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waveform analysis of DEMETER data.

I have learned a lot from communicating with colleagues in my group, including Xu Liu, Li-

heng Zheng, Hui Zhu, Zhaoguo He, Si Liu, Xiang Xu, Zhenxia Zhang, Ying Xiong, Armando

Maldonado, Wenyao Gu, Jicheng Sun and Yangguang Ke. Thanks for their discussion and

help.

v



Finally, my family and friends, such as Xun Liu, Xiaoyuan Liu, and Daji Wu, have supported

me a lot and helped me overcome many difficulties in my life. I am very pleased and fortunate

to have met and associated with them.

June 2019

vi
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This dissertation focuses on the study of the modulation of very low frequency (VLF) whistler

mode waves in the Earth’s magnetosphere by ultra low frequency (ULF) waves. First, I

provide an in-situ observation of chorus wave modulated by ULF waves deep in the inner

magnetosphere. The observed ULF wave can modulate the distribution of both protons and

electrons and amplify the intensity of chorus waves. Then I build a two-dimensional self-

consistent magnetic field (SCB) model to analyze the eigenmode of ULF field line resonance

(FLR) with the effect of the anisotropic ring current pressure included. The results show

that the eigenfrequency is reduced at the negative radial pressure gradient while increases

at the positive pressure gradient. The compressional component of FLR magnetic field

perturbation can be found in both the positive and negative gradient regions of the pressure

and enhanced by larger plasma β and smaller anisotropy. Using about 2 years’ observations

of three THEMIS satellites and over 5.5 years of observations of two Van Allen Probes

satellites, I perform a statistical study of the chorus wave modulation events. The results

indicate that in most of the modulation events, the intensity of chorus wave correlates to the

background magnetic field negatively and plasma density positively. The intensity of chorus

wave strongly depends on the amplitude of the background magnetic field perturbation but

weakly depends on the amplitude of plasma density perturbation.
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Besides the work on VLF whistler mode waves modulated by ULF waves, I also perform two

other relevant studies. The first one is using the two-dimensional self-consistent magnetic

field (SCB) model to study the effects of localized thermal pressure on the magnetic field

configuration and the formation of magnetic dip structure. The modeling results demonstrate

that the magnetic perturbation increases with increasing plasma β and decreasing width of

pressure distribution. The formation of magnetic dip requires a critical β value that increases

with increasing width of pressure distribution and decreasing L shell. The other study is

using the observations of DEMETER satellite to investigate propagation characteristics of

low altitude ionospheric hiss. The ionospheric hiss can propagate from the high latitude

regions to the equator within a waveguide near the region of cutoff frequency and plasma

density peak, which results in the narrow frequency banded spectrum of ionospheric hiss

waves with the central frequency around the local proton cyclotron frequency. The power

of ionospheric hiss is stronger on the dayside than the nightside, under higher geomagnetic

activity, in local summer and confined near the region where the local proton cyclotron

frequency is equal to the wave frequency.
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CHAPTER 1

INTRODUCTION

1.1 Earth’s Magnetosphere

The solar system comprises the Sun, which is the center of the system, and eight large planets,

including the Earth. The space between the sun and other parts within the solar system is

called the interplanetary space. The interplanetary space is not vacuum; instead, there exists

ionized gas consisting of positive and negative charged particles in the interplanetary space

with low particle number density (∼5 particles per cubic centimeter around the Earth).

This ionized gas is also known as plasma, which is usually in quasi-neutral charge state.

Besides the low density background plasma, there are also some bulks of higher density

plasma traveling within the interplanetary space. The Sun continuously blows plasma at a

supersonic speed (known as solar wind) to the interplanetary space and influences the other

planets.

The Earth’s magnetic field, also called the geomagnetic field, can interact with the solar

wind and prevent the solar wind from reaching the surface of the Earth. As a result, the shape

of the geomagnetic field changes and a cavity structure named magnetosphere is formed. The

Earth’s magnetosphere is a huge cavity surrounding the Earth and dominated by the Earth’s

magnetic field. Its outer boundary is called the magnetopause. Above the magnetopause, a

bow shock is formed because of the supersonic solar wind. Between the bow shock and the

magnetopause is the magnetosheath, a region where the solar wind flow becomes subsonic

and the plasma is heated. Most of the plasma comes from the solar wind and the magnitude

of the magnetic field varies erratically.

The detailed structures of the magnetosphere are shown in Figure 1.1. At dayside, the

magnetosphere is compressed by the solar wind, while at nightside, the magnetosphere is

stretched and appears as a long tube with a length of about 100-200 RE (RE is the radius

1



Figure 1.1. The illustration of the Earth’s magnetosphere’s structures [C. Brandt et al.,
2005].
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of the Earth), which is called the Earth’s magnetotail. Near the magnetic equatorial plane

in the Earth’s magnetotail is the plasma sheet, a flat region with hot plasma extending from

5 RE to about 45 RE. The plasma in the plasma sheet is a mixture of the ionospheric and

solar wind plasma with a high β value of about 5-10 (β is the ratio between the plasma

thermal pressure and magnetic pressure). The electron number density in the plasma sheet

is about 0.1 − 1 cm−3 and the energy of ions is typically of a few keV. The region between

the magnetopause and the plasma sheet in the magnetotail are the tail lobes with a very low

β value. Totally, the magnetotail is a region for the energy storage of the magnetosphere

and provides energy and plasma sources for the inner magnetosphere.

The region within 8 RE from the Earth is called the inner magnetosphere, where the

magnetic field is nearly dipolar. The inner magnetosphere includes three particle populations:

plasmasphere, radiation belts and ring current. The plasmasphere typically extends from

2 to 8 RE and looks like a torus. The plasmaspheric plasma is cold (∼1 eV) and dense

(10 − 103 cm−3). The outer boundary of the plasmasphere is called the plasmapause and

is correlated with the inner boundary of the outer radiation belt [Goldstein et al., 2005; Li

et al., 2006; Pierrard and Benck, 2012]. The radiation belts are regions of relativistic electrons

(>100 keV) trapped by the Earth’s magnetic field and orbiting surrounding the Earth. The

radiation belts include two zones: the inner belt and the outer belt. The inner belt locates

at about 1.5 -2 RE and contains high concentrations of electrons of hundreds of keV energy

and energetic protons with energies over 100 MeV, while the outer belt locates at 3-6 RE

and consists mainly of relativistic electrons (0.1 to 10 MeV). Near the geomagnetic equator

between 2 and 7 RE, the ring current circulates around the Earth, carrying westward current.

The ring current is caused by the longitudinal drift motion of charged particles (eastward

for electrons and westward for ions) and its energy density is mainly carried by the ions over

the 10s-100s keV energy. The ring current can produce a southward magnetic field at the

equator near the Earth’s surface, leading to magnetic field depression.
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1.2 Dynamics in the Magnetosphere

The dynamics in the magnetosphere are directly controlled by the solar wind which carries

with a highly varying interplanetary magnetic field (IMF). Near the sub-solar point of the

magnetosphere (the intersection point between the Sun-Earth line and the magnetopause),

if the direction of the magnetic field in the solar wind is southward(opposite to the direction

of Earth’s magnetic field), the magnetic reconnection process occurs. The reconnection can

change the topology of field lines, where a portion of the Earth’s closed field lines connect to

the field lines in the solar wind and become open field lines. The open magnetic field lines

together with the plasma frozen within are swept away by the solar wind and move from

the dayside into the magnetotail. In the magnetotail, another reconnection occurs and the

open magnetic field lines become closed again and move back to the dayside. This process is

called Dungey circle [Dungey, 1961] and allows the particles in the solar wind penetrate into

the magnetosphere, which is a replenishment of particles in the magnetosphere balancing

with the particle loss due to the precipitation into the ionosphere.

Magnetospheric activity, such as geomagnetic storms and magnetospheric substorms, can

occur under a strong solar wind driver. The geomagnetic storms usually take place under

a long time period of high solar wind speed and southward interplanetary magnetic field

(IMF), which is an effective condition for magnetic reconnection as well as the accompanying

energy transfer from the solar wind into the Earth’s magnetosphere. Geomagnetic storms

usually last from several hours to days and are divided into three phases (Figure 1.2): the

initial phase, the main phase and the recovery phase. Geomagnetic storms can result in

intense current in the magnetosphere, particle precipitation from the magnetosphere into

the ionosphere, heating of the ionosphere and the thermosphere. The enhanced ring current

can decrease the horizontal magnetic field at the Earth’s surface due to its diamagnetic effect.

Thus the Dst (disturbed storm time) index, describing the magnetic perturbation near the

4



Figure 1.2. A geomagnetic storm and its three phases identified by Dst index [Okpala and
Ogbonna, 2018].

equator at the Earth’s surface, is used to identify and characterize the geomagnetic storms

(Figure 1.2).

The magnetospheric substorm is another important magnetospheric dynamic that usually

corresponds to geomagnetic storms but is not a “smaller storm” or a part of the storm. The

duration of a substorm is generally a few hours including three distinct phases (Figure

1.3): the growth phase, the expansion phase and the recovery phase. The growth phase

usually starts after a southward turning of the interplanetary magnetic field, which enhances

5



the dayside magnetic reconnection and transfers large amounts of magnetic flux together

with plasma to the magnetotail. Energy accumulates in the magnetotail to a substantial

quantity and then is quickly released and deposited into the inner magnetosphere, which

triggers the expansion phase [Rostoker et al., 1980; Rostoker, 1996]. After the expansion

phase, the magnetosphere returns to the previous steady state in a duration of about 1

hour which is called the recovery phase [Akasofu, 1964]. During the expansion phase, there

exist multiple phenomena such as particle energization in the plasma sheet, particle injection

at geostationary orbit, enhanced particle precipitation and increased corresponding auroral

luminosity. The particle injection is caused by the earthward motion of magnetic field

lines dragging plasma from the geomagnetotail into the inner magnetosphere and is usually

observed as abrupt enhancements of particle fluxes with energies from tens to hundreds

of keV [Parks et al., 1980; Sandholt and Farrugia, 2001]. The particle injection can cause

perturbations of the magnetic field with a duration of 10s of minutes to several hours due

to the diamagnetic effect. Also, ULF (ultra low frequency) magnetic field perturbations

with short duration (about 10s of seconds) can be excited during the expansion phase. The

substorm level is usually characterized by the AU, AL and AE indices (Figure 1.3) which are

related to the magnetic activity in the auroral zone produced by the enhanced ionospheric

currents flowing below and within the auroral oval.
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Figure 1.3. Definitions of the three phases of a magnetic substorm in terms of two auroral
activity indices AU and AL [McPherron, R. L., 1995].

1.3 Particle Motions in the Magnetosphere

The motion of charged particles without collision in given electric field E and magnetic field

B can be described by the relativistic momentum equatons:

p = γmv, (1.1)

dp

dt
= q(E + v ×B), (1.2)

where p is the particle’s momentum, v is the particle’s velocity, m is the rest mass of the

particle, q is the particle’s charge and γ = 1/
√

1− v2/c2 is the Lorentz factor (c is the
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speed of light in vacuum). Assuming that the radius of particles’ gyro motion rg is much

smaller than the spatial scale of magnetic field B/|∇B|, the motion of charged particle can

be decomposed into a fast gyro motion around the guiding center and a slow motion of the

guiding center. This assumption is true for most particles in the Earth’s magnetosphere with

energy lower than 100 MeV [Young et al., 2002; Selesnick et al., 2007]. For the fast gyro

motion, the radius rg and period τg are:

rg =
p sinα

|q|B
, (1.3)

τg =
2πγm

|q|B
, (1.4)

where α is the pitch angle (the angle between v and B).

The motion of the guiding center can be described as [Northrop, 1963]:

VGC =
E×B

B2
+
γmv2

⊥
2qB2

(b×∇B) +
γmv2

‖

qB2
(B× (b · ∇)b) + v‖, (1.5)

where v⊥ and v‖ are the speed components perpendicular and parallel to the ambient magnet-

ic field, respectively, and b = B/B is the unit vector of the magnetic field. At the right-hand

side of Equation (1.5), the first three terms are the electric drift motion, magnetic gradient

drift motion and magnetic curvature drift motion respectively, which are all perpendicular

to the background magnetic field. The last term is the motion parallel to the background

magnetic field and the parallel velocity is governed by:

dv‖
dt

= − v2
⊥

2B2
(∇B ·B) (1.6)

The right-hand side term of Equation (1.6) is known as “mirror force”, which can accelerate

the particle in the direction opposite to the gradient of the magnetic field. Along a magnetic

field line with stronger magnetic field strength at the two ends (for example, the Earth’s

magnetic field), the particles will be reflected at two mirror points as a result of the ”mirror

force”. Thus a periodic bounce motion of particles between the two mirror points follows.
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However, for the Earth’s magnetic field, if the mirror point is too close to the Earth’s surface

(i.e. altitude less than 100 km), the charged particle may penetrate into the atmosphere

and collide with dense atmospheric particles (neutrals and ions), which makes the charged

particle quickly absorbed by the atmosphere and fail to bounce back to the magnetosphere.

The altitude of the mirror point decreases as the particle’s equatorial pitch angle decreases,

thus particles with small enough equatorial pitch angles will be lost to the atmosphere and

the range of these small pitch angles is termed as the “loss cone”.

To sum up, the motion of charged particles trapped in the magnetosphere includes three

kinds of quasi-periodic motions with distinct time periods: the gyro motion around the guid-

ing center on the magnetic field line with smallest period, the bounce motion along magnetic

field line and the drift motion around the Earth with largest period, which are shown by

Figure 1.4. Each of the three kinds of motion is also associated with one corresponding adi-

abatic invariant that is conserved if the change of electric and magnetic fields can be ignored

over the period of the corresponding motion. The first adiabatic invariant corresponding to

the gyro motion is:

J1 =
p2
⊥

2qB
. (1.7)

The second adiabatic invariant corresponding to the bounce motion is:

J2 = 2p

∫ sm2

sm1

√
1−B(s)/Bmds, (1.8)

where sm1 and sm2 are the two mirror points, Bm = p2B/p2
⊥ is the magnetic field strength at

the mirror point, ds is an element of distance along magnetic field line. The third adiabatic

invariant corresponding to the drift motion is:

J3 = q

∮
B · dS, (1.9)

where dS is an element of the surface enclosed by the equatorial drift shell.
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Figure 1.4. Schematic representation of the three motions of a magnetically trapped charged
particle in the magnetosphere [Regi, 2016].

1.4 Very Low Frequency (VLF) Whistler Mode Waves in the Magnetosphere

In the Earth’s magnetosphere, the charged particles can interact with a variety of electro-

magnetic waves. The interactions include wave damping (wave loses energy to particles)

and wave growing (wave gains energy from particles and can be amplified by the particles).

One type of the commonly amplified electromagnetic waves is the whistler mode wave. It

is a right-hand circularly polarized electromagnetic wave with the frequency range between

the local electron cyclotron frequency fce and the lower hybrid resonance frequency fLHR.

It is believed [Contel et al., 2016; Wilder et al., 2017; Yoo et al., 2018] that the whistler

mode waves are typically amplified under an anisotropic electron temperature condition of

T⊥ > T‖ (subscript ⊥ and ‖ represent the direction perpendicular and parallel to the back-

ground magnetic field respectively). Examples of whistler mode waves in the magnetosphere

include plasmaspheric hiss inside the plasmasphere and chorus waves that typically occur

outside the plasmasphere. Figure 1.5 and Figure 1.6 show the spatial distribution and ob-

served spectra of some important plasma waves (including the whistler mode waves) in the

magnetosphere respectively.
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Figure 1.5. Schematic diagram showing the spatial distribution of important waves in the
inner magnetosphere [Thorne et al., 2010].

Chorus emission occurs in the Earth’s magnetosphere in the typical frequency range be-

tween 0.1 to 0.8 fce, with two separate frequency bands [Tsurutani and Smith, 1977; Koons

and Roeder, 1990]. One band is from 0.1 to 0.5 fce (the lower band) and the other is above

0.5 fce (the upper band), with a power spectral density gap near 0.5 fce [Tsurutani and

Smith, 1974; Burtis and Helliwell, 1976, 1969]. Figure 1.7 shows the magnetic field spec-

trogram of chorus waves, which often appears as a series of rising tone elements (frequency

increasing with time). The chorus waves originate near the geomagnetic equator outside the

plasmapause [LeDocq et al., 1998; Lauben and Others, 2002; Santoĺık et al., 2003a] due to

the cyclotron resonant interaction with anisotropic plasma sheet electrons injected into the

inner magnetosphere in the 10-100 keV energy range [Li and Others, 2009, 2010]. Recent

studies indicate that the intensity and occurrence of chorus waves are associated with geo-
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Figure 1.6. Spectrogram of waves in the magnetosphere observed by Combined Release and
Radiation Effects Satellite (CRRES) [Kletzing and Others, 2013].

magnetic activity [Tsurutani and Smith, 1974; Meredith et al., 2001; Meredith and Others,

2003b,a; Miyoshi and Others, 2003; Lyons and Others, 2005], and most of the chorus waves

occur during geomagnetic disturbances. The chorus emissions play an important role in the

dynamics of the outer radiation belt by causing electron scattering in pitch angle and energy,

which leads to electron acceleration in the heart of the outer radiation belt and precipita-

tion loss into the atmosphere. This process is also believed to be the dominant mechanism

responsible for the global distribution of the pulsating [Nishimura et al., 2011] and diffuse

auroral [Thorne et al., 2010] precipitations, which provides important energy input for the

ionosphere.

Plasmaspheric hiss is confined to high-density plasmasphere and dayside plumes [Thorne

et al., 1973; Meredith et al., 2004]. It is broadband, structureless, and incoherent electro-

magnetic emission with a frequency range from ∼100 Hz to several kHz [Meredith et al.,
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Figure 1.7. Spectrogram of magnetic field data from THEMIS for Whistler mode Chorus
wave [University of Calgary Website, https://www.ucalgary.ca/above/science/chorus].

2004]. The amplitude of this broadband hiss can vary from ∼10 pT or less under quite con-

dition [Thorne et al., 1973] to ∼100 pT during geomagnetic active times [Smith et al., 1974].

One main embryonic source of hiss has been verified to be the lower band chorus generated

outside the plasmasphere [Bortnik et al., 2009; Meredith et al., 2013]. Lightning-generated

whistler may also contribute to the plasmaspheric hiss [Green et al., 2005]. Previous simula-

tion studies indicate that hiss emission is the main driver of the formation of the slot region

between the inner and outer radiation belts [Lyons and Thorne, 1973; Abel and Thorne,

1998a,b]. Also, hiss waves can result in the loss of energetic electrons in the outer radiation

belt. Recent studies illustrate that the plasmaspheric hiss can propagate nearly along the

magnetic field line into the ionosphere and become the low altitude ionospheric hiss [Santoĺık

and Parrot, 1999; Santoĺık et al., 2006a; Chen et al., 2017].

1.5 ULF Waves and Field Line Resonance

Ultra low frequency (ULF) MHD plasma waves have been observed throughout the Earth’s

magnetosphere and on the ground. The frequency range of the ULF wave is 1 mHz≤ f ≤ 10
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Table 1.1. The period bands of Continuous Pulsations and Irregular Pulsations.

Continuous Pulsations Irregular Pulsations
Class Period (s) Class Period (s)
Pc1 0.2-5 Pi1 1-45
Pc2 5-10 Pi2 45-150
Pc3 10-45
Pc4 45-150
Pc5 150-600

Hz. According to the waveform observation, the ULF can be classified into two types: (1)

waves with quasi-sinusoidal waveform are called pulsations continuous (Pc), (2) waves with

irregular waveforms are pulsations irregular (Pi). According to the observed period, the Pc

is subdivided into 5 period bands Pc1-5 and Pi is subdivided into 2 period bands Pi1-2. The

period bands of Pc1-5 and Pi1-2 are shown in Table 1.1.

The ULF wave can be generated by both external sources (solar wind, shocks, etc.) and

internal sources inside the magnetosphere (substorm injection, plasma instability, etc.). The

external generated ULF waves always have low azimuthal wave number mφ ∼ O(1) and the

mφ of internal excited ULF waves is much higher (∼ O(100)). Both kinds of waves can

couple with the field line resonance (FLR) when the frequency of the wave is close to the

eigenfrequency of the magnetic field line. The FLR is the oscillation of the Earth’s magnetic

field line which behaves like a vibrating string with two ends frozen in the ionosphere. There

are three typical modes of FLR: 1. the poloidal mode with oscillating Br and Eφ compo-

nents, where subscripts r and φ denote the radial and azimuthal directions respectively; 2.

the toroidal mode with oscillating Bφ and Er; 3. the compressional mode with the oscillating

B‖, Br and Eφ, where subscript ‖ represents the direction of the background magnetic field.

FLR modes in the inhomogeneous plasma can recover Alfvénic mode in a uniform back-

ground when inhomogeneity in the magnetic field and plasma vanishes. The descriptions of

ULF wave modes and FLR under magnetohydrodynamics (MHD) assumption are provided
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in Appendix A. All three types may have fundamental and harmonic oscillations. The har-

monics are named according to the number of electric field nodes (E = 0). For fundamental

modes, only two nodes exist at the two ends of the field lines. The second harmonic mode

has one additional node at the equator (electric field vanishes at the equator). The third

harmonic mode has two extra nodes off the equator. Figure 1.8 gives examples of fundamen-

tal harmonics and 2nd harmonics for poloidal and toroidal modes. Different harmonics may

be simultaneously excited if the source is broadband.
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Figure 1.8. Fundamental harmonic (top row) and 2nd harmonic (bottom row) for poloidal
mode (left panels) and toroidal mode (right panels) FLRs.
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1.6 Modulation of VLF Whistler Waves

The observed spectra of chorus waves usually exhibit discrete structures with a time duration

of about a tenth to a few tenths of seconds [Santoĺık et al., 2003a]. The emission elements

usually gathered together and modulated on a timescale between a few seconds and a few

minutes, which corresponds to the period of Pc4-5 ULF waves. This period matching indi-

cates a close relationship between the VLF waves and ULF waves. Observations since several

decades ago [Kimura, 1974; Sato et al., 1974; Sato and Fukunishi, 1981] have indicated that

the intensity of whistler waves can be modulated by the compressional component of ULF

waves. This modulation of whistler waves by ULF waves is considered as a subsequent effect

of modulation of energetic electron flux by ULF waves because chorus waves are generated by

cyclotron resonant interaction with anisotropic energetic electrons. However most of these

observations are from ground-based high latitude stations, which makes the observations

very indirect due to the equatorial spatial confinement of whistler waves’ excitation [LeDocq

et al., 1998; Lauben and Others, 2002; Santoĺık et al., 2003a], the damping effect (such as

Landau damping) in the propagation of whistler waves from the magnetic equator to the

ionosphere [Bortnik et al., 2007a; Li et al., 2008], as well as the shielding of compressional

waves in the magnetosphere by the ionosphere [Hughes and Southwood, 1976]. Recently, Li

et al. [2011a] performed simultaneous observations of chorus waves, ULF waves and particle

distributions near the magnetic equator in the magnetosphere by the Time History of Events

and Macroscale Interactions during Substorms (THEMIS) [Sibeck and Angelopoulos, 2008]

satellites to investigate the modulation between chorus and ULF waves. Figure 1.9 is one of

the representative events in [Li et al., 2011a], in which compressional Pc4-5 pulsations with

an anticorrelation between the total electron density and the background magnetic field. The

intensity of chorus emission varied nearly in-phase with electron density and out-of-phase

with background magnetic field. The following statistical analysis in this study indicates

that most modulation events relevant to the ULF waves occur in the outer magnetosphere
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(L=8-12) and near the dawn sector as shown by Figure 1.10. Besides the compressional ULF

waves, the perturbation of only plasma density can also modulate the intensity of chorus

waves either in-phase or out-of-phase, which both can be explained by the linear theory of

whistler waves [Li et al., 2011b].

The intensity of hiss can also be modulated by the variation of background plasma den-

sity with high wave intensity in high density regions, which may be caused by either local

amplification or propagation effect [Chen et al., 2012]. Recently, Shi et al. [2018] reported an

in-situ event in which injected energetic electrons drifted from the nightside to the dayside

and were modulated by ULF waves via drift resonance [Dai and Others, 2013; Hao et al.,

2014; Chen et al., 2017; Zhou et al., 2015, 2016; Li et al., 2017]. The modulated electrons

consequently modulated the intensity of hiss waves through local amplification, which is ob-

served by Van Allen Probe B satellite. An illustration of this event is shown in Figure 1.11

below.

