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Laser trimming is used extensively to ensure accurate values of on-chip precision resistors

in the presence of process variations. Such laser resistor trimming is slow and expensive,

typically performed in a closed-loop, where the laser is iteratively fired and some circuit

parameter (i.e. current) is monitored until a target condition is satisfied. Toward reducing

this cost, we introduce a novel methodology for predicting the laser trim length, thereby

eliminating the closed-loop control and speeding up the process. Predictions are obtained

from wafer-level spatial correlation models, learned from a sparse sample of die on which

traditional trimming is performed. Effectiveness is demonstrated on an actual wafer of laser-

trimmed ICs.
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CHAPTER 1

INTRODUCTION

Ensuring performances of high-end integrated circuit (ICs) often relies on precision resis-

tance values or resistance ratios. To this end, IC laser trimming has been extensively used

for several decades as a means to controlling the impact of process variation on these sen-

sitive resistors, which, in turn, assist in calibrating shifted electrical parameters of the IC.

As reported in (Bloomstein, 1999), over 70% of the world’s analog semiconductor companies

use laser-based trimming and/or link-blowing in thin-film semiconductor and silicon man-

ufacturing. Several on-chip resistors are placed in ICs to trim the parameters in question

and trimming is performed by burning away small portions of these resistors using a laser

trimming machine, in order to raise their resistance values until a target is reached. This

laser trimming operation is usually conducted while the circuit is being tested by automatic

test equipment (ATE), leading to appropriate final values for the resistors in the trimmed

circuit. Figure 1.1 illustrates the objective of this trimming procedure, which essentially

seeks to center the distribution of IC performances in order to enhance the manufacturing

yield of a given design.

While this laser trimming procedure permits test engineers to efficiently center the dis-

tribution of IC performances and enhance manufacturing yield, it remains an expensive

processing step which significantly increases the IC production costs (Ramirez-Angulo et al.,

2011). Indeed, trimming is a lengthy procedure which is typically performed in a closed-

loop, where the laser is iteratively fired and the IC parameter in question is monitored until

a target condition is satisfied.

In this work1, we introduce a methodology for reducing the trimming cost by predicting

the laser trim length, thereby eliminating the closed-loop control and speeding up the trim-

1 c©2014 IEEE. Reprinted, with permission, from C. Xanthopoulos, K. Huang, A. Poonawala, A. Nahar,
B. Orr, J. M. Carulli, and Y. Makris, “IC laser trimming speed-up through wafer-level spatial correlation
modeling,” IEEE International Test Conference, October 2015
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Figure 1.1. Trimming procedure to center IC performances that shift due to process varia-
tions

ming process. In particular, we employ a spatial correlation modeling methodology based

on Gaussian Process (GP), which has been successfully implemented in the context of ana-

log/RF test cost reduction (Kupp et al., 2012b,a; Huang et al., 2013b,a). In this approach,

instead of performing the closed-loop trimming procedure for every die on a wafer, we only

trim a small sample of devices. The effective trim lengths of the sampled devices are then

used to train spatial regression models, which are subsequently used to predict the required

trim length for the remaining die on the wafer. The underlying conjecture is that the re-

quired trim length is spatially correlated across a wafer, therefore a sample is sufficient for us

to accurately predict trim lengths at other die locations. The effectiveness of the proposed

approach is demonstrated on an actual wafer of laser-trimmed ICs. Herein, we show that

the proposed approach significantly reduces the time and, thereby, the cost of the trimming

procedure.

2



CHAPTER 2

IC LASER TRIMMING

As the semiconductor industry continues scaling devices toward smaller process nodes, main-

taining acceptable yield despite process variations has become increasingly challenging. Un-

certainty is introduced by various sources during manufacturing and each step, such as

lithography, ion implantation, thermal treatments, etc., can be considered as a source of

variation. To handle these challenges, designers have traditionally resorted to conservative

circuit design approaches, trading off some performance for higher yield and better variation

tolerance.

