model Definition

In the remainder of this dissertation, the terms agent and CAV are used interchangeably.

We assume that a coalition C of n CAVs is navigating on a straight highway. The coalition

is formed when a finite set of CAVs are in close proximity. C ’s agents are called coalition

members. One coalition member is assigned the role of a leader and is responsible for

coalition management. Coalition formation and leader assignment algorithms are adapted

from (Manoochehri and Wenkstern, 2017).

A CAV is defined by its ID i ∈ C and a state vector si = [pi, vi, li, θi, xi] where pi is

the CAV’s position coordinates, vi is its velocity, li is its current lane, θi is its orientation,

and xi is the size of the vehicle containing length and width values. A coalition joint state

s = {si}i∈C is the set of states of all coalition members.

Each CAV can perform the actions listed in Table 3.1. The effect of taking an action

ait at time t is determined using the trajectory of i, denoted as τ i
ait

. τ i
ait

is computed using

velocity, position and orientation. A mitigation action plan αih is a sequence of h consecutive

actions that is defined by a CAV i in case of perceived danger or warning related to a

misbehaving vehicle. It is defined as αih = {aitk}
h
k=1, where tk is the start of the execution of

the mitigation plan’s k’th action. h is known as the planning horizon. An action is performed

over a duration denoted as ∆t.

As mentioned in Chapter 2, CAVs in a coalition use V2V communication to continuously

exchange information with each other. The information exchanged depends on the CAV role

in the coalition (i.e., member or leader) and includes a CAV’s state si, the coalition joint

state s = {si}i∈C, a warning or an action plan αih.

22

Table 3.1: CAV Actions

Action Condition Description

maintain - Maintain the current velocity

accel - Accelerate with a fixed acceleration
value αacc

decel - Decelerate with a fixed deceleration
value αdec

cll Currently not in the left
most lane

Change lane to the left lane of the cur-
rent lane

clr Currently not in the right
most lane

Change lane to the right lane of the cur-
rent lane

3.2 Hierarchical Approach

In an event where a misbehaving vehicle is detected, the coalition needs to derive conflict-

free mitigation action plans for all coalition members to avoid collision with the misbehaving

vehicle. To that end, we propose a hierarchical and partially-decentralized decision-making

approach where decision-making is performed at two levels: at the CAV level and the coali-

tion level. In the first step, each CAV i independently performs decision-making to find a set

of prioritized individual mitigation action plans {αih} and sends these plans to the coalition

leader. In the second step, the coalition leader analyzes each CAV’s prioritized mitigation

action plans and deliberates to find, an action plan αih for each CAV i such that the collision

constraints are satisfied when possible.

3.2.1 CAV level approach

The first step of our approach involves decision-making at the individual CAV level to find

prioritized individual action plans. Each CAV i independently performs decision-making to

find a set of prioritized individual mitigation action plans {αih}. We formulate the problem

of decentralized individual action planning for each CAV as a Multi-agent Markov Decision

23

Process (MMDP) (Boutilier, 1999). Unlike a conventional MMDP where each agent considers

the immediate reward for joint actions, our approach focuses on maximizing the overall

coalition reward based on CAVs’ individual action plans for a horizon. MMDP is defined as

a tuple 〈C, S, A, T , R, γ〉, where

• C is a coalition of n CAVs.

• S represents the joint state space for the CAVs in C. S = ×Si where Si is the state

space for CAV i.

• A represents the joint action space for the actions of CAVs in C. A = ×Ai where Ai is

the set of actions that i can perform.

• T : S×A×S → [0, 1] is the transition function where T (s, a, s′) specifies the probability

of the system transitioning to state s′ when performing joint action a in state s.

• R : S×A×S → R is the reward function with R(s, a, s′) specifying the reward received

when executing joint action a in state s and transitioning to the state s′.

• γ is a discount factor controlling the contribution of future rewards on the current

state.

Generally, the solution to an MMDP are state-action values computed by function Q∗ :

S × A → R. Q∗(s, a) value represents the expected reward of taking the joint action a in

the coalition joint state s. In any given state s, an optimal action is an action that has

the maximum Q∗(s, a) value. Each CAV executes Monte Carlo Tree Search (MCTS) based

algorithms (see Section 3.3) to solve the MMDP and to estimate the Q∗ values in order to

prioritize its mitigation action plans {αih}.

24

MCTS for CAV level action planning

Monte Carlo Tree Search (MCTS) is a simulation-based search algorithm to solve MMDP

with the help of random samples (see Section 2.3). Each CAV uses MCTS to solve the MMDP

in order to prioritize its individual mitigation action plans. Each CAV i ∈ C individually

executes the MCTS algorithm to build a search tree iteratively. In the tree, each node

represents a coalition joint state s and each edge represents a coalition joint action a. The

average number of children at each tree node is known as branching factor. For our problem,

the branching factor is the size of the joint action space, which equals |Ai|n. The objective for

each CAV is to find m non-colliding mitigation action plans of size h. To select h consecutive

actions, each CAV executes the MCTS algorithm to construct an MCTS tree of height h.

Each path in the tree from the root node up to the leaf node represents a possible mitigation

action plan. MCTS tree should be sufficiently explored up to depth h to select m non-

colliding action plans, as there should be at least m distinct paths from the root node to

leaf nodes. The tree with the branching factor |Ai|n and the tree depth h has a total of

|Ai|n(h+1)−1
|Ai|n−1 nodes. Here, we can see that the tree size exponentially grows with the number

of CAVs n or the planning horizon h (See Figure 3.1). The number of required MCTS

iterations to sufficiently explore the tree of this size up to depth h also grows exponentially.

This exponential growth severely limits the scalability of MCTS (Kurzer et al., 018a) for

multi-agent problems including the CAV collision avoidance problem.

3.2.2 Coalition level approach

The second step of our hierarchical approach involves decision-making at the coalition level.

Coalition leader receives a set of prioritized individual mitigation action plans {αih} from

each CAV i ∈ C. These plans have been prioritized using the estimated Q∗ values by the

CAV level decision-making step. Each individual mitigation action plan αih consists of h

individual actions for CAV i. Coalition leader uses a simple beam search algorithm to select

25

Figure 3.1: MCTS search tree for a coalition of 6 CAVs, the individual action space size
|Ai| = 5 and the planning horizon h = 3. For regular MCTS, the branching factor equals
15625 and the size of the fully expanded tree ≈ 3.8 × 1012. For COCOA, the branching
factor equals 5 and the size of the fully expanded tree is 156.

a single mitigation action plan αih for each CAV i, such that the collisions among the coalition

members and the collisions with the misbehaving vehicle are avoided. Coalition leader sends

back the selected mitigation action plan αih to each CAV i.

3.3 Algorithms

To solve the proposed MMDP discussed in Section 3.2, we present four algorithms as part

of the COCOA algorithms for a single coalition: Branching Factor Reduction, Intelligent

Action Selection, Adaptive and Cooperative Reward Function, and Coalition level decision

making using Beam Search. These algorithms overcome the limitations of MCTS such as

limited scalability and reliability for the multi-agent problems by introducing significant

changes to all four steps of the MCTS algorithm.

3.3.1 Branching Factor Reduction

We propose branching factor reduction method for MCTS to remove the exponential depen-

dence of the MCTS tree size on the number of CAVs n and to improve the estimated Q∗

26

values. To this effect, we propose a novel design of the MCTS tree and modify selection,

expansion, simulation, and backpropagation steps.

We call CAV i that is executing the MCTS algorithm, an ego CAV. In our novel MCTS

tree structure, each tree node n at depth k corresponds to the coalition joint state stk . Each

tree edge, which is incoming to node n at depth k and is outgoing from node nparent at

depth k − 1, corresponds to an individual action aitk−1
of the ego CAV i, as opposed to a

joint action atk−1
in the regular MCTS tree structure. This reduces the branching factor to

|Ai| as opposed to |Ai|n in the naive MCTS algorithm and gives us our desired scalability.

The number of nodes in the tree with the branching factor |Ai| and the tree depth h will

have a total of |A
i|(h+1)−1
|Ai|−1 possible nodes. For example, the tree in Figure 3.1 will only have

156 nodes with our new design as opposed to 3.8 × 1012 nodes in the regular MCTS tree

structure.

We now describe an updated MCTS algorithm with the branching factor reduction

method. A tree node n at depth k can be represented using a tuple (stk , aitk−1
, ν, cnt,

nparent, Nchildren), where stk is the coalition joint state at time tk, a
i
tk−1

is the individual

action for CAV i that corresponds to an action taken from n’s parent at time tk−1, ν is node

value, cnt is node count, nparent is the parent node of n, and Nchildren stores the child nodes

of n. At the beginning, ego CAV i initializes the search tree with a single root node nµ

with parameters (st1 , a
i
t0

= null, ν = 0, cnt = 0, nparent = null, Nchildren = {}) that stores the

current coalition joint state at the current time t1. Subsequently, ego CAV simulates many

MCTS iterations that add more nodes to the tree. Each MCTS iteration consists of four steps

(Browne et al., 2012) in this order: Selection, Expansion, Simulation and Backpropagation.

• Selection: In the selection step, ego CAV starts from the root node nµ and select

nodes that maximize UCT (upper confidence bounds for trees) value (Browne et al.,

2012) until a leaf node is reached. UCT value strikes balance between exploration and

27

exploitation and is defined for j’th child of node n as below.

UCT = ν̄j + CM

√
log cnt

cntj
(3.1)

where ν̄j is the average node value of j’th child, CM is a constant, cnt is the node count

of node n and cntj is the node count of j’th child.

When ego CAV i selects a node n at depth k from the parent node nparent at depth

k − 1, the individual state sitk for node n is determined using the individual action

aitk−1
and the individual state sitk−1

at the parent node. However, ego CAV i needs

individual actions {ajtk−1
, ∀j ∈ C\i} for CAVs other than itself in order to determine

states {sjtk ,∀j ∈ C\i} and assign a full joint state stk = sitk∪{s
j
tk
,∀j ∈ C\i} at the node

n. To assign individual actions for CAVs other than itself, ego CAV i uses Intelligent

Action Selection policy described in the next subsection.

• Expansion: In the expansion step, ego CAV expands the leaf node nleaf by adding child

nodes to the tree, one per each possible individual action ai taken from state nleaf .s.

• Simulation: In the simulation step, one of the newly expanded child nodes is selected.

During the selection procedure of the child node, ego CAV i again uses the Intelligent

Action Selection policy to assign individual actions for CAVs other than itself and

determines the coalition joint state at the selected child node. Starting from this child

node, ego CAV performs a Monte Carlo simulation by taking a random sample of the

coalition joint action at each planning step until the planning horizon h or until a

collision is detected.

• Backpropagation: In the above three steps, the reward is computed every time a new

node is visited as well as at each step of the simulation phase. In the backpropagation

step, the cumulative reward received at the end of the simulation is backpropagated to

the root node in a reverse path to update node values and node counts. Node values

28

are increased by the reward amount and node counts are increased by one for nodes

on this reverse path.