In summary, previous studies indicate that the modulation effects of ULF waves on VLF

whistler waves can be explained by either the concentration of VLF whistler waves during

propagation due to the plasma density variation or the local amplification caused by the

variations of plasma density, energetic particle flux and background magnetic field which

can be modulated by the ULF waves.
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Figure 1.9. Chorus modulation event observed by THEMIS E satellite[Li et al., 2011a].
(a) Total electron density, (b) total magnetic field (black) and magnetic field in the z direc-
tion in the SM coordinate (red). (c) Omnidirectional electron energy flux and (d) electron
anisotropy (A) (e) Electron energy flux (3-30 keV) perpendicular (blue) and parallel (black)
, (f) Minimum resonant energy of electrons interacting with waves of three normalized fre-
quencies through the first-order cyclotron resonance, (g) root mean square of wave magnetic
field amplitude (0.05-0.8 fce), and time-frequency spectrograms of (h) wave electric and (i)
magnetic fields. The three white lines in Figures 1.9h and 1.9i represent 1 fce (dashed), 0.5
fce (solid), and 0.1 fce (dash-dot).
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Figure 1.10. Global distributions of (a) the location of events, (b) number of samples, (c)
number of events, and (d) the occurrence rate (%) of the events in regions of 5 and 12 RE

at all MLTs.[Li et al., 2011a].
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Figure 1.11. An illustration showing the energetic electron trajectory (green), ULF waves
(pink) and hiss intensity modulation (blue) [Shi et al., 2018].
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1.7 Dissertation Outline

This dissertation focuses on the modulation of VLF whistler waves by ULF waves. The

outline of this dissertation is as follows. In Chapter 2, an in-situ observation of chorus mod-

ulation by ULF wave in the inner magnetosphere is presented and analyzed. In Chapter 3,

I built a two-dimensional (2D) self-consistent magnetic field (SCB) model and applied it to

the eigenmode analysis of the ULF field line resonance. In Chapter 4, I performed a statis-

tical study of chorus modulation by perturbations of background magnetic field and plasma

density and analyzed the relationship between the chorus intensity and the amplitudes of

the perturbations. Besides the above works about the chorus modulation by ULF waves,

two other relevant works led by myself are also included in this dissertation as Chapters

5 and 6. In Chapter 5, I used the 2D SCB model to analyze the effects of ring current

pressure on magnetic field configuration, particle drift motions as well as the formation of

the magnetic dip structure. In Chapter 6, I use in-situ measurements to statistically study

the distribution of ionospheric hiss power and explain its propagation mechanism with a ray

tracing model. Finally, I summarize the results presented and discuss future works relevant

to my dissertation study in Chapter 7.
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CHAPTER 2

MODULATION OF CHORUS INTENSITY BY ULF WAVES DEEP IN THE

INNER MAGNETOSPHERE1

The work shown in this chapter has been published as “Xia, Z., L. Chen, L. Dai, S. G.

Claudepierre, A. A. Chan, A. R. Soto-Chavez, and G. D. Reeves (2016), Modulation of

chorus intensity by ULF waves deep in the inner magnetosphere, Geophys. Res.

Lett., 43, 9444-9452, doi:10.1002/2016GL070280”.

2.1 Introduction

Chorus emission is one of the whistler-mode waves occurring in the Earths magnetosphere

in the typical frequency range between 0.1 to 0.8 fce (fce is the equatorial electron gyrofre-

quency) [Tsurutani and Smith, 1977; Koons and Roeder, 1990]. Chorus usually occurs in

two separate frequency bands within the frequency range mentioned above, one is 0.1 to

0.5 fce (the lower band) and the other is above 0.5 fce (the upper band) [Tsurutani and

Smith, 1974; Burtis and Helliwell, 1976, 1969]. The chorus waves originate near the geo-

magnetic equator outside the plasmapause [LeDocq et al., 1998; Lauben and Others, 2002;

Santoĺık et al., 2003a] due to the cyclotron resonant interaction with anisotropic plasma

sheet electrons injected into the inner magnetosphere in the 10-100 keV energy range [Li

and Others, 2009, 2010]. It is generally believed that the intensity and occurrence of chorus

are associated with geomagnetic activity, and most of the chorus waves take place during

geomagnetic disturbances [Tsurutani and Smith, 1974; Meredith et al., 2001; Meredith and

Others, 2003b,a; Miyoshi and Others, 2003; Lyons and Others, 2005].

1 c©2016 Amercian Geophysical Union. Portions Adapted, with permission from, Z. Xia, “Modulation of
chorus intensity by ULF waves deep in the inner magnetosphere,” Xia, Z., L. Chen, L. Dai, S. G. Claudepierre,
A. A. Chan, A. R. Soto-Chavez, and G. D. Reeves, Geophys. Res. Lett., 43.
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Ultralow frequency (ULF) oscillation of geomagnetic field lines can be excited, in gen-

eral, by sources external or internal to the magnetosphere. Solar wind dynamic pressure

fluctuations can be a substantial source for magnetosphere ULF wave power [Kessel, 2008;

Takahashi and Ukhorskiy, 2007; Dai and Others, 2015]. ULF waves generated by external

sources are compressional waves of fast-mode nature and characterized by a global-scale

azimuthal wavelength (or small azimuthal wave number). In contrast, internal instabilities

excite more localized ULF waves with a small azimuthal wavelength. The instabilities could

be drift or drift-bounce instability [Southwood, 1976; Dai and Others, 2013] or drift mirror

instability [Cheng and Lin, 1987; Chen and Hasegawa, 1991]. These two instabilities, which

generally are coupled, are more effective in low-β and high-β plasma, respectively.

The time scale of the chorus elements is about a tenth to a few tenths of seconds [San-

toĺık et al., 2003a]. Previous studies have shown that the intensity of chorus waves can

be modulated by ULF waves on a few seconds to a few minutes timescale [e.g., Tixier and

Cornilleau-Wehrlin, 1986; Manninen et al., 2010]. Li et al. [2011a] have analyzed several

events where the intensity of chorus waves can be modulated by the compressional Pc4-Pc5

ULF waves with antiphase correlation between the magnetic field and electron density which

is inferred from spacecraft potential. They found that the chorus intensity enhances with

increased electron density and with depletion of magnetic field and is weaker when the elec-

tron density reaches its valley and magnetic field reaches its crest. This kind of modulations

occurs in the large L shell area (8 to 12) where external solar wind sources are likely the

driver. In this paper, we present Van Allen Probes observation of a modulation of chorus

wave intensity by ULF waves event, which is excited internally deep in the magnetosphere

during a strong geomagnetic storm and also shows many other modulating signatures. The

Van Allen Probes (formerly known as the Radiation Belt Storm Probes (RBSP)) [Mauk

and Others, 2013] are capable of detecting the upper hybrid resonance line, which enables

calibration of density inferred from spacecraft potential and better captures the density vari-

ation associated with ULF waves. The organization of this paper is as follows: Van Allen
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Probes instrumentation is described in Section 2.2, followed by the observation and the

interpretation of the modulation event in Sections 2.3 and 2.4.

2.2 Van Allen Probes Instrumentation

The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) [Klet-

zing and Others, 2013] carries two sensors, a tri-axial fluxgate magnetometer (MAG) and a

trixaxial AC magnetic search coil magnetometer (MSC), which provide comprehensive wave

magnetic field measurements in a 10 Hz to 400 kHz frequency range. The Electric Field

and Waves Suite (EFW) [Wygant and Others, 2013] is used to study the electric fields in

near-Earth space; it provides not only the components of electric field, but also a space-

craft potential estimate covering cold plasma densities of 0.1 to 100 cm−3. The empirical

density-potential formula has been calibrated according to EMFISIS Upper Hybrid resonance

(UHR) lines, which provides more accurate characterization of density variation associated

with ULF waves than previous studies [e.g., Li et al., 2011a]. The Energetic Particle, Com-

position, and Thermal Plasma Suite (ECT) [Spence and Others, 2013] is made up of three

separate components: Helium Oxygen Proton Electron (HOPE) for the energy range 0.001

to 50 keV [Funsten and Others, 2013]; Magnetic Electron Ion Spectrometer (MagEIS), for

three different particle populations (ring current electrons ∼20 to ∼200 keV and radiation

belt electrons >∼200 keV to ∼3 MeV, ring current protons and radiation belt protons 60

keV to 1 MeV) [Blake and Others, 2013]; and the Relativistic Electron Proton Telescope

(REPT) for the proton energy range ∼17 to >100 MeV and electron energy range ∼1.6 to

>∼19 MeV [Baker and Others, 2013].

The Van Allen Probes are two robotic spacecrafts equipped with identical instruments

and move on nearly identical orbits near the Earths equatorial plane.

The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS)

[Kletzing and Others, 2013] carries two sensors, a triaxial fluxgate magnetometer (MAG)
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and a triaxial AC magnetic search coil magnetometer, which provide comprehensive wave

magnetic field measurements in the frequency range of 10 Hz to 400 kHz. The Electric Field

and Waves Suite (EFW) [Wygant and Others, 2013] is used to study the electric fields in

near-Earth space; it provides not only the components of electric field but also a spacecraft

potential estimate covering cold plasma densities of 0.1 to 100 cm−3. The empirical density-

potential formula has been calibrated according to EMFISIS upper hybrid resonance (UHR)

lines, which provides more accurate characterization of density variation associated with

ULF waves than previous studies [e.g., Li et al., 2011a] using spacecraft potential alone. The

Energetic Particle, Composition, and Thermal Plasma Suite (ECT) [Spence and Others,

2013] is made up of three separate components: Helium, Oxygen, Proton, and Electron

(HOPE) for the energy range 0.001 to 50 keV [Funsten and Others, 2013]; Magnetic Electron

Ion Spectrometer (MagEIS), for three different particle populations (ring current electrons

∼20 to ∼200 keV and radiation belt electrons >∼200 keV to ∼3 MeV, ring current protons,

and radiation belt protons 60 keV to 1 MeV) [Blake and Others, 2013]; and the Relativistic

Electron Proton Telescope for the proton energy range ∼17 to >100 MeV and electron energy

range ∼1.6 to >∼19 MeV [Baker and Others, 2013].

2.3 ULF Wave Observation

The ULF event of interest observed by Van Allen Probes occurs during a storm between

13:40 UT and 14:30 UT on 6 July 2013. Figures 2.1a-2.1g show the variations of geomagnetic

indexes and solar wind parameters over 3 days of 5-8 July. The red vertical line labeled t0

marks the time when RBSP B detected the modulation event, and the green and blue vertical

lines labeled t− and t+, respectively, are the last and next time periods when RBSP A passes

near the location where the modulation event was observed at t0. Figures 2.1h and 2.1i show

the orbits of the RBSP A and RBSP B projected on the equator plane along the field line in

solar magnetic (SM) coordinate. The projection of the RBSP B orbit in t0 is around x=-4
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RE, y=3 RE in the SM equatorial plane, while RBSP A traveled nearby (x=1 RE, y=3 RE).

RBSP A moved through the event location at the two nearest time periods, about 09:24 UT

to 10:14 UT (denoted as t−) and 17:50 UT to 18:40 UT (denoted as t+) on 6 July 2013, both

of which are about 4 h away from t0. We note that all the three time periods are within

the storm period which lasts for a whole day on 6 July. In these three time periods, the

Kp, AE, and Dst indexes all have high absolute values; the number density, and velocity of

solar wind remain nearly constant at about 10 cm−3 and 340 km/s; and the interplanetary

magnetic field Bz component remains negative (as low as -10 nT) over the entire day of 6

July, leading to a moderate geomagnetic storm with Dst minimum ∼-80 nT.

This geomagnetic storm results in the generation of ULF waves deep inside the magne-

tosphere (L ∼ 5) and the corresponding modulation of chorus wave intensity, which will be

the topics of this study. Figure 2.2 focuses on the modulation event observed from RBSP B.

Figures 2.2a and 2.2b show the variations of the plasma density from spacecraft potential

with calibration by the UHR line from EMFISIS and the three components of magnetic field

fluctuation in the mean magnetic field aligned coordinate, radial component Br, azimuthal

component Ba, and parallel component Bp. The magnetic field fluctuation data are obtained

from the original MAG magnetic field data after detrending with a smooth time window of

300 s. From Figures 2.2a and 2.2b, we can clearly see the variation of density is out of phase

with the variation of Bp, while the Ba and Br fluctuations are weaker comparing to the

Bp fluctuation, indicating that this ULF wave is a mostly compressional wave with rather

large amplitude Bp up to 10 nT. The period of the variation is about 150 s, which tells

us that this is a Pc4-Pc5 ULF wave. The observed ULF wave is consistent with the wave

generation through a drift mirror instability. In a pure drift mirror mode, Bp >> Br [Chen

and Hasegawa, 1991], and in our event, the compressional component Bp is about 2-3 times

larger than the poloidal component Br (Figure 2.2b). Additional consistent characteristics

of the drift mirror mode [Hasegawa, 1969] include the followings: (1) the variation of the
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Figure 2.1. Overview of geomagnetic indexes and solar wind parameters from OMNI for the
modulation event.
(a) Kp, (b) AE, (c) Dst index, (d) the solar wind density, (e) velocity, (f) pressure, and (g)
magnetic field through the period of the storm event. The green, red and blue vertical lines
denote the times t−, t0, and t+, respectively (see text). (h and i) The orbits projected on
the equator plane along a dipole field line for the satellites RBSP A and RBSP B. Red lines
in Figure 2.1h highlight satellite orbits near t0, and green, red, and blue lines in Figure 2.1i
highlight the orbits near t−, t0, and t+.

magnetic pressure and the variation of the plasma pressure are out of phase and comparable

(Figure 2.2c), (2) the variation amplitude of perpendicular pressure is greater than that of

parallel pressure (Figure 2.2c), (3) plasma beta is large (βperp up to 2) and (4) the electric

field perturbation at the ULF wave frequency is rather weak (not shown). In addition, the

pressure of electrons exhibits similar characteristics but with much smaller variations (not

shown) than that of protons (Figure 2.2c). Such large β (βperp up to 2) closely approaches,

but not exceeding, that required by the linear instability of drift mirror mode expressed
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by the formula (24) in [Hasegawa, 1969]. Possible reasons for this are the relaxation by

nonlinear saturation due to the large magnetic amplitude and the consideration of HOPE

measurement (<∼50 keV) only.

Because of the presence of finite radial magnetic field perturbation (Br), we also check

frequencies for pure poloidal modes. We solve for the eigenperiods in a dipole magnetic field

using Equation (6) of Cummings et al. [1969] (see Appendix B) with L=5.5 (observation

location), and adopting latitudinal dependence of mass density along a field line, ρ(λ) =

MiNeq cos−2m λ, where observed equatorial electron density Neq =10 cm−3, λ is the magnetic

latitude, m is the density index, and Mi is the average ion mass. Figure 2.3 shows calculation

of fundamental, second harmonic, and third harmonic poloidal mode periods as a function

of Mi from 1 (all H+ ions) to 16 (all O+ ions) and a function of m over a typical range

from 1 to 6. The observed period (150 s) is close to the fundamental period of the poloidal

mode with Mi ∼ 1.5, with little dependence on the m value. HOPE data provide H+,

He+ and O+ density measurements in the energy range above 30 eV, which are about 1.75,

0.07, and 0.35 cm−3, respectively, over the event period. Based on those ion densities, Mi

is about 3.5. Because thermal H+ ions (∼ eV) tend to be the dominant ion species, the

value of Mi can be lower when taking in account ion populations below 30 eV, which is not

available due to positive spacecraft charge. The second harmonic period is much shorter

than the fundamental period and can match the observed period for a high value of m = 6 if

nearly half ions are O+, which is unlikely for our case. Comparison is even worse for second

harmonic period with lower m and also for the period of the third harmonic. If it were

second or third harmonic, it would need an unrealistically high-O+ concentration (requiring

dominant ions should be O+ ions). We conclude that the observed ULF wave is a coupling

between a drift mirror and fundamental poloidal mode.

The observed ULF wave closely modulates both electron and proton pitch angle distribu-

tions. Figures 2.2d-2.2i show electron phase space density (PSD) versus pitch angle at energy
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Figure 2.2. Relationship between particle distribution and ULF waves from RBSP B obser-
vations.
(a) the variation of plasma density from EFW s/c potential; (b) the variation of three
components of magnetic field; (c) the variations of the magnetic pressure (black) and the
perpendicular (red) and parallel (blue) pressures of protons; pitch angle distribution of elec-
tron phase space density at energies (d) 1046.67 eV, (e) 2620.96 eV, (f) 31.9 keV, (g) 54.4
keV, (h) 75.1 keV, and (i) 101.6 keV; and pitch angle distribution of proton phase space den-
sity at energies (j) 9631.9 eV, (k) 15,236.9 eV, and (l) 62.74 keV. The two vertical red-dotted
lines denotes ULF wave phases corresponding to plasma density peaks.
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channels 1047 and 2621 eV from the ECT-HOPE instrument and 32, 54, 75, and 102 keV

from the ECT-MagEIS instrument. Figures 2.2j-2.2l show proton PSD at energy channels

9632 and 15,237 eV from ECT-HOPE and 62.74 keV from ECT-MagEIS. The distributions

of both electrons (Figures 2.2d-2.2f) and protons (Figures 2.2j-2.2l) are modulated by the

ULF wave in a similar fashion. The phase space densities of both protons and electrons

increase especially near 90◦pitch angle when the plasma density reaches its crest and Bp

reaches its valley, while the phase space densities decrease at the plasma density valley and

Bp crest. This feature is highlighted by the area between the two vertical red-dotted lines.
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After checking electron and proton distributions at other energies we note that the electron

energy ranging from 0.2 to 54 keV and the proton energy ranging from 5 to 63 keV are in-

volved in this kind of ULF modulation and that these modulation signatures are not present

clearly beyond these two energy ranges for electrons and ions respectively. Moreover, over a

higher electron energy range 54.4 keV-101 keV (Figures 2.2g-2.2i), the electron distribution

shows a different response at Bp valleys where electron PSD at 90◦tends to reduce and peak

PSD goes to lower pitch angle. The transition of electron PSD at 90◦from out-of-phase

with Bp to in-phase occurs over a relatively narrow energy range of 54-75 keV (Figures 2.2g

and 2.2h). Note that there is no clear signature of such a transition in the response of

proton distribution in our event. The phase-jump transition of electron PSD reported here

is somewhat different from the transition of electron energy in drift-resonance response to

ULF wave phase reported by Claudepierre and Others [2013], where modulated electron flux

variation shows a clear energy of peak variation amplitude and the phase difference between

electron flux variation and the ULF wave phase varies slowly as a function of energy. If one

assumes the phase-jump transition reported by our event is another kind of electron drift

resonance signature, then it can be estimated, using f = nfd, that the ULF wave azimuthal

number n ∼ 56, where wave frequency f = 1/150 Hz and drift frequency fd is calculated

for electrons at energy 60 keV and equatorial pitch angle 90◦at L = 5.5. The value of n

is a reasonable value for an internally or kinetically excited magnetohydrodynamic wave.

Further investigation of such electron behavior is beyond the scope of our current study.

2.4 Chorus Wave Observation

Figure 2.4 shows the relationship between ULF and VLF waves. Figures 2.4a and 2.4b show

the Bp variation and the electron spectrum of 1046.67 eV, respectively, which are the same as

Figures 2.2b and 2.2d. Figures 2.4c-2.4f show, respectively, the spectra of wave electric field,

wave normal angle, ellipticity, and wave magnetic field from the EMFISIS measurement. At
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the valley of Bp and the crest of the electron phase space density, there exists intense chorus

wave magnetic and electric power below and above 0.5 fce with about 0◦wave normal angle

and ellipticity near 1. Chorus waves turn on and off quasiperiodically over 14:10 UT to

14:20 UT with time period close to the period of the ULF waves. Close examination shows

that both upper and lower band chorus waves are intensified at the valleys of Bp (showed

by the two vertical lines in Figure 2.4) corresponding to the increase of electron phase space

density (Figure 2.4b), while chorus waves diminish at the crests of Bp. This relation is in part

similar to the modulation event Li et al. [2011a] found, but our event occurred deep inside

the magnetosphere where ULF wave is internally excited by ring current population. The

set of ULF waves, VLF waves, and particle distributions provides strong support that ULF

waves can modulate chorus wave intensity and that the variation of the electron distribution

causes the chorus waves to turn on and off. We should make following two notes. First,

there is no clear chorus modulation prior to 14:10 UT, although with variation of electron

phase space density and linear growth rate. Second, some lower band chorus bursts (∼14:14

UT and 14:19 UT) can occur closer to density valleys (Bp crests) rather than density crests

(Bp valleys). Those inconsistencies might be attributed to two physical processes other

than local linear growth. First, nonlinear wave growth shows dependence on magnetic field

topology, in particular the field-aligned variation of the ambient magnetic field [Tao, 2014;

Katoh and Omura, 2011], which varies with ULF wave phases and depends on field line

resonance (FLR) eigenmode structures. Second, propagation effect may also lead to wave

refraction toward both lower and higher-density ducts [Katoh, 2014]. This is especially true

for fine-scale density variation associated with ULF wave of high azimuthal wave number.

Variations of electron pitch angle distribution are the response to ULF waves, rather than

the consequence of chorus waves scattering; this is supported by the following observations:

(1) protons respond in similar fashion to electrons while chorus can not effectively scatter

protons and (2) the presence of the electron variations already began at about 13:50 UT
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Figure 2.4. Relationship of magnetic perturbation and VLF chorus waves.
(a) the parallel magnetic field fluctuation (same as the red line in Figure 2.4b), (b) pitch
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(Figures 2.2d-2.2f), before the chorus wave variation (14:10 UT to 14:20 UT). Based on

parameters typical for this observation event, electron minimum gyroresonant energy for the

lower band chorus is several keV (not shown) and even lower for the upper band chorus. Thus,

the phase jump near 50 keV mentioned above is unlikely a consequence of gyroresonance

interaction.

To test the idea that electron variation is indeed responsible for chorus wave generation,

linear instability analysis based on observed plasma condition is performed. The linear

growth rate of whistler-mode waves can be calculated by using the linear theory equation

[Kennel and Petschek, 1966] (see Appendix C) and using measured parameters, including

plasma density (calibrated from upper hybrid resonant lines), background magnetic field,

and observed electron velocity distribution from the HOPE instrument. These measurements

from Van Allen Probes provide unambiguous parameters to make possible a definite test of

the linear theory.

Figure 2.4g shows the growth rate as a function of time and frequency for parallel prop-

agation. We also did calculations for other wave normal angles up to the whistler-mode

resonance cone angle and found that the growth rate maximizes for parallel propagation.

The result of linear growth rate analysis shows the coincidence between the maximum of the

growth rate and the occurrence of intense chorus waves at <∼ 0.3fce, which is consistent

with the variation of electron flux changing the plasma instability and thus generating the

chorus waves. However, the frequency range of the growth rate enhancement and that of the

chorus wave do not always match, especially for higher-frequency portions. The growth rate

above 0.5 fce is very low all the time. This indicates that higher-frequency chorus waves,

including upper band chorus, should be due to a mechanism other than linear instability.

With twin Van Allen Probes we can infer whether this modulation is local or global by

examining two simultaneous observations and estimate its time duration. Temporal and

spatial scales of this modulation event are checked using the Van Allen Probes pair. We
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checked the RBSP A data at t0, t− and t+ (indicated by Figure 2.1). No clear signatures of

ULF waves and particle and chorus waves modulation are found at the t intervals, indicating

that the event we analyzed only lasts no longer than a few hours. We also check RBSP A

observation at t0, which is about 2-3 RE from RBSP B, and find no clear signature of ULF

wave activity, either suggesting that the event captured by RBSP B is not a global ULF

wave. Such spatially local and temporal natures are consistent with internally excited ULF

waves. This localized phenomenon, occurring at premidnight during the main phase, might

be associated with the westward edge of partial ring current (indicated by Figure 2.2c where

thermal pressure increases with magnetic local time) developed from fresh injection.

2.5 Conclusions and Discussion

In summary, in this chapter we present an event of chorus modulation by ULF waves deep

inside the magnetosphere. Using Van Allen Probes observations, we analyzed the relation-

ships between the intensity of chorus wave and the magnitude of plasma density, magnetic

field variation and the distribution of electrons and protons. Moreover, we also calculate the

linear whistler-mode growth rate to help understand the mechanism of the modulation of

chorus waves. Then we combined the observations of both RBSP A and B to estimate the

temporal and spatial scales of this kind of modulation. Our conclusions are summarized as

follows:

1. An event of ULF wave modulation of pitch angle distributions of both electrons and

protons is reported deep in the magnetosphere, which occurs during a geomagnetic storm

with long lasting negative interplanetary magnetic field Bz.

2. This ULF wave shows signatures of fundamental poloidal mode of field line resonance

and mirror wave nature. At the crest of plasma density and the valley of the compressional

component of the wave magnetic field, the phase space density near pitch angle 90◦increases

for protons over 5-63 keV and for electrons over 0.2-54 keV, while in contrast, the electron
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pitch angle distributions are notably different (strongly field aligned) at the higher energies

above 60 keV.

3. The ULF wave tends to modulate the electron distribution and thus the intensity of

whistler-mode chorus waves; consistency with the linear growth rate analysis of the observed

electron distribution for whistler mode at low frequency (<∼ 0.3fce). The linear instability,

however, cannot account for the observed chorus at higher frequency (including the upper

band chorus).

4. This ULF wave and modulation phenomenon is spatially local and does not last long.

Many observed modulation signatures along with our quantitative analysis, allow us to

sort out the physical processes behind the event. Here is our interpretation based on the

observation and the analysis performed. A local and temporal ULF wave with antiphase

correlation between plasma density and compressional magnetic field component is gen-

erated internally deep in the magnetosphere, probably through a drift mirror instability.

Self-consistently, the generated ULF wave causes disturbances in both electron and ion pitch

angle distributions, whose anisotropy enhances in the crests of plasma density. The enhanced

electron pitch angle distribution leads to enhanced chorus wave intensity at the low-frequency

range (<∼ 0.3fce). Some other nonlinear mechanisms further trigger the chorus wave gener-

ation at higher-frequency range, including the upper band chorus. This conclusion provides

strong observational support for nonlinear chorus wave generation mechanism, where linear

growth rate at lower frequency is required and higher-frequency chorus can be generated

nonlinearly in the form of rising tone element [Tao, 2014; Katoh and Omura, 2011].

