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Healthcare analytics has attracted increasing research interests as electronic health records

(EHR) and medical image data have skyrocketed over the past decade [1]. EHR and lab

reports contain rich text, visual, and time series information such as a patient’s medical and

diagnosis history, radiology images, etc which is the major source for managing and predicting

a patient’s health status. Meanwhile, Deep Learning [2] has greatly pushed forward the

research frontier of computer vision, speech recognition, and natural language processing, since

its big success in ImageNet 2012 competition [3]. There is an increasing interest in applying

state-of-the-art deep learning techniques to the healthcare industry from the combined effort

of industry and academia. IBM [4, 5], Amazon [6, 7], and Google [77, 9, 10, 11] all have

pushed out their healthcare information services that can provide early symptoms warning,

diagnostic support, and help make clinical decisions. Medical schools and healthcare institutes

also have conducted extensive research on illness detection, physiological signals classification,

mortality early warning detection, Intensive Care Unit(ICU) length of stay prediction, etc

with deep learning models [12, 13, 14, 15, 16, 17]. In this dissertation, we will present two

use cases of applying the recent progress of Deep Learning to the healthcare domain: (1)

Faster Healthcare Time Series Classification with Convolutional Feature Engineering, and (2)

Deep Healthcare Pre-Trained Language Models on Mobile Devices. Our work not only has
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generated several top tier conference papers, but will also lay the foundation for the next

generation healthcare information platform development in the US.
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CHAPTER 1

INTRODUCTION

Healthcare analytics has attracted increasing research interests as electronic health records

(EHR) and medical image data have skyrocketed over the past decade [1]. EHR and lab

reports contain rich text, visual, and time series information such as a patient’s medical and

diagnosis history, radiology images, etc which is the major source for managing and predicting

a patient’s health status. Meanwhile, deep learning has greatly pushed forward the research

frontier of computer vision, speech recognition, and natural language processing, since its

big success in ImageNet 2012 competition [3]. There is an increasing interest in applying

state-of-the-art deep learning techniques to healthcare industry from the combined effort of

industry and academia. IBM [4, 5], Amazon [6, 7], and Google [77, 9, 10, 11] all have pushed

out their healthcare information services that can provide early symptoms warning, diagnostic

support, and help make clinical decisions. Medical schools and healthcare institutes also

have conducted extensive research on illness detection, physiological signals classification,

mortality early warning detection, Intensive Care Unit(ICU) length of stay prediction, etc

with deep learning models [12, 13, 14, 15, 16, 17].

Despite that, the recent COVID-19 crisis has revealed the big incompetence of the US

healthcare information system in respect of efficiently collecting high-risk population data,

monitoring epidemic spread trends, and providing healthcare education and help via internet

and mobile. The general approach for defending the epidemics is early detection, social

distancing education, and tracking the trend, but it’s well believed now that the true number

of COVID-19 cases in the US is 10 times higher than reported [18, 19, 20, 21], and we still

see many people don’t take social distancing seriously [22, 23, 24].

There is an urgent need across healthcare companies, medical schools, and hospitals to

build a functional and reliable healthcare information platform that can help people better

understand their health status and COVID-19 risk, answer their health-related questions, and
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connect them with hospitals and doctors, thus eventually defend the ongoing COVID-19 and

future epidemics. Our research on faster convolutional feature engineering method of time

series data, and new deep learning model compression techniques will not only contribute to

the research progress in this field, but will also bring practical values to the development of

a better and more competent healthcare information platform that helps better healthcare

education, epidemic risk predicting and tracking, and patients care and assistance.
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CHAPTER 2

FASTER CLINICAL TIME SERIES CLASSIFICATION WITH FILTER

BASED FEATURE ENGINEERING TREE BOOSTING METHODS1

2.1 Introduction

Electronic Health Record (EHR) adoption in the US has increased from 13% to more than

90% in the past decade since 2009’s Health Information Technology for Economic and Clinical

Health (HITECH) Act [1]. EHR contains rich text, visual, and time series information such

as a patient’s medical and diagnosis history, radiology images, etc which is the major source

for managing and predicting a patient’s health status. Meanwhile, "Deep Learning" has

been a buzzword since its big success in ImageNet 2012 competition [3], which has greatly

pushed forward the research frontier of computer vision, speech recognition, and natural

language processing since then. There is an increasing interest in applying state-of-the-art

deep learning techniques to the healthcare industry, especially EHR, from the combined effort

of industry and academia. In 2012, IBM started to apply their Watson DeepQA technology

to the diagnostic support from a patient’s EHR and claim data, after this technology beat

the highest-ranked human players in the open-domain question answering show - Jeopardy!

[4]. In 2018, Amazon unleashed its HIPAA-compliant language processing service called

Comprehend Medical, which can help make clinical decisions, identify a patient’s symptoms,

and reduce cost from unstructured medical data [6]. In 2019, the United States Patent

Office published a patent application from Google [77], which unveiled its intention to build

predictive medicare service with EHR data.

A big portion of these EHR applications belongs to the category of multivariate time

series classification, such as Intensive Care Unit (ICU) mortality prediction, physiologic

1In proceedings of AAAI 2020 Health Intelligence Workshop, Explainable AI in Healthcare and Medicine,
Studies in Computational Intelligence, permission granted by Springer Nature Switzerland AG 2021
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decompensation prediction, ICU length of stay prediction, phenotype classification, and so on.

Traditional approaches for clinical time series classification tasks involve feature engineering

on timestamp attributes and then applying task-specific classification or regression models

[51]. Later, Recurrent Neural Network (RNN) based approaches such as Long Short-Term

Memory (LSTM) [37] demonstrated to be powerful even when being trained on raw time

series data without feature engineering [38]. Most recently, as RNN architectures being

criticized as less effective in parallel computing and time consuming, certain attention based

modeling architectures were proposed and evaluated to achieve state-of-the-art performance

[39].

Despite the more sophisticated model architectures being applied, the accuracy gain of

these deep learning approaches is very slight. Moreover, the speed performance analysis of

these deep learning approaches is missing. Practically, if a model costs too much time in

training and inference but only gives a little gain in the accuracy improvement, it may not

be considered a good option for the machine learning system. In this paper, we propose a

Filter based Feature Engineering method and a two-phase auto hyperparameter optimization

method, which fits very well for the clinical time series scenario. Combined with two widely

used tree boosting methods: XGBoost [44] and LightGBM [40], we demonstrated that

our approach achieved the state-of-the-art results with more than 100X speed acceleration

compared with RNNs such as LSTM and Gated Recurrent Unit (GRU) [41] on two MIMIC-III

benchmark tasks: In-Hospital Mortality Prediction and 25-Phenotype Classification [42]. The

major contributions of this work are summarized as the following:

• We proposed an efficient Filter based Feature Engineering method and a two-phase

auto hyperparameter optimization method, which fits very well with the clinical time

series scenario.

4



• Combined with two widely used tree boosting methods: XGBoost and LightGBM, We

demonstrated that our approach achieved the state-of-the-art results on two MIMIC-III

benchmark tasks: In-Hospital Mortality Prediction and 25-Phenotype Classification.

• We conducted detailed speed performance analysis with LSTM, GRU, and our proposed

approach on the two MIMIC-III benchmark tasks and demonstrated that our approach

achieves more than 100X speed acceleration in training and inference, which means

doctors could make the right diagnosis and treatment prognosis in shorter invaluable

time.

(a) In-Hospital Mortality Positive Sam-
ple

(b) In-Hospital Mortality Negative
Sample

(c) In-Hospital Mortality Missing
Value Rate

(d) 25-Phenotype Distribution

Figure 2.1. MIMIC III Data
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2.2 Related Work

Clinical time series classification is challenging due to irregular distribution of the sampling,

missing values, and wrong timestamp measurements. Recent year research shows that

deep learning methods nearly always outperform traditional machine learning methods such

as logistic regression, MultiLayer Perceptron (MLP), etc. The seminal work of applying

LSTM to clinical time series data was by Lipton et al. [38], which demonstrated that a

simple LSTM network with additional training strategies can outperform several strong

baselines. With the growing interest and need for reproducibility of published methods to

EHR data, Medical Information Mart for Intensive Care(MIMIC-III) database [43] became

the widely accepted public dataset for evaluating competing methods, due to its large size

of de-identified clinical data of patients admitted to a single-center Intensive Care Unit

(ICU) such as vital signs, medications, laboratory measurements, imaging reports, and

more. Based on MIMIC-III dataset, [42] proposed four clinical time series analysis tasks

including in-hospital mortality prediction, physiological decompensation prediction, length of

stay prediction, and 25-phenotype classification. They benchmarked and demonstrated the

performance advantages of LSTM on these four tasks toward the traditional methods such

as logistic regression, and joint training LSTM on the four tasks will further improve the

performance. Most recently, [39] proposed the first solely attention based sequence modeling

architecture for multivariate time series classification, and demonstrated its performance

advantages on the four MIMIC-III benchmark tasks.

2.3 MIMIC-III Benchmark Task

In this study, we used the MIMIC-III v1.4, which was released in September 2016. The

database contains a cohort of 46520 unique patients with a total of 58976 admissions. We

followed [42] to transform the data from the original format to time series format. The sample

6



input data for these two tasks are quite similar, which is 17 vital signs in time sequence

order. Figure 2.1 (a) shows a positive sample of in-hospital mortality, with obvious vital

signs out of normal range. Figure 2.1 (b) shows a negative sample of in-hospital mortality,

with normal vital signs. Figure 2.1 (c) shows that 11 vital signs have a huge percentage

of missing values for the in-hospital mortality prediction task, which is a similar case for

25-phenotype classification task.

2.3.1 In-Hospital Mortality Prediction

This benchmark task is to predict the in-hospital mortality from clinical time series variables

recorded in the first 48 hours of the ICU admission. ICU mortality rates are the highest

among hospital units(10% to 29%). This is a binary classification task, with the ground

truth label indicate whether the patient died before the hospital discharge. In-hospital-

mortality dataset is generated with the root cohort with further excluding all ICU stays

whose Length-of-Stay is unknown or less than 48 hours. Our training dataset contains 17939

samples, the validation dataset contains 3222 samples and the test dataset contains 3236

samples. The ground truth label is determined by checking if the patient’s date of death is

between the ICU admission and discharge time. The overall mortality rate in the dataset is

11.60% (2830 of 24397 ICU stays). Since it’s a very imbalanced labeled dataset, we use 3

metrics for the evaluation : (i) Area Under Receiver Operator Curve(AUROC), (ii) Area

Under Precision-Recall Curve(AUPRC), and (iii) Minimum of Precision and Sensitivity(

Min(Se, P+)).

2.3.2 25 Acute Care Phenotype Classification

This benchmark task is to detect if the patient has any of 25 conditions that are common in

adult ICU from clinical time series variables recorded in a single ICU stay episode. These

25 conditions contain 12 critical conditions, such as respiratory failure, 8 chronic conditions,
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such as diabetes, and 5 mixed conditions since they are chronic with a periodic acute episode.

