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In this day and age, numerous decision-making systems increasingly rely on machine learning

(ML) and deep learning to deliver cutting-edge technologies to the members of society. Due

to potential security, privacy and bias issues with respect to these ML methods, currently, end

users cannot fully trust these systems with their private data, and their prediction outcome.

For instance, in many cases, it is not clear how an individual’s medical record is being used

for building tools for medical diagnosis? Is the data always encrypted at rest? When they

are decrypted, is there a guarantee that only a trusted application can have access to the

private data to eliminate potential misuse? Throughout this dissertation, solutions that

leverage various security and integrity capabilities provided by hardware assisted Trusted

Execution Environments (TEE) are proposed to make these ML based systems more reliable

and trustworthy so that end users can have a greater trust in these systems.

As a starting point, we first address the privacy and integrity issues in ML model learning

in the cloud setting. Training of a deep learning model that only relies on a TEE is not

very attractive to businesses that need to continuously train their models in a remote cloud

setting. This is due to the fact that special hardware such as Graphical Processing Units

(GPU) are much more efficient in training ML models compared to CPU based TEEs. In this

dissertation, we propose an integrity-preserving solution that combines TEEs, and GPUs in
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order to provide an efficient solution. In this solution, we focus on the ML model training

task using the efficient GPU while ensuring the detect any deviation from the ML model

learning protocol with a high probability using the TEE capabilities. Using our solution, we

can ascertain (with high probability) the model is trained with the correct training dataset

using the correct training hyperparameters, and correct code execution flow.

Once we provide an integrity preserving ML model training solution, we focus on how to

use the learned ML model privately and securely in practice. To provide privacy-preserving

inference on sensitive data, wherein ML model owner and data owner do not trust each

other, the dissertation proposes a solution that the inference task is run inside a TEE and

the result is sent to the data owner(s). The most important benefit of our solution is that

the data owner can ensure their data will not be used for any other purposes in the future

and no information other than the agreed model inference result is disclosed. Furthermore,

we show the efficacy of our solution in the context of genomic data analysis.

Next we focus on the bias and unfairness embedded in certain ML models. It is has been

reported that the ML models can unfairly treat certain subgroups, and it is hard to test for

such issues in application deployment settings where both the ML model and the input data

to the ML model is sensitive (i.e., both the model and the data cannot be disclosed to public

for auditing directly). This dissertation proposes a privacy-preserving solution for fairness

analytics using TEEs. In this setting, the model owner and the fairness test set owner do not

trust each other, therefore they do not want their input to be disclosed. The end goal is for

the fairness analyst to conduct tests about the quality and fairness of the model’s outcome

with respect to a set of predefined minority groups or subgroups and compare and contrast

them with privileged group(s). This way, models can be analyzed, and the analyst can shed

light on the potential latent biases in the ML model in a privacy-preserving manner.

Even if the ML model is trained, and deployed securely, due to data poisoning, the final

model may still contain hidden backdoors (which in the literature is referred to as trojan
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attacks). Finally, in this dissertation, we develop novel techniques to detect such attacks. We

design experiments that first creates a multitude of models that carry a trojan, and another

set that does not have any trojan. Then, we build classifiers to see if we can tell them apart.

Our results show that ML models could be used to detect trojan attacks against other ML

models.
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CHAPTER 1

INTRODUCTION

Numerous decisions impacting our lives are byproduct of automated systems that heavily

rely on Machine Learning (ML), and Deep Learning (DL). Decisions such as advertisements

we are exposed to via social media, deals we receive from online stores, movies recommended

to us through streaming services, credit worthiness when applying for bank loans, etc. are

only a few examples of how we are impacted on a daily basis through these automated

systems. Building such giant, and heterogeneous ML systems demands an extraordinary

amount of data (for training) that include privacy-sensitive content, that utilize significant

computational resource on cloud platforms. Therefore, individuals are worried how their

data (or meta-data) are being used on such remote environments. Also, another point

that cast doubts on ML, is that the outcome of these systems can have life-lasting effects

on individual’s quality of life. Therefore, ensuring that the decisions are not biased is an

important promise to the users affected by ML decisions.

Throughout this dissertation, our main objective is to provide an end-to-end ML (more

specifically DL) infrastructure to increase public trust in ML with the help of the security and

privacy capabilities provided by trusted execution environments (TEE) such as Intel SGX.

First, we explore the training of models that guarantees the integrity of the training process

is preserved. Next, we propose a privacy-preserving solution to use the trained models for

the inference task. Later, we propose a solution for privacy-preserving fairness analytics

to detect the potential biases of the ML models. Finally, we explore an analysis on neural

network backdoor attacks (trojan attacks), and explore whether we can create a meta-model

that decide whether an ML model has a backdoor. Below, we provide an overview of these

solutions.
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1.1 Integrity-Preserving Deep Learning Training Using A Hybrid Approach

Via. GPU & TEE

Machine learning models based on Deep Neural Networks (DNNs) are increasingly deployed

in a wide variety of applications, ranging from self-driving cars to COVID-19 diagnosis (Pan-

war et al., 2020). To support the computational power necessary to train a DNN, cloud envi-

ronments with dedicated Graphical Processing Unit (GPU) hardware support have emerged

as critical infrastructure. However, there are many integrity challenges associated with out-

sourcing the computation to use GPU power, due to its inherent lack of safeguards to ensure

computational integrity. Various approaches have been developed to address these challenges,

building on trusted execution environments (TEE). Yet, no existing approach scales up to

support realistic integrity-preserving DNN model training for heavy workloads (e.g., deep

architectures and millions of training examples) without sustaining a significant performance

hit. To mitigate the running time difference between pure TEE (i.e., full integrity) and pure

GPU (i.e., no integrity), in this dissertation, we combine random verification of selected

computation steps with systematic adjustments of DNN hyperparameters (e.g., a narrow

gradient clipping range), which limits the attacker’s ability to shift the model parameters

arbitrarily.

1.2 Deep Learning & Genomic Statistical Test Inference Analytics Via. TEE

As the quantity and quality of genomic records continue to grow, geneticists at disparate

institutions are increasingly motivated to integrate and analyze genomic data collections.

While these endeavors are often hampered by various privacy concerns, recently developed

techniques can address privacy concerns via trusted execution environments (TEEs) (e.g.,

hardware-enabled secure enclaves). TEEs provide confidentiality for sensitive data and

means to attest to programs’ correctness and their corresponding inputs. However, due

2



to the profound consequences of private genomic data leakage for individuals, integrating

TEEs for genomic analytics requires extra assurances to ensure that the program’s execu-

tion does not leak participants’ private information in a direct or indirect form. One major

drawback of state-of-the-art TEEs is related to their shortcomings in hiding memory access

patterns due to performance ramifications. As a result, the TEE’s computation must be

data oblivious, i.e., independent of how it accesses the sensitive private data through its

course. In Chapter 5, we present our data oblivious and privacy-preserving genomic data

analysis framework using two popular genomic tasks. The first application involves securely

performing a multi-institution test for the most significant single nucleotide polymorphism

(SNP) in an association study. The second application focuses on the growing trend in uti-

lizing Deep Learning (DL) based inference for genomics data. In this application, we assume

that genomic data and the model are private. In both of these applications, we show that

our framework can enable efficient processing and analysis of encrypted genomic data with-

out disclosing sensitive memory access patterns. We also discuss the future considerations

needed to use TEE based privacy-preserving genomic data analysis in practice.

1.3 Machine Learning Fairness Analytics Via. TEE

Machine learning models are increasingly used in various critical applications, ranging from

health care to finance. At the same time, there are many concerns whether these ML models

discriminate against different subgroups. For example, an ML model that assigns credit

scores may be biased against black Americans and may assign lower scores for them. To

detect such biases and unfairness embedded in ML models, different ML fairness criteria

have been proposed. In many cases, the appropriate fairness criteria for a given ML model

depends on the task and the groups involved. Ideally, the ML models used for critical

tasks could be publicly disclosed (e.g., credit-scoring model) and different researchers can

run tests on the ML models using their own test data under chosen fairness criteria to see

3



whether the model has any fairness issues. Unfortunately, testing whether the given ML

model satisfies a specified fairness criteria is challenging due to security and privacy issues

with respect to ML models and test data. In many cases, organizations that spent lots of

effort in developing the ML model may want to keep it private. On the other hand, the

test data (e.g., credit application information) belonging to individuals must be kept private

to protect individual privacy. Therefore, there is a need for enabling secure and privacy-

preserving fairness auditing of ML models. To address the above research challenge, in

Chapter 6, we present AISolace - a fairness analytics framework for ML models that relies

on the security guarantees provided by the Trusted Execution Environments (TEE) such as

Intel SGX. At a high level, AISolace allows ML model owners to share their private ML model

with the general public (owners of private test data) for fairness analytics securely (i.e., only

fairness audit information will be revealed). Further, AISolace supports complex privacy-

aware grouping schemes (e.g., any subset of demographic features), ranging from conditionals

based on attributes to clustering based on arbitrary distance metrics for complex fairness

analytics to support any of the existing fairness criteria. Furthermore, our system could

be easily extended to support other grouping based fairness criteria. In addition, AISolace

protects against memory access pattern leaks that are not available out of the box TEE

implementations. Furthermore, using extensive experimental evaluation, we show that using

TEEs, we can allow fairness auditing on private data with acceptable overhead compared to

pure CPU based non-secure fairness auditing.

1.4 Investigation of Trojaning Attacks On Neural Networks

Deep Learning (DL) is becoming a popular paradigm in a broad category of decision systems

that are crucial to the well-being of our society. Self-driving vehicles, online dating, social

network content recommendation, chest X-Ray screening, etc. are all examples that show

how the quality of our lives is tied to the decisions of these systems. Therefore, it is not
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enough to only ensure the health of those systems based on classical notions (accuracy, pre-

cision, recall, etc.) of performance. Given the complexity of DL-based models, we must take

into account that these systems may be gamed to make favorable decisions for unqualified in-

stances by malicious actors. For instance, researchers have shown that a vision classification

model can conveniently be made to classify every input to a target class provided a special

pixel pattern is present. Imagine if a self-driving car’s traffic-sign detection model can classify

a traffic stop sign as speed-limit if the pattern that triggers the faulty behavior is present.

Currently, serious weaknesses similar to the aforementioned example are very difficult to

detect efficiently and will significantly reduce the technology sector’s aptitude and desire for

continuous innovation (or at least the development speed) in fear of hefty law-suites. In this

work, we investigated a cryptanalysis approach to analyze the models’ behavior on random

inputs from unrelated datasets. There were two main pools of models. 1) Clean, and 2)

Poisoned. Poisoned models all have backdoors with different attack configurations. Given

the simple construction of our framework, our initial investigation result show, given we can

generate/access a rich and high-quality dataset of random images, we may be able to build

meta-models that can distinguish the poisoned/clean models with acceptable performance.

1.5 Dissertation Outline

The upcoming chapters of this dissertation are as follows. In Chapter 2, we go over the related

works, and current solutions. In Chapter 3, we iterate through the necessary backgrounds.

In Chapter 4 we propose an integrity-preserving solution for deep learning training. In

Chapter 5, we propose a privacy-preserving solution for genomic analytics and inference.

Next, in Chapter 6, we present a privacy-preserving fairness analytics framework for machine

learning. Afterwards, in Chapter 7 we conduct an analysis on detection methods for neural

network trojaning attacks. Finally, in Chapter 8 we conclude this dissertation.
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CHAPTER 2

RELATED WORKS

In this chapter, we cover the relevant related works in the literature, that have tried to

bridge the gap between different disciplines to realize the goal of end-to-end secure machine

learning operations using TEE.

2.1 Oblivious Random Access Memory

Oblivious Random Access Memory (ORAM) first introduced in (Goldreich and Ostrovsky,

1996) which enables arbitrary software programs to access/modify RAM locations indepen-

dent of the data fed to the program 1. An application that accesses memory addresses in an

oblivious manner eliminates chances of being exploited by malicious adversaries that have

access to the machine that hosts the application. For instance, in case of sorting an array

which stores patients’ diseases, when an adversary is able to see the memory access locations,

they can infer the ordering of elements in the array even if they may not have access tho

the contents of the array. Further, if the cancer patients have the lowest ordering, then all

the records can easily be tied to the elements of the array that comes first during merge

comparisons (merge-sort (Bron, 1971)).

So far, there has been a fair amount of focus on improving the performance of ORAM

algorithms, and ORAMs with tree layout (Stefanov et al., 2013; Wang et al., 2015; Devadas

et al., 2016) have become the most popular candidate. Additionally, there have been efforts

to propose efficient oblivious data-structures (Wang et al., 2014), and data-oblivious com-

pilers (Liu et al., 2015; Zahur and Evans, 2015). Further, there have been previous work

in porting the ORAM architectures for secure processor and TEEs (Sasy et al., 2017; Maas

1It is acceptable to have different access pattern when data size is different, however for a fixed data size
the algorithm memory access pattern must remain indistinguishable.
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et al., 2013), because the oblivious primitives are not readily available in their architectural

design. However, AISolace do not rely on ORAMs customized for TEEs, and builds upon a

set of data-oblivious primitives which are explained further below. Finally, (Shaon et al.,

2017; Zheng et al., 2017) are some prominent examples of data analytics tools developed for

TEEs that are data oblivious.

2.2 Privacy & Integrity Preserving Computation Using Trusted Execution En-

vironments

The line of research((Mohassel and Zhang, 2017; Phong et al., 2018; Juvekar et al., 2018;

Mohassel and Rindal, 2018)) purely relying on cryptographic primitives has shown promising

progress. In addition, there has been efforts (Knott et al., 2021) to utilize accelerated

processors such as GPU to perform the computationally-heavy cryptographic logic. However,

the computational overhead is nowhere near acceptable, particularly in case of training of

very deep networks.

In the cross-road of TEE, ML, and DL, there has been a good deal of research work that

mostly focus on bringing privacy, and integrity for training and inference. (Hunt et al., 2018;

Kunkel et al., 2019; Hynes et al., 2018; Hanzlik et al., 2021; Ohrimenko et al., 2016) provide

privacy for training/inference models solely inside SGX. In addition, there have been other

efforts (Ng et al., 2021; Tramer and Boneh, 2018; Asvadishirehjini et al., 2020; Ozga et al.,

2021; Hashemi et al., 2021) to integrate TEE for ML/DL stack with GPU to mitigate the

extraordinary performance gap of the CPU (SGX is only available on the CPU).
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CHAPTER 3

BACKGROUND AND RELATED WORKS

In this chapter, we give an overview of the background knowledge needed in the remaining

chapters.

3.1 Trusted Execution Environments (Intel SGX)

TEE is a hardware-level feature of modern processors that provides a confidential and

tampering-resistant area of main memory for code and data of software applications. This

area is commonly referred to as enclave. An application that runs in the enclave has an im-

portant guarantee; all the run-time data stored in the heap (or stack) are not to be accessed

or modified by any privileged programs, such as the operating system (OS). Therefore, the

execution flow cannot be altered in a way that jeopardizes the computational integrity of

the application.

Intel Software Guard Extensions (SGX) (Costan and Devadas, 2016) is an example of

a common TEE that is available in many modern-day computers and existing cloud infras-

tructure such as Microsoft Confidential Computing Cloud (Russinovich, 2016). It provides

a secluded hardware reserved area, namely, processor reserved memory (PRM), that is kept

private (i.e., it is not readable in plaintext) from the host, or any privileged processes, and

is free from direct undetected tampering. In addition, SGX enables applications that run

within the enclave to attest to the outside world that they are being run on a legitimate

hardware. With remote attestation (Johnson et al., 2016), users can attest the running code

within the enclave before provisioning their secrets to a remote server. This feature enables

a TEE to be used in cloud environments (Tian et al., 2019; Russinovich, 2016) where it can

receive or send secrets remotely.

Calls from routines that should transition to/from enclave are handled through pre-

defined entry points that are called Ecall/Ocall that must be defined in advance, before
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building the enclave image. While it provides security and privacy for applications, (e.g.,

(Priebe et al., 2018; Shaon et al., 2017; Kunkel et al., 2019)), directly running unmodified

applications inside SGX can induce a significant hit on performance because the memory

and computational capacity are limited. This is especially the case for applications that

require large amounts of memory, such as training deep neural networks. Specifically, SGX

partitions an application into two components: 1) the Untrusted Application (UApp) and

2) the Trusted Application (TApp) that is loaded inside the enclave. TApp is responsible

for managing data-sensitive tasks that are not safe for UApp to perform. To materialize the

communication between TApp and UApp, special bridge functions need to be described in

Enclave Definition Language (EDL) files. Without loss of generality, there are two types

of bridge calls: 1) Calls from UApp to TApp – ECall and 2) Calls from TApp to UApp

– OCall. At the moment, Intel supports a SDK in C/C++ language with limitations that

supports a subset of the standard library for those languages. There are some ongoing efforts

for making development more convenient by supporting other programming languages such

as Rust (Wang et al., 2019) with better memory safety guarantees. Moreover, to facilitate

porting of big projects (e.g., TensorFlow), Graphene (Tsai et al., 2017) minimizes the need

for source code modifications and provides a wrapper container for the program to run on the

SGX enclave. Nonetheless, these ongoing efforts do not mitigate potential leakages through

the memory access pattern side channel.