Alternatively, post-silicon calibration methods, such as laser trimming, can be used to

adjust various parameters of interest in an IC and to compensate parametric shifts caused

by process variation. A number of laser trimmable resistors are often implemented on-die for

this purpose and, depending on the application and the required tolerance, various cutting

patterns and resistor geometries have been introduced. Accordingly, the IC laser resistor

trimming procedure is comprised of three main components (Deluca, 2002): the device under

test (DUT), the guided laser trimmer and a measurement tracking system.

During the laser trimming process, the guided laser beam fires pulses on the resistor

causing the material on its surface to heat rapidly and vaporize. Consequently, the resistance

value is increased after each laser pulse. The amount by which the resistance increases after

a single pulse determines the accuracy and speed of the trimming process. Tracking of

the desired parameter is achieved by a measurement system, as shown in Figure 2.1. The

connection between the DUT and the measurement system is usually done by probes which

are connected to the ends of the laser trimmable resistors. As shown in Figure 2.1, the

trimmed resistance value is converted to a current value by a current sensor. The converted

current value is monitored after each laser pulse and is compared with a user specified target

value, as shown on the upper left side of Figure 2.1. The target current value is typically

3



set according to the specification limits of one or more particular performances of the DUT

and is being fed to the comparator by a computer driven control system. When the target is

reached, a stop signal is sent to the laser to halt the cutting, as shown on the upper right side

of Figure 2.1. The total trimmed length ltot on the resistor during the trimming procedure

can then be expressed as:

ltot = l1 + l2 + · · ·+ lk (2.1)

where li denotes the trimmed length cut by the i-th laser pulse and k denotes the total

number of laser pulses required to reach the target current value. Consequently, the time

required for the laser control system to achieve the target current value is expressed as:

ttot =
k∑

i=1

(tcut i + tset i) (2.2)

where tcut i denotes the trimming time on the i-th laser pulse and tset i denotes the settling

time that is needed in order for the current measurement that is fed to the comparator to

stop rippling. As we can observe in equation (2.2), the total time of the laser trimming

process depends on the time required to perform each laser pulse, the total number of laser

pulses and the settling time needed to obtain an accurate measurement. In high-accuracy

applications, this constraint hinders the laser trimming process as a large number of laser

pulses is required to achieve the target, thus increasing the total penalty induced by settling

time.

In order to speed up the trimming process, a two-resistor approach is commonly employed

by designing trimmable resistors into pairs, as shown in Figure 2.1. The first resistor is

trimmed to an initial target value with longer pulses and fewer intermediate measurements.

This procedure is known as coarse-trim and although it is not as precise as the next step, it

4
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Figure 2.1. Measurement tracking system for laser control

is significantly faster. However, a conservative target is typically set in order to avoid over-

trimming beyond the final target, which would result in yield loss. Following the coarse-trim,

small cuts are performed on the second resistor until the final target value is reached. This

is referred to as fine-trim and is much slower than its coarse counterpart. Figure 2.2 depicts

the expected speedup between the single resistor and the paired-resistor laser trimming

techniques, with ∆t denoting the time saved by the paired-resistor approach.
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Figure 2.2. Single vs Paired resistor processes
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CHAPTER 3

PROPOSED APPROACH

As noted in the previous section, tracking of the current value during trimming is an iterative

and time-consuming process. The current value corresponding to the trimmed resistance is

measured and compared to the target value after each laser pulse. The number of intermedi-

ate measurements delineates the time overhead, as portrayed in Figure 2.2. In this work, we

propose a new approach to speed up the trimming procedure by employing a spatial correla-

tion modeling methodology. In the proposed approach, instead of using the time-consuming

tracking system to monitor the trimming process for every die location on the wafer, we use

it only for a sparse subset of die samples. We, then, use the recorded data to build a model of

the trim length as a function of the die coordinates on the wafer, using which we predict the

required trim length for the remaining die. Finally, we instruct the laser to cut the resistors

based on the predicted length, without taking any intermediate current measurements, i.e.

without engaging the closed-loop control. Below, we introduce three methods for predicting

the required trim length.