There are a variety of ULF waves, with or without plasma density variation, compres-

sional, or transverse wave magnetic field component, which are generated by different free

energy. Besides chorus waves, there are also other types of whistler mode waves, such as

plasmaspheric hiss or magnetosonic waves. Breneman and Others [2015] present an event

of plasmaspheric hiss modulated by ULF waves over a global scale, leading to modulated
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electron precipitation. Likewise, the modulated chorus emission might lead to modulated

electron precipitation, such as the formation of pulsating aurora [Nishimura et al., 2010;

Jaynes and Others, 2015]. General questions on ULF waves generation and their modula-

tory effect on VLF waves and electron precipitation are interesting and will be investigated

with a continuing effort.
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CHAPTER 3

EIGENMODE ANALYSIS OF COMPRESSIONAL POLOIDAL MODES IN A

SELF-CONSISTENT MAGNETIC FIELD1

The work shown in this chapter has been published as “Xia, Z., L. Chen, L. Zheng, and

A. A. Chan (2017), Eigenmode analysis of compressional poloidal modes in a self-

consistent magnetic field, Journal of Geophysical Research: Space Physics, 122, 1-13,

doi:10.1002/2017JA024376”.

3.1 Introduction

Ultralow frequency (ULF) waves in the magnetosphere can often be identified as standing

Alfvén waves and coupled to a field line resonance (FLR) [Hughes, 1994]. They can be gen-

erated by both external sources (solar wind, shocks, etc.) and internal sources (substorm

injection, plasma instability, etc.), with a characteristic azimuthal wave number mφ: low

mφ waves (mφ ∼ O(1)) for external sources and high mφ waves (mφ ∼ O(100)) for inter-

nal sources [Takahashi, 1988]. The FLR has three typical modes: (1) the poloidal mode

with oscillating Bψ and Eφ components, where subscripts ψ and φ denote the radial and

azimuthal directions respectively; (2) the toroidal mode with oscillating Bφ and Eψ; and

3) the compressional mode with oscillating B‖, Bψ and Eφ, where the subscript ‖ repre-

sents the direction of the background magnetic field. Compressional poloidal waves have

been observed to correspond to small mφ and variations of the solar wind dynamic pressure

(external source) [Dai and Others, 2015], as well as large mφ and drift-bounce resonance

(internal source) [Min et al., 2017], under the condition of low plasma β. The ULF waves

can resonantly interact with both energetic electrons [e.g., Elkington et al., 1999; Zhou et al.,

1 c©2017 Amercian Geophysical Union. Portions Adapted, with permission from, Z. Xia, “Eigenmode
analysis of compressional poloidal modes in a self-consistent magnetic field,” Xia, Z., L. Chen, L. Zheng, and
A. A. Chan, J. Geophys. Res. Space Physics, 122, 1-13.
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2016] and ions [e.g., Ren et al., 2016] and also modulate particle distributions [Claudepierre

and Others, 2013; Liu et al., 2016; Xia et al., 2016]. Thus, ULF waves play an important

role in magnetospheric dynamic processes.

Many theoretical analyses of FLRs based on the Alfvén mode equation have been pre-

sented using different approaches, including magnetohydrodynamics (MHD) [e.g., Dungey,

1963; Cummings et al., 1969], kinetic theory [e.g., Southwood, 1976; Cheng and Lin, 1987],

and gyrokinetic theory [e.g., Chen and Hasegawa, 1991; Chan et al., 1994]. Most previous

models consider a dipole field geometry or one close to dipole for small β. Recently, ad-

vanced models have been developed for more complex magnetic fields to represent realistic

magnetospheric conditions. Rankin et al. [2006] developed a fluid model of standing shear

Alfvén waves that is applicable in a general magnetic field, such as the Tsyganenko 96 mag-

netic field [Tsyganenko and Stern, 1996; Tsyganenko and Peredo, 1994; Tsyganenko, 1995].

Cheremnykh et al. [2014, 2016] set up a two-dimensional (2-D) inhomogeneous cylinder

model with hot plasma pressure and curved magnetic field and investigated the transverse

structure and propagation of high mφ ULF waves. Klimushkin and Mager [2015] derived an

Alfvén mode equation in finite-pressure plasma using the gyrokinetic approach and found

that the only wave mode from the solution is the Alfvén-ballooning compressional wave.

This wave mode of high mφ was investigated thoroughly by Chan et al. [1994] for a dipole

field modified by a small plasma pressure perturbation. However, both studies were limited

to a low β condition. The previous studies of FLR in cold plasma condition hardly produce

the compressional mode whose presence is important for, e.g., modulating the distribution of

particles and thus the intensity of chorus emission [Li et al., 2011a; Xia et al., 2016]. In order

to study the compressional poloidal mode in the magnetosphere, it is necessary to analyze

FLR under a plasma with a finite β value of ∼ O(1), which is the typical value for storm

time ring current.

In this chapter, we solve for 2-D axisymmetric self-consistent magnetic field with a radially

localized anisotropic plasma pressure with a finite β up to O(1). This model is subsequently
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applied to investigate compressional poloidal eigenmodes, specifically for the second harmon-

ic. Moreover, motivated by the association of magnetic field dip and ring current [Ukhorskiy

et al., 2006], we also use the self-consistent magnetic field to investigate the effect of plasma

β and pressure anisotropy on the magnetic field dip formation.

3.2 Axisymmetric Equilibrium Model

The theory of the equilibrium magnetosphere model used in this study is based on the

previous works of Cheng [1992] and Zaharia et al. [2004], which solve the MHD force balance

equation for a quasi-static equilibrium state. The basic equations for the pressure equilibrium

are as follows:

J×B = ∇ ·P (3.1)

∇×B = µ0J (3.2)

∇ ·B = 0 (3.3)

where J is the current, P is the anisotropic thermal pressure tensor and B is the magnetic

field. For Equation (3.1) the thermal pressure tensor P can be represented as P⊥I− (P⊥ −

P‖)b̂b̂, where I is unit tensor, b̂ = B/B is the unit vector of the field line direction, and

P⊥ and P‖ are the perpendicular and parallel pressure components. For such anisotropic

pressure, Equation (3.1) can be rewritten as follows:

µ0σP (J×B) = µ0∇P⊥ − (B · ∇σP )B + (1− σP )∇(
B2

2
) (3.4)

where σP = 1 + µ0(P⊥ − P‖)/B2.

From Equation (3.3), the magnetic field B is a divergence-free vector and can be expressed

in terms of two Euler potentials ψ and α as B = ∇ψ × ∇α. According to this definition,

B is perpendicular to both ∇ψ and ∇α and the intersections of constant ψ and constant α
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surfaces correspond to magnetic field lines. Thus, in a field-aligned coordinate system for

the geomagnetic field, ψ and α are constant along the field line parallel direction, whose

gradients correspond to the other two directions, namely, the radial direction pointing from

the Earth to the outside and the azimuthal direction that is perpendicular to the parallel

and radial direction. For axisymmetric magnetic field model with zero toroidal component,

the potential α is chosen to be the azimuthal angle φ and ψ is defined as the magnetic flux.

For the Earths dipole magnetic field, ψ = −BDR
2
E/L, where BD the equatorial dipole field

on the Earths surface, RE is the Earth’s radius and L is the L shell value.

The computation coordinates ρ, ζ and θ (shown by Figure 3.1) used in the axisymmetric

model are curvilinear flux coordinates related to physical coordinates ψ, α, and the field line

distance s, respectively, as follows:

ρ =
ψ − ψin
ψout − ψin

, ρ ∈ [0, 1], (3.5)

ζ = α = φ, ζ ∈ [0, 2π], (3.6)

θ =
πs

s0

+ Cθ sin(
2πs

s0

), θ ∈ [0, π]. (3.7)

Here ψout and ψin are the ψ values at the outer and inner boundaries, s0 is the length

of a magnetic field line, Cθ is the coefficient to adjust the density of grids in the θ direction

(field line direction). We set Cθ = 0.25 in the simulation. ρ is chosen to be linear with ψ,

while θ is a nonlinear function of s in order to achieve higher grid density at higher-latitude

regions. Since our model is axisymmetric (that is, φ independent), after dotting B×∇α at

both sides and combining with Equation (3.2) and B = ∇ψ × ∇α, Equation (3.4) can be

rewritten as follows (see Appendix D):

µ0J · ∇α = ∇ · [(∇α · ∇ψ)∇α− (∇α)2∇ψ] = −B×∇α
σPB2

[µ0∇P⊥ + (1− σP )∇(
B2

2
)] (3.8)
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Figure 3.1. An illustration of the curvilinear flux coordinates (ρ, ζ, θ).
eρ, eζ , eθ represent the three unit vectors. eρ is perpendicular to the magnetic field line,
eζ is in the azimuthal direction and eθ is parallel to the magnetic field line. The solid lines
represent equal ρ (equal ψ) lines (magnetic field lines) and the dashed lines represent equal
θ lines.
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The simulation domain of our equilibrium model is set to be [3RE, 9RE]. The outer and

inner boundaries are far enough from L0 (the L shell of the thermal pressure peak) so that

the plasma pressures at the boundaries are nearly zero. The number of ρ grid points nρ is

set to 151, and the number of θ grid points nθ is set to 181 to ensure sufficient accuracy.

From Equation (3.8), once we know the distribution of the thermal pressure in the ρ − θ

plane, we can obtain the distribution of ψ in the magnetosphere space and then calculate

the magnetic field B. We use an iteration method to solve (3.8) numerically as follows:

The initial anisotropic pressure distribution includes the perpendicular and parallel com-

ponents P⊥ and P‖, whose values along the field line at arbitrary location can be given by

[Tsyganenko, 2000] the following:

P⊥ =
P⊥e

[1 + Ae(1− S)]2
(3.9)

P‖ =
P‖e

1 + Ae(1− S)
(3.10)

A =
1

1 + Ae(1− S)
− 1 (3.11)

where S = Be/B is the ratio between the magnitudes of the equatorial magnetic field Be

and the field at the location of interest B, A = P⊥/P‖ − 1 is the anisotropy and Ae is the

value of anisotropy at the equatorial plane, P⊥e and P‖e are the perpendicular and parallel

pressures at the equatorial plane. The average pressure at the equatorial plane, defined

as P = (2P⊥e + P‖e)/3, assumes a Gaussian distribution as P (ρ) = P0 exp [−(ρ− ρ0)2/2σ2
ρ],

where P0 and ρ0 are the pressure peak and the location of the pressure peak, σρ is the width of

the pressure distribution in ρ coordinate. Such pressure distribution is used to approximately

represents the thermal pressure of the ring current, and we choose the location of pressure

peak ρ0 corresponding to L0 = 5, near the center of the ring current. The value of P0 is

set to β0Pmag0, where Pmag0 is the magnetic pressure of the dipole field at L0 and β0 is the

initial β (the average β which equals to (2β⊥ + β‖)/3) at L0. Thus, the initial distribution
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of pressure in our model can be determined by the four parameters: L0, σρ, β0 and Ae. The

β0 = 0 case represents the cold plasma case (dipole field), and the Ae = 0 case represents

the isotropic pressure case. We use the Earths dipole field as the initial magnetic field

and the boundary magnetic field at the inner, outer, and high-latitude boundaries. For the

initial condition, the thermal pressure gradient and the J ×B force are not balanced. The

magnetic field can be updated through iteration by solving Equation (3.8) for ψ in our model,

in order to achieve convergence toward an equilibrium state. A criterion for the convergence

is D = Σi,j|[ψi,j(n)− ψi,j(n− 1)]/ψi,j(n− 1)| < 2× 10−5, where i, j are the grid indices for

the ρ and θ directions, respectively, n is the step number of the calculation, and D measures

the relative difference between the current step n and the previous step (n− 1).

Figure 3.2 shows the model result for β0 = 0.6, Ae = 0.4, L0 = 6, and σρ = 0.05 (we

choose L0 = 6 here to exhibit the result more clearly). Figure 3.2a shows the topology of

magnetic field lines in the meridian plane, where the blue dashed lines stand for the initial

dipole field and the red solid lines stand for the final self-consistent magnetic field. The

region in the black box is zoomed in. One can see that the field lines compress from L0

to the inner boundary and expand from L0 to the outer boundary, which is caused by the

presence of plasma thermal pressure. As a result, magnetic pressure is decreased (sparser

field lines) in the region with finite plasma pressure. Figure 3.2b shows the distribution of

P⊥. Note that equatorial pressure is initially a Gaussian function of ρ, but spatial variation

of the pressure evolves as the iteration goes forward, because of the dependence of ρ on

spatial position. In general, the pressure peak tends to shift outward, the extent of which

depends on the value of βpeak (βpeak is the maximum average β value in the equatorial

plane). For this case of β0 = 0.6, Pperp still peaks near L0 = 6. For each field line, the

perpendicular pressure maximizes at the equator and decreases toward higher latitudes (λ)

(Figure 3.2b). The variation of the parallel pressure distribution versus L and λ is similar

to that of perpendicular pressure (not shown). The field line variation of P⊥, P‖ and A can
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Figure 3.2. The self-consistent equilibrium model for β0 = 0.6, L0 = 6, σρ = 0.05, Ae = 0.4.
(a) The magnetic field lines in the noon-midnight meridian plane with a zoom in view of
the black box region, where blue dashed lines represent dipole field lines and red solid lines
represent the modeled field lines. (b) The distribution of the perpendicular thermal pressure.
(c) The distribution of the pressure anisotropy. (d) The distribution of the azimuthal current
(positive eastward and negative westward).
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be obtained from Equations (3.9)-(3.11), respectively. S varies from 1 at the equator to a

smaller positive value at higher latitudes. For Ae > 0, all three parameters decrease with

latitude. For Ae = 0, P⊥ = P‖ = P⊥e = P‖e and A = 0 throughout the field line. For

Ae < 0, P⊥ and P‖ increase with latitudes and A increases toward 0 (isotropic). Figure 3.2c

shows the distribution of pressure anisotropy (Ae > 0). Along a field line, the anisotropy

approaches zero as λ increases. The contour lines of anisotropy bend toward the equator near

L0, meaning that the anisotropy approaches zero faster at the higher-pressure region. Figure

3.2d shows the distribution of azimuthal current, which exhibits a two-cell structure around

the peak pressure point. This azimuthal current is given by the curl of the magnetic field,

which is no longer zero for the nondipole field, and the J × B force is created to balance

the pressure gradient force in a quasi-equilibrium condition. Note that artificial current

appearing at the high-latitude regions is associated with numerical errors when evaluating

field line curls there, which does not affect the calculation below.

To isolate the effect of β0 and Ae on magnetic field dip (Section 3.3) and compressional

poloidal mode (Section 3.4.2), we create a pool of equilibria with fixed L0 = 5, σρ = 0.05 and

different β0 and Ae. The values of β0 vary from 0.1 to 0.7, with a spacing of 0.1 for 0.1 6 β0 6

0.5, 0.05 for 0.5 6 β0 6 0.6, and 0.02 for 0.6 6 β0 6 0.7. The values of Ae vary from -0.5 to 2.0

with a spacing of 0.1 for −0.5 6 Ae 6 0.0 and 0.2 for 0.0 6 Ae 6 2.0. The pool of the model

results is shown by Figure 3.3 with equilibria categorized into two groups: stable equilibria

(circles) and unstable equilibria (triangle and diamond symbols). The diamond and triangle

symbols indicate cases unstable to the firehose and mirror instabilities, respectively, which

are excluded from our equilibrium pool. These two types of instabilities are charactered by

the firehose instability parameter σ and mirror instability parameter τ defined as follows:

σ = 1 +
1

2
(β⊥ − β‖) (3.12)

τ = 1 + β⊥(1− β⊥
β‖

) (3.13)
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σ < 0 and τ < 0 represent Firehose and Mirror instabilities respectively [Chen and Hasegawa,

1991; Chan et al., 1994] and the boundaries of σ = 0 and τ = 0 are labeled by the two dash-

dotted lines (left one for σ and right one for τ). In Figure 3.3, the x axis is Ae, the y axis

is peak β⊥ of the final equilibrium state (βpeak). The color of the circles in Figure 3.3a

represents the L shell corresponding to the β peak, and in Figure 3.3b represents the width

of βpeak ∆L, measured by the full width at half maximum β distribution. From this pool,

we find that both the βpeak and Lpeak increase compared with the initial values of β0 and

L0 = 5, as the result of the reduction of magnetic field strength at pressure peak. The field

line with peak thermal pressure moves outward to a lower magnetic pressure region, which

leads to the increase of βpeak and Lpeak. Although the upper limit of β0 is chosen to be 0.7,

the largest βpeak can reach up to ∼ 3, which is large enough to cover the usual β values in

the inner magnetosphere. The variation of Lpeak (5.1-5.4) is not significant and the variation

of ∆L is also small (from ∼0.68 to ∼0.72). Therefore, the data of this pool can be used to

isolate the effect of βpeak and Ae respectively.

σ < 0 and τ < 0 represent firehose and mirror instabilities, respectively [Chen and

Hasegawa, 1991; Chan et al., 1994], and the boundaries of σ = 0 and τ = 0 are labeled by

the two dash-dotted lines. In Figure 3.3, the x axis is Ae, and the y axis is peak average β⊥

of the final equilibrium state (βpeak). The color of the circles in Figure 3.3a represents the

L shell corresponding to the βpeak and in Figure 3.3b represents the full width (∆L) of half

βpeak, measured by the full width at half maximum of the β distribution. From this pool,

we find that both the βpeak and Lpeak increase compared with the initial values of β0 and

L0 = 5, as the result of the reduction of magnetic field strength at the pressure peak. The

field line with peak thermal pressure moves outward to a lower magnetic pressure region,

which leads to the increase of βpeak and Lpeak. Although the upper limit of β0 is chosen to be

0.7, the largest βpeak can reach up to ∼3, which is large enough to cover the usual β values

in the inner magnetosphere. The variation of Lpeak (5.1 to 5.4) is not significant, and the
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variation of ∆L is also small (∼0.68 to ∼0.72). Therefore, the data of this pool can be used

to isolate the effect of Lpeak and Ae, respectively.
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Figure 3.3. The pool of calculated self-consistent magnetic field for cases with fixed L0 = 5,
σρ = 0.05 but different combination of β0, Ae.
The x axis is equatorial anisotropy Ae, and the y axis is the maximum plasma average β.
The color of the circles denotes the location Lpeak of the peak β in Figure 3.3a and the full
width ∆L at half maximum of β in Figure 3.3b. The diamond and triangle symbols represent
the equilibria unstable to firehose and mirror instabilities, respectively.
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3.3 Magnetic Field Dip Formation

Here we investigate the effects of plasma β and plasma anisotropy on the ambient magnetic

field variation and the condition of the magnetic dip formation. The calculated self-consistent

magnetic field is compared with the dipole field near the pressure peak region. The com-

parison at the equatorial plane for isotropic (Ae = 0) cases with different values of βpeak is

shown by Figure 3.4. Figure 3.4a shows the variations of magnetic field strength for different

cases and Figure 3.4b shows the corresponding β variations. The magnetic field strength

decreases compared to the dipole field at the inner edge of the pressure peak and reaches a

minimum near the pressure peak then starts to increase to approach the strength of dipole

field at the large L region. The reason for the decrease of the magnetic field strength has

been explained by the “diamagnetic” effect of finite plasma pressure, that is, the magnetic

field lines expand near the center of the plasma pressure peak. The magnetic field strength

larger than dipole field at large L (L > 5.7) is caused by the fixed dipolar field at the outer

boundary, which leads to accumulation of field lines outside the high-pressure region. In

reality, the field strength in this region should be smaller than the dipole field. Nonetheless,

this unrealistic part of the magnetic field is not critical in our analysis. When the thermal

pressure is large enough, a magnetic field strength dip with reversed field strength gradients

nearby is formed near the peak pressure location. For a uniform magnetic field, the dip

will exist whenever there is a localized thermal pressure that produces the magnetic field

gradient. But in this dipolar-like model, the formation of the dip needs a critical value of

β because the dipole field itself has a magnetic gradient and the gradient caused by the

additional thermal pressure must be large enough to overcome the gradient of dipole field in

order to produce the dip. For isotropic cases, the critical β for the dip formation is about

0.77 and the depth of the dip (the maximum difference between the dipole field strength and

the dip strength) increases with β (Figure 3.4).
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Figure 3.4. The variation of (a) magnetic field and (b) average β on the equator as a function
of L shell for isotropic equilibrium (Ae = 0) with L0 = 5 and σρ = 0.05.
Different colors denote different values of maximum β. The black line in Figure 3.4a shows
the dipole magnetic field variation.

Now we analyze the effect of the pressure anisotropy Ae on the magnetic dip and plot

the depth of magnetic field dip versus Ae and βpeak in Figure 3.5. In order to increase the

accuracy of the critical β estimation, we add additional cases between β0 = 0.3 and β0 = 0.5,

which are not included in our pool (Figure 3.3). One can see that a larger value of βpeak

tends to produce a larger magnetic dip. A critical value of β (∼ 0.6− 0.7) is required for the

magnetic dip formation. The β threshold to form a dip is almost independent of Ae, although

the magnetic dip increases slightly for a more positive Ae. The effect of Ae can be explained
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Figure 3.5. The effects of the maximum average β and the equatorial anisotropy Ae on depth
of the magnetic field dip dB.
Different colored lines denote the different values of Ae.

by the right-handed side of Equation (3.8), where the contribution of perpendicular pressure

to the diamagnetic current is greater than that of parallel pressure.

3.4 Eigenmode Analysis of FLR

3.4.1 Fundamental Equation for Second Harmonic

As concluded by Chen and Hasegawa [1991] and observed by Takahashi [1988], the most

unstable mode or the most easily excited mode FLR is the second harmonic, which is the

lowest-frequency antisymmetric mode. For this mode, the δE⊥ and δB‖ components have
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odd symmetry with respect to the equator, while the δB⊥ components have even symmetry.

For this study, we focus on analyzing the second harmonic of the compressional poloidal

mode. We adopt the simple variation exp(imφφ− iωt) for the eigenmode as in Equation (48)

of Chan et al. [1994]:

B
∂

∂l
(
σ2

B

∂δψ

∂l
) +

ω2k2
⊥

V 2
A

δψ +
µ0

B2
Ωκek · ∇̃(P‖ +

σ

τ
P⊥)δψ = 0, (3.14)

where l is the length along the field line. The boundary condition is assumed to be δψ(lmin) =

δψ(lmax) = 0, where lmin and lmax stand for the two ends of the field line. The first term

represents field line bending, the second term represents the cold plasma inertia, and the

third term is the effect of thermal pressure gradients. Note that when thermal pressure is

ignored and the variations of magnetic field and Alfvén speed vanishes, the Alfvénic mode

can be recovered. k⊥ is the perpendicular wave number, ω is the wave angular frequency,

∇̃ = ∇ψ(∂/∂ψ) is the gradient along ψ, ek = k⊥ × b, Ωk = ek · κ. κ = b · ∇b is the

curvature of the magnetic field, and VA = B/
√
µ0ρ is the Alfvén speed, where ρ is the

mass density and σ and τ are parameters for the firehose and mirror instabilities. The

first-order quantity δψ ∼ exp[(imφφ − iωt)] is interpreted as the potential function for

the Alfvénic wave components, where φ is azimuthal angle and mφ is the azimuthal mode

number. This equation has neglected the kinetic resonant effects and is derived under the

following assumptions: (1) the gyrokinetic orderings ω � ωci (ion cyclotron frequency) and

k⊥ � k‖ ∼ 1/RE, (2) drift and bounce resonant effects are ignored, and (3) δE‖ = 0, as

in the ideal MHD approximation. In order to analyze the most unstable modes, another

assumption k2
φ � k2

ψ or k2
⊥ ≈ k2

φ ≡ m2
φ/R

2 is added in the following analysis, where R is the

radial distance from the Earth in a cylindrical coordinate system. The third term on the

left-hand side is the anisotropic ballooning-interchange term, and the direction of the factor

Ωkek is always earthward, which is independent of the coordinate system.

The eigenmode equation for the linearized quantity δψ requires the operator ∂/∂l along a

field line and zeroth-order quantities B, ∇̃(P‖+ (σ/τ)P⊥) and Ωkek and VA are needed. We
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can adopt the result of our pressure equilibrium model calculation to analyze the eigenmode

of the second harmonic poloidal mode. The pressure equilibrium model outputs the magnetic

field B and thermal pressure P⊥ and P‖ distributions along each magnetic field line and thus

the instability parameters σ and τ , the magnetic field curvature Ωkek and pressure gradient

∇̃(P‖ + (σ/τ)P⊥) terms. For the Alfvén speed term, the distribution of mass density ρm

along the field line is assumed to be ρm(λ) = n0mi cos−2m(λ) [Cummings et al., 1969],

where n0 is the number density and is set to be 107m−3, mi is the average ion mass and

is set to be twice the proton mass, and m is the plasma density index which is chosen to

be 4 for our analysis. The factor k⊥ has been approximated to be equal to kφ = mφ/R,

and mφ is chosen to be 100 according to the observations of the transverse wavelengths of

magnetospheric hydromagnetic waves [Takahashi, 1988]. As noted by Chan et al. [1994], the

results of eigenvalues become independent of mφ when kφ � kψ.

