School of Natural Sciences and Mathematics

Measurement of $V \boldsymbol{H}, \boldsymbol{H} \rightarrow \boldsymbol{b} \boldsymbol{b}$ Production as a Function of the Vector-Boson Transverse Momentum in 13 TeV pp Collisions with the ATLAS Detector

UT Dallas Author(s):
Joseph M. Izen
Bernhard Meirose
Kendall Reeves

Rights:
CC BY 4.0 (Attribution)
© 2019 The Authors

Citation:

Aaboud, M., G. Aad, B. Abbott, D. C. Abbott, et al. 2019. "Measurement of $\mathrm{VH}, \mathrm{H} \rightarrow \mathrm{b} Б$ production as a function of the vector-boson transverse momentum in 13 TeV pp collisions with the ATLAS detector." Journal of High Energy Physics 2019(5): art. 141, doi: 10.1007/JHEP05(2019)141

This document is being made freely available by the Eugene McDermott Library of the University of Texas at Dallas with permission of the copyright owner. All rights are reserved under United States copyright law unless specified otherwise.

Measurement of VH, $\mathbf{H} \rightarrow \mathbf{b} \overline{\mathbf{b}}$ production as a function of the vector-boson transverse momentum in 13 TeV pp collisions with the ATLAS detector

The ATLAS collaboration
E-mail: atlas.publications@cern.ch

Abstract

Cross-sections of associated production of a Higgs boson decaying into bottomquark pairs and an electroweak gauge boson, W or Z, decaying into leptons are measured as a function of the gauge boson transverse momentum. The measurements are performed in kinematic fiducial volumes defined in the 'simplified template cross-section' framework. The results are obtained using $79.8 \mathrm{fb}^{-1}$ of proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV . All measurements are found to be in agreement with the Standard Model predictions, and limits are set on the parameters of an effective Lagrangian sensitive to modifications of the Higgs boson couplings to the electroweak gauge bosons.

Keywords: Hadron-Hadron scattering (experiments), Higgs physics

ArXiv EPRINT: 1903.04618

Contents

1 Introduction 1
2 Data and simulation samples 2
3 Event selection and categorisation 3
4 Cross-section measurements 4
5 Results 9
6 Constraints on anomalous Higgs boson interactions 11
7 Conclusion 13
The ATLAS collaboration 19

1 Introduction

A particle consistent with the Standard Model (SM) predictions for the Higgs boson [1-4] was observed in 2012 by the ATLAS and CMS collaborations [5, 6] at the LHC. Further analysis of ATLAS and CMS data collected in proton-proton ($p p$) collisions at centre-ofmass energies of $7 \mathrm{TeV}, 8 \mathrm{TeV}$ and 13 TeV in two LHC data-taking periods (Runs 1 and 2) has led to precise measurements of the mass of this particle (around 125 GeV) [7-9], tests of its spin and parity $\left(J^{P}=0^{+}\right)$against alternative hypotheses $[10,11]$, as well as to measurements of its production and decay rates [12-14].

Recently, experiments at the LHC observed Higgs boson production in association with weak gauge bosons $V=W, Z$ ($V H$ production) [15] and Higgs boson decays into pairs of bottom quarks $(H \rightarrow b \bar{b})[15,16]$. With these results, the four most important Higgs boson production modes predicted by the SM, gluon-gluon fusion (ggF), vector-boson fusion (VBF), and associated production of a Higgs boson with either a weak gauge boson ($V H$) or a top-quark pair $(t \bar{t} H)$ are established. Similarly, several of the main modes of Higgs boson decays into fermionic $(b \bar{b}, \tau \tau)$ and bosonic $(W W, Z Z, \gamma \gamma)$ final states are observed. All results, typically expressed in the form of 'signal strengths', defined as the ratio of the observed to the expected product of the production cross-section times branching ratio into a certain final state, are consistent with SM predictions within uncertainties.

To probe the kinematic properties of Higgs boson production in more detail, to reduce the impact of theoretical uncertainties on the measurements and to make the measurements easier to compare with future updated calculations, the framework of simplified template cross-sections (STXS) has been introduced [17, 18]. In this framework, the cross-sections
for the various Higgs boson production modes are measured in exclusive regions carefully defined by fiducial selections based on the kinematic properties of Higgs boson production. The extrapolation from the phase space selected by the analysis criteria to that for which the cross-section measurements are presented is thus reduced.

The STXS measurements are designed to proceed in stages of increasing granularity with more recorded data. In 'stage 0 ', cross-sections are measured separately for the four main production modes in a fiducial Higgs boson rapidity region $\left|y_{H}\right|<2.5,{ }^{1}$ mainly driven by the ATLAS and CMS detector acceptances for most of the reconstructed objects (leptons, photons and b-jets). In 'stage 1 ' these regions are split into 31 subregions according to kinematic properties such as the number of particle-level jets with transverse momentum $p_{\mathrm{T}}>30 \mathrm{GeV}$ (excluding any jets from Higgs boson decays), the transverse momentum of the Higgs boson, or the transverse momentum of the weak gauge boson V for $V H, V \rightarrow$ leptons production. In simulation, particle-level jets are built by clustering all generated stable particles ($c \tau>10 \mathrm{~mm}$), excluding the decay products of the Higgs boson as well as the neutrinos and charged leptons from the decays of the weak gauge boson, using the anti- k_{t} clustering algorithm [19] with a radius parameter $R=0.4$.

Stage-0 STXS were measured recently with $36.1 \mathrm{fb}^{-1}$ of 13 TeV ATLAS data using $H \rightarrow$ $\gamma \gamma$ [20] and $H \rightarrow Z Z^{*} \rightarrow 4 \ell$ decays [21], with results in agreement with SM predictions. In addition, refs. [20] and [21] contain some 'reduced' stage-1 STXS measurements of ggF and VBF regions, after merging together regions where the data lack sufficient sensitivity to Higgs boson production. Given the low $V H$ production cross-sections, the only Higgs boson decay mode that can currently be measured is $H \rightarrow b \bar{b}$, with its large branching ratio of 58%. This paper presents a measurement of 'reduced' stage-1 VH STXS (defined in section 3) using $H \rightarrow b \bar{b}$ decays with $79.8 \mathrm{fb}^{-1}$ of $13 \mathrm{TeV} p p$ collisions collected by ATLAS between 2015 and 2017. The results are used to investigate the strength and tensor structure of the interactions of the Higgs boson with vector bosons using an effective Lagrangian approach [22].

2 Data and simulation samples

The data were collected with the ATLAS detector [23, 24] between 2015 and 2017, triggered by isolated charged leptons or large transverse momentum imbalance, $E_{\mathrm{T}}^{\text {miss }}$. Only events with good data quality were kept.

The Monte Carlo simulation samples used for the measurements presented here are identical to those used for the measurement of the inclusive $V H, H \rightarrow b \bar{b}$ signal strength [15]. Several samples of simulated events were produced for the signal ($q \bar{q} \rightarrow W H$, $q \bar{q} \rightarrow Z H$ and $g g \rightarrow Z H$) and main background ($t \bar{t}$, single-top, $V+$ jets and diboson) processes. They were used to optimise the analysis criteria and to determine the expected

[^0]signal and background distributions of the discriminating variables used in the final fit to the data. The multijet background is largely suppressed by the selection criteria and is estimated using data-driven techniques.

The signal templates in each STXS region were obtained from simulated $q \bar{q} \rightarrow W H$ and $q \bar{q} \rightarrow Z H$ events with zero or one additional jet, calculated at next-to-leading order (NLO), generated with the Powheg-Box v2 + GoSam + MiNLO generators [25-28]. The contribution from loop-induced $g g \rightarrow Z H$ production was simulated at leading order (LO) using the Powheg-Box v2 generator [25]. Additional scale factors were applied to the $q \bar{q} \rightarrow V H$ processes as a function of the generated vector-boson transverse momentum $\left(p_{\mathrm{T}}^{V}\right)$ to account for electroweak (EW) corrections at NLO. These factors were determined from the ratio between the $V H$ differential cross-sections computed with and without these corrections by the Hawk program [29, 30]. The mass of the Higgs boson was fixed at 125 GeV .

In the measurement of the $p p \rightarrow Z H$ cross-sections, the relative contributions of the $q \bar{q} \rightarrow Z H$ and $g g \rightarrow Z H$ processes are determined by the most accurate theoretical crosssection predictions currently available: next-to-next-to-leading order (NNLO) in QCD and NLO in EW [31-37] for $q \bar{q} \rightarrow Z H$, and next-to-leading order and next-to-leading logarithm (NLO+NLL) in QCD [38-42] for $g g \rightarrow Z H$.

3 Event selection and categorisation

The object reconstruction, event selection and classification into categories used for the measurements, are identical to those described in ref. [15]. The selection and the event categories are briefly summarised below.

Events are retained if they are consistent with one of the typical signatures of $V H$, $H \rightarrow b \bar{b}$ production and decay, with $Z \rightarrow \nu \bar{\nu}, W \rightarrow \ell \nu$ or $Z \rightarrow \ell \ell(\ell=e, \mu)$. Vector-boson decays into τ-leptons are not targeted explicitly. However, they satisfy the selection criteria with reduced efficiency in the case of leptonic τ-lepton decays.

In particular, events are kept if they contain at most two isolated electrons or muons, and two good-quality high- p_{T} ($>45,20 \mathrm{GeV}$) jets with $|\eta|<2.5$ satisfying b-jet identification (' b-tagging') requirements (which have an average efficiency of 70% for jets containing b-hadrons that are produced in inclusive $t \bar{t}$ events [43]). The two b-jet candidates are used to reconstruct the Higgs boson candidate; their invariant mass is denoted by $m_{b b}$. Additional jets are required to have $p_{\mathrm{T}}>20 \mathrm{GeV}$ for $|\eta|<2.5$ or $p_{\mathrm{T}}>30 \mathrm{GeV}$ for $2.5<|\eta|<4.5$, and not be identified as b-jets.

Events with either zero, one or two isolated electrons or muons are classified as ' 0 lepton', '1-lepton' or '2-lepton' events, respectively. The 0 -lepton events and the 1 -lepton events are required to have transverse momentum imbalance, as expected from the neutrinos from $Z \rightarrow \nu \bar{\nu}$ or $W \rightarrow \ell \nu$ decays; in the 2-lepton events, the leptons must have the same flavour (and opposite charge for events with muons) and an invariant mass close to the Z boson mass.