Since MCTS is an anytime algorithm, it can be stopped after either a fixed number of k

iterations or by checking a convergence criterion on normalized node values. In the end, Q∗

value can be estimated at each node n at depth k as:

Q∗(nparent.s
i
tk−1

, n.aitk) ≈ n.ν

n.cnt
(3.2)

Where nparent is the parent node of the node n. This value represents the estimate of the

state-action value for the action ai taken from the state sitk−1
at time tk−1.

3.3.2 Intelligent Action Selection

We now describe the Intelligent Action Selection policy. This policy is used to determine

individual actions for CAVs other than the ego CAV i during the selection and the simulation

steps. When selection a node n from the node nparent, we want to determine individual actions

{ajtk−1
,∀j ∈ C\i} in order to fully determine the joint state stk at the node n.

The simplest possible way to select actions for a CAV j ∈ C\i is to select a random action

from its action-space Aj. We used this simple approach in (Patel and Zalila-Wenkstern,

020a). It works fine for CAV coalitions with simple structures but has low reliability and

takes comparatively more MCTS iterations to successfully avoid collisions in most scenarios.

We propose to use an Intelligent Action Selection policy (Patel and Zalila-Wenkstern,

021a) that makes significant improvements over the random action selection policy. In the

Intelligent Action Selection policy, we use the statistics of the results received in the past

MCTS iterations to perform action selection in the current MCTS iteration. The combi-

nation of the branching factor reduction method and the intelligent action selection policy

constitutes the core COCOA CAV-level decision-making algorithm.

29

We define several additional parameters to store the result statistics of the past MCTS

iterations at each MCTS node. A node n in MCTS search tree at depth k includes following

parameters:

• n.stk : the joint state of the coalition at time tk

• n.sitk : the individual state of CAV i at time tk

• n.aitk−1
: the individual action for CAV i taken at time tk−1

• n.V : a map indexed by (j, aj),∀j ∈ C\i, aj ∈ Aj that stores the sum of rewards received

in all iterations that include node n while simulating action aj for CAV j at time tk−1

• n.C: a map indexed by (j, aj),∀j ∈ C\i, aj ∈ Aj that stores the number of iterations

that included node n and in which action aj was selected for CAV j at time tk−1

• n.ν: a value that corresponds to the sum of rewards of all iterations that include node

n

• n.cnt: the visit count of node n

• n.nparent: the parent node of node n

• n.Rtemp: a map indexed by IDs of the coalition members and corresponds to the reward

values received at this node by each coalition member during only the current MCTS

iteration

• n.Nchildren is the set of child nodes of node n

Ego CAV i initializes the root node nµ of the search tree with the current joint state

nµ.st1 , CAV i’s current individual state nµ.s
i
t1

. Other variables nµ.V , nµ.C, nµ.a
i
t0

, nµ.at0 ,

nµ.nparent are set to null, nµ.Nchildren is set to an empty set, and nµ.ν and nµ.cnt are set to

zero.

30

The most important functions of COCOA algorithm for CAV-level decision making exe-

cuted by ego CAV i are outlined in Algorithm 1.

Algorithm 1 COCOA for a single CAV decision making

Require: nµ, A
1: k ← 1
2: while maximum number of iterations are not executed do
3: 〈nl, k,R〉 ← COCOA-SelectionPolicy(nµ, k, A)
4: if nl.cnt 6= 0 then
5: 〈nl, k,R〉 ← COCOA-ExpansionPolicy(nl, k, A,R)
6: end if
7: R ← COCOA-SimulationPolicy(nl, k,R)
8: COCOA-BackpropagationPolicy(nl,k,R)
9: end while

We now describe all four steps of the MCTS algorithm modified to work with the novel

tree structure for the intelligent action selection and the branching factor reduction.

COCOA selection policy

Starting from the root node nµ, ego CAV i consecutively selects nodes in each step using

UCT algorithm (Browne et al., 2012) applied over Nchildren using node statistics ν and cnt

in step 4 and 5 in Algorithm 2. The child node n that is selected automatically determines

action aitk for the ego CAV i. To select actions ajtk of other coalition members j ∈ C\i,

ego CAV i applies UCT algorithm over the stored action reward values V (j) and the count

values C(j) in step 7 in Algorithm 2. UCT value for action selection of a coalition members

j ∈ C\i is defined as below.

UCT (aj) =
n.V (j, aj)

n.C(j, aj)
+ CA

√
log n.cnt

n.C(j, aj)
(3.3)

aitk combined with a
C\i
tk

forms the joint action set atk , which is then applied to the joint state

set stk of the parent node nparent to derive n’s joint state set stk+1
in step 9 in Algorithm 2.

Separate reward values for all coalition members are computed and stored in Rtemp array.

The values in Rtemp are then used to update the cumulative reward R.

31

Algorithm 2 COCOA-Selection Policy

Require: nµ, k, A
Ensure: n, k,R
1: n← nµ
2: R ← 0
3: repeat
4: aitk ← UCTAction(Ai, n.Nchildren)
5: n← node with aitk action from n.Nchildren

6: for j in C\i do
7: n.ajtk ← UCTAction(Aj, n.V (j), n.C(j))
8: end for
9: n.stk+1

← ComputeState(nparent.stk , n.atk)
10: n.Rtemp ← ComputeReward(nparent.stk , n.stk+1

, n.atk)
11: R ← R+ n.Rtemp(i)
12: for j in C\i do
13: R ← R+ λ · n.Rtemp(j)
14: end for
15: k ← k + 1
16: until n is a leaf node

COCOA expansion policy

To expand a node n in the tree, ego CAV i first computes new individual states sitk+1
using

the current individual state sitk and each valid individual CAV action aitk . The validity of

actions is determined using the preconditions listed in Table 3.1. For an individual action

space size of 5, up to five child nodes are added in Nchildren. The task of computation of

joint states stk+1
for these child nodes as well as the selection task of the child node is left to

COCOA-SelectionPolicy call in step 6 in Algorithm 3, which uses UCB1 algorithm to select

the actions for CAVs other than the ego CAV and computes the corresponding joint states.

COCOA Simulation policy

Ego CAV performs the simulation step starting from a leaf node nl of the MCTS tree. The

joint action set atk is selected randomly from the joint action space A. The next state stk+1

is derived from the current node’s joint state stk and the sampled joint action atk . Using

32

Algorithm 3 COCOA-Expansion Policy

Require: n, k, A,R
Ensure: nl, k,R
1: for aitk in Ai do
2: sitk+1

← computeState(n.sitk , atk)

3: nchild ←createNode(aitk , s
i
tk+1

)
4: n.Nchildren ← n.Nchildren ∪ nchild
5: end for
6: 〈nl, k,R〉 ← COCOA-SelectionPolicy(n, k, A)

the derived joint state, a new child node nchild is created. Separate reward values for all

coalition members are computed and stored in Rtemp array which is later used to update the

cumulative reward R. Here, note that nchild is not added to the MCTS tree. This procedure

is performed until a terminal node is found. A node is considered terminal when a collision

among the coalition members is detected or the planning horizon h is reached.

Algorithm 4 COCOA-Simulation Policy

Require: n, k,R
Ensure: R
1: repeat
2: atk ← RandomSelection(A)
3: stk+1

← ComputeState(n.stk , atk)
4: nchild ← ExpandSingleChildNode(n, atk)
5: Rtemp ← ComputeReward(n.stk , nchild.stk+1

,
nchild.atk)

6: R ← R+Rtemp(i)
7: for j in C\i do
8: R ← R+ λ ·Rtemp(j)
9: end for
10: n← nchild
11: k ← k + 1
12: until n is a terminal node

COCOA Backpropagation policy

During the backpropagation step, the cumulative reward computed at the end of the sim-

ulation step is used to update n.ν and n.cnt values at each node in the reverse path from

33

the leaf to the root. Values in V and C are also updated using the values stored in Rtemp

for the actions that were selected during the current iteration for CAVs other than the ego

CAV. Additionally, all the joint state values s as well as the action values of the CAVs other

than the ego CAV a
C\i
tk

for all the nodes along the reverse path are set back to null in their

respective parameter vectors except at the root node. At the end of the algorithm execution,

Algorithm 5 COCOA-Backpropagation Policy

Require: n, k,R
1: while n 6= nµ do
2: n.cnt← n.cnt+ 1
3: n.ν ← n.ν +R
4: for j in C\i do
5: n.V (j, n.ajtk)← n.V (j, n.ajtk) + n.Rtemp(j)

6: n.C(j, n.ajtk)← n.C(j, n.ajtk) + 1
7: end for
8: n.stk ← null

9: n.a
C\i
tk
← null

10: n← n.nparent
11: k ← k − 1
12: end while

ego CAV i estimates the Q∗ values using Equation 3.2 for each node of the MCTS tree. Each

path in the MCTS tree from the root node to a leaf node represents one mitigation action

plan. MCTS tree is stripped of extra variables. Only individual states, individual actions,

and estimated Q∗ values are retained at each node of the tree. This tree is then shared with

the coalition leader using V2V communication.

3.3.3 Adaptive and Cooperative Reward Function

We consider several reward factors that affect CAV’s safety, efficiency and comfort in the

reward function used by the COCOA algorithm. Ego CAV i’s reward ritk at time tk is defined

as a dot product of two vectors: a weight vector w and a reward factors vector ri.

ritk = w · ri (3.4)

34

which is equivalent to,

ritk =
∑
j

wjr
i
j

where ri = {rij} is a vector consisting of several reward factors indexed by j as follows:

• riccol: coalition collision corresponds to the boolean value indicating if there is a collision

between CAV i and another coalition member while simulating an action aitk during

the current MCTS iteration

• rimcol: misbehaving collision corresponds to the boolean value indicating if there is a

collision between CAV i and the misbehaving vehicle while simulating an action aitk

during the current MCTS iteration

• riaccel: Current action aitk ’s acceleration

• ridecel: Current action aitk ’s deceleration

• risd: speed deviation corresponds to the difference of the current speed sitk .speed and

the initial speed sit1 .speed of the CAV

• rilc: lane change corresponds to the difference between the current lane index sitk .lane

and the previous lane index sitk−1
.lane

• ristop: full stop corresponds to the boolean value indicating if the current speed sitk .speed

equals zero

• rimv: max velocity corresponds to the boolean value indicating if the current speed

sitk .speed goes above the allowed maximum velocity of the vehicle

In Equation 3.4, the weight vector w consists of weight values {wj}, each of which is

multiplied with exactly one reward factor from the set of reward factors. Each of the reward

35

factors represents one or more action. For example, riaccel represents accel action and rilc

represents cll and clr actions. Setting a high or low value for a particular weight wj makes ego

CAV i to eventually either prioritize or deprioritize the multiplied reward factor’s represented

actions in its final set of prioritized action plans. For example, if we set a relatively high

weight value waccel which is multiplied with the reward factor riaccel, then CAV i prioritizes

action accel higher than other actions in its final action plans. An important observation is

that some actions should be prioritized in a particular coalition state but in a completely

different coalition state, the same of set of actions may lead to a collision among coalition

members. Using the same set of reward weights for all actions at each tree node in an MCTS

iteration is suboptimal, as different tree nodes represent different coalition states. Below we

present a novel coalition state-based reward weights updating algorithm for the adaptive

reward function.