After calculating all the zeroth-order quantities, we can solve the eigenmode equation for

the eigenfrequency f (= ω/2π) for each field line resonance and obtain the potential function

δψ variation along each field line. Then the components of magnetic and electric fields can

be obtained as follows [Chan et al., 1994]:

δB‖ =
µ0c

τωB2
(ek · ∇̃P⊥)δψ, (3.15)

δBψ =
kφc

ω

∂δψ

∂l
, (3.16)

δBφ =
B

kφ

∂

∂l

δB‖
B

, (3.17)

δE‖ = 0, (3.18)

δEψ = − ω

kφc
δB‖, (3.19)

δEφ = −ikφδψ. (3.20)

where c is the light speed.
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3.4.2 The Effect of Plasma β and Anisotropy on Second Harmonic Compres-

sional Poloidal Mode

Applying the self-consistent magnetic field obtained from the pressure equilibrium model

to the eigenmode analysis of compressional poloidal modes for the second harmonic, we

can solve the eigenfrequency and the complex amplitudes of magnetic and electric field

components for each field line resonance. Figure 3.6 shows the result of eigenmode analysis

for the case with β0 = 0.4 and Ae = 0.4. Figure 3.6a shows the solution of f 2 (the blue line)

from L = 4.5 to L = 6.5, while the black line represents the square of eigenfrequency for the

dipole field (f 2
0 ) without thermal pressure for comparison. Figure 3.6b shows the variation

of equatorial average P (P = (2P⊥ + P‖)/3) in the same L range. The peak location of P

is at about L = 5.2. The eigenfrequency tends to decrease as L increases for both cold and

thermal plasma cases as expected from a longer field line length at larger L. The frequency

f for the thermal case is larger than f0 at the inner edge of the pressure peak then becomes

equal to f0 at the pressure peak and becomes smaller than f0 at the outer edge of the

pressure peak. Over the region of very low thermal pressure (L >∼ 6), the eigenfrequency is

about f0. This change in eigenfrequency across the pressure peak is caused by the pressure

gradient in the anisotropic ballooning-interchange term of Equation (3.14). At the inner

edge, the pressure gradient factor ∇̃(P‖ + (σ/τ)P⊥) points outward (+r) direction so the

anisotropic ballooning-interchange term is negative, which results in the enhancement of f 2.

Conversely, the pressure gradient at the outer edge points inward, leading to a decrease of f 2.

At the peak thermal pressure and over low thermal pressure regions, the pressure gradient

is negligible and the frequency difference vanishes. Figures 3.6c-3.6e show the variations

of three magnetic field components versus the latitude along field lines at the inner edge,

the peak, and the outer edge of the pressure distribution, respectively. The red, green,

and blue lines denote the parallel (δB‖), azimuthal (δBφ) and radial (δBψ) components of

the magnetic field, respectively. The components are normalized by the amplitude of radial
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component (the |δBψ| at the end of field line). The compressional mode (parallel) component

exists at the inner and outer edges, where large thermal pressure gradients exist, while the

compressional component vanishes at the peak point and very low thermal pressure regions

(not shown), where the thermal pressure gradient is small. The amplitude of the parallel

component is comparable to the radial component near the equatorial region, especially at

the outer edge. The parallel component δB‖ is related to the pressure gradient ek · ∇̃P⊥ as

shown by Equation (3.15), from which we expect that the parallel component only exists at

the inner and outer edges with nonnegligible pressure gradients. It should be noted that the

phase of the parallel component shifts by 180◦across the pressure peak. This is caused by

the opposite signs of ek · ∇̃P⊥ at these two regions.

In order to isolate the effects of βpeak and Ae on the second harmonic compressional

poloidal mode, respectively, we compare the results from multiple cases. For the effect of βpeak

we choose three different βpeak values 0.12, 0.48, and 1.19 and the same Ae = 0.4. Figures

3.7a and 3.7b show the effects of βpeak on the difference between f 2 and f 2
0 (normalized by

f 2
0 as (f 2 − f 2

0 )/f 2
0 ) and the maximum amplitude of compressional component along a field

line (normalized by the radial component amplitude at the ionospheric foot points). From

Figure 3.7a, eigenfrequency increases at the inner edge and decreases at the outer edge.

The eigenfrequency difference from f0 increases as βpeak increases. For a large βpeak = 1.19

as shown by the red line, (f 2 − f 2
0 )/f 2

0 ∼ −0.75 at the outer edge, that is, f ∼ 0.5f0,

meaning that the second harmonic eigenfrequency is close to the frequency of fundamental

harmonic using cold plasma in a dipole field. This frequency change due to finite pressure

is significant and should be taken into account when determining the harmonic number of

field line resonance in the observations. Figure 3.7b shows that a larger value of βpeak can

increase the magnetic field compressional component amplitude. One can also see that the

compressional amplitude is larger at the outer edge than inner edge in all cases. To isolate

the effect of Ae, we choose among the equilibrium pool three cases having similar βpeak
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Figure 3.6. The result of eigenmode analysis for the case with Lpeak = 5, σρ = 0.05, β0 = 0.4,
and Ae = 0.4.
(a) The eigenfrequency squared variation as a function of L shell of second harmonic field line
resonance for the modeled equilibrium with Lpeak = 5, σρ = 0.05, β0 = 0.4, and Ae = 0.4.
The black line stands for the cold plasma solution. (b) The average pressure variation
versus L shell. (c-e) The variation of the three magnetic field components of the eigenmodes
versus the latitude (λ) along the field line at the inner edge (Figure 3.6c), at the pressure
peak (Figure 3.6d), and at the outer edge (Figure 3.6e), respectively. The red, blue, and
green lines represent the parallel (δB‖), radial (δBψ), and azimuthal (δBφ) components,
respectively. All the components are normalized by the radial component amplitude at the
foot point of the field line.
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(∼ 0.76 − 0.77) but different Ae values: -0.2, 0, and 0.4. The comparison of eigenmode

analysis is shown in Figures 3.7c and 3.7d. The decrease of Ae leads to a larger deviation of

eigenfrequency from the cold plasma value f0 (Figure 3.7c), in particular, at the outer edge.

As Ae decreases, f 2 tends to decrease at the outer edge (toward instability) but the increase

at the inner edge (more stable). The decrease in Ae also leads to the enhancement of the

compressional component at the inner edge and a weaker enhancement of the compressional

component amplitude at the outer edge (Figure 3.7d).

3.4.3 Critical Condition of Alfvén-Ballooning Instability

We have demonstrated that at the outer edge of the thermal pressure peak, the eigenfre-

quency square f 2 is smaller than that of cold plasma condition, and this difference can be

enlarged by larger βpeak and smaller Ae. When the difference is large enough, f 2 will become

negative and f becomes imaginary, which allows waves to grow in time (instability). There-

fore, f 2 = 0 is the instability condition due to the pressure gradient in the high k⊥ limit, and

this instability is known as the Alfvén-ballooning instability. The dependence of the critical

condition (f 2 = 0) on βpeak and Ae are investigated using our equilibrium pool (Figure 3.3).

For each case in the pool except those subject to firehose and mirror instabilities (marked by

diamond and triangle symbols in Figure 3.3), linear eigenmode analysis is performed for every

field line. When there is a solution for second harmonic mode with f 2 < 0 for any field line,

we mark the corresponding case as the equilibrium subject to Alfvén-ballooning instability.

Otherwise, the case is stable to that instability. We mark each case in the pool in Figure 3.8

in the domain of the pressure anisotropy Ae (horizontal axis) and βpeak/∆L (vertical axis,

a measure of the pressure gradients) using four different categories: diamond symbols for

firehose instability, triangle symbols for mirror instability, red circles for Alfvén-ballooning

instabilities, and blue circles for stability. Note that the ratio βpeak/∆L is primarily deter-

mined by βpeak in our pool because the ∆L value is approximately constant at ∆L ' 0.7.
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60



A clear boundary between blue and red circles is marked by the black line, representing the

criteria for the Alfvén-ballooning instability. At very low βpeak/∆L (� 1), the plasma is

stable for all Ae values. The instability occurs when βpeak/∆L reaches a value larger than

1 for the smallest anisotropy value Ae = −0.5. As Ae increases, the βpeak/∆L threshold for

the instability increases gradually and requires at least ∼2.5 for Ae = 0.2 − 0.4. Over the

regime of Ae > 0.4 the mirror instability takes over, while the firehose instability dominates

over the regime of large β (βpeak/∆L > 3.5) and small Ae (∼-0.5). The instability criteria

exhibit a similar trend to Chan et al. [1994]’s results in that the threshold β increases as Ae

increases, although their results are applicable only for low β conditions.
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3.5 Conclusions and Discussion

In this study, we apply a self-consistent equilibrium model to simulate an axisymmetric

magnetospheric magnetic field with a radially localized plasma pressure with a given pressure

anisotropy. We create a pool of self-consistent magnetic field equilibria for cases with different

combinations of maximum plasma β and anisotropy, which is later used to analyze the

compressional second harmonic poloidal mode. We investigate the magnetic field change due

to the localized plasma pressure and the effect of plasma pressure peak value and anisotropy

on the eigenfrequency and the compressional component of second harmonic compressional

poloidal modes. Finally, the critical condition for Alfvén-ballooning instability is evaluated

for a range of β and Ae. Our results and conclusions are as follows.

1. The magnetic field dip forms near the high plasma pressure region with β >∼ 0.6.

The formed magnetic dip becomes deeper for a larger plasma β. The threshold value of β

for the magnetic dip formation is almost independent of Ae.

2. The eigenfrequency of the second harmonic compressional poloidal mode increases at

the inner edge of the plasma pressure peak and decreases at the outer edge, compared with

the eigenfrequency of the dipole field. At the pressure peak and over low-pressure regions,

where the pressure gradient is small, the results are consistent with cold plasma theory.

3. The compressional component of the second harmonic compressional poloidal mode

exists in both the inner and outer pressure edges but vanishes at the negligible pressure gra-

dient regions. The amplitude of the compressional component at the outer edge is generally

larger than that at the inner edge.

4. The β and anisotropy tend to have opposite effects on the second harmonic compres-

sional poloidal mode. Higher β and smaller anisotropy tend to enlarge the compressional

component amplitude at both inner and outer edges and increase (decrease) the eigenfre-

quency at the inner (outer) edge.
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5. The critical condition for Alfvén-ballooning instability is calculated, and we find that

a higher βpeak/∆L threshold is required for higher Ae. The threshold value varies from

βpeak/∆L ∼ 1 when Ae = −0.5 to βpeak/∆L ∼ 2.5 when Ae = 0.2− 0.4 (with ∆L =∼ 0.7).

A magnetic dip structure has been reported by Ukhorskiy et al. [2006], as a local magnetic

minimum followed by a magnetic island (maximum) at larger L, which is caused by storm

time ring current obtained from the TS05 model [Tsyganenko and Sitnov, 2005]. Further

observational studies are needed to confirm the condition for the magnetic dip formation.

The FLR model in our study ignores wave-particle resonance and concentrates on the

unstable modes corresponding to the Alfvén-ballooning instability. To analyze more general

eigenmodes of a field line, we need to go back to the original gyrokinetic eigenmode equations

of Chen and Hasegawa [1991], where the wave particle interactions are included. Significant

deviation of the eigenfrequency from the cold plasma solution is found in a finite β plasma.

Pressure anisotropy also influences the eigenfrequency. When using observed ULF periods

to infer the mode number of a field line resonance, one should consider the effect of plasma

β and anisotropy, especially during storm time when both are enhanced. A future study

is planned to couple the FLR eigenmodes analysis with the 3-D kinetic ring current model

RAM-SCB (Ring current-Atmosphere interaction Model with Self-ConsistentMagnetic field

(B)) [Jordanova et al., 2010], which can help us make predictions for internally driven ULF

waves of high azimuthal number in a global 3-D magnetosphere geometry including the storm

time ring current.
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CHAPTER 4

STATISTICAL STUDY OF CHORUS WAVES MODULATIONS BY

BACKGROUND MAGNETIC FIELD AND PLASMA DENSITY

This chapter is based on a manuscript led by myself, L. Chen and W. Li, which is currently

under preparation and will be submitted in July 2019.

4.1 Introduction

Whistler-mode chorus emissions in the magnetosphere are right-hand polarized electromag-

netic waves originating near the geomagnetic equator outside the plasmapause [Tsurutani

and Smith, 1977; Koons and Roeder, 1990; LeDocq et al., 1998; Lauben and Others, 2002;

Santoĺık et al., 2003a]. The frequency range of chorus waves is usually separated into two

bands: the lower band from 0.1 to 0.5 fce and the upper band from 0.5 to 0.8 fce, where fce is

the equatorial electron cyclotron frequency [Tsurutani and Smith, 1974; Burtis and Helliwell,

1976, 1969]. The excitation of chorus waves are generally believed to involve with cyclotron

resonance with anisotropic electrons that are usually injected from the plasma sheet into the

inner magnetosphere during geomagnetic active times [Li and Others, 2010; Gao et al., 2014;

Fu et al., 2014]. The interactions between chorus waves and particles are very important to

the magnetospheric dynamics, including acceleration of electrons to relativistic energy level

through energy diffusion [Horne and Thorne, 1998; Summers et al., 2002; Meredith et al.,

2002; Horne and Others, 2005; Bortnik and Thorne, 2007b; Li et al., 2007] and precipitations

of energetic electrons through pitch angle scattering [Lorentzen et al., 2001; O’Brien et al.,

2004; Bortnik and Thorne, 2007b]. The precipitating electrons can penetrate into the at-

mosphere and produce both diffusive [e.g., Horne et al., 2003; Ni et al., 2008] and pulsating

auroras [e.g., Davidson, 1990; Miyoshi et al., 2010; Nishimura et al., 2010; Jaynes et al.,

2013].
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Statistical studies indicate that the intensity and occurrence of chorus waves usually

increase under higher geomagnetic activity level [Li et al., 2011c; Meredith et al., 2012;

Agapitov et al., 2013] and around the dawn sector (between midnight and noon) [Tsurutani

and Smith, 1974; Meredith et al., 2001; Meredith and Others, 2003a,b; Miyoshi and Others,

2003; Lyons and Others, 2005]. A recent study also shows a strong dependence of chorus

intensity on the solar wind parameters: the intensity increases during the periods of higher

solar wind speed and southward interplanetary magnetic field [Aryan et al., 2014]. The

intensity of chorus waves is often observed as on-off discrete elements with a time scale

about a tenth to a few tenths of seconds [Santoĺık et al., 2003a] and gathered together on a

timescale from a few seconds to a few minutes, which can be modulated by the variations

of background magnetic field and plasma density. One primary source of the oscillations

of background magnetic field and plasma density is the Pc 4-5 ULF waves, which can be

observed to modulate the chorus intensity in both large L-shell (8 to 12) region Li et al.

[2011a] and inner magnetosphere [Xia et al., 2016]. In these two studies, the intensities

of chorus waves show a positive correlation with plasma density and a negative correlation

with the background magnetic field. Also, the negative correlation between chorus intensity

and plasma density in the absence of ULF waves has also been observed Li et al. [2011b].

The modulated chorus emission could lead to modulated electron precipitation and the

consequent pulsating aurora [Nishimura et al., 2010; Jaynes and Others, 2015]. Learning the

chorus modulation is important to understand the excitation of whistler mode waves and

the characteristics of pulsating aurora.

Despite previously existing studies on the chorus wave modulation, two important ques-

tions remain to be investigated. One is what kinds perturbations of background magnetic

field and plasma density can modulate the chorus emission and the occurrences of different

types of modulations. Another one is whether the intensity of modulated chorus is related

to the amplitudes of the perturbations of background magnetic field and plasma density.
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In this study, we use about 2 years’ observations of three THEMIS satellites and 5.5 years’

observations of two Van Allen Probes satellites to build a database of chorus modulation

events and statistically study the relationships between the chorus emissions and perturba-

tions of background magnetic field and plasma density. Section 4.2 introduces the THEMIS

and Van Allen Probes satellites and corresponding instruments used. Section 4.3 describes

the method to automatically identify the chorus modulation events and the rules to sort the

events into different categories. Section 4.4 shows the proportions and spatial distributions

of different types of modulation events and Section 4.5 gives a quantitative analysis of the

relationship between the chorus intensity and amplitudes of background magnetic field and

plasma density perturbations.

4.2 Spacecrafts and Instruments

The Time History of Events and Macroscale Interactions during Substorms (THEMIS) mis-

sion is a constellation of five identically-instrumented satellites with its mission started in

February 2007. Three of the satellites (THA, THD, and THE) are inner probes in nearly

equatorial orbits with apogees of 10-13 RE and perigees below 2 RE [Sibeck and Angelopou-

los, 2008], which is suitable to observe chorus waves outside the plasmapause. The Fluxgate

Magnetometer (FGM) [Auster et al., 2008] can provide the measurements of background

magnetic fields and their low-frequency fluctuations (up to 64 Hz). The Electric Field In-

strument (EFI) measures three components of electric fields [Bonnell et al., 2008] as well

as individual sensor potentials, providing onboard and ground-based estimate of spacecraft

floating potential and plasma density [Bonnell et al., 2008]. Also, waveforms and three-axis

spectral measurements of ambient electric fields from DC up to 8 kHz can be measured by

the EFI. The Search Coil Magnetometer (SCM) [Roux et al., 2008; Le Contel et al., 2008]

provides the measurements of three components wave magnetic fields with a frequency range

from 0.1 Hz to 4 kHz. The waveforms measured by EFI and SCM are digitized and processed
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by the Digital Fields Board (DFB) [Cully et al., 2008] and finally transformed into two types

of spectral products: filter bank data (FBK) and Fourier power spectra (FFT). The filter

bank data are meant for survey-type monitoring of wave power, which has broad frequency

bands and relatively low time resolution. The THEMIS wave data used in this study is the

FBK spectra.

The Van Allen Probes (or Radiation Belt Storm Probes (RBSP)) [Mauk and Others,

2013] consist of two satellites with identical instruments and move along nearly similar near-

equatorial highly elliptical orbits with perigee about 620 km and apogee about 5.8 RE. The

Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) [Kletzing

and Others, 2013], equipped with a tri-axial fluxgate magnetometer (MAG) and a triaxial AC

magnetic search coil magnetometer (MSC), can provide the measurement of wave magnetic

field in frequency range between 10 Hz and 400 kHz as well as the background magnetic

field. The Electric Field and Waves Suite (EFW) [Wygant and Others, 2013], consisting of

4 spin-plane electric field antennae and 2 spin-axis tubular extendable booms, can provide

not only the measurement of the electric field but also estimation of cold plasma densities

from 0.1 to 100 cm−3 from spacecraft potential. Also, the EMFISIS Upper Hybrid resonance

(UHR) lines can help to calibrate empirical plasma density-potential formula and improve

the measurement of plasma density [e.g., Li et al., 2011a].

4.3 Identification of Modulation Events

In this section, we first introduce automatic detection of the modulation events from the

observations of THEMIS and Van Allen Probes. This process is achieved by calculating

the correlation coefficient CB between background magnetic field B0 and logarithm value

of chorus wave root mean square amplitude logBw as well as the correlation coefficient CN

between plasma density N0 and logBw. The value of Bw is the square root of the integration

of the wave magnetic field spectral density over the frequency band from 0.1 to 0.8 electron
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cyclotron frequency fce. Calculation of the correlation coefficients is only down over time

intervals with high chorus wave amplitude outside the plasmapause. First, we only select

data outside the plasmapause, which can be achieved by excluding the data points with

corresponding plasma density larger than 10 cm−3. Second, we select time intervals when

the wave magnetic field Bw is at least twice the background value which is obtained from the

median value of Bw. Third, for the intervals whose duration Te is longer than 36 seconds, we

calculate the two correlation coefficients CB and CN in the time window of 2Te (extending

the high Bw time interval backward and forward by 0.5 Te respectively). Finally, the time

intervals with absolute value of either CB or CN larger than 0.6 are recognized as modulation

events.

According to the values of CB or CN , we sort the modulation events into 3 types and 8

subtypes. The three types are Type B with only high CB absolute value; Type N with only

high CN absolute value; Type NB with both high CB and CN absolute values. For Type B

and Type N, there are subtypes B+ and N+ with positive CB and CN values respectively

and subtypes B- and N- with negative CB and CN respectively. For Type NB, the four

subtypes are N+B+ with both positive CB and CN ; N-B+ with positive CB and negative

CN ; N+B- with negative CB and positive CN ; N-B- with both negative CB and CN . Eight

representative events of the eight subtypes of modulation events observed by THEMIS are

shown in Figures 4.1a-4.1h. For each subplot, the upper panel shows the variations of B0

(blue line) and N0 (red line) while the lower panel shows the magnetic power spectrum

density (colored spectrum) and the variation of Bw (red line). The white solid, dashed and

dot-dash lines denote the variations of fce, 0.5fce and 0.1fce, respectively.
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4.4 Distribution of Modulation Events

After surveying THEMIS observation from June 2008 to May 2010, totally 5338 modulation

events are identified. For Van Allen Probes observation from September 2012 to May 2018,

3798 modulation events are identified. Now we sort these events into three types and eight

subtypes and analyze the spatial distribution of the modulation events and the proportions

of different types of modulation events. The panels on the left side of Figure 4.2 show those

statistical results of the 5338 modulation events from the THEMIS observation. Figures

4.2a - 4.2d exhibit the spatial distribution of event numbers in the logarithm scale for all the

modulation events, type B, type N and type NB events respectively. For the MLT distribution

of type B and NB events which both involve the modulation effect of the background magnetic

field, the modulation event number is the largest at the dawn sector and is the smallest near

the midnight. There also exists a secondary peak in the dusk sector. However, for the type

N events that involve only the modulation by plasma density, the MLT distribution is more

uniform compared with that of type B and NB events. The radial distribution peaks at L

= 11-12 and decreases as L decreases for type B and NB events, while for type N event, the

radial dependence is weaker. For the region outside L = 12, few observations due to the

limit of THEMIS orbit are made and thus information about the distribution of modulation

events cannot be reliably obtained. Figure 4.2e shows the proportions of different types of

events. The portions of the three types of events are 39.5%, 37.5% and 23% for type B, N

and NB events respectively. Most of the type B events are subtype B- with negative CB

(34.8%) while most of the type N events are subtype N+ with positive CN (30.8%). For

type NB events, the main subtype is N+B- (19%), which can be treated as the combination

of subtype B- and N+. Those proportions suggest that the chorus wave amplitude is more

likely modulated by background magnetic field with negative correlation and by the plasma

density with positive correlation (totally 84.7%). These modulation relations are consistent
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with those of the ULF wave modulation events reported in outer Li et al. [2011a] and inner

magnetosphere [Xia et al., 2016].

Besides the statistical study of THEMIS data, we also perform a similar analysis on

the measurements of Van Allen Probes from September 2012 to May 2018. The statistical

results of Van Allen Probes data are plotted in the right column of Figure 4.2. Due to the

orbit of Van Allen Probes, most of the 3798 events are detected within L =∼ 6. From the

distribution of the proportions of different types of events shown by Figure 4.2j, we can see

that most of the modulation events (64.1%) are type N+, with positively correlated plasma

density only. Also, there is a considerable portion of type N- (12.8%) while the portion of

the other types that corresponding to the background magnetic field is about 23%. This

proportion distribution is due to the fact that in the Van Allen Probes traveling region

which is not far from the plasmapause, the variation of plasma density is more significant

and occurs more frequently than the variation of background magnetic field. Looking into

the MLT distribution of event numbers, most of the events occur uniformly over a broad

region from pre-midnight to pre-dusk region. For the radial distribution, most of the events

occur at L =∼ 6 and the event number decreases as L decreases.

Combining the results of both THEMIS and Van Allen Probes measurements, at larger

L shell region (L > 10), most of the modulation events take place around the dawn sector

while for regions of small L shell (L < 10), the MLT distribution of the modulation events

become more uniform. Both THEMIS and Van Allen Probes measurements indicate that

the number of modulation events decreases as L decreases. However, we can not directly

compare the event number from THEMIS satellites at larger L shell region with that from

Van Allen Probes at smaller L shell since the numbers of orbits are quite different for these

two data sets.
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Figure 4.2. Spatial distribution of the numbers of different modulation types and the pro-
portions of different subtypes.
The spatial distribution of modulation events numbers for all types (a), type B (b), type N
(c) and type NB (d) respectively from THEMIS observation. (e): the proportion of different
subtypes of events from THEMIS observation. (f) - (j) show similar content to (a) - (e)
except for Van Allen Probes observation of modulation events.
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4.5 Effects of the Modulator’s Perturbation Amplitudes

We have learned that the intensity of the chorus wave can be modulated by the oscillations of

the background magnetic field and plasma density. For the modulation events, the relation

between the intensity of chorus wave and the amplitudes of the oscillations also needs to be

investigated quantitatively in order to better understand the mechanism of the modulation

events. Thus we find out the maximum amplitudes of the chorus waves for all the modula-

tion events and calculate the standard deviations of corresponding variations of background

magnetic field and plasma density, which are then used to study how the amplitudes of

oscillations can affect the chorus intensity.