3.1 Length-based, original target prediction.

The first method uses directly the trim lengths of the sparse sample of die that are trimmed

using the closed-loop approach. The conjecture here is that this physical parameter (i.e. the

trim length) is spatially correlated across the wafer. Therefore, a model that predicts the

required trim length as a function of the die coordinates can be trained. The underlying

idea is shown in Figure 3.1, where the sampled lengths are used to train the statistical model

which, in turn, is used to generate the predicted lengths. For this purpose, we use the

Gaussian process spatial correlation model, which we explain in detail in Section 4. These

lengths will be fed directly to the laser and will be trimmed in a single laser pulse. We refer to

7



the process of using pre-determined trim lengths as open-loop, as opposed to the closed-loop

approach which iteratively trims and measures the current in multiple small increments. In

Figure 3.2, we depict the expected time savings of our approach. The black line represents the

classic closed-loop trimming method as the baseline. The blue line represents the length-

based open-loop method. As may be observed, the open-loop completes the coarse-trim

faster and, as a result, the complete trimming (i.e coarse plus fine) is expedited over the

closed-loop approach. The saved time is denoted by ∆t1.

3.2 Rate-based, original target prediction.

Alternatively, for reasons that will become apparent in the next subsection, we can predict

the required trim length indirectly by first building a GP spatial correlation model that

predicts the trim rate of each die as a function of die coordinates. We define the trim

rate as the ratio of the difference between the pre-trim and the post-coarse trim current

measurements over the trimmed length. Let rt denote the trim rate for a particular die

location, then rt can be expressed as:

rt =
mPre −mPost

L
(3.1)

where mPre denotes the pre-trim current measurement, mPost the post-coarse trim current

measurement and L denotes the corresponding trimmed length. In this case, the sampling

process depicted in Figure 3.1 would generate the predicted trim rate values r̂t and pre-trim

current measurements ˆmPre for every non-sampled device, which in turn would be used to

compute the coarse-trim length L̂:

L̂ =
ˆmPre −mtarget

r̂t
(3.2)

8
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Figure 3.1. Proposed approach for trimming speed-up

where mtarget denotes the target current which controls the closed-loop and terminates the

coarse-trim stage in Figure 2.1.

Since in this method we are predicting the length needed to reach the coarse target, just

as we did in Section 3.1, the time savings are the same as before. In other words, the blue

line in Figure 3.2 also depicts the expected savings of the rate-based prediction.

3.3 Rate-based, optimized target prediction.

Predicting the required trim length based on the trim rate offers an additional advantage.

Specifically, we can now set the target current to any value and predict the corresponding

trim length, rather than being constrained by the original target of the closed-loop method.

In fact, the long laser beam of the coarse-trim stage forces the test engineer to set a rather

pessimistic target value in order to avoid over-trimming. As a result a longer cut, at the much

slower fine-stage is required for the final target to be reached. In an open-loop configuration,

however, we can be more aggressive at the coarse-trim stage and seek to get closer to the

final target value, thereby further improve the overall savings.

Using the value of maximum expected error and the difference between the post-coarse

trim target current and the final post-fine target current, we can then determine a new

9
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Figure 3.2. Current value vs. trim time in paired resistor trimming approach

safe post-coarse trim target value which is closer to the final post-fine trim target current.

Then, we can replace the new post-coarse trim current target in equation 3.2 and get the

corresponding coarse-trim length required, as shown below:

L̂ =
ˆmPre −mOptimized target

r̂t
(3.3)

where mOptimized target is the new target post-coarse trim current value and L̂ is the predicted

trim length required to reach this new target. Revisiting Figure 3.2, the green line depicts

the process when the optimized target has been set closer to the final one. In this case,

the open-loop coarse-trim is again faster than the closed-loop version, even though it cuts

a longer length, because it requires a single laser pulse. Moreover, additional savings are

obtained by the fact that the slow fine-trim stage has a much shorter distance to cover. The

overall amount of time that is being saved is reflected by ∆t2.

10



3.4 Restriction for laser trimming deployment.

As aforementioned, the goal of laser trimming is to control the resistance value with high

precision. Thereby, the length of the laser cuts have to be also accurate. As in every machine

learning method, in the proposed approach there is a prediction error involved which can

be either positive or negative. Without the existence of a secondary resistor (ie. fine-trim)

both errors could force the device outside it’s specification range. On the other hand, if a

fine-trim resistor is used, negative errors are not a threat anymore and it is up to the test

engineer to set the appropriate coarse-trim target so that the probability of over-trimming

a resistor is low.