Coalition state based reward weights update When simulating an MCTS iteration,

ego CAV i executes a sequence of actions {aitk}
h
k=1. When simulating each of the actions

in {aitk}
h
k=1 sequence, coalition states sitk will be different at different depth values k. For

instance, consider the coalition state at time tk in Figure 3.2. Consider two actions for the ego

Figure 3.2: cll and clr actions for CAV i at time tk

CAV at time step tk: change lane to left (cll) and change lane to right (clr). The resultant

36

positions of the ego CAV at time step tk+1 for both actions are shown in Figure 3.2. We

consider the neighborhood of each of these positions. There is one coalition member in the

neighborhood for action cll ’s resultant position, whereas there are two coalition members in

the neighborhood for action clr ’s resultant position. While the ego CAV selects and simulates

its chosen action during the current MCTS iteration, it will also select and simulate actions

for the neighborhood CAVs simultaneously in the same MCTS iteration. This may lead to a

collision if the selected actions of the neighborhood CAVs are in conflict with the ego CAV’s

selected action. If we consider all future actions that can be selected for the neighborhood

CAVs and take all the action combinations of the neighborhood CAVs, then the proportion

of neighborhood CAVs’ action combinations that can have a collision with the ego CAV

are greater if the ego CAV selects the action clr than if the ego CAV selects the action cll.

Thus more penalty (or less reward) should be received for choosing the action clr than the

action cll. We achieve this by updating the reward weights dynamically before simulating

each action during the MCTS iteration. We assume that the weights are negative values

and represent the penalty. Reward weights are temporarily modified for each action aitk as

below:

w = (1 + βN i)w (3.5)

where

• N i is the number of vehicles in CAV i’s neighborhood after simulating an action aitk

during the current MCTS iteration

• β is the coefficient in range [0, 1]

During the simulation of each MCTS iteration, ego CAV uses the modified reward weights as

given in Equation 3.5 for each action until the planning horizon. During the backpropagation

phase of the MCTS iteration, reward values computed using Equation 3.4 are used to update

each visited node’s parameters in the MCTS tree in reverse order from the leaf node to the

root node.

37

3.3.4 Coalition level decision making using Beam Search

The coalition leader performs the action selection for CAVs using the beam-search method

beamsearch. Beam search with the beam size = 1 is employed to ensure that the best

possible sequence of actions for each coalition member satisfy the collision constraints, when

possible.

Algorithm 6 COCOA Beam Search for coalition leader

Require: Ti,∀i ∈ C
Ensure: αih,∀i ∈ C
1: Initialize currentNodes, sortedChildNodes to null maps
2: for i in C do
3: currentNodes(i)← Ti.nµ
4: end for
5: k ← 1
6: while k ≤ h do
7: for i in C do
8: sortedChildren(i)← sortByQValues(currentNodes(i).Nchildren)
9: end for
10: nonCollidingNodes← RecCombinationSelection(currentNodes, sortedChildren)
11: if nonCollidingNodes = null then
12: No solution is found.
13: end if
14: for i in C do
15: αih ← αih ∪ nonCollidingNodes(i).aitk
16: end for
17: currentNodes← nonCollidingNodes
18: end while

Initially, at the tree depth k=1, we store root nodes for each CAV’s tree as that CAV’s

current node under consideration in line 3 of Algorithm 6. The goal is to select one child

node per CAV from the children of each CAV’s current node, such that the joint combination

of selected nodes for all CAVs is non-colliding.

At each value of k from 1 to the planning horizon h, we take child nodes of each CAV’s

current node and sort these child nodes according to their Q∗ values in line 8. From the

list of sorted child nodes of each CAV, we select one node per CAV using the Recursive

38

Combination Selection algorithm such that the combination of all CAV’s selected nodes is

non-colliding in line 10. In line 15, we update each CAV’s action plan by adding a new action

from that CAV’s selected non-colliding node. In line 17, we update each CAV’s current node

to be the selected non-colliding node and repeat these steps for the next value of k. At the

end, we will have generated a single action plan αih for each CAV i, such that the combination

of action plans of different CAVs is non-colliding.

We now describe the recursive combination selection algorithm. This algorithm takes a

list of sorted child nodes for each CAV as an input and outputs one child node per CAV such

that the combination of selected child nodes for all CAVs is non-colliding, when possible.

It tries all possible combinations of sorted child nodes in the descending order of Q∗ values

using a novel recursive algorithm. It first picks one CAV that has more than one child node

in its list in lines 2-6. If all CAVs only have one child node, then it checks if the joint

combination is non-colliding in line 8. If the join combination is non-colliding, then it is set

as the final result, otherwise, the final result is set as null in lines 8-15. If there is at least

one CAV (say CAV i) with more than one child node, then we split the list of child nodes

for this CAV i into two sets: one set of a single child, and another set of remaining child

nodes (see lines 16-17). First, we select a set of a single child node for CAV i and merge it

with sets of child nodes of other CAVs to create a new map newChildNodes1. We call the

same recursive combination selection algorithm on this new map newChildNodes1 to see if

we find a solution in line 19. If the solution is not found, then in line 24, we call the same

recursive combination selection algorithm on the map newChildNodes2, which is generated

by merging the set of remaining child nodes of CAV i with the sets of child nodes of other

CAVs. If the solution is found by this recursive call, then it is set as the final result in line

26, otherwise, the final result is set as null.

At the end of the beam search algorithm (Algorithm 6) execution, the coalition leader

generates individual action plans for each CAV. It sends these plans to the respective CAVs

39

Algorithm 7 Recursive combination selection for Beam Search

Require: currentNodes, sortedChildNodes
Ensure: nonCollidingCombination
1: i← 0
2: for i in C do
3: if currentNodes(i).Nchildren.size > 1 then
4: nonSingleCAV ← i
5: break loop
6: end if
7: end for
8: if nonSingleCAV = null then
9: result← checkCollision(currentNodes)
10: if result = False then
11: nonCollidingCombination = currentNodes
12: else
13: nonCollidingCombination = null
14: end if
15: else
16: singleChild← sortedChildNodes(i)[0]
17: otherChildren← sortedChildNodes(i)[1, |Ai|]
18: newChildNodes1← singleChild ∪ newChildNodes(C\i)
19: result1← RecCombinationSelection(currentNodes, newChildNodes1)
20: if result1 6= null then
21: nonCollidingCombination = result1
22: else
23: newChildNodes2← otherChildren ∪ newChildNodes(C\i)
24: result2← RecCombinationSelection(currentNodes, newChildNodes2)
25: if result2 6= null then
26: nonCollidingCombination = result2
27: else
28: nonCollidingCombination = null
29: end if
30: end if
31: end if

40

using V2V communication. Each CAV executes the action in the received action plans to

achieve collision avoidance.

41

CHAPTER 4

CASE STUDY FOR SINGLE COALITION ALGORITHMS

In order to examine the behavior of our proposed COCOA algorithm in real-world scenarios

involving a single coalition of several CAVs, we perform several simulations in MATISSE

1. CAV agents navigate in a coalition formation on a three-lane highway. In the scenarios,

we consider different types of misbehaviors at different positions of the misbehaving vehicle

with respect to the coalition.

We use c to represent a MATISSE simulation cycle which corresponds to the execution

of the agent cycle and the environment cycle (Torabi et al., 2018). In the agent cycle, the

agents 1) receive the latest environment state (i.e., perception) and communications from

other agents, 2) execute their decision-making algorithms, and 3) send their intended actions

to the environment component and messages (i.e., communication) to other agents. In the

environment cycle, the environment component combines the agent actions and applies the

physical laws to determine the new agent states and the environment state.

In our case, the execution of Algorithm 1 is performed during the agent cycle. A vehi-

cle’s decision-making process in case of detection/warning of a misbehaving vehicle executes

iterations of COCOA algorithm for the processing time of up to 2 seconds. Each CAV plans

its actions for the planning horizon of 6. A time step t corresponds to one simulation cycle.

We use ∆t=10.

4.1 Case Study 1: Acceleration misbehavior

As depicted in Figure 4.1, Scenario 1 considers a coalition of 6 vehicles, led by vehicle V 6.

Each of the vehicles in the coalition is navigating at the cruising speed of 2 units/cycle. At

cycle cn, vehicle V 4 detects the misbehaving vehicle, coming from behind at the speed of 5

1Demos available at www.utdallas.edu/~dhruv/CAVdemos

42

units/cycle. V 4 immediately sends the estimated state parameters including position and

speed of the misbehaving vehicle to other coalition members. At cycle cn+1, after receiving

the misbehaving alert, each coalition member executes Algorithm 1 COCOA(nµ, A) to derive

their individual MCTS trees and to estimate state-action values Q∗ for actions in their

individual action space. The root node nµ of CAV i’s MCTS tree contains the coalition

current joint state, i.e., the current states of all coalition members. The joint action space A

contains possible actions for each coalition member for each possible state up to the planning

horizon. A COCOA iteration’s expansion step, i.e., COCOA−ExpansionPolicy(n, k, A,R)

in Algorithm 3, only considers the actions that ego CAV i can perform. For instance, consider

CAV V 3 as our ego CAV. In Figure 4.1 , there are four possible actions for V 3: accel, decel,

maintain and clr, and four child nodes are added to V 3’s root node during COCOA’s single

iteration execution performed by V 3. cll is not available for V 3 as it will drive the CAV

out of the road area (see Table 3.1 for the list of all CAV actions). Actions for coalition

members other than V 3 are sampled using the Intelligent Action Selection policy (step 7 of

Algorithm 2) as well as in the COCOA expansion policy (step 6 of Algorithm 3). Whereas in

COCOA simulation step (step 2 of Algorithm 4), actions for all coalition members including

V 3 are randomly sampled. After COCOA in Algorithm 1 is executed, each vehicle shares

its derived MCTS tree with the leader V 1 . At cycle cn+2, V 1 receives the MCTS trees

from all vehicles in the coalition, and derives final action plans for each coalition member.