Finally, there are a set of side-channel attacks that exploit micro-architectural capabilities

(vulnerabilities) of modern TEE processors (e.g., out of order execution) in recent years,

which are out of the scope of this dissertation. However, the reader can refer to (Murdock

et al., 2020; Qui et al., 2020; Chen et al., 2019; Bulck et al., 2018; Götzfried et al., 2017; van

Schaik et al., 2021; Brasser et al., 2017) for a list of important example such attacks.
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// courtesy to github.com/mobilecoinofficial/mc-oblivious

fn cond_assign(cond: bool, src: &f32,dest: &mut f32)

{

let mut temp = *dest;

unsafe {

llvm_asm!(

"

test $1, $1

cmovnz $0, $2

"

:"+&r"(temp)

: "r"(cond), "rm"(*src)

: "cc"

: "volatile", "intel");

}

*dest = temp;

}

fn cond_swap(cond: bool, a: &mut f32, b: &mut f32)

{

let temp = *a;

cond_assign(cond,b,a);

cond_assign(cond,&temp,b);

}

fn cond_select(cond: bool,a: &f32, b:&f32, c:&mut f32)

{

cond_assign(cond,a,c);

cond_assign(!cond,b,c);

}

Listing 1: Data-oblivious conditional (branch-less) routines

3.2 Data-Oblivious Execution

Here, we go over a number of the fundamental data-oblivious primitives that are used ex-

tensively throughout this dissertation. Basic conditional logic, sorting and filtering records

are important operations. By ensuring its data-oblivious execution, applications increase the

privacy guarantee for the users.
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3.2.1 Oblivious Conditional Assignments

There are numerous cases where data oblivious primitives deal with conditional logic and

branching. To handle those cases we need to rely on CPU registers so that an adversary is

not able to observe the move operation based on the conditionals derived from the contents

of the data. Refer to (Rane et al., 2015) for a detailed usage of in-register conditional move

instructions. Listing 1 shows a simple way of deriving conditional routines based on CMOV

instruction.

3.2.2 Oblivious Sort

Commonplace sort methods such as Quick-Sort (Hoare, 1961), are prone to leaving the

traces of comparison during their execution. This gives a malicious adversary, who has

the knowledge of the sorting criteria, the ability to infer sensitive information about the

contents of the rows even when they are encrypted. AISolace uses Bitonic-Sort (Batcher,

1968) that has a fixed order of comparison given the dataset size. However, the running time

is $ (=(;6(=)2) which is less efficient. Another, particular part that needs a special care, is

swapping the rows in the dataset, which we rely on the oblivious conditional swap primitive.

3.2.3 Oblivious Filter

For filtering the rows based on a predicate (Zheng et al., 2017; Arasu and Kaushik, 2013), a

new column is amended to the dataset, which indicates if the row should be selected. The

dataset is traversed and the value of the new column is assigned obliviously. In the end, the

data is obliviously sorted so that the passing rows are on top, and the non-matching rows

are dropped from further processing.
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3.2.4 Oblivious Grouping

In this dissertation we use the primitive introduced in (Arasu and Kaushik, 2013) for generic

grouping operations. In short, the dataset is sorted obliviously, based on the grouping

columns. Next, an incremental ID is assigned to each row in the group using oblivious

conditional assignment routines. (Listing 1). Afterwards, by traversing the sorted dataset

backwards, running aggregates are computed, and when passing the boundary of one group

to the other, AISolace obliviously resets the running aggregates. Finally, the rows are obliv-

iously filtered and only row s with �� = 1 are kept (because the final aggregation result are

stored in rows with �� = 1).

3.3 Machine Learning & Deep Learning

Machine Learning (ML) offers a systematic solution for decision-making problems based

on data gathered from past events to predict future events. The most popular style of

problems that fall into the realm of ML are classification, and clustering problems. Classifi-

cation problems deal with ML algorithms wherein the association of each entry in the past

data (training set) is known to belong to a specific category (usually called class) and the

model solves the association for unseen data (future events). SVM (Boser et al., 1992), and

Random Forest (Breiman, 2001) are two of the most popular traditional machine learning

classification algorithms. Unlike classification, clustering problems, build models wherein

there is no pre-specified association for the entries in the training set, and the goal is to

put the entries in the training set into clusters (groups) where they are closest compared to

other clusters. K-Means (Hartigan and Wong, 1979), K-Modes (Chaturvedi et al., 2001),

and K-Prototype (Huang, 1997) are some renowned examples of the most used clustering

algorithms in ML.

In the past decade, with the popularization of special hardware such as Graphical Pro-

cessing Unit (GPU), and Tensor Processing Unit (TPU), a new paradigm for solving ML
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problems has emerged which is usually referred to as Deep Learning (Goodfellow et al.,

2016c) (DL). DL based models have been extensively used to solve problems in computer

vision, speech recognition, etc. DL is currently dominating the field of ML, particularly when

the training set is humongous (traditional ML cannot scale), or the nature of the underlying

data fits best for DL (e.g., video stream classification). AISolace only supports DL model

inference where it is necessary to run an inference to obtain the prediction.

3.3.1 Deep Learning Training

Over the past decade, Deep Neural Networks (DNN) have become popular for solving prob-

lems related to computer vision and natural language processing (Krizhevsky et al., 2012;

Simonyan and Zisserman, 2014; He et al., 2016; Szegedy et al., 2015, 2017). In practice, these

networks are stacks of layers, each of which perform a transformation F ;W (·) ∀; ∈ |! | where

X;+1 = F ;W (X
;) and |! | is the number of layers. The training task is to learn the correct

parameters (point-estimates)W∗ that optimizes (commonly minimizes) a task-specific (e.g.,

classification) loss function L. The most common approach to training the parameters of a

DNN is through mini-batch Stochastic Gradient Descent (SGD) (Robbins and Monro, 1951).

A randomly selected mini-batch of a dataset is fed to the DNN and the value of objective

function L is calculated. This is usually referred to as the forward pass. Next, to derive the

partial gradients of L with respect to W (∇LW), a backward pass is performed (Goodfellow

et al., 2016b). Finally, the parameters are then updated according to Equation 3.1, where

0 < U < 1 is referred to as the learning rate. Depending on the complexity of the dataset

and the task, this process might require hundreds of passes (called epoch) over the input

dataset to achieve convergence.

WC+1 =WC − U∇LCWC (3.1)
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3.3.2 Gradient Clipping

Gradient Clipping (GC) is a method that has been shown to help mitigate the problem

of exploding gradients during training (Goodfellow et al., 2016a). Simply, GC forces the

gradients into a narrow interval to prevent very large updates during the SGD step. There

have been some efforts to analyze GC with respect to convergence. For instance, Zhang and

colleagues (Zhang et al., 2019) prove (assuming a fixed step size) that training with GC can

be faster than training without it. Moreover, their theoretical analysis suggests that too small

clipping values can reduce the training performance (i.e., require more steps for convergence).

However, in practice, this performance reduction is rarely observed. (Chen et al., 2020) has

an interesting theoretical analysis coupled with empirical evidence (symmetry of gradients

distribution with respect to the SGD trajectory) that answers the gap between previous

theoretical and practical observations. These results suggest that GC could be leveraged in

practical DNN training without significant performance issues.

3.4 Fairness In Machine Learning

As delineated in the previous section, especially in the case of a classification task, the out-

come associates a piece of data to a category (class). When that piece of data is related

to individuals, then the prediction category of the model for individuals becomes of utmost

importance, because the ramifications of the prediction can impose lasting consequences.

For instance, the system Correctional Offender Management Profiling for Alternative Sanc-

tions (COMPAS), allows the criminal justice system to evaluate how risky it is to release

the offenders and it has been shown that COMPAS continually present a high degree of

bias against African-American offenders relative to Caucasian offenders (ProPublica, 2016).

There have been other instances of systems that utilize ML to make decisions significantly

that are more favorable to the majority population over the minority population (majority
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vs. minority is context-dependent) (Chouldechova et al., 2018; Lambrecht and Tucker, 2019;

Raji and Buolamwini, 2019).

Fairness is not a new concept, however, upholding fairness in algorithms (particularly

ML) is a brand-new direction of research that has consumed a great deal of attention.

There are dozens of definitions for fairness, however most of them fall into three categories

of group-based, individual-based, and subgroup-based fairness. Equality of odds (Hardt

et al., 2016), equality of opportunity (Hardt et al., 2016), demographic parity (Dwork et al.,

2012), and (conditional) statistical parity (Corbett-Davies et al., 2017) are a few famous

examples of fairness definition metrics. Finally, we advise the reader to read the following

surveys (Mehrabi et al., 2021; Chouldechova and Roth, 2018) to gain more insights on the

current state of affairs in fairness for ML.

3.5 Trojan Attacks On Deep Learning Training

Attacks on DNN models can be realized during both training or test phases. However, GINN

is concerned with integrity issues during the training phase of DNN models, such that attacks

related to testing are out of the scope of this dissertation since test time attacks have been

addressed before (e.g., Slalom (Tramer and Boneh, 2018)). In the literature, particularly in

the computer vision community, targeted trojan attacks on DNN classification models have

become a real concern as deep learning has grown in its adoption. These attacks tend to alter

the prediction of models when a specific condition in the input is met. These conditions may

be feature-based (Gu et al., 2017a,b) or instance-based (Shafahi et al., 2018). As an instance,

consider a traffic sign classification model in an autonomous vehicle. For a feature-based

attack, it can be anything as simple as having a small yellow square stamped on a stop

sign which will lead to misclassification to “speed limit 75”. Recently, trojan attacks were

extended to Reinforcement Learning (RL) and text classification models (Kiourti et al.,

2019; Sun, 2020).
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Figure 3.1: All backdoor trigger patterns

In practice, these attacks are implemented by manipulating samples during training

through data poisoning. This could be achieved, for instance, by stamping images with

a certain pattern and modifying the label of the image (e.g., changing “dog” to “cat”). No-

tably, these models provide similar competitive classification test accuracy when compared

to clean models (i.e., models that have not been attacked). As a consequence, it is non-trivial

to distinguish trojaned models from non-trojaned models based on model accuracy alone.

To make matters worse, even if the model owner was aware of examples of the trojan trigger

pattern, the owner would need to patch the model through a retraining process to dampen

the efficacy of the trojan trigger pattern. Retraining does not always guarantee complete

removal of the trojan behavior from the model. Various techniques have been proposed to

diagnose and mitigate the effect of trojaned models. However, all approaches developed to

date are either 1) based on unrealistic assumptions or 2) are excessively costly. For instance,

Neural Cleanse (Wang et al., 2019) requires access to a sizable sample of clean inputs to

reverse-engineer the backdoor and has shown to be successful only for trigger patterns with

a relatively small size. ABS (Liu et al., 2019) improves upon Neural Cleanse in that requires

a significantly smaller number of samples; however, it assumes that the neurons responsible

for the trojan can activate trojan behavior independently of each other, which is unlikely to

be true in practice.

Most common-place backdoor attacks (Liu et al., 2017; Gu et al., 2017b) involve train-

ing/retraining (for a small number of epochs (Liu et al., 2017)) and usually are instrumented

through data poisoning. Usually, if the mini-batches contain 0.5%-5% of poisoned samples
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that both have a backdoor trigger pattern, and also supplied with the attacker’s desired

label 2C . These backdoor attacks are very successful while incurring a trivial performance

degradation, which makes it a cumbersome task for the users to doubt the healthiness of the

model. In figure 3.1, the patterns we used for our attack is illustrated. For a comprehensive

list of the attack, and configurations refer to Table 7.1. Current mitigation techniques (Liu

et al., 2019; Wang et al., 2019; Gao et al., 2019) either are resource-consuming or have as-

sumptions that are not realistically modeling the enormous vector of possibilities that are at

the behest of the attackers.

3.6 Integrity Protection for DNN Training

(Tramer and Boneh, 2018) took the first step towards achieving both fast and reliable exe-

cution in the test phase, but neglected the training phase. The training phase is far more

computationally demanding than the test phase, such that verification of all steps in train-

ing requires a substantially longer time because 1) parameters continuously changing, and

2) the backward pass involves computing gradients for both the inputs and the parameters,

which requires a larger amount of time than the forward pass alone. Moreover, attacking

the training pipeline to inject a trojan in the final model is quite simple (i.e., replace the

actual model with the desired attack model by modifying the last SGD update) and, thus,

is likely the most desirable form of attack for real-world adversaries to launch. Altogether,

throughout this work, we mainly focus on showing the effectiveness of our method at pre-

venting this type of attack from being successful. The main objective of GINN is to enable

a high-integrity training pipeline so that the users are assured that the model 1) is built

on the correct dataset and 2) uses the correct parameters without modification. Thus, the

final model users know who built the model, what dataset was used for training, and what

algorithms were put in place for building the model. If, at any point during the training,
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GINN detects a deviation from the specified execution, it will not approve the final model

to ascertain its validity.

GINN relies upon the proactive training as opposed to the post-training or deployment-time

methods to protect the health of a DNN model. It should be noted that our approach is

independent of the attack strategy and is sufficiently generic to catch any continuous attack

during the training of a DNN model. As we explain later in Chapter 4, we assume that the

initial training dataset is provided by an honest user and is free of manipulation. With this

as a basis,

GINN limits the amount of change an adversary can inflict on a model through a single

SGD step. As a consequence, the adversary is forced to keep attacking while being verified

at random by the TEE. In particular, in an era where vectors of new attacks on DNNs are

unfolding, a majority of them are via data-poisoning in training phase. Unfortunately, it

is nearly impossible to detect them during deployment unless a special input is fed to the

network that would trigger the anomalous behavior. (Gu et al., 2017a,b; Chen et al., 2017;

Wang et al., 2020).
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CHAPTER 4

GINN: FAST GPU-TEE BASED INTEGRITY

FOR NEURAL NETWORK TRAINING

4.1 Introduction

Deep learning (DL) is radically changing how machine learning interacts with, and supports,

society. Numerous industries increasingly rely on DL models to make decisions, ranging

from computer vision to natural language processing. One example is, Tesla that relies on

DL for its autopilot mode of operation (Csongor, Csongor) and it seems that, in the near

future, DL will be a routine technique for enabling autonomous vehicles to commute on

roads. Another prominent application of DL is Covid-19 diagnosis (Panwar et al., 2020),

where wrong decisions can have irreversible consequences. The training process for these

DL models requires a substantial quantity of computational resources (often in a distributed

fashion) for training, which traditional CPUs are unable to fulfill. Hence, special hardware,

with massive parallel computing capabilities, (e.g., GPUs, and TPUs) are often utilized. At

the same time, the DL model training process is increasingly outsourced to the public cloud.

This is natural, as applying cloud services (e.g., Amazon EC2, Microsoft Azure, or Google

Cloud) for DL training can be more fiscally palatable for companies, while also enabling

them to focus on the software product without worrying about the hardware maintenance

and quality service level agreements of the hardware. Nevertheless, such outsourcing raises

numerous concerns with respect to the privacy and integrity of the learned models. In

recognition of the privacy and integrity concerns around DL (and machine learning (ML) in

general), a considerable amount of research has been dedicated to applied cryptography, in

three general areas: 1) Multi-Party Computation (MPC) (e.g., (Mohassel and Zhang, 2017)),

2) Homomorphic Encryption (HE) (e.g., (Gilad-Bachrach et al., 2016)), and 3) Trusted

Execution Environment (TEE) (e.g., (Hunt et al., 2018; Hynes et al., 2018)). However, the
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majority of these investigations are limited in that: 1) they are only applicable to simple

shallow network models, 2) they are evaluated with datasets that have a few records (such as

MNIST (LeCun and Cortes, 2010) and CIFAR10 (Krizhevsky, Nair, and Hinton, Krizhevsky

et al.)), and 3) they incur an amount of overhead that is unacceptable for real-life DL training

workloads.

In an effort to mitigate some of these problems, and securely move from CPUs to GPUs,

the Slalom (Tramer and Boneh, 2018) system was developed to focus on the computational

integrity at the test phase while depending on the application context. It can also support

enhanced data privacy. However, at a much greater performance cost. Similarly, Goten (Ng

et al., 2021) introduced a privacy-preserving training and inference solution based on TEEs

and GPUs. However, the empirical analysis suggested it is still not feasible to both enable

privacy, and integrity with an acceptable performance comparable to the non-private setting

(using GPU).

To address some of these limitations, we introduce GINN (see Figure 4.1); a framework

for integrity-preserving learning as a service that provides integrity guarantees in outsourced

DL model training in TEEs. We assume that only the TEE running in the cloud is to be

trusted, while all the other resources such as GPUs can be controlled by an attacker to launch

an attack (e.g., insert a trojan). In this context, our goal is to support realistic DL training

workloads while ensuring data and model integrity. To achieve this goal, we focus on the

settings where maintaining the learning process’s integrity is critical, while the training data

may not contain privacy-sensitive information. For example, for a traffic sign detection model

on public traffic sign images, it is desirable to prevent malicious behaviors that can put the

pedestrians or the driver in harm’s way. This is because safety is of paramount importance

in the above scenario and trainers must ensure the integrity of the training process to avoid

unintended consequences.