Additional requirements are applied to suppress background from QCD production of multijet events in the 0 -lepton and 1 -lepton channels. To suppress the large $t \bar{t}$ background,

Channel	Categories				
	$75 \mathrm{GeV}<p_{\mathrm{T}}^{V, \mathrm{r}}<150 \mathrm{GeV}$		$p_{\mathrm{T}}^{V, \mathrm{r}}>150 \mathrm{GeV}$		
	2 jets	≥ 3 jets	2 jets	3 jets	≥ 3 jets
0-lepton	-	-	SR	SR	-
1-lepton $\begin{aligned} m_{b b} & \geq 75 \mathrm{GeV} \text { or } m_{\mathrm{top}} \leq 225 \mathrm{GeV} \\ m_{b b} & <75 \mathrm{GeV} \text { and } m_{\text {top }}>225 \mathrm{GeV} \end{aligned}$	- - SR SR - - - CR CR -				
2-lepton $e e$ and $\mu \mu$ channels $e \mu$ channel	$\begin{aligned} & \mathrm{SR} \\ & \mathrm{CR} \end{aligned}$	$\begin{aligned} & \mathrm{SR} \\ & \mathrm{CR} \end{aligned}$	$\begin{aligned} & \text { SR } \\ & \text { CR } \end{aligned}$	-	$\begin{aligned} & \mathrm{SR} \\ & \mathrm{CR} \end{aligned}$

Table 1. Summary of the reconstructed-event categories. Categories with relatively large fractions of the total expected signal yields are referred to as 'signal regions' (SR), while those with negligible expected signal yield, mainly designed to constrain some background processes, are called 'control regions' (CR). The quantity $m_{\text {top }}$ is the reconstructed mass of a semileptonically decaying top-quark candidate in the 1-lepton channel. The calculation of $m_{\text {top }}$ uses the four-momenta of one of the two b-jet candidates, the lepton, and the hypothetical neutrino produced in the event. The neutrino four-momentum is derived using the W boson mass constraint [15] and $m_{\text {top }}$ is then reconstructed from the combination of the b-jet candidate and the value of the neutrino longitudinal momentum that yields the smallest top-quark candidate mass. The $m_{\mathrm{top}} \leq 225 \mathrm{GeV}$ requirement in the 1-lepton signal region is needed to maintain orthogonality with the $W+\mathrm{HF}$ control region.
events with four or more jets are discarded in the 0-lepton and 1-lepton channels. Finally, a requirement on the reconstructed transverse momentum $p_{\mathrm{T}}^{V, \mathrm{r}}$ of the vector boson V is applied. It is computed, depending on the number, $N_{\text {lep }}$, of selected electrons and muons, as either the missing transverse momentum $E_{\mathrm{T}}^{\mathrm{miss}}\left(N_{\text {lep }}=0\right)$, the magnitude of the vector sum of the missing transverse momentum and the lepton $p_{\mathrm{T}}\left(N_{\text {lep }}=1\right)$, or the dilepton $p_{\mathrm{T}}\left(N_{\text {lep }}=2\right)$. The minimum value of $p_{\mathrm{T}}^{V, \mathrm{r}}$ is 150 GeV in the 0 - and 1-lepton channels, and 75 GeV in the 2-lepton channel.

Events satisfying the previous criteria are classified into eight categories (also called signal regions in the following), shown in table 1, with different signal-to-background ratios. These categories are defined by the number of jets, $N_{\text {jet }}$ (including the two b-jet candidates), $N_{\text {lep }}$, and $p_{\mathrm{T}}^{V, \mathrm{r}}$. Additional categories (also called control regions in the following) containing events satisfying alternative selections are introduced to constrain some background processes such as W boson production in association with jets containing heavy-flavour hadrons $(W+H F)$, or top-quark pair production. The signal contribution in such categories is expected to be negligible.

4 Cross-section measurements

The reduced $V H, V \rightarrow$ leptons stage-1 STXS regions used in this paper are summarised in table 2, which also indicates which reconstructed-event categories are most sensitive in

Merged region 3-POI scheme	Merged region 5-POI scheme	Stage 1 (modified) STXS region	Reconstructed-event categories with largest sensitivity		
$W H, p_{\mathrm{T}}^{W}>150 \mathrm{GeV}$	$W H, 150<p_{\mathrm{T}}^{W}<250 \mathrm{GeV}$	$\begin{aligned} & q \bar{q} \rightarrow W H, 150<p_{\mathrm{T}}^{W}<250 \mathrm{GeV}, 0 \text {-jet } \\ & q \bar{q} \rightarrow W H, 150<p_{\mathrm{T}}^{W}<250 \mathrm{GeV}, \geq 1 \text {-jet } \end{aligned}$	1	> 150 GeV	2, 3
	$W H, p_{\mathrm{T}}^{W}>250 \mathrm{GeV}$	$q \bar{q} \rightarrow W H, p_{\mathrm{T}}^{W}>250 \mathrm{GeV}$			
$Z H, 75<p_{\text {T }}^{Z}<150 \mathrm{GeV}$	$Z H, 75<p_{\text {T }}^{Z}<150 \mathrm{GeV}$	$\begin{aligned} & q \bar{q} \rightarrow Z H, 75<p_{\mathrm{T}}^{Z}<150 \mathrm{GeV} \\ & g g \rightarrow Z H, 75<p_{\mathrm{T}}^{Z}<150 \mathrm{GeV} \end{aligned}$		$75-150 \mathrm{GeV}$	$2, \geq 3$
$Z H, p_{\mathrm{T}}^{Z}>150 \mathrm{GeV}$	$Z H, 150<p_{T}^{Z}<250 \mathrm{GeV}$	$\begin{aligned} & q \bar{q} \rightarrow Z H, 150<p_{\mathrm{T}}^{Z}<250 \mathrm{GeV}, 0 \text {-jet } \\ & g g \rightarrow Z H, 150<p_{\mathrm{T}}^{Z}<250 \mathrm{GeV}, 0 \text {-jet } \\ & q \bar{q} \rightarrow Z H, 150<p_{\mathrm{T}}^{Z}<250 \mathrm{GeV}, \geq 1 \text {-jet } \\ & g g \rightarrow Z H, 150<p_{\mathrm{T}}^{Z}<250 \mathrm{GeV}, \geq 1 \text {-jet } \\ & \hline \end{aligned}$		$\begin{aligned} & >150 \mathrm{GeV} \\ & >150 \mathrm{GeV} \end{aligned}$	$\begin{aligned} & 2,3 \\ & 2, \geq 3 \end{aligned}$
	$Z H, p_{\mathrm{T}}^{Z}>250 \mathrm{GeV}$	$\begin{aligned} & q \bar{q} \rightarrow Z H, p_{\mathrm{T}}^{Z}>250 \mathrm{GeV} \\ & g g \rightarrow Z H, p_{\mathrm{T}}^{Z}>250 \mathrm{GeV} \end{aligned}$			

Table 2. The 3-POI and 5-POI 'reduced stage-1' sets of merged regions used for the measurements, the corresponding kinematic regions of the stage-1 VH simplified template cross-sections, and the reconstructed-event categories that are most sensitive in each merged region. The stage-1 regions are modified (i) by splitting the two $Z H, p_{\mathrm{T}}^{Z}<150 \mathrm{GeV}$ regions (from $q \bar{q}$ and $g g$) into four regions, based on whether $p_{\mathrm{T}}^{Z}<75 \mathrm{GeV}$ or $75<p_{\mathrm{T}}^{Z}<150 \mathrm{GeV}$; (ii) by adding a $p_{\mathrm{T}}^{Z}<250 \mathrm{GeV}$ requirement to the $g g \rightarrow Z H, p_{\mathrm{T}}^{Z}>150 \mathrm{GeV}$ regions (with zero or at least one extra particle-level jet), and (iii) by adding a separate $g g \rightarrow Z H, p_{\mathrm{T}}^{Z}>250 \mathrm{GeV}$ region. The three regions $W H, p_{\mathrm{T}}^{W}<150 \mathrm{GeV}$, $q \bar{q} \rightarrow Z H, p_{\mathrm{T}}^{Z}<75 \mathrm{GeV}$ and $g g \rightarrow Z H, p_{\mathrm{T}}^{Z}<75 \mathrm{GeV}$, in which the current analysis is not sensitive and whose corresponding cross-sections are fixed to the SM prediction in the fit, are not shown.
each region. All leptonic decays of the weak gauge bosons (including $Z \rightarrow \tau \tau$ and $W \rightarrow \tau \nu$) are considered for the STXS definition.

Compared to the original stage-1 proposal presented in ref. [17], the following changes have been made for the reduced $V H, V \rightarrow$ leptons stage- 1 STXS regions of table 2 :

- the $p_{\mathrm{T}}^{Z}<150 \mathrm{GeV}$ stage- 1 regions are split into two subregions, $p_{\mathrm{T}}^{Z}<75 \mathrm{GeV}$ and $75<p_{\mathrm{T}}^{Z}<150 \mathrm{GeV}$, to avoid theory uncertainties from extrapolations to a phase space not accessible to this measurement;
- an additional $g g \rightarrow Z H, p_{\mathrm{T}}^{Z}>250 \mathrm{GeV}$ region has been introduced, similarly to what is already done for $q \bar{q} \rightarrow Z H$.

These two changes lead to a total of 14 modified stage- 1 regions, which are then combined together in reduced stage- 1 regions, chosen to keep the total uncertainty in the measurements near or below 100%, in the following way:

- the $q \bar{q} \rightarrow Z H$ and $g g \rightarrow Z H$ regions are merged. There are currently not enough data events to distinguish $q \bar{q} \rightarrow Z H$ from gluon-induced $Z H$ production despite their different kinematic properties;
- the $150<p_{\mathrm{T}}^{V}<250 \mathrm{GeV}$ regions with zero or at least one particle-level jet are merged.

Figure 1. $\mathrm{BDT}_{V H}$ distributions for different p_{T}^{V} STXS regions in the 1-lepton, 2-jet reconstructedevent category. Only regions contributing at least 10% of the expected signal yield in the reconstructed-event category are displayed. The distributions of the total signal and background are also shown. The $\mathrm{BDT}_{V H}$ distributions are scaled to the same (unit) area to highlight the shape differences.

Two sets of reduced stage- 1 regions are considered. In one, called the ' 5 -POI (parameters of interest)' scheme, five cross-sections, three for $Z H$ production ($75<p_{\mathrm{T}}^{Z}<150 \mathrm{GeV}$, $150<p_{\mathrm{T}}^{Z}<250 \mathrm{GeV}$ and $p_{\mathrm{T}}^{Z}>250 \mathrm{GeV}$) and two for $W H$ production ($150<p_{\mathrm{T}}^{W}<250 \mathrm{GeV}$ and $p_{\mathrm{T}}^{W}>250 \mathrm{GeV}$), are measured. In the other one, called the ' 3 -POI' scheme, three cross-sections, two for $Z H\left(75<p_{T}^{Z}<150 \mathrm{GeV}\right.$ and $\left.p_{T}^{Z}>150 \mathrm{GeV}\right)$ and one for $W H$ ($p_{\mathrm{T}}^{W}>150 \mathrm{GeV}$), are measured. The 5-POI scheme leads to measurements that have total uncertainties larger than those in the 3-POI scheme, but are more sensitive to enhancements at high p_{T}^{V} from potential anomalous interactions between the Higgs boson and the EW gauge bosons.

The reconstructed-event categories do not distinguish between events with generated p_{T}^{V} below or above 250 GeV . Discrimination between the two p_{T}^{V} regions $150-250 \mathrm{GeV}$ and $>250 \mathrm{GeV}$ is provided by the different shapes of the boosted-decision-tree discriminant $\left(\mathrm{BDT}_{V H}\right)$ used in the final fit to the data, as illustrated in figure 1 in the case of the 1-lepton, 2-jet category. This arises from the fact that the reconstructed $p_{\mathrm{T}}^{V, \mathrm{r}}$ is largely correlated with the $\mathrm{BDT}_{V H}$ output, for which it constitutes one of the most discriminating input variables together with $m_{b b}$ and the angular separation of the two b-jets.

The product of the signal cross-section times the $H \rightarrow b \bar{b}$ branching ratio and the total leptonic decay branching ratio for W or Z bosons is determined in each of the reduced stage-1 regions by a binned maximum-likelihood fit to the data. The cross-sections are not constrained to be positive in the fit. Signal and background templates of the discriminating variables, determined from the simulation or data control regions, are used to extract the signal and background yields. A simultaneous fit is performed to all the signal and control regions. Systematic uncertainties are included in the likelihood function as nuisance parameters.

The likelihood function is very similar to that described in ref. [15]. In particular, the same observables are used, namely $\mathrm{BDT}_{V H}$ in the signal regions and either the invariant mass $m_{b b}$ of the two b-jets or the event yield in the control regions. The treatment of the background and of its uncertainties is also unchanged. The only differences relative to the likelihood function in ref. [15] concern the treatment of the signal:

- Instead of a single signal shape (for $\mathrm{BDT}_{V H}$ or $m_{b b}$) or yield per category, multiple shapes or yields are introduced, one for each reduced stage-1 STXS region under study.
- Instead of a single parameter of interest, the inclusive signal strength, the fit has multiple parameters of interest, i.e. the cross-sections of the reduced stage- 1 regions, multiplied by the $H \rightarrow b \bar{b}$ and $V \rightarrow$ leptons branching ratios.
- Overall theoretical cross-section and branching ratio uncertainties, which affect the signal strength measurements but not the STXS measurements, are not included in the likelihood function.