Because more than 99% of patients in the benchmark dataset have more than one diagnosis,

this task is formulated as multi-label binary classification. The phenotype labels are the codes

in MIMIC-III ICD-9 diagnosis table, and we only consider the 25 categories matching their

HCUP CCS categories. Since MIMIC-III ICD-9 codes are associated with hospital visits, not

ICU stays, this benchmark task excludes the hospital admissions with multiple ICU stays

for reducing the ambiguity samples: We only consider the samples that have only one ICU

stay per hospital admission. Our training dataset contains 36020 samples, the validation

dataset contains 6371 samples and the test dataset contains 6281 samples. As Figure 1(d)

shows, this is also a very imbalanced labeled dataset, so we use 3 metrics for the evaluation:

(i) micro-averaged Area Under the ROC Curve(AUROC), which computes single AUROC

irrespective of the categories, (ii) macro-averaged AUROC, which averages AUROC per

label, (iii) weighted AUROC, which considers each disease prevalence.

2.4 Methods

Figure 2.2 describes the experiment design in this work. Each sample input data is 17

clinical variables in the time sequence order. These 17 clinical variables will be further

processed into a one-dimension vector of length 76 after the categorical variables are encoded

using a one-hot vector, and the numeric variables are standardized by subtracting the mean

and dividing by the standard deviation. The final raw data sample input now can be treated

as a two-dimension vector. Deep learning methods are very good at processing the raw

data input and producing the features with their internal structure. Tree boosting methods

can also take raw data samples as the input with necessary data reshaping, but to get

better accuracy, appropriate feature engineering strategies have to be employed. In-hospital

mortality prediction has the binary classification ground truth for each sample input, while

8



Figure 2.2. MIMIC-III benchmark tasks with different Models

25-phenotype classification has the multiple label binary classification ground truth for each

sample input.

2.4.1 RNN on Raw Data

Given a series of observations {xt}Tt≥1, an LSTM model learns to generate the prediction ŷ of

the ground truth y. Here t stands for a timestamp, and T stands for the length of the series.
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(1)



ut = σ(xtW
(xu) + ht−1W

(hu)),

ft = σ(xtW
(xf) + ht−1W

(hf)),

ot = σ(xtW
(xo) + ht−1W

(ho) + b(o)),

ct = ft � ct−1+

ut � tanh(xtW
(xc) + ht−1W

(hc) + b(c)),

ht = ot � σ(ct),

Here h0 = 0, and the σ (sigmoid) and tanh are element-wise functions. As the formula

(1) shows, an LSTM unit has three gates: update gate, forget gate, and output gate. Based

on the hidden states {ht}Tt≥1, we add a task-specific layer.

(2) ŷ = σ(w(y)ht + b(y))

GRU model is using the following formula for its forward pass procedure:

(3)



ut = σ(xtW
(xu) + ct−1W

(hu)),

rt = σ(xtW
(xr) + ct−1W

(hr)),

ct = (1− ut)� ct−1+

ut � tanh(xtW
(xc) + rt � ct−1W (hc) + b(c)),

ht = ot � σ(ct),

As we can see, GRU is not using separate memory cells, and it also uses fewer gates (only

update gate and reset gate). In practice, GRU can achieve the LSTM comparable accuracy

on many use cases with faster speed (Chung et al., 2014).

2.4.2 Filter Based Feature Engineering (FBFE)

RNN is good at capturing the long-range dependencies of time series data, but it also brings

one drawback: data has to be processed time stamp by time stamp both in the training

phase and inference phase, which negatively affect the speed performance. In the clinical
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time series scenario, missing observations are very common, so the input sample matrix is

very sparse. The past study [42] utilized the subsequence and sub-timeframe based feature

engineering method with the logistic regression. For any given time series input sample,

they computed six different sample statistic features (minimum, maximum, mean, standard

deviation, skew, and number of measurements) on seven different subsequences(the full time

series, the first 10% of the full time series, the first 25% of the full time series, the first

50% of the full time series, the last 50% of the full time series, the last 25% of the full time

series, and the last 10% of the full time series). Thus each time series input sample will

generate 17 × 7 × 6 features. This method mainly captures the statistic attribute of the

data, but not the sequence dependency, so its accuracy performance is always outperformed

by deep learning approaches, moreover, its running time is non-trivial. Here we propose a

Filter based Feature Engineering method from the inspiration of the filters in Convolutional

Neural Networks(CNN). We take the time series input sample after the one-hot encoding and

standardization processing, which is essentially a T × 76 matrix, then we apply convolution

operation with an M ×N filter matrix to the input sample, and reshape the output matrix

into a one dimension feature vector. Experiments show that our approach can generate more

fine-grained features with faster speed.

2.4.3 Tree Boosting Methods with FBFE

Tree Boosting algorithms work on generated features from each sample. After the feature engi-

neering of one time series sample {xt}Tt≥1, it turns into {x′i}(x′i ∈ Rm), where m stands for the

number of the features. A tree boosting model uses K additive functions to predict the output.

(4) ŷi = φ(x′i) =
∑K

k=1 fk(x
′
i), fk ∈ F

where F is the space of the regression tree. For any given sample {x′i}(x′i ∈ Rm), the
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decision rules in φ classify it into the leaves and summing up all the scores in the correspond-

ing leaves into a final prediction. The model training is to minimize the following regularized

objective.

(5) L(φ) =
∑

i l(ŷi, yi) +
∑

k Ω(fk)

Here l is the loss function that measures that difference between the prediction ŷi and

the ground truth yi. The function Ω penalizes the complexity of the whole model, which

helps smooth the learned weights to prevent over-fitting.

Two tree boosting implementations we used in this study are XGBoost and LightGBM,

of which the major difference is their ways of splitting tree nodes. XGboost’s original

implementation was based on the pre-sorted algorithm, which is to find the best split node

based on its pre-sorted feature values. LightGBM adopted a histogram-based algorithm,

which is to bucket continuous feature values into discrete bins and use them to construct

feature histograms during training.

2.4.4 Two-Phase Auto Hyperparameter Optimization

The performance of most machine learning algorithms hinges on their hyperparameters,

which are used to control the training process and set by data scientists before training. For

example, RNN methods are sensitive to hyperparameters like learning rate, number of depths,

dropout rates, batch size, etc. The performance of tree boosting methods mainly depends

on hyperparameters like learning rate, maximum depth, number of leaves in one tree, the

maximum number of trees ,etc.

Given a machine learning algorithm A, which has hyperparameters λ1, ..., λn with respec-

tive domains Λ1, ...,Λn. We define its hyperparameter space as Λ = Λ1 × · · · × Λn. We

use Aλ to denote the learning algorithm A using the hyperparameter setting λ ∈ Λ, and
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l(λ) = L(Aλ,Dtrain,Dvalid)) to denote the validation loss that Aλ achieves on data Dvalid

after trained on data Dtrain. Our goal is to find the λ ∈ Λ that can minimize l(λ).

The Most commonly used auto hyperparameter optimization methods include grid search,

random search [45] and bayesian optimization [46]. In this study, we divide the tree boosting

auto hyperparameter optimization process into two phases as described in Algorithm 1: In

the first phase, we use random search to evaluate the best range of each hyperparameter; In

the second phase, we use grid search on a fine-grained scale.

Algorithm 1 Two-Phase Auto Hyperparameter Optimization for Tree Boosting Methods

Input: Target function l; limit T1, T2; hyperparameter space Λ;
Result: Best hyperparameter configuration in this process λ∗

1: for i = 1 to T1 do
2: Random Search λi
3: λ̂i ← Evaluate l(λi)
4: end for
5: for j = 1 to T2 do
6: Grid Search λj from Λ̂

7: λ̂j ← Evaluate l(λj)
8: end for
9: return λ∗ ∈ arg minλj∈{λ1,...,λT 2}

2.5 Experiments

In this section, we compare the accuracy and speed performance between deep learning

methods and our proposed approach on two MIMIC-III benchmark tasks: In-Hospital

Mortality Prediction and 25-Phenotype Classification. Our experiments were conducted on a

server with hardware configuration: CPU Intel R© CoreTM i7-8700K CPU @ 3.70GHz x 12 ,

memory: 32 Gb , GPU: GeForce GTX 1080 Ti/PCIe/SSE2.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.3. Experiments

2.5.1 In-Hospital Mortality Prediction

Figure 2.3(a) shows training a one-layer LSTM model for 100 epochs, with an input

dimension of 16, a dropout rate of 0.3, a batch size of 8. The model converges at the 25th

epoch. For this trial, it takes around 2125 seconds to find the best model. Figure 2.3(b)

shows training a LightGBM model with a 2 × 2 dimension filter, with the early stopping

round of 80, the number of leaves of 11, learning rate of 0.07, number of estimators of 10000.
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The model converges at the 390th epoch. For this trial, it takes around 61 seconds to find

the best model. Figure 2.3(c) shows the auto hyperparameter optimization process for

LightGBM. In the first 50 trials, it does a random search according to the AUPRC of the test

set and estimates the trial range of early stopping round as [50, 100], the trial range of the

number of leaves as [5, 15], the trial range of learning rate as [0.01, 0.1], and the trial range of

the number of estimators as [1000, 40000]. In the second 50 trials, it does the grid search and

find several best hyperparameter configurations that can make the model achieve AUPRC of

0.523 on the test set, beating the previous state-of-the-art AUPRC of 0.518. One of these

configurations with the early stopping round as 80, number of leaves as 11, learning rate as

0.07, number of estimators as 10000 can make the model achieve min(Se, P+) of 0.508 on

the test set, beating the previous state-of-the-art min(Se, P+) of 0.500.

Table 2.1 shows the accuracy performance of our methods and previously published

works. Table 2.2 shows averaged training epoch time and averaged test inference time for

the single-layer LSTM model, the single-layer GRU model, XGBoost model and LightGBM

model on this use case. As we can see, for the MIMIC-III in-hospital-mortality prediction

benchmark task, tree boosting methods are more than 100X faster than RNN methods on

both training speed and inference speed. Though tree boosting methods may spend more

epochs to reach the best model, the overall training time of that is still around 1
30

of RNN

methods.

Table 2.1. Accuracy Comparison for MIMIC-III In-Hospital Mortality Prediction
Metrics AUROC AUPRC min(Se, P+)

LSTM [42] 0.854 0.516 0.491
SAndD [39] 0.857 0.518 0.5

FBFE XGBoost(Ours) 0.856 0.517 0.487
FBFE LightGBM(Ours) 0.850 0.523 0.508
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Table 2.2. Speed Comparison for MIMIC-III In-Hospital Mortality Prediction
Metrics Training Epoch (s) Inference on Test (s)
LSTM 1 85 4.292
GRU 1 65 3.443

FBFE XGBoost 0.422 0.048
FBFE LightGBM 0.156 0.006

2.5.2 25-Phenotype Classification

Figure 2.3(d) shows training a one-layer LSTM model for 100 epochs, with an input

dimension of 256, a dropout rate of 0.3, a batch size of 8. The model reached the best

accuracy at the 15th epoch and then started to overfit on the training set. For this trial,

it takes around 25200 seconds to find the best model. Figure 2.3(e) shows training a

LightGBM model with a 2 × 2 dimension filter, with the early stopping round of 10, the

number of leaves of 12, learning rate of 0.08, number of estimators of 10000. The model

converges at the 119th epoch. For this trial, it takes around 134 seconds to find the best

model. Figure 2.3(f) shows the auto hyperparameter optimization process for LightGBM.