Figures 4.3a and 4.3b show the relationship between the logarithm values of chorus

intensity and the logarithm values of standard deviations of background magnetic field for

events observed by THEMIS satellites with positive CB (subtypes B+, N+B+ and N-B+)

and negative CB (subtypes B-, N+B- and N-B-) respectively. The values of chorus intensity

and magnetic field standard deviation are normalized by the mean background magnetic

field over the event interval. The blue dots stand for type B events with only background

magnetic field modulation (subtype B- in 4.3a and B+ in 4.3b) while the black dots are type

NB events with both background magnetic field and plasma density modulations (subtypes

N+B+ and N-B+ in 4.3a; N+B- and N-B- in 4.3b). The blue and black solid lines are linear

fitting lines for dots with corresponding colors and the dashed lines outline the boundaries of

the corresponding 95% predicting intervals. In Figure 4.3b, the dots center around the fitting

lines with correlation coefficients of 0.66 (blue dots) and 0.69 (black dots), which indicates

strong positive correlations between the intensity of chorus wave and the standard deviations

of background magnetic field. The correlations in Figure 4.3a are slightly weaker with

correlation coefficients of 0.44 (blue dots) and 0.31 (black dots). These positive correlations

suggest that stronger oscillations of the background magnetic field tend to result in more

intense chorus waves, especially for the events with negative CB. Figures 4.3c and 4.3d
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show the relationship between the logarithm values of normalized chorus intensity and the

logarithm values of normalized standard deviations of plasma density (normalized by the

mean plasma density over the event interval) for events observed by THEMIS satellites with

positive CN (subtypes N+, N+B+ and N+B-) and negative CN (subtypes N-, N-B+ and N-

B-) respectively. The red dots stand for type N events with only plasma density modulation

(subtype N+ in 4.3c and N- in 4.3d) while the black dots are type NB events with both

background magnetic field and plasma density modulations (subtypes N+B+ and N+B-

in 4.3c; N-B+ and N-B- in 4.3d). The effect of plasma density oscillation amplitude on

chorus intensity is not as significant as that of background magnetic field since the data dots

distribute uniformly and the correlation coefficients for Figures 4.3c and 4.3d are all very

low (absolute values <∼ 0.1).

Figures 4.3e-4.3h show in the same format as Figures 4.3a-4.3d but for observations of

the Van Allen Probes. The effect of magnetic field oscillation is noticeable (Figures 4.3e and

4.3f) but not as significant as that in Figure 4.3b due to lack of measurements of events

with large magnetic field oscillation. The effect of plasma density is still very weak (Figures

4.3g and 4.3h) from the results of Van Allen Probes’ observations. Totally, the results from

these two magnetospheric satellites missions indicate the chorus intensity increases when the

amplitude of background magnetic field perturbation increases, but does not show a clear

dependence on the amplitude of plasma density perturbation.
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4.6 Conclusions and Discussion

In this chapter, we use nearly 2 years of observations of three THEMIS satellites (A, D,

E) and over 5.5 years’ observations of two Van Allen Probes (A, B) to statistically study

the modulations of chorus emissions by background magnetic field and plasma density. The

modulation events are identified automatically by calculating the correlation coefficients be-

tween the magnetic field strength (or plasma density) and the chorus emission intensity

(calculated by integrating the magnetic wave power spectrum density through 0.1 to 0.8

electron cyclotron frequency fce). The modulation events are divided into three types ac-

cording to whether the chorus intensity is highly correlated to the variations of magnetic

field strength (type B), plasma density (type N), or both (type NB). The three types are

also sorted into eight subtypes according to the sign of correlation coefficients. Finally, we

analyze the relationships between chorus intensity and amplitudes of the magnetic field and

plasma density perturbations. The conclusions are listed below:

1. The proportions of types B and N are comparable (∼ 1/3) and slightly larger than

that of type NB (∼ 1/5) for the THEMIS observations, while for the Van Allen Probes

observations at relatively smaller L-shell most of the events are type N.

2. The chorus intensity is mostly correlated to the magnetic field strength negatively and

plasma density positively.

3. The spatial distribution of modulation events matches that of the chorus emissions

well, resulting in most modulation events at the dawn sector for all the three types and

decreasing occurrence as L shell decreases.

4. For the modulation events, chorus intensity is larger when the amplitude of the

magnetic field perturbation is larger but has no clear dependence on the amplitude of plasma

density perturbation.

The linear theory can partially explain the excitation of chorus waves especially for the

small amplitude chorus waves and the early stage of strong chorus wave generation. In
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the study of Li et al. [2011a], the mechanism of chorus modulation by compressional ULF

waves corresponding to the linear growth rate can be decomposed as the changes of the

ratio between the resonant electrons and the total electrons R(VR) as well as the electron

anisotropy A(VR), and most modulation events are caused by the variations of R(VR). The

effects of density variation on the linear growth rate were also discussed in Li et al. [2011b].

In this study, both density enhancement (DE) and depletion (DD) can increase the value

of R(VR) and consequently the linear growth rate. The DE can increase R(VR) by reducing

the minimum energy of resonant electrons (increasing the resonant electrons) while the DD

increased R(VR) by the decreasing the denominator of R(VR). Thus the relationship between

the density variation and the linear growth rate can not be approximated monotonically. In

the study of Wu et al. [2013], the growth rate of whistler-mode waves is more monotonic to

background magnetic field than to the cold plasma density, which coincides with the effects

of modulator’s amplitudes in our study. The effects of cold plasma density are quite different

for different hot plasma anisotropy values and different wave modes. To better understand

the effects of background magnetic field and plasma density, more detailed studies involving

the wave modes and other plasma parameters are needed and left as possible future works.
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CHAPTER 5

THE EFFECTS OF LOCALIZED THERMAL PRESSURE ON

EQUILIBRIUM MAGNETIC FIELDS AND PARTICLE DRIFTS IN THE

INNER MAGNETOSPHERE1

The work shown in this chapter has been published as “Xia, Z., Chen, L., Artemyev, A.

V., Zhu, H., Jordanova, V. K., and Zheng, L. (2019). The effects of localized thermal

pressure on equilibrium magnetic fields and particle drifts in the inner magneto-

sphere. Journal of Geophysical Research: Space Physics, 124. https://doi.org/10.1029/2018

JA026043”.

5.1 Introduction

The partial ring current generated by the asymmetric azimuthal drift of energetic ions and

electrons exhibits diamagnetic effect on the Earth’s magnetic field due to the force balance

between thermal pressure of the hot particles and the background magnetic pressure, es-

pecially in the magnetic storm time [Fukushima and Kamide, 1973] when the ring current

intensity increases and the plasma β value can reach about ∼ O(1). Ukhorskiy et al. [2006]

has reported the magnetic dip structure, which is caused by the diamagnetic effect of the

storm time partial ring current, as a local magnetic minimum followed by a magnetic island

(local maximum) at larger L shell region from the TS05 model [Tsyganenko and Sitnov,

2005]. This magnetic dip structure locates from midnight to post noon region in a few mag-

netic local time (MLT) hours and near 5−6RE with a width of ∼ 2RE in the radial direction.

The depth of the dip (absolute value of difference between the local minimum magnetic field

and the quite time magnetic field) can reach about 50 nT.

1 c©2019 Amercian Geophysical Union. Portions Adapted, with permission from, Z. Xia, “The effects of
localized thermal pressure on equilibrium magnetic fields and particle drifts in the inner magnetosphere,”
Xia, Z., Chen, L., Artemyev, A. V., Zhu, H., Jordanova, V. K., and Zheng, L., Journal of Geophysical
Research: Space Physics, 124.
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The magnetic dip structure has been recently observed by the inner magnetosphere space-

craft. Xiong et al. [2017] provided a single satellite observation of magnetic dip generated by

the injection of energetic ions during substorm by Van Allen Probes, with increased thermal

pressure and decreased magnetic field. A butterfly pitch angle distribution of energetic elec-

trons was found and explained as the result of inward transport of the relativistic electrons,

which was caused by the magnetic gradient drift due to the magnetic dip. He et al. [2017]

reported another magnetic dip event during the substorm using multiple-satellite observa-

tions. In this event, the magnetic dip together with the energetic ions moves at a speed

comparable to the ion’s drift velocity, which indicates that the magnetic dip structure is

induced by the ring current ions. Excitation of electromagnetic ion cyclotron (EMIC) waves

were also observed accompany with magnetic dip structures [He et al., 2017; Remya et al.,

2018]. According to linear theory analysis, the magnetic dip accompanied with high ion β

and ion temperature anisotropy can provide a favorable condition for EMIC wave generation.

Moreover, the center region of magnetic dip is a kind of “minimum-B-pockets” in the equa-

torial plane, which can generate whistler mode waves [Santoĺık, 2008; Tsurutani et al., 2009;

Tenerani et al., 2013]. Zhima et al. [2015] also observed whistler mode wave generating at

the edges of magnetic dip, where positive temperature anisotropy and pancake distribution

existed to provide free energy for growth of the whistler mode waves.

The magnetic field topology in the inner magnetosphere affects the drift motion of the

energetic particles significantly because of dominant magnetic gradient and curvature drifts.

The magnetic dip structure, comparing with empirical or analytic dipole magnetic fields,

exhibits two significantly different features. The first one is the presence of an azimuthal

magnetic field gradient, which causes radial drift. When eastward drifting energetic electrons

encounter the magnetic dip structure, the azimuthal gradient of the magnetic dip causes the

electrons to drift inward and results in the butterfly distribution as discussed in Xiong et al.

[2017]. Another difference is the radial gradient of magnetic field becomes positive (always
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negative for dipole field) at the radial outer edge of the magnetic dip. This inverse gradient

may cause the inverse gradient drift motion. Although ring current protons and radiation

belt electrons do not interact directly, the magnetic dip driven by the ring current provides

an indirect way to affect the variability of radiation belt electron populations. Learning

about the formation condition of magnetic dip structure and its influence to the energetic

particles’ drift motion can enhance our understanding of dynamic processes in the inner

magnetosphere.

Equilibrium magnetosphere models are widely used to calculated three-dimensional (3-

D) self-consistent magnetic field (SCB) that holds force balance with plasma pressure in

the inner magnetosphere [Zaharia et al., 2006; Jordanova et al., 2010; Yu et al., 2012] and

in the plasma sheet [Yue et al., 2013, 2014, 2015]. Both spacecraft observations and inner

magnetosphere models indicate that, as L shell increases, the thermal pressure of ring current

increases to a peak value and then decreases [De Michelis et al., 1999; Chen et al., 2010;

Godinez et al., 2016; Imajo et al., 2018]. Thus, we can use a Gaussian distribution to

approximate the radial pressure distribution. Our previous work [Xia et al., 2017] used

a 2-D axisymmetric equilibrium model to calculate SCB under a radial Gaussian thermal

pressure and investigated instability condition for field line resonance, which favored more

negative radial gradient of plasma pressure. It also showed that sufficiently large plasma β

(ratio between plasma pressure and magnetic pressure) could result in the change of magnetic

field topology and even formation of the local magnetic minimum (magnetic dip). In this

study, we systematically study the effects of the Gaussian thermal pressure distribution on

the magnetic field configuration (and magnetic dip formation) and the resulting changes in

particle magnetic gradient and curvature drifts. There are four parameters determining the

pressure distribution: the location of the pressure peak L0, the β value at the pressure peak

β0, the width of half pressure peak σ0, and the equatorial pressure anisotropy Ae. In addition,

we also use the 3-D ring current-atmosphere interactions model with SCB (RAM-SCB)
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model [Jordanova et al., 2010] to study the influence of the azimuthal pressure distribution,

which is characterized by the four parameters above and another parameter, the MLT width

of half pressure peak in the azimuthal direction σMLT . The purpose of this study is to

construct a comprehensive understanding of the relationship between the configuration of

Earth’s magnetic field and the ring current plasma pressure, and to estimate the relative

perturbation of magnetic drift motions under this pressure and the critical condition to form

the magnetic dip structure.

5.2 Axisymmetric Equilibrium Model

5.2.1 Equilibrium Magnetic Field Model Description

The axisymmetric equilibrium model used in this study is the same as that in our previous

work [Xia et al., 2017], whose basic theory had been discussed in the work of Cheng [1992]

and Zaharia et al. [2004]. The basic magnetohydrodynamics equations to be solved for the

pressure equilibrium are

J×B = ∇ ·P, (5.1)

∇×B = µ0J, (5.2)

∇ ·B = 0, (5.3)

where J is the current, B is the magnetic field, µ0 is the vacuum permeability, and P is the

anisotropic thermal pressure tensor that can be represented as P⊥I − (P⊥ − P‖)b̂b̂, where

I is the unit tensor, b̂ = B/B is the unit vector of the magnetic field, and P⊥ and P‖ are

the perpendicular and parallel pressure components. The magnetic field B is divergence-free

according to Equation (5.3) and can be expressed in terms of two Euler potential ψ and α

as B = ∇ψ × ∇α. Thus, B is perpendicular to both ∇ψ and ∇α and the intersections of
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constant ψ and constant α surfaces correspond to magnetic field lines. In our model, we

choose the magnetic flux as ψ and the azimuthal angle as α for the axisymmetric fields.

The computation coordinates are curvilinear flux coordinates corresponding to ψ (radial

direction), α (azimuthal direction), and the length along field line (field line direction), which

had been introduced in Xia et al. [2017]. Eventually, Equation (5.1) can be reduced to the

form to be solved for ψ in the meridian (X − Z) plane:

µ0J ·∇α = ∇· [(∇α ·∇ψ)∇α−(∇α)2∇ψ] = −B×∇α
σPB2

·
[
µ0∇P⊥ + (1− σP )∇(

B2

2
)

]
, (5.4)

where σP = 1 + µ0(P⊥ − P‖)/B2.

The pressure along the field line at an arbitrary location, including the perpendicular

component P⊥ and parallel component P‖, can be obtained from the equatorial value of the

anisotropic pressure through the assumption of Maxwellian plasma distribution [Tsyganenko,

2000; Xiao and Feng, 2006]:

P⊥ =
P⊥e

[1 + Ae(1− S)]2
, (5.5)

P‖ =
P‖e

1 + Ae(1− S)
, (5.6)

A =
1

1 + Ae(1− S)
− 1, (5.7)

where S = Be/B is the ratio between the magnitudes of the equatorial magnetic field Be

and the magnetic field at the location of interest B, A = P⊥/P‖ − 1 is the anisotropy, the

subscript “e” denotes the value in the equatorial plane. A Gaussian distribution Pe(x) =

P0 exp [−(x− L0)2/2σ2
0] is used to approximate the thermal pressure of the symmetric ring

current, where Pe = (2P⊥e + P‖e)/3 is the average pressure in the equatorial plane, P0, L0,

and σ0 are the peak pressure, the location of the pressure peak, and the width of the half

pressure peak respectively. The value of P0 is set to be β0Pmag, where Pmag is the magnetic

pressure at L0, and β0 is the constant β at L0. Thus, the equatorial distribution of plasma
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pressure in our model can be determined by these four parameters: L0, σ0, β0 and Ae.

The case of β0 = 0 represents the cold plasma case (the dipole field) and the Ae = 0 case

represents the isotropic pressure case.

After iteratively solving Equation (5.4) for the distribution of ψ and the corresponding B

in the meridian plane, we can finally reach a equilibrium state, which satisfies the convergence

condition ∆ = Σi,j|[ψi,j(n)− ψi,j(n− 1)]/ψi,j(n− 1)| < 2× 10−5, where i and j are the grid

indices for the radial and field line directions respectively, n is the iteration number of the

calculation, and ∆ measures the relative difference between the current step n and the

previous step (n− 1). The domain of our equilibrium model is set to be [3RE, 9RE], which

is large enough to make sure the plasma pressures at the boundaries are nearly zero. The

numbers of grids are 151 in the radial direction and 181 in the field line direction to ensure

sufficient accuracy. The magnetic field for the initial step of the iterative method and the

boundary magnetic field at the inner, outer, north, and south boundaries are set to be the

Earth’s dipole field. As the magnetic field is updated at each iteration step, the value of P0

is also adjusted so that the value of β0 can keep constant.

5.2.2 Example of the SCB Model

Figure 5.1 shows an example of model result for the case with β0 = 0.8, σ0 = 0.4RE, L0 = 5

and Ae = 0. Figure 5.1a shows the average pressure distribution in the meridional plane, and

Figure 5.1b shows the corresponding topology of equilibrium magnetic field lines (the red

solid lines), with the dipole field lines (the black dashed lines) also shown as a comparison.

As the force equilibrium develops, the magnetic field lines expand from the peak pressure

location (L0 = 5) inward and outward due to the thermal pressure, leading to weakened

magnetic field strength there. In Figure 5.1c, the variations of β (the black line) and of

the normalized pressure (the blue line, normalized by the pressure peak) at the equator

are shown as functions of x. The peak of β is slightly outside the peak of the normalized
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Figure 5.1. Model result for case with β0 = 0.8, σ0 = 0.4RE, L0 = 5 and Ae = 0.
(a) The pressure distribution in the meridional plane. (b) The topologies of the modeled
magnetic field lines (red solid lines) and dipole field lines (black dashed lines). (c) The
variation of β versus x in the equator (black line) and the variation of normalized pressure
versus x (blue line). (d) The variation of modeled magnetic field strength versus x in the
equator (red solid line) and the variation of dipole field strength versus x (black dashed line).
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pressure at L0, because the magnetic field strength decreases as x increases. In Figure 5.1d,

the variations of modeled (the red solid line) and dipole (the black dashed line) magnetic

field strength at the equator are compared. Unlike monotonically decreasing dipole magnetic

field, the modeled magnetic field exhibits a local minimum at about x = 5.3RE (labeled by

the vertical dash-dotted lines in Figures 5.1c and 5.1d), outward of the peaks of plasma

pressure and β (Figure 5.1c). The absolute value of difference between the modeled and

dipole magnetic field strength |∆B| at the local minimum is about 50 nT, comparable to

the Tsyganeko empirical model results noted by Ukhorskiy et al. [2006].

5.3 Results of the SCB Model

5.3.1 Parametric Dependence of Magnetic Configuration

Here we study the effects of β0, L0, σ0 and Ae on the magnetic field configuration, by changing

one of the four parameters at a time while keeping the rest three fixed as the nominal

case shown in Figure 5.2. Figures 5.2a and 5.2b show the variations of modeled equatorial

magnetic field strength (B) versus x for cases with varying σ0 = 0.2, 0.3, 0.4, 0.5, 0.6RE

(Figure 5.2a) and for cases with varying L0 = 4.0, 4.5, 5.0, 5.5, 6.0 (Figure 5.2b). Figures

5.2c and 5.2d show the corresponding normalized differences between modeled and dipole

magnetic fields (∆B/Bdipole, where ∆B = B−Bdipole and the subscript dipole represents the

dipole field). One can see that magnetic dip structure occurs for small values of σ0 (0.2-0.4

RE) from Figure 5.2a, and for almost all cases with different L0 values from Figure 5.2b.

The detailed effects of σ0 and L0 on the magnetic dip formation will be discussed in section

5.3.3 later. Figure 5.2c shows that for the same L0, a smaller value of σ0 leads to a narrower

magnetic dip but with similar perturbation of ∆B/Bdipole at the dip location. The effect

of L0 on ∆B/Bdipole is less significant (Figure 5.2d), and the minimum value of ∆B/Bdipole

remains nearly constant except different dip locations. The dominant factor determining the

minimum value of ∆B/Bdipole should be β as noted in Xia et al. [2017].
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Figure 5.2. The effects of σ0 and L0 on the magnetic field topology.
The variations of modeled magnetic field strength versus x in the equator for cases with
(a) β0 = 0.8, Ae = 0, L0 = 5, σ0 = 0.2, 0.3, 0.4, 0.5, 0.6 RE (b) β0 = 0.8, Ae = 0, σ0 =
0.2RE, L0 = 4.0, 4.5, 5.0, 5.5, 6.0. (c and d) The variations of the normalized difference
between modeled and dipole magnetic fields ∆B/Bdipole versus x for the same cases in (a)
and (b), respectively. (e and f) The variations of the normalized difference between the
radius of curvature of modeled and dipole magnetic field ∆Rc/Rc,dip versus x for the same
cases in (a) and (b) respectively.

87



Besides the magnetic field strength, the curvature of magnetic field line is also changed

due to the presence of thermal pressure. We plot normalized difference of the radius of

curvature ∆Rc/Rc,dip = (Rc − Rc,dip)/Rc,dip, in Figures 5.2e and 5.2f. The value of Rc,dip

equals to L/3 for dipole field, where L is the L shell value. The value of Rc can be calculated

from the model results by Rc = 1/|b ·∇b|, where b = B/B is the magnetic field unit vector.

The results show that Rc decreases by up to about 20% at the region outside L0, and a larger

value of σ0 and a smaller value of L0 favor enlarging the perturbation of the curvature.

After learning the dependence on σ0 and L0, we now focus on the role of the equa-

torial anisotropy Ae. The variations of B, ∆B/Bdipole and ∆Rc/Rc,dip for varying Ae =

−0.4, 0.0, 1.0, 2.0, 3.0, 4.0 are shown in Figures 5.3a-5.3c, respectively. As Ae increases, the

normalized magnetic perturbation (∆B/Bdipole) varies only slightly. This can be explained

by that the magnetic perturbation is mainly controlled by the gradient of the perpendicu-

lar thermal pressure (P⊥) instead of the anisotropy [Xia et al., 2017]. The effect of Ae on

the field line curvature, however, is much more significant. For a large value of Ae = 4.0,

∆Rc/Rc,dip can even change its sign and reach a positive value up to about 0.3 inside the

pressure peak. Outside the pressure peak, the relative change in curvature radius becomes

more negative as Ae increases.

For the effect of β on the change of magnetic field strength and magnetic field line

curvature, we make model runs for 3,000 combinations of four parameters, 5 values of L0

ranging from 4 to 6, 24 values of β0 ranging from 0.01 to 1.0, 5 values of σ0 ranging from 0.2

to 0.6 RE, and 5 values of Ae ranging from -0.4 to 0.4. For each run, we make scatter plots

of minimum ∆B/Bdipole versus peak β value βpeak and minimum ∆Rc/Rc,dip versus βpeak,

shown by Figures 5.4a and 5.4b, respectively. The figures show that the magnitudes of both

minimum ∆B/Bdipole and minimum ∆Rc/Rc,dip increase as βpeak increases. For ∆B/Bdipole,

we make a polynomial fit for all the points, which is (∆B/Bdipole)min = −0.339βpeak +

0.112β2
peak and plotted as the solid line in Figure 5.4a. For ∆Rc/Rc,dip, we also obtained a

linear fitted line with slope of about -0.214 and plot it as the solid line in Figure 5.4b.
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5.3.2 The Effects of Magnetic Perturbation on Gradient and Curvature Drifts

At the presence of spatially varying magnetic field, charged particles experience magnetic

gradient and curvature drift across field lines, due to the gradient of magnetic field strength

and the curvature of magnetic field line, respectively. The drift velocities of gradient and

curvature drifts for a relativistic particle can be expressed, respectively, as

vg =
γmv2

⊥
2qB

B×∇B
B2

(5.8)

and

vc =
γmv2

‖

qB

Rc ×B

R2
cB

, (5.9)

where γ = (1 − v2/c2)−(1/2) is the relativistic factor, v is the particle speed, and v⊥ and v‖

are the speed components perpendicular and parallel to the background magnetic field. The

direction of Rc is opposite to the direction of b ·∇b. The ring current thermal pressure leads

to the change of the magnetic field configuration and thus introduces additional gradient

and curvature drift motions. From Equations (5.8) and (5.9), for the gradient drift and

curvature drift velocities, particle-independent terms that are related to only the magnetic

field configuration are Dg = B × ∇B/B3 and Dc = Rc × B/(R2
cB

2), respectively. The

relative changes of the two terms at the equator to those for the dipole field are shown by

Figures 5.5a and 5.5b respectively, for cases with β0 = 0.8, Ae = 0, L0 = 5, and varying

σ0 = 0.2, 0.3, 0.4, 0.5, 0.6RE. The largest ∆Dc/Dc,dip can be up to 0.5 for σ0 = 0.2 RE

case, while the variation of the gradient drift term is more significant. For the σ0 = 0.2 RE

case as an example, the relative change of the gradient drift term varies from ∼ 2 inside the

pressure peak to ∼ −2 outside the pressure peak. The value less than -1 means the drift

direction reverses.

We also evaluate the bounce-averaged magnetic gradient and curvature drift velocity,

which depends on particle’s equatorial pitch angle. Figure 5.5c shows the relative change
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Figure 5.5. The effects on the magnetic drift motions.
(a) The variations of normalized difference of Dg ((Dg − Dg,dip)/Dg,dip) versus x for cas-
es with β0 = 0.8, Ae = 0, L0 = 5, σ0 = 0.2, 0.3, 0.4, 0.5, 0.6 RE; (b) the variations of
normalized difference of Dc versus x for the same cases. (c) The variations of normal-
ized difference of bounce-averaged total drift velocity ∆Db/Db,dip = (Db − Db,dip)/Db,dip

versus x for the same cases. (d) The variations of bounce-averaged total drift velocity
∆Db/Db,dip = (Db − Db,dip)/Db,dip versus x and equatorial pitch angle θE for case with
β0 = 0.8, σ0 = 0.4 RE, Ae = 0, L0 = 5.

of the bounce-averaged drift velocity to the dipole case ∆Db/Db,dip = (Db − Db,dip)/Db,dip,

where Db is the sum of the bounce-averaged gradient and curvature drift velocities. The

equatorial pitch angle θE is set to be 45◦. One can see that the change of bounce-averaged

total drift velocity is also significant, up to ∼ 1 inside the peak and ∼ −1 outside the peak.

The change of the bounce-averaged drift is less than the change of the gradient drift term

shown in Figure 5.5a, because the magnetic perturbation induced by the plasma pressure

occurs predominately near the equator. Moreover, we also calculate the relative change

of the bounce-averaged drift velocity for equatorial pitch angles from 5◦to 90◦by using the

self-consistent magnetic field with σ0 = 0.4 RE, β0 = 0.8, Ae = 0 and L0 = 5, which are
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shown by Figure 5.5d. The result shows that the change of the bounce-averaged drift is

more significant for higher equatorial pitch angles because of dominant gradient drift over

curvature drift and dominant magnetic perturbation near the equator over higher latitudes.