Table 4.1 shows the final actions chosen by V 1 for each coalition member in Case Study

1. At cycle cn+3, CAVs start executing their final action plans to avoid collisions with the

misbehaving vehicle. Figure 4.1 shows the actions taken by each coalition member. In Figure

4.1, the first subfigure shows the initial coalition state. Each subsequent subfigure shows the

actions taken by each CAV in the coalition. For the first action at cycle cn+3, V 4 changes

its lane to the first lane in order to avoid the collision with the misbehaving vehicle. V 2

accelerates to gain safe speed and avoid future collisions with the misbehaving vehicle. At

43

Figure 4.1: Case Study 1: Acceleration misbehavior type

44

Table 4.1: Acceleration misbehavior: Final actions chosen by coalition leader

CAV i Final Action Plan αih

V1 maintain, maintain, maintain, maintain, decel, accel

V2 accel, maintain, maintain, cll, decel, accel

V3 maintain, maintain, maintain, accel, maintain, accel

V4 cll, maintain, maintain, clr, maintain, accel

V5 maintain, decel, cll, clr, maintain, accel

V6 maintain, maintain, maintain, maintain, maintain, accel

cycle cn+13, V 5 decelerates and then change its lane to the second lane at cycle cn+23. Since

V 4 is sandwiched between V 3 and V 4, it changes its lane to the second lane at cycle cn+33.

V 5 starts accelerating to allow a safe lane change maneuver to V 4 at the same cycle cn+33.

V 5 changes its lane back to the third lane at the same cycle cn+33 as well. These seemingly

unnecessary actions by V 5, i.e. changing its lane to the left lane at the cycle cn+23 and

changing its lane back to the third lane at the cycle cn+33, are performed as they have higher

Q∗ values in the MCTS tree of and V 5. Last two actions by all CAVs at the cycles cn+43 and

cn+53 mostly seem unnecessary except for V 2 and V 3. They are chosen for the same reason

that the chosen actions have a high value of Q∗ in the respective MCTS trees of the CAVs.

4.2 Case Study 2: Break misbehavior

In this scenario, we consider a coalition of 6 CAVs in the same dense formation as in Case

Study 1. The misbehaving vehicle is detected to be breaking in front of the coalition by

vehicle V 3 at cycle cn. Table 4.2 shows the final actions chosen by the leader V 1 for each

coalition member in Case Study 1. Two simulation cycles are used up by the coalition

45

Figure 4.2: Case Study 2: Break misbehavior type

46

Table 4.2: Break misbehavior: Final actions chosen by coalition leader

CAV i Final Action Plan αih

V1 maintain, accel, decel, cll, decel, accel

V2 clr, accel, decel, maintain, decel, accel

V3 accel, maintain, clr, maintain, maintain, accel

V4 clr, maintain, accel, decel, decel, accel

V5 maintain, maintain, accel, decel, decel, accel

V6 maintain, maintain, maintain, maintain, maintain, accel

members in their collaborative decision-making task. Starting from the third cycle cn+3,

coalition members start executing their final action plans derived by the leader V 1. At the

cycle cn+3, V 2 immediately changes its lane to the third lane in order to avoid the collision

with the misbehaving vehicle. Similarly, V 4 also changes its lane to the third lane at cycle

cn+3 to avoid the future collision with the misbehaving vehicle. Note that V 1 and V 2 are now

very close in the same lane and also very close to the misbehaving vehicle on its right lane. At

cycle cn+13, V 1 and V 2 both perform acceleration actions in order to pass the misbehaving

vehicle and thus to be out of the collision danger, while other coalition members maintain

their speeds. At cycle cn+23, V 1 and V 2 both decelerate in order to gain their normal

speeds. At the same cycle cn+23, V 3 decides to change its lane to the second lane after the

misbehaving vehicle during its previous action. Since V 1 and V 2 are very close, V 1 decides

to change its lane to the second lane at the cycle cn+33. At cycles cn+43 and cn+53, no CAVs

change their lanes anymore and continue on the straight paths by maintaining their speeds,

accelerating or decelerating.

47

Table 4.3: Zigzag misbehavior: Final actions chosen by coalition leader

CAV i Final Action Plan αih

V1 accel, maintain, maintain, maintain, maintain, decel

V2 accel, maintain, maintain, decel, decel, accel

V3 accel, maintain, maintain, maintain, decel, maintain

V4 clr, maintain, cll, clr, maintain, accel

V5 maintain, decel, maintain, cll, accel, cll

V6 accel, maintain, maintain, maintain, maintain, decel

4.3 Case Study 3: Zigzag misbehavior

In this scenario as well, we consider the same coalition structure of 6 CAVs in the dense

formation as in Case Studies 1 and 2. CAV V 4 detects the misbehaving vehicle accelerating

from behind. The misbehaving vehicle is traveling at a higher speed of 5 units/cycle on a

zigzag path instead of a straight path as in Case Study 1.

After V 4 detects the misbehaving vehicle coming at the speed of 5 units/cycle on a zigzag

path, it immediately changes its lane to the third lane at cycle cn+3 in order to avoid the

emergent collision with the misbehaving vehicle. In order to allow this lane change by V 4,

V 1 decides to accelerate at the cycle cn+3 in order to give enough space to V 2. At the same

cycle cn+3, V 2, V 3, and V 6 also decide to accelerate in order to avoid future collisions with

the misbehaving vehicle. Note that the misbehaving vehicle is navigating on a zigzag path

between the first lane and the second lane. The vehicles that decide to accelerate, i.e., V 2,

V 3, and V 6 are also the vehicles that were navigating on either the first or the second lane.

For the next action at the cycle cn+13, all vehicles decide to maintain their speeds. Only

48

Figure 4.3: Case Study 3: Zigzag misbehavior type

49

CAV V 5 decides to decelerate at cn+13 as it’s too close to V 4. After the misbehaving vehicle

has passed the CAV V 4, V 4 decides to change its lane back to the second lane at the cycle

cn+23, while other CAVs maintain their speeds. At cycles cn+33, V 4 changes its lane to the

third lane while V 5 changes its lane to the second lane. At the cycle cn+43, V 5 further makes

a lane change to the first lane. These seemingly unnecessary actions by V 4 and V 5 are due

to high Q∗ values for the chosen actions in their MCTS trees computed by the COCOA

algorithm. V 1, V 2, V 3, and V 6 maintain their lanes and mostly maintain their speeds in

order to keep ahead of the misbehaving vehicle coming behind them in order to avoid any

collisions with the misbehaving vehicle.

50

CHAPTER 5

SINGLE COALITION ALGORITHMS EVALUATION

USING SIMULATION EXPERIMENTS

In this chapter, we evaluate COCOA algorithm by implementing it in MATISSE, a multi-

agent-based traffic simulation system. We obtain experimental simulation data and use it to

choose values of several design parameters used in COCOA. Additionally, we implement the

state-of-the-art centralized (Nakamura et al., 2020) and decentralized algorithms (Kurzer

et al., 018b) in MATISSE and compare the reliability and the scalability with COCOA. We

first discuss the multi-agent-based traffic simulation system, then present the experimental

settings used in the parameter tuning experiments, the reliability experiments, and the

scalability experiments.

5.1 Simulation Experimental Setting

We have implemented COCOA, DeCoC-MCTS (Kurzer et al., 018b) and the Integer Pro-

gramming (IP) centralized algorithm (Nakamura et al., 2020) in MATISSE. In the virtual

MATISSE simulation environment, the unit of time is called cycle and the unit of length is

simply called unit. In our simulation experiments, a coalition of CAVs is navigating on a

three-lane highway at the speed of 2 units/cycle. During the simulation experiment, we add

a misbehaving virtual CAV to the simulation that misbehaves to cause a potential collision

with one or more coalition CAVs. Before the collision occurs, one of the affected coalition

CAVs detects the misbehaving vehicle through its simulated sensors and estimates Time To

Collide (TTC) value. Each coalition member then executes the selected planning algorithm

to find cooperative mitigation action plans that avoid the collisions for the planning horizon

h. The TTC value in our experiments is set to 15 cycles. We choose the planning horizon h

to 60 cycles, four times the TTC value. The reason is that the coalition members should not

51

(a) Acceleration misbehavior: Misbehaving ve-
hicle accelerates from behind the coalition

(b) Full stop misbehavior: Misbehaving vehicle
stops in front of the coalition

(c) Zigzag misbehavior: Misbehaving vehicle
accelerates in a zigzag path from behind the
coalition

Figure 5.1: Different types of misbehavior by the misbehaving vehicle

only avoid the detected collision at TTC=15 but avoid possible collisions even after TTC

until the coalition is out of danger with respect to the misbehaving vehicle.

For our algorithm and DeCoC-MCTS, vehicle actions have fixed duration ∆t. We set this

action duration to 10 cycles for realistic action execution in MATISSE. Since the planning

horizon is 60 and the action duration is 10, each CAV deliberates to select the next 6

actions. The IP centralized algorithm by Nakamura et al. generates waypoints at each

timestep that represent the vehicle trajectory. The duration between two timesteps is fixed

in this algorithm. We set the timestep duration to 3 cycles. For the planning horizon of 60

cycles and timestep duration of 3 cycles, a total of 20 waypoints are computed by the IP

algorithm. In our experiments, we consider three ways the misbehaving vehicle can collide

with the coalition CAVs. The three different misbehavior types are listed below:

• Acceleration misbehavior- The misbehaving vehicle is positioned behind the coalition

of CAVs in the middle lane and speeds at 5 units/cycle in a straight path.

• Full stop misbehavior- The misbehaving vehicle is positioned in front of the coalition

of CAVs in the middle lane and comes to a full stop at 0 units/cycle.

52

Figure 5.2: Scalability experiments: arrangement of CAVs in the coalition

• Zigzag misbehavior- The misbehaving vehicle is positioned behind the coalition of

CAVs in the middle lane and speeds at 5 units/cycle traveling on a zigzag path between

the first and middle lanes.

We perform simulation experiments for each misbehavior type to tune design parameters,

test the algorithm’s reliability, and test the algorithm’s scalability. In the parameter tuning

experiments and the reliability experiments, we consider a dense coalition of six CAVs as

seen in Figure 5.1. In the scalability experiments, we consider varying numbers of CAVs in

the coalition positioned in a zigzag manner as shown in Figure 5.2.

5.2 Tuning COCOA Parameters

We tune values for the design parameters CM (see Equation 3.1), CA (see Equation 3.3), and

β (see Equation 3.5)using simulation experiments. Parameter tuning is carried out in an

incremental manner, where we first tune the parameter CM . After tuning CM , we fix CM to

its ideal value and tune the parameter CA. After tuning CA, we fix both CM and CA to their

ideal values and tune the parameter β. Moreover, we argue that the ideal parameter values

can vary for different misbehavior types and confirm this using the experimental results.

For CM parameter tuning, we employ the branching factor reduction method with the

random action selection policy (Patel and Zalila-Wenkstern, 020a) instead of the intelligent

action selection policy. The coalition-state-based reward weights update is also not performed

to avoid setting the β value. For each value of CM from [1,10,100,1000,10000] and for

each misbehavior type from Figure 5.1, we perform 10 simulation experiments and note the

53

1 10 100 1000 10000
0

0.2

0.4

0.6

0.8

1

Acceleration misbehavior

S
u
cc

es
s

ra
te

1 10 100 1000 10000
0

0.2

0.4

0.6

0.8

1

Break misbehavior

S
u
cc

es
s

ra
te

1 10 100 1000 10000
0

0.2

0.4

0.6

0.8

1

Zigzag misbehavior

S
u
cc

es
s

ra
te

Figure 5.3: Tuning CM parameter values

54

collision avoidance success rate. We plot the collision avoidance success rate versus CM

values (see Figure 5.3). Experimental results show that the CM value of 100 works best for

all misbehavior types.