In the first 50 trials, it does a random search according to the MicroAUC of the test set

and estimates the trial range of early stopping round as [5, 30], the trial range of the number

of leavs as [10, 20], the trial range of learning rate as [0.05, 0.1], and the trial range of the

number of estimators as [1000, 30000]. In the second 50 trials, it does the grid search and find

one hyperparameter configuration that can train the model to tie the previous state-of-the-art

on Micro-Averaged AUROC of 0.821 and Macro-Averaged AUROC of 0.770 on the test

set, and beat the previous state-of-the-art on Weighted AUROC of 0.757 by a little gap

with Weighted AUROC of 0.760

Table 2.3. Accuracy Comparison for MIMIC-III 25-Phenotype Classification
Metrics Micro AUC Macro AUC Weighted AUC

LSTM [42] 0.821 0.770 0.757
SAndD [39] 0.816 0.766 0.754

FBFE XGBoost(Ours) 0.819 0.768 0.758
FBFE LightGBM(Ours) 0.821 0.770 0.760
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Table 2.4. Speed Comparison for MIMIC-III 25-Phenotype Classification
Metrics Training Epoch (s) Inference on Test (s)
LSTM 1 1680 17.466
GRU 1 1330 14.139

FBFE XGBoost 6.160 0.919
FBFE LightGBM 1.124 0.154

Table 2.3 shows the accuracy performance of our methods and previously published

works. Table 2.4 shows averaged training epoch time and averaged test inference time for the

single-layer LSTM model, the single-layer GRU model, XGBoost model and LightGBM model

on this use case. As we can see, for the MIMIC-III 25-phenotype classification benchmark

task, tree boosting methods are more than 100X faster than RNN methods on both training

speed and inference speed. Though tree boosting methods may spend more epochs to reach

the best model, the overall training time of that is still around 1
180

of RNN methods.

2.6 Conclusion

Although recent studies have shown that deep learning approaches have achieved state-of-

the-art results on several clinical time series tasks in the aspect of accuracy performance, yet

their speed performance analysis is missing. Practically, if a model costs too much time in

training and inference but only gives a little gain in the accuracy improvement, it may not

be considered a good option for the machine learning system. In this work, we developed

an efficient Filter based Feature Engineering method and a two-phase auto hyperparameter

optimization method, which fits very well with the clinical time series scenario. Combined

with two widely used tree boosting methods: XGBoost and LightGBM, we demonstrated

that our approach achieved the state-of-the-art results with more than 100X faster speed

compared with RNN methods on two MIMIC-III benchmark tasks: In-Hospital Mortality

Prediction and 25-Phenotype Classification. Due to its superior accuracy and faster speed

advantages, our approach has broad clinical application prospects, especially assisting doctors

to make the right diagnosis and treatment prognosis in shorter invaluable time. In the future,
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we will continue improving this approach and apply it to broader clinical time series use

cases.
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CHAPTER 3

FASTER HEALTHCARE TIME SERIES CLASSIFICATION FOR

BOOSTING MORTALITY EARLY WARNING SYSTEM1

3.1 Introduction

Electronic Health Record (EHR) and healthcare claim data have skyrocketed over the past

decade, due to the prevalent adoption of internet and mobile technologies from hospitals and

healthcare insurance companies. EHR contains rich text, visual, and time series information

such as a patient’s medical and diagnosis history, radiology images, etc which is the major

source for managing a patient’s health status. Healthcare claim data is the insurance claims

that patients filed based on their health plans. EHR data normally contains more complete

clinical information for patients, but one drawback is that different hospitals or medical

systems may have different EHR formats, which leads to challenges of data integration.

Compared to EHR, Healthcare claim data contains longitudinal information from all different

parties in a patient-centered fashion. In the past, EHR and healthcare claim data are mainly

used for patients’ health status administration. Recently, there is an increasing interest in

predictive analysis with EHR and healthcare claim data.

One important scenario in healthcare applications is multivariate time series classification.

EHR contains rich short-term time-stamped nurse-verified physiological measurements for

patients admitted to the Intensive Care Unit (ICU), that can be utilized for in-hospital

mortality prediction, physiologic decompensation prediction, ICU length of stay prediction,

and so on. Healthcare claim data, on the other hand, can be used for longer-term prediction

such as 12-month mortality prediction for palliative care.

1 c© 2020 IEEE. Reprinted, with permission, from Yanke Hu, Raj Subramanian, Wangpeng An, Na
Zhao, Weili Wu, Faster Healthcare Time Series Classification for Boosting Mortality Early Warning System,
International Conference on Intelligent Robots and Systems(IROS), October 2020, Las Vegas, US
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Traditional approaches for healthcare time series classification tasks heavily rely on feature

engineering on timestamp attributes and then appending with task-specific classification

or regression models [51]. Later, Recurrent Neural Network (RNN) approaches such as

Long Short-Term Memory (LSTM) [37] was proven to be effective even when being trained

with raw time series data without the need for feature engineering [38]. More recently,

as RNN architectures being complained as less effective in parallel computing and slow,

specific attention based modeling architectures were developed and evaluated to achieve the

state-of-the-art result [39].

Despite the more sophisticated model architectures emerging, the accuracy gain of these

deep learning approaches is very slight. Moreover, the training and inference time of these

sophisticated deep learning models is non-trivial. In this paper, we provide a different angle of

solving healthcare multivariate time series classification by turning it into a computer vision

problem. We propose a Convolutional Feature Engineering (CFE) methodology, that can

effectively extract long sequence dependency time series features. Combined with LightGBM

[40], a widely used Gradient Boosting Decision Tree (GBDT) method, it can achieve the

state-of-the-art results with 35X speed acceleration compared with LSTM based approach on

MIMIC-III In-Hospital Mortality benchmark task [42]. We deploy CFE based LightGBM

into our Mortality Early Warning System at Humana and train it on one million member

samples. The offline metrics show that this new approach generates better-quality predictions

than the previous LSTM based approach, and meanwhile, greatly decrease the training and

inference time. The major contributions of this work are summarized as the following:

• We propose a different perspective of dealing with healthcare multivariate time series

classification problem by encoding the vital signs into a< 0, 1 > vector and aligning these

vectors by time series. This will turn each time series sample into a 2-dimension image

that can be applied with Convolutional Neural Networks (CNN) image classification

models, which is much faster than RNN models.
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• We propose a Convolutional Feature Engineering (CFE) methodology, that can effec-

tively extract long sequence dependency time series features. Combined with LightGBM,

we demonstrated that this approach can achieve state-of-the-art results with 35X speed

acceleration compared with LSTM based approach on MIMIC-III In-Hospital Mortality

benchmark task.

• We deploy CFE based LightGBM into our Mortality Early Warning System at Humana

and train it on one million member samples. The offline metrics show that this new

approach generates better-quality predictions than the previous LSTM based approach,

and meanwhile, decrease the training time from 33 hours to 1 hour.

3.2 Related Work

The traditional approach for mortality predictive analytics in ICU heavily involves the

formulation of hand-crafted clinical decision rules (CDR) [50], which suffers from questions of

limitations of analytics insights, small preselected rules, and constrained usability. Meanwhile,

palliative care plays a more important role for old weak, ill or disabled, and automatic

screening and notification will greatly help the palliative team proactively approaching the

patients rather than relying on referrals from family physicians. The above two needs can

be formulated as multivariate time series classification problems such as short-term ICU

mortality prediction based on EHR data and longer-term mortality prediction based on

longitudinal healthcare claim data from a data science perspective. Healthcare time series

classification is very challenging because of the irregular distribution of the sampling, wrong

timestamp measurements, and missing values. Recent year research shows that deep learning

methods outperform traditional machine learning methods most of the time. Lipton et al. [38]

demonstrated that a simple LSTM network with additional training strategies can outperform

several strong baselines in 2015. With the growing need and interest of reproducing published
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(a) Positive Sample by Vital Sign Measures and
Time Series

(b) Negative Sample by Vital Sign Measures and
Time Series

(c) Positive Sample after one-hot encoding (d) Negative Sample after one-hot encoding

Figure 3.1. MIMIC III In-Hospital Mortality Data Sample

methods to EHR, Medical Information Mart for Intensive Care (MIMIC-III) database [43]

has established its reputation for evaluating different methods, because of its large size of

de-identified clinical data of patients. From MIMIC-III dataset, Harutyunyan et al. proposed

four clinical time series analysis tasks containing in-hospital mortality prediction, physiological

decompensation prediction, ICU length of stay prediction, and 25-phenotype classification
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in 2017 [42]. They demonstrated the performance advantages of LSTM on these four tasks

compared to traditional methods such as logistic regression, and joint training with LSTM

on the four tasks will improve the performance further. In 2018, Song et al. proposed the

sequence modeling architecture solely based on attention mechanism for multivariate time

series classification. They demonstrated its performance improvement on the four MIMIC-III

benchmark tasks [39].

3.3 Problem Formulation

3.3.1 Multivariate Time Series Classification

We denote a multivariate time series as F variables of length T

X = (x1, x2, ..., xT ) ∈ RT×F

For each time stamp t ∈ {1, 2, ..., T} , xt ∈ RF represents the t-th measure of F variables,

and xft denotes the f-th variable of xt. Both of the problems in this paper can be formulated

as binary classification tasks, where we predict the label li ∈ {0, 1} given the time series data

D, where D = {(Xi)}Ni=1, and Xi = [x
(i)
1 , ..., x

(i)
Ti

]

3.3.2 MIMIC-III In-Hospital Mortality Prediction

This task is to predict the mortality risk from clinical time series variables recorded in the

first 48 hours after the ICU admission. Here we use the MIMIC-III v1.4, which was released

in September 2016. The database contains a cohort of 46520 unique patients from a total of

58976 admissions. We followed [42] to transform the data from the original format into time

series format. Each sample contains 48 timestamps of 17 vital signs including Capillary Refill

Rate, Diastolic Blood Pressure, Fraction Inspired Oxygen, Glasgow Coma Scale Eye Opening,

Glasgow Coma Scale Motor Response, Glasgow Coma Scale Total, Glasgow Coma Scale

Verbal Response, Glucose, Heart Rate, Height, Mean Blood Pressure, Oxygen Saturation,
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Respiratory Rate, Systolic Blood Pressure, Temperature, Weight, pH. Our training dataset

contains 17939 samples, validation dataset contains 3222 samples and test dataset contains

3236 samples. The ground truth label is determined by checking if the patient’s date of death

is between the ICU admission and discharge time. The overall mortality rate in the dataset

is 11.60% (2830 of 24397 ICU stays). Since it’s a very imbalanced labeled dataset, we use 3

metrics for the evaluation : (i) Area Under Receiver Operator Curve(AUROC), (ii) Area

Under Precision-Recall Curve(AUPRC), and (iii) Minimum of Precision and Sensitivity(

Min(Se, P+)).

3.3.3 Humana Healthcare Claim One Year Mortality Prediction

This task is to predict the mortality risk of that patient within 12 months, given the Humana

Claim data of that patient over the past 3 years. Here we use our Humana Mortality Early

Warning benchmark dataset, which contains a cohort of 1 million unique patients. We

standardized each patient’s claim report into a bi-monthly measure, so each sample contains

(3× 12× 2) timestamps of 100 selected vital symptom ICD9 codes including categories like

Infectious Diseases, Neoplasms, Blood Organs, Mental Disorder, Nervous System, Circulatory

System, Respiratory System, Digestive System, etc. We have additional 10K patient samples

as a validation dataset and additional 10k patient samples as a test dataset. The overall

mortality rate in the dataset is 17.70%, we use AUROC for the evaluation.