5.3.3 The Critical Condition for Magnetic Dip Formation

To examine the magnetic dip formation, we analyze the relationship between the normalized

dip depth (|∆B/Bdipole| at the dip, if magnetic dip exists, and β0 for cases with different

L0 and σ0 values. The modeled results are shown in colored solid lines with dot symbols

of Figure 5.6 for σ0 = 0.2, 0.4, 0.6 RE, respectively. One can see that when β0 is small,

there is no magnetic dip, represented by zero values of the normalized dip depth. When β0

increases to a critical value, the dip structure may form. For cases with same σ0, the critical

value of β0 decreases and the normalized dip depth increases as L0 increases. Comparing

among the three panels of Figure 5.6, for the same L0 values, a smaller σ0 results in a smaller

critical β0, and a larger normalized dip depth. When β0 is sufficiently large, the normalized

dip depth becomes independent of L0.

The dependence of the critical β0 on σ0 and L0 to form magnetic dips is also shown in

Figure 5.7. As σ0 increases or L0 decreases, the critical β0 tends to increase. The effect of

σ0 on the critical β0 can be explained by comparing gradients of the background dipole field

Bdipole and the perturbation magnetic field ∆B. If the gradient of ∆B (positive) balances

that of Bdipole (negative), then the gradient of total magnetic field becomes 0, meaning the

formation of magnetic dip. For the same L0, a smaller σ0 results in a larger gradient of

∆B (Figure 5.2c), which requires a smaller value of the critical β0. The effect of L0 on the

critical β0 can be understood as follows. Because ∆B/Bdipole is independent of L0 (Figure

5.2d), and the gradient of Bdipole is larger for smaller L0, zero gradient of the total magnetic

field requires a larger value of critical β0 for smaller L0. In summary, the model results

indicate that the formation of magnetic dip needs a considerable pressure gradient, which is
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Figure 5.6. The relationship between the normalized dip depth (|∆B/Bdipole|) and β0 for
cases with different L0 and σ0 values.
The x-axis is β0 and the y axis is the normalized dip depth. Panels (a)-(c) stand for σ0 =
0.2, 0.4, 0.6 RE, respectively. The colored solid lines with circle symbols are model results.
The black solid line is the analytical solution for uniform magnetic field. The colored dashed
lines are analytical solution for circle magnetic field. The colored dash-dotted lines are
analytical solution for dipole field with the assumption that the curvature keeps unchanged.
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controlled by both the pressure peak value (corresponding to β0) and the spatial scale of the

pressure distribution (corresponding to σ0). For smaller L shell region (closer to the Earth),

since the gradient of background dipole field is larger, a larger thermal pressure gradient

(corresponding to larger β0 and smaller σ0) is needed to produce magnetic field reduction

that is large enough to form the magnetic dip.

Because simultaneous changes in magnetic field strength and magnetic field line curva-

ture occur on top of dipolar fields, the solution to Equation (5.4) of equilibrium magnetic

field can only be obtained numerically. Assumptions can be made, however, to simplify the

problem and to obtain approximate analytical solution to make sense of the behavior of
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magnetic dip. We consider the following three situations. The first and the simplest ap-

proximation to be considered is the presence of the localized plasma pressure in an initially

uniform magnetic field B0. In equilibrium, a magnetic dip forms whenever there is localized

pressure distribution, and the normalized dip depth |∆B/B0| increases with β0 according to

|∆B/B0| = 1−
√

1/(1 + β0) (Appendix E.1), which is overplotted as the black solid line in

Figure 5.6. The critical β0 to form a dip is essentially zero.

The second approximation is circular and planar magnetic fields, which can be gener-

ated by an infinitely long current wire. When embedded with radially Gaussian pressure

distribution P = P0 exp [−(r − L0)2/(2σ2
0)], the force balance equation yields an analytical

solution (Equation (E.3) of Appendix E.2). The analytical solution can be used to obtain

the normalized dip depth, when the dip exists, as a function of β0, L0 and σ0, which is over-

plotted as the colored dashed lines in Figures 5.6 and 5.7. Further analysis in Appendix E.2

demonstrates that the critical β0 for the dip formation scales as σ0/L0. Such analytic results

reveal similar behaviors of the modeled results of Equation (5.4), including (1) the critical β0

increases with increasing σ0 and decreasing L0 (comparing the threshold β0 values in Figure

5.7), (2) magnetic dip depth increases with decreasing σ0, increasing L0, and increasing β0

(comparing the |∆B/Bdipole| values in Figure 5.6), and (3) the magnetic dip tends to be

independent of L0 for larger β0 (dashed lines with different colors merge together when β0

is large in Figure 5.6).

The third approximation is to ignore the change of the curvature of the dipole field, for

which an analytic solution of the magnetic field radial profile can be obtained as shown in

Appendix E.3. The result using the analytic solution (Appendix E.3) is overplotted as the

colored dash-dotted lines in Figures 5.6 and 5.7. Similar behaviors of the magnetic dip are

also obtained when the curvature change is ignored. The approximation, however, yields a

smaller magnetic dip depth, compared with the solution of Equation (5.4), which suggests

the induced curvature change by the plasma pressure enhances the dip structure.
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5.3.4 Comparison With 3-D SCB Model

Our 2-D axisymmetric magnetic field results are compared with 3-D RAM-SCB model [Jor-

danova et al., 2010] to study the effect of the azimuthal pressure distribution. We introduce a

Gaussian distribution of the pressure in the azimuthal direction to represent the asymmetric

ring current pressure. The pressure distribution in the equatorial plane is expressed as

P = β0PB(L0) exp [−(x− L0)2/(2σ2
0)] exp [−(MLT −MLT0)2/(2σ2

MLT )],

where σMLT (in unit of MLT hour) denotes the width of half pressure peak in the azimuthal

direction. The pressure peak is located at L0 in the meridian plane corresponding to MLT0

(set to 0 without loss of generality) and decays in the azimuthal direction with σMLT and

in the radial direction with σ0. Figure 5.8 shows the results of this 3-D model. Figures 5.8a

and 5.8b show the distributions of thermal pressure and the resulting ∆B in the equatorial

plane for the case with β0 = 0.65, L0 = 4, σ0 = 0.4 RE, Ae = 0, and σMLT = 1.0. One

can see that both the thermal pressure and ∆B magnitude maximize in the MLT0 sector

and decrease in the azimuthal direction, as expected. Figure 5.8c shows the variations of B

versus x in the equator in the MLT0 sector for cases with varying σMLT values, including the

case of infinite σMLT denoting the azimuthally symmetric magnetic field. One can see that

the magnetic field topology in the meridional plane at MLT0 is independent of the value

of σMLT , which is expected because partial derivative of the pressure with respect to MLT

is zero there. However, σMLT determines the azimuthal pressure distribution and thus the

azimuthal magnetic field variation. Smaller σMLT would result in larger azimuthal pressure

and magnetic field gradient. The radial drift motion of energetic particles (and therefore the

formation of the butterfly distribution of energetic electrons) is also affected by σMLT .
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5.4 Conclusions and Discussion

In this chapter, we use axisymmetric equilibrium model to calculate SCB under a Gaussian

thermal pressure distribution with four parameters: the ratio between plasma pressure and

magnetic pressure at the pressure peak β0, the radial location of the pressure peak L0, the

width of the half peak pressure σ0 and the equatorial pressure anisotropy Ae. Then we

analyze the effects of these parameters on the change of magnetic field configuration and the

change of particle drifts. The main conclusions are summarized below:

1. The magnetic field perturbation |∆B/Bdipole| increases with increasing β0 and de-

creasing σ0 and is weakly dependent of L0 and Ae. The magnetic curvature perturbation

|∆Rc/Rc,dip| increases with increasing Ae, increasing β0, increasing σ0, and decreasing L0.

2. The thermal pressure induces a change of gradient and curvature drift velocities. The

induced change in the gradient drift is much greater than that in the curvature drift. The

total drift change is more pronounced for larger equatorial pitch angles.

3. The magnetic dip structure forms when β reaches a critical value (0.5-1). Such critical

value tends to increase with increasing σ0 and decreasing L0 values. When the dip forms,

the dip depth tends to increase with decreasing σ0, increasing β0 and increasing L0 values.

In this study, we use a symmetric Gaussian distribution to approximate the radial profile

of the ring current pressure distribution. The following five points are worth noting regarding

the realism of the symmetric Gaussian distribution used and the realistic pressure distribu-

tion profiles that may have different width at the inner and outer edges. First, the formation

of the magnetic dip (that is, the existence of a positive radial slope of the equatorial magnetic

field strength) requires a strong negative radial slope of plasma β (as mentioned in Section

5.3.3), and therefore depends on the plasma β peak and the radial width of the outer edge

(instead of the inner edge). One can see from Figure 5.2a that the magnetic dip structure

(the positive slope of the magnetic field) becomes weaker as the outer width increases. The

increasing inner edge width slightly decreases the magnetic field inside the pressure peak
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but does not affect the magnetic field strength at the pressure peak and beyond. The use of

the symmetric Gaussian distribution is to help reduce the number of free parameters in the

pressure distribution, and the effect of the width parameter reflects the effect of the outer

edge when it comes to the formation of the magnetic dip. Second, ring current during quiet

times and even moderate storms may not be able to provide a sufficiently negative radial

plasma β slope and therefore the magnetic dip structures are not common in the inner mag-

netosphere during those times. We checked a statistical distribution of the proton pressure

at midnight sector from De Michelis et al. [1999] under quiet geomagnetic condition (the top

left panel in their Figure 1), which has two different radial edges with the outer edge width

being slightly larger. Nonetheless the distribution near the pressure peak can be fairly well

fitted by a Gaussian distribution of a radial width of ∼1.1 RE. The use of such profile in

our SCB model yields no magnetic dip, even when the pressure peak increases to a value

so that β = 1. This is because the statistical pressure distribution smooths out any sharp

edges in the plasma pressure and has a width too large to form a dip in the magnetic field.

No dip is available in the inner magnetosphere for empirical magnetic field models (except

storm time magnetic field from the TS05 model as seen in Figure 1a of Ukhorskiy et al.

[2006]). Third, we also check a radial distribution of plasma pressure for a specific event

observed by the Arase satellite, which is shown by the black line in Figure 9e of Imajo et al.

[2018]. In this individual case, the Gaussian fitting approximates the observed radial pres-

sure distribution very well of a width of about 0.5 RE, which is narrower than that for the

statistical distribution above. The plasma β for this event is also not sufficient to produce a

dip, which is consistent with no dip observation for this event. Fourth, the strong connection

between high plasma β and the appearance of magnetic dip has been established based on

Van Allen Probes observation as shown by Figure 2 of Xiong et al. [2017] and Figure 2 of

He et al. [2017]. After examination of these two events, the Van Allen Probes were moving

mostly in the azimuthal direction unfortunately. Therefore, the estimation of radial width of

100



the outer edge is not available for simulating the equilibrium magnetic field profile. Finally,

the plasma pressure distribution observations in the existing literature, unfortunately, may

not be ideal for checking the theoretical relation between magnetic dip and plasma pressure.

One of the reasons for such unfortunateness is that this theoretical relation was not revealed

before. The establishment of radial profiles of plasma pressure in the inner magnetosphere,

especially for individual events, may be resolved using the observation of THEMIS satellites,

which can transverse the center of ring current radially. Our theoretical relations between

the radial profiles of the plasma pressure and the equilibrium magnetic field can then be

checked. We leave this effort as our future investigation.
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CHAPTER 6

STATISTICAL CHARACTERISTICS OF IONOSPHERIC HISS WAVES1

The work shown in this chapter has been published as “Xia, Z., Chen, L., Zhima, Z., San-

toĺık, O., Horne, R. B., and Parrot, M. (2019). Statistical characteristics of ionospheric

hiss waves. Geophysical Research Letters, 46. https://doi.org/10.1029/2019GL083275”.

6.1 Introduction

Plasmaspheric hiss is a broadband, incoherent whistler mode wave with a typical frequency

range from ∼100 Hz to ∼2 kHz [Thorne et al., 1973; Meredith et al., 2004], which is typically

observed in the high-density regions of the plasmasphere [Dunckel and Helliwell, 1969; Russell

et al., 1969; Thorne et al., 1973] and in plasmaspheric plumes [Chan and Holzer, 1976;

Summers et al., 2008]. It has been proposed that an embryonic source for plasmaspheric

hiss is chorus waves generated outside the plasmasphere, which has been verified by both ray

tracing simulations [Chum and Santoĺık, 2005; Santoĺık et al., 2006a; Bortnik et al., 2008] and

observations [Bortnik et al., 2009; Li et al., 2015a]. Lightning-generated whistler is another

potential embryonic source of plasmaspheric hiss [Sonwalkar and Inan, 1989; Green et al.,

2005]. Another generation mechanism of plasmaspheric hiss near the magnetic equator in the

plasmasphere has been suggested to be linear or nonlinear wave growth theory [Li et al., 2013;

Chen et al., 2014; Omura et al., 2015; Nakamura et al., 2016]. Previous statistical studies

have illustrated that the occurrence and the intensity of plasmaspheric hiss significantly

depend on the magnetic local time and geomagnetic activity, that is, both the occurrence

and the intensity are higher on the dayside and during higher levels of geomagnetic activity

[Golden et al., 2012; Kim et al., 2015; Li et al., 2015b; Hartley et al., 2018].

1 c©2019 Amercian Geophysical Union. Portions Adapted, with permission from, Z. Xia, “Statistical
characteristics of ionospheric hiss waves,” Xia, Z., Chen, L., Zhima, Z., Santoĺık, O., Horne, R. B., and
Parrot, M., Geophysical Research Letters, 46.
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A portion of plasmaspheric hiss (and magnetospheric chorus waves) can propagate nearly

along the magnetic field lines and penetrate into the topside ionosphere as low-altitude iono-

spheric hiss with frequency range from 100 Hz to 1 kHz [Santoĺık and Parrot, 1999; Santoĺık

et al., 2006a; Chen et al., 2017], which in turn is ionospheric manifestation of magnetospheric

whistler mode emissions. This serves as a mechanism to remove whistler wave field energy of

plasmaspheric hiss, in addition to two other potential mechanisms, heating electrons via Lan-

dau resonance and escaping out of the plasmasphere into exohiss. The propagation features

of ionospheric hiss have been studied previously. Zhima et al. [2017] reported a conjugate

observation of ionospheric hiss by Detection of Electromagnetic Emissions Transmitted from

Earthquake Regions (DEMETER) and plasmaspheric hiss by THEMIS, both having similar

spectral properties. Case studies showed that a portion of plasmaspheric hiss emissions can

propagate vertically downward in both northern and southern hemispheres to the topside

ionosphere and then turns equatorward [Santoĺık and Parrot, 1999, 2000; Santoĺık et al.,

2006a]. The mechanism of the equatorward propagation has been explained as a waveguide

formed by the magnetic field and plasma density dependence of whistler mode refractive

index [Chen et al., 2017]. The refractive index decreases when wave frequency approaches

to the multi-ion cutoff frequency fcutoff in the oxygen-rich plasma at lower altitudes (cor-

responding to increasing magnetic field strength) and decreases with decreasing density at

higher altitude away from the topside of ionospheric density peak, which results in refractive

index maximum near a few hundreds of kilometers altitude and therefore the formation of a

whistler waveguide. This waveguide mechanism in the ionosphere, when at work, may result

in the redistribution of the ionospheric hiss wave power in the asymmetric magnetic field

in the ionosphere, especially near the South Atlantic Anomaly (SAA) region. The SAA is

a weak geomagnetic field region over the south Atlantic, which is caused by the asymme-

try of Earth’s magnetic field with respect to the Earth’s rotational axis (see Appendix F).

The inner radiation belt penetrates into the ionosphere in the SAA region and leads to the
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enhancement of energetic particle flux in this region. Studying wave activities in the SAA

region may be potentially important for inner radiation belt dynamics [Abdu et al., 1981,

2005; Benbrook et al., 1983]. The relation between ionospheric hiss and SAA will be checked

in this study.

In this study, we use about 6 years of DEMETER satellite observations of waves to

investigate propagation characteristics and statistical properties of ionospheric hiss emissions.

In Section 6.2, we present a case study to reveal the propagation characteristics of ionospheric

hiss near the SAA region. In Section 6.3, we analyze the dependence of ionospheric hiss wave

power on location, magnetic local time, geomagnetic activity, and season. Finally, we use a

ray tracing simulation to explain the observed features.

6.2 Ionospheric Hiss Near SAA

DEMETER was a French satellite operated by Centre National des Etudes Spatiales. It was

launched in June 2004 and its mission ended in December 2010 (about 6.5 years of operating

time) with a low altitude nearly Sun-synchronous circular orbit (∼10:30 and ∼22:30 LT). The

altitude of the spacecraft was initially 710 km and decreased to 660 km in December 2005

[Parrot et al., 2006]. The Instrument Champ Electrique [Berthelier et al., 2006] consists of

four sensors, which are spherical aluminum electrodes with a 60-mm diameter and deployed

by stacer booms at approximately 4 m from the satellite. It can provide measurements of

three components of electric field waveforms in Burst mode for the extremely low frequency

(ELF) frequency channel (15-1,250 Hz), which covers the frequency range of low-altitude

hiss of interest to our study. The Instrument Magnetic Search Coil [Parrot et al., 2006] can

provide the Burst mode measurements of three-component magnetic field waveforms in the

ELF channel. These two instruments provide the waveform measurements of six components

of the electromagnetic fields to analyze the propagation and polarization properties of the

observed electromagnetic waves [Santoĺık et al., 2006b].
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Figure 6.1 shows an event of low-altitude electromagnetic hiss emissions observed by

DEMETER satellite on 15 April 2005 on the dayside (magnetic local time around 10.2)

when it passed by the SAA region and triggered the Burst mode observation. This event

started from ∼16:14 UT and ended at ∼16:34 UT (lasting about 20 min), and DEMETER

was flying over the geomagnetic (dipolar) latitude λm from approximately 50◦to -24◦and the

geomagnetic longitude φm from ∼347◦to ∼334◦(shown by the magenta solid line in Figure

6.1m). The black square, triangle, and circle symbols overplotted on the magenta line denote

the start time, the end time, and the time of reaching the location of minimum background

magnetic field, respectively. The colored contours in Figure 6.1m exhibit the variation of

the local proton cyclotron frequency (fCH), which is proportional to the local magnetic field

strength. The local magnetic field is obtained from the International Geomagnetic Reference

Field (IGRF) model. The fCH contour of 300 Hz encloses the SAA region.

Using the observed six components electromagnetic waveforms and applying fast Fourier

transformation, we can obtain multicomponent 6×6 spectra matrices and then determine

the wave power spectral density, the ellipticity of the magnetic field polarization, the wave

vector, and the Poynting vector [Santoĺık et al., 2010, and references within]. Figures 6.1a

and 6.1b show the power spectral density of the wave magnetic and electric field, respectively

(the portion of electric power less than 5× 10−6(mV/m)2/Hz) is not shown). From Figures

6.1a and 6.1b, we can see that at the high latitude (greater than ∼46◦), there is a strong

broadband emission above ∼600 Hz. At the lower latitude, the emission becomes narrower,

and the central frequency, closely following the local fCH value (shown as the black dash-

dot lines), decreases with decreasing latitude. After the satellite reaches the location of the

minimum background magnetic field strength (marked by the black vertical dashed line), the

central frequency variation starts to reverse. Figures 6.1c and 6.1d exhibit the polar angle

(θk) of wave vector k with respect to background magnetic field and the azimuthal angle

(φk) of k (0◦corresponds to radially outward direction from the Earth). The k vector can
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Figure 6.1. Ionospheric hiss event in April 15th, 2005 observed by DEMETER.
(a) and (b) are the wave power spectra of magnetic field and electric field. (c)-(g) are the
spectra of normal angle of wave vector k, azimuthal angle of k, normal angle of Poynting
vector P, azimuthal angle of P and ellipticity, respectively. (h)-(l) are the mean (red)
and median (blue) values of the parameters shown in (c)-(g). (m) shows the orbit of the
DEMETER (magenta line) and the contours of local fCH in unit of Hz. (n) is the meridional
view of the DEMETER orbit (magenta line) with the directions of k (red arrows), P (blue
arrows), and background magnetic field B (black arrows). The black dashed lines in (a)-(l)
and the black circular dots in (m) and (n) represent the minimum background magnetic field
point. RXY denotes (X2 + Y 2)1/2 in the Solar magnetic coordinate system (X, Y, Z).
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be determined by applying singular value decomposition methods combining with Gauss’s

law for magnetism and Faraday’s law to the electromagnetic filed waveform data [Santoĺık

et al., 2003b]. Figures 6.1e and 6.1f show the polar angle (θP ) and the azimuthal angle

(φP ) for the Poynting vector P. The polar angles of k and P both change from about

50◦at the high latitude region to about 90◦near the equator, while both the azimuthal angles

of k and P remain around 180◦(pointing toward the Earth) throughout this event. The

calculated ellipticity of the magnetic field polarization (Figure 6.1g) shows the right-handed

polarization in the high latitude region and nearly linear polarization near the equator. To

show the variations of wave propagation parameters more clearly, we add the line plots of

the mean (red) and median (blue) values of the polar angle of k, azimuthal angle of k, polar

angle of P, azimuthal angle of P, and ellipticity in Figures 6.1h-6.1l, respectively.

Using the mean values in Figures 6.1h and 6.1k, we plot the k and P vectors projected

onto the meridional plane in the Solar magnetic coordinate system (Figure 6.1n). In Figure

6.1n, the magenta solid line denotes the orbit of the satellite with a black solid dot mark-

ing the location of the minimum magnetic field strength. The red, blue, and black arrows

represent k, P, and the background magnetic field (B) direction vectors, respectively. The

black dashed lines show the direction of background magnetic field. One can see that both

k and P vectors point downward toward the Earth. They have southward (northward) com-

ponent in the region north (south) of the minimum magnetic field location. Such latitudinal

dependence of the k and P vector directions shows that the ionospheric hiss can propagate

toward lower latitude region where the magnetic field strength is minimized.

6.3 Statistical Study of Hiss Power Distribution

Using about 6 years of observation from DEMETER, we perform a statistical analysis of the

ionospheric hiss wave power distribution on location (geomagnetic latitude and longitude),

magnetic local time, geomagnetic activity, and season. The observations of electromagnetic
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Figure 6.2. The global distributions of the mean value of wave magnetic field power (filled
color) in geomagnetic coordinates at the DEMETER altitude for three frequency bands: 312,
390, 566 Hz.
The upper panels are for dayside, and the bottom panels are for nightside. The dashed
contours stand for the distribution of the local fCH at the DEMETER altitude, while the
magenta lines stand for the contours where the local fCH equals to the corresponding wave
frequency.

wave power are divided into 360 bins in geomagnetic longitude, 181 bins in geomagnetic

latitude, two magnetic local times (dayside and nightside), three geomagnetic activity levels

(characterized by auroral electrojet (AE) index, including AE ≤ 100, 100 < AE ≤ 300,

AE > 300), and four boreal seasons (spring over a range of day of year from 35 to 125,

summer from 126 to 217, autumn from 218 to 308, and winter from 309 to 34 of next year).

The statistical results are shown by Figures 6.2-6.4.

Figure 6.2 shows the global distribution of the logarithm of the average wave magnetic

field power in geomagnetic longitude φm (x axis) and latitude λm (y axis) for two magnetic

local times (dayside and nightside in upper and bottom panels, respectively) and three wave

frequencies (312, 390, and 566 Hz from the left to the right). The dashed black contours

represent the spatial variation of local fCH , which is obtained from the IGRF model. The
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fCH contours of values equal to the three wave frequencies are also plotted as the magenta

solid contours for reference, from the left to right panels.

Comparing the wave power between the upper and lower panels, we can see that the

ionospheric hiss at all the three frequencies is 2-3 orders of magnitude more intense on the

dayside than nightside. This day-night distribution feature of ionospheric hiss is similar

to that of the plasmaspheric hiss [Golden et al., 2012; Kim et al., 2015; Li et al., 2015b;

Hartley et al., 2018], which is consistent with the proposed idea [Chen et al., 2017] that the

ionospheric hiss originates primarily from the whistler mode plasmaspheric hiss. Such local

time distribution of the ionospheric hiss with weaker intensity at nightside also excludes

the possibility of electromagnetic sources below the ionosphere (such as lightning activities),

because the collisional damping of whistler mode is stronger on the dayside than nightside.

By examining wave power distribution on the dayside (Figure 6.2, upper panels), one can

see a strong dependence of the spatial distribution on wave frequency. The wave power at 312

Hz has the strongest power just outside the region where local proton cyclotron frequency

is close to that frequency and around the SAA region (Figure 6.2a). As wave frequency

increases, the region with strong wave power moves toward the higher latitude region. It

should be noted that, for all three frequencies, there is a secondary band of intense wave

power at relatively high latitude near 60◦. For smaller frequencies (Figures 6.2a and 6.2b),

the low-latitude band tracks fCH fairly well and is separated from the high-latitude band.

For higher frequency (Figure 6.2c), the two bands merge near the magnetic longitude of

SAA, while remain separated away the SAA (over the range of φm from ∼150◦to ∼250◦),

where the proximity of the low-latitude band frequency near fCH is still noticeable. We will

explain this frequency dependence in next section.