For CA parameter tuning, we employ the branching factor reduction method with the

smart action selection policy using the CA parameter. We fix the CM value to 100 for

all misbehavior types experiments. The coalition-state-based reward weights update is not

performed to avoid setting the β value. We choose CA values from [1,10,100,1000,10000]. We

perform 10 simulation experiments for each CA value and for each misbehavior type. Figure

5.4 shows the collision avoidance success rate versus CA values for different misbehavior

types. Experimental results show that the CA value of 100 works best for the acceleration

misbehavior and the zigzag misbehavior. However, for the break misbehavior, the CA value

of 1000 works better.

For β parameter tuning, we finally employ the adaptive reward weights update technique.

We set the CM value to 100 for all three misbehavior types. For the CA parameter, we set

100 for the acceleration and zigzag misbehavior types and 1000 for the break misbehavior

type. β values are chosen from [0,0.2,0.4,0.6,0.8,1]. For the acceleration misbehavior, we

perform 10 simulation experiments for each β value. For the break and zigzag misbehavior

types, we had to perform 20 simulation experiments for each β value in order to reduce the

sampling error and get more accurate results. We plot the collision avoidance success rate

versus the β values in Figure 5.5.

We list optimal parameter values for each misbehavior type in Table 5.1.

5.3 Reliability Evaluation

We define reliability as a collision avoidance algorithm’s ability to find a non-colliding action

plan for the coalition of CAVs in the given processing time. We consider a coalition of six

CAVs and three different misbehavior types as shown in Figure 5.1. For each misbehavior

55

1 10 100 1000 10000
0

0.2

0.4

0.6

0.8

1

Acceleration misbehavior

S
u
cc

es
s

ra
te

1 10 100 1000 10000
0

0.2

0.4

0.6

0.8

1

Break misbehavior

S
u
cc

es
s

ra
te

1 10 100 1000 10000
0

0.2

0.4

0.6

0.8

1

Zigzag misbehavior

S
u
cc

es
s

ra
te

Figure 5.4: Tuning CA parameter values

56

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Acceleration misbehavior

S
u
cc

es
s

ra
te

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Break misbehavior

S
u
cc

es
s

ra
te

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Zigzag misbehavior

S
u
cc

es
s

ra
te

Figure 5.5: β parameter values

57

0.5 0.75 1 1.25 1.5

0

0.2

0.4

0.6

0.8

1

Processing time (in seconds)
S
u
cc

es
s

ra
te

IP
DeCoC-MCTS

COCOA

(a) Acceleration misbehavior

0.75 1 1.25 1.5 1.75

0

0.2

0.4

0.6

0.8

1

Processing time (in seconds)

S
u
cc

es
s

ra
te

IP
DeCoC-MCTS

COCOA

(b) Break misbehavior

0.75 1 1.25 1.5 1.75

0

0.2

0.4

0.6

0.8

1

Processing time (in seconds)

S
u
cc

es
s

ra
te

Centralized
DeCoC-MCTS

COCOA

(c) Zigzag misbehavior

Figure 5.6: Reliability results

58

Table 5.1: Optimal parameter values

Misbehavior type CM CA β

Acceleration 100 100 0.4
Break 100 1000 0.4
Zigzag 100 100 0.8

type, we set the processing time to a fixed value from a set of five values and find the

collision avoidance success rate for 10 simulation experiments for each processing time value.

We plot the collision avoidance success rate versus the processing time for COCOA, DeCoC-

MCTS, and the centralized IP algorithms in Figure 5.6. DeCoC-MCTS and IP algorithms

do not find successful action plans up to six vehicles, so they have zero success rates for all

processing time values. The success rate for COCOA consistently improves as the processing

time increases. For zigzag behavior, we can see a dip in the success rate for the processing

time value of 1.75s than 1.5s. This is due to the sampling error caused by an insufficient

number of samples. As the number of simulation experiments grows higher, we expect such

errors to disappear.

5.4 Scalability Evaluation

Scalability is defined as the maximum number of CAVs for which the algorithm can complete

its execution in a reasonable amount of time. For scalability experiments, we use the CAVs

coalition structure as shown in Figure 5.2 and fix the maximum allowed processing time to

10 seconds. Figure 5.7 shows that the IP centralized algorithm can find the solution for up

to 7 CAVs for the acceleration misbehavior type, 4 CAVs for the break misbehavior, and

7 CAVs for the zigzag misbehavior. The DeCoC-MCTS algorithm is able to complete its

execution for up to 6 CAVs for all misbehavior types under 10 seconds but is not able to

find a successful collision avoiding solution for any of these misbehavior types. We can see

59

Figure 5.7: Scalability results

Acceleration Break Zigzag
0

5

10

15

7

4

7
6 6 6

14 14

12

N
u
m

b
er

of
ve

h
ic

le
s

IP DeCoC-MCTS COCOA

that COCOA can find a successful collision-avoiding solutions for up to 14 CAVs for the

acceleration and break misbehavior types and for up to 12 CAVs for the zigzag misbehavior

type. COCOA considerably improves upon the scalability limits of the IP centralized and

DeCoC-MCTS algorithms.

60

CHAPTER 6

COCOA ALGORITHMS FOR MULTIPLE COALITIONS

6.1 Model Definition

We assume that a set of n CAVs are navigating on a straight highway. These CAVs are

distributed in a sequence of coalitions denoted by N . Each coalition is defined by its ID

c ∈ N and consists of nc number of CAVs as its members. In each coalition c, one coalition

member lc is assigned the role of a leader and is responsible for coalition management. A

single CAV’s model including its state, actions, and mitigation action plan remains the

same as described in Chapter 3. We define the coalition mitigation action plan αch as a set of

individual CAV mitigation action plans, one for each coalition member i, i.e, αch = {αih|i ∈ C}.

We require that all coalitions in set N are navigating in a non-overlapping sequence on

the highway, meaning that no two CAVs from two different coalitions are navigating laterally

together in different lanes. This assumption allows us to define the definitions of preceding

and succeeding coalitions. A preceding coalition or a predecessor of the coalition c is the

coalition that is navigating ahead of the coalition c and is denoted by cpred. A succeeding

coalition or a successor of the coalition c is the coalition that is navigating after the coalition

c and is denoted by csucc. The coalition affected by the misbehaving vehicle is called primary

coalition in the decision-making context. Coalitions other than the primary coalition are

called secondary coalitions. We assume that the primary coalition is always located at either

the beginning or at the end of the coalition sequence.

6.2 General Approach

Our general approach for the multi-coalition collision avoidance decision-making works in a

sequential manner starting from the primary coalition along the coalition sequence N . In

the sequential decision-making approach, the task of choosing the final coalition action plan

61

for any coalition is performed by the next neighboring coalition in the coalition sequence

N . Our sequential decision-making approach uses two main algorithms: a primary coalition

algorithm, and a secondary coalition algorithm.

We now describe the sequential decision-making approach. When a CAV from the pri-

mary coalition detects the misbehaving vehicle, the coalition leader of the primary coalition

uses the primary coalition algorithm to select the top three coalition action plans according

to Q∗ values (See Chapter 3). Since the primary coalition is located either at the beginning

or at the end of the coalition sequence N , it only has one neighboring secondary coalition.

The primary coalition sends the three action plans to the coalition leader of its neighboring

secondary coalition. The secondary coalition leader uses the secondary coalition algorithm

to choose one of the three action plans as the final plan for the primary coalition and sends it

back to the primary coalition leader. The secondary coalition algorithm also generates three

coalition action plans for the secondary coalition itself, which are then forwarded to the next

secondary coalition leader for the final plan selection. This process is repeated until we reach

the last secondary coalition in the coalition sequence N . The last secondary coalition uses

the secondary coalition algorithm to generate a single best coalition action plan for itself and

sends it to its members.

6.3 Algorithms

We have two main algorithms used in the multiple coalitions collision avoidance problem: a

primary coalition algorithm, and a secondary coalition algorithm.

6.3.1 Primary coalition algorithm

We now describe the primary coalition algorithm, given in Algorithm 8. Without any loss

of generality, assume that the primary coalition c is the last coalition in the sequence N .

When any CAV of the primary coalition c is affected by the misbehaving vehicle m, it sends

62

Algorithm 8 Primary coalition algorithm

Require: Ti,∀i ∈ C
Ensure: αih,∀i ∈ C
1: currentNodes← null
2: for i in C do
3: currentNodes(i)← Ti.nµ
4: end for
5: {αch} ← RecursivePlansSelection(currentNodes)
6: predecessor ← getPredecessorCoalition()
7: successor ← getSuccessorCoalition()
8: if predecessor 6= null then
9: sendPlans(predecessor, {αch})
10: αch ← receiveFinalPlan(predecessor)
11: else
12: if successor 6= null then
13: sendPlans(successor, {αch})
14: αch ← receiveFinalPlan(successor)
15: else
16: αch ← αch[1]
17: end if
18: end if
19: for i in C do
20: αih ← αch(i)
21: end for

an alert to all coalition members of c. Upon receiving the alert, each coalition member i of

c executes the COCOA algorithms for a single coalition described in Chapter 3 to generate

an MCTS tree of CAV states and CAV actions and to estimate Q∗ values for each CAV

action in the MCTS tree. Each CAV shares its MCTS tree with estimated Q∗ values with

the coalition leader lc. Each path from the tree’s root node to the leaf node represents an

individual mitigation action plan prioritized by Q∗ values. The coalition leader receives the

individual mitigation action plans in form of MCTS trees from all members and selects a

set of top three non-colliding coalition mitigation action plans αch ranked using Q∗ values in

step 5 of the Algorithm 8. It uses RecursivePlanSelection() function in order to derive top

three mitigation action plan, which is quite similar to the RecursiveCombinationSelection()

function in the Algorithm 7 from Chapter 3. The primary coalition leader lc sends the three

63

coalition action plans to its preceding coalition c′’s leader lc
′

in step 9. The task of choosing

the final coalition action plan for the primary coalition c is left to lc
′
, since the final plan

can affect the CAVs of the coalition c′. When lc receives the final action plan αch from lc
′

in step 10, it extracts individual plans from this final plan in steps 19-21 and sends it to its

members for execution.