3.4 Convolutional Feature Engineering

3.4.1 Existing Approaches

The past studies mainly utilize the Sub-Timeframe based feature engineering method with

the logistic regression. In [42], for any given time series input sample, they compute six

different sample statistic features (minimum, maximum, mean, standard deviation, skew and
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number of measurements) on seven different subsequences (the full time series, the first 10%

of the full time series, the first 25% of the full time series, the first 50% of the full time series,

the last 50% of the full time series, the last 25% of the full time series, and the last 10% of

the full time series). Thus each time series input sample will generate 17× 7× 6 features.

One obvious problem of this method is that it mainly captures the statistic attribute of the

data, but not the sequence dependency, so its accuracy performance is always outperformed

by RNN approaches. Moreover, its running time is non-trivial. [42] then benchmarked a

single-layer 16 units LSTM model on the same 4 tasks and demonstrated that it can achieve

a much better accuracy without the need for any feature engineering. RNN based approaches

are good at capturing the long-range dependencies of time series data, but they have their

problems: data has to be processed timestamp by timestamp both in the training phase and

inference phase, which negatively affect the speed performance.

3.4.2 Convolutional Neural Networks Approach

Here we are trying to look at this time series problem from a different angle. In the MIMIC-III

In-Hospital Mortality prediction case, we apply one-hot encoding of these 17 vital signs into a

76 length vector {xi} (xi ∈ {0, 1}) (for non-categorical vital signs, we will first define degree

levels and then transform them into degree categorical values). We align these vital sign

vectors by the timestamp order, then each sample will turn into a two-dimension {0, 1} array.

Now our original problem formulation will turn into:

Given the time series data D′
, where D′

= {(Yi)}Ni=1, Yi = [y
(i)
1 , ..., y

(i)
T ] and yft (i) ∈ {0, 1}

denotes the f-th variable of yt, the task is to assign the label li ∈ {0, 1} to Yi.

Figure 3.1 (a) shows a positive MIMIC-III In-Hospital Mortality data sample in a vital

sign time series format. Figure 3.1 (c) shows a positive MIMIC-III In-Hospital Mortality

data sample in {0, 1} transformed format. Figure 3.1 (b) shows a negative MIMIC-III

In-Hospital Mortality data sample in vital sign time series format. Figure 3.1 (d) shows a

negative MIMIC-III In-Hospital Mortality data sample in {0, 1} transformed format.
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We then treat these two dimension arrays as images and apply CNN image classification

models. We tested 3 lightweight CNN models: Cifar 10 [47], SqueezeNet [49], MobileNetV2

[48]. The result shows that CNN based approaches can achieve close to state-of-the-art result

with 10 times faster speed than a single-layer 16 units LSTM model, which we will elaborate

more in the Experiment section.

3.4.3 Convolutional Feature Engineering

Since CNN approaches don’t achieve the state-of-the-art result, here we apply with one

more enhancement. We use CNN purely for feature engineering and remove the last fully

connected layer, which is responsible for classification. We then feed these feature vectors

into Gradient Boosting Decision Tree (GBDT) models, which are normally more suitable

for structured data. Experiments showed that even a single convolution layer can reserve

the sequence dependency attribute for not too large samples (e.g. MIMIC-III in-hospital

mortality prediction samples), and greatly speed up the GBDT training process since it

shrinks the feature vector length. Moreover, it’s at least 200 times faster than the traditional

Sub-Timeframe feature engineering method on GPU servers.

3.5 Experiments

3.5.1 MIMIC-III in-hospital Mortality Prediction

For MIMIC-III in-hospital Mortality Prediction, our experiments were conducted on an

on-premises server with hardware configuration: CPU Intel R© CoreTM i7-8700K CPU @

3.70GHz × 12 , memory: 32 Gb , GPU: GeForce GTX 1080 Ti/PCIe/SSE2 .

Table 3.1 shows the speed comparison of different models on MIMIC-III In-Hospital

Mortality Prediction task. A single-layer 16 units RNN model is generally 10 times slower

than the three light CNN models. Gradient Boosting Decision Tree (GBDT) methods are

26



even faster than the three light CNN models. Especially LightGBM is 2 times faster than

XGBoost [44] on this task. The Sub-Timeframe feature engineering will generally speed up

these two GBDT methods 3 times faster, while the 2× 2 filter feature engineering will speed

up these two GBDT methods 4 times faster, but Sub-Timeframe feature engineering is more

than 200 times slower than 2× 2 filter feature engineering.

Table 3.2 shows the best accuracy comparison of different models on MIMIC-III In-

Hospital Mortality Prediction task. These three light CNN models achieve close to RNN

accuracy. An interesting observation is that even MobileNetV2 [48] is a more sophisticated

network, it doesn’t achieve better accuracy than classical Cifar 10 [47] and SqueezeNet [49].

2× 2 filter feature engineering not only speed up the GBDT methods, it also helps XGboost

achieve the state-of-the-art AUROC, and helps LightGBM achieve the state-of-the-art

AUPRC and min(Se, P+)

Figure 3.2 shows the training process of different models on MIMIC-III In-Hospital

Mortality Prediction task. Figure 3.2 (a) shows training a single-layer 16 units LSTM

model for 100 epochs with a dropout rate of 0.3 and a batch size of 32. The model converges

at the 25th epoch, so it takes around 25× 85 = 2125 seconds to find the best model. Figure

3.2 (b) shows training classical Cifar 10 CNN network for 100 epochs with a batch size of

32. The model converges at the 6th epoch, so it takes around 6× 2.87 = 17.22 seconds to

find the best model. Figure 3.2 (c) shows training XGboost with Sub-Timeframe feature

engineering with a learning rate of 0.07, a number of estimators of 10000, max depth of 3

and early stopping rounds of 40. The model converges at the 230th epoch, so it takes around

230× 0.517 + 112 = 230.91 seconds to find the best model. Figure 3.2 (d) shows training

LightGBM with Sub-Timeframe feature engineering with a learning rate of 0.07, a number

of estimators of 10000, a number of leaves of 11, and the early stopping round of 80. The

model converges at the 120th epoch, so it takes around 120× 0.172 + 112 = 132.64 seconds

to find the best model. Figure 3.2 (e) shows training XGboost with 2 × 2 filter feature
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engineering with a learning rate of 0.07, a number of estimators of 10000, a max depth of

3 and early stopping rounds of 40. The model converges at the 250th epoch, so it takes

around 250× 0.422 + 0.37 = 105.87 seconds to find the best model. Figure 3.2 (f) shows

training LightGBM with 2× 2 filter feature engineering with learning rate of 0.07, number of

estimators of 10000, number of leaves of 11, and the early stopping round of 80. The model

converges at the 390th epoch, so it takes around 390× 0.156 + 0.37 = 61.21 seconds to find

the best model. Compared to the original LSTM model, LightGBM with 2× 2 filter feature

engineering can achieve the state-of-the-art result with around 35 times faster speed.

3.5.2 Humana Healthcare Claim One Year Mortality Prediction

For Humana Healthcare Claim One Year Mortality Prediction, our experiments were con-

ducted on Microsoft Azure Standard NC6s v3 virtual machine. We trained 1 million samples

with LightGBM with 2× 2 filter feature engineering. The feature engineering time on this

training dataset is around 72 seconds, and one training epoch takes around 11.2 seconds. The

model converges at the 340th epoch, with AUROC of 0.812 on the test dataset. so it takes

around 340× 11.2 + 72 = 3880 seconds ≈ 1.08 hours to find the best model. Our previous

LSTM based model normally takes around 33 hours to find the best model, with AUROC of

0.798 on the test dataset.

Table 3.1. Speed Comparison for MIMIC-III In-Hospital Mortality Prediction
Metrics Training Epoch (s) Inference on Test (s) Feature Engineering (s)

LSTM(16 units, 1 layer) 85 4.292 0
GRU(16 units, 1 layer) 65 3.443 0

Cifar 10 2.87 0.355 0
SqueezeNet 3.98 0.782 0

MobileNetV2 8.65 1.002 0
XGBoost 1.899 0.212 0

LightGBM 0.781 0.3 0
XGBoost(Sub-Timeframe) 0.517 0.064 112

LightGBM(Sub-Timeframe) 0.172 0.09 112
XGBoost(2x2 filter) 0.422 0.048 0.37

LightGBM(2x2 filter) 0.156 0.006 0.37
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Table 3.2. Accuracy Comparison for MIMIC-III In-Hospital Mortality Prediction

Metrics AUROC AUPRC min(Se, P+)
LSTM(16 units , 1 layer) 0.854 0.516 0.491
GRU(16 units , 1 layer) 0.851 0.500 0.482

Cifar 10 0.834 0.469 0.456
SqueezeNet 0.845 0.479 0.461

MobileNetV2 0.841 0.472 0.466
XGBoost 0.848 0.501 0.483

LightGBM 0.846 0.506 0.486
XGBoost (Sub-Timeframe) 0.847 0.478 0.471

LightGBM (Sub-Timeframe) 0.844 0.481 0.469
XGBoost (2x2 filter) 0.856 0.517 0.487

LightGBM (2x2 filter) 0.850 0.523 0.508

3.6 Conclusion

Although recent studies have shown that RNN based approaches are powerful in various time

series use cases, yet its drawback of slow processing is easily neglected. In this work, we

propose a different perspective of dealing with healthcare multivariate time series classification

problem by encoding the vital signs into a < 0, 1 > vector and thus turning it into a computer

vision problem. We then propose a Convolutional Feature Engineering methodology, that can

effectively reserve long sequence dependency time series features. Combined with LightGBM,

it can achieve the state-of-the-art results with 35X speed acceleration compared with LSTM

based approach on MIMIC-III In-Hospital Mortality benchmark task. We deploy CFE based

LightGBM into our Mortality Early Warning System at Humana and train it on one million

member samples. The offline metrics show that this new approach generates better-quality

predictions than the previous LSTM based approach, and meanwhile, greatly decrease the

training and inference time. In the future, we will continue improving this approach and

apply it to broader time series use cases for better palliative care.
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Figure 3.2. MIMIC-III In-Hospital Mortality Training
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CHAPTER 4

SQUEEZEBIOBERT: BIOBERT DISTILLATION FOR HEALTHCARE

NATURAL LANGUAGE PROCESSING1

4.1 Introduction

Healthcare text mining attracts increasing research interest as electronic health records (EHR)

and healthcare claim data have skyrocketed over the past decade. Recently, deep pre-trained

language models, such as BERT[53] and GPT[54], have improved many natural language

processing tasks significantly. However, it won’t give satisfactory results by directly applying

those deep pre-trained language models to healthcare text mining, because those models

are trained from generic domain corpora, which contains a word distribution shift from

healthcare corpora. Moreover, deep pre-trained language models are generally heavy and

slow, which makes them very difficult to use on resource-restricted devices. Embedded models

that can directly inference on mobile are important for healthcare-related apps in the US

because (1) it can provide better user experience at poor cell phone signal locations, and (2)

it doesn’t require users to upload their health sensitive information onto the cloud. In the US,

health-related data are only allowed to upload to the cloud by mobile apps being developed

by certified institutes, which greatly suppresses the enthusiasm of developing healthcare

mobile apps from individual developers. There are some model compression techniques

developed recently for generic BERT [57, 58, 59], but there doesn’t exist a small and efficient

enough pre-trained language model in the healthcare domain. In this work, we developed

SqueezeBioBERT. SqueezeBioBERT has 3 transformer layers, and inference much faster

while being accurate on healthcare natural language processing tasks. Our contributions are

summarized as below:

1In proceedings of International Conference on Computational Data and Social Networks(CSoNet) 2020,
permission granted by Springer Nature Switzerland AG 2021
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• We designed a novel knowledge distillation method, which is very effective for com-

pressing Transformer-based models without losing accuracy.