The expected signal shapes of the discriminating variable distributions and the acceptance times efficiency (referred to as 'acceptance' in the following) in each reduced stage-1 region are determined from simulated samples of SM VH,V leptons, $H \rightarrow b \bar{b}$ events. The acceptance of each reconstructed-event category for signal events from the different regions of the 5 -POI reduced stage- 1 scheme is shown in figure 2 a . The fraction of signal events in each reconstructed-event category originating from the different regions in the same scheme is shown in figure 2b.

As shown in figure 2a, the current analysis is not sensitive to $W H$ events with $p_{\mathrm{T}}^{W}<$ 150 GeV and to $Z H$ events with $p_{\mathrm{T}}^{Z}<75 \mathrm{GeV}$, since their acceptance in each category is at the level of 0.1% or smaller. Therefore, in the fits the signal cross-section in these regions is constrained to the SM prediction, within the theoretical uncertainties. Since these regions contribute only marginally to the selected event sample, the impact on the final results is negligible. A cross-check in which the relative signal cross-section uncertainty for the $p_{\mathrm{T}}^{W}<150 \mathrm{GeV}$ and $p_{\mathrm{T}}^{Z}<75 \mathrm{GeV}$ regions is conservatively set to 70% of the prediction (i.e. about seven times the nominal uncertainty) leads to variations of the measured STXS below 1%.

The sources of systematic uncertainty are identical to those described in ref. [15], except for those associated with the Higgs boson signal simulation, which are re-evaluated [44]. In this re-evaluation the uncertainties are separated into two groups:

Figure 2. In the 5-POI reduced stage-1 scheme, (a) the acceptance (including the efficiency of the experimental selection) for $V H, V \rightarrow$ leptons, $H \rightarrow b \bar{b}$ events of each reconstructed-event category (y-axis) for each STXS signal region (x-axis), in percent; (b) the fraction of signal (in percent) from each STXS signal region (x-axis) in every reconstructed-event category (y-axis). Entries with acceptance times efficiency below 0.01% or signal fractions below 0.1% are not shown.

- uncertainties affecting signal modelling - i.e. acceptance and shape of kinematic distributions - in each of the three or five reduced stage-1 regions (hereafter referred to as theoretical modelling uncertainties), and
- uncertainties in the prediction of the production cross-section for each of these regions (hereafter referred to as theoretical cross-section uncertainties).

While theoretical modelling uncertainties enter the measurement of the STXS, theoretical cross-section uncertainties do not affect the results, but only the predictions with which they are compared. The consequent reduction of the impact of the theoretical uncertainties on the results with respect to the signal strength measurements is one of the main advantages of measuring STXS.

The two groups of systematic uncertainties are estimated for high-granularity STXS regions, and then merged into the reduced scheme under consideration. This approach
makes it easy to compute the systematic uncertainties for merging schemes different from those presented here. The uncertainties are evaluated by dividing the phase space into five p_{T}^{V} regions (with the following lower edges: $0 \mathrm{GeV}, 75 \mathrm{GeV}, 150 \mathrm{GeV}, 250 \mathrm{GeV}$ and 400 GeV), and each p_{T}^{V} region into three bins depending on the number of particle-level jets (zero, one, or at least two), independently for the $q \bar{q} \rightarrow V H$ and $g g \rightarrow Z H$ processes. When two STXS regions are merged, their relative theoretical cross-section uncertainties lead to a modelling uncertainty. These uncertainties are evaluated as the remnant of the theoretical cross-section uncertainties for the high-granularity regions after the subtraction of the theoretical cross-section uncertainty for the merged region.

The high-granularity regions are used to calculate theoretical cross-section uncertainties for the missing higher-order terms in the QCD perturbative expansion and for the uncertainties induced by the choices of the parton distribution function (PDF) and α_{S}. Fourteen independent sources of uncertainties due to the missing higher-order terms lead to total uncertainties of $3 \%-4 \%$ for $q \bar{q} \rightarrow V H$ and $40 \%-50 \%$ for $g g \rightarrow Z H$ with $p_{\mathrm{T}}^{V}>$ 75 GeV [44]. Thirty-one independent sources of PDF and α_{S} uncertainties, each of them usually smaller than 1%, lead to a total quadrature sum between 2% and 3% depending on the STXS region. The theoretical modelling uncertainties change the shapes of the reconstructed $p_{\mathrm{T}}^{V, \mathrm{r}}$ and $m_{b b}$ distributions in the same way as described in ref. [15]. Four independent sources for the QCD expansion and two independent sources for the PDF and α_{S} choices are considered.

Systematic uncertainties in the signal acceptance and shape of the $p_{\mathrm{T}}^{V, \mathrm{r}}$ and $m_{b b}$ distributions due to the parton shower (PS) and underlying event (UE) models are estimated from the variations of acceptance and shapes of simulated events after changing the Pythia 8 PS parameters or after replacing Pythia 8 with Herwig 7 for the PS and UE models [15]. The signal acceptance uncertainties due to the PS and UE models (five independent sources) are typically of the order of $1 \%(5 \%-15 \%)$ with a maximum of 10% (30%) for the $q \bar{q} \rightarrow V H(g g \rightarrow Z H)$ production mode. Two independent nuisance parameters account for the systematic uncertainties induced by the PS and UE models in the $p_{\mathrm{T}}^{V, \mathrm{r}}$ and $m_{b b}$ distributions. In addition, a systematic uncertainty due to the EW corrections is parameterised as a change in shape of the p_{T}^{V} distributions for the $q \bar{q} \rightarrow V H$ processes [15].

5 Results

The measured reduced stage- $1 V H$ cross-sections times the $H \rightarrow b \bar{b}$ and $V \rightarrow$ leptons branching ratios, $\sigma \times B$, in the 5 -POI and 3-POI schemes, together with the SM predictions, are summarised in table 3 . The results of the 5 -POI scheme are also illustrated in figure 3 . The SM predictions are shown together with the theoretical cross-section uncertainty for the merged regions computed as described in the previous section. The measurements are in agreement with the SM predictions.

The cross-sections measured in the $p_{\mathrm{T}}^{V}>150 \mathrm{GeV}$ intervals are not equal to the sum of those measured for $150<p_{\mathrm{T}}^{V}<250 \mathrm{GeV}$ and $p_{\mathrm{T}}^{V}>250 \mathrm{GeV}$. This is because the signal template for $p_{\mathrm{T}}^{V}>150 \mathrm{GeV}$ in the 3-POI fit is computed from the sum of the templates of the two regions assuming that the ratio of yields in those regions is that predicted

Measurement region	SM prediction			Result			Stat. unc.		Syst. unc. [fb]					
$\left(\left\|y_{H}\right\|<2.5, H \rightarrow b \bar{b}\right)$	[fb]			[fb]			[fb]		Th. sig.		Th. bkg.		Exp.	
5-POI scheme														
$W \rightarrow \ell \nu ; 150<p_{\mathrm{T}}^{V}<250 \mathrm{GeV}$	24.0	\pm		20	\pm		\pm	17	\pm	2	\pm	13	\pm	9
$W \rightarrow \ell \nu ; p_{\mathrm{T}}^{V}>250 \mathrm{GeV}$	7.1	\pm		8.8	\pm		\pm	4.4			\pm	2.5	\pm	
$Z \rightarrow \ell \ell, \nu \nu ; 75<p_{\mathrm{T}}^{V}<150 \mathrm{GeV}$	50.6	\pm		81	\pm		\pm	35		10	\pm	21	\pm	19
$Z \rightarrow \ell \ell, \nu \nu ; 150<p_{\mathrm{T}}^{V}<250 \mathrm{GeV}$	18.8	\pm		14	\pm		\pm	11	\pm	1	\pm	6	\pm	3
$Z \rightarrow \ell \ell, \nu \nu ; p_{\mathrm{T}}^{V}>250 \mathrm{GeV}$	4.9			8.5	\pm	4.0	\pm	3.7	\pm	0.8	\pm	1.2	\pm	0.6
3-POI scheme														
$W \rightarrow \ell \nu ; p_{\mathrm{T}}^{V}>150 \mathrm{GeV}$	31.1	\pm		35	\pm		\pm	9	\pm	2	\pm	9	\pm	4
$Z \rightarrow \ell \ell, \nu \nu ; 75<p_{\mathrm{T}}^{V}<150 \mathrm{GeV}$	50.6	\pm		81	\pm		\pm	35		10	\pm	21	\pm	19
$Z \rightarrow \ell \ell, \nu \nu ; p_{\mathrm{T}}^{V}>150 \mathrm{GeV}$	23.7	\pm		28.4	\pm	8.1	\pm	6.4	\pm	2.4	\pm	3.6	\pm	2.3

Table 3. Best-fit values and uncertainties for the $V H, V \rightarrow$ leptons reduced stage-1 simplified template cross-sections times the $H \rightarrow b \bar{b}$ branching ratio, in the 5 -POI (top five rows) and 3-POI (bottom three rows) schemes. The SM predictions for each region, computed using the inclusive cross-section calculations and the simulated event samples described in section 2, are also shown. The contributions to the total uncertainty in the measurements from statistical (Stat. unc.) or systematic uncertainties (Syst. unc.) in the signal modelling (Th. sig.), background modelling (Th. bkg.), and in experimental performance (Exp.) are given separately. The total systematic uncertainty, equal to the difference in quadrature between the total uncertainty and the statistical uncertainty, differs from the sum in quadrature of the Th. Sig., Th. Bkg., and Exp. systematic uncertainties due to correlations. All leptonic decays of the V bosons (including those to τ-leptons, $\ell=e, \mu, \tau)$ are considered.
by the SM, while in the 5-POI fit the normalisations of the two templates are floated independently.

The cross-sections are measured with relative uncertainties varying between 50% and 125% in the 5 -POI case, and between 29% and 56% for the 3 -POI. The largest uncertainties are statistical, except for the $W H$ cross-sections with $p_{\mathrm{T}}^{W}>150 \mathrm{GeV}$ in the 3-POI case and with $150<p_{\mathrm{T}}^{W}<250 \mathrm{GeV}$ in the 5 -POI case. In the 5 -POI case, an anti-correlation of the order of $40 \%-60 \%$ is observed between the cross-sections in the ranges $p_{\mathrm{T}}^{V}>250 \mathrm{GeV}$ and $150<p_{\mathrm{T}}^{V}<250 \mathrm{GeV}$, which are measured with the same reconstructed-event categories.

The dominant systematic uncertainties are due to the limited number of simulated background events and the theoretical modelling of the background processes. The uncertainties due to the theoretical modelling of the $V H$ signal are small, with relative values ranging between 6% and 12%. The uncertainties in the predictions are $2-3$ times larger for $Z H$ than for $W H$ in the same p_{T}^{V} interval due to the limited precision of the theoretical calculations of the $g g \rightarrow Z H$ process.

Figure 3. Measured $V H, V \rightarrow$ leptons reduced stage-1 simplified template cross-sections times the $H \rightarrow b \bar{b}$ branching ratio.

6 Constraints on anomalous Higgs boson interactions

The strength and tensor structure of the Higgs boson interactions are investigated using an effective Lagrangian approach [22]. Extra terms of the form $c_{i}^{(D)} \mathcal{O}_{i}^{(D)} / \Lambda^{D-4}$, where Λ is the energy scale of the new interactions, $O_{i}^{(D)}$ are dimension- D operators, and $c_{i}^{(D)}$ are numerical coefficients, are added to the SM Lagrangian to obtain an effective Lagrangian inspired by that in ref. [45]. Only dimension $D=6$ operators are considered in this study, since dimension $D=5$ operators violate lepton or baryon number, while dimension $D>6$ operators are further suppressed by powers of Λ.