6.3.2 Secondary coalition algorithm

We now describe the algorithm for secondary coalitions, given in Algorithm 9. Assume that

a leader CAV lc
′

of the secondary coalition c′ received a set of three coalition action plans

from its succeeding coalition leader lc. Upon receiving the set of coalition action plans, lc
′

determines the impact for all c’s action plans (step 2-4 in Algorithm 9) and chooses the one

which has the least impact on the members of c′ (step 5). lc
′

sends the chosen plan αch back

to lc as the final coalition action plan for c. lc
′

also sends the message to all its members to

derive their individual mitigation action plans (steps 6-9). This message includes c’s plan

αch too as it affects the members of c′. Upon receiving this message, each CAV i of the

coalition c′ executes COCOA algorithms for a single coalition to derive its set of individual

mitigation action plans αih such that they avoid collisions with the coalition c’s plan αch.

Each member sends its set of individual mitigation action plans to the leader lc
′
. Upon

receiving the individual action plans from all members, leader lc
′

selects a set of top three

non-colliding coalition mitigation action plans αc
′

h using RecursivePlanSelection() function

(step 14 in Algorithm 9), same as the one used in the primary coalition algorithm. Since

primary coalition c was the successor of c′, it checks if there is any preceding coalition. If

there is a preceding coalition to c′, lc
′

sends the three plans to its preceding coalition’s leader

(in steps 26-27), which is responsible for choosing the final plan for c′. If there is no preceding

coalition left, lc
′

chooses the best coalition action plan αc
′

h according to Q∗ values (in step

29). If c were the predecessor of c′, lc
′

would have sent the three plans to its succeeding

64

Algorithm 9 Secondary coalition c′ algorithm

Require: {αch}
Ensure: αih,∀i ∈ C ′
1: Initialize impactFactors to a null map
2: for i in 1,2,3 do
3: impactFactors(i)← computeImpactScore({αch}[i])
4: end for
5: αch ← pickMinImpactPlan({αch}, impactFactors)
6: sendToCoalition(c, αch)
7: for i in C ′ do
8: Ti ← sendRequestForIndividualPlans(i, αch)
9: end for
10: currentNodes← null
11: for i in C do
12: currentNodes(i)← Ti.nµ
13: end for
14: {αch} ← RecursivePlansSelection(currentNodes)
15: predecessor ← getPredecessorCoalition()
16: successor ← getSuccessorCoalition()
17: if c = predecessor then
18: if successor 6= null then
19: sendPlans(successor, {αch})
20: αch ← receiveFinalPlan(successor)
21: else
22: αch ← αch[1]
23: end if
24: else
25: if predecessor 6= null then
26: sendPlans(predecessor, {αch})
27: αch ← receiveFinalPlan(predecessor)
28: else
29: αch ← αch[1]
30: end if
31: end if
32: for i in C ′ do
33: αih ← αch(i)
34: end for

65

coalition leader (in steps 19-20) if one existed. After receiving the final action plan from the

preceding coalition leader or deciding it by itself, lc
′

extracts individual this final plan to its

members for execution in steps 32-34.

66

CHAPTER 7

MULTIPLE COALITIONS ALGORITHMS EVALUATION USING

SIMULATION EXPERIMENTS

In this chapter, we evaluate COCOA algorithms for multi-coalition collision avoidance by

implementing them in MATISSE simulator (Torabi et al., 2018). We obtain data from simu-

lation experiments to choose values of COCOA design parameters for different misbehavior

types. We use the simulation experimental data to determine the reliability and the scala-

bility of the multi-coalition approach. Additionally, we perform a trade-off analysis between

the individual coalition size and the number of coalitions on the road for a fixed number of

CAVs.

7.1 Simulation Experimental Setting

In the virtual Matisse simulation environment, the unit of time is called cycle, and the unit

of length is simply called unit. In our multi-coalition simulation experiments, a sequence of

coalitions is navigating on a three-lane highway. Each CAV member in each coalition of the

coalition sequence is cruising at the speed of 2 units/cycle. During the simulation experiment,

we add a misbehaving virtual CAV to the simulation environment that misbehaves to cause

a potential collision with one or more coalition CAVs. When an affected CAV detects the

misbehaving vehicle through one of its simulated sensors, it sends an alert to all of its

coalition members. The coalition containing the affected CAV is known as the primary

horizon. In our experiments, the primary coalition is located at either end of the coalition

sequence. In our experiments, we use the planning horizon h = 60 cycles, the Time To

Collide (TTC) value TTC = 20 cycles, and the action duration δt = 10 cycles. Each

coalition deliberates to choose a coalition action plan containing 6 consecutive actions for

each of its coalition members. We perform three types of experimental evaluation: reliability

evaluation, scalability evaluation, and trade-off analysis.

67

(a) Acceleration misbehavior: Misbehaving vehicle accelerates from behind three coalitions

(b) Full stop misbehavior: Misbehaving vehicle breaks in front of three coalitions

Figure 7.1: Misbehavior types for multi-coalition reliability evaluation

In the parameter tuning experiments and the reliability evaluation experiments, we con-

sider three coalitions in the coalition sequence. Each coalition consists of 5 coalition members.

We consider two types of misbehaviors by the misbehaving vehicle (see Figure 7.1) as listed

below:

• Acceleration misbehavior- The misbehaving vehicle is positioned behind the primary

coalition in the middle lane and speeds at 5 units/cycle in a straight path.

• Full stop misbehavior- The misbehaving vehicle is positioned in front of the primary

coalition in the middle lane and comes to a full stop at 0 units/cycle.

7.2 Parameter Tuning

We carried out parameter tuning experiments to tune single coalition COCOA algorithm

parameters for our multi-coalition scenarios in Figure 7.1, namely: CM (see Equation 3.1),

CA (see Equation 3.3), and β (see Equation 3.5). For parameters CM and CA, we did not find

difference in the tuned parameter values as given in Section 5.2. We found different tuned

values for the β parameter for the break misbehavior type. For the acceleration misbehavior,

we found β = 0.6 to be the optimum value. This is not in contrast to the single coalition

experiments, as 0.6 is also one of the optimum values for single coalition experiments along

68

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Acceleration misbehavior

S
u
cc

es
s

ra
te

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Break misbehavior

S
u
cc

es
s

ra
te

Figure 7.2: β parameter values for multi-coalition experiments

with 0.4 (see Figure 7.2). However, for the break misbehavior, we found β = 0 to be the

optimum value. This is a rare scenario where the adaptive reward function design does not

improve upon the standard reward function design.

7.3 Reliability Evaluation

Here, we define reliability as a collision avoidance algorithm’s ability to find a non-colliding

coalition action plan for each of the three coalitions in the given computational processing

time. We consider three coalitions, each consisting of five CAVs, and two misbehavior types

69

0.75 1 1.25 1.5 1.75

0

0.2

0.4

0.6

0.8

1

Processing time (in seconds)

S
u
cc

es
s

ra
te

Acceleration
Break

Figure 7.3: Reliability evaluation

as shown in Figure 7.1. For each misbehavior type, we set the processing time to a fixed

value from a set of five values and find the collision avoidance success rate for 10 simulation

experiments for each processing time value. We plot the collision avoidance success rate

versus the processing time for both misbehavior types in Figure 7.3. We can see that the

success rate increases as the allowed computation time increases.

7.4 Scalability Evaluation

We define scalability for multi-coalition decision making as the maximum number of coali-

tions for which the algorithm can complete its execution in a reasonable amount of time.

In the scalability experiments, we fix the number of CAVs in each coalition to 5 and vary

number of coalitions on the road from one to up to five coalitions. We use the acceleration

misbehavior type to test the scalability of our multi-coalition approach. We fix the allowed

processing time to 10 seconds in order to evaluate the computational efficiency of our al-

gorithm. Since the multi-coalition decision-making algorithm is sequential in nature, each

coalition can start its execution of the decision-making algorithm only after the previous

coalition has finished. For this reason, each coalition gets the allowed computation time in

seconds that equals to 10 divided by the number of coalitions |N | in the coalition sequence.

70

Figure 7.4: Trade-off analysis: 6 coalitions of 2 CAVs each (total 12 CAVs)

All CAVs in a given coalition perform decision-making in parallel and independent of each

other for full 10/|N | seconds. Experimental results show that COCOA multi-coalition al-

gorithm found non-colliding coalition action plans for up to 4 coalitions in the coalition

sequence, where each coalition consisted of five CAVs. It means that a total number of

20 CAVs can perform collision avoidance decision-making in 10 seconds of processing time,

which is a significant improvement over the 14 CAVs limit of the single coalition COCOA

algorithms (see Figure 5.7).

7.5 Trade-off Analysis

We perform the trade-off analysis between the number of coalitions and the individual coali-

tion size for a fixed total number of CAVs on the road. For a fixed total number of CAVs,

we can reduce each individual coalition size to increase the number of coalitions and vice

versa. Our objective is to derive an argument that for the best collision avoidance results,

one needs to balance between the individual coalition size and the number of coalitions. We

fix the total number of CAVs to 12 (See Figure 7.4). We generate several different coalitions

structures including 12 coalitions of single CAV each, 6 coalitions of 2 CAVs each, 4 coali-

tions of 3 CAVs each, 3 coalitions of 4 CAVs each, 2 coalitions of 6 CAVs each, and a single

coalition of 12 CAVs. For each of these coalitions structures, we perform 10 simulations

experiments in MATISSE and note the collision avoidance success rate. We fix the allowed

computation time to 3.6 seconds. For the sequential decision-making algorithm used for the

multi-coalitions, 3.6 seconds computation time gets divided among the coalitions. For 12

71

12 coalitions
of 1 CAV

6 coalitions
of 2 CAVs

4 coalitions
of 3 CAVs

3 coalitions
of 4 CAVs

2 coalitions
of 6 CAVs

One coalition
of 12 CAVs

0

0.2

0.4

0.6

0.8

S
u
cc

es
s

ra
te

Figure 7.5: Success rate for different number of coalitions constructed out of 12 CAVs

coalitions, each coalition gets 0.3 seconds of the computation time. Whereas for 2 coalitions,

each coalition gets 1.8 seconds of the computation time.

We can see that 4 coalitions with 3 CAVs each configuration yields the highest success

rate (see Figure 7.5). 3 coalitions with 4 CAVs each and 2 coalitions with 6 CAVs each

configurations also have very good success rate values. However, very small coalition sizes

of 1 and 2, as well as very large coalition size of 12, do not yield good results at all. This

confirms our initial argument that the balance between the number of coalitions and the

individual coalition size must be struck to yield the best results for collision avoidance.

72

CHAPTER 8

CONCLUSION

In this work, we presented COCOA, a set of cooperative collision avoidance algorithms for

coalitions of autonomous vehicles in the presence of a misbehaving vehicle.

8.1 Contributions

Among the unique contributions of our work, we mention the following:

1. We used the concept of CAV coalition for collision avoidance task, where coalition

members continuously exchange information with each other.

2. Unlike existing works which focus on either centralized or decentralized solutions,

we proposed a partially-decentralized hierarchical decision-making approach that is

achieved at two decision-making levels, i.e., individual vehicle-level and coalition leader-

level.