While the two-stage resistor configuration is currently being used in the industry, there

are cases where a single-stage is preferred. As explained, the proposed method can only

be applied to a two-stage setup, which leads to a tread-off between testing time and area

overhead.

11



CHAPTER 4

WAFER-LEVEL SPATIAL CORRELATION MODELING

Recent research on modeling spatial measurement correlation has shown great promise in

capturing wafer-level spatial variation and, thereby, reducing test cost of electrical measure-

ments (Liu, 2007; Reda and Nassif, 2010; Zhang et al., 2011; Chang et al., 2011; Kupp et al.,

2012b,a; Huang et al., 2013a). The underlying idea is to collect measurements for a sparse

subset of die on each wafer and subsequently train statistical spatial models to predict perfor-

mance outcomes at unobserved die locations. For example, in (Reda and Nassif, 2010), the

expectation-maximization (EM) algorithm is used to estimate spatial wafer measurements,

assuming that data comes from a multivariate normal distribution and the Box-Cox transfor-

mation is used in case data is not normally distributed. The “Virtual Probe” (VP) approach

(Zhang et al., 2011) models spatial variation via a Discrete Cosine Transform (DCT) that

projects spatial statistics into the frequency domain. The author of (Liu, 2007) laid the

groundwork for applying Gaussian Process (GP) models to spatial interpolation of semicon-

ductor data based on Generalized Least Square fitting and a structured correlation function.

This fundamental model has been further enhanced using radial feature inclusion, multiple

kernel evaluation and introduction of a regularization parameter (Kupp et al., 2012a,b), as

well as a clustering approach to handle spatial discontinuous effects (Huang et al., 2013a).

The resulting comprehensive GP model has dramatically improved both prediction accuracy

and computational time, as compared to the VP model, and is therefore the one that we

will use in this work.

12



4.0.1 Gaussian Process

In this chapter, we briefly articulate the theoretical underpinnings of Gaussian process

model.1 The fundamental concept underlying Gaussian processes is to model function out-

puts as drawn from a prior distribution with a fixed mean and a kernel-based covariance

function. This approach works by extrapolating a function over a Gaussian random field

on limited observations (Rasmussen and Williams, 2006). Consider a training set of nt data

points {m1, . . . ,mnt} located at the Cartesian coordinate denoted by X = {x1, . . . ,xntt},

x = [x, y]. Using the GP approach, we define a Gaussian process as a collection of ran-

dom variables f(xi), i = 1, . . . , nt, for which any finite set of ns function evaluations f(xj),

j = 1, . . . , ns, ns ≤ nt over the coordinates is jointly Gaussian-distributed. To derive a GP

model for regression, we first consider a noise-free linear model:

f(x) = φ(x)>w (4.1)

where φ(x) is a function of x mapping the input columns into some high-dimensional feature

space, and w is the coefficient of the linear model which can be assigned a Bayesian prior

such that w ∼ N (0,Σp). By assuming the random variables f(xj) have zero mean, we can

then specify the GP with mean and covariance functions:

E[f(x)] = φ(x)>E[w] = 0, (4.2)

E[f(x)f(x′)] = φ(x)>E[ww>]φ(x′)

= φ(x)>Σpφ(x′) (4.3)

1Most of this chapter has been adapted from (Kupp et al., 2012b) and is included for the purpose of
completeness. Interested readers are also referred to (Rasmussen and Williams, 2006) for further details on
Gaussian process modeling.
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Figure 4.1. Overview of Gaussian Process Regression.

Figure 4.1 depicts exactly how a non linear input space shown at the left side can be

mapped to a higher dimensional feature space, represented by the bottom plane at the right

side of the same figure.

Recall that our ultimate goal of building a Gaussian process-based regression model is to

somehow capture spatial variation in f(x) as a function of the coordinates x. The following

discussion demonstrates how we can accomplish this task by modeling our data as drawn

from a process with a covariance function that depends on spatial location. By taking this

approach, proximal data points are modeled as being highly covariant, and distant points

are modeled with low covariance. This codifies our intuition and a priori knowledge of the

domain; we expect the variation of wafer-level measurement data to strongly correlate to

spatial coordinates.