The trivial approach of executing the entire learning process inside a TEE is not scalable.

This is mainly due to the fact that TEEs based on CPU extensions are substantially slower
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compared to GPUs. It should be noted that performance improvement techniques, such as

random matrix verification (Tramer and Boneh, 2018)), have been proposed, but the gains

achieved are insufficient to scale up to large DL model learning settings. To significantly

improve the performance of pure TEE based approach (i.e., running entire DNN training

inside the TEE), we introduce an approach that incorporates randomized verification into

the DNN training process. This strategy is based on the observation that it is unnecessary

to verify all computation steps of the GPU during the DNN training. Rather, we only need

to occasionally verify to ensure a very high likelihood of catching any deviation.

Unfortunately, naive randomized verification of the DNN training steps may not be

enough. Because, if the DNN training steps is not adjusted properly, even an attack in one

step could have a devastating impact. For example, DNN training usually require stochastic

gradient descent (SGD) based updates using the current batch of the data. If there are

no limits on the SGD update step, the attacker can arbitrarily modify the model even in

a single update. Given that randomized verification may itself be insufficient, we further

show how parts of the DNN hyperparameter setting process, such as clipping rate should be

modified to prevent single step attacks, and require a larger number of malicious updates

by an attacker that controls the GPU. In other words, GINN limits the amount of change

an adversary can inflict on a model through a single SGD update step. As a consequence,

the adversary is forced to keep attacking while, randomly, being verified by the TEE. Using

state-of-the-art backdoor attacks, we illustrate that a randomized verification technique can

detect attacks with a high probability (e.g., 0.999) while enabling 2x-20x performance gains

compared to pure TEE based solutions.

The specific contributions of this chapter are as follows:

• We introduce the first approach to support integrity-preserving DNN training by ran-

domized verification of stochastic gradient (SGD) steps inside TEE. This approach has

an extremely high probability of ensuring the integrity the DNN training.
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• We illustrate how gradient clipping can be used as a defensive measure against single

(or infrequent) step attack in combination with randomized verification.

• We show the effectiveness of our TEE randomized verification and gradient clipping

through extensive experimentation on DNN backdoor attacks.

4.2 Threat Model

Attacks on the integrity of DNNs can be orchestrated at different stages of the model learning

pipeline (e.g., data collection or training). We assume the TEE node in GINN is trusted,

and the bytes stored on the Processor Reserved Memory (PRM) are always encrypted and

authenticated before they are fetched inside the CPU. We assume that the data sent to GINN

is provided by honest users via a secure/authenticated channel and is devoid of malicious

samples.1 For the training phase, we assume that the adversary has complete knowledge

about the network structure, learning algorithm, and inputs (after TEE performs an initial

pre-processing) to the model. In our threat model, the adversary is in complete control of

the host system’s software stack, and hardware (unprotected RAM, GPU), except for the

CPU package and its internals. Therefore, the code that runs inside the enclave is free

from tampering, and the data that are accessed inside the cache-lines or registers are not

accessible to the adversary. For the inputs supplied to DNN tasks, the adversary is capable

of performing insertion, modification, and deletion to influence the final model towards her

advantage. Finally, the adversary controls the communication between TEE and the user,

but cannot impose denial of service attacks. As a result, an attacker may report falsified

gradients at any time.
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Figure 4.1: The main architecture of GINN. The TEE handles mini-batch selection, layer-
specific randomness, and parameter initialization. The GPU performs forward and backward
passes over the mini-batch (items selected by SGX provided seed) and reports the computed
gradients to the TEE. TEE then clips the gradients and performs the weight update. Also,
TEE preserves the MAC-authenticated intermediate gradient reports. During verification,
TEE performs the forward and backward passes with the batch items along with layer-specific
randomness (regenerated) and compares the gradients with the GPU’s report.

4.3 System Design

GINN offers integrity for the training phase of a DNN model while inducing limited compu-

tational overhead. An overview of GINN is illustrated in Figure 4.1.

Training Setup Before the training phase initiates, the training dataset is decrypted and

validated inside the TEE. We assume an honest and authenticated user will send her data

encryption key  2;84=C (after remote-attestation) to the TEE. Next, the TEE decrypts/verifies

the initial encrypted dataset using the  2;84=C and supplies the trainer (GPU) the plain-text

of the training set. Lastly, the TEE allocates the necessary resources for the model and

initializes the parameters with random values for the GPU to initiate the first SGD step.

Training with GINN 1) At the beginning of mini-batch SGD step i, the TEE supplies

the untrusted GPU with the pseudorandom number generator (PRNG) seeds for the mini-

batch selection and the per-layer PRNG seeds (e.g., Dropout (Srivastava et al., 2014)) that

1Detecting malicious samples is beyond the scope of this work.
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are derived within the TEE and supplied to the GPU. As a result, the adversary will have

to use the provided PRNGs for random choices. TEE generated randomness is applied to

populate the data buffers of the GPU with the correct batch. Depending on the number

of layers, other PRNG seeds will be generated for each layer to generate random values

for operations of each layer. 2) After completion of the forward and backward passes over

the mini-batch, the computed gradients are sent back to the TEE. In our design, the GPU

always performs the forward and the backward passes and reports the computed gradients

to the TEE. 3) GINN always clips the reported gradients and ensures that they are within a

narrow range before performing the update so that evolving the model towards the attacker’s

intended model requires a prolonged malicious intervention by the attacker. 4) GINN updates

the parameters ($ (#) complexity) with the clipped gradients and saves authenticated snap-

shots of the state outside the TEE. 5) If the computation at this step is randomly selected for

verification, then the faulty behavior, if any exists, can be detected. Otherwise, the chance

that the model has evolved towards the attacker’s desired optima likely requires multiple

rounds, which provides ample opportunities for detection. Additionally, the verification is

performed randomly to prevent the attacker from guessing which step is likely to be verified.

In the end, if the TEE does not detect any violation, it will certify the final model by digi-

tally signing the model hash. As we stated, an honest and authenticated user will send her

data encryption key  2;84=C (after remote-attestation) to the TEE. Next, the TEE decrypts

and verifies the initial encrypted dataset using the  2;84=C and supplies the trainer (GPU)

the plain-text of the training set. If the TEE fails to detect any violations of the protocol

during training, it will sign the following message that certifies the final model where W is

the model parameters, 3B is training dataset, E =D< is the model version number, (��256

is Sha 256 bit cryptographic hash function,

(��256((��256(W)||E =D< | |(��256(3B) | |(86E2;84=C)
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with signature key (86B
(�-

of the enclave.

Probabilistic Verification with GINN The TEE randomly decides whether or not to

verify the computation over each mini-batch. If the mini-batch is selected for verification,

then the intermediate results are saved and the verification task is pushed into a verifica-

tion queue. Verification by the TEE can take place asynchronously and it does not halt

the computation for future iterations on the GPU. The authenticity of snapshots is always

verified with a key that is derived from a combination of the TEE’s session key, ( B4BB8>=
(�-

and the corresponding iteration. When the TEE verifies the step i, it populates the network

parameters with the snapshot it created for the step i − 1. It then regenerates the random-

ness designated to step 8 to obtain the batch indices and correctly sets up the per-layer

randomness. Given that the TEE’s goal is to verify that the reported gradients for step 8

are correctly computed, GINN does not keep track of the activation results. Rather, it only

requires the computed gradients, batch mean/std (for BatchNorm layer), and the matrix

multiplication(MM) outcomes (in case random MM verification is chosen).

Randomized Matrix Multiplication Verification with GINN Matrix Multiplications

(MMs) take up the bulk of the resource-heavy computations in DNNs. In modern DNN

frameworks, convolutional and connected layers computation are implemented in the form

of a matrix multiplication in both of the forward and backward passes. Table 4.1 depicts

the computations in the forward pass and backward gradient with respect to the weights

and previous layers’ outputs in the form of a rank 2 tensor multiplication. Fortunately,

there exists an efficient verification algorithm (i.e., Freivalds’s randomized MM verification

algorithm) for matrix multiplication( (Freivalds, 1977)) when the elements of matrices belong

to a field. In this work, we leverage the Freivalds’s randomized MM verification algorithms

as well.
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Table 4.1: Matrix Multiplication Operations

Layer Type Pass Computation Verification (Sub)Batched/ Precomp.

Fully Connected
Forward O[�] [$] = I[�] [�] × (W[$] [�])ᵀ

Υ[�] [1] = (W[$] [�])ᵀ × R [$] [1]
Z[�] [1] = I[�] [�] × Υ[�] [1]
Z′[�] [1] = O[�] [$] × R [$] [1]

YES / YES

Backward Parameters
Gradient

∇W[$] [�] = (∇
O
[�] [$])

ᵀ × I[�] [�]

Υ[�] [1] = I[�] [�] × R [�] [1]
Z[$] [1] = (∇O[�] [$])

ᵀ × Υ[�] [1]
Z′[$] [1] = ∇W[$] [�] × R [�] [1]

YES / NO

Backward Inputs
Gradient

∇I[�] [�] = ∇
O
[�] [$] ×W[$] [�]

Υ[$] [1] =W[$] [�] × R [�] [1]
Z[�] [1] = ∇O[�] [$] × Υ[$] [1]
Z′[�] [1] = ∇I[�] [�] × R [�] [1]

YES / YES

Convolutional
Forward O[ 5 ] [F> .ℎ>] =W[ 5 ] [:2.�8] × I[:2.�8] [F> .ℎ>]

Υ[1] [:2.�8] = R [1] [ 5 ] ×W[ 5 ] [:2.�8]
Z[1] [F> .ℎ>] = Υ[1] [:2.�8] × I[:2.�8] [F> .ℎ>]
Z′[1] [F> .ℎ>] = R [1] [ 5 ] × O[ 5 ] [F> .ℎ>]

NO / YES

Backward Parameters
Gradient

∇W[ 5 ] [:2.�8] = ∇
O
[ 5 ] [F> .ℎ>] × (I[:2.�8] [F> .ℎ>])

ᵀ

Υ[F> .ℎ>] [1] = (I[:2.�8] [F> .ℎ>])
ᵀ × R [:2.�8] [1]

Z[ 5 ] [1] = ∇O[ 5 ] [F> .ℎ>] × Υ[F> .ℎ>] [1]
Z′[ 5 ] [1] = ∇W[ 5 ] [:2.�8] × R [:2.�8] [1]

NO / NO

Backward Inputs
Gradient

∇I[:2.�8] [F> .ℎ>] = (W[ 5 ] [:2.�8])
ᵀ × ∇O[ 5 ] [F> .ℎ>]

Υ[1] [ 5 ] = R [1] [:2.�8] × (W[ 5 ] [:2.�8])
ᵀ

Z[1] [F> .ℎ>] = Υ[1] [ 5 ] × ∇O[ 5 ] [F> .ℎ>]
Z′[1] [F> .ℎ>] = R [1] [:2.�8] × ∇

I
[:2.�8] [F> .ℎ>]

NO / YES

4.4 Integrity Analysis

To achieve our integrity goal ?8 (i.e., the probability that an attacker can modify the result

without being detected is less than 1 − ?8), we need to derive the ?E (i.e., the probability

that TEE verifies an SGD step).

4.4.1 Random Mini-Batch Verification

We define the total number of DNN training steps as �. For each step, report '1 (∀1 ∈

[1, �] ∧ '1 ∈ {0, 1}) has a probability ?2 for being corrupted (i.e., '1 = 1) and the overall

integrity probability goal of ?8 (for example ?8 = 0.999).

We define +1 = 1 if a batch is chosen by the TEE for verification, and the verification

result indicates a malicious SGD step. If the verification passes, then +1 = 0.

We define random variable - =
∑d�×?E e
1=1 +1 to be the total number of random verifications

performed that resulted in catching a malicious SGD step. It should be recognized that the

TEE needs to catch at least one deviation (i.e., - ≥ 1) with probability greater than ?8 to

invalidate the overall model learning.
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Theorem 1. Given a total of B steps during SGD training, a %2 probability of an SGD step

being malicious, and %8 probability of detecting at least one malicious SGD step, the required

probability of choosing a step to verify (?E) should be greater than

�−1( log(1−?8)log(1−?2) − 1).

Proof. We need to ensure that %(- ≥ 1) (i.e., the probability that at least one deviation is caught)

is greater or equal to ?8.

%(- ≥ 1) = 1 − %(- = 0) ≥ ?8

1 − ?8 ≥ %(- = 0)

1 − ?8 ≥
(
d� × ?Ee

0

)
?02 (1 − ?2) d�×?E e

1 − ?8 ≥ (1 − ?2) d�×?E e

log(1 − ?8) ≥ d� × ?Ee log(1 − ?2)

?E > �−1( log(1 − ?8)
log(1 − ?2)

− 1) (4.1)

As shown in Figure 4.2 in 4.4.3, we only need to verify a small subset of the batch compu-

tations inside the TEE to ensure a high probability of correct computation. For example,

for large datasets such as Imagenet (Deng et al., 2009), when corruption probability is %0.5,

we need to randomly verify %1 of computation to achieve 0.9999 correctness probability on

the computation outsourced to the GPU .

4.4.2 Random Mini-Batch Verification with Randomized Matrix Multiplication

Since Freivalds’s randomized matrix multiplication verification scheme (Freivalds, 1977) is

a randomized algorithm, it is possible that the scheme will falsely attest to the validity of

the MM operations performed by the GPU. Thus, in addition to the previous configuration,

the verification can be replicated : times to decrease the chance of encountering a false

negative. The scheme has no false positive, so if the matrix multiplication is correct then the
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verification succeeds. Given that each SGD step contains < independent MM operations,

which are to be repeated : times (independently), and random values are uniformly sampled

from a field of size |( |, the probability of error (attesting to the validity of a malicious MM

operation) is less than U = 1
|( |<: . We define the random variable + ′

1
= 1 if '1 = 1 (i.e.,

corrupt report of a malicious step) and "" E4A8 5 H(1) = 0 (Freivalds’s verification rejects

the equality), otherwise + ′
1
= 0

Also, define - =
∑d�×?E e
1=1 + ′

1
. We need to detect at least one deviation with probability

greater than ?8 while conducting random matrix multiplication verification.

Theorem 2. If random matrix multiplication verification is applied, then, given the con-

figuration of Theorem 1, the required probability of choosing a step to verify (?E) should be

greater than

�−1( log(1−?8)
log((1+(U−1)?2) − 1).

Proof. Again, we need to ensure that %(- ≥ 1) (i.e., the probability that at least one deviation is

caught) is greater or equal to ?8.

%(- ≥ 1) ≥ ?8

1 − %(- = 0) ≥ ?8

1 − ?8 ≥
(
d� × ?Ee

0

)
(?2 (1 − U))0((1 − ?2) + ?2U) d�×?E e

1 − ?8 ≥ ((1 − ?2) + ?2U) d�×?E e

log(1 − ?8) ≥ d� × ?Ee log((1 − ?2) + ?2U)

?E > �−1( log(1 − ?8)
log((1 + (U − 1)?2)

− 1) (4.2)

The threshold in Theorem 2 yields approximately the same values as Theorem 1 when U→ 0.

However, the randomized MM verification requires a $ (#2) operations for a # × # matrix,

compared to an iterative algorithm that requires $ (#3) operations.
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4.4.3 Verification Probability Growth with Respect to Detection Probability

Fig. 4.2 shows how verification probability changes with respect to the probability that a

batch step is maliciously manipulated by the attacker. The first row shows the verification

probability for a dataset with 60K samples. The second row depicts the required for much

bigger dataset (1M samples) over different mini-batch sizes. The smaller the mini-batch size

is, there is a higher chance for detecting malicious behavior.
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Figure 4.2: Required verification probability with respect to batch corruption probability
and the desired integrity probability for a fixed 200 epochs and different SGD batch size.

4.5 Experiments

All of our experiments were run on a server with a Linux OS, Intel Xeon CPU E3-1275

v6@3.80GHz, 64GB of RAM and an NVIDIA Quadro P5000 GPU with 16GB of memory.

Our attack code is implemented in python 3.6 using the PyTorch library. We use Intel SGX

for the TEE plaform. For SGX proof-of-concept implementation, we significantly modified

the DarkNet (Redmon, 2016) library to run the experiments.
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Our SGX code has been tested with SDK 2.9 and the code runs inside a Docker container

in hardware mode. Our experiments are designed to investigate efficiency and effectiveness.

First, we evaluate the degree to which integrating randomized matrix verification influences

the computational efficiency of the process. Second, we analyze the effectiveness of gradient

clipping in forcing the attacker to deviate from the honest protocol in higher number of

mini-batch steps. Various attack hyper-parameters (e.g., poisoning rate) were evaluated in

determining their importance towards a successful attack with minimal deviation. This is

important because, if the attacker needs to deviate in more mini-batch steps, then the TEE

can detect such deviations with a smaller number of random verification steps (i.e., ?2 is

higher in equation 4.1).