3. We proposed the first cooperative collision avoidance algorithm for multiple coalitions

of CAVs to our best knowledge.

4. The proposed COCOA algorithm improved upon the state-of-the-art MCTS-based

CAV algorithms by exponentially reducing the size of the search tree. With COCOA,

it is computationally feasible to find solutions for a larger number of agents (Patel and

Zalila-Wenkstern, 020a, 021a).

5. The proposed COCOA algorithm introduces a novel Intelligent Action Selection policy

for MCTS-based algorithms that employ a reduced branching factor (Patel and Zalila-

Wenkstern, 021a).

73

6. We proposed a novel Adaptive Reward Function design that improves the reliability

of MCTS (Patel and Zalila-Wenkstern, 021b).

7. We developed and implemented a CAV model with radar and LIDAR sensors in MA-

TISSE 3.0, a multi-agent-based simulation software to enable realistic evaluation and

visualization of COCOA algorithms.

8. We conducted extensive experiments in the multi-agent-based simulator to compare the

reliability and the scalability of COCOA algorithms with the leading centralized algo-

rithm proposed by Nakamura et al. (2020) and the decentralized AI-based algorithm

proposed by Kurzer et al. (018b).

9. We justified the need for multiple coalitions structure for efficient collision avoidance

through experimental analysis.

8.2 Lessons learned

Lessons learned during this research include:

1. Decentralized reinforcement learning methods are not suitable as-is for critical appli-

cations such as the collision avoidance of autonomous vehicles, since the individual

decisions by agents are not synchronized to check for conflicts.

2. Vehicle-to-vehicle communication is essential in achieving explicit cooperation among

autonomous vehicles, therefore its usage should be encouraged.

3. Monte Carlo Tree Search although suitable for very large state-space problems can not

handle a large number of agents in multi-agent problems.

4. Vehicle coalition structure generation is a crucial component for developing a successful

cooperative action planning system for autonomous vehicles.

74

5. For a fixed number of vehicles on the road, a balance between the number of coalitions

formed and the individual coalition size helps in achieving a better collision avoidance

rate.

8.3 Future Work

Future work includes the investigation of the following problems:

1. COCOA algorithms perform collision avoidance for multiple coalitions up to the plan-

ning horizon. We plan to extend it to perform collision avoidance past the planning

horizon by starting a new COCOA decision-making cycle.

2. Current adaptive reward function yields better results than the standard reward func-

tion in most scenarios but some. We plan to analyze it thoroughly to be able to

determine the usefulness of the adaptive reward weights for any given problem.

3. In COCOA algorithms, we use a finite and discrete set of individual CAV actions for

the collision avoidance task. It would be interesting to investigate ways to include a

continuous set of individual CAV actions while retaining the scalability advantage of

COCOA algorithms.

4. Current COCOA algorithm for multiple coalitions requires coalitions to be in a non-

overlapping sequence. It would be interesting to extend it to allow multiple coalitions

to navigate laterally together.

75

REFERENCES

Abboud, K., H. A. Omar, and W. Zhuang (2016). Interworking of dsrc and cellular net-
work technologies for v2x communications: A survey. IEEE transactions on vehicular
technology 65 (12), 9457–9470.

Ahmad, I., R. M. Noor, I. Ali, M. Imran, and A. Vasilakos (2017). Characterizing the
role of vehicular cloud computing in road traffic management. International Journal of
Distributed Sensor Networks 13 (5), 1550147717708728.

Andriotis, C. and K. Papakonstantinou (2019). Managing engineering systems with large
state and action spaces through deep reinforcement learning. Reliability Engineering &
System Safety 191, 106483.

Audi. Audi gives up on level 3 autonomous driver-assist sys-
tem in a8. https://www.motorauthority.com/news/1127984
audi-gives-up-on-level-3-autonomous-driver-assist-system-in-a8. Accessed on 2020-
12-02.

beamsearch. Beam search. https://en.wikipedia.org/wiki/Beam search. Accessed on 2021-
06-10.

Bellan, D. and C. Wartnaby (2020). Decentralized cooperative collision avoidance for auto-
mated vehicles: a real-world implementation. In 2020 IEEE Intelligent Vehicles Sympo-
sium (IV), pp. 487–494. IEEE.

Bhatia, A., K. Haribabu, K. Gupta, and A. Sahu (2018). Realization of flexible and scalable
vanets through sdn and virtualization. In 2018 International conference on information
networking (ICOIN), pp. 280–282. IEEE.

BMW. BMW Takes Self-Driving to Level 3 Automation. https://www.electronicdesign.com/
markets/automotive/article/21136427/bmw-takes-selfdriving-to-level-3-automation. Ac-
cessed on 2020-12-02.

Boutilier, C. (1999). Sequential optimality and coordination in multiagent systems. In
IJCAI, Volume 99, pp. 478–485.

Boyd, S., N. Parikh, and E. Chu (2011). Distributed optimization and statistical learning via
the alternating direction method of multipliers. Now Publishers Inc.

Browne, C. B., E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton (2012). A survey of monte carlo tree
search methods. IEEE Transactions on Computational Intelligence and AI in games 4 (1),
1–43.

76

https://www.motorauthority.com/news/1127984_audi-gives-up-on-level-3-autonomous-driver-assist-system-in-a8
https://www.motorauthority.com/news/1127984_audi-gives-up-on-level-3-autonomous-driver-assist-system-in-a8
https://www.electronicdesign.com/markets/automotive/article/21136427/bmw-takes-selfdriving-to-level-3-automation
https://www.electronicdesign.com/markets/automotive/article/21136427/bmw-takes-selfdriving-to-level-3-automation

Burger, C. and M. Lauer (2018). Cooperative multiple vehicle trajectory planning us-
ing miqp. In 2018 21st International Conference on Intelligent Transportation Systems
(ITSC), pp. 602–607. IEEE.

Committee, S. A. V. S. (2016). Sae j3016: Taxonomy and definitions for terms related to
on-road motor vehicle automated driving systems. SAE J3016, Sep.

Coulom, R. (2006). Efficient selectivity and backup operators in monte-carlo tree search. In
International conference on Computers and Games, pp. 72–83. Springer.

Djukic, P. and S. Valaee (2018). 802.16 mesh networking. In WiMAX, pp. 161–188. CRC
Press.

Duering, M., K. Franke, R. Balaghiasefi, M. Gonter, M. Belkner, and K. Lemmer (2014).
Adaptive cooperative maneuver planning algorithm for conflict resolution in diverse traffic
situations. In 2014 International Conference on Connected Vehicles and Expo (ICCVE),
pp. 242–249. IEEE.

Duering, M. and P. Pascheka (2014). Cooperative decentralized decision making for con-
flict resolution among autonomous agents. In 2014 IEEE International Symposium on
Innovations in Intelligent Systems and Applications (INISTA) Proceedings, pp. 154–161.
IEEE.

Elliott, D., W. Keen, and L. Miao (2019). Recent advances in connected and automated
vehicles. Journal of Traffic and Transportation Engineering (English Edition) 6 (2), 109–
131.

Ernst, T., V. Nebehaj, and R. Sør̊asen (2009). Cvis: Calm proof of concept preliminary
results. In 2009 9th International Conference on Intelligent Transport Systems Telecom-
munications,(ITST), pp. 80–85. IEEE.

Gao, L., D. Chu, Y. Cao, L. Lu, and C. Wu (2019). Multi-lane convoy control for autonomous
vehicles based on distributed graph and potential field. In 2019 IEEE Intelligent Trans-
portation Systems Conference (ITSC), pp. 2463–2469. IEEE.

Ghafoor, K. Z., M. Guizani, L. Kong, H. S. Maghdid, and K. F. Jasim (2019). Enabling
efficient coexistence of dsrc and c-v2x in vehicular networks. IEEE Wireless Communica-
tions 27 (2), 134–140.

GM. ”Ultra Cruise” to take GM’s Super Cruise hands-free driving
system into the city. https://www.motorauthority.com/news/1128224
ultra-cruise-to-take-gm-s-super-cruise-hands-free-driving-system-into-the-city. Accessed
on 2020-12-02.

77

https://www.motorauthority.com/news/1128224_ultra-cruise-to-take-gm-s-super-cruise-hands-free-driving-system-into-the-city
https://www.motorauthority.com/news/1128224_ultra-cruise-to-take-gm-s-super-cruise-hands-free-driving-system-into-the-city

Hawkins, A. J. (2020, January). LIDAR sensors aren’t just for self-
driving cars anymore. https://www.theverge.com/2020/1/7/21055011/
lidar-sensor-self-driving-mainstream-mass-market-velodyne-ces-2020. Accessed on
2020-12-02.

Johnson, C. (2017). Readiness of the road network for connected and autonomous vehicles.
RAC Foundation: London, UK .

Kessler, T. and A. Knoll (2019). Cooperative multi-vehicle behavior coordination for au-
tonomous driving. In 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 1953–1960.
IEEE.

Krajewski, R., P. Themann, and L. Eckstein (2016). Decoupled cooperative trajectory
optimization for connected highly automated vehicles at urban intersections. In 2016
IEEE Intelligent Vehicles Symposium (IV), pp. 741–746. IEEE.

Kurzer, K., F. Engelhorn, and J. M. Zöllner (2018b). Decentralized cooperative planning for
automated vehicles with continuous monte carlo tree search. In 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), pp. 452–459. IEEE.

Kurzer, K., M. Fechner, and J. M. Zöllner (2020). Accelerating cooperative planning for
automated vehicles with learned heuristics and monte carlo tree search. In 2020 IEEE
Intelligent Vehicles Symposium (IV), pp. 1726–1733. IEEE.

Kurzer, K., C. Zhou, and J. M. Zöllner (2018a). Decentralized cooperative planning for
automated vehicles with hierarchical monte carlo tree search. In 2018 IEEE Intelligent
Vehicles Symposium (IV), pp. 529–536. IEEE.

Kuutti, S., S. Fallah, K. Katsaros, M. Dianati, F. Mccullough, and A. Mouzakitis (2018). A
survey of the state-of-the-art localization techniques and their potentials for autonomous
vehicle applications. IEEE Internet of Things Journal 5 (2), 829–846.

Lan, L.-C., M.-Y. Tsai, T.-R. Wu, I. Wu, C.-J. Hsieh, et al. (2020). Learning to stop:
Dynamic simulation monte-carlo tree search. arXiv preprint arXiv:2012.07910 .

Lenz, D., T. Kessler, and A. Knoll (2016). Tactical cooperative planning for autonomous
highway driving using monte-carlo tree search. In 2016 IEEE Intelligent Vehicles Sympo-
sium (IV), pp. 447–453. IEEE.

Lucero, S. (2016). C-v2x offers a cellular alternative to ieee 802.11 p/dsrc. IHS TECHNOL-
OGY Internet Everything 3, 1–3.