Consider the covariance function specified in equation (4.3). We can redefine the covari-

ance matrices Σp as (Σ
1/2
p )2, and rewrite Equation 4.3 as:

E[f(x)f(x′)] = φ(x)>Σpφ(x′) (4.4)

= φ(x)>(Σ1/2
p )>Σ1/2

p φ(x′) (4.5)

14



We now introduce the parameter ψ(x) by defining ψ(x) = Σ
1/2
p φ(x), and subsequently rewrite

the covariance of Equation 4.3 as:

E[f(x)f(x′)] = φ(x)>(Σ1/2
p )>Σ1/2

p φ(x′) (4.6)

= 〈ψ(x), ψ(x′)〉 (4.7)

Crucially, this covariance function is formed as an inner product, permitting us to leverage the

kernel trick(Aizerman et al., 1964) and express equation (4.7) as a kernel function k(x,x′).

In other words, the covariance between any outputs can be written as a function of the

inputs using a kernel function, without needing to explicitly computing φ(x) as shown in the

right side of Figure 4.1. Many kernel functions exist, and any function k(·, ·) that satisfies

Mercer’s condition(Vapnik, 1995) is a valid kernel function. However, only a handful of

kernels are commonly used. Among these common kernels, the most prevalent is the squared

exponential, also known as the radial basis function kernel. In this work, we employed a

squared exponential kernel of the form:

k(x,x′) = exp

(
− 1

2l2
|x− x′|2

)
(4.8)

where l is some characteristic length-scale of the squared exponential kernel. Employing this

kernel is equivalent to training a linear regression model with an infinite-dimensional feature

space. Substituting our squared-exponential covariance function into the definition of the

Gaussian process, we arrive at a Gaussian process formulation as:

f(x) ∼ GP(0, k(x,x′)) (4.9)

15



Once the covariance function is specified, for new input x∗, we can readily predict f∗(x∗) by

computing the conditional distributions of the joint Gaussian distribution.

f∗|X, t,x∗ ∼ N (k>∗K
−1t,

k(x∗,x∗)− k>∗K
−1k∗ (4.10)

where X is a matrix denoting observed die locations, t denotes measurement values at

observed die locations, x∗ is a location we wish to extrapolate to, and where we have defined

K = K(X,X ′) as the matrix of the kernel function k(x,x′) evaluated at all pairs of observed

training die locations. We have also defined k∗ = K(X,x∗) as the column vector of kernel

evaluations between the unobserved target point and the entire set of observed training

points, and lastly, k(x∗,x∗) as the variance of the test function value at unobserved point

x∗.

In this work, we primarily concern ourselves with point predictions, and so we simply

use the distribution mean f̄∗ = k>∗K
−1t to generate a point prediction from the predictive

distribution. This corresponds to decision-theoretic risk minimization (Vapnik, 1998) using

a squared-loss function.

16



CHAPTER 5

EXPERIMENTAL RESULTS

We now evaluate the effectiveness of the proposed method on two dual-stage laser-trimmed

precision resistors on a current transmitter device. The resistors have a top hat geometry

(Deluca, 2002) and they are coarse-trimmed with a single plunge type cut (Deluca, 2002).

Our dataset consists of one wafer with 1,924 devices, on which both coarse and fine laser trim

has been performed for each of the two resistors of interest. Figure 5.1 shows the data that

was collected during each stage of the process. Specifically, prior to trimming, the pre-trim

current value is measured and logged. Coarse trim is then performed in a closed-loop, until

the monitored current reaches the target value. At that point, the post-coarse trim current

value, the coarse-trim length, and the coarse-trim time are logged. Subsequently, fine-trim

is performed in a closed-loop, until the final current target is reached. The fine-trim time

is then logged. In our analysis, current and length measurements are used for building the

spatial correlation models, while time measurements are used for predicting the speed-up

achieved by our method.