• We applied this knowledge distillation method to BioBERT[56], and experiments show

that knowledge encoded in the large BioBERT can be effectively transferred to a

compressed version of SqueezeBioBERT.

• We evaluated SqueezeBioBERT on three healthcare text mining tasks: name entity

recognition, relation extraction, and question answering. The result shows that Squeeze-

BioBERT achieves more than 95% of the performance of teacher BioBERT on these

three tasks while being 4.2X smaller.

4.2 Transformer Layer

As the foundation of modern pre-trained language models[53, 54, 55], the transformer layer

[52] can capture long-term dependencies of the input tokens with the attention mechanism.

A typical transformer layer contains two major components: multi-head attention (MHA)

and feed-forward network(FFN).

4.2.1 Multi-Head Attention

Practically, we calculate the attention function on a query set Q, with key set K and value

set V. The attention function can be defined as below:

A =
QKT

√
dk

(4.1)

Attention(Q,K,V) = softmax(A)V (4.2)

where dk denotes the dimension of K.

Multi-head attention will jointly train the model from different representation subspaces.

It is denoted as below:
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MultiHead(Q,K,V) = Concat(head1, ..., headh)W (4.3)

where h denotes attention head number, headi is computed by Equation (2), and W is the

linear parameter weight.

4.2.2 Feed-Forward Network

After multi-head attention, a fully connected feed-forward network will follow, which is

denoted as below:

FFN(x) = max(0, xW1 + b1)W2 + b2 (4.4)

4.3 Knowledge Distillation

A very common way to boost the performance of a machine learning algorithm is to train

several models, and then ensemble. Deep learning models are generally heavy neural networks,

so it’s normally considered too computationally expensive and inefficient to deploy the

ensemble of deep neural networks in the production environment. [60] first proposed Knowledge

Distillation and showed the possibility of compressing the function learned from a large

complex model into a much smaller and faster model without significant accuracy loss [61].

As deep learning models are becoming more and more complex, knowledge distillation has

shown its power of transferring the knowledge from a group of specialist networks to a single

model [61, 62, 63].

Formally, the Knowledge Distillation process can be defined as the process of minimizing

the loss function between a large teacher network T and a small student network S as below:

LKD =
∑
x∈X

L(fT (x), fS(x)) (4.5)
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where L denotes the loss function to evaluate the difference between T and S, x is the token

input, X is the training set, fT denotes the output of the teacher network T and fS denotes

the output of the student network S.

4.4 BioBERT

Deep pre-trained language models, such as BERT[53] and GPT[54], have improved many

natural language processing tasks significantly. However, it won’t give satisfactory results by

directly applying those deep pre-trained language models to healthcare text mining, because

those models are trained from generic domain corpora, which contains a word distribution

shift from healthcare corpora. BioBERT[56], with almost the same structure as BERT and

pre-trained on biomedical domain corpora such as PubMed Abstracts and PMC full-text

articles, can significantly outperform BERT on biomedical text mining tasks.

BioBERT has been fine-tuned on the following three tasks: Named Entity Recognition

(NER), Relation Extraction (RE), and Question Answering(QA). NER is to recognize domain-

specific nouns in a corpus, and precision, recall, and F1 score are used for evaluation on

the datasets listed in Table 4.1. RE is to classify the relationships of named entities, and

precision, recall, and F1 score are used for evaluation on the datasets listed in Table 4.2. QA

is to answer a specific question in a given text passage, and strict accuracy, lenient accuracy

and mean reciprocal rank are used for evaluation on BioASQ factoid dataset[75].

4.5 BioBERT Distillation

In this section, we developed a novel distillation method for BioBERT. Experiments show that

knowledge encoded in the large BioBERT can be effectively transferred to the compressed

version of SqueezeBioBERT.

Figure 4.1 shows an overview of the proposed knowledge distillation method. Supposing

that the teacher BioBERT has M transformer layers and the student SqueezeBioBERT has
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Table 4.1. BioBERT Named Entity Recognition Evaluation Datasets

Dataset Entity Type
NCBI Disease [64] Disease
2010 i2b2/VA [65] Disease
BC5CDR [66] Disease/Drug
BC4CHEMD [67] Drug
BC2GM [68] Gene
JNLPBA [69] Gene
LINNAEUS [70] Species
Species-800 [71] Species

Table 4.2. BioBERT Relation Extraction Evaluation Datasets

Dataset Entity Type
GAD [72] Gene/Disease
EU-ADR [73] Gene/Disease
CHEMPROT [74] Protein

N transformer layers, we distilled BioBERT both on transformer layers and task-specific

layers.

Transformer layer distillation consists of multi-head attention distillation and feed-

forward network distillation. For multi-head attention distillation, we combine Equations

(4.2),(4.3), and (4.5), and use the mean squared error(MSE) as the loss function since it’s

more suitable for regression tasks. Thus, the multi-head attention distillation process is

denoted as below:

LMHA =
1

h

h∑
i=1

MSE(MT
i ,M

S
i ) (4.6)

where h denotes the number of attention heads, MS
i denotes the output of i-th student

attention head, and MT
i denotes the output of i-th teacher attention head.
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Figure 4.1. The Overview of Distillation from BioBERT to SqueezeBioBERT

For feed-forward network distillation, we can use a single linear transformation WFFN to

transform the output of the teacher network into the student network. Thus, the feed-forward

network distillation process is denoted as below:

LFFN = MSE(OT
MHAWFFN , O

S
MHA) (4.7)

For task-specific prediction layer distillation, we use softmax cross-entropy as the loss

function, since it’s more suitable for classification tasks. Thus, the task-specific prediction

layer distillation is denoted as below:

Lpred = −softmax(OT
FFN)log(softmax(OS

FFN)) (4.8)
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Table 4.3. Named Entity Recognition Metrics Comparison

Dataset metrics BioBERT-Base v1.1 SqueezeBioBERT v1.0
NCBI Disease [64] Precision 88.22 86.19

Recall 91.25 88.42
F1 89.71 87.74

2010 i2b2/VA [65] Precision 86.93 83.97
Recall 86.53 83.85

F1 86.73 85.26
BC5CDR [66] Precision 86.47 82.84

Recall 87.84 84.94
F1 87.15 85.23

BC4CHEMD [67] Precision 92.80 89.83
Recall 91.92 87.78

F1 92.36 90.33
BC2GM [68] Precision 84.32 82.46

Recall 85.12 83.16
F1 84.72 82.11

JNLPBA [69] Precision 72.24 69.93
Recall 83.56 81.67

F1 77.49 75.09
LINNAEUS [70] Precision 90.77 89.41

Recall 85.83 84.29
F1 88.24 85.15

Species-800 [71] Precision 72.80 70.47
Recall 75.36 74.38

F1 74.06 72.73

In summary, Equations (4.6),(4.7) and (4.8) describes the overall procedure of the

BioBERT distillation process.

4.6 Experiments

We use BioBERT-Base v1.1[76] as our source model, and distilled it to SqueezeBioBERT on

the same three healthcare NLP tasks. BioBERT-Base v1.1 has 12 transformer layers and

109M weights. SqueezeBioBERT has 3 transformer layers and 26M weights.
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Table 4.4. Relation Extraction Metrics Comparison

Dataset metrics BioBERT-Base v1.1 SqueezeBioBERT v1.0
GAD [72] Precision 77.32 74.69

Recall 82.68 81.61
F1 79.83 77.04

EU-ADR [73] Precision 77.86 75.37
Recall 83.55 80.54

F1 79.74 77.19
CHEMPROT [74] Precision 77.02 75.79

Recall 75.90 72.41
F1 76.46 74.01

Table 4.5. Question Answering Metrics Comparison

Dataset metrics BioBERT-Base v1.1 SqueezeBioBERT v1.0
BioASQ 4b [75] Strict Accuracy 27.95 27.31

Lenient Accuracy 44.10 42.12
Mean Reciprocal Rank 34.72 33.26

BioASQ 5b [75] Strict Accuracy 46.00 43.58
Lenient Accuracy 60.00 58.08

Mean Reciprocal Rank 51.64 49.94
BioASQ 6b [75] Strict Accuracy 42.86 41.83

Lenient Accuracy 57.77 56.48
Mean Reciprocal Rank 48.43 46.83

NER results are shown in Table 4.3, RE results are shown in Table 4.4, and QA

results are shown in Table 4.5. From the results, we can see that SqueezeBioBERT is

4.2X smaller than BioBERT, but still achieves more than 95% accuracy performance of

the teacher BioBERT on the three NLP tasks. This proves the efficiency of the proposed

method of transferring knowledge encoded in the large BioBERT to the compressed version

of SqueezeBioBERT.
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4.7 Conclusion

Although recent deep pre-trained language models have greatly improved many natural

language processing tasks, they are generally heavy and slow, which makes them very difficult

to use on resource-restricted mobile or IoT devices. Embedded models that can directly

inference on mobile is important for healthcare-related apps in the US because: (1) it can

provide a better user experience at poor cell phone signal locations, and (2) it doesn’t

require users to upload their health sensitive information onto the cloud. In this paper,

we designed a novel knowledge distillation method, which is very effective for compressing

Transformer-based models without losing accuracy. We applied this knowledge distillation

method to BioBERT, and experiments show that knowledge encoded in the large BioBERT

can be effectively transferred to a compressed version of SqueezeBioBERT. We evaluated

SqueezeBioBERT on three healthcare text mining tasks: name entity recognition, relation

extraction, and question answering. The result shows that SqueezeBioBERT achieves more

than 95% of the performance of teacher BioBERT on these three tasks while being 4.2X

smaller.
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CHAPTER 5

HEALTHREAD: HEALTH NEWS RECOMMENDATION BASED ON YOUR

HEALTH STATUS

5.1 Introduction

Mobile news reading has changed people’s traditional habits of reading physical newspapers

due to its abundant sources and great convenience. Mobile News apps, like Google News [77]

and Toutiao [78], collect news from trillions of sources around the world, and provide a user

friendly aggregation of the refreshing news. The key challenge here is to help users find the

news that most interests them from the overwhelming volumes of the information.

There are mainly two strategies for building recommendation systems: Content-based

recommendation and collaborative filtering. The content-based method recommends infor-

mation based on user profiles built from user interests or activities, while the collaborative

filtering method cares more about the opinions of peer users so that it captures the general

news trend. The mainstream news recommendation apps nowadays are all trying to find a

good balance of these two strategies since individual interests are easily influenced by the

general trend[79, 80].

There are numerous ways to build user profiles in news reading apps. Some of them is to

ask users to manually fill a survey at the beginning. Some are to adjust certain dimensions of

user profiles by measuring users’ comments or likes after they read an article. The user-profiles

will keep evolving with their explicit and implicit activities of reading. In another word,

the news reading apps keep tracking users’ reading habits continuously and then generate

personalized news recommendations.

In this research work, we are interested in building a healthcare mobile app that can

combine personalized healthcare information recommendations and health status tracking.