The following is an enumeration of experiments in the order they are discussed. In

section 4.5.1, we analyze the performance of our system for a large dataset. For this ex-

periment we use ImageNet (Deng et al., 2009), which consists of RGB images of 1000 cat-

egories. Next in section 4.5.2 we analyze the performance for a much smaller dataset, CI-

FAR10 (Krizhevsky, Nair, and Hinton, Krizhevsky et al.). CIFAR10 dataset contains RGB

images of 32 by 32 pixels in 10 categories of objects or animals. Then in section 4.5.3 we ana-

lyze the impact of the heap allocated to the enclave. For this experiment we used images from

ImageNet dataset. In section 4.5.4 we seek to evaluate the impact of gradient clipping, in an

attack scenario for three different datasets and contemplate about the potential verification

rate necessary for a TEE to catch the malicious execution. CIFAR10, MNIST (LeCun and

Cortes, 2010) (black-white digit images from 0 to 9), and GTSRB (Stallkamp et al., 2012)

(RGB images of traffic signs) are used to conduct this analysis. Afterwards, in section 4.5.5,

we investigate whether training with gradient clippings can have an unusually high impact

on the quality of the models, especially if the chance of the training being attacked is not

high. Finally, in section 4.5.6, we conducted a similar analysis on ImageNet (an instance of

a very large dataset) to observe the potential impact of gradient clipping on big datasets.
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4.5.1 TEE Performance On ImageNet With Common Architectures
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Figure 4.3: Throughput of the SGD training step for VGG19,VGG16, ResNet152, and
Resnet34 on ImageNet dataset with respect to forward and backward passes. “SGXRMM”
refers to Freivalds’ MM verification scheme, while “SGX” refers to the baseline case of fully
computing the MM operation. RMM can lead to verification that is twice as fast as full MM
verification in case of a VGG architecture.

We tested TEE performance on popular DNN architectures such as VGG16, VGG19 ((Si-

monyan and Zisserman, 2014)), ResNet152, and ResNet34 ((He et al., 2016)) with the Im-

ageNet ((Deng et al., 2009)) dataset. Figure 4.3 illustrates the throughput of the deep

networks (i.e., the number of images processed per second during the DNN training). Usu-

ally, most of the computation takes place in the convolution and fully-connected layers of the

network. However, the backward pass yields a smaller throughput, on average, because it

involves one more MM (weight gradients and input gradients) than the forward pass, which

only invokes MM once (i.e., output of convolution or fully-connected layers). The implemen-

tation is quite efficient in terms of MM operations, which uses both vectorized instructions

along with multi-threading. We note that the baseline GPU, which lacks TEE support and

integrity protection, significantly outperforms the pure TEE baseline. For instance, the over-

all throughput for ResNet34 is about 60 images per second, whereas the pure SGX baseline

solution is about 1.5 images per second.
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Table 4.2: TEE Architectures Used

Arch FC1 FC2 FC3
VGG11 (128,10) (128,64,10) (256,128,10)
VGG13 (128,10) (128,64,10) (256,128,10)
VGG16 (128,10) (128,64,10) (256,128,10)

Both VGG networks gives better improvements (≈ 2.2X) than ResNet (≈ 1.2X). Consid-

ering that the TEE randomly decides to verify an SGD step with probability ?E, the overall

improvement is approximately multiplied by 1
?E

X. For instance, if we assume the attacker

only needs to deviate with probability 7�−5 (i.e., deviating only 70 steps out of 1M steps),

then we can detect such deviation with ?E ≈ 0.1 (See Figure 4.2d). For VGG networks, this

means that approximately 22X performance improvement in throughput compared to a pure

TEE-based solution that verifies every step. Nonetheless, as our experiment results suggest,

we believe that attacking deep models that are trained on very large datasets should require

a significantly larger number of deviations. This, in return, may result in a much greater

performance gain.

4.5.2 TEE Performance on CIFAR10

Figure 4.4 depicts the throughput performance for the CIFAR10 dataset and 9 different VGG

architectures . We chose three popular VGG(11,13,16) architectures adapted for CIFAR10

image inputs with custom fully connected layers attached to its end. FC-1 is one layer

(128 × 10), FC-2 is two layers (128 × 64, 64 × 10), and FC-3 is two layers (256 × 128, 128 ×

10). For CIFAR10, our verification technique generally do not benefit from randomized

matrix multiplication scheme as it did for ImageNet. This is mainly because most of the

operations and network layers fit well within the hardware memory limit. Therefore, since

the dimensions of MM operations are not too large, using randomized MM verification does

not improve performance significantly.
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Figure 4.4: Throughput of SGD training step for VGG19,VGG16, ResNet152, and Resnet34
on CIFAR10 dataset. Randomized Matrix Multiplication (Freivalds’ scheme) can make ver-
ification twice faster in case of VGG architecture.

4.5.3 Enclave Heap Size Impact on TEE Performance

Figure 4.5 depicts the impact of the heap size on the performance of DNNs for a single

SGD step. It can be seen that increasing the heap size substantially beyond the available

hardware limit (to around 92MB) can induce a negative impact on the performance. This is

especially the case for the VGG architecture. This result is mainly due to two factors. First,

it causes driver level paging, which must evict enclave pages that require an extra level of

encryption/decryption. Second, there is a non-trivial amount of extra bookkeeping required

for the evicted pages.

4.5.4 Combined Impact of Gradient Clipping and Learning Rate on Attack

Success

As we discussed, if the SGD updates are not bounded, the attacker can launch a successful

attack by deviating from the correct training in a single update step. To prevent this, we

require each update to be clipped using the gradient clipping approach. We conducted series
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Figure 4.5: The impact of increasing TEE heap size on (a) overall throughput and (b) the
time spent in matrix multiplication routine. VGG shows significant reduction in performance
as opposed to ResNet.

Table 4.3: Trained models with restricted clipping and learning rate

Dataset clip lr %clean %attack total
GTSRB 10−4 10−4 ≥ %95 ≥ %85 124
MNIST 10−4 5 × 10−5 ≥ %95 ≥ %85 49

CIFAR10 5 × 10−4 10−1 ≥ %90 ≥ %85 94

of experiments to understand how gradient clipping impacts the attacker success in poisoning

the model during training. As shown in Table 4.3, we selected the models that achieved high

performance on both clean and poisoned test samples (267 out of 600+). 2 First, during

2We also performed a series of experiment for the scenario where the attack is performed on steps chosen
at random. However, this type of attack was not successful, such that we do not report those results here.
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(a) Large with multiple colorvariations (b) Small with low color variations in two separate corners

(c) Gray scale (d) Instagram Kelvin Filter

(e) Color Rotation Filter (f) Mix of Rotation and Instagram Nashville Filters

Figure 4.6: All examples of triggers on CIFAR10 images
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Figure 4.7: A boxplot representation of the verification rates required by TEE for detection
failure ≤ 10−3. Based on the attack hyper-parameters: 1) backdoor trigger type (first row).
2) epoch that attack starts (second row, 20%×,50%×, and 90%×|epochs|). 3) backdoor
poisoning ratio

the attack, attacker follows the correct protocol (mini-batch SGD) until 4?>2ℎ0CC02: . At

this epoch, the attacker starts attacking by injecting a certain number of poisoned samples
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(?>8BA0C4×10C2ℎ B8I4) from every class into the training batch and labels it as the target label.

The attacker continues to attack until they achieve a desired threshold in terms of success rate

(correctly classifying backdoored samples as the attacker’s target label). Once it passes the

threshold, the attacker halts the attack and returns to the honest protocol, while observing

the decay in attack success rate. If the success rate falls below a desired lower threshold,

the attacker transitions back to attack mode and repeats the aforementioned strategy. The

CIFAR10 ((Krizhevsky, Nair, and Hinton, Krizhevsky et al.)), GTSRB ((Stallkamp et al.,

2012)) and MNIST ((LeCun and Cortes, 2010)) datasets were used to analyze the impact of

multiple factors imposed by the attacker. For MNIST, and GTSRB, the Adam (Kingma and

Ba, 2014) optimizer (which requires a smaller initial learning rate), and for the CIFAR10

dataset, SGD with momentum are used. Additionally, for MNIST, and GTSRB 10% of the

training set was chosen for the validation set to help adjust the learning rate based on the

validation set loss. Same for the CIFAR10 dataset, the learning rate was set to decay (by

tenfold) at fixed epochs (40, 70, 100).

Backdoor Trigger Pattern

We applied 6 different backdoor triggers (Figure 4.6). The MNIST dataset only has single

channel images, we converted it to a three channel image to apply the triggers 3 to 6. As

shown in Figure 4.7 (first row) the trigger pattern can significantly influence the effectiveness

of the attack. The red lines show the median, while the green dots correspond to the mean.

In all of the datasets, the first trigger pattern (Figure 4.6a) was the most effective. This

pattern covers a wider range of pixels compared to the second trigger type (Figure 4.6b).

As a consequence, it is more likely that the model can remember the trigger pattern across

longer periods of SGD steps. Moreover, since photo filters (e.g. Instagram) have become

popular, we investigated the potential for conducting attacks using some of the filters (or

transformations) as the trigger pattern. However, covering a very wide range of pixels does
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not lead to a stealthy attack, as illustrated by the last four patterns. These patterns cover the

whole input space and transform it to a new one that they share a lot of spacial similarities

while only different in tone or scale (e.g. Figure 4.6d). Learning to distinguish inputs that

are similar, and only different in their tone, is demanding in terms of continuity of the attack.

In this case, both of the images (that is, with and without the trigger) are influencing most

of the parameters and filters in a contradictory manner (different classification label). Thus,

it takes a significant number of steps for the network to learn to distinguish them when

gradient clipping is applied.

Attack Start Epoch

Another major factor influencing the evasiveness of the attack is when the attacker initiates

the attack. For instance, early in the training phase the learning rate will be high, such that

a savvy attacker might believe that they can avoid low clipping values by initiating their

attack. However, if the attack begins too early, then it is unlikely that the model has yet

converged. As a result, the attack may need to commit a substantially higher number of

(unnecessarily) poisoned batches, which, in turn, would raise the probability of detection.

Yet even if the attacker was successful, once they halt the attack, the model will likely evolve

the parameters back to a clean state relatively quickly, such that, once again, the attacker

would need to re-initiate their attack. Additionally, because of a low clipping value, if the

attacker waits until later in the training process, the attack is again unlikely to be effective.

In this case, this would mainly be due to the considerably smaller learning rate. As shown

in Figure 4.7, the best time to attack is when 1) the model has a relatively low loss on

clean training inputs and 2) the combination of learning rate and clipping value (effective

attainable update) allows the model to move toward attacker’s desired optima. For MNIST,

which is a trivial learning task, attacking early endows the attacker with a better chance to

launch a stealthier attack. We believe that this is due, in part, to the faster convergence
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of the model. After a few epochs, the system quickly reaches a stable, low training loss for

clean images. As a result, after reaching the desired attack success threshold, the attack

success is generally preserved far longer than the other two datasets.

Mini-Batch Poisoning Ratio

Another critical factor is ?>8BA0C4, the ratio of the number of poisoned samples in the batch to

the batch size. This is particularly the case when gradient clipping is applied. Setting ?>8BA0C4

appropriately can help the attacker by moving more parameters toward the desired optima.

However, going beyond a ratio of 0.9 (i.e., ?>8BA0C4 > 0.9) can impact the training negatively

for both clean inputs and poisoned inputs. As depicted in Figure 4.7, our experiments suggest

that filling more than half the batch with poisoned samples seems to be effective across all

datasets. For the MNIST dataset, it appears that higher values can achieve slightly better

performance, however, this finding is not replicated in more complex datasets. For example,

for the GTSRB dataset, we did not observe a successful attack on the model where clean

input accuracy is close to the clean input accuracy where there is no attack.

4.5.5 Impact of Gradient Clipping for Honest Trainers

One important question is whether the gradient clipping tat applied to prevent the attacker

from changing parameters in a given mini-batch update can have a performance impact

on training when there is no attack. We ran six experiment configurations, repeated 5

times, each with different randomness (initialization, batch order, etc.). Initial learning rates

are set ∈ (0.1, 0.01) and clipping thresholds are set ∈ (=8;, 0.001, 0.0005) (nil stands for no

gradient clipping). In total, there were 30 ResNet56 (complex architecture with state-of-the-

art performance) models trained on the CIFAR10 dataset (with no attack) for 200 epochs.

Usually, for the SGD (Robbins and Monro, 1951) optimizer with momentum, a learning rate

value of 0.1 is chosen, (and for Adam optimizer a value less than 0.001). The reader can refer
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Figure 4.8: 4.8a Reference Models (no gradient clipping) mean/std on test accuracy of
5 repeats for two different learning rates. Each configuration had 5 repeats and a refer-
ence model (no attack and unbounded updates). 4.8b For each run configuration the test

accuracy difference 38 5 5;A,2;8? is defined as <0G
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)
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to (A., A.) for an introductory background on deep learning optimization paradigms. For

these experiments, we used the configuration with unbounded gradient updates as the main

reference point. For learning decay schedule, we used a fixed decay by tenfold at epochs (50,

90, 130, 160).
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Figure 4.8a shows the mean and standard deviation (dashed lines) of test accuracy taken

for 5 runs at each epoch for the two learning rate configurations. As it can be seen, both

models start to take giant leaps toward convergence at the first two learning decays enforced

by the scheduler. Note that these reference runs have no gradient clipping enforcement

during the update step. Toward the end of training, the setting with the higher initial

learning rate slightly outperforms in terms of accuracy ratio.

In Figure 4.8b, the largest difference (accuracy rate) with respect to the reference run is

plotted for each combination of learning rate and clipping value. The plot shows that test

accuracy is minimally influenced by the clipping value. Rather, the test accuracy is highly

dependent on the learning rate value. When ;A = 0.1, both clipping values can achieve

values that are close to the reference runs that have no gradient clipping. In Figure 4.8c,

the opposite - that is, the smallest difference - of the previous measure is plotted. Again,

by the end of the training, the gaps are significantly reduced for the case where a better

learning rate is chosen. Therefore, having a smaller clipping value has minimal impact on

the performance, which is notable because it is crucial to set a reasonable learning rate.

Overall, Figure 4.8 shows that clipping has negligible impact on the learning task once an

appropriate learning rate is chosen. It can be seen that, if the trainer chooses an acceptable

learning rate for the task, small clipping values (e.g., 0.001 or 0.0005) do not impede the

learning task. Once the model passes the first learning rate decay schedule, all of the con-

figurations behaves the same in terms of their test performance compared to their reference

model (no gradient clipping limit).

4.5.6 Gradient Clipping Impact Analysis On Large Dataset

We investigated our attack on the ImageNet dataset with the ResNet34 architecture. The

state-of-the-art reference achieves an accuracy (rate) of 0.73. However, we only reinitialized

and trained the fully-connected plus the last four convolutional layers (10M out of 21M
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parameters). We used an SGD optimizer for 30 epochs, and the initial learning rate was

set to 0.05. Additionally, the learning rate was set to decay (by tenfold) at fixed epochs

(4, 7, 13). Also, ?>8BA0C4 was 0.5, and the first trigger pattern (Figure 4.6a) was used as the

only pattern (resized to 256x256). Finally, at the beginning of the third epoch (one epoch

before the first decay) the attack started.

Gradient Clipping Impact on Poisoning Backdoor Attack Evasiveness

Table 4.4: ImageNet (Re-)Training on ResNet34’s Last Five Layers with 4?>2ℎB = 30,
4?>2ℎ 0CC02: = 3, ?>8B A0C4 = 0.5

#class targets GC clean accr trojan accr # steps verf. rate
10 5 0.71 1.0 280 0.024
10 2 0.71 1.0 280 0.024
10 0.0005 0.57 0.99 2540 0.0027
50 5 0.71 0.93 181 0.038
50 2 0.71 0.93 181 0.038
50 0.0005 0.57 0.92 1380 0.005

We conducted the attack for a subset of source labels (10, and 50 out of 1000 classes) to

a single target class. Table 4.4 shows that small clippings (2 and 5) forces the attacker to

continue for a longer period of time, which results in a small verification rate while supporting

a reasonable performance loss (around 0.02). It is evident that the total number of malicious

steps to launch successful attacks (achieved within 30 epochs of training) demands a very

low verification rate, given the detection failure < 10−3. It is common for models that are

built on the ImageNet to perform more than 1M SGD steps. To require anything beyond

0.1 verification rate, the total number of steps that the attacker intervenes should be below

70, which is unlikely given the strict gradient clippings.
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Gradient Clipping Impact On Training W.O Attack

To investigate if the optimal accuracy that can be achieved for the current setting (partial

retraining) , we selected four clipping values: unbounded, mild (5.0), low (5.0), and tiny

(0.0005). The training with unbounded clipping value was unstable and the model barely

achieved an accuracy of 0.01. We believe that this is an example of how gradient clipping

can help large DNN models converge faster.3 However, the training with the low clipping

values converged to an acceptable optima of ≈0.72 accuracy. It should be noted that we only

trained the model for far fewer iterations than what is usual for ImageNet (1M-2M steps).