For the purpose of our experiment, we randomly sample 10% of the available die in order

to build wafer-level spatial correlation models. Figures 5.2(2) and 5.3(2) show the sampled

die locations for each resistor. We note that the same 10% sample is used for both resistors,

emulating what would happen in manufacturing (i.e. the probe would collect all data from

a limited sample of die). Using the spatial correlation models, we then predict the required

coarse-trim length for the remaining 90% of the die on the wafer. As explained in Section 3,

we predict this coarse-trim length in three ways.

5.1 Length-based, original target prediction.

The first prediction method is based on the actual length that was coarse trimmed for the

10% sample of resistors. The conjecture is that the coarse-trim length required is spatially

17
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Figure 5.1. Per stage data collection of the laser trimming process

correlated. Hence, we can use this sample to build a GP wafer-level spatial correlation

model that will predict the required length for the remaining 90% of the die on the wafer

as a function of their die coordinate. Thereby, we can blindly perform coarse-trim in an

open-loop by simply providing the length, which is faster than the closed-loop iterative laser

firing and current monitoring method.

Figures 5.2(1) and 5.3(1) show the actual coarse-trim length across the entire wafer. As

can be observed, spatial correlation indeed exists on the wafer, with a radial component being

prominent. GP is very effective in modeling this spatial correlation based on the 10% sample.

Indeed, this can be observed in Figures 5.2(3) and 5.3(3), where the predicted coarse-trim

length wafer maps are shown for the two resistors. A visual comparison with the actual

values confirms that the coarse-trim length can be accurately predicted by our method. For

further visualization, the prediction error, which is the difference between the actual wafer

maps (Figures 5.2(1) and 5.3(1)) and predicted wafer maps (Figures 5.2(3) and 5.3(3)), is

also shown in Figures 5.2(5) and 5.3(5) for the two resistors, respectively. Evidently, the

error variance is very low and balanced across the wafer. The maximum prediction error for

Resistors A and B (corresponding to the yellow colored die on the error maps) is less than

3%, while the overall mean percent prediction error is 0.68% for Resistor A and 0.55% for

Resistor B, as shown in the second column of Table 5.1.
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5.2 Rate-based, original target prediction.
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Target Prediction Error

4) Rate-Based, Original 
Target Predicted Length

6) Rate-Based, Original 
Target Prediction Error

2) Sampled Locations

(a) Resistor A
Figure 5.2. Resistor A: Actual and predicted Lengths for each proposed method

The second method also seeks to predict the coarse-trim length but in an indirect way.

Specifically, instead of building a wafer-level spatial correlation model for the coarse-trim

length itself, we build a spatial correlation model for the coarse-trim rate. The trim rate is
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(b) Resistor B

0 0

Figure 5.3. Resistor B: Actual and predicted Lengths for each proposed method

computed through Equation 3.1 using the collected pre-coarse trim current, post-coarse trim

current, and coarse-trim length measurements on the 10% die sample. Then, using the trim

rate predicted for each die as a function of its spatial coordinates, as well as the pre-coarse
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trim current measurement and the targeted post-coarse trim current measurement1, we can

predict the required coarse-trim length for each of the remaining 90% die locations.

The predicted wafer maps for the two resistors are presented in Figures 5.2(4) 5.3(4),

respectively, and corresponding error maps in Figures 5.2(6) and 5.3(6), respectively. As

can be observed, the trim rate-based method is also very effective in correctly predicting the

required coarse-trim lengths. The overall mean percent prediction error is 0.78% for Resistor

A and 0.76% for Resistor B, as shown in the third column of Table 5.1. While this is slightly

higher than the corresponding error of the length-based method, the maximum prediction

error remains below 3%. This can also be verified by visual inspection of the Figures 5.2(6)

and 5.3(6), where the highest colored value is similar to that of the length-based prediction

error maps, shown in Figures 5.2(5) and 5.3(5).