The results presented in this paper focus on the coefficients of the operators in the 'Strongly Interacting Light Higgs' formulation [46]. This formalism is defined as the effective theory of a strongly interacting sector in which a light composite Higgs boson arises as a pseudo Goldstone boson, and is responsible for EW symmetry breaking. Among such operators, four directly affect the $V H$ cross-sections because they introduce new Higgs boson interactions with W bosons $\left(\mathcal{O}_{H W}, \mathcal{O}_{W}\right)$ and Z bosons (all four operators):

- $\mathcal{O}_{H W}=i\left(D^{\mu} H\right)^{\dagger} \sigma^{a}\left(D^{\nu} H\right) W_{\mu \nu}^{a}$,
- $\mathcal{O}_{H B}=i\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu}$,
- $\mathcal{O}_{W}=\frac{i}{2}\left(H^{\dagger} \sigma^{a} \stackrel{\leftrightarrow}{D^{\mu}} H\right) D^{\nu} W_{\mu \nu}^{a}$,
- $\mathcal{O}_{B}=\frac{i}{2}\left(H^{\dagger} \stackrel{\leftrightarrow}{D}^{\mu} H\right) \partial^{\nu} B_{\mu \nu}$.

The corresponding $C P$-odd operators $\tilde{\mathcal{O}}_{H W}, \tilde{\mathcal{O}}_{H B}, \tilde{\mathcal{O}}_{W}$, and $\tilde{\mathcal{O}}_{B}$, are not considered.

Modifications of the $g g \rightarrow Z H$ production cross-section are only introduced by either higher-dimension $(D \geq 8)$ operators or corrections that are formally at NNLO in QCD, and are not included in this study, in which the expected $g g \rightarrow Z H$ contribution is kept fixed to the SM prediction.

The operator $\mathcal{O}_{d}=y_{d}|H|^{2} \bar{Q}_{\mathrm{L}} H d_{\mathrm{R}}$ (plus Hermitian conjugate) with Yukawa coupling strength y_{d}, which modifies the coupling between the Higgs boson and down-type quarks, induces variations of the partial width $\Gamma_{H}^{b b}$ and of the total Higgs boson width Γ_{H}, and therefore of the $H \rightarrow b \bar{b}$ branching ratio. This operator affects the measured cross-sections in the same way in each region.

Constraints are set on the coefficients of the five $\mathcal{O}_{W}, \mathcal{O}_{B}, \mathcal{O}_{H W}, \mathcal{O}_{H B}$ and \mathcal{O}_{d} operators in the 'Higgs Effective Lagrangian' (HEL) implementation [47], using the known relations between such coefficients and the stage-1 STXS based on leading-order predictions [48]. Such relations include interference terms between the SM and non-SM amplitudes that are linear in the coefficients and of order $1 / \Lambda^{2}$, and the SM-independent contributions that are quadratic in the coefficients and of order $1 / \Lambda^{4}$. In the HEL implementation, the coefficients c_{i} of interest are recast into the following dimensionless coefficients:

$$
\bar{c}_{H W}=\frac{m_{W}^{2}}{g} \frac{c_{H W}}{\Lambda^{2}}, \quad \bar{c}_{H B}=\frac{m_{W}^{2}}{g^{\prime}} \frac{c_{H B}}{\Lambda^{2}}, \quad \bar{c}_{W}=\frac{m_{W}^{2}}{g} \frac{c_{W}}{\Lambda^{2}}, \quad \bar{c}_{B}=\frac{m_{W}^{2}}{g^{\prime}} \frac{c_{B}}{\Lambda^{2}}, \quad \bar{c}_{d}=v^{2} \frac{c_{d}}{\Lambda^{2}},
$$

where g and g^{\prime} are the $\mathrm{SU}(2)$ and $\mathrm{U}(1) \mathrm{SM}$ gauge couplings, and v is the vacuum expectation value of the Higgs boson field. These dimensionless coefficients are equal to zero in the SM.

The sum $\bar{c}_{W}+\bar{c}_{B}$ is strongly constrained by precision EW data [49] and is thus assumed here to be zero, and constraints are set on $\bar{c}_{H W}, \bar{c}_{H B}, \bar{c}_{W}-\bar{c}_{B}$ and \bar{c}_{d}. The relations between the HEL coefficients and the reduced STXS measured in this paper are obtained by averaging the relations for the regions that are merged with weights proportional to their respective cross-sections.

Simultaneous maximum-likelihood fits to the five STXS measured in the 5-POI scheme are performed to determine $\bar{c}_{H W}, \bar{c}_{H B}, \bar{c}_{W}-\bar{c}_{B}$ and \bar{c}_{d}. Due to the large sensitivity to the Higgs boson anomalous couplings to vector bosons provided by the $p_{\mathrm{T}}^{V}>250 \mathrm{GeV}$ crosssections, the 5 -POI results place tighter constraints on these coefficients (e.g. approximately a factor two for $\bar{c}_{H W}$) than do the 3-POI results. For this reason, constraints obtained with the 3-POI results are not shown here.

In each fit, all coefficients but one are assumed to vanish, and 68% and 95% confidence level (CL) one-dimensional intervals are inferred for the remaining coefficient. The negative-log-likelihood one-dimensional projections are shown in figure 4, and the 68% and 95% CL intervals for $\bar{c}_{H W}, \bar{c}_{H B}, \bar{c}_{W}-\bar{c}_{B}$ and \bar{c}_{d} are summarised in table 4. The parameters $\bar{c}_{H W}$ and $\bar{c}_{W}-\bar{c}_{B}$ are constrained at 95% CL to be no more than a few percent, while the constraint on $\bar{c}_{H B}$ is about five times worse, and the constraint on \bar{c}_{d} is of order unity. For comparison, table 4 also shows the 68% and 95% CL intervals for the dimensionless coefficients when the SM-independent contributions, which are of the same order $\left(1 / \Lambda^{4}\right)$ as the dimension- 8 operators that are neglected, are not considered. The constraints are typically 50% stronger than when the SM-independent contributions are not neglected.

Figure 4. The observed (solid) and expected (dotted) profiled negative-log-likelihood functions for the one-dimensional fits to constrain the coefficients (a) $\bar{c}_{H W}$, (b) $\bar{c}_{H B}$, (c) $\bar{c}_{W}-\bar{c}_{B}$ and (d) \bar{c}_{d} of an effective Lagrangian (described in the text), when the other coefficients are assumed to vanish.

7 Conclusion

Using $79.8 \mathrm{fb}^{-1}$ of $\sqrt{s}=13 \mathrm{TeV}$ proton-proton collisions collected by the ATLAS detector at the LHC, the cross-sections for the associated production of a Higgs boson decaying into bottom-quark pairs and an electroweak gauge boson W or Z decaying into leptons are measured as functions of the vector-boson transverse momentum p_{T}^{V}. The cross-sections are measured for Higgs bosons in a fiducial volume with rapidity $\left|y_{H}\right|<2.5$, in the 'simplified template cross-section' framework.

The measurements are performed for two different choices of the number of p_{T}^{V} intervals. The results have relative uncertainties varying between 50% and 125% in one case, and between 29% and 56% in the other. The measurements are in agreement with the Standard Model predictions, even in high $p_{\mathrm{T}}^{V}(>250 \mathrm{GeV})$ regions that are most sensitive to enhancements from potential anomalous interactions between the Higgs boson and the electroweak gauge bosons.

Coefficient	Expected interval	Observed interval
Results at 68% confidence level		
$\bar{c}_{H W}$ (interference only	$[-0.003,0.002]$	$\begin{aligned} & {[-0.001,0.004]} \\ & [-0.001,0.005]) \end{aligned}$
$\bar{c}_{H B}$ (interference only	$[-0.066,0.013]$	$[-0.078,-0.055] \cup[0.005,0.019]$
$\begin{aligned} & \bar{c}_{W}-\bar{c}_{B} \\ & \quad \text { (interference only } \end{aligned}$	$\left[\begin{array}{l} {[-0.006,0.005]} \\ {[-0.005,0.005]} \end{array}\right.$	$\begin{aligned} & {[-0.002,0.007]} \\ & [-0.002,0.008]) \end{aligned}$
\bar{c}_{d} (interference only	$\begin{aligned} & {[-1.5,0.3]} \\ & {[-0.4,0.4]} \end{aligned}$	$\begin{gathered} {[-1.6,-0.9] \cup[-0.3,0.4]} \\ [-0.2,0.7]) \end{gathered}$
Results at 95% confidence level		
$\bar{c}_{H W}$ (interference only	$\begin{aligned} & {[-0.018,0.004]} \\ & {[-0.005,0.005]} \end{aligned}$	$\begin{gathered} {[-0.019,-0.010] \cup[-0.005,0.006]} \\ [-0.003,0.008]) \end{gathered}$
$\bar{c}_{H B}$ (interference only	$[-0.078,0.024]$	$[-0.090,0.032]$
$\begin{aligned} & \bar{c}_{W}-\bar{c}_{B} \\ & \quad \quad \text { interference only } \end{aligned}$	$[-0.034,0.008]$	$\begin{gathered} {[-0.036,-0.024] \cup[-0.009,0.010]} \\ [-0.006,0.014]) \end{gathered}$
\bar{c}_{d} (interference only	$\begin{aligned} & {[-1.7,0.5]} \\ & {[-0.8,0.8]} \end{aligned}$	$\begin{aligned} & {[-1.9,0.7]} \\ & [-0.6,1.1]) \end{aligned}$

Table 4. The expected and observed 68% CL (four top rows) and 95% CL (four bottom rows) intervals for the effective Lagrangian coefficients $\bar{c}_{H W}, \bar{c}_{H B}, \bar{c}_{W}-\bar{c}_{B}$ and \bar{c}_{d} when the other coefficients are assumed to vanish. Each row is composed of two sub-rows: the first one uses the interference between SM and non-SM amplitudes and the SM-independent contributions, while the second sub-row uses only the interference between SM and non-SM amplitudes.

One-dimensional limits on four linear combinations of the coefficients of effective Lagrangian operators affecting the Higgs boson couplings to the electroweak gauge bosons and to down-type quarks have also been set. For two of these parameters the constraint has a precision of a few percent.

Acknowledgments

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France;

SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, CRC and Compute Canada, Canada; COST, ERC, ERDF, Horizon 2020, and Marie Skłodowska-Curie Actions, European Union; Investissements d' Avenir Labex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.) and BNL (U.S.A.), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in ref. [50].