Additionally, for the tiny clipping value, the model converged to an optimum accuracy rate

of ≈0.61. We wish to highlight that, for large datasets (millions of inputs), if the trainer can

choose a suitable learning rate, gradient clipping values that are not significantly smaller

than the learning rate, are unlikely to incur an unacceptable performance overhead, and

empirically, we observe that gradient clipping can also help the model converge faster.

4.6 Conclusion

This chapter introduced the GINN system, which provides integrity in outsourced DNN

training using TEEs. As our experimental investigation illustrates, GINN scales up to re-

alistic workloads by randomizing both mini-batch verification and matrix multiplication to

achieve integrity guarantees with a high probability. We have further shown that random ver-

ification, in combination with hyperparameter adjustment (e.g., setting low clipping rates),

can achieve 2X-20X performance improvements in comparison to pure TEE-based solutions

while catching potential integrity violations with a very high probability.

3Training from scratch with unbounded clipping can potentially take at least a week using a single GPU
of 16GB.
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CHAPTER 5

A FRAMEWORK FOR PRIVACY-PRESERVING GENOMIC DATA

ANALYSIS USING TRUSTED EXECUTION ENVIRONMENTS 1

5.1 Introduction

Ever since the completion of the Human Genome Project (Guttmacher and Collins, 2003),

numerous research resources have been allocated to improve sequencing workflow efficiency.

With the advent of moderately cheap Next Generation Sequencing (NGS) technology, (Xu,

2014) and its massive parallelism capability, companies and governments alike are heavily

investing in platforms to support gathering, processing, and querying genomic data. Given

its potential in various settings (e.g., personalized medicine, ancestry characterization, and

kinship analysis), numerous endeavors have been oriented to use such information. One

notable example is Genome Wide Association Studies (GWAS), which aim to discover the

genomic variations that are most correlated with diseases and phenotypic traits. At the

same time, the sharing and analysis of genomic data raises significant privacy concerns. For

instance, while genomic data can shed light on predisposition to various diseases, which may

be exploited for various purposes. In the United States, though the Genetic Information

Nondiscrimination Act of 2008 prohibits the use of such data for health insurance eligibility

and premium pricing, it does not address its use in the context of life, long-term care,

or disability insurance. Moreover, concerns extend beyond the individual, as genomic data

reveals information about biological relatives (Edge et al., 2017; Humbert et al., 2013). Most

recently, this was highlighted by the Golden State serial killer case, who was identified three

decades later, after it was found that a public genealogy database contained the genomic

1©2020 IEEE Reprinted. with permission, from A. Asvadishirehjini, M. Kantarcioglu and B. Malin, “A
Framework for Privacy-Preserving Genomic Data Analysis Using Trusted Execution Environments”, 2020
Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications
(TPS-ISA), 2020, pp. 138-147
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markers of the suspect’s relative (G. and H., 2018). This issue has sparked substantial

controversy in the scientific community, and public discourse (Court, 2018). This is only

one example of various ways by which privacy intrusions may be committed against genomic

data, as documented in various review articles (see (Mittos et al., 2017; Naveed et al., 2015;

Akgün et al., 2015)).

In this respect, there are concerns that as the diversity of attacks against genomic data

grow, individuals (and the institutions managing genomic data on their behalf) can not be

afforded privacy protections. As such, they will either need to accept that significant privacy

risks abound or choose not to participate in research (or at least the sharing of research data

beyond the borders of the institution that collected and analyzed it initially). However,

technological advancements may provide an alternative solution. To mitigate privacy risks

for individuals and data custodians, techniques borrowed from applied cryptography have

been adapted to process genomic data. These methods are designed to provide confidentiality

and integrity for an institution’s private inputs at the expense of increased computational re-

sources and, at times, loss of precision for outputs (e.g., GWAS). In practice, these techniques

can be broadly categorized into two classes. The first class incorporates a cryptographic tech-

nique, Secure Multi-party Computation (SMC), that transforms the genomic data analysis

function into a boolean or an arithmetic circuit (e.g., (Constable et al., 2015; Tkachenko

et al., 2018)). SMC protects private genomic data, such as single nucleotide polymorphism

(SNP) variants, for all collaborating institutions. However, these circuits are limited in that

they 1) are unable to support the simultaneous processing of a large amount of genomic data,

and 2) induce a substantial increase in bandwidth and computation time. The second class

of multi-party solutions leverage trusted execution environments (TEEs). Using hardware

capabilities, one can derive guarantees that the execution of source code and the data under

investigation remain in an isolated tamper-resistant chip. The Intel Software Guard Exten-

sions (SGX) has become a popular TEE choice for the genomic setting (Chen et al., 2016,
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2017, 2016; Carpov and Tortech, 2018; Mandal et al., 2018). Unlike SMC solutions, a TEE

can avoid running a boolean (or arithmetic) circuit. The genomic data is kept encrypted

during storage, and it is only decrypted inside a special region of memory called enclave.

Furthermore, this enclave’s content is not accessible to operating system or the programs

running on the machine. Unfortunately, TEEs such as SGX leak memory access patterns

(Costan and Devadas, 2016; Intel, Intel). As a consequence, a naive implementation can

leak information, such as variant counts of institutions, in the case of GWAS analysis. To

enable SGX resistance for such leaks, algorithms need to be implemented in a data oblivious

fashion. For instance, in matrix multiplication, the standard algorithm will always access

the same memory locations irrespective of the matrix values. Conversely, a matrix multipli-

cation that is optimized for sparse matrices may reveal the number of zeros due to memory

access patterns. A number of data-oblivious frameworks have been developed for SGX in

various domains, including distributed databases and machine learning (Zheng et al., 2017;

Shaon et al., 2017; Ohrimenko et al., 2016).

This chapter introduces ObliVGene, a data-oblivious, privacy-preserving, and multi-party

(non-trusting organizations or entities) genomic data analysis framework for geneticists.

ObliVGene always keeps the sensitive data encrypted and authenticated when it resides

outside the TEE boundary, and the data only is decrypted within the TEE when neces-

sary. Moreover, depending on the type of data (e.g., VCF) and the computation, it may

duplicate and preprocess the genomic data for optimization and data-obliviousness purposes.

Throughout the chapter, two common applications of genomic data analysis using individu-

als’ private data are investigated. For GWAS analytics, institutions initially preprocess their

private data, which are encrypted and submitted to a central repository endowed with Intel

SGX hardware (ObliVGene). In a second phase, an aggregation server will run an attested

program to compute a pooled GWAS.

We evaluate the IDASH 2017 competition (Track 2) dataset, which consists of 5 × 106

unique SNPs. We illustrate that, while the state-of-the-art TEEs solution leaks memory
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access patterns, our approach leaks no such information. This investigation shows that

multi-institution genome association testing with privacy and integrity guarantees is not

out of reach. Additionally, stronger protections against attacks based on memory access

patterns are possible with reasonable overhead. Notably, the proposed techniques presented

throughout this chapter apply to a range of tests for association studies based on variant

counts, such as j2 tests. For the second application, we considered Deep Learning for

genomic data analysis. The reason is that given the success and continuous improvements of

Deep Neural Networks (DNN) in making reliable decision models in a variety of domains (e.g.,

vision, natural language, audio processing), there is also a growing trend within the genomic

community to incorporate Deep Learning (DL) for an array of tasks (Yue and Wang, 2018).

ObliVGene supports commonly used layers in DL, such as Convolution, Pooling, Softmax,

etc., and augmented their standard implementations with data-oblivious versions to run

within a TEE. Achieving data-obliviousness for DNNs is relatively cheap because most of

the standard layers and activation functions are data-oblivious. However, there are cases

that conditional branching may leak information about the private genomic information,

which are discussed at Section 5.2.3. For evaluating the secure DL framework using TEEs,

we tested a model inspired by IDASH 2019 workshop/competition for a binary classification

task. The model consisted of more than 80 layers and 10.8 million parameters containing

specialized one-dimensional convolutions, max-pool, and residual shortcuts (He et al., 2016).

The specific contributions of this investigation are:

• For GWAS tasks that rely on variant counts in a pooled dataset, ObliVGene trans-

forms the input data from subject-oriented into SNP-oriented genotype data, which is

suitable for executing such tests efficiently. Additionally, we introduce a bit-level com-

pression strategy for genomic data. We apply this representation to realize substantial

computing efficiency gains by leveraging the hardware data processing mechanisms. To
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provide enhanced security, we evaluate a data-oblivious solution where no information,

such as the number of SNPs, is leaked during the computation.

• We show that our framework can securely support other tasks such as DL classifi-

cation for genomic data. Several new layers (one-dimensional extensions) have been

implemented that are not in the baseline implementation (DarkNet (Redmon, 2016))

that are popular in genomic applications. We further augment the implementations

of layers that leak memory access patterns via assembly in-register implementations.

Finally, we show the trade-off between memory footprint vs. batch inference (number

of instances that are fed to the network simultaneously), due to negative impact of

driver-level paging.

5.2 Architecture & Methodology

This section begins with a formalization of the system. Next, we introduce the core building

blocks of the genomic data protection model. We then combine the blocks to engineer

ObliVGene.

5.2.1 Security Considerations and Threat Model

The institutions will choose an encryption scheme that guarantees the confidentiality and

integrity of the data. In this work, we use AES-GCM. We assume that institutions will

not collude with the server or each other. This is a common assumption in multiparty

computation settings. In terms of trust assumptions for server, we use an honest-but-curious

(HBC) model (Goldreich, 2009). In HBC, the server is expected to follow the designated

protocol but may learn as much as possible from the protocol’s trace. In this setting, we

assume that the memory locations accessed by the program is observed. (Islam et al., 2012)

showed that the memory access pattern involuntarily leaks sensitive information. SGX only
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Figure 5.1: A depiction of how an institution stores its SNPs.

encrypts when memory pages are evicted outside of the enclave; however, it does not hide

the memory access pattern. In other words, the addresses of requested memory pages are

transparent to the OS (Intel., 2015).

5.2.2 GWAS Analysis

Problem Definition

This research focuses on a multi-institution GWAS scenario as it was defined in the 2017

iDASH Genome Privacy Competition (Ida, 2017). In this setting, the institutions are tasked

with computing the k most significant SNPs in a case/control study, which we refer to as top-

K. There are % participating institutions, each of which provides a dataset (#%8 where 8 ∈

{1, · · · , %}. Each record in the dataset is structured as (#%8
9
⊆ *, where 9 ∈ {1, · · · , |(#%8 |}

represents a specific (human) subject and * is the universe of all known SNPs covered for a

j2 test.

Architecture

We assume there is a machine with Intel SGX hardware support that is accessible to the

institutions, which we refer to as the server. A pertinent candidate server can be obtained

from a cloud computing vendor such as Azure Confidential Computing (Microsoft, 2021) by

Microsoft. As illustrated by Fig. 6.1, the institutions will submit their private encrypted

data to the server to conduct the Top-K computation.

Compression and Storage Format

The size of the enclave memory is limited by the SGX hardware to approximately 96MB.

As such, it is not feasible to incorporate off-the-shelf software to perform GWAS analysis
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Figure 5.2: Architecture. Institutions submit genomic records, in an encrypted and com-
pressed format, to the centralized SGX server. The server then computes the  most signif-
icant SNPs in a secure manner or the deep learning model result on the input.

inside the enclave. For example, the dataset from Task 2 of 2017 iDASH competition (Ida,

2017) contained 27 GB of Variant Call Format (VCF) (SAMTools, 2021) files. Moreover,

VCF files are subject-oriented, such that for each subject there is an associated file that

contains their genomic data. By contrast, GWAS is a SNP-oriented (based on variants)

analysis. It is more efficient to realign such a dataset to have all subjects with the same SNP

in one file. As a matter of fact, this method is a well-known transformation that enables

supporting aggregate queries, and in the database community, often referred to as vertical

storage (Harrison, 2015; Ramakrishnan and Gehrke, 2000). To conduct a GWAS, we need

to learn the counts for the alleles of each SNP in the case and control groups. The most

important information in this regard is the number of heterozygous and homozygous cases

in the dataset. We store this information in two bits as 10 and 11 for the heterozygous and

homozygous case, respectively.

In light of these considerations, we introduce a new compression format for institutions

conducting GWAS analytics, as illustrated in Fig. 5.1. First, a fixed-size field (1 byte in our
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implementation) stores the length of the longest SNP ID in the institution’s dataset. All of

the SNP IDs in the dataset will be padded to this length. Next, for each SNP that is present

in the file, the following information is appended:

a) SNP ID : A unique identifier. It corresponds to a string that is the concatenation of

the CHROM, POS, ID, REF, and ALT of a VCF entry. SNPs are written in ascending

sorted order based on this field.

b) To Read Bytes : The length of the SNP Data field.

c) SNP Data: A bit vector representing information on subjects possessing the SNP.

When an SNP is present in both study groups, We give precedence to the case group, such

that it will be written before the control group.

Lossless Compression

Reconstruction of the VCF files from the compressed file is achieved by producing an auxiliary

file that has an almost identical format to that shown Fig. 5.1. The only difference is that

it contains subject IDs in the same order as the bit vector elements in the compressed file

instead of the SNP bit vector. Afterwards, for each SNP in both files there is a one-to-one

correspondence between every two-bit group and patient ID.2

Concurrent Preprocessing

We developed a concurrent approach that relies on parallel execution (processing multiple

VCFs at the same time) to transform VCF files into a file that adopts the format in Fig. 5.1.

Specifically, we utilize a producer-consumer paradigm to speed up the data compression. A

2We did not pursue implementing this recovery scheme. Nevertheless, it is a simple procedure that
institutions can use.
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single thread is allocated for a producer (one entity can read from the disk at any time),

while multiple consumer threads are used to read and parse the data from buffers that are

filled by the producer. After all of the threads complete, we aggregate the outputs and write

them into one final output file.

Algorithm 1 provides a procedural walkthrough. There are three inputs to the algorithm.

A403 1D 5 5 4A queue is a shared medium that is continuously filled, up to a prespecified

limit, by the producer. The consumer reads from the buffer and extracts the relevant SNP

information. >DC <0? is updated after the consumer local operation completes using the

global mutual exclusion input <DC4G. It should be noted that ;>20; <0? in line 1 has the

same structure as >DC <0? in that it stores the SNP identifier as a key while maintaining a

bit vector for it as a value. In lines 7 and 9, two bits, descriptive of the type of SNP, are

appended to the bit vector associated with the currently processed SNP. Eventually, when

there is no more data for the consumer, it appends its local map items to the corresponding

items of the main program (lines 12 to 20).

GWAS Oblivious Computation

Algorithm 2 achieves data obliviousness in that it always accesses the same memory locations

as long as different inputs are of the same size. Specifically, the institutions run the same

compression algorithm, with two differences. First, we assume there is an agreement on

some predefined set of SNPs that covers each institution’s set of SNPs. Consequently, each

institution will cover all of the genomic regions under investigation. Second, each SNP’s

data field (Figure 5.1) is padded with zero-valued bits to ensure that the data associated

with each SNP is of the same size. As a result, the data provided by each institution has the

same size and the same field-wise alignment. It should be noted that, while this approach is

oblivious, it incurs an increase in the storage space required by the remote service, an issue

we evaluate empirically below.
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Algorithm 1: Consumer Compression Task

Input: read buffer, out map, mutex
Result: The final output map based on consumer’s local data

1 local map.initialize()
2 while read buffer.hasdata() do
3 30C0 ← read buffer.get next snp()
4 B=? 83 ← data.get snp id()
5 CH?4 ← data.get type()
6 if CH?4 = heterozygous then
7 ;>20; <0? [B=? 83].push back(b10)
8 else
9 ;>20; <0? [B=? 83].push back(b11)

10 end

11 end
12 <DC4G.get lock()
13 for C4<? B=? 83 ∈ ;>20; <0? do
14 if >DC <0?.find(C4<? B=? 83) then
15 >DC <0?.push back(;>20; <0? [C4<? B=? 83])
16 else
17 >DC <0? [C4<? B=? 83] ← (;>20; <0? [C4<? B=? 83])
18 end

19 end
20 <DC4G.release lock()

Algorithm 2 describes how the cloud service processes the chunks provided by the insti-

tutions. In lines 2 to 5, the server ingresses a chunk from each provider into the enclave.

From line 7 to 14, a SNP from each provider is read and its corresponding counts are pro-

cessed using the popcnt instruction. Next, the computed counts are sent to an oblivious test

statistic computation-insertion algorithm in line 15. Note that we no longer use max-heap

because its processing is data-dependent. Finally, the Top-K significant SNPs are encrypted

and sent back to the untrusted memory (line 18).