There have been many successful recommendation engine based apps like Google News,
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Youtube, Amazon that can accommodate people’s needs of reading, watching, and shopping

based on users’ interests and other attributes like location, but the market lacks an app

that provides targeted and personalized healthcare information and meanwhile tracks users’

health status. Moreover, many health status monitoring apps on the market (e.g. Humana’s

Go365 mobile app) track users’ health status heavily based on survey information, but users’

subjective survey inputs are not always reflecting the real facts (e.g. a claimed early sleeper

has many reading logs in the deep night).

The major contributions of this work are summarized as the following:

• We define a user profile that jointly utilizes the user’s reading habits and health status.

The user profile will be used to recommend personalized healthcare news and articles,

thus provide better health guidance. On the other hand, users’ reading habits reflect

users’ health status more accurately in several specific domains.

• We developed a news recommendation mechanism based on the similarity of word

embeddings. The mechanism is effective and universal to other domains.

• We developed the software architecture of the healthcare information recommendation

engine in Azure, and based on that published an iOS app called “HealthRead” in Apple

App Store.

5.2 User Profile Construction

The user profile is the representation of users’ reading habits and health status, both of which

are changing over time. Reading habits consist of users’ sequential click history of news items,

reading time and duration, reading comments or judges (e.g. like or report), etc. Health

status information, gained from mobile OS API (e.g. iOS HealthKit), contains users’ physical

conditions (e.g. height, weight), vital signs (e.g. heart rate, blood pressure), exercise amount
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(e.g. daily steps, stand hours), sleep quality (e.g. deep sleep duration, overall sleep duration),

etc. The raw information of the above two types is used to generate the healthcare word

embeddings with the pre-trained BioWordVec [81]

To start simple, we consider two dimensions of the user profile: news entity and peer

users of similar properties. Each user profile can be formulated into a two-attribute tuple

P = < E,U >, where E represents top-k news entity word embedding list generated from

reading habits and health status {< e1, w1 >,< e2, w2 >, ..., < ek, wk >} , and U represents

the list of users that have the similar properties {u1, u2, ...}

5.3 News Recommendation

The newly-published healthcare news and articles are crawled in a pre-defined setting (time

interval, information sources, etc) and then stored in Elastic Search [82]. Then BioWordVec is

employed to extract word embeddings of each article, and then assign top-k label embeddings

A = {< a1, w1 >,< a2, w2 >, ..., < ak, wk >} to each article.

We divide the news queue segment in timestamp order (e.g. each news queue segment

contains 100 news). We compare the topic distributions of each news queue segment and the

word embeddings of each user profile. Note that we use the same length of the dimension

of user profile entity word embeddings and article feature embeddings, so here we use the

cosine similarity between a user profile and an article:

(1) Sim(PE, A) = PE ·A
||PE ||·||A||

where |PE| = |A| = k , and ||PE||, ||A|| are Euclidean norms.

We now select the news with the similarity greater than the pre-defined threshold in

the news queue segment to the candidate recommendation newsgroup. The candidate

recommendation newsgroup will be pushed to the users in PU . Note that some other
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properties of the news (e.g. popularity and recency) are taken into consideration in the final

ranking as adjustment factors.

5.4 Architecture

Figure 5.1 shows the software architecture of the healthcare information recommendation

engine we developed in this work.

We use News-Please[83] to crawl the healthcare news articles in a pre-defined group of

web domains. Data ingestion, embeddings extraction, and news recommendation are being

deployed in Azure Databricks Notebooks, and orchestrated by Azure Data Factory to run in

a pre-defined time interval. The news recommendation lists for each user profile are saved in

Azure SQL Data Warehouse and provided as a REST API via Azure App Service. We also

developed an iOS app called “HealthRead” and published it on Apple App Store.

Figure 5.1. HealthRead Architecture
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5.5 Conclusion

Despite many successful recommendation engine based apps accommodating people’s needs

of entertainment, the market lacks an app that provides targeted and personalized healthcare

information and meanwhile tracks users’ health status. In this paper, We define a user

profile that jointly utilizes the user’s reading habits and health status, and developed

a news recommendation mechanism based on the similarity of word embeddings of user

profile and news items. We developed the software architecture of the healthcare information

recommendation engine in Azure, and based on that published an iOS app called “HealthRead”

in Apple App Store. We will continue polishing and improving this App for better usability.
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CHAPTER 6

EXTRACTIVE SUMMARIZATION WITH VERY DEEP PRETRAINED

LANGUAGE MODEL1

6.1 Introduction

Document summarization is a widely investigated problem in natural language processing

and is mainly classified into two categories: extractive summarization and abstractive

summarization. Extractive approaches work in the way of extracting existing words or

sentences from the original text and organizing into the summary, while abstractive approaches

focus more on generating the inherently same summary that is closer to the way human

expresses. We will focus on extractive summarization in this work.

Traditional extractive summarization approaches can be generally classified into two

ways like greedy approaches[84] and graph-based approaches[85]. Recently, deep learning

techniques have been proven successful in this domain. Kageback et al. 2014[86] utilized

continuous vector representations in the recurrent neural network for the first time and

achieved the best result on the Opinosis dataset[87]. Yin et al. 2015 [88] developed an

unsupervised convolutional neural network for learning the sentence representations, and

then applied a special sentence selection algorithm to balance sentence prestige and diversity.

Cao et al. 2016 [89] applied the attention mechanism in a joint neural network model that

can learn query relevance ranking and sentence saliency ranking simultaneously and achieved

competitive performance on DUC query-focused summarization benchmark datasets. Cheng

et al. 2016 [90] developed a hierarchical document encoder and an attention-based extractor

and achieved results comparable to the state of the art on CNN/Daily Mail corpus [91]

without linguistic annotation.

1In proceedings of International Journal of Artificial Intelligence & Applications(IJAIA), Mar 2019,
permission granted by AIRCC Publishing Corporation
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The recent development of GPT [54] and BERT [53] has proven the effectiveness of

a generative pre-trained language model on a wide range of different tasks, such as text

classification, question answering, textual entailment, etc, but neither of these approaches

has been tested on the text summarization task.

In this paper, we introduced a two-phase encoder-decoder architecture based on BERT.

We fine-tuned this model on the CNN/Daily Mail corpus for single-document summarization

task. The result demonstrated that our model has state-of-the-art comparable performance

by both automatic metrics (in terms of ROUGE [92]) and human assessors. To the best

of our knowledge, this is the first work that applies BERT based architecture to a text

summarization task.

6.2 Training Dataset

CNN/Daily Mail [91] dataset is the most widely used large scale dataset for summarization

and reading comprehension. The training set contains 287226 samples. The validation set

contains 13368 samples. The test set contains 11490 samples. Each sample contains an article

and a referenced summary. After tokenization, an article contains 800 tokens on average, and

a corresponding summary contains 56 tokens on average.

6.3 Summarization Model

In this section, we propose the summarization model that efficiently utilizes BERT [53] as

the text encoder. The architecture is shown in Figure 6.1 and consists of two main modules,

BERT encoder and sentence classification.

The sentences of the original document will be feed into the BERT encoder sequentially

and be classified as if or not to be included in the summary. BERT is essentially a multi-layer

bidirectional Transformer [52] encoder. Each layer consists of a multi-head self-attention

sub-layer and a following linear affine sub-layer with the residual connection. The BERT
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Figure 6.1. The Architecture of the Summarization Model

encoding process utilizes query matrix W q, key matrix W k of dimension dk, and value matrix

W v of dimension dv, and it can be expressed as Eq. 6.1.

BERT (W q,W k,W v) = softmax(
W q(W k)T√

dk
)W v (6.1)

Given the input document as X = {x1, . . . , xm} where xi denotes one source token. The

BERT encoder’s output can be expressed as Eq. 6.2.

H = BERT (W q,W k,W v){x1, . . . , xm} (6.2)

In CNN/Daily Mail dataset, the ground truth is the referenced summaries without sentence

labels, so we follow Nallapati et al. [100] ‘s method to convert the abstractive referenced

summaries to extractive labels. The idea is to add one sentence each time incrementally to

the candidate summary so that the Rouge score of the current set of selected sentences is

increasing regarding the referenced summary. We stopped when the remaining candidate

sentences cannot promote the Rouge score for the referenced summary. With this approach,

we convert a text summarization task to a sentence classification task.
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Table 6.1. Comparative evaluation of BERT Summarization with recently reported summa-
rization systems

Models ROUGE-1 ROUGE-2 ROUGE-L
Pointer Generator [93] 36.44 15.66 33.42

ML + Intra-Attention [94] 38.30 14.81 35.49
Saliency + Entailment reward [95] 40.43 18.00 37.10
Key information guide network [96] 38.95 17.12 35.68

Inconsistency loss [97] 40.68 17.97 37.13
Sentence Rewriting [98] 40.88 17.80 38.54

Bottom-Up Summarization [99] 41.22 18.68 38.34
BERT Summarization (Ours) 37.30 17.05 34.76

Our BERT encoder is based on Google’s TensorFlow implementation (TensorFlow version

≥ 1.11.0). We used the BERT-Base model(uncased, 12-layer,768-hidden,12-heads, 110M

parameters) and then fine-tune the model on the training set of CNN/Daily Main corpus.

All inputs to the reader are padded to 384 tokens; the learning rate is set to 3× 10−5, and

other settings are by default.

6.4 Experiment Result

We evaluate ROUGE-1, ROUGE-2, and ROUGE-L [92] of our proposed model on CNN/Daily

Mail test dataset. This automatic metric measures the overlap of 1-gram (R-1), bigrams (R-2),

and the longest common subsequence between the model generated summaries and the refer-

ence summaries. We also listed the previously reported ROUGE scores on CNN/Daily Mail

in Table1for comparison. As Table 6.1 shows, the ROUGE score of BERT summarization is

comparable to the start-of-the-art models.

As per Schluter [101], extractive summarization performance tends to be undervalued

for ROUGE standard, so we also conduct a human assessment on Amazon Mechanical

Turk (MTurk) for the relevance and readability between Bottom-Up Summarization model

(best-reported score on CNN/Daily Mail) and our BERT Summarization model. We selected

48



Table 6.2. Human assessment: pairwise comparison of relevance and readability between
Bottom-Up Summarization [99] and BERT Summarization

Models Relevance Readability Total
Bottom-Up Summarization [99] 42 38 80
BERT Summarization (Ours) 49 46 95

Tie 9 16 25

3 human annotators who had an approval rate over than 95% (at least 1000 HITs) and

showed them 100 samples from the test dataset of CNN/Daily Mail, including the input

article, the reference summary, and the outputs of the two candidate models. We asked

them to choose the better one between the two candidate models’ outputs, or choose “tie”

if both outputs were equally good or bad. The relevance score is mainly based on if the

output summary is informative and redundancy free. The Readability score is mainly based

on if the output summary is coherent and grammatically correct. As shown in Table 6.2,

our BERT Summarization model achieves higher scores than the best reported Bottom-Up

Summarization model by human assessment.

6.5 Conclusion

In this paper, we present a two-phase encoder-decoder architecture based on BERT for extrac-

tive summarization task. We demonstrated that our model has state-of-the-art comparable

performance on CNN/Daily Mail dataset by both automatic metrics and human assessors.

To the best of our knowledge, this is the first work that applies BERT based architecture

to a text summarization task. In the future, we will test employing better decoding and

reinforcement learning approaches to extend it to an abstractive summarization task.