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].
[2] P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].
[3] P.W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].
[4] G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global Conservation Laws and Massless Particles, Phys. Rev. Lett. 13 (1964) 585 [inSPIRE].
[5] ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
[6] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [InSPIRE].
[7] ATLAS and CMS collaborations, Combined Measurement of the Higgs Boson Mass in pp Collisions at $\sqrt{s}=7$ and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
[8] ATLAS collaboration, Measurement of the Higgs boson mass in the $H \rightarrow Z Z^{*} \rightarrow 4 \ell$ and $H \rightarrow \gamma \gamma$ channels with $\sqrt{s}=13$ TeV pp collisions using the ATLAS detector, Phys. Lett. B 784 (2018) 345 [arXiv:1806.00242] [INSPIRE].
[9] CMS collaboration, Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at $\sqrt{s}=13$ TeV, JHEP 11 (2017) 047 [arXiv:1706.09936] [INSPIRE].
[10] ATLAS collaboration, Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector, Eur. Phys. J. C 75 (2015) 476 [Erratum ibid. C 76 (2016) 152] [arXiv:1506.05669] [inSPIRE].
[11] CMS collaboration, Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV, Phys. Rev. D 92 (2015) 012004 [arXiv:1411.3441] [INSPIRE].
[12] ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $\sqrt{s}=7$ and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
[13] CMS collaboration, Observation of $t \bar{t} H$ production, Phys. Rev. Lett. 120 (2018) 231801 [arXiv:1804.02610] [INSPIRE].
[14] ATLAS collaboration, Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector, Phys. Lett. B 784 (2018) 173 [arXiv:1806.00425] [INSPIRE].
[15] ATLAS collaboration, Observation of $H \rightarrow b \bar{b}$ decays and VH production with the ATLAS detector, Phys. Lett. B 786 (2018) 59 [arXiv:1808.08238] [InSPIRE].
[16] CMS collaboration, Observation of Higgs boson decay to bottom quarks, Phys. Rev. Lett. 121 (2018) 121801 [arXiv:1808.08242] [INSPIRE].
[17] LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, CERN Publishing (2016).
[18] J.R. Andersen et al., Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report, in proceedings of the 9th Les Houches Workshop on Physics at TeV Colliders (PhysTeV 2015), Les Houches, France, 1-19 June 2015, arXiv: 1605.04692 [inSPIRE].
[19] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
[20] ATLAS collaboration, Measurements of Higgs boson properties in the diphoton decay channel with $36 \mathrm{fb}^{-1}$ of pp collision data at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector, Phys. Rev. D 98 (2018) 052005 [arXiv:1802.04146] [INSPIRE].
[21] ATLAS collaboration, Measurement of the Higgs boson coupling properties in the $H \rightarrow Z Z^{*} \rightarrow 4 \ell$ decay channel at $\sqrt{s}=13$ TeV with the ATLAS detector, JHEP 03 (2018) 095 [arXiv: 1712.02304] [INSPIRE].
[22] ATLAS collaboration, Constraints on an effective Lagrangian from the combined $H \rightarrow Z Z^{*} \rightarrow 4 \ell$ and $H \rightarrow \gamma \gamma$ channels using $36.1 \mathrm{fb}^{-1}$ of $\sqrt{s}=13 \mathrm{TeV}$ pp collision data collected with the ATLAS detector, ATL-PHYS-PUB-2017-018 (2017).
[23] ATLAS collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, 2008 JINST 3 S08003 [inSPIRE].
[24] ATLAS IBL collaboration, Production and Integration of the ATLAS Insertable B-Layer, 2018 JINST 13 T05008 [arXiv:1803.00844] [INSPIRE].
[25] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].
[26] G. Cullen et al., Automated One-Loop Calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [inSPIRE].
[27] K. Hamilton, P. Nason and G. Zanderighi, MINLO: Multi-Scale Improved NLO, JHEP 10 (2012) 155 [arXiv:1206.3572] [INSPIRE].
[28] G. Luisoni, P. Nason, C. Oleari and F. Tramontano, $H W^{ \pm} / H Z+0$ and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO, JHEP 10 (2013) 083 [arXiv:1306.2542] [INSPIRE].
[29] A. Denner, S. Dittmaier, S. Kallweit and A. Mück, Electroweak corrections to Higgs-strahlung off W / Z bosons at the Tevatron and the LHC with HAWK, JHEP 03 (2012) 075 [arXiv:1112.5142] [INSPIRE].
[30] A. Denner, S. Dittmaier, S. Kallweit and A. Mück, HAWK 2.0: A Monte Carlo program for Higgs production in vector-boson fusion and Higgs strahlung at hadron colliders, Comput. Phys. Commun. 195 (2015) 161 [arXiv:1412.5390] [inSPIRE].
[31] M.L. Ciccolini, S. Dittmaier and M. Krämer, Electroweak radiative corrections to associated WH and ZH production at hadron colliders, Phys. Rev. D 68 (2003) 073003 [hep-ph/0306234] [INSPIRE].
[32] O. Brein, A. Djouadi and R. Harlander, NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders, Phys. Lett. B 579 (2004) 149 [hep-ph/0307206] [inSPIRE].
[33] G. Ferrera, M. Grazzini and F. Tramontano, Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 107 (2011) 152003 [arXiv:1107.1164] [INSPIRE].
[34] O. Brein, R. Harlander, M. Wiesemann and T. Zirke, Top-Quark Mediated Effects in Hadronic Higgs-Strahlung, Eur. Phys. J. C 72 (2012) 1868 [arXiv:1111.0761] [INSPIRE].
[35] G. Ferrera, M. Grazzini and F. Tramontano, Higher-order QCD effects for associated WH production and decay at the LHC, JHEP 04 (2014) 039 [arXiv:1312.1669] [INSPIRE].
[36] G. Ferrera, M. Grazzini and F. Tramontano, Associated ZH production at hadron colliders: the fully differential NNLO QCD calculation, Phys. Lett. B 740 (2015) 51 [arXiv:1407.4747] [inSPIRE].
[37] J.M. Campbell, R.K. Ellis and C. Williams, Associated production of a Higgs boson at NNLO, JHEP 06 (2016) 179 [arXiv:1601.00658] [inSPIRE].
[38] L. Altenkamp, S. Dittmaier, R.V. Harlander, H. Rzehak and T.J.E. Zirke, Gluon-induced Higgs-strahlung at next-to-leading order QCD, JHEP 02 (2013) 078 [arXiv:1211.5015] [INSPIRE].
[39] B. Hespel, F. Maltoni and E. Vryonidou, Higgs and Z boson associated production via gluon fusion in the SM and the 2HDM, JHEP 06 (2015) 065 [arXiv:1503.01656] [INSPIRE].
[40] R.V. Harlander, A. Kulesza, V. Theeuwes and T. Zirke, Soft gluon resummation for gluon-induced Higgs Strahlung, JHEP 11 (2014) 082 [arXiv:1410.0217] [INSPIRE].
[41] R.V. Harlander, S. Liebler and T. Zirke, Higgs Strahlung at the Large Hadron Collider in the 2-Higgs-Doublet Model, JHEP 02 (2014) 023 [arXiv:1307.8122] [INSPIRE].
[42] O. Brein, R.V. Harlander and T.J.E. Zirke, vh@nnlo - Higgs Strahlung at hadron colliders, Comput. Phys. Commun. 184 (2013) 998 [arXiv:1210.5347] [inSPIRE].
[43] ATLAS collaboration, Measurements of b-jet tagging efficiency with the ATLAS detector using $t \bar{t}$ events at $\sqrt{s}=13 \mathrm{TeV}$, JHEP 08 (2018) 089 [arXiv:1805.01845] [InSPIRE].
[44] ATLAS collaboration, Evaluation of theoretical uncertainties for simplified template cross section measurements of V-associated production of the Higgs boson, ATL-PHYS-PUB-2018-035 (2018).
[45] R. Contino, M. Ghezzi, C. Grojean, M. Mühlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].
[46] G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [inSPIRE].
[47] A. Alloul, B. Fuks and V. Sanz, Phenomenology of the Higgs effective Lagrangian via FeynRules, JHEP 04 (2014) 110 [arXiv:1310.5150] [INSPIRE].
[48] C. Hays, V. Sanz Gonzalez and G. Zemaityte, Constraining EFT parameters using simplified template cross sections, LHCHXSWG-INT-2017-001 (2017).
[49] J. Ellis, C.W. Murphy, V. Sanz and T. You, Updated Global SMEFT Fit to Higgs, Diboson and Electroweak Data, JHEP 06 (2018) 146 [arXiv:1803.03252] [INSPIRE].
[50] ATLAS collaboration, ATLAS Computing Acknowledgements, ATL-GEN-PUB-2016-002 (2016).

The ATLAS collaboration

M. Aaboud ${ }^{35 d}$, G. Aad ${ }^{101}$, B. Abbott ${ }^{128}$, D.C. Abbott ${ }^{102}$, O. Abdinov ${ }^{13, *}$, A. Abed Abud ${ }^{70 a, 70 b}$, D.K. Abhayasinghe ${ }^{93}$, S.H. Abidi ${ }^{167}$, O.S. AbouZeid ${ }^{40}$, N.L. Abraham ${ }^{156}$, H. Abramowicz ${ }^{161}$, H. Abreu ${ }^{160}$, Y. Abulaiti ${ }^{6}$, B.S. Acharya ${ }^{66 a, 66 b, n}$, S. Adachi ${ }^{163}$, L. Adam ${ }^{99}$,
C. Adam Bourdarios ${ }^{132}$, L. Adamczyk ${ }^{83 a}$, L. Adamek ${ }^{167}$, J. Adelman ${ }^{121}$, M. Adersberger ${ }^{114}$, A. Adiguzel ${ }^{12 c, a h}$, S. Adorni ${ }^{54}$, T. Adye ${ }^{144}$, A.A. Affolder ${ }^{146}$, Y. Afik ${ }^{160}$, C. Agapopoulou ${ }^{132}$, M.N. Agaras ${ }^{38}$, A. Aggarwal ${ }^{119}$, C. Agheorghiesei ${ }^{27 c}$, J.A. Aguilar-Saavedra ${ }^{140 f, 140 a, a g}$, F. Ahmadov ${ }^{79}$, G. Aielli ${ }^{73 a, 73 b}$, S. Akatsuka ${ }^{85}$, T.P.A. Åkesson ${ }^{96}$, E. Akilli ${ }^{54}$, A.V. Akimov ${ }^{110}$, K. Al Khoury ${ }^{132}$, G.L. Alberghi ${ }^{23 b, 23 a}$, J. Albert ${ }^{176}$, M.J. Alconada Verzini ${ }^{88}$, S. Alderweireldt ${ }^{119}$, M. Aleksa ${ }^{36}$, I.N. Aleksandrov ${ }^{79}$, C. Alexa ${ }^{27 \mathrm{~b}}$, D. Alexandre ${ }^{19}$, T. Alexopoulos ${ }^{10}$, A. Alfonsi ${ }^{120}$, M. Alhroob ${ }^{128}$, B. Ali ${ }^{142}$, G. Alimonti ${ }^{68 \mathrm{a}}$, J. Alison ${ }^{37}$, S.P. Alkire ${ }^{148}$, C. Allaire ${ }^{132}$, B.M.M. Allbrooke ${ }^{156}$, B.W. Allen ${ }^{131}$, P.P. Allport ${ }^{21}$, A. Aloisio ${ }^{69 a, 69 b}$, A. Alonso ${ }^{40}$, F. Alonso ${ }^{88}$, C. Alpigiani ${ }^{148}$, A.A. Alshehri ${ }^{57}$, M.I. Alstaty ${ }^{101}$, M. Alvarez Estevez ${ }^{98}$, B. Alvarez Gonzalez ${ }^{36}$, D. Álvarez Piqueras ${ }^{174}$, M.G. Alviggi ${ }^{69 a, 69 b}$, Y. Amaral Coutinho ${ }^{80 \mathrm{~b}}$, A. Ambler ${ }^{103}$, L. Ambroz ${ }^{135}$, C. Amelung ${ }^{26}$, D. Amidei ${ }^{105}$, S.P. Amor Dos Santos ${ }^{140 a, 140 c}$, S. Amoroso ${ }^{46}$, C.S. Amrouche ${ }^{54}$, F. An 78, C. Anastopoulos ${ }^{149}$, N. Andari ${ }^{145}$, T. Andeen ${ }^{11}$, C.F. Anders ${ }^{61 b}$, J.K. Anders ${ }^{20}$, A. Andreazza ${ }^{68 \mathrm{a}, 68 \mathrm{~b}}$, V. Andrei ${ }^{61 \mathrm{a}}$, C.R. Anelli ${ }^{176}$, S. Angelidakis ${ }^{38}$, I. Angelozzi ${ }^{120}$, A. Angerami ${ }^{39}$, A.V. Anisenkov ${ }^{122 b, 122 a}$, A. Annovi ${ }^{71 a}$, C. Antel ${ }^{61 a}$, M.T. Anthony ${ }^{149}$, M. Antonelli ${ }^{51}$, D.J.A. Antrim ${ }^{171}$, F. Anulli ${ }^{72 a}$, M. Aoki ${ }^{81}$, J.A. Aparisi Pozo ${ }^{174}$, L. Aperio Bella ${ }^{36}$, G. Arabidze ${ }^{106}$, J.P. Araque ${ }^{140 \mathrm{a}}$, V. Araujo Ferraz ${ }^{80 \mathrm{~b}}$, R. Araujo Pereira ${ }^{80 \mathrm{~b}}$, A.T.H. Arce ${ }^{49}$, F.A. Arduh ${ }^{88}$, J-F. Arguin ${ }^{109}$, S. Argyropoulos ${ }^{77}$, J.-H. Arling ${ }^{46}$, A.J. Armbruster ${ }^{36}$, L.J. Armitage ${ }^{92}$, A. Armstrong ${ }^{171}$, O. Arnaez ${ }^{167}$, H. Arnold ${ }^{120}$, A. Artamonov ${ }^{111, *}$, G. Artoni ${ }^{135}$, S. Artz ${ }^{99}$, S. Asai ${ }^{163}$, N. Asbah ${ }^{59}$, E.M. Asimakopoulou ${ }^{172}$, L. Asquith ${ }^{156}$, K. Assamagan ${ }^{29}$, R. Astalos ${ }^{28 a}$, R.J. Atkin ${ }^{33 a}$, M. Atkinson ${ }^{173}$, N.B. Atlay ${ }^{151}$, H. Atmani ${ }^{132}$, K. Augsten ${ }^{142}$, G. Avolio ${ }^{36}$, R. Avramidou ${ }^{60 \mathrm{a}}$, M.K. Ayoub ${ }^{15 \mathrm{a}}$, A.M. Azoulay ${ }^{168 \mathrm{~b}}$, G. Azuelos ${ }^{109, \text { av }}$, A.E. Baas ${ }^{61 \mathrm{a}}$, M.J. Baca ${ }^{21}$, H. Bachacou ${ }^{145}$, K. Bachas ${ }^{67 a, 67 \mathrm{~b}}$, M. Backes ${ }^{135}$, F. Backman ${ }^{45 \mathrm{a}, 45 \mathrm{~b}}$, P. Bagnaia ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, M. Bahmani ${ }^{84}$, H. Bahrasemani ${ }^{152}$, A.J. Bailey ${ }^{174}$, V.R. Bailey ${ }^{173}$, J.T. Baines ${ }^{144}$, M. Bajic ${ }^{40}$, C. Bakalis ${ }^{10}$, O.K. Baker ${ }^{183}$, P.J. Bakker ${ }^{120}$, D. Bakshi Gupta ${ }^{8}$, S. Balaji ${ }^{157}$, E.M. Baldin ${ }^{122 b, 122 a}$, P. Balek ${ }^{180}$, F. Balli ${ }^{145}$, W.K. Balunas ${ }^{135}$, J. Balz ${ }^{99}$, E. Banas ${ }^{84}$, A. Bandyopadhyay ${ }^{24}$, Sw. Banerjee ${ }^{181, \mathrm{i}}$, A.A.E. Bannoura ${ }^{182}$, L. Barak ${ }^{161}$, W.M. Barbe ${ }^{38}$, E.L. Barberio ${ }^{104}$, D. Barberis ${ }^{55 b, 55 a}$, M. Barbero ${ }^{101}$, T. Barillari ${ }^{115}$,