Figure 6.3 shows the distribution of average power spectral density on the dayside for the

same three different frequencies as Figure 6.2 under three different geomagnetic activity levels

(top: AE ≤ 100, middle: 100 < AE ≤ 300, and bottom: AE > 300). One can see that the
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Figure 6.3. Wave power distribution in geomagnetic coordinates on the dayside for the same
frequencies as Figure 6.2 and under three different geomagnetic activity levels: AE < 100
(top), 100≤AE≤300 (middle), and AE > 300 (bottom).

ionospheric hiss power shows significant dependence on the geomagnetic activity level. Power

spectral density at all the frequencies of both lower and upper latitude bands is enhanced

under higher AE index condition. Such geomagnetic activity dependence of ionospheric hiss

is consistent with the idea of plasmaspheric hiss as its source, since plasmaspheric hiss wave

amplitude increases under higher geomagnetic activity levels [Golden et al., 2012; Kim et al.,

2015; Li et al., 2015b; Hartley et al., 2018].

The seasonal dependence of ionospheric wave power is shown by Figure 6.4. Figures

6.4a-6.4d show the distributions of ionospheric wave power spectral densities at 312 Hz on

the dayside for the four seasons. Since the season is determined by geographic location,
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Figure 6.4. Wave power distribution in geographic coordinates on the dayside for 312-Hz
frequency and four boreal seasons.
(a) Spring (day of year [doy]: 35 to 125), (b) Summer (doy: 126 to 217), (c) Autumn (doy:
218 to 308), and (d) Winter (doy: 309 to 34). (e) shows the annual variations of the mean
values of 312-Hz wave power inside the region with local fCH between 302 and 362 Hz (red
line) and 390-Hz wave power inside the region with local fCH between 340 and 440 Hz (blue
line). The gaps in December in 2005 and 2009 are due to lack of data.
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this distribution is mapped in the geographic coordinates. Two red dashed contours corre-

sponding to local fCH equaling to 302 and 362 Hz are added. The wave power in the region

enclosed by the two red dashed contours in the southern hemisphere is strong and shows

significant seasonal dependence with strongest intensity in local summer (Figure 6.4d, boreal

winter) and weakest intensity in local winter (Figure 6.4b, boreal summer). To confirm this

seasonal dependence, we calculate the mean wave power in the region between the two red

dashed contours in the southern hemisphere and plot its annual variation as the red solid

line in Figure 6.4e. The result indicates that the mean wave power varies periodically with

minimum values near July (local winter) and maximum values near January (local summer),

where the maximum to the minimum ratio is on the order of 101/2 - 101. We also check

the mean power for 390-Hz wave in the region with local fCH between 340 and 440 Hz in

the southern hemisphere and plot its variation as the blue line in Figure 6.4e. The mean

power of 390-Hz wave shows similar annual variation as that of the 312-Hz wave. Thus, we

conclude that the power of ionospheric hiss wave is stronger in local summer than in local

winter. Meredith et al. [2006], however, have indicated that the intensity of low frequency

(<2 kHz) plasmaspheric hiss is strongest at equinoxes. Possible explanation for the seasonal

dependence of the ionospheric hiss intensity is through the seasonal variation of the fcutoff ,

which is determined by the local ion composition. In local summer, the ion composition is

dominated by O+ around the altitude of DEMETER orbit and fcutoff nearly equals to fCH .

In local winter, O+ concentration decreases significantly (refer to the International Reference

Ionosphere model; [Bilitza, 2018]) and leads fcutoff significantly smaller than fCH . Thus, for

a given wave frequency, wave reflection (where wave frequency is near fcutoff ) takes place at

lower altitudes in local winter than in local summer, leading to more attenuation because

of longer propagation path and enhanced damping rate. It is also interesting to point out,

from Figure 6.4e, that ionospheric hiss wave intensity reached a minimum in 2009, which is

the year of solar minimum in solar cycle 23. This solar cycle dependence is also consistent

with that of plasmaspheric hiss [Golden et al., 2011].
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6.4 Ray Tracing Model Analysis

In Section 6.3, we have demonstrated the dependence of ionospheric hiss wave power on

magnetic local time and geomagnetic activity. This dependence is consistent with the the-

ory that the ionospheric hiss originates primarily from the plasmaspheric hiss, as discussed

above. The frequency dependence of spatial distribution of ionospheric hiss wave power can

also be explained by propagation mechanism of whistler-mode emission from the magne-

tosphere into the ionosphere and inside the ionosphere. This propagation mechanism has

been demonstrated by Chen et al. [2017]. A portion of broadband plasmaspheric hiss waves

can propagate nearly along magnetic field lines into the topside ionosphere at high latitude

regions as type I ionospheric hiss with broadband spectra. Then the type I ionospheric hiss

turns equatorward and evolves into type II ionospheric hiss with a narrow frequency band

near local proton cyclotron frequency (as the event shown in Figure 6.1). The narrowband

type II emission was explained as waveguide, as demonstrated below.

We use the same HOTRAY ray tracing code [Horne, 1989] as that used in Chen et al.

[2017] with a dipole magnetic field and a diffusive equilibrium plasma density model [Bortnik

et al., 2011, and references within]. We adopt as our source plasmaspheric hiss waves located

at the equator of L = 3. The source wave frequency varies from 300 to 700 Hz, and the initial

wave normal angle varies from 9◦to 90◦. Ray tracing is terminated when the wavelength is

comparable to spatial scale of background field and plasma variations. Only ray paths of

those waves that penetrate into the ionospheric altitude (∼700 km) are shown in Figure 6.5a.

A zoom-in view near the ionosphere is shown in Figure 6.5b. Different colored solid lines

represent the wave paths for different frequencies, and the colored dashed lines denote the

contours of local fcutoff equaling to corresponding wave frequencies. The black dashed lines

show the topology of dipole field lines, and the magenta solid line indicates the altitude of

DEMETER satellite. Figure 6.5c shows the directions of k (red arrow), P (blue arrow), and

B (black arrow) at several selected points of a ray with 400-Hz wave frequency. Both k and P
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Figure 6.5. Ray tracing model results of waves originating at L = 3 for different frequencies
(300-700 Hz) and initial wave normal angles (9◦to 90◦) shown in a meridional plane.
Only ray paths that reach the ionospheric altitude are shown. Colored solid lines represent
the wave propagation paths, and the colored dashed lines stand for the locations where local
fcutoff equaling to the corresponding wave frequency (color-coded). The magenta solid line
shows the orbit of the DEMETER satellite, and the black dashed lines are the background
magnetic field lines. (b) is the zoom-in plot of (a) in the ionospheric region. (c) shows the
directions of k, P, and B at several selected points of a ray with 400-Hz wave frequency.
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vectors are directed downward and equatorward at low latitudes and are nearly perpendicular

to the background magnetic field, which is consistent with the observational results in Figure

6.1. From Figure 6.5, we can see that the hiss waves penetrate into the ionosphere at high

latitudes (∼25◦to ∼60◦) almost vertically downward along the magnetic field lines. When

reaching the corresponding fcutoff lines at the ionospheric altitude, ray paths of different

frequencies start to separate. The waves with lower frequencies reflect upward at higher

altitude region and are trapped inside the waveguide to propagate equatorward, while the

higher frequency waves enter the waveguide at lower altitude. Because waveguide places lower

and upper altitude limits for those waves, the waves can be only seen over a limited range

of latitude at a fixed altitude. Therefore, such frequency-dependent waveguide propagation

not only explains why the ionospheric hiss at low latitude region is observed by DEMETER

(e.g., Figure 6.1) with a narrow frequency band but also explains why this band is near local

proton cyclotron frequency (which is close to fcutoff at DEMETER altitude) and why the

central frequency tends to decrease with decreasing latitude.

For more realistic IGRF geomagnetic field, the minimum magnetic field surface is not

necessarily the magnetic equator, especially around the SAA region. For the individual

event shown Figure in 6.1, the minimum magnetic field exists in the SAA region, and the

hiss waves from both northern and southern hemispheres eventually propagate into the SAA

region. The statistical results in Section 6.3 support that SAA region is favorable to trap

ionospheric hiss waves of 400 Hz and below (Figure 6.3, the left and middle columns), while

the waves at higher frequencies can be trapped at all magnetic longitudes.

6.5 Conclusions and Discussion

In this chapter, we present a case study from DEMETER satellite observations near the

SAA region to understand wave propagation features of ionospheric hiss. Then we use about

6 years of observations of DEMETER satellite to undertake a statistical study of the wave
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power distribution of ionospheric hiss on location (geomagnetic latitude and longitude),

magnetic local time (day and night), geomagnetic activity, and season. A ray tracing model

simulation is also applied to explain the latitudinal dependence of wave frequency band. The

main conclusions of this study are summarized as the following.

1. In the case study, the intense hiss wave power concentrates over a narrow frequency

band that decreases from about ∼600 Hz at the high latitude region to ∼300 Hz near the

equator, which coincides to the variation of local proton cyclotron frequency fCH . The wave-

form measurement shows that the wave propagates obliquely to the background magnetic

field and equatorward from high latitude region.

2. The low-altitude ionospheric hiss power tends to be stronger on the dayside than

nightside, and under higher geomagnetic activity conditions. Those characteristics are con-

sistent with the distribution of plasmaspheric hiss. The ionospheric hiss power shows seasonal

variation with stronger power in local summer than in local winter.

3. The wave power is confined near the region where the local proton cyclotron frequency

fCH is near the wave frequency. This is caused by the propagation within a waveguide

structure formed by the variation of plasma density and cutoff frequency.

4. A ray tracing simulation demonstrates that waveguide can explain the latitudinal

dependence and narrowness of the ionospheric hiss frequency band.

Emissions that can reach the ionospheric altitude will redistribute the wave energy ac-

cording to wave frequency through frequency-dependent waveguide in the topside ionosphere,

resulting in that the waves at low latitude region are found with wave frequency near lo-

cal proton cyclotron frequency. Our statistical analysis not only reveals such frequency-

dependent characteristics but also demonstrates the dependence of ionospheric hiss wave

power on local time, geomagnetic activity, and season. All those statistical results support

the proposed idea that those emissions originate primarily from the plasmaspheric hiss.
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Because of frequency-dependent propagation, the lower frequency waves (below 400 Hz)

are trapped only near SAA region, while the upper frequency waves are trapped at all mag-

netic longitudes. How important these waves near SAA are in facilitating the precipitation

loss remains to be found out.
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CHAPTER 7

SUMMARY AND WORK PROPOSAL

7.1 Summary

This dissertation mainly focuses on the study of VLF whistler mode waves modulated by

ULF waves. Background information about the Earth’s magnetosphere, as well as the VLF

whistler waves, ULF waves and their modulation effect, is introduced in Chapter 1. The

main results of this dissertation are summarized as follows:

In Chapter 2, we present Van Allen Probes observation of ULF wave modulating chorus

wave intensity, which occurred deep in the magnetosphere. The ULF wave shows funda-

mental poloidal mode signature and mirror mode compressional nature. The observed ULF

wave can modulate not only the chorus wave intensity but also the distribution of both

protons and electrons. Linear growth rate analysis shows consistency with observed chorus

intensity variation at low frequency (f <∼ 0.3fce), but cannot account for the observed

higher-frequency chorus waves, including the upper band chorus waves. This suggests the

chorus waves at higher-frequency ranges require nonlinear mechanisms. In addition, we use

combined observations of Radiation Belt Storm Probes (RBSP) A and B to verify that the

ULF wave event is spatially local and does not last long.

In Chapter 3, we simulate a self-consistent magnetic field that satisfies force balance

with a model ring current that is radially localized, axisymmetric, and has anisotropic plasma

pressure. We find that the magnetic field dip forms near the high plasma pressure region with

plasma β >∼ 0.6, and the formed magnetic dip becomes deeper for larger plasma β and also

slightly deeper for larger anisotropy. We perform linear analysis on a pool of self-consistent

equilibria for second harmonic compressional poloidal modes of sufficiently high azimuthal

wave number. We investigate the effect of anisotropic pressure on the eigenfrequency of the

poloidal modes and the characteristics of the compressional magnetic field component. We
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find that the eigenfrequency is reduced at the outer edge of the thermal pressure peak and

increased at the inner edge. The compressional magnetic field component occurs primarily

within 10◦of the equator on both the inner and outer edges, with stronger compressional

magnetic field component on the outer edge. Larger β and smaller anisotropy can increase

the change of eigenfrequency and the strength of the compressional magnetic field component.

The critical condition on plasma β and pressure anisotropy of an Alfvén ballooning instability

is also identified.

In Chapter 4, we use nearly 2 years’ observations of three THEMIS satellites (A, D,

E) and over 5.5 years’ observations of two Van Allen Probes (A, B) to statistically study

the modulations of chorus emissions by the background magnetic field and plasma density.

The modulation events are identified automatically by calculating the correlation coefficients

between the magnetic field strength (or plasma density) and the chorus emission intensity

(calculated by integrating the magnetic wave power spectrum density through 0.1 to 0.8

electron cyclotron frequency fce). The modulation events are divided into three types ac-

cording to whether the chorus intensity is highly correlated to the variations of magnetic field

strength (Type B), plasma density (Type N) or both (Type NB). The three types are also

sorted to eight subtypes according to the signs of correlation coefficients. The proportions of

the types B and N are almost equal (∼ 1/3) and slightly larger than that of type NB (∼ 1/5)

for the THEMIS observations while for the Van Allen Probes observations most events are

Type N. The chorus intensity is mostly correlated to the magnetic field strength negative-

ly and plasma density positively. The spatial distribution of modulation events matches

that of the chorus emissions very well, which is the number of modulation events is largest

at the dawn sector for all the three types. Finally, we analyze the relationships between

chorus intensity and amplitudes of perturbations of the magnetic field and plasma density.

The results indicate that the chorus intensity is larger when the amplitude of the magnetic

field perturbation is larger but has little dependence on the amplitude of plasma density

perturbation.
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Besides the above studies, two corresponding studies are also included in this dissertation.

In Chapter 5, we use the 2-D axisymmetric equilibrium model to calculate self-consistent

magnetic field in force balance with a Gaussian thermal pressure distribution characterized

by four input parameters: the ratio between plasma pressure and magnetic pressure (β) at

the pressure peak β0, the radial location of the pressure peak L0, the width of the half peak

pressure σ0, and the equatorial pressure anisotropy Ae. Using the modeled magnetic field, we

find that the magnetic field perturbation increases with increasing β0 and decreasing σ0 while

the magnetic curvature perturbation increases with increasing Ae, β0, σ0 and decreasing L0.

For energetic particles the change of magnetic gradient drift motion is much greater than

that of curvature drift motion. The magnetic dip structure formation requires a critical

β value that increases with increasing σ0 and decreasing L0. Despite the unavailability of

observations in the existing literature to check the condition of magnetic dip formation, such

condition will be checked against observations as a future study. Finally, we also use 3-D ring

current-atmosphere interactions model with self-consistent magnetic field model to illustrate

the effect of azimuthal pressure distribution, which is relevant to asymmetric ring current.

In Chapter 6, we use the observations of electromagnetic waves by Detection of Elec-

tromagnetic Emissions Transmitted from Earthquake Regions satellite to investigate propa-

gation characteristics of low-altitude ionospheric hiss. In an event study, intense hiss wave

power is concentrated over a narrow frequency band with a central frequency that decreases

as latitude decreases, which coincides to the variation of local proton cyclotron frequency

fCH . The wave propagates obliquely to the background magnetic field and equatorward

from high latitude region. We use about ∼6 years of observations to statistically study the

dependence of ionospheric hiss wave power on location, local time, geomagnetic activity, and

season. The results demonstrate that the ionospheric hiss power is stronger on the dayside

than nightside, under higher geomagnetic activity conditions, in local summer than local

winter. The wave power is confined near the region where the local fCH is equal to the wave
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frequency. A ray tracing simulation is performed to account for the dependence of wave

power on frequency and latitude.

7.2 Future Work

The future works we plan to are listed below:

1. A theoretical study can be performed combining with FLR model simulation, to inves-

tigate the underlying mechanism of the VLF whistler waves modulated by the background

magnetic field and plasma density. The FLR model can output the properties of ULF waves

and corresponding electron distribution perturbation, from which we can obtain the linear

growth rate of whistler modes. We can also investigate the differences in VLF modulation

effects due to various FLR modes (toroidal and poloidal modes at various harmonics).

2. Conjugated observations of a large scale ULF wave by multiple data set from magne-

tospheric spacecraft (Van Allen Probes, THEMIS, Cluster, NOAA GOES, etc.), low earth

orbit satellites (DMSP, NOAA POES, etc.), and ground magnetometers (THEMIS GMAG

stations) can be used to extract global properties of ULF wave observation, which can be

compared against our field line resonance model.

3. Magnetic dip structure and the corresponding radial variation of plasma pressure

can be extracted through in-situ observation and then can be used to verify our theoretical

theory about the formation of the magnetic dip structure. THEMIS and ARASE satellites

may be suitable spacecraft for this study.

4. A follow-up study of the statistic characteristics of low frequency ionospheric hiss near

SAA is to search for any observational effect of such waves in facilitating precipitation loss

of charged particles. DEMETER particle data may be suitable here. DEMETER wave data

can be also used to obtain statistic distribution of whistler waves generated by lightning

activity in the lower atmosphere and whistler waves injected by artificial ground-based VLF
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transmitters [Zhang et al., 2018]. Both whistlers have imprints in the magnetosphere and

contribute to energetic electron precipitation.
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APPENDIX A

MODES OF ULF WAVES UNDER MHD ASSUMPTION

In a Cartesian system, consider a simple case with a uniform background magnetic field

B0 = B0ẑ, constant thermal pressure p0 and constant plasma density ρ0. Assume the

plasma is collisionless and cold with initial velocity u0 = 0. The MHD equations can be

linearized to the first order as

∂b1

∂t
= ∇× (u1 ×B0), (A.1)

ρ0
∂u1

∂t
= −∇p1 +

1

µ0

(∇× b1)×B0, (A.2)

∂ρ1

∂t
= −ρ0∇ · u1, (A.3)

∇ · b1 = 0, (A.4)

∂p1

∂t
= −γp0∇ · u1, (A.5)

where b1, u1, p1 and ρ1 are the first order perturbations of magnetic field, plasma ve-

locity, pressure and density respectively. Let the plasma wave be represented in form of

exp [i(k · r− ωt)], the MHD equations can be derived to [e.g. Roberts, 1985]:

[ω4 − ω2k2(c2
s + V 2

A) + c2
sV

2
Ak

4 cos2 θ](k · u1) = 0, (A.6)

where c2
s = γp0/rho0 is the square of sound speed, V 2

A = B2
0/µ0ρ0 is the square of the Alfvén

speed and θ is the wave normal angle (angle between B0 and k). If the wave vector is

perpendicular to the velocity perturbation (k · u1 = 0), which can yield to the following

equations:

µ0ρ0ω
2u1 = (k ·B0)2u1, (A.7)
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⇒ ω2 =
B2

0

µ0ρ0

k2 cos2 θ = k2
zV

2
A , (A.8)

where kz = k cos θ is the component of k parallel to B0. Equation (A.8) is dispersion

relation of Alfvén wave and describes transverse waves with group velocity parallel to B0. If

(k · u1 6= 0), the Equation (A.8) yields:

ω4 − ω2k2(c2
s + V 2

A) + c2
sV

2
Ak

4 cos2 θ = 0, (A.9)

which is the magnetoacoustic dispersion relation and corresponds to the compressional wave

modes. The solutions of (A.9) are:

ω2

k2
=

1

2
(c2
s + V 2

A)± 1

2

√
(c2
s + V 2

A)2 − 4c2
sV

2
Ak

4 cos2 θ. (A.10)

The positive and negative roots describe the fast and slow modes respectively. When θ =

π/2, there is no slow mode propagation, which means the slow mode can not propagate

perpendicular to B0. The dispersion relation of fast mode is ω2/k2 = c2
s + V 2

A , which is the

maximum speed fast mode can reach. When θ = 0, the dispersion relations of fast mode

and slow mode are ω2/k2 = V 2
A and ω2/k2 = c2

s respectively. Under the assumption of low β

plasma with nearly no plasma pressure, the sound speed cs = 0 and only Alfvén mode and

fast mode remain, whose dispersion relations are ωA/kz = VA and ω2
f/k

2 = V 2
A respectively.

Now let’s consider the field line resonance (FLR), which can couple the energy form the

fast mode to the Alfvén mode. Under the low β condition, Equations (A.1) and (A.2) can

be rewritten as formation for plasma displacement ξ as:

1

V 2
A

∂2ξx
∂t2
− ∂2ξx

∂z2
= − 1

B0

∂bz
∂x

, (A.11)

1

V 2
A

∂2ξy
∂t2
− ∂2ξy
∂z2

= − 1

B0

∂bz
∂x

, (A.12)

bz = −B0(
∂ξx
∂x

+
∂ξy
∂y

). (A.13)
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For the Equations (A.11) and (A.12), the left hand sides represent the simple harmonic

oscillations and the right hand sides are the driving terms which are terms of the spatial

gradient of the compressional fast mode disturbance bz. Under a cartesian coordinate system

with z axis parallel to B0 and x axis points radially away from the Earth, the transverse

displacements ξx and ξy of Alfvén waves correspond to the poloidal mode and toroidal modes

respectively. These equations describe the relation between fast mode waves and Alfvén

waves in the FLR.
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APPENDIX B

BASIC EQUATION FOR EIGENPERIOD ANALYSIS OF POLOIDAL

MODE IN COLD PLASMA LIMIT

The equation to calculate the eigenperiod of poloidal mode FLR for the Earth’s dipole field

is:

H2∂/∂µ(H1∂εφ/∂µ) + (ω2/A2)εφ = 0

.

where H1 = (νr3)−1, H2 = ν(1 + 3 cos2 θ)r−3, εφ = r sin θEφ and A = B/
√
µ0ρ is the

Alfvén velocity. ω = 2π/T is the angular eigenfrequency, where T is the eigenperiod we

want. θ is the magnetic colatitude and r is the radial distance from the origin of the dipole

field. (ν, µ, φ) are orthogonal dipole coordinates defined as: ν = (sin2 θ)/r, which is constant

along a dipole field line and the unit vector eν is in the direction of the principal normal to

the field line; µ = (cos θ)/r2, which is constant along an orthogonal trajectory of the dipole

field lines and the unit vector eµ is parallel to the field line; φ is the ordinary azimuthal

spherical coordinate and the unit vector eφ is in the azimuthal direction (see Figure B.1).

Thus Eφ is the azimuthal electric field component and is set to be 0 at the two ends of the

field line as the boundary condition. Note that when the dependence of the magnetic field

and Alfvén velocity on the field line vanishes, the above equation returns to the equation for

Alfvénic mode in a uniform MHD.
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Figure B.1. An illustration of the orthogonal dipole coordinate system [Cummings et al.,
1969].
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APPENDIX C

LINEAR GROWTH RATE

Whenever the temporal growth rate γ is much smaller than ω, the dispersion matrix D to

the first order can be expressed as [Kennel, 1966; Chen et al., 2010]

D = D(0) + iDi,

and consequently, we can approximate

γ = − Di

∂D(0)

∂ω

,

where

Di =− 2π2e2

ε0ms

1

ω|k‖|

∞∫
0

v⊥dv⊥

+∞∫
−∞

dv‖
∑
m

δ(v‖ −
ω −mΩs

k‖
)

· [G1(fs)((P − n2 sin2 θ)[2(L− n2)v⊥J
2
m+1

+ 2v⊥(R− n2)J2
m−1 + n2 sin2 θv⊥(Jm+1 − Jm−1)2]

− n2 cos θ sin θ[2v‖Jm(Jm+1(R− n2) + Jm−1(L− n2))

+ n2 cos θ sin θv⊥(Jm+1 − Jm−1)2])

+G2(fs,m)(4v‖Jm[(L− n2)(R− n2) + n2 sin2 θ(S − n2)]

− 2n2 cos θ sin θ[(R− n2)v⊥Jm−1 + (L− n2)v⊥Jm+1])]

where ms and Ωs are the mass and cyclotron frequency of species s; Jm are bessel functions

with order m and argument x = k⊥v⊥/Ωs; L, R, S and P are the standard Stix coefficients;

ω, θ, and n = kc/ω are wave frequency, wave normal angle, and refractive index.

G1 =
∂fs
∂v⊥
−
k‖
ω

(v‖
∂fs
∂v⊥
− v⊥

∂fs
∂v‖

)

G2 = Jm[
∂fs
∂v‖

+
mΩ

ωv⊥
(v‖

∂fs
∂v⊥
− v⊥

∂fs
∂v‖

)]

D(0) = 4(An4 −Bn2 + C),
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where A = S sin2 θ + P cos2 θ, B = RL sin2 θ + PS(1 + cos2 θ) and C = PRL. fS(v⊥, v‖) is

the phase space density in velocity space of species s and can be obtained from the particle

flux Js measured by the spacecraft instrument. Js(Es, α) is in energy (Es) pitch angle

(α) space and can be converted to the phase space density fs(Es, α) though the relation

fs = Js/(Es× 10−3)×Hfac, where the units of fs, Js and Es are s3m−6, s−1cm−2keV −1sr−1

and keV respectively. The Hfac is the conversion factor, which equals 5.449 × 10−19 for

protons and 1.6163 × 10−25 for electrons. Consequently we can get the fs(v⊥, v‖) from

fs(Es, α) through ms(v
2
⊥ + v2

‖) = 2Es and v⊥/v‖ = tanα.
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APPENDIX D

DERIVATIONS OF SCB MODEL

The coordinates of the model are:

ρ→ ψ, ζ → φ (azimuthal), θ → s (length along field line)

ψ = −Bd·Re2
L

, Lin and Lout → ψin and ψout

ψ = ψ(ρ, ζ, θ), α = α(ζ)

ρ ∈ [0, 1], ρ = ψ−ψin

ψout−ψin
, ζ ∈ [0, 2π], θ ∈ [0, π], θ = πs

s0
+ Cθ sin

(
2πs
s0

)
s0 : length of field line, Cθ : coefficient to adjust the density of grids

Initial and Boundary set: Dipole field

For m girds for θ and n grids for ρ.Get the x(m,n) and z(m,n) for each grid.