Manoochehri, H. and R. Wenkstern (2017). Dynamic coalition structure generation for
autonomous connected vehicles. In 2017 IEEE International Conference on Agents (ICA),
pp. 21–26. IEEE.

78

https://www.theverge.com/2020/1/7/21055011/lidar-sensor-self-driving-mainstream-mass-market-velodyne-ces-2020
https://www.theverge.com/2020/1/7/21055011/lidar-sensor-self-driving-mainstream-mass-market-velodyne-ces-2020

Manzinger, S., M. Leibold, and M. Althoff (2017). Driving strategy selection for cooperative

vehicles using maneuver templates. In 2017 IEEE Intelligent Vehicles Symposium (IV),

pp. 647–654. IEEE.

Mercedes. Mercedes Takes ’21 S-Class to Next Level of Autonomous Driving. https://www.

wardsauto.com/vehicles/mercedes-takes-21-s-class-next-level-autonomous-driving. Ac-

cessed on 2020-12-02.

Milakis, D. (2019). Long-term implications of automated vehicles: An introduction.

Naik, G., B. Choudhury, and J.-M. Park (2019). Ieee 802.11 bd & 5g nr v2x: Evolution of

radio access technologies for v2x communications. IEEE Access 7, 70169–70184.

Nakamura, A., Y.-C. Liu, and B. Kim (2020). Short-term multi-vehicle trajectory planning

for collision avoidance. IEEE Transactions on Vehicular Technology .

OR-Tools. Google OR-Tools software. https://developers.google.com/optimization. Ac-

cessed on 2020-12-03.

Pascheka, P. and M. Duering (2015). Advanced cooperative decentralized decision making

using a cooperative reward system. In 2015 International Symposium on Innovations in

Intelligent SysTems and Applications (INISTA).

Patel, D. and R. Zalila-Wenkstern (2020a). Collaborative collision avoidance for cavs in

unpredictable scenarios. In 2020 IEEE 3rd Connected and Automated Vehicles Symposium

(CAVS), pp. 1–6. IEEE.

Patel, D. and R. Zalila-Wenkstern (2020b). 16 Connected and Automated Vehicles: Study

of Platooning, pp. 263 – 284. Berlin, Boston: De Gruyter.

Patel, D. and R. Zalila-Wenkstern (2021a). Scalable monte carlo tree search for cavs action

planning in colliding scenarios. In 2021 IEEE 32nd Intelligent Vehicles Symposium (IV21),

pp. 1–8 MC–MPS.14. IEEE.

Patel, D. and R. Zalila-Wenkstern (2021b). Adaptive reward for cav action planning us-

ing monte carlo tree search. In 2021 IEEE 24th International Conference on Intelligent

Transportation (ITSC), pp. 1–7 MoA7.8. IEEE.

Rasshofer, R. H. and K. Gresser (2005). Automotive radar and lidar systems for next

generation driver assistance functions. Advances in Radio Science 3.

Schaeffer, M. S. N. S. J., N. Shafiei, et al. (2009). Comparing uct versus cfr in simultaneous

games. In IJCAI Workshop on General Game Playing. Citeseer.

79

https://www.wardsauto.com/vehicles/mercedes-takes-21-s-class-next-level-autonomous-driving
https://www.wardsauto.com/vehicles/mercedes-takes-21-s-class-next-level-autonomous-driving
https://developers.google.com/optimization

Schwarting, W., J. Alonso-Mora, and D. Rus (2018). Planning and decision-making for
autonomous vehicles. Annual Review of Control, Robotics, and Autonomous Systems 1 (1),
187–210.

Schwarting, W. and P. Pascheka (2014). Recursive conflict resolution for cooperative motion
planning in dynamic highway traffic. In 17th International IEEE Conference on Intelligent
Transportation Systems (ITSC), pp. 1039–1044. IEEE.

Siegel, J. E., D. C. Erb, and S. E. Sarma (2018, Aug). A survey of the connected vehi-
cle landscape—architectures, enabling technologies, applications, and development areas.
IEEE Transactions on Intelligent Transportation Systems 19 (8), 2391–2406.

Silver, D., J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, et al. (2017). Mastering the game of go without human
knowledge. nature 550 (7676), 354–359.

Tak, M. J., M. Lanctot, and M. H. Winands (2014). Monte carlo tree search variants for
simultaneous move games. In 2014 IEEE Conference on Computational Intelligence and
Games, pp. 1–8. IEEE.

Tesla. Elon Musk Says Tesla Is ’Very Close’ To Level 5 Self-Driving Technology. https:
//insideevs.com/news/433141/elon-musk-tesla-level-5-autonomous-driving/. Accessed on
2020-12-02.

Torabi, B., M. Al-Zinati, and R. Z. Wenkstern (2018). Matisse 3.0: A large-scale multi-agent
simulation system for intelligent transportation systems. In International Conference on
Practical Applications of Agents and Multi-Agent Systems, pp. 357–360. Springer.

Vodopivec, T., S. Samothrakis, and B. Ster (2017). On monte carlo tree search and rein-
forcement learning. Journal of Artificial Intelligence Research 60, 881–936.

Wang, Z., Y. Zheng, S. E. Li, K. You, and K. Li (2018). Parallel optimal control for cooper-
ative automation of large-scale connected vehicles via admm. In 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), pp. 1633–1639. IEEE.

Yuan, Y., R. Tasik, S. S. Adhatarao, Y. Yuan, Z. Liu, and X. Fu (2020). Race: Reinforced
cooperative autonomous vehicle collision avoidance. IEEE transactions on vehicular tech-
nology 69 (9), 9279–9291.

Zhang, F., H. Stähle, G. Chen, C. C. C. Simon, C. Buckl, and A. Knoll (2012). A sensor fusion
approach for localization with cumulative error elimination. In 2012 IEEE International
Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 1–6.
IEEE.

Zhao, J., B. Liang, and Q. Chen (2018). The key technology toward the self-driving car.
International Journal of Intelligent Unmanned Systems .

80

https://insideevs.com/news/433141/elon-musk-tesla-level-5-autonomous-driving/
https://insideevs.com/news/433141/elon-musk-tesla-level-5-autonomous-driving/

BIOGRAPHICAL SKETCH

Dhruvkumar Patel was born near Ahmedabad, India in 1992. After completing his school-

work at Vishwa Vidyalaya High School in Ahmedabad in 2009, Dhruvkumar entered Dhirub-

hai Ambani Institute of Information and Communication Technology where he earned a

Bachelor of Technology with a major in Information and Communication Technology in

2013. Dhruvkumar worked for the ecommerce company, Infibeam, during 2013 as a soft-

ware developer and for TIFAC in 2014 as a research associate. In January 2015, he moved

to Dallas, TX and entered The University of Texas at Dallas. He was awarded a MS in

Computer Science from The University of Texas at Dallas in 2017 and immediately began

working towards a PhD degree in Computer Science. He married Janki Patel in November,

2017.

81

CURRICULUM VITAE

Dhruvkumar Patel
November 16, 2021

Educational History:

BTech, Information and Communication Technology, DA-IICT, 2013
MS, Computer Science, The University of Texas at Dallas, 2017
PhD, Computer Science, The University of Texas at Dallas, 2021(expected)

Employment History:

Teaching/Research Assistant, The University of Texas at Dallas, January 2016 – May 2021
Course Grader, The University of Texas at Dallas, January 2015 – December 2015
Research Associate, TIFAC, New Delhi, India July 2014 – December 2014
Software Developer, Infibeam, Ahmedabad, India July 2013 – November 2013
Research Assistant, IRLab, DA-IICT, India July 2013 – December 2013
Research Intern, Bell Labs, Bangalore, India January 2013 – June 2013

Publications:

Dhruvkumar Patel and Rym Z. Wenkstern. Cooperative action planning for CAVs in collid-
ing scenarios using Monte Carlo Tree Search. Submitted to IEEE transactions on Intelligent
Transportation Systems (T-ITS), Under review.
Dhruvkumar Patel and Rym Z. Wenkstern. Adaptive Reward for CAV Action Planning
Using Monte Carlo Tree Search. In Proceedings of the 24th IEEE Intelligent Transportation
Systems Conference, ITSC 2021, page 1-7, (Virtual) Indianapolis, USA, September 2021.
Dhruvkumar Patel and Rym Z. Wenkstern. Scalable Monte Carlo Tree Search for CAVs
Action Planning in Colliding Scenarios. In proceedings of the 32nd IEEE Intelligent Vehicles
Symposium, IV 2021, page 1-8, (Virtual) Nagoya, Japan, July 2021.
Dhruvkumar Patel and Rym Z. Wenkstern. Collaborative collision avoidance for CAVs in
unpredictable scenarios. In proceedings of the 3rd IEEE Connected and Automated Vehicles
Symposium, CAVS 2020, page 1-6, Virtual, November 2020.
Dhruvkumar Patel and Rym Z. Wenkstern. ”16 Connected and Automated Vehicles: Study
of Platooning”. Vehicles, Drivers, and Safety, edited by Huseyin Abut, Kazuya Takeda,
Gerhard Schmidt and John Hansen, page 263-284, Berlin, Boston: De Gruyter, 2020.

Technical Skills:

Languages & Software: Python, Java, C, SQL, Matlab, Tensorflow, Hadoop, Spark.
Web development: Javascript, jQuery, Bootstrap, J2EE.

Web:

LinkedIn: https://www.linkedin.com/in/dhruvkp
Github: https://www.github.com/dhruvkp

https://www.linkedin.com/in/dhruvkp
https://www.github.com/dhruvkp

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Autonomous Vehicle Technologies
	Technologies for Environment Sensing
	Technologies for Localization
	Technologies for Vehicle Communications

	Autonomous Vehicle Simulation
	Autonomous Vehicle Action Planning
	Related works
	Non AI-based approaches
	AI based approaches

	COCOA Algorithms for a single coalition
	Model Definition
	Hierarchical Approach
	CAV level approach
	Coalition level approach

	Algorithms
	Branching Factor Reduction
	Intelligent Action Selection
	Adaptive and Cooperative Reward Function
	Coalition level decision making using Beam Search

	Case Study For Single Coalition Algorithms
	Case Study 1: Acceleration misbehavior
	Case Study 2: Break misbehavior
	Case Study 3: Zigzag misbehavior

	Single Coalition Algorithms Evaluation using Simulation Experiments
	Simulation Experimental Setting
	Tuning COCOA Parameters
	Reliability Evaluation
	Scalability Evaluation

	COCOA Algorithms for multiple coalitions
	Model Definition
	General Approach
	Algorithms
	Primary coalition algorithm
	Secondary coalition algorithm

	Multiple Coalitions Algorithms Evaluation using Simulation Experiments
	Simulation Experimental Setting
	Parameter Tuning
	Reliability Evaluation
	Scalability Evaluation
	Trade-off Analysis

	Conclusion
	Contributions
	Lessons learned
	Future Work

	References
	Biographical Sketch
	Curriculum Vitae