49



CHAPTER 7

TEALEAF CXMOBILE – REPLAYING REAL-TIME

CUSTOMER EXPERIENCE1

7.1 Introduction

With the rapid evolvement of mobile and cloud technology [104], improving and optimizing

business mobile apps’ customer experience is unprecedentedly important[105]. Mobile de-

velopers are expecting a tool that can help them know how customers are interacting with

their apps, and how their apps reacting to the customers’ behaviors[106]. If there is any

imperfection of the mobile app interface design or bugs being thrown out, they would want

to know that as earlier as possible. This helps a lot to accelerate the conversion rate and

avoid business losses.

There is a term “Growth Hacking” [107] that describes this kind of business strategy.

Growth Hacking is mainly the strategy of pushing product growth by testable and repeatable

data analysis. The traditional marketer has a very broad focus[108], and while there may

be many factors that influence the business growth, it is not as necessary for a newly built

product to do all around marketing channels [109]. Growth Hacking will help to find out the

most important factors that truly matter to your business, positive or negative, so that the

businesses can reinforce their strength and eliminate their drawbacks [110].

There are a lot of raw data analytics tools on the market to help those online businesses

make improvements, like Mixpanel [111], New Relic [112], Heap Analytics [113], Google

Analytics [114]. Most of those tools provide many metrics that track and measure users’

engagement, page views, mobile device status. They may also provide A/B Testing [115],

codeless instrumentation, or some general insights based on those data. But no one can tell

1 c© 2016 IEEE. Reprinted, with permission, from Yanke Hu, Tealeaf cxMobile – Replaying Real-Time
Customer Experience, IEEE International Conference on Geoinformatics, August 2016, Galway, Ireland
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businesses why and how their mobile customers are struggling in the way of what you see is

what you get.

IBM Tealeaf CxMobile is the first-ever tool on the market to combine qualitative data

with statistics, giving online businesses the ability to precisely see what their consumers see.

This unique solution gives online businesses the ability to capture and replay and analyze

every interaction in their mobile apps or on their mobile websites regardless of what device

or browser was used. Data entered by users is captured and synchronized with important

device event information such as orientation changes and touch screen interactions like swipe,

zoom, and scroll. This data stream lets online businesses understand customer behavior and

provides key insight around struggles the customers may be encountering on their mobile

channel. On the server side, Tealeaf dashboard quantifies the monetary impacts of any known

issue and offers the ability to use dimensional reporting to discover exactly what range of

devices and browsers are affected. This insight allows companies to prioritize issues based on

known quantities to eliminate the issues having the biggest impact on their business.

IBM Tealeaf CxMobile is using the Modularization SDK methodology [103], which is

essentially encapsulating core function modules into SDKs and centralize the backend report-

ing. Compared to the traditional Ad-hoc approach [116], Modularization SDK methodology

can bring several advantages including removing redundant implementation and bringing

more scalabilities.

In this paper, we will explain how Tealeaf Native Mobile Replay technology works. We

will also give an example of applying the Modularization SDK methodology to integrate

the Geo-Location logging functions into IBM Tealeaf CxMobile. The rest of the paper is

organized as the following. Section 2 describes the overview of Tealeaf CxMobile and Tealeaf

Native Replay technology. Section 3 explains how Tealeaf Native Replay technology works on

iOS and Android mobile platforms. Section 4 illustrates how to integrate the Geo-Location

logging functions into IBM Tealeaf CxMobile. Section 5 concludes the paper.
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7.2 Tealeaf CxMobile and Native Replay

Mobile experience plays a central role in the minds of consumers, and businesses know that

mobile is the key channel to win and retain their customers. Customers nowadays have high

expectations of businesses’ mobile channel performance. A poor mobile experience can affect

the overall customer relationship. So it’s key for organizations to have visibility into their

customers’ mobile experience. Companies must be able to quickly gather and analyze mobile

data in a way that allows them to understand mobile customers’ experiences and ultimately

improve their mobile sites and apps.

IBM Tealeaf cxMobile provides expansive visibility into the mobile customer experience.

It can help discover why mobile customers succeed or fail, automatically detect customer

struggles, obstacles, or issues, drill down into actual user behavior (complete with gestures),

translate customer feedback into actionable improvements, correlate customer behavior with

network and application data.

The key technology to make Tealeaf CxMobile unique is the Tealeaf Native Mobile Replay.

Tealeaf Native Mobile Replay is the ability to replay a user’s journey through a native iOS or

Android app. The capture and replay of the traditional websites’ experience has been the key

selling point of Tealeaf products for more than 10 years. But capture and replay the native

mobile apps’ experience is not that easy, since we don’t have a universal powerful language

like Javascript on mobile platforms that can react to any callback on any browser.

In Tealeaf product, the replay of Tealeaf mobile session occurs in Tealeaf’s browser-

based replay (BBR) window as show in Figure 7.1. The user’s journey through the app

is represented as a series of steps that are drawn onto a representation of a mobile device

screen.

The replay of Native iOS and Android applications relies on the native iOS and Android

SDKs that are configured to collect data about the users’ interactions. The SDKs will

periodically post JSON data representing these interactions to “Tealeaf Target” URL, where
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Figure 7.1. Tealeaf Browser-based Replay (BBR)

our monitoring and reporting servers are located. The JSON data posted by the SDKs

consists of client environment information and an array of messages that describe the user’s

journey through the application. Each message has a message “type” where different message

types represent information on different application events.

Type 10 and Type 4 messages are probably the most important message types for Native

Mobile Replay. Type 10 messages describe the screen state at a moment in real-time and

will be converted to HTML for replay in the Browser-Based Replay (BBR) window. Type

4 messages describe UI events that occurred while a mobile view was loaded, e.g. the user

clicked on a button, or entered a text box, or the app goes to background. The HTML

53



Figure 7.2. Native Replay messages

generated in BBR from the Type 10 message serves as a canvas that the Type 4 events are

drawn on. The example of a Type 10 message and a Type 4 message is in Figure 7.2.

Type 10 JSON messages will be converted into HTML to make them viewable. The

conversion from JSON data to HTML is controlled by Tealeaf Template Engine. It is

essentially a set of template scripts. Tealeaf Template Engine translates the root of each

Type 10 message into a template (Type10.html). In this process, the root template will hand

off sub JSON elements to sub-templates, each of which builds HTML fragments and then

combine them together. In general, templates will combine static HTML text with JSON

values.
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Figure 7.3. TealeafCxMobile SDK architecture

7.3 Native Replay iOS and Android

IBM Tealeaf CxMobile currently offers SDKs on iOS and Android platforms. The architecture

of Tealeaf CxMobile SDKs is shown in Figure 7.3

As Figure 7.3 shows, UICApplication provides entrance to SDK functions. Tealeaf APIs

provide developer-oriented function calls. Logger is the internal implementation of most

logging functions. TLFCache manages JSON data queue. JSON data models provide JSON

formats representing each component. Utils provide specific function classes used by Tealeaf

APIs, Logger, and TLFCache.

Due to the different lifecycles between the iOS and Android platforms, the instrumentation

varies a little bit.
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Figure 7.4. Geo-Location JSON Data

On both iOS and Android platforms, UICApplication needs to be set up at the app’s

entrance to monitor the global interactions. In iOS, a View can be considered a page that is

displayed on a mobile device. By default, we would like to record a View being displayed. We

can do that by placing the API logScreenLayout inside a ViewController’s viewDidAppear

function. In Android, an Activity can be considered a page that is displayed on a mobile

device. To record an activity being displayed, we can place the API logScreenLayout inside

an Activity’s OnCreate method. Since iOS provides a mechanism called Swizzling, which

essentially meaning that Objective-C runtime allows changing binding between selector

(method) declarations and implementations. In iOS SDK, we provide an auto instrumentation

option that the developer does not need to inject logScreenLayout call to every ViewController,

since we replaced the iOS original methods with our logging functions.
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Figure 7.5. Tealeaf Office West Corner

7.4 Geo-Location Logging Implementation

As location-based services have been increased with the mobile trend, customer attitude

is shifting towards being more comfortable with sharing locations. So it is increasingly

important to deliver excellent mobile experiences with Location and contextual awareness. In

this session, we will explain how to add Geo-Location Logging module to Tealeaf CxMobile.

First, let’s consider several scenarios that Geo-Location is being considered important:

1. Airline companies want to know if users access the application when they are in the

airport because they could enable an easier way to access flight status.
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Figure 7.6. Tealeaf Office East Corner

2. Hotel companies want to know whether users reserved a hotel room from their home,

or the airport, or somewhere else.

3. Banks want to know how many customers use the application when they are in the

bank as opposed to when they are not.

4. E-Commerce companies want to know where customers are when they access the

application and complete their transactions.

Based on these function requirements, our solution should be able to make the following

points:

58



1. CxMobile iOS and Android SDKs should be able to record the Geo-Location information

of the user when the device is granted with geo permission: latitude, longitude, accuracy.

2. CxMobile SDKs should be able to detect when the device is disabled with Geo-Location.

3. Geo-Location functions should be configurable with some flexibility.

With the approach proposed in [103], we implemented the logGeoiocation API. It can be

placed at any callback function of the user interactions. We also provide more configuration

options for developers to enable or disable Geo-Location Logging and set time out. Geo-

Location information is placed as a Type 13 message. When the device is granted with

Geo-Location permission, the data is like Figure 7.4.

We tested the accuracy of the Geo-Location logging functions in our San Francisco Office.

Normally the accuracy is within 50 meters. We projected the coordinates on Google Map

[117]. You can see it can tell the different office corners as Figure 7.5 and Figure 7.6 shows.

7.5 Conclusion and Future Work

This paper introduces IBM Tealeaf CxMobile and its Native Mobile Replay technology. With

our unique Native Mobile Replay technology, Tealeaf CxMobile can help customers to replay

a user’s journey through a native iOS or Android app in the way of what you see is what

you get rather than mere data analysis. As Tealeaf CxMobile being adopted by most of the

banks, insurance companies, airplane companies in North America and Europe, we proved

that including visual replay functions into data analysis tools is extraordinarily important.

In the paper, we illustrate the principles of Tealeaf Native Mobile Replay and how it works

on iOS and Android platforms. We also give an example of applying the Modularization

SDK methodology [103] to integrate Geo-Location logging functions into Tealeaf CxMobile.

In the future, we still need to provide the method of building a better reporting system for

Geo-Location Logging.
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CHAPTER 8

A FAST APPROACH TO ENABLE MOBILE APPS WITH GEO LOCATION

LOGGING AND REPORTING1

8.1 Introduction

With the rapid development of mobile and cloud technology, the cost of collecting and

studying human behavior data is largely reduced. App vendors or researchers are interested

in how the apps are being used, how much time the users stay on a certain mobile view, and

if exceptions are happening during a user session, etc. The answers to all these questions

can be found in the data collected in real-time when the user is running the app, and in the

analytics of the data.

A mobile app can send back to the backend management portal most of sensor-related

data, device status information, UI changing data, and so on depending on the developers’

needs. Developers can just go ahead implementing the functions they want. This is called

Ad-hoc Function Implementation. Moreover, there are plenty of free or paid analytics tools

on the market. Those analytics tools are designed to be integrated with a mobile app easily

and provide specialized insights. For example, Google Analytics [114] can give you insight

about who uses your apps now, on what devices, and where they come from. It also provides

event tracking and user flow visualization; Adobe Analytics [118] can give you insights about

user engagement within your mobile app, including how frequently consumer launch the

channel, whether they make purchases from it, and it provides better campaign analysis

and dashboard reporting; IBM Tealeaf [102] can capture all the UI information and user

gestures such as tapping, swiping, pinching, zooming, scrolling and device rotation, etc. It

1 c© 2015 IEEE. Reprinted, with permission, from Yanke Hu, Xiwang Zhang, Liangmin Hu, A Fast
Approach to Enable Mobile Apps with Geo-Location Logging and Reporting, IEEE International Conference
on Geoinformatics, June 2015, Wuhan, China
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also provides real-time replay of what exactly users see and operate on mobile devices. This

is called Vendor SDK Implementation.