We use Algorithm 3 to process the list insertion obliviously. When a new SNP is ready to

be tested against the list, it is inserted as the last element of the current list (line 1). Next,

it is compared with the preceding element. If it is smaller, then the two SNPs are swapped.

This comparison and swapping process continues until a complete pass is made over the list
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Algorithm 2: Oblivious Top-K Significant SNPs

Input: institutes, top k list, num chunks
Result: Top-K Significant SNPs

1 for 8 ∈ (1, 2, · · · , =D< 2ℎD=:B) do
2 2ℎD=:B← new chunk[8=BC8CDC4B.size()]
3 for 9 ∈ (1, 2, · · · , 8=BC8CDC4B.B8I4()) do
4 2ℎD=:B[ 9] ← 8=BC8CCDC4B[ 9].get chunk(8)
5 end
6 while 2ℎD=:B.has snp() do
7 B=?B← new snp[8=BC8CDC4B.B8I4()]
8 20B4 2>D=CB← 0
9 2>=CA>; 2>D=CB← 0

10 for B ∈ (1, 2, · · · , 8=BC8CDC4B.B8I4()) do
11 B=?B[B] ← 2ℎD=: [B].next snp()
12 20B4 2>D=C ← 20B4 2>D=C+ popcnt(B=?B[B] .20B4 18CB4C)
13 2>=CA>; 2>D=C ← 2>=CA>; 2>D=C+ popcnt(B=?B[B] .2>=CA>; 18CB4C)
14 end
15 obliv calc append(20B4 2>D=C, 2>=CA>; 2>D=C, C>? : ;8BC)

16 end

17 end
18 ocall sendout top k()

(in reverse order - see lines 5 to 16). Finally, if the total number of elements in the list is

greater than  , we remove the final element from the list in line 18. Each time an insertion

to the list is invoked, we begin with a sorted (or, in the beginning, empty) list, and we finish

with a sorted list that may or may not have the new SNP in it.

5.2.3 Deep Learning Inference Analytics

Problem Definition

A private model F with parametersW is provided to the TEE by the model owner. Users of

this model (institutions or individuals) want to feed their private data X to this model and

obtain the predicted outcome Y. However, none of these entities trust each other. Model

owner wants the model to be private, and data providers also want their data kept private,
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Algorithm 3: Oblivious Append to Top-K List

Input: chi snp, top k list,k
Result: Oblivious j2 append
/* new item is added to the end of the list */

1 C>? : ;8BC.append(2ℎ8 B=?)
2 ;8BC B8I4 ← C>? : ;8BC.B8I4()
3 CH?4 B8I4 ← sizeof(2ℎ8 B=?)
4 BF0? ← char[CH?4 B8I4]
/* iterate over list in reverse order */

5 for 8 ∈ (;8BC B8I4, · · · , 2) do
6 C4<? B=? ← C>? : ;8BC [8]
7 if C>? : ;8BC [8]<C>? : ;8BC [8 − 1] then

/* indices must be swapped */

8 memset(BF0?,1,CH?4 B8I4)

9 else
10 memset(BF0?,0,CH?4 B8I4)
11 end
12 for 9 ∈ (1, · · · , CH?4 B8I4) do
13 C>? : ;8BC [8] [ 9] ←

(1 − BF0? [ 9]) × C4<? B=? [ 9]) + (BF0? [ 9]) × C>? : ;8BC [8 − 1] [ 9])
14 C>? : ;8BC [8 − 1] [ 9] ←

(BF0? [ 9]) × C4<? B=? [ 9]) + (1 − BF0? [ 9]) × C>? : ;8BC [8 − 1] [ 9])
15 end

16 end
17 if ;8BC B8I4>: then
18 delete C>? : ;8BC ? [;8BC B8I4]
19 end

and the computation itself should not leak information regarding the W, X, and Y.

Y = FW (X)

Architecture

First, the model owner will send its encrypted and authenticated parameters to the ObliV-

Gene. After the model is loaded and initialized, data providers submit their genomic inputs

to ObliVGene server for inference task. In the end, the encrypted (with institutions’ keys)

results are sent back to the data providers.
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float relu_activate(float x){

if (x > 0) return x;

else return 0;

}

Listing 2: Conditional branching in ReLU activation depends on the sensitive value

float relu_activate(float x){

const float ZERO = 0.;

__asm__ volatile(

"cmp %1,%0\n\t"

"cmovl %1,%0\n\t"

:"+r"(x)

:"r"(ZERO),"0"(x)

:"cc"

);

return x;

}

Listing 3: Values are moved and compared inside CPU registers

Data Oblivious Inference

The bulk of the computation for a deep learning model arises from matrix multiplica-

tion (MM) operation, which is inherently data-oblivious. For the most mainstream layers

and activation functions, the computation is not data-dependent; however, there are a few

instances that the memory locations accessed by the program can differ depending on the

values of the inputs. MaxPool is an instance of layers with such privacy pitfalls that may

lead to full or partial recovery of the inputs/parameters. Additionally, ReLU is an example

of activation functions that are very common and leaks memory access patterns. Listing 2

shows a sample code for ReLU activation, which is not safe and likely will leak if the input

is greater than zero (conditional branch accesses different addresses). In contrast, Listing 3

performs all the conditional checking and moving within the registers, which is not accessible

to the adversary. In our augmented implementation, for all the data-dependent operations,

we make similar modifications that are mainly based on CMOVcc instructions (Intel, 64)
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that operate on registers and values of the registers are flushed in memory in the end re-

gardless of the values of sensitive inputs. Such operations prevent the leakage of sensitive

information due to branching information.

Breaking Apart Big Layers

In case a convolutional layer’s auxiliary space (reshaped input feature-maps) or fully-connected

layer’s parameters are well beyond the hardware imposed memory limit, ObliVGene breaks

the computation into smaller chunks and performs matrix multiplication in multiple rounds.

For a convolutional layer, ObliVGene breaks the input feature-maps’ on the channel di-

mension. Likewise, for a fully-connected layer of shape >DC?DCB × 8=?DCB, it will break the

parameter’s matrix on the row dimension. After these steps, each chunk will be able to fit

into the memory.

5.3 Experiments

To assess the ObliVGene’s performance, we conducted a series of tests on a machine running

the Linux 64-bit operating system with an Intel(R) Xeon(R) CPU E3-1275 v6 @ 3.80GHz

(with SGX hardware) and 64GB of memory. All files were stored on a solid state drive.

First experiment shows the result for GWAS analysis (j2) over 5.6 million SNPs for

2,000 individuals that are randomly divided into five subsets (representing five non-trusting

institutions). Therefore, each institution has 200 case and 200 control individuals in their

pool. We used the dataset released for the 2017 iDASH competition, Task 2 (Ida, 2017).

The client (we assume clients will send column-layout) performs the compression and server

SGX program performs the secure aggregation. Compression and aggregation modules are

developed in C++ and the Intel SGX SDK was relied upon for encryption and decryption

inside the enclave.
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Second experiment shows ObliVGene’s performance for DL tasks. We chose Dark-

net (Redmon, 2016) as the baseline because of its simplicity. We patched several lines

of custom code to support new layers (e.g. 1D layers for genomic data), plus data-oblivious

implementations for private data processing. For matrix multiplication operations we used

oneDNN (Evarist Fomenko, 2020) multiplication kernel implementation (by default is data-

oblivious).

5.3.1 GWAS Experiment

To obliviously perform the test each institution must cover the same genomic regions. As

such, each institute’s file is perfectly aligned with the rest of the providers. Our approach

ingresses the chunks into the enclave and process SNPs one-by-one from each institution. For

this test, we set the chunk size to 10MB. Due to an extended region coverage of this scheme

(none of the case or control individuals may have a particular SNP, but the region should

be padded), the induced final file size for each institution is about 905MB. To examine the

performance of our oblivious aggregation on the SGX server, we conducted five GWAS runs.

On average, this scheme completes the test in less than 40.6 seconds with standard error of

0.156. Additionally, note that we evaluate different values (1M, 4MB, and 10MB) for chunk

size as expressed in Algorithm 2, however, there was no significant difference in terms of

time performance.

In summary, the results show that bit-wise compression and columnar storage reduces

the size from 27GB to less than 5GB (each institution has 905MB). In addition, server

aggregation is fast, and memory usage is reasonably low.

5.3.2 Deep Learning Experiment

Inspired by IDASH 2019 competition/workshop (Ida, 2019) Task III, we ported a similar

DNN architecture (more than 10.8 million parameters) that performs a binary classification.
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Figure 5.3: For this particular architecture, processing 2 items at once yields the best per-
formance (about 4 inferences per second).

The dataset contained 102 test examples, and we investigated the trade-off between mini-

mum heap size vs. the maximum number of test items that can be processed simultaneously

(batch inference). As shown in Figure 5.3, consuming the items one by one does not yield

the best performance, albeit it consumes less memory footprint. As can be seen, process-

ing two items at once gives the best performance, roughly four predictions per second. In

contrast, if the heap footprint is increased to accommodate the inference of three or four

items simultaneously, performance is dropped but performs better than the first case. Note

that oneDNN (Evarist Fomenko, 2020) port for SGX requires many threads allocated for

successful compilation and run. These threads significantly increase the memory footprint,

making it easy to pass the hardware limit (93MB). Overall, since the bulk of the work is

matrix multiplication operations, we benefit from dispatching to oneDNN’s implementation

(it is a backend for popular DL frameworks) instead of relying on simple cubic-time imple-

mentation that is used by DarkNet (Redmon, 2016).
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5.4 Discussions

In this section, we begin the discussion on the data-oblivious computation, particularly for

TEE-based applications. Then, current known SGX vulnerabilities are enumerated. Next,

we talk about other genomic analytics or optimizations that can utilize the SGX enclave as

future directions for ObliVGene.

5.4.1 Data-Oblivious Computation

In our setting, data obliviousness can also be achieved by using oblivious RAM, or ORAM

(Goldreich and Ostrovsky, 1996). ORAM accesses memory locations in ways that the se-

quence of accesses appears as though it is random. As a result, it hides the real memory

access pattern. Unfortunately, current state-of-the-art ORAMs (Stefanov et al., 2013; De-

vadas et al., 2016; Wang et al., 2015) incur a heavy performance bottleneck when applied to

large scale computations. First and foremost, these schemes require at least twice storage

space on server side and logarithmic space on client side. Yet another drawback is their

significant network cost. However, network cost can be mitigated in case of having access

to a TEE on server, so that the client’s work can be shifted to the enclave. Finally, another

performance weakness of these schemes is that they require reshuffling, which basically rear-

ranges all of the blocks to maintain randomness with respect to the access pattern. During

this phase all other read/write accesses are halted, which has a significant negative impact

on the concurrency.

For the case of a GWAS task, another approach that allows oblivious processing of SNPs

is based on generic union and sorting operations. First, each data provider’s chunks are

brought into the enclave, so that the necessary information is extracted. The enclave will

emit intermediate outputs of the form {B=? 83, 20B4 2>D=C, 2>=CA>; 2>D=C} after each chunk

is processed (before requesting the next chunk). Next, a sorting operation must be performed

based on the B=? 83. After this sorting operation, all related SNPs are next to each other
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and the test statistic can be computed by one pass over the sorted list. In the literature, the

bitonic sort (Batcher, 1968) is usually incorporated for oblivious sorting. It always exhibits

the same access pattern independent of the input array with = × ;>62(=) comparisons. This

approach will not scale well providing that the region covered for the test has SNPs in

the order of millions because all the intermediate outputs will not fit inside SGX’s enclave.

Instead, we tried to devise specific oblivious computation approach that processes the data

and goes over the data intelligently without revealing any access pattern.

5.4.2 Protection Against Stronger Adversaries with Timing and Cache Side

Channel Leaks

Our trust assumptions are a commonplace practice in the security community (Goldreich,

2009). We assumed all data providers are semi-honest, and they will not provide malicious

or incorrect data to the computation server. In addition, the central SGX server is semi-

honest; it always follows the protocol but tries to infer information regarding sensitive data

during protocol execution. Ideally, we do not want the server to learn anything other than

what can be learned from the final output size. The adversary should only see the encrypted

result. Likewise, no party should learn anything about the other parties except what can be

inferred from the final output.

Even with memory-access obliviousness, that is the central theme of this chapter; the

adversary can exploit other side-channels. The recent Spectre (Kocher et al., 2018) and

Meltdown attacks (Lipp et al., 2018) demonstrated that secrets can be read from memory

by malicious processes. Briefly, these attacks take advantage of speculative execution and

out of order execution (which most modern CPUs almost unanimously support) to facilitate

leaking sensitive data through CPU cache. Intel SGX is susceptible to these types of attacks

but can be remedied using specific techniques as outlined by Chen et. al. (Chen et al., 2019).

Note that there is a glossary of attacks on shared cache, page table and other vulnerabilities
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with SGX (Brasser et al., 2017; Schwarz et al., 2017; Van Bulck et al., 2017; Bulck et al.,

2018; Wang et al., 2017; Gras et al., 2018). We leave the development of defenses against

such side channel and time leaking attacks to future work.

5.4.3 Distributed Genomic Analytics and Other Genomic Tasks

Most genetic tests, such as Cochran-Armitage (statgen.org, 2012), Chi-Square and Fisher’s

Exact (Kim, 2017) tests, are dependent on variant counts. These tests require computing the

frequencies at which allele or genotypes appear. The framework we described in this chapter

can be applied in these test settings. As our results indicate, storing data in a vertical

fashion enables fast processing. Moreover, we implemented ObliVGene using a single SGX

enabled server. A secure genomic analysis task could be distributed to multiple servers (with

TEEs) to increase the performance. We believe such an extension combined with tools such

as (Shaon et al., 2017; Zheng et al., 2017) would be needed to scale to other genomic data

analysis workloads.

5.4.4 Support for Update, Insert and Delete

Currently, our solution does not support the update, insert and delete operations. If an

institution wanted to perform any of the aforementioned operations, they must perform

compression again and re-submit the new file so that our solution can be applied. We

strongly believe any genomic data storage-processing service should offer these capabilities

whilst guaranteeing a high level of privacy. We leave this extension as a future work.

5.5 Conclusion

This chapter introduced ObliVGene; a framework for privacy-preserving data-oblivious ge-

nomic data analysis using Intel SGX. We show our framework’s applicability using two

example applications: j2 association test and DNN inference. To perform an association
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test, genomic data is collected from multiple institutions, and counting is performed within

the TEE. We developed new techniques to achieve high-performance solutions for Intel SGX

technology. First, we showed how to transform genomic data into a compressed form via

a bit vector representation. Second, we illustrated that SNP-oriented storage allowed the

placement of inputs for efficient computation. Third, we showed how to apply hardware

instructions to perform the counts needed for computing the required statistics. Finally, we

showed that the server-side the solution can run in a data-oblivious manner without leaving

a memory access pattern trace. For the DL task, we showed that ObliVGene allows private

DNN model owner and users of the model to engage in a private computation without re-

vealing their secrets to other parties. Moreover, our implementation performs inference in

a data-oblivious fashion, mostly relying on CMOVcc (Intel, 64) in-register instructions that

are not accessible to the adversary.

62



CHAPTER 6

AISOLACE: SECURE FAIRNESS ANALYTICS FOR MACHINE

LEARNING USING TEES

6.1 Introduction

ML models are increasingly used for many critical tasks, ranging from education to health-

care. At the same time, recent scrutiny of ML models have found disturbing cases of bias

built into the ML models. One important example of such bias has been observed in an ML

model that predict recidivism. Analysis using the publicly available data and the ML model

predictions has shown that ”black defendants were far more likely than white defendants to

be incorrectly judged to be at a higher risk of recidivism, while white defendants were more

likely than black defendants to be incorrectly flagged as low risk.” (ProPublica, 2016).

Ideally, to prevent bias and enable public auditing of critical ML models, ML models

could be disclosed, and all interested parties could test the model to find out potential biases

embedded in the model. Unfortunately, this is not possible in many cases. The organizations

who have invested in the ML model building may be reluctant to publicly disclose their

models. In addition, the test data required for fairness assessment may be private as well.

For example, individuals may not be willing to disclose sensitive information related to their

credit card application. Therefore, in many cases, security and privacy issues may prevent

the public auditing of the ML models.

Another complicating factor is how to define the appropriate fairness criteria required for

auditing the ML models. Researchers over the years come up with many, often conflicting

fairness criteria. For example, IBM AI Fair360 toolbox (Bellamy et al., 2018) has tens of

different fairness definitions.

In addition to choosing fairness criteria, in many cases ML model performance needs

to be measure across ”different” groups, and group definition may change based on the
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application. For example, in Compass, the ML model performance was measured based on

race (e.g., black vs white defendant). In some cases, single or multiple demographic features

may be selected (e.g., gender, gender and sexual orientation).

The above observations show that we need a secure system where the ML models could be

audited for fairness without disclosing sensitive information while supporting large number

of fairness and potentially changing group information.

In this work, we address this research challenge by developing our system named AISolace.