Coordinate relations:

J = ∂(X,Y,Z)
∂(ρ,ζ,θ)

=

∣∣∣∣∣∣∣∣∣∣
∂X
∂ρ

∂X
∂ζ

∂X
∂θ

∂Y
∂ρ

∂Y
∂ζ

∂Y
∂θ

∂Z
∂ρ

∂Z
∂ζ

∂Z
∂θ

∣∣∣∣∣∣∣∣∣∣
J = J −1 = ∇ρ · (∇ζ ×∇θ) = ∇ζ · (∇θ ×∇ρ) = ∇θ · (∇ρ×∇ζ)

∇ · ~A = 1
J

[
∂
∂ρ

(JAρ) + ∂
∂ζ

(
JAζ

)
+ ∂

∂θ

(
JAθ

)]
→
e ρ = ∂

→
r
∂ρ
,
→
e
ρ

= ∇ρ, ei · ej = δj i, ~A = Aρ
→
e ρ + Aζ

→
e ζ + Aθ

→
e θ = Aρ

→
e
ρ

+ Aζ
→
e
ζ

+ Aθ
→
e
θ

Ai = ~A · →e
i
, Aj = ~A · →e j

→
e
i

= ∇ui =
→
e j×

→
e k

→
e j ·(

→
e j×

→
e k)

,
→
e i = ∇uj×∇uk

∇ui·∇uj×∇uk

~B is along θ, so ~B = Bθ~eθ = B~b, ~B = ∇ψ ×∇α

~B = Aρ∇ρ+ Aζ∇ζ + Aθ∇θ

J = 1
∇θ·∇ρ×∇ζ = (dψ/dρ)(dα/dζ)

B

~B = J
(
~B · ∇ζ ×∇θ

)
∇ρ+ J

(
~B · ∇θ ×∇ρ

)
∇ζ + J

(
~B · ∇ρ×∇ζ

)
∇θ

= (dψ/dρ)(dα/dζ)
B

(
~B · ∇ζ ×∇θ

)
∇ρ+

(dψ/dρ)(dα/dζ)
B

(
~B · ∇θ ×∇ρ

)
∇ζ +

(dψ/dρ)(dα/dζ)
B

(
~B · ∇ρ×∇ζ

)
∇θ
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Basic equations:

~J × ~B = ∇P (∗)

~B = ∇ψ ×∇α

Dotting ~B ×∇ψ and ~B ×∇α to both sides of Equation ∗ and using
(
~a×~b

)
·
(
~c× ~d

)
=

(~a · ~c)
(
~b · ~d

)
−
(
~a · ~d

)(
~b · ~c

)
,

we have(
~J · ~B

)(
~B · ∇ψ

)
−
(
~J · ∇ψ

)
B2 =

(
∂P
∂ψ
∇ψ + ∂P

∂α
∇α
)
·
(
~B ×∇ψ

)
(
~J · ~B

)(
~B · ∇α

)
−
(
~J · ∇α

)
B2 =

(
∂P
∂ψ
∇ψ + ∂P

∂α
∇α
)
·
(
~B ×∇α

)
So,

~J · ∇ψ = − 1
B2

∂P
∂α
∇α · ~B ×∇ψ = −∂P

∂α

~J · ∇α = − 1
B2

∂P
∂ψ
∇ψ · ~B ×∇α = ∂P

∂ψ

Because

~J = 1
µ0
∇× ~Band∇ ·

(
~a×~b

)
= ~b · (∇× ~a)− ~a ·

(
∇×~b

)
so

~J · ∇ψ = 1
µ0
∇ ·
(
~B ×∇ψ

)
and ~J · ∇α = 1

µ0
∇ ·
(
~B ×∇α

)
Then,

− ∂P
∂α

= 1
µ0
∇ · (∇ψ ×∇α ×∇ψ) = 1

µ0
∇ · [(∇ψ)2∇α− (∇α · ∇ψ)∇ψ] , (because ~a×~b× ~c =

(~c · ~a)~b−
(
~c ·~b

)
~a)

∂P
∂ψ

= 1
µ0
∇ · [(∇α · ∇ψ)∇α− (∇α)2∇ψ]

Let

~A = (∇α · ∇ψ)∇α− (∇α)2∇ψthen∇ · ~A = µ0
∂P
∂ψ

Aρ = ~A · ∇ρ = (∇ψ · ∇α)(∇α · ∇ρ)− (∇α)2∇ψ · ∇ρ

=
[
∂ψ
∂ρ

(∇ρ · ∇ζ) + ∂ψ
∂ζ

(∇ζ)2 + ∂ψ
∂θ

(∇θ · ∇ζ)
]

(∇ζ · ∇ρ)
(

dα
dζ

)2

−[
∂ψ
∂ρ

(∇ρ)2 + ∂ψ
∂ζ

(∇ζ · ∇ρ) + ∂ψ
∂θ

(∇θ · ∇ρ)
]

(∇ζ)2
(

dα
dζ

)2

=
(

dα
dζ

)2 {
∂ψ
∂ρ

[(∇ρ · ∇ζ)2 − (∇ρ)2(∇ζ)2] + ∂ψ
∂θ

[(∇ζ · ∇θ)(∇ρ · ∇ζ)− (∇ρ · ∇θ)(∇ζ)2]
}
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Aζ = 0

Aθ =
(

dα
dζ

)2 {
∂ψ
∂ρ

[(∇ρ · ∇ζ)(∇ζ · ∇θ)− (∇ρ · ∇θ)(∇ζ)2] + ∂ψ
∂θ

[(∇ζ · ∇θ)2 − (∇ζ)2(∇θ)2]
}

Using ∇ · ~A = 1
J

[
∂
∂ρ

(JAρ) + ∂
∂ζ

(
JAζ

)
+ ∂

∂θ

(
JAθ

)]
,

we have

∇ · ~A =(
dα
dζ

)2
1
J

{
∂
∂ρ
J
{
∂ψ
∂ρ

[(∇ρ · ∇ζ)2 − (∇ρ)2(∇ζ)2] + ∂ψ
∂θ

[(∇ζ · ∇θ)(∇ρ · ∇ζ)− (∇ρ · ∇θ)(∇ζ)2]
}

+

∂
∂ρ
J
{
∂ψ
∂ρ

[(∇ρ · ∇ζ)(∇ζ · ∇θ)− (∇ρ · ∇θ)(∇ζ)2] + ∂ψ
∂θ

[(∇ζ · ∇θ)2 − (∇ζ)2(∇θ)2]
}}

Let

A = (∇ζ · ∇θ)2 − (∇ζ)2(∇θ)2, C = (∇ρ · ∇ζ)2 − (∇ρ)2(∇ζ)2,

B = (∇ζ · ∇θ)(∇ρ · ∇ζ)− (∇ρ · ∇θ)(∇ζ)2

then

∇· ~A
(dα

dζ )
2 = 1

J
∂
∂ρ

(
C ∂ψ
∂ρ

+ B ∂ψ
∂θ

)
+ 1
J

∂
∂θ

(
B ∂ψ
∂ρ

+A∂ψ
∂θ

)
Finally,

∂
∂θ

(
A∂ψ

∂θ
+ B ∂ψ

∂ρ

)
+ ∂

∂ρ

(
B ∂ψ
∂θ

+ C ∂ψ
∂ρ

)
= J ∇· ~A

(dα
dζ )

2 = µ0J
(dα

dζ )
2
∂P
∂ψ

Equation coefficients:

1 = (∇X ×∇Y ) · ∇Z = [(
∂X
∂ρ
∇ρ+ ∂X

∂ζ
∇ζ + ∂X

∂θ
∇θ
)
×
(
∂Y
∂ρ
∇ρ+ ∂Y

∂ζ
∇ζ + ∂Y

∂θ
∇θ
)]
·
(
∂Z
∂ρ
∇ρ+ ∂Z

∂ζ
∇ζ + ∂Z

∂θ
∇θ
)

=
[
∂X
∂ρ

(
∂Y
∂ζ

∂Z
∂θ
− ∂Y

∂θ
∂Z
∂ζ

)
+ ∂X

∂ζ

(
∂Y
∂θ

∂Z
∂ρ
− ∂Y

∂ρ
∂Z
∂θ

)
+ ∂X

∂θ

(
∂Y
∂ρ

∂Z
∂ζ
− ∂Y

∂ζ
∂Z
∂ρ

)]
· [∇θ · (∇ρ×∇ζ)]

J = 1
[∇θ·(∇ρ×∇ζ)] = ∂X

∂ρ

(
∂Y
∂ζ

∂Z
∂θ
− ∂Y

∂θ
∂Z
∂ζ

)
+ ∂X

∂ζ

(
∂Y
∂θ

∂Z
∂ρ
− ∂Y

∂ρ
∂Z
∂θ

)
+ ∂X

∂θ

(
∂Y
∂ρ

∂Z
∂ζ
− ∂Y

∂ζ
∂Z
∂ρ

)
∇ρ = ∂ρ

∂X
∇X + ∂ρ

∂Y
∇Y + ∂ρ

∂Z
∇Z = ∂(ρ,Y,Z)

∂(X,Y,Z)
∇X + ∂(X,ρ,Z)

∂(X,Y,Z)
∇Y + ∂(X,Y,ρ)

∂(X,Y,Z)
∇Z

= ∂(ρ,Y,Z)
∂(ρ,ζ,θ)

∂(ρ,ζ,θ)
∂(X,Y,Z)

∇X + ∂(X,ρ,Z)
∂(θ,ρ,ζ)

∂(θ,ρ,ζ)
∂(X,Y,Z)

∇Y + ∂(X,Y,ρ)
∂(ζ,θ,ρ)

∂(ζ,θ,ρ)
∂(X,Y,Z)

∇Z
∂(ρ,ζ,θ)
∂(X,Y,Z)

, ∂(θ,ρ,ζ)
∂(X,Y,Z)

, ∂(ζ,θ,ρ)
∂(X,Y,Z)

are all equal to J −1

and

∂(ρ,Y,Z)
∂(ρ,ζ,θ)

= ∂Y
∂ζ

∂Z
∂θ
− ∂Y

∂θ
∂Z
∂ζ
, ∂(X,ρ,Z)
∂(θ,ρ,ζ)

= ∂X
∂θ

∂Z
∂ζ
− ∂X

∂ζ
∂Z
∂θ
, ∂(X,Y,ρ)
∂(ζ,θ,ρ)

= ∂X
∂ζ

∂Y
∂θ
− ∂X

∂θ
∂Y
∂ζ

So,

∇ρ = J −1
[(

∂Y
∂ζ

∂Z
∂θ
− ∂Y

∂θ
∂Z
∂ζ

)
∇X +

(
∂X
∂θ

∂Z
∂ζ
− ∂X

∂ζ
∂Z
∂θ

)
∇Y +

(
∂X
∂ζ

∂Y
∂θ
− ∂X

∂θ
∂Y
∂ζ

)
∇Z
]

132



The same way,

∇ζ = J −1
[(

∂Y
∂θ

∂Z
∂ρ
− ∂Y

∂ρ
∂Z
∂θ

)
∇X +

(
∂X
∂ρ

∂Z
∂θ
− ∂X

∂θ
∂Z
∂ρ

)
∇Y +

(
∂X
∂θ

∂Y
∂ρ
− ∂X

∂ρ
∂Y
∂θ

)
∇Z
]

∇θ = J −1
[(

∂Y
∂ρ

∂Z
∂ζ
− ∂Y

∂ζ
∂Z
∂ρ

)
∇X +

(
∂X
∂ζ

∂Z
∂ρ
− ∂X

∂ρ
∂Z
∂ζ

)
∇Y +

(
∂X
∂ρ

∂Y
∂ζ
− ∂X

∂ζ
∂Y
∂ρ

)
∇Z
]

then we can get A,B and C.

Discretization:

We have got

A∂2ψ
∂θ2

+ 2B ∂2ψ
∂θ∂ρ

+ C ∂2ψ
∂ρ2

+
(
∂A
∂θ

+ ∂B
∂ρ

)
∂ψ
∂θ

+
(
∂B
∂θ

+ ∂C
∂ρ

)
∂ψ
∂ρ

= µ0J
(dα

dζ )
2
∂P
∂ψ

For ψi,j

∂2ψ
∂θ2

=
ψi+1,j+ψi−1,j−2ψi,j

(∆θ)2

∂2ψ
∂ρ2

=
ψi,j+1+ψi,j−1−2ψi,j

(∆ρ)2

∂2ψ
∂ρ∂θ

=
ψi+1,j+1−ψi−1,j+1−ψi+1,j−1+ψi−1,j−1

4∆ρ∆θ

∂ψ
∂θ

=
ψi+1,j−ψi−1,j

2∆θ

∂ψ
∂ρ

=
ψi,j+1−ψi,j−1

2∆ρ

Finally,

aijψi,j + bijψi−1,j−1 + cijψi+1,j−1 + dijψi−1,j +

eijψi−1,j+1 + fijψi+1,j + gijψi+1,j+1 + hijψi,j−1 + kijψi,j+1 = lij

aij = −2
[
A

(∆θ)2
+ C

(∆ρ)2

]
ij

bij =
Bij

2∆θ∆ρ

cij =
Bij

2∆θ∆ρ

dij =
Aij

(∆θ)2
−

( ∂A∂θ + ∂B
∂ρ )

ij

2∆θ

eij = cij

fij =
Aij

(∆θ)2
+

( ∂A∂θ + ∂B
∂ρ )

ij

2∆θ

gij = cij

hij =
Cij

(∆ρ)2
−

( ∂B∂θ + ∂C
∂ρ )ij

2∆ρ

kij =
Cij

(∆ρ)2
+

( ∂B∂θ + ∂C
∂ρ )ij

2∆ρ

lij = µ0

(
dα
dζ

)−2

Jij

(
∂P
∂ψ

)
ij
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For anisotropic pressure

→→
P =


P⊥ 0 0

0 P⊥ 0

0 0 P‖


~J × ~B = ∇ ·

→→
P = ∇P⊥ −∇ ·

[(
P⊥ − P‖

) ∧
b
∧
b

]
µ0σ

(
~J × ~B

)
= ∇µ0P⊥ −

(
~B · ∇σ

)
~B + (1− σ)∇

(
B2

2

)
,

σ = 1 + µ0

(
P⊥ − P‖

)
/B2 (the derivation is shown in the Appendix below.)

Dot
(
~B ×∇ψ

)
and

(
~B ×∇α

)
,we have

µ0
~J · ∇ψ = ∇ · [(∇ψ)2∇α− (∇α · ∇ψ)∇ψ] = − ~B×∇ψ

σB2 ·
[
∇µ0P⊥ + (1− σ)∇

(
B2

2

)]
µ0
~J · ∇α = ∇ · [(∇α · ∇ψ)∇α− (∇α)2∇ψ] = − ~B×∇α

σB2 ·
[
∇µ0P⊥ + (1− σ)∇

(
B2

2

)]
= ∇ · ~A

P⊥ = P⊥e
[1+Ae(R)(1−S)]2

, P‖ =
P‖e

1+Ae(R)(1−S)

S = Be
B
, Ae(R) = P⊥e/P‖e − 1 (equatorial anisotropy)

Appendix

∇ ·
→→
P = ∇P⊥ −∇ ·

[(
P⊥ − P‖

) ∧
b
∧
b

]
=

∇P⊥ −∇ ·
[

(P⊥−P‖) ~B ~B
B2

]
= ∇P⊥ −∇

(P⊥−P‖)
B2 · ~B ~B − (P⊥−P‖)

B2 ∇ · ~B ~B = ~J × ~B(
∇ · ~B ~B

)
i

= ∂i
∧
ei (BiBj)

∧
ei
∧
ej = Bj∂iBi

∧
ej+Bi∂iBj

∧
ej =

(
∇ · ~B

)
~B+Bi∂iBj

∧
ej = 0+Bj∂jBi

∧
ei[

~B ×
(
∇× ~B

)]
i

=ijk Bj

(
∇× ~B

)
k

= εijkBjεkpq∂pBq = εkijεkpqBj∂pBq

= (δipδjq − δiqδjp)Bj∂pBq = Bj∂iBj −Bj∂jBi

and[
∇
(
B2

2

)]
i = ∂i

(
Bj

2

2

)
= Bj∂iBj

So,[
~B ×

(
∇× ~B

)]
i

=
[
∇
(
B2

2

)]
i −
(
∇ · ~B ~B

)
i

∇ · ~B ~B = ∇
(
B2

2

)
− ~B ×

(
∇× ~B

)
Then,
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∇ ·
→→
P − ~J × ~B

= ∇P⊥ −
[
∇(P⊥−P‖)

B2 · ~B
]
~B − (P⊥−P‖)

B2

[
∇
(
B2

2

)
− ~B ×

(
∇× ~B

)]
− 1

µ0

(
∇× ~B

)
×
−→
B

= ∇P⊥ −
[
∇(P⊥−P‖)

B2 · ~B
]
~B − 1

µ0

(
∇× ~B

)
×
−→
B

[
1 +

µ0(P⊥−P‖)
B2

]
− (P⊥−P‖)

B2 ∇
(
B2

2

)
= ∇P⊥ −

[
∇ σ

µ0
· ~B
]
~B − σ ~J × ~B − 1−σ

µ0
∇
(
B2

2

)
= 0

Finally,

µ0σ
(
~J × ~B

)
= ∇µ0P⊥ −

(
~B · ∇σ

)
~B + (1− σ)∇

(
B2

2

)
= σ

(
∇× ~B

)
×
−→
B
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APPENDIX E

ANALYTICAL SOLUTIONS FOR THE THREE APPROXIMATIONS

E.1 Uniform Magnetic Fields

Consider the presence of localized plasma pressure in an initially uniform magnetic field B0.

The analytic solution of magnetic pressure equilibrium for a uniform background magnetic

field can be derived directly through the condition of uniform total pressure (that is, the sum

of the magnetic pressure and the thermal pressure), PB0 = P+PB, where PB0 is the magnetic

pressure at the finite boundary (or the initial magnetic field pressure), P and PB are the

thermal pressure and magnetic pressure in equilibrium respectively. Thus |∆B/B0| can be

written as (B0−B)/B0 = 1−B/B0 = 1−
√
PB/PB0 = 1−

√
PB/(P + PB) = 1−

√
1/(β + 1),

where β = P/PB. In equilibrium, a magnetic dip forms whenever there is localized pressure

distribution. The critical β to form a dip is essentially zero.

E.2 Circular and Planar Magnetic Fields

An infinitely long straight line current can generate a circular and planar magnetic field

surrounding the line current. The magnetic field strength B0 decreases with r as:

B0 =
µ0I

2πr
(E.1)

, where I is the current, r is the distance to the current, and µ0 is the vacuum permeability.

Consider localized plasma pressure in such an initially circular and planar magnetic field.

The localized pressure is introduced as P = P0 exp [−(r − L0)2/(2σ2
0)], with pressure peak

P0 at L0 and half pressure peak width σ0. In equilibrium, the force balance equation can be

expressed as a 1D nonlinear ordinary differential equation for B(r):

1

r
(
d

dr
(rB))B = −µ0

dP

dr
. (E.2)
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The corresponding analytic solution is obtained as:

B2(r) =− 2µ0P0 exp [
−(r − L0)2

(2σ2
0)

]−
4σ2

0µ0P0 exp [−(r−L0)2

(2σ2
0)

]

r2

+
2L0σ0µ0P0

√
2πErf( r−L0√

2σ0
)

r2
+
C1

r2

(E.3)

, where C1 is a constant which controls the intensity of the background magnetic field.

The term C1/r
2 is the square of background magnetic field and the other terms are the

perturbations caused by the thermal pressure. The pressure peak P0 can be set as β0PB0(L0),

where PB0(L0) is the background magnetic pressure at L0 and equals to C1/2µ0L
2
0.

There are four terms on the right hand side, and the second and the third terms can

be neglected approximately due to small value of σ0/r and r > 1. The remaining two

terms are the first term which is contributed from thermal pressure and the last term which

corresponds to the background circular magnetic field.

The condition for the existence of a magnetic dip is that there exists a local minimum,

that is, dB
dr

= 0. Considering only the first and last terms in Equation (E.3), the condition

yields:

β∗ =
2σ2

0

rd(rd − L0)
=

2σ2
0

(L0 + ∆L)∆L
(E.4)

, where the rd denotes the location of the magnetic dip, ∆L = rd − L0 is the distance

between the magnetic dip and the pressure peak, and β∗ = 2µ0P0 exp [−(rd−L0)2

(2σ2
0)

]/(C1/r
2
d) is

the ratio between thermal pressure and the initial magnetic pressure at the dip. The value

of ∆L scales as σ0. Considering L0 + ∆L ≈ L0 because L0 � ∆L, a simplified relation

can be obtained as β∗ ∼ σ0/L0. In other words, the critical β for the dip formation in the

background circular magnetic field tends to increase for larger σ0 and smaller L0.
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E.3 Dipole Fields Ignoring the Change of Magnetic Field Curvature

Consider the presence of isotropic thermal pressure in the background dipole field, the field

line strength and curvature change in equilibrium. The force balance equation can be rewrit-

ten as:

−∇⊥PB + 2PB b̂ · ∇b̂ = ∇P (E.5)

, where PB = B2

2µ0
is the magnetic pressure, and b̂ is the unit magnetic field vector. Near

the equatorial plane, the curvature term b̂ ·∇b̂ can be express as − êr
Rc

and the perpendicular

gradient ∇⊥ equals to ∂
∂r
êr, where Rc is radius of the curvature, and êr is the unit vector in

the radial direction. For dipole field, Rc = r/3. When we assume that the curvature of the

magnetic field line remains unchanged, the equilibrium equation at the equator becomes:

− ∂

∂r
PB −

6PB
r

=
∂

∂r
P (E.6)

. For the case that P = 0, the solution of the equation is PB = B2

2µ0
= Cr−6, where C is

a constant. Thus we have B = B0r
−3, where B0 =

√
2µ0C, and this is the solution of the

Earth’s dipole field.

For the case of a radially Gaussian pressure distribution in the equator, P = P0 exp [−(r−

L0)2/(2σ2
0)], with pressure peak P0 at L0 and half pressure peak width σ0, the analytical

solution to Equation (E.6) is

PB =
C2

r6
− P0

r6
exp [

−(r − L0)2

2σ2
0

]{48σ6
0 + r6 + 6σ4

0(4r2 + 7rσ0 + 9σ2
0) + 6σ2

0(r4 + r3σ0 + r2σ2
0

+ rσ3
0 + σ4

0)− 3σ0 exp [
(r − L0)2

2σ2
0

]
√

2πL0(15σ4
0 + 10σ2

0L
2
0 + σ4

0)Erf(
r − L0√

2σ0

)}

(E.7)

, where C2 is a constant that controls the intensity of the background magnetic pressure.

The term C2/r
6 is the background dipolar magnetic pressure and the other terms are the
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contributions of the thermal pressure to the perturbation of magnetic pressure. The pressure

peak P0 can be set as β0PB0(L0), where PB0(L0) = C2/L
6
0 is the background magnetic

pressure at L0. The magnetic strength can be obtained by B =
√

2µ0PB.
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APPENDIX F

SOUTH ATLANTIC ANOMALY

The South Atlantic Anomaly (SAA) is a near-Earth region with the weakest Earth’s magnetic

field relative to the idealized Earth’s dipole field, which is located above the south Atlantic

Ocean. The formation of SAA involves the inner radiation belts and the asymmetry between

the Earth’s rotation axis and the magnetic axis. The inner radiation belt is symmetrical

about the Earth’s magnetic axis but not the Earth’s rotational axis. The angle between the

two axes is about 11◦ and the intersection between the two axes is located not at the Earth’s

center, but about 450 to 500 km (280 to 310 mi) away north of the Earth’s equator. Thus

the inner radiation belt becomes closer to the Earth’s surface and penetrates the Earth’s

ionosphere to about 200 km (120 mi) in altitude, which occurs near the south Atlantic region.

The relation between the Earth’s rotation axis and the magnetic axis as well as the radiation

belts are shown in Figure F.1. The energetic electrons in the inner belts can decrease the

magnetic field strength due to the diamagnetic effect and result in the anomaly of magnetic

strength. Figure F.2 shows the global distribution of geomagnetic field strength and the

outline of SAA.

The SAA is slowly drifting north and west at rates of 0.16 ◦/year and 0.36 ◦/year,

respectively. Currently, it is most intense over a broad region centered on Sao Paulo, Brazil,

including much of Paraguay, Uruguay, and northern Argentina. It also exhibits a seasonal

variation: on average, the SAA is most intense in February and again in September-October.

The SAA is of great significance to satellites and other spacecraft orbiting the Earth at

altitudes of several hundred kilometers. These satellites travel through the SAA periodically

and are exposed to several minutes of strong radiation caused by the trapped energetic

particles in the inner radiation belt.
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Figure F.1. A view of the Earth’s rotation axis, magnetic axis and the Van Allen radiation
belts [Wikipedia, https://en.wikipedia.org/wiki/South Atlantic Anomaly].
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Figure F.2. The intensity geomagnetic field map at 2015 that indicates the SAA region
[Pavón-Carrasco and De Santis, 2016].
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