Table 5.1. Overall Mean Percent Prediction Error

Resistor

Length-based,

Original Target

Rate-based,

Original Target

A 0.68% 0.78%

B 0.55% 0.76%

In both of the above methods, the error maybe either in the positive or in the negative

direction. We note that if this error results in a shorter laser cut in the coarse-trim stage,

the fine-trim stage will have to compensate with longer cuts (i.e. extra fine-trim time), while

if the error results in a longer laser cut, the fine-trim will have to compensate with shorter

cuts (i.e. less fine-trim time). In either case, the time savings from performing open-loop

coarse-trim outweigh any additional fine-trim time. To evaluate the obtained speedup of

open-loop over closed-loop coarse-trim, we measured actual trim times on 200 die locations

on a new, untrimmed wafer, on which we performed open-loop coarse-trim.

1In order to accurately calculate the coarse-trim length prediction error of the rate-based method, the
post-coarse trim current target value was set to the observed post-coarse trim current measurement for each
die.
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Accordingly, in the second and fourth column of Table 5.2 we report the expected average

trim time per die for the closed-loop and open-loop case respectively, for each of the two

resistors. As expected, there is a significant improvement in coarse-trim time, as a result

of eliminating the need for the time-consuming closed-loop current monitoring. Note that

the fine-trim time, reported in the third and fifth columns of this table, remains the same,

as we are essentially trimming the same length in the coarse stage, whether in close-loop or

in open-loop configuration. The overall (i.e. coarse and fine-trim) average time for the two

configurations and the speedup are shown in the second through fourth columns of Table

5.3. As may be observed, the speedup is is 1.25 for Resistor A and 1.32 for Resistor B,

indicating that significant savings can be obtained by applying the proposed method, even

if our coarse-trim target of the open-loop option remains the same as the original target of

the closed-loop configuration.

Table 5.2. Average Trimming Times Per Die

Resistor Closed-Loop

Open-Loop,

Original Target

Open-Loop,

Optimized Target

Coarse Fine Coarse Fine Coarse Fine

A 312 ms 281 ms 190 ms 281 ms 233 ms 66 ms

B 338 ms 231 ms 200 ms 231 ms 244 ms 57 ms

Table 5.3. Total Average Trimming Times And Speedup Per Die

Resistor Closed-Loop

Open-Loop

Original Target

Open-Loop

Optimized Target

Total

Time

Total

Time
Speedup

Total

Time
Speedup

A 593 ms 471 ms 1.25 299 ms 1.98

B 569 ms 431 ms 1.32 301 ms 1.89
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5.3 Rate-based, optimized target prediction.

The third method takes advantage of the fact that the required coarse-trim length can be

accurately predicted through the trim-rate estimated for each die location using a GP wafer-

level spatial correlation model. Since the maximum prediction error remains very low and

the range of pre-trim to post-fine trim current values is known, we can adaptively choose

a new, optimized coarse-trim target. Thereby, we can use the fast, open-loop, coarse-trim

option to get closer to the final target, leaving less work for the slower fine-trim stage.

To this end, we can use equation (3.3) to predict the trim lengths for the new optimized

post-coarse trim current target. In our analysis, we set this target such that 75% of the

fine-trim effort could be replaced by a more aggressive coarse-trim stage2. We note that this

optimized target leaves plenty of margin so that even the maximal prediction error observed

in our experiments would not overshoot the final post-trim target, therefore no yield loss is

incurred by this method.

The sixth and seventh columns of Table 5.2 show the extrapolated trim times for this

rate-based optimized-target coarse-trim length prediction method, while the fifth and sixth

columns of Table 5.3 show the anticipated speedup over the baseline closed-loop method,

which is estimated at 1.98 for Resistor A and 1.89 for Resistor B, respectively. Based on these

promising results, we plan to deploy and evaluate the rate-based optimized target method

on a larger-scale experiment as our future work.

2An NDA under which this data was provided to us prevents us from disclosing the actual current values.
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CHAPTER 6

CONCLUSION

The key conjecture corroborated by the research described in this paper is that the physical

parameters which are typically calibrated through IC laser trimming are spatially correlated.

Therefore, wafer-level spatial correlation modeling methods, which have previously been

introduced and leveraged for electrical test cost reduction, may also be used to reduce the

cost of the expensive and time-consuming IC laser-trimming process. Experimental results

with two laser-trimmed precision resistors on a wafer of ∼2K devices indicate that almost

half of the time needed for laser trimming can be eliminated without impacting yield, thereby

offering substantial savings in high volume production of such devices.
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