In our solution, ML model owner sends their encrypted ML model to AISolace running on

a Trusted Execution Environment (TEE) in the cloud. Similarly, ML model auditor sends

encrypted test data and their desired fairness definition to AISolace. AISolace securely runs

the given model inside the TEE based on the given fairness criteria and grouping definition

and only disclose the fairness analytics/audit results. The grouping operations include two

forms. First, regular groupings, based upon a set of columns, where each variant of columns

together constitutes a group. Second, a clustering based grouping where user provides the

number of clusters, together with the columns to be used for cluster distance calculation.

To encompass real-world settings, the clustering methodology allows for both numerical

and categorical columns (Huang, 1997). Furthermore, to prevent potential side channel

attacks, all the execution is data oblivious. Oblivious execution of algorithms eliminates

the dependency of code paths and memory accesses to the inputs of algorithms. Thus, in

addition to the data being only decrypted when inside the TEE (outside the TEE it is always

encrypted), the traces of memory access does not leak any information about the content of

the inputs, beyond the size of the input, the size of the outputs and public parameters of the

algorithm (e.g.  number of clusters in K-Means clustering (Hartigan and Wong, 1979)).

Our contributions can be summarized as follows:

• We are the first to propose a privacy-preserving deep learning fairness

analytics/auditing framework using TEEs.
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• Our system enables clustering approach for groupings, wherein researchers can provide

arbitrary distance metrics for numerical columns in the test set.

• Our system hides memory access pattern so all the operations are data-oblivious.

6.2 Security Model

In this section, we present the technical details on the assumptions and security guarantees

of AISolace .

6.2.1 Assumptions

AISolace has two categories of users; 1) model providers (MP), and 2) fairness analysts

(FA). Both MP and FA establish a secure channel (e.g. TLS) after remote attestation of the

server which runs the AISolace. Through this channel they will send the model, test data

and fairness algorithms of their choice encrypted. We assume the enclave region of memory

is secure and not directly accessible for any privileged software, such as the OS admin, to

tamper with. In addition, the timing or cache side channel attacks are out of the scope of

this chaper. Moreover, we assume the contents of registers within the CPU package is not

accessible to the adversary. Finally, we assume the adversary is honest-but-curious; meaning

they will not deviate from the algorithms, however they will try to follow the memory traces

of the algorithms to gain insights about the underlying data provided by the users (test set,

model parameters, predictions, etc.).

6.2.2 Security Guarantees

The MP has the guarantee that no information about the model parameters is leaked to

the FA or any adversary that maybe residing on the server. For the FA, no information

about the test dataset, is leaked to the FA or any adversary monitoring the computation
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of the fairness metrics. AISolace will also protect against memory access pattern leakage

via data oblivious primitives. Most of the literature on data oblivious designs with TEEs,

assume a memory oblivious buffer availability, which is far from reality. In short, assuming

the security guarantees provided by the TEE, any adversary will not be able to jeopardize

the privacy requirements of the users of AISolace.

6.3 System Design

Figure 6.1: Main architecture of AISolace. Inference →Grouping →Fairness

In this section, we go over different pieces of AISolace. First, the general architecture

of the system is introduced (6.3.1). Next, the initialization and communication steps are

discussed. Finally, we iterate through the inference, groupings, and fairness analytics com-

ponents of the system.

6.3.1 System Architecture

Here, we explain the different aspects of the system as depicted by Figure 6.1. AISolace

receives the test set, and the model, from users through a secure channel after remote

attestation. For the test set provided by FA, the system expects for the label to be in the
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dataset. To conduct fairness analysis, the system does not rely on user provided predictions.

Once the predictions on the test set are gathered (by running secure inference), the system

uses secure grouping primitives to assign the rows to groups in a semantically valid fashion

predicated on the conditions provided by the FA. After the grouping stage is over, the system

uses the grouping(s) to conduct fairness test(s) on subgroups and further compare or contrast

across groups, so the FA can reason about the relative difference between different groups

and how they potentially behave differently for the protected and privileged segments. All

the operations mentioned above are done securely inside the TEE, and if needs be, the buffers

taken out of the TEE (handler components) will be encrypted using AES-GCM (McGrew

and Viega, 2004), with time-stamps to guarantee freshness.

6.3.2 Initialization & Users Communication

MP registers the ML modelM via sending the model through a secure channel (encryption

in place). Once the model is received and verified in AISolace’s enclave, it is sealed and stored

outside the enclave until it is requested to have a fairness analysis on it by FA. Then FA,

through a secure channel, sends the test dataset (X,Y), grouping criteria GC and fairness

metrics F . After the analysis is completed, the result is sent back to the FA. Note that in

cases that we cannot have enough buffer available inside the enclave, the buffer is securely

kept sealed (authenticated encryption), at reasonable granularity. For instance, at row level

for the test data.

6.3.3 Secure Inference

The first stage in the fairness operation, is having the model predictions Y′ =M(X) gath-

ered for each record in the test dataset by running an inference task on them. Once these

predictions are computed, AISolace no longer needs the model to have resources allocated

to it in enclave.
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Inference Data Obliviousness

Most computational aspects (prominent layers such convolution) of inference in modern DL is

data oblivious out of the box because they rely on matrix multiplication, which maintains the

same memory access footprint given the dimensions of the inputs regardless of the contents

within the matrices. Fully-connected, and convolutional (Goodfellow et al., 2016c) layers are

prominent examples of such cases. Nevertheless, there are certain classes of layers such as

ReLU, which has a data dependent memory access footprint. For these classes, AISolace

relies on in-register CMOV assembly instructions to hide the memory access patterns for

conditional assignments (Listing 1).

6.3.4 Secure Grouping

Algorithm 1 Oblivious Grouping

1: function GroupBy(-,6,B) ⊲ Sorts the data based on grouping and segment columns
and assigns a unique id for each element in a group

2: 83 ← 0 ⊲ The running id
3: �� ← zeros(-.nrows()) ⊲ ID column that will be appended
4: - ← -.bitonic sort(6, B)⊲ Sorts the array obliviously for A>F 83 ← 2 · ·-.nrows() do
5:

end
2>=3 ← - [A>F 83, (6, B)] == - [A>F 83 − 1, (6, B)]

6: 83 ← cond select(2>=3, 83 + 1, 0)
7: �� [A>F 83] ← 83

8:

9: return -.col concat(��)
10: end function

FA is capable of devising intricate (sub)groupings so that the fairness metrics are com-

puted over each group indecently and can be compared against each other. The goal is to

decide the group each entry in the dataset belongs to, given the grouping scheme (criteria).

And the end result will transform the (X,Y,Y′) to (Y,Y′, [GC]). Note that after the cor-

rect group is associated with the row, we no longer need the initial test data provided by
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Algorithm 2 Oblivious Clustering

1: function Cluster(-, 20C, =D<,  , #)⊲ Clustering based on categorical and numerical
columns

2: - ← -.concat col(rand(0,  , “C”)) ⊲ Assigns to a random cluster
3: � ← ClusterInit(-,  ) while # > 0 do

end
A>F 83 ← 1 · ·-.nrows() ⊲ Assign the row to the minimum distance cluster

4: (<8= 38BC, <8= 2;DBC4A) = (∞,⊥) for 2 in � do
5:

end
=D< 38BC ← NumericalDistance(- [A>F 83, =D<], 2[=D<])

6: 20C 38BC ← CategoricalDistance(- [A>F 83, 20C], 2[20C])
7: 38BC ← =D< 38B + 20C 38B
8: cond assign(38BC < <8= 38BC, <8= 38BC, 38BC) ⊲ Updates the minimum distance if

condition is met
9: cond assign(38BC < <8= 38BC, <8= 2;DBC4A, 2.id())

10:

11: - [A>F 83, “C”] = <8= 2;DBC4A ⊲ Assigning to the minumum distance cluster to
Column “C”

12:

13: - ← GroupBy(X, “C”,⊥) ⊲ Rows belonging to the same cluster are in sequential
order

14: UpdateNumericalColumnsMean(�, =D<)⊲ For numerical columns compute the
arithmetic mean via SUM and COUNT

15: UpdateCategoricalColumnsMode(�, 20C) ⊲ We assume each column can have
maximum ! categories to avoid leaking cluster size

16: # ← # − 1
17:

18: end function
19: function CategoricalDistance(20C 2>;B, 24=CA>83 20C) ⊲ Distance for categorical

columns from a cluster centroid
20: 38BC ← 0 for 2>; ← 1 · ·24=CA>83 20C.ncols() do
21:

end
38BC ← cond select(24=CA>83 20C [2>;] == 20C 2>;B[2>;], 38BC + 0, 38BC + 1)

22:

23: return 38BC

24: end function
25: function NumericalDistance(=D< 2>;B, 24=CA>83 =D<) ⊲ Oblivious, because it

should be a mathematical funtion
26: · · ·
27: return 38BC

28: end function
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GROUP BY ethnicity, age

SEGMENT OVER gender

PROTECTED VALUES ('Female','NA')

PRIVILEGED VALUES ('Male')

HAVING ethnicity IN ('WHITE','BLACK')

Listing 4: Example of a grouping based on ethnicity, and age segmented over gender for
fairness analytics.

the FA, and it is safe to release the resources allocated for the sake of performance. More-

over, because it is very likely for a FA to provide multiple grouping schemes, we use a list

notation and AISolace associates a column per group scheme that encapsulates the grouping

assignment based on grouping criteria.

Predicate-based Grouping

This form of grouping enables FA to perform grouping semantics aligned with what is

customary in the literature as of now. For instance, IBM’s AIF360 (Bellamy et al., 2018)

or Microsoft Fairlearn (Bird et al., 2020). In this scheme of grouping, FA must provide

a list of grouping columns. Additionally, FA must provide the column that signifies the

segmentation column over which the protected, and privileged assignments is based on. FA

is allowed to filter out groupings based on the predicates. However, these predicates should

only be based on the grouping columns. In example Listing 4, the FA is interested in to

conduct fairness analytics for the people only with black, and white ethnicity, covering all the

age groups, and segmenting the resultant rows over the gender as protected and privileged.

Grouping Data Obliviousness

AISolace uses a sorting approach over hashing to group the rows. However, regular sorting

algorithms such as merge sort is not inherently data oblivious. Thus, bitonic sort (Batcher,

1968) is used as the main sorting algorithm. It has the same sorting order of comparison
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and the memory access pattern can only be affected by the size of the data, not the content

of the data. Nonetheless, in-enclave comparison and swapping needs also be data oblivious.

To mitigate the swapping access pattern leakage, AISolace relies on CMOV instruction.

Initially, AISolace runs a filtering selection to only consider the rows passing the HAVING

clause. Note that, it is a little different from ANSI-SQL in that it more acts as a WHERE

clause and the filtering happens prior to the grouping. If FA provides filtering criteria,

these criteria are matched against each row and rows that should be included will have a

new column with the value ‘1’, while non-matching rows will have a value of ‘0’. The rows

that pass the filtering criteria are obliviously selected. In particular, A selection column is

associated to the dataset and for each entry, a value of 0 (indicating not matching), or a

value of 1 (indicating pass) is assigned (oblivious conditional assignment). Then the dataset

is sorted obliviously in descending order of the new column. Afterwards, the dataset scanned

and the rows with value 1 are selected. Finally, the selection column is dropped. Note that

the size of the matching and non-matching rows is leaked. For instance, in case of the

example in Listing 4 the size of the rows having the ethnicity as ‘WHITE’ or ‘BLACK’ is

leaked, but the adversary cannot match the rows to the initial dataset submitted by the

user.

Once the predicates in the HAVING clause are processed (in case there are any) and

the passing rows are selected, a traversal is run to obliviously assign a new column (here

we call it ‘segment ’). This column is appended to the dataset, which signifies whether the

row belongs to the protected or the privileged class. AISolace assigns 0 for the protected

class, and 1 for the privileged class. Next, the dataset is obliviously sorted based on the

grouping columns (in the order indicated by the user), and the segment column calculated

in the previous step. Here, the segment column will be the last column that ordering is

based on. After sorting is finished, the dataset is in the proper ordering to calculate the

necessary aggregates. In example Listing 4 in the end, we will have the rows sorted based
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USING 3 CLUSTERS

BY ethnicity, age, zipcode, salary

SEGMENT OVER gender

PROTECTED VALUES ('Female','NA')

PRIVILEGED VALUES ('Male')

HAVING ethnicity IN ('WHITE','BLACK')

Listing 5: Example of a clustering based on ethnicity, age, zip code, and salary segmented
over gender for fairness analytics.

on the ethnicity, age, and the segment column. A generic case of group by is illustrated in

Algorithm 1.

Clustering-based Grouping

We are the first to propose another approach for FAs to conduct fairness analysis based

on K-Prototypes clustering (Huang, 1997), especially when the columns of the test dataset

are mixed, i.e., numerical and categorical values. For instance, in Listing 5, salary, and age

(here assume not bucketized) are numerical feature columns while the rest are categorical.

FA can prototype and test different values of K, and clustering columns to further delve

into the clusters where the model needs improvements and does show a degree of bias based

for the protected attributes. In addition, FA can provide arbitrary distance metrics for

the numerical columns, as well, and further shed the light on different ramifications of the

model predictions based on different distance metrics. For instance, FA may want to add

extra weight for the distance based on the age, which they can do by supplying the distance

function definition. Besides the restriction on the distance function, which can only access

the numerical columns, the distance function cannot also utilize the segment column because

it is going to be used to calculate the fairness metrics within a cluster.

Similar to the previous case (Section 6.3.4), the ultimate goal is to consider the cluster

association of each row as a singular grouping column (call it ‘cluster’) criteria, and perform
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the same approach as in the Section 6.3.4 by using the cluster, and segment column values

for each row to calculate aggregations and fairness metrics.

Clustering Data Obliviousness

K-Prototypes (Huang, 1997) combines K-Modes (Chaturvedi et al., 2001) and K-Means (Har-

tigan and Wong, 1979) to enable clustering analysis for datasets that have both numerical

and categorical features. In general, the flow of a clustering algorithm is as follows: 1) For

each row in the dataset, calculate the distance to every cluster centroid, And assign that

entry to the cluster with the minimum distance to the centroid. 2) Update each cluster’s

centroid based on the rows belonging to the cluster. A naive approach (non-oblivious) leaks

row-wise cluster assignment, and cluster sizes, which is not desirable when FA owns sensitive

data.

AISolace proposes a simpler but data-oblivious variation of K-Prototype. A generic flow

of the clustering is illustrated in Algorithm 2.

Initialization Each point is randomly assigned to a cluster, and the cluster assignment of

each row is stored in a new column. It is worth mentioning that at the end of the algorithm,

this column will be referenced as the cluster group column when performing the grouping.

This step has no data-dependent memory access, hence, it is data-oblivious.

Centroid Recalculation At this step, each centroid should be assigned with an updated

value per column (involved in clustering ‘BY’ statement). For numerical columns, the mean

should be calculated, and for categorical columns the mode. AISolace utilizes the data-

oblivious sorting primitive to sort the dataset based on the cluster column. After the sorting

step is done, points belonging to a cluster are in sequential order, and AISolace can proceed

with calculating the aggregates (mode for categorical, and mean for numerical) in one scan.
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Since the number of clusters are usually not significant, when processing each row to

calculate the partial aggregates, AISolace holds all the clusters meta in an array and ac-

cesses every entry of the array, and manipulates the irrelevant clusters with dummy (or

inconsequential) updates. For numerical columns, we need to keep tack of the counts, and

sum, while for categorical columns we should keep track of the frequencies. To obliviously

handle the frequencies of each variant, AISolace assumes each categorical column 8 can have

a maximum of "8 variants. Once the sequential scan is over, for numerical columns the

mean is calculated. However, for the Mode, it needs to obliviously traverse the sorted rows,

and for each column of every centroid keeps a counter. Then for every categorical column,

the centroid picks the maximum frequency variant, to be used for calculating distance in the

next step.

Cluster Reassignment At this stage, for every entry in the dataset, AISolace assigns

the entry to the closest cluster. Every row’s distance to all the centroids is calculated. The

distance is a weighted sum of the distances of the numerical columns and categorical columns.

For numerical columns, because it is a mathematical function with no conditional logic, it

is data-oblivious out of the box. However, for categorical columns, it needs to perform

the calculation in a data-oblivious manner. The overall distance for categorical columns

depends on conditional evaluation and comparison to the centroids (statistical mode). If

they match, the distance remains the same, otherwise it is increased by 1. Note that users

can set reasonable weights, to balance off the distance computed for categorical and numerical

values.