Both Ad-hoc Function Implementation and Vendor SDK Implementation have some

advantages, but neither is perfect. For Ad-hoc Function Implementation, developers have

more freedom to customize their function modules, and they also have full control of the

apps’ reporting backend. But if an organization maintains several apps, and it wants to

monitor the same sensor information trend on all the apps, it will be chaotic and redundant

to implement this sensor data collecting function for every individual app. For the Vendor

SDK Implementation, it has the benefit of easy instrumentation, but an SDK from a certain

vendor may provide a lot of unnecessary functions, and it may not provide the exact function

you need. You don’t have the full control and customization of the backend reporting. And

it may not be free.

In this paper, we propose an approach of Modularization SDK Implementation and

Cloud reporting architecture, to enable Mobile apps with sensor data logging and reporting

by inserting one single line of code. Compared to Ad-hoc Function Implementation and

Vendor SDK Implementation, Modularization SDK Implementation encapsulates the sensor

information logging component into developers’ internal SDKs. It can be reused in any

app being maintained by the same organization. The backend reporting is also fully under

control and customizable. We will use Geo-Location logging as an example to illustrate how

this approach works on iOS and Android platforms, which covers more than 95% of mobile

platform shares globally according to IDC by the end of 2014 [119].

The rest of the paper is organized as the following. Section 2 illustrates how Geo-

Location Modularization SDK Implementation works on iOS and Android platforms. Section

3 introduces the commonly used backend reporting architecture. Section 4 compares our

proposed approach versus the traditional approach. Section 5 concludes the paper.
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8.2 Geo-Location Modularization SDK Implementation on Mobile Platforms

One of the most important differences between web services and mobile apps is that the user

location is changing much more frequently during a user session. The user location data can

bring a lot of insights about the users’ habit, interest, etc, thus it can be used in a variety

of scenarios, like health monitoring, point of interest exploring, mobile social network, etc.

Since the initial release of iOS and Android system, both platforms provide very easy to use

location-based framework. This greatly stimulates the prevalence of Location-Based Service

(LBS) in the mobile era.

Location-based framework provides the APIs for developers to get location status and

device heading information. It utilizes a combination of cellular, WiFi, Bluetooth, and GPS

to get your location with your permission. To do Location-Based Service analytics, the

mobile app must have the module to collect the Location data containing longitude, latitude,

accuracy information of the user device, and send the data back to the backend portal.

8.2.1 iOS Geo-Location Module Implementation

The Location-based framework on iOS platform is Core Location framework, which provides

a suite of Objective-C interfaces to get users’ location and heading information. The basic

unit of an iOS app is a View Controller, which is very similar to a single web page of a

web service. When an iOS app starts, the UIApplication object sets up the main loop at

launch time to handle the updates of those View Controller classes. Every iOS app has a

global delegate object to handle the app’s state transitions, like app start, becoming active,

terminated, etc. In the global delegate class, method didFinishLauchingWithOptions [120]

is the place where to put the one line instrumentation code if the developer wants to log

Geo-Location when the app launch. Other than logging Geo-Location when the app starts,

the developer can also choose to log Geo-Location when a specific View Controller begins

to show up. This can be simply done by putting the one-line instrumentation code inside
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viewDidAppear method of a View Controller class [121], which is the starting point of the

life cycle of a View Controller instance.

Once you have the entry point of the iOS Geo-Location Modularization SDK, the next

thing you need to have is to create an instance of the CLLocationManager class, and set

values for its desiredAccuracy and distanceFilter properties. To get the location updating

notifications, the entry class must be assigned with a CLLocationManagerDelegate protocol.

Firing the startMonitoringSignificantLocationChanges method of your CLLocationManager

instance, and you will get the updated Location data from the didUpdateLocations method of

the CLLocationManager instance [122]. The Location data can be sent back to the backend

portal by wrapping a flushing queue inside a dispatch async function [123].

8.2.2 Android Geo-Location Module Implementation

The Location-based framework on Android platform is the android.location package, which

provides the classes that define Android location-based services. The basic unit of an Android

app is an Activity [124]. Compared to the View Controller in iOS, the Activity is a more

independent running instance. Though most of the Android apps have an Android Application

instance watching the apps’ life cycle, it’s not indispensable. The simplest Android app can

just have one Activity without any Application instance. All the Android Activities must be

registered in the AndroidManifest.xml configuration file. The entry Activity of the app is

also specified in AndroidManifest.xml by a MAIN action tag and LAUNCHER category tag.

When an Android app starts, the app will first go to the onResume callback function of the

entry Activity. This is where to put the one line instrumentation code if the developer wants

to log Geo-Location when the app launches. Other than logging Geo-Locaion when app

starts, the developer can also choose to log Geo-Location when a specific Activity launches.

This can be simply done by inserting the one line instrumentation code inside the onResume

callback function of that specific Activity class.
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Table 8.1. iOS & Android Implementation Difference

iOS Android
Geo-Location Logging CLLocationManagerDelegate, LocationManager,

CLLocationManager LocationListener
App Launch didFinishLaunchingWithOptions Application.onCreate
ViewAppear UIViewController:viewDidAppear Activity.onResume
Send Data dispatch async AsyncTask

Once you have the entry point of the Android Geo-Location Modularization SDK, the

next thing you need to do is to create an instance of the LocationManager class citegeo10.

You don’t need to define any delegate for a specific Activity class like what you have to do for

an iOS View Controller, because this LocationManager instance already get the app context

from Context.LOCATION SERVICE parameter. The next step is to declare an instance of

LocationListener [126], and use it as the parameter of the requestLocationUpdates call of the

LocationManager instance. Now you should be able to get the updated Location data from

the getLastKnownLocation call of the LocationManager instance. The Location data can be

sent back to the backend portal by implementing an AsyncTask class [127].

On Android platform, using Google Location Services API can give a more powerful way

of handling location providers, user movement, and location accuracy than android.location

package, but in most cases, the android.location package is good enough and much easier

to use. The android.location package is built in with Android SDK, and doesn’t require

additional library jar file.

Table 8.1 displays the different terminologies of implementing geo-location modules on

iOS and Android platforms.

8.3 Cloud Reporting Architecture

The traditional Analytics tools usually provide an on-premise reporting backend. When you

buy the software suite from the vendor, the vendor will have a professional support team
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helping you setup and configure the on-premise server. This on-premise approach is still

very important to those services that are dealing with sensitive data, need high security and

require full control of the systems. But as the price of hardware and bandwidth dropping

fast, the cloud reporting backend becomes more and more popular with small businesses.

Cloud backend is more cost-effective when your business coverage is still small, and you

don’t need to worry too much to invest huge dollars in expensive hardware and IT staff.

There are several popular cloud reporting server options on the market, like Amazon Web

Services (AWS) [128], Google App Engine (GAE) [129], Microsoft Azure, IBM SoftLayer, etc.

Among them, we will discuss the most important two – AWS and GAE, and compare their

advantages and disadvantages.

8.3.1 Amazon Web Services

Amazon Web Services (AWS) is a collection of remote computing services offered by Amazon.

AWS mainly offers the Infrastructure-as-a-Service (IaaS). IaaS works in such a way that

organizations outsource servers, storage, networking, etc to IaaS providers, and pay as how

much they use those resources like we pay electricity bill monthly. This makes it very easy

for start-up or experimental projects, avoiding investing expensive in-house hardware at one

time, but getting more customers and users first. IaaS providers normally provide virtual

machines, networking and hardware. IaaS providers also handle system maintenance and

backup. IaaS users have the freedom to configure applications, operating systems, etc.

8.3.2 Google App Engine

Google App Engine (GAE) is a Platform-as-a-Service (PaaS) platform for hosting web

applications. You are running your web applications on a Google defined platform. You don’t

know what exact operating systems your applications are running on, and your applications

normally run across multiple servers. The most appealing feature of GAE is that it scales
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automatically for web applications as the number of requests increases. When the request

demands grow, you don’t need to manually add more machines or bandwidth, GAE platform

will automatically allocate more resources for your application. The benefit of GAE is that it

removes many system administration and configuration works when the request demands are

continuously growing, but the restriction of GAE is also obvious. It can only run a limited

variety of applications designed for GAE infrastructure. Currently, GAE mainly supports

Python and JAVA, and their related frameworks. While AWS provides more freedom of the

customization of the operating systems, GAE provides better scalability and reliability.

8.4 Discussion

As the technical aspects of Modularization SDK Implementation discussed in the former

sessions, we want to conclude a summary of the difference and benefits of our proposed

approach according to the traditional approach.

Compared to the traditional approach in Figure 8.1, our approach provides 3 advantages:

1. Reduce the duplicate geo-location implementations on client-side mobile apps. This

makes it much easier when the vendor updating geo-location functions in multiple

mobile apps.

2. Centralize the server reporting in the cloud. This brings more scalability, reliability,

better reporting, and easier for starting up and testing new ideas.

3. Unifies the client server communications on different mobile platforms.

Our approach is illustrated in Figure 8.2.
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Figure 8.1. Traditional Geo-Location Logging Implementation
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Figure 8.2. Improved Geo-Location Logging Implementation

8.5 Conclusion

This paper proposes an approach of Modularization SDK Implementation and Cloud reporting

architecture, to enable Mobile apps with sensor information logging and reporting by inserting

one single line of code. We also use Geo-Location logging as an example and explains how it

works on iOS and Android platforms. Our approach can bring several advantages including

removing redundant implementation, bringing more scalability, etc compared to the traditional

approach. In the future, we will provide more implementation samples based on this approach.
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CHAPTER 9

CONCLUSION

This dissertation presents the research results of several interesting problems in developing

the next generation healthcare information platform, that can help people better understand

their health status, educate themselves healthcare-related information, and connect them

with hospitals and doctors. Correspondingly, it will help US health institutes better track

ongoing COVID-19 trend and defend against future epidemics.

Despite the leading position of US fundamental medical research, the US healthcare

information platform development is lagging. Our results have not only contributed to the

research progress of healthcare analytics but also brought practical values to the development

of the future healthcare information platform.

Our contributions are summarized as the following:

1. Physiological signals modeling and Faster convolutional feature engineering method

that can greatly speed up training and inference of modeling vital signs time series

data.

2. Transfer learning of deep pre-trained language models into healthcare domains and

pruning and knowledge distillation methods that greatly shrink the deep learning models

and make them possible or easier to be deployed on mobile devices.

3. Mobile deployment of deep learning models and Passive mobile capture techniques to

monitor user health status silently and comprehensively compared to the traditional

survey method.

4. Seamless adoption of the most recent research progress in deep learning and make it

into practical healthcare solutions.
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In the future, we will continue making efforts for developing more mature healthcare

information systems and applications that can help people better understand their health

status, answer their health-related questions, and connect them with hospitals and doctors,

thus eventually defend the ongoing COVID-19 and future epidemics.
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