The centroid with the minimum distance will be selected as the cluster candidate. This

step can be done via oblivious selection. By the end of this step, the cluster column will

have the new cluster assignments for each row, and it is ready for the centroid recalculation

stage.
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6.3.5 Secure Fairness Analytics

Once the test set has the grouping assignment (either via predicate-grouping or clustering), it

is viable to run numerous fairness metrics on each group separately, and compare and contrast

them. We want to stress how our framework fits in to the current popular frameworks such as

AIF360 (Bellamy et al., 2018), and Fairlearn (Bird et al., 2020) which do not provide privacy

guarantees as of now. First, we have the notion of segment column in our framework, which

is the equivalent of the protected attribute in AIF360 in which you can provide specific values

for column to designate whether they belong to a protected group or not. Another concept

that we borrow is from Fairlearn in which they have the concept of control columns. Control

column allows separating the dataset into groups so that the fairness metrics are computed

for each group separately (inter-group), and they can be compared with each other across

groups (intra-group). Our oblivious grouping mechanism are for the exact same purpose and

is equivalent to control column(s) feature of Fairlearn. In short, AISolace tries to take the

best of the both worlds to enable FAs conduct varous fairness analytics.

6.4 Experiments

The experiments conducted on a computer with Linux operating system that had 64GB of

RAM, and Intel(R) Xeon(R) W-10855M @ 2.80GHz CPU. Further, AISolace prototype is

developed in Rust language, and relies on Fortanix EDP (Fortanix, 2021). The experiments

are divided into two sections. First, we investigate the performance of AISolace for regular

grouping criteria. Next, we investigate the performance for clustering-based grouping.

We use three datasets that are popular in fairness literature. First dataset is Adult(Dua

and Graff, 2017) (Census Income) dataset which 9000 records from the test set is used.

The classifier determines whether the individual makes more than $50K a year. The second

dataset is COMPAS(ProPublica, 2016) which we use 3000 of its records as the test set. Also,
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Figure 6.2: Running time of regular groupings

selected 21 of the columns1. Finally, for the German Credit dataset (Dua and Graff, 2017),

1columns such as first name, last name, etc. are dropped
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Figure 6.3: Clustering Running Time without including the inference time

the objective of model built on this dataset is to determine whether the individual is a good

or bad credit risk. We use all the 1000 records and all the 18 columns present in the dataset.

For the ML models, we use deep neural networks due to their recent popularity in ML

applications. For DNN models, we devised two configurations. The first, which we refer to

as the “medium” model, has four fully connected layers with the output sizes (16, 32, 16,

1). The “large” configuration has nine fully connected layers with the output sizes (32, 32,

32, 64, 64, 128, 64, 32, 1). We only modify the input size of the first fully connected layer

to match the input dimension per given dataset. Finally, for all the cases, we computed

four general statistics. 1) True positives, which is the count of instances that model predicts

positive, and they match the provided label. 2) False positives, the counts of the instances

where model predicts positive, however the label from ground truth is negative. 3) True

negatives, that counts the number of instances where the model predicts negative, and it

matches the ground truth. 4) False negatives, that counts the number of instances that model

predicts negative, however the ground truth label is positive. We would like to stress that all

the grouping based fairness criteria reported in practical tools such as IBM AI fairness 360

(Bellamy et al., 2018) can be computed using these four general statistics per given group.
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6.4.1 Grouping Performance

For each dataset, we evaluate two cases: 1) the computation is using data-oblivious mode,

2) the computation leaks memory access pattern. In addition, we test for three different

grouping size configuration. The first configuration is across the segment column, while

the other two has additional column(s) that can be used to compute fairness metrics across

subgroups.

Figure 6.2 illustrates the running time of AISolace for the configurations mentioned thus

far. Note that these results include the time taken for the model inference.

For Adult dataset (figure 6.2 a—b), first, we observe the larger model results in a higher

analysis runtime. Second, in terms of the number of the grouping columns, in both model

configurations, the overall runtime increases as it is expected. The case for non-oblivious

does not involve any sorting, and we use a hash table to store the statistics for each group

variation. On the other hand, for oblivious grouping, the operation involves bitonic-sort

and oblivious aggregation. For larger model cases, since we need to get a larger enclave to

accommodate the inference, the overall fairness analysis is slower (for the 3 columns case,

66% overhead vs 52% overhead between for oblivious mode vs non-oblivious mode).

For German Credit dataset (figure 6.2 c—d), for medium model size the overall run-time

in oblivious mode incurs 72% to 96% overhead, while in the large model case it is between

39% to 47%. For COMPASS dataset (figure 6.2 e—f), the overhead of oblivious mode for

medium model is between 31% to 36%, while for the large model the overhead is between 18%

to 42%. Finally, it is worth mentioning that we also run the experiments in a setting without

the SGX, for Adult dataset, and it was 40X faster. The majority of the difference is due to

inference time and the fact that the non-SGX package outsource the matrix multiplication

calls to an efficient library where it is not available to the SGX.
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6.4.2 Clustering Performance

To conduct experiments on clustering and evaluate the running time, we restrict our exper-

iments to medium size models only. Furthermore, we only consider Adults and COMPASS

datasets. Additionally, we exclude the inference time, and the results are reported for the

grouping and fairness metric computation only. Also, for each dataset, we used three cat-

egorical columns, and two numeric columns to compute the mode and euclidean distances,

respectively with 3,5, and 10 clusters. Finally, we only evaluate in two settings, between in-

SGX oblivious and non-SGX non-oblivious for 10 iterations of clustering. For the COPASS

dataset (figure. 6.3a) the oblivious mode incurs an overhead of 5.8X to 6.4X, and as the

number of clusters increases the growth rate of the overhead slightly shrinks. For the Adult

dataset (figure. 6.3b), we observe the overhead is between 5.5X to 6.6X.

6.5 Conclusion

In this chapter, we presented AISolace; a data-oblivious privacy-preserving framework for

fairness analysis of models built based on deep learning. We assumed model provider and

fairness analyst do not trust each other, so they relied on AISolace to provide confidentiality

with respect to the model (parameters), and the fairness test data. Moreover, AISolace

allows for complex groupings, and clustering, to run the fairness analysis across subgroups

over predefined set of protected group definitions. Finally, we want to stress that the data-

obliviousness is not supported by TEEs by default, however, lack of such a feature can

have huge repercussions. AISolace runs all the operation in a data-oblivious manner so as

long as the data size and the fairness analysis is fixed, the memory access pattern in not

data-dependent.
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CHAPTER 7

INVESTIGATION OF A DIFFERENTIAL CRYPTANALYSIS INSPIRED

APPROACH FOR TROJAN AI DETECTION1

7.1 Introduction

Deep Learning(DL) is playing a major role in our lives and its high-pace improvements will

continue to broaden its footprint in our daily routines. However, as the systems that are

using more complex DL techniques, architectures, etc. increases, the research community

must keep up with ways in which these systems can act unexpectedly and it should not

remain undetected. In this work, we focus on trojan backdoor attacks (Liu et al., 2017; Gu

et al., 2017b) which are not easy to detect or fully mitigate, however, these attacks can be

materialized effortlessly through simple data-poisoning during training or through transfer

learning as the base model can carry the faulty hidden behavior into the freshly trained

model. We investigate the behavior of models w/w.o. backdoor on a dataset of random

unrelated images to the application domain these models are trained on. We try to answer

how similar the behavior of the clean models are? Or how dissimilar their behavior are

between clean/poisoned (contains a backdoor) models, given the unrelated inputs?

The main findings of this work are as follows:

• We built a meta-classifier to detect poisoned/clean models with an average accuracy

of 77%.

• We discovered that random samples drawn from a normal or uniform distribution is

not an effective measure to derive meaningful signals to build a meta-classifier, due to

1©2021 SPIE Reprinted. with permission, from A. Asvadishirehjini, M. Kantarcioglu and Y. Zhou,
“Investigation of a differential cryptanalysis inspired approach for Trojan AI detection ”, In Artificial In-
telligence and Machine Learning for Multi-Domain Operations Applications III, vol. 11746, p. 117460X.
International Society for Optics and Photonics, 2021.
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its inefficiency in approximating a true random image distribution. Hence, we believe

huge datasets from unrelated domains can significantly improve the performance of the

meta-classifier.

7.2 Methodology

In this section, we formalize our methodology for analyzing the behavior of models on random

inputs2. Given what we discussed so far, we wanted to see if there are efficient ways to build

a meta-classifier that can efficiently determine whether a model contains a backdoor (i.e.

poisoned) or not w.o. the need for costly gradient optimizations on the input domain (Wang

et al., 2019).

7.2.1 Cryptographic View On Backdoors

For a classification model F \ with parameters \, that gets an input X in the domain DG,

and returns the output Y in the domain DH:

F \ : DG → DH

Y = F \ (X)

In practice, the prediction result is a probability distribution over the classification categories

(
∑
8∈�
Y8 = 1) that highlights the model’s belief for each class. Typically, the final decision class

is the class 2 highest value.

In the presence of a backdoor (like an unknown encryption key) K2C in a poisoned model

P\ , for any malicious input X′ prediction is 2C with a high probability regardless of the true

2either from unrelated inputs or sampled from a random distribution
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classification category.

K2C : DG × D\ → DH

P\ : DG → DH

X′ = K2C (X,P\)

Y′ = P\ (X′)

7.2.2 Problem Definition

Given the above construction, we aim to find a mechanism to activate trojan behavior that

distinguish the clean models from the poisoned ones.

Hypothesis 1. A poisoned Model P\ with an unknown backdoor function K2C , in compari-

son to a clean model F \, has a distinguishable prediction distribution over random samples

drawn from an unrelated domain.

Definition 1. We define the distance Δ between a model’s prediction class distribution C

from a uniform prior U as:

Δ8 (C,U) = |C8 −U8 |

Δ = 1
2

∑
8∈�
Δ8

(7.1)

7.2.3 Prediction Class Probability Computation

To compute the distance for a model in either of P\ or F \ (we refer to both as M\), an

unrelated dataset S ( e.g. random noise, or an unseen dataset), is used. The entries of S

are fed to the model for prediction, and a prediction class probability vector C is computed

with two different approaches.

Hard Label

In this approach, we only count the final classification label which is the class with the

highest probability. Simply every item 8 in C is just the number of samples that are labeled
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as 8 divided by the total number of the samples in S.

C8 =

∑
B∈S

1[0A6<0G(M\ (B)) = 8]

|S| (7.2)

Soft Label

The hard-label approach loses information about other classes. In contrast, the soft-label

approach sums all the assigned classification probabilities per class across the S and then

normalizes the outcome into a probability distribution. This way, we train more information

at the expense of some memory cost which is not very significant.

C8 =

∑
B∈S
M\ (B) [8]∑

B∈S

∑
9∈�
M\ (B) [ 9]

(7.3)

7.3 Experiments

In this section, we discuss our empirical analysis. First, we explain the configuration for the

environment and experiment setup. Next, we go over the empirical results we gained and

their ramifications.

7.3.1 Experiment Setup

These experiments are performed on the CIFAR10 (Krizhevsky et al., 2014) dataset. It

consists of 60K image samples in 10 classification categories. We trained 200 models with

an adapted ResNet(20) (He et al., 2016) architecture for CIFAR10 dimensions. 100 of the

trained models are “clean”, while 100 of the models are “poisoned”; meaning there exists

a backdoor pattern that triggers the malicious behavior. The attacks performed on poison

models can differ on the backdoor pattern characteristics, and also the attack target labels as

described in Table 7.1. All these models have been trained for 250 epochs. Poisoned models
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Table 7.1: Poisoned Models Attack Configuration Parameters

Configuration Values

Attack target class [5,8]
Pattern location [top left, bottom left, top right, bottom right]

Pattern size [small(2x2), medium(5x5), big(8x8)]
Pattern color [red, blue, green, pink]

usually have a small accuracy performance degradation of around 2%. Each dataset analysis

consists of the two approaches, i.e hard-label and soft-label for prediction class probability

distance (Δ) computation. For each approach there are 10 (CIFAR10 classes) probability

features that is used to build a Random Forest (Breiman, 2001) model classifier to distinguish

clean and poisoned models.

7.3.2 Analysis On ImageNet

Table 7.2: Hard and Soft Label Per Class Distance Statistics for ImageNet

Approach Type Statistic �0 �1 �2 �3 �4 �5 �6 �7 �8 �9 RF acc

soft

clean
mean .017 .058 .057 .076 .029 .029 .009 .04 .02 .022

mean=.77std .004 .002 .005 .007 .003 .005 .003 .003 .004 .004
median .016 .059 .057 .076 .029 .028 .009 .04 .029 .021

poisoned
mean .018 .058 .053 .071 .028 .031 .009 .038 .025 .02

std=.019std .004 .003 .011 .014 .011 .006 .005 .008 .008 .010
median .018 .059 .055 .075 .032 .031 .008 .04 .027 .02

hard

clean
mean .017 .06 .058 .079 .031 .027 .008 .043 .029 .024

mean=.76std .004 .002 .005 .008 .003 .005 .003 .003 .004 .005
median .016 .006 .059 .079 .031 .027 .008 .043 .03 .014

poisoned
mean .019 .061 .055 .076 .029 .027 .008 .042 .026 .024

std=.05std .004 .004 .011 .013 .001 .008 .005 .007 .009 .01
median .019 .061 .057 .078 .034 .027 .008 .043 .028 .025

Our analysis starts with the ImageNet (Deng et al., 2009) dataset. We used the training

set which has more than 1.2M images in 1000 categories, however, we ignored the labels.

Then we built a random forest classifier to better understand the potentially complex rela-

tionship between the distances we derived from a uniform prior. Denote that initially, we

tried to find a simple threshold (based on every single metric, and one metric that summed
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over the distances like the total variation distance). Nonetheless, it did not work well, even

when we separated the experiments based on the attack target class (Table 7.1). In Ta-

ble 7.2, we show the statistical properties related to each prediction class distance across the

models. Also, for each prediction class probability calculation we build a separate classifier.

We repeated a 5-fold cross-validation for 10 rounds. The statistical mean and the standard

deviation of the 50 models’ performance on the hold out set (20%) have been reported. We

can see that it is able to correctly classify the poisoned models from the clean ones with 77%

accuracy while having a low standard deviation. Finally, we observe that the poisoned model

consistently tends to have a higher standard deviation as opposed to the clean models.

7.3.3 Analysis On Tiny-ImageNet

Tiny-ImageNet (Wu et al., 2017) dataset, is an enhanced subset of the imagenet dataset

with 200 classes and 100K training samples. We performed the same steps as in the previous

case, and the best result had a mean accuracy of 70% (the hard-label case was 67%) with a

standard deviation of 0.07 (not a percentage scale). Clearly, we can see that having a bigger

dataset that contains a wider array of variations can elicit better signals for our methodology.

7.3.4 Analysis On Random Uniform Input

Finally, we tested our methodology on an artificial dataset of 200K images all drawn from

a normal distribution N(` = 0, f = 1). This approach had the least success with a mean

accuracy of 61% with a standard deviation of 0.07. We believe a mere random sampling

cannot model the complexities of a true image, however, we plan to incorporate Generative

Adversarial Networks (GAN) (Goodfellow et al., 2014) to randomly generate high-quality

images.
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7.4 Conclusion

In this chapter, we investigated the performance of models with backdoors and clean models

using mainly two categories of datasets. 1) Random unrelated real images and 2) Random

samples were drawn from a normal distribution. We tried to elicit signals from the prediction

outcomes and use them to tell apart the clean and poisoned models. ImageNet (Deng et al.,

2009) proved to have the highest performance with about 77% accuracy. We believe the

more images that are available to extract the metrics we discussed, the higher the accuracy

will be. For the future, we plan to incorporate GANs (Goodfellow et al., 2014) to generate

synthetic large datasets, that can resemble natural image distributions to a high degree.
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CHAPTER 8

CONCLUSION

In this dissertation, we presented solutions to ensure and increase the trust in machine learn-

ing by using TEEs (e.g., Intel SGX). In particular, we emphasized on finding the silver lining

between performance and security. When it was possible to tolerate a level of performance

overhead, we provided a stronger guarantee on the security, wherein we considered protec-

tions against memory access pattern leakage. Nonetheless, for applications of training a deep

neural network, we followed a pursuit of realizing a practical solution for real-world scenarios

in cloud environments, thus we focused on delivering integrity guarantees during the training

without a significant performance overhead.

As a starting point, in Chapter 4, we presented a practical solution to accommodate

training deep neural networks by combining GPU with TEE and enforcing a set of narrow

gradient clipping on the update step, which thwarts an attacker from maliciously training a

model to ensure that an attacker will get caught with a high probability.

Next, in Chapter 5, we proposed an analytics framework for deep learning inference

combined with genomic GWAS analytics that takes into account the protection against

memory access pattern side-channel leaks.

Later in Chapter 6, we delivered a data-oblivious and privacy-preserving solution for

fairness tests for machine learning wherein the data owner and model owner do not trust

each other and both the ML model and the test data needs to be kept private.

Finally, in Chapter 7, we investigated the feasibility of detecting models that have hidden

trojan through building a machine learning metamodel that distinguishes between poisoned

(with trojan) and clean (without trojan).

In summary, this dissertation demonstrated the applications of trusted execution envi-

ronments in enabling solutions for integrity, privacy, and fairness for machine learning. For
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future work, enabling an end-to-end operational pipeline for machine learning from data-

collection, training, inference, and fairness in a distributed setting (blockchains for prove-

nance of the inputs, and outputs) while maintaining privacy and integrity properties, should

be an interesting direction to pursue.
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