M-S. Barisits ${ }^{36}$, J. Barkeloo ${ }^{131}$, T. Barklow ${ }^{153}$, R. Barnea ${ }^{160}$, S.L. Barnes ${ }^{60 c}$, B.M. Barnett ${ }^{144}$, R.M. Barnett ${ }^{18}$, Z. Barnovska-Blenessy ${ }^{60 a}$, A. Baroncelli ${ }^{60 a}$, G. Barone ${ }^{29}$, A.J. Barr ${ }^{135}$, L. Barranco Navarro ${ }^{174}$, F. Barreiro ${ }^{98}$, J. Barreiro Guimarães da Costa ${ }^{15 a}$, R. Bartoldus ${ }^{153}$, G. Bartolini ${ }^{101}$, A.E. Barton ${ }^{89}$, P. Bartos ${ }^{28 \mathrm{a}}$, A. Basalaev ${ }^{46}$, A. Bassalat ${ }^{132, \text { ap }}$, R.L. Bates ${ }^{57}$, S.J. Batista ${ }^{167}$, S. Batlamous ${ }^{35 e}$, J.R. Batley ${ }^{32}$, B. Batool ${ }^{151}$, M. Battaglia ${ }^{146}$, M. Bauce ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, F. Bauer ${ }^{145}$, K.T. Bauer ${ }^{171}$, H.S. Bawa ${ }^{31,1}$, J.B. Beacham ${ }^{49}$, T. Beau ${ }^{136}$, P.H. Beauchemin ${ }^{170}$, P. Bechtle ${ }^{24}$, H.C. Beck ${ }^{53}$, H.P. Beck ${ }^{20, q}$, K. Becker ${ }^{52}$, M. Becker ${ }^{99}$, C. Becot ${ }^{46}$, A. Beddall ${ }^{12 \mathrm{~d}}$, A.J. Beddall ${ }^{12 \mathrm{a}}$, V.A. Bednyakov ${ }^{79}$, M. Bedognetti ${ }^{120}$, C.P. Bee ${ }^{155}$, T.A. Beermann ${ }^{76}$, M. Begalli ${ }^{80 \mathrm{~b}}$, M. Begel ${ }^{29}$, A. Behera ${ }^{155}$, J.K. Behr ${ }^{46}$, F. Beisiegel ${ }^{24}$, A.S. Bell ${ }^{94}$, G. Bella ${ }^{161}$, L. Bellagamba ${ }^{23 \mathrm{~b}}$, A. Bellerive ${ }^{34}$, P. Bellos ${ }^{9}$, K. Beloborodov ${ }^{122 b, 122 \mathrm{a}}$, K. Belotskiy ${ }^{112}$, N.L. Belyaev ${ }^{112}$, O. Benary ${ }^{161, *}$, D. Benchekroun ${ }^{35 a}$, N. Benekos ${ }^{10}$, Y. Benhammou ${ }^{161}$, D.P. Benjamin ${ }^{6}$, M. Benoit ${ }^{54}$, J.R. Bensinger ${ }^{26}$, S. Bentvelsen ${ }^{120}$, L. Beresford ${ }^{135}$, M. Beretta ${ }^{51}$, D. Berge ${ }^{46}$, E. Bergeaas Kuutmann ${ }^{172}$, N. Berger ${ }^{5}$, B. Bergmann ${ }^{142}$, L.J. Bergsten ${ }^{26}$, J. Beringer ${ }^{18}$, S. Berlendis ${ }^{7}$, N.R. Bernard ${ }^{102}$, G. Bernardi ${ }^{136}$, C. Bernius ${ }^{153}$, F.U. Bernlochner ${ }^{24}$, T. Berry ${ }^{93}$, P. Berta ${ }^{99}$, C. Bertella ${ }^{15 a}$, G. Bertoli ${ }^{45 a, 45 b}$, I.A. Bertram ${ }^{89}$, G.J. Besjes ${ }^{40}$, O. Bessidskaia Bylund ${ }^{182}$, N. Besson ${ }^{145}$, A. Bethani ${ }^{100}$, S. Bethke ${ }^{115}$, A. Betti ${ }^{24}$, A.J. Bevan ${ }^{92}$,
J. Beyer ${ }^{115}$, R. Bi 139, R.M. Bianchi ${ }^{139}$, O. Biebel ${ }^{114}$, D. Biedermann ${ }^{19}$, R. Bielski ${ }^{36}$, K. Bierwagen ${ }^{99}$, N.V. Biesuz ${ }^{71 a, 71 b}$, M. Biglietti ${ }^{74 \mathrm{a}}$, T.R.V. Billoud 109, M. Bindi ${ }^{53}$, A. Bingul ${ }^{12 \mathrm{~d}}$, C. Bini $^{72 a, 72 b}$, S. Biondi ${ }^{23 b, 23 a}$, M. Birman ${ }^{180}$, T. Bisanz ${ }^{53}$, J.P. Biswal ${ }^{161}$, A. Bitadze ${ }^{100}$, C. Bittrich ${ }^{48}$, D.M. Bjergaard ${ }^{49}$, J.E. Black ${ }^{153}$, K.M. Black 25, T. Blazek ${ }^{28 a}$, I. Bloch ${ }^{46}$, C. Blocker ${ }^{26}$, A. Blue ${ }^{57}$, U. Blumenschein ${ }^{92}$, G.J. Bobbink ${ }^{120}$, V.S. Bobrovnikov ${ }^{122 b, 122 a}$, S.S. Bocchetta ${ }^{96}$, A. Bocci 49, D. Boerner ${ }^{46}$, D. Bogavac ${ }^{114}$, A.G. Bogdanchikov ${ }^{122 b, 122 a}$, C. Bohm ${ }^{45 \mathrm{a}}$, V. Boisvert ${ }^{93}$, P. Bokan ${ }^{53,172}$, T. Bold ${ }^{83 \mathrm{a}}$, A.S. Boldyrev ${ }^{113}$, A.E. Bolz ${ }^{61 \mathrm{~b}}$, M. Bomben ${ }^{136}$, M. Bona ${ }^{92}$, J.S. Bonilla ${ }^{131}$, M. Boonekamp ${ }^{145}$, H.M. Borecka-Bielska ${ }^{90}$, A. Borisov ${ }^{123}$, G. Borissov ${ }^{89}$, J. Bortfeldt ${ }^{36}$, D. Bortoletto ${ }^{135}$, V. Bortolotto ${ }^{73 a, 73 b}$, D. Boscherini ${ }^{23 b}$, M. Bosman ${ }^{14}$, J.D. Bossio Sola ${ }^{30}$, K. Bouaouda ${ }^{35 a}$, J. Boudreau ${ }^{139}$, E.V. Bouhova-Thacker ${ }^{89}$, D. Boumediene ${ }^{38}$, S.K. Boutle ${ }^{57}$, A. Boveia ${ }^{126}$, J. Boyd 36, D. Boye ${ }^{33 b}$, I.R. Boyko ${ }^{79}$, A.J. Bozson ${ }^{93}$, J. Bracinik ${ }^{21}$, N. Brahimi ${ }^{101}$, G. Brandt ${ }^{182}$, O. Brandt ${ }^{61 \mathrm{a}}$, F. Braren ${ }^{46}$, U. Bratzler ${ }^{164}$, B. Brau ${ }^{102}$, J.E. Brau ${ }^{131}$, W.D. Breaden Madden ${ }^{57}$, K. Brendlinger ${ }^{46}$, L. Brenner ${ }^{46}$, R. Brenner ${ }^{172}$, S. Bressler ${ }^{180}$, B. Brickwedde ${ }^{99}$, D.L. Briglin ${ }^{21}$, D. Britton ${ }^{57}$, D. Britzger ${ }^{115}$, I. Brock ${ }^{24}$, R. Brock ${ }^{106}$, G. Brooijmans ${ }^{39}$, T. Brooks ${ }^{93}$, W.K. Brooks ${ }^{147 \mathrm{~b}}$, E. Brost ${ }^{121}$, J.H Broughton ${ }^{21}$, P.A. Bruckman de Renstrom ${ }^{84}$, D. Bruncko ${ }^{28 b}$, A. Bruni ${ }^{23 b}$, G. Bruni ${ }^{23 b}$, L.S. Bruni ${ }^{120}$, S. Bruno ${ }^{73 a, 73 b}$, B.H. Brunt ${ }^{32}$, M. Bruschi ${ }^{23 b}$, N. Bruscino ${ }^{139}$, P. Bryant ${ }^{37}$, L. Bryngemark ${ }^{96}$, T. Buanes ${ }^{17}$, Q. Buat ${ }^{36}$, P. Buchholz ${ }^{151}$, A.G. Buckley ${ }^{57}$, I.A. Budagov ${ }^{79}$, M.K. Bugge ${ }^{134}$, F. Bührer ${ }^{52}$, O. Bulekov ${ }^{112}$, T.J. Burch ${ }^{121}$, S. Burdin ${ }^{90}$, C.D. Burgard ${ }^{120}$, A.M. Burger ${ }^{129}$, B. Burghgrave ${ }^{8}$, K. Burka ${ }^{84}$, J.T.P. Burr ${ }^{46}$, V. Büscher ${ }^{99}$, E. Buschmann ${ }^{53}$, P.J. Bussey ${ }^{57}$, J.M. Butler ${ }^{25}$, C.M. Buttar ${ }^{57}$, J.M. Butterworth ${ }^{94}$, P. Butti ${ }^{36}$, W. Buttinger ${ }^{36}$, A. Buzatu ${ }^{158}$, A.R. Buzykaev ${ }^{122 b, 122 a}$, G. Cabras ${ }^{23 b}, 23$ a , S. Cabrera Urbán ${ }^{174}$, D. Caforio ${ }^{142}$, H. Cai ${ }^{173}$, V.M.M. Cairo ${ }^{153}$, O. Cakir ${ }^{4 a}$, N. Calace ${ }^{36}$, P. Calafiura ${ }^{18}$, A. Calandri ${ }^{101}$, G. Calderini ${ }^{136}$, P. Calfayan ${ }^{65}$, G. Callea ${ }^{57}$, L.P. Caloba ${ }^{80 b}$, S. Calvente Lopez ${ }^{98}$, D. Calvet ${ }^{38}$, S. Calvet ${ }^{38}$, T.P. Calvet ${ }^{155}$, M. Calvetti ${ }^{71 \mathrm{a}, 71 \mathrm{~b}}$, R. Camacho Toro ${ }^{136}$, S. Camarda ${ }^{36}$, D. Camarero Munoz ${ }^{98}$, P. Camarri ${ }^{73 \mathrm{a}, 73 \mathrm{~b}}$, D. Cameron ${ }^{134}$, R. Caminal Armadans ${ }^{102}$, C. Camincher ${ }^{36}$, S. Campana ${ }^{36}$, M. Campanelli ${ }^{94}$, A. Camplani ${ }^{40}$, A. Campoverde ${ }^{151}$, V. Canale ${ }^{69 \mathrm{a}, 69 \mathrm{~b}}$, A. Canesse ${ }^{103}$, M. Cano Bret ${ }^{60 \mathrm{c}}$, J. Cantero ${ }^{129}$, T. Cao ${ }^{161}$, Y. Cao ${ }^{173}$, M.D.M. Capeans Garrido ${ }^{36}$, M. Capua ${ }^{41 \mathrm{~b}, 41 \mathrm{a}}$, R. Cardarelli ${ }^{73 \mathrm{a}}$, F.C. Cardillo ${ }^{149}$, I. Carli ${ }^{143}$, T. Carli ${ }^{36}$, G. Carlino ${ }^{69 \mathrm{a}}$, B.T. Carlson ${ }^{139}$, L. Carminati ${ }^{68 \mathrm{a}, 68 \mathrm{~b}}$, R.M.D. Carney ${ }^{45 \mathrm{a}, 45 \mathrm{~b}}$, S. Caron ${ }^{119}$, E. Carquin ${ }^{147 \mathrm{~b}}$, S. Carrá ${ }^{68 \mathrm{a}, 68 \mathrm{~b}}$, J.W.S. Carter ${ }^{167}$, M.P. Casado ${ }^{14, \mathrm{e}}$, A.F. Casha ${ }^{167}$, D.W. Casper ${ }^{171}$, R. Castelijn ${ }^{120}$, F.L. Castillo ${ }^{174}$, V. Castillo Gimenez ${ }^{174}$, N.F. Castro ${ }^{140 a, 140 e}$, A. Catinaccio ${ }^{36}$, J.R. Catmore ${ }^{134}$, A. Cattai ${ }^{36}$, J. Caudron ${ }^{24}$, V. Cavaliere ${ }^{29}$, E. Cavallaro ${ }^{14}$, D. Cavalli ${ }^{68 \mathrm{a}}$, M. Cavalli-Sforza ${ }^{14}$, V. Cavasinni ${ }^{71 a, 71 b}$, E. Celebi ${ }^{12 b}$, F. Ceradini ${ }^{74 a, 74 b}$, L. Cerda Alberich ${ }^{174}$, A.S. Cerqueira ${ }^{80 a}$, A. Cerri ${ }^{156}$, L. Cerrito ${ }^{73 a}$, 73 b , F. Cerutti ${ }^{18}$, A. Cervelli ${ }^{23 b}, 23 \mathrm{a}$, S.A. Cetin ${ }^{12 b}$, A. Chafaq ${ }^{35 \mathrm{a}}$, D. Chakraborty ${ }^{121}$, S.K. Chan ${ }^{59}$, W.S. Chan ${ }^{120}$, W.Y. Chan ${ }^{90}$, J.D. Chapman ${ }^{32}$, B. Chargeishvili ${ }^{159 b}$, D.G. Charlton ${ }^{21}$, C.C. Chau ${ }^{34}$, C.A. Chavez Barajas ${ }^{156}$, S. Che ${ }^{126}$, A. Chegwidden ${ }^{106}$, S. Chekanov ${ }^{6}$, S.V. Chekulaev ${ }^{168 a}$, G.A. Chelkov ${ }^{79, \mathrm{au}}$, M.A. Chelstowska ${ }^{36}$, B. Chen ${ }^{78}$, C. Chen ${ }^{60 \mathrm{a}}$, C.H. Chen ${ }^{78}$, H. Chen ${ }^{29}$, J. Chen ${ }^{60 \mathrm{a}}$, J. Chen ${ }^{39}$, S. Chen ${ }^{137}$, S.J. Chen ${ }^{15 c}$, X. Chen ${ }^{15 b, a t}$, Y. Chen ${ }^{82}$, Y-H. Chen ${ }^{46}$, H.C. Cheng ${ }^{63 a}$, H.J. Cheng ${ }^{15 a, 15 d}$, A. Cheplakov ${ }^{79}$, E. Cheremushkina ${ }^{123}$,
R. Cherkaoui El Moursli ${ }^{35 e}$, E. Cheu ${ }^{7}$, K. Cheung ${ }^{64}$, T.J.A. Chevalérias ${ }^{145}$, L. Chevalier ${ }^{145}$, V. Chiarella ${ }^{51}$, G. Chiarelli ${ }^{71 \mathrm{a}}$, G. Chiodini ${ }^{67 \mathrm{a}}$, A.S. Chisholm ${ }^{36,21}$, A. Chitan ${ }^{27 \mathrm{~b}}$, I. Chiu ${ }^{163}$, Y.H. Chiu ${ }^{176}$, M.V. Chizhov ${ }^{79}$, K. Choi ${ }^{65}$, A.R. Chomont ${ }^{132}$, S. Chouridou ${ }^{162}$, Y.S. Chow ${ }^{120}$, M.C. Chu ${ }^{63 a}$, J. Chudoba ${ }^{141}$, A.J. Chuinard ${ }^{103}$, J.J. Chwastowski ${ }^{84}$, L. Chytka ${ }^{130}$, D. Cinca ${ }^{47}$, V. Cindro ${ }^{91}$, I.A. Cioară ${ }^{27 b}$, A. Ciocio ${ }^{18}$, F. Cirotto ${ }^{69 a, 69 b}$, Z.H. Citron ${ }^{180}$, M. Citterio ${ }^{68 a}$, B.M. Ciungu ${ }^{167}$, A. Clark ${ }^{54}$, M.R. Clark ${ }^{39}$, P.J. Clark ${ }^{50}$, C. Clement ${ }^{45 a, 45 \mathrm{~b}}$, Y. Coadou ${ }^{101}$, M. Cobal ${ }^{66 \mathrm{a}, 66 \mathrm{c}}$, A. Coccaro ${ }^{55 \mathrm{~b}}$, J. Cochran ${ }^{78}$, H. Cohen ${ }^{161}$, A.E.C. Coimbra ${ }^{180}$, L. Colasurdo ${ }^{119}$,
B. Cole ${ }^{39}$, A.P. Colijn ${ }^{120}$, J. Collot ${ }^{58}$, P. Conde Muiño ${ }^{140 a, f}$, E. Coniavitis ${ }^{52}$, S.H. Connell ${ }^{33 b}$, I.A. Connelly ${ }^{57}$, S. Constantinescu ${ }^{27 b}$, F. Conventi ${ }^{69 a, a w}$, A.M. Cooper-Sarkar ${ }^{135}$, F. Cormier ${ }^{175}$, K.J.R. Cormier ${ }^{167}$, L.D. Corpe ${ }^{94}$, M. Corradi ${ }^{72 a, 72 b}$, E.E. Corrigan ${ }^{96}$, F. Corriveau ${ }^{103, a c}$, A. Cortes-Gonzalez ${ }^{36}$, M.J. Costa ${ }^{174}$, F. Costanza ${ }^{5}$, D. Costanzo ${ }^{149}$, G. Cowan ${ }^{93}$, J.W. Cowley ${ }^{32}$, J. Crane ${ }^{100}$, K. Cranmer ${ }^{124}$, S.J. Crawley ${ }^{57}$, R.A. Creager ${ }^{137}$, S. Crépé-Renaudin ${ }^{58}$, F. Crescioli ${ }^{136}$, M. Cristinziani ${ }^{24}$, V. Croft ${ }^{120}$, G. Crosetti ${ }^{41 b, 41 a}$, A. Cueto ${ }^{5}$, T. Cuhadar Donszelmann ${ }^{149}$, A.R. Cukierman ${ }^{153}$, S. Czekierda ${ }^{84}$, P. Czodrowski ${ }^{36}$, M.J. Da Cunha Sargedas De Sousa ${ }^{60 \mathrm{~b}}$, J.V. Da Fonseca Pinto ${ }^{80 \mathrm{~b}}$, C. Da Via ${ }^{100}$, W. Dabrowski ${ }^{83 a}$, T. Dado ${ }^{28 a}$, S. Dahbi ${ }^{35 e}$, T. Dai ${ }^{105}$, C. Dallapiccola ${ }^{102}$, M. Dam ${ }^{40}$, G. D'amen ${ }^{23 b, 23 a}$, J. Damp ${ }^{99}$, J.R. Dandoy ${ }^{137}$, M.F. Daneri ${ }^{30}$, N.P. Dang ${ }^{181}$, N.D Dann ${ }^{100}$, M. Danninger ${ }^{175}$, V. Dao ${ }^{36}$, G. Darbo ${ }^{55 \mathrm{~b}}$, O. Dartsi ${ }^{5}$, A. Dattagupta ${ }^{131}$, T. Daubney ${ }^{46}$, S. D'Auria ${ }^{68 \mathrm{a}, 68 \mathrm{~b}}$, W. Davey ${ }^{24}$, C. David ${ }^{46}$, T. Davidek ${ }^{143}$, D.R. Davis ${ }^{49}$, E. Dawe ${ }^{104}$, I. Dawson ${ }^{149}$, K. De ${ }^{8}$, R. De Asmundis ${ }^{69 a}$, A. De Benedetti ${ }^{128}$, M. De Beurs ${ }^{120}$, S. De Castro ${ }^{23 b, 23 a}$, S. De Cecco ${ }^{72 a, 72 b}$, N. De Groot ${ }^{119}$, P. de Jong ${ }^{120}$, H. De la Torre ${ }^{106}$, A. De Maria ${ }^{15 \mathrm{c}}$, D. De Pedis ${ }^{72 \mathrm{a}}$, A. De Salvo ${ }^{72 \mathrm{a}}$, U. De Sanctis ${ }^{73 a, 73 b}$, M. De Santis ${ }^{73 a, 73 b}$, A. De Santo ${ }^{156}$, K. De Vasconcelos Corga ${ }^{101}$, J.B. De Vivie De Regie ${ }^{132}$, C. Debenedetti ${ }^{146}$, D.V. Dedovich ${ }^{79}$, A.M. Deiana ${ }^{42}$, M. Del Gaudio ${ }^{41 \mathrm{~b}, 41 \mathrm{a}}$, J. Del Peso ${ }^{98}$, Y. Delabat Diaz ${ }^{46}$, D. Delgove ${ }^{132}$, F. Deliot ${ }^{145}$, C.M. Delitzsch ${ }^{7}$, M. Della Pietra ${ }^{69 a, 69 b}$, D. Della Volpe ${ }^{54}$, A. Dell'Acqua ${ }^{36}$, L. Dell'Asta ${ }^{25}$, M. Delmastro ${ }^{5}$, C. Delporte ${ }^{132}$, P.A. Delsart ${ }^{58}$, D.A. DeMarco ${ }^{167}$, S. Demers ${ }^{183}$, M. Demichev ${ }^{79}$, G. Demontigny ${ }^{109}$, S.P. Denisov ${ }^{123}$, D. Denysiuk ${ }^{120}$, L. D'Eramo ${ }^{136}$, D. Derendarz ${ }^{84}$, J.E. Derkaoui ${ }^{35 d}$, F. Derue ${ }^{136}$, P. Dervan ${ }^{90}$, K. Desch ${ }^{24}$, C. Deterre ${ }^{46}$, K. Dette ${ }^{167}$, M.R. Devesa ${ }^{30}$, P.O. Deviveiros ${ }^{36}$, A. Dewhurst ${ }^{144}$, S. Dhaliwal ${ }^{26}$, F.A. Di Bello ${ }^{54}$, A. Di Ciaccio ${ }^{73 a, 73 b}$, L. Di Ciaccio ${ }^{5}$, W.K. Di Clemente ${ }^{137}$, C. Di Donato ${ }^{69 a, 69 b}$, A. Di Girolamo ${ }^{36}$, G. Di Gregorio ${ }^{71 \mathrm{a}, 71 \mathrm{~b}}$, B. Di Micco ${ }^{74 \mathrm{a}, 74 \mathrm{~b}}$, R. Di Nardo ${ }^{102}$, K.F. Di Petrillo ${ }^{59}$, R. Di Sipio ${ }^{167}$, D. Di Valentino ${ }^{34}$, C. Diaconu ${ }^{101}$, F.A. Dias ${ }^{40}$, T. Dias Do Vale ${ }^{140 a, 140 e}$, M.A. Diaz ${ }^{147 a}$, J. Dickinson ${ }^{18}$, E.B. Diehl ${ }^{105}$, J. Dietrich ${ }^{19}$, S. Díez Cornell ${ }^{46}$, A. Dimitrievska ${ }^{18}$, W. Ding ${ }^{15 b}$, J. Dingfelder ${ }^{24}$, F. Dittus ${ }^{36}$, F. Djama ${ }^{101}$, T. Djobava ${ }^{159 b}$, J.I. Djuvsland ${ }^{17}$, M.A.B. Do Vale ${ }^{80 c}$, M. Dobre ${ }^{27 \mathrm{~b}}$, D. Dodsworth ${ }^{26}$, C. Doglioni ${ }^{96}$, J. Dolejsi ${ }^{143}$, Z. Dolezal ${ }^{143}$, M. Donadelli ${ }^{80 \mathrm{~d}}$, J. Donini ${ }^{38}$, A. D'onofrio ${ }^{92}$, M. D'Onofrio ${ }^{90}$, J. Dopke ${ }^{144}$, A. Doria ${ }^{69 a}$, M.T. Dova ${ }^{88}$, A.T. Doyle ${ }^{57}$, E. Drechsler ${ }^{152}$, E. Dreyer ${ }^{152}$, T. Dreyer ${ }^{53}$, Y. Du ${ }^{60 \mathrm{~b}}$, Y. Duan ${ }^{60 \mathrm{~b}}$, F. Dubinin ${ }^{110}$, M. Dubovsky ${ }^{28 a}$, A. Dubreuil ${ }^{54}$, E. Duchovni ${ }^{180}$, G. Duckeck ${ }^{114}$, A. Ducourthial ${ }^{136}$, O.A. Ducu ${ }^{109, w}$, D. Duda ${ }^{115}$, A. Dudarev ${ }^{36}$, A.C. Dudder ${ }^{99}$, E.M. Duffield ${ }^{18}$, L. Duflot ${ }^{132}$, M. Dührssen ${ }^{36}$, C. Dülsen ${ }^{182}$, M. Dumancic ${ }^{180}$, A.E. Dumitriu ${ }^{27 b}$, A.K. Duncan ${ }^{57}$, M. Dunford ${ }^{61 a}$, A. Duperrin ${ }^{101}$, H. Duran Yildiz ${ }^{4 \mathrm{a}}$, M. Düren ${ }^{56}$, A. Durglishvili ${ }^{159 \mathrm{~b}}$, D. Duschinger ${ }^{48}$, B. Dutta ${ }^{46}$, D. Duvnjak ${ }^{1}$, G.I. Dyckes ${ }^{137}$, M. Dyndal ${ }^{46}$, S. Dysch ${ }^{100}$, B.S. Dziedzic ${ }^{84}$, K.M. Ecker ${ }^{115}$, R.C. Edgar ${ }^{105}$, T. Eifert ${ }^{36}$, G. Eigen ${ }^{17}$, K. Einsweiler ${ }^{18}$, T. Ekelof ${ }^{172}$, M. El Kacimi ${ }^{35 c}$, R. El Kosseifi ${ }^{101}$, V. Ellajosyula ${ }^{172}$, M. Ellert ${ }^{172}$, F. Ellinghaus ${ }^{182}$, A.A. Elliot ${ }^{92}$, N. Ellis ${ }^{36}$, J. Elmsheuser ${ }^{29}$, M. Elsing ${ }^{36}$, D. Emeliyanov ${ }^{144}$, A. Emerman ${ }^{39}$, Y. Enari ${ }^{163}$, J.S. Ennis ${ }^{178}$, M.B. Epland ${ }^{49}$, J. Erdmann ${ }^{47}$, A. Ereditato ${ }^{20}$, M. Escalier ${ }^{132}$, C. Escobar ${ }^{174}$, O. Estrada Pastor ${ }^{174}$, A.I. Etienvre ${ }^{145}$, E. Etzion ${ }^{161}$, H. Evans ${ }^{65}$, A. Ezhilov ${ }^{138}$, M. Ezzi ${ }^{35 e}$, F. Fabbri ${ }^{57}$, L. Fabbri ${ }^{23 b}, 23 a$, V. Fabiani ${ }^{119}$, G. Facini ${ }^{94}$, R.M. Faisca Rodrigues Pereira ${ }^{140 a}$, R.M. Fakhrutdinov ${ }^{123}$, S. Falciano ${ }^{72 a}$, P.J. Falke ${ }^{5}$, S. Falke ${ }^{5}$, J. Faltova ${ }^{143}$, Y. Fang ${ }^{15 a}$, Y. Fang ${ }^{15 \mathrm{a}}$, G. Fanourakis ${ }^{44}$, M. Fanti ${ }^{68 \mathrm{a}, 68 \mathrm{~b}}$, A. Farbin ${ }^{8}$, A. Farilla ${ }^{74 \mathrm{a}}$, E.M. Farina ${ }^{70 \mathrm{a}}$, 70 b , T. Farooque ${ }^{106}$, S. Farrell ${ }^{18}$, S.M. Farrington ${ }^{178}$, P. Farthouat ${ }^{36}$, F. Fassi ${ }^{35 e}$, P. Fassnacht ${ }^{36}$, D. Fassouliotis ${ }^{9}$, M. Faucci Giannelli ${ }^{50}$, W.J. Fawcett ${ }^{32}$, L. Fayard ${ }^{132}$, O.L. Fedin ${ }^{138, \mathrm{o}}$, W. Fedorko ${ }^{175}$, M. Feickert ${ }^{42}$, S. Feigl ${ }^{134}$, L. Feligioni ${ }^{101}$, A. Fell ${ }^{149}$, C. Feng ${ }^{60 b}$, E.J. Feng ${ }^{36}$, M. Feng ${ }^{49}$, M.J. Fenton ${ }^{57}$, A.B. Fenyuk ${ }^{123}$, J. Ferrando ${ }^{46}$, A. Ferrari ${ }^{172}$, P. Ferrari ${ }^{120}$, R. Ferrari ${ }^{70 a}$, D.E. Ferreira de Lima ${ }^{61 b}$, A. Ferrer ${ }^{174}$, D. Ferrere ${ }^{54}$, C. Ferretti ${ }^{105}$, F. Fiedler ${ }^{99}$,
A. Filipčič ${ }^{91}$, F. Filthaut ${ }^{119}$, K.D. Finelli ${ }^{25}$, M.C.N. Fiolhais ${ }^{140 a}$, L. Fiorini ${ }^{174}$, C. Fischer ${ }^{14}$, F. Fischer ${ }^{114}$, W.C. Fisher ${ }^{106}$, I. Fleck ${ }^{151}$, P. Fleischmann ${ }^{105}$, R.R.M. Fletcher ${ }^{137}$, T. Flick ${ }^{182}$, B.M. Flierl ${ }^{114}$, L.F. Flores ${ }^{137}$, L.R. Flores Castillo ${ }^{63 a}$, F.M. Follega ${ }^{75 a, 75 b}$, N. Fomin ${ }^{17}$, G.T. Forcolin ${ }^{75 \mathrm{a}, 75 \mathrm{~b}}$, A. Formica ${ }^{145}$, F.A. Förster ${ }^{14}$, A.C. Forti ${ }^{100}$, A.G. Foster ${ }^{21}$, D. Fournier ${ }^{132}$, H. Fox ${ }^{89}$, S. Fracchia ${ }^{149}$, P. Francavilla ${ }^{71 \mathrm{a}, 71 \mathrm{~b}}$, M. Franchini ${ }^{23 b, 23 a}$, S. Franchino ${ }^{61 \mathrm{a}}$, D. Francis ${ }^{36}$, L. Franconi ${ }^{20}$, M. Franklin ${ }^{59}$, M. Frate ${ }^{171}$, A.N. Fray ${ }^{92}$, B. Freund ${ }^{109}$, W.S. Freund ${ }^{80 b}$, E.M. Freundlich ${ }^{47}$, D.C. Frizzell ${ }^{128}$, D. Froidevaux ${ }^{36}$, J.A. Frost ${ }^{135}$, C. Fukunaga ${ }^{164}$, E. Fullana Torregrosa ${ }^{174}$, E. Fumagalli ${ }^{55 b, 55 a}$, T. Fusayasu ${ }^{116}$, J. Fuster ${ }^{174}$, A. Gabrielli ${ }^{23 b, 23 a}$, A. Gabrielli ${ }^{18}$, G.P. Gach ${ }^{83 a}$, S. Gadatsch ${ }^{54}$, P. Gadow ${ }^{115}$, G. Gagliardi ${ }^{55 b, 55 a}$, L.G. Gagnon ${ }^{109}$, C. Galea ${ }^{27 \mathrm{~b}}$, B. Galhardo ${ }^{140 \mathrm{a}, 140 \mathrm{c}}$, E.J. Gallas ${ }^{135}$, B.J. Gallop ${ }^{144}$, P. Gallus ${ }^{142}$, G. Galster ${ }^{40}$, R. Gamboa Goni ${ }^{92}$, K.K. Gan ${ }^{126}$, S. Ganguly ${ }^{180}$, J. Gao ${ }^{60 \text { a }}$, Y. Gao ${ }^{90}$, Y.S. Gao ${ }^{31,1}$, C. García ${ }^{174}$, J.E. García Navarro ${ }^{174}$, J.A. García Pascual ${ }^{15 a}$, C. Garcia-Argos ${ }^{52}$, M. Garcia-Sciveres ${ }^{18}$, R.W. Gardner ${ }^{37}$, N. Garelli ${ }^{153}$, S. Gargiulo ${ }^{52}$, V. Garonne ${ }^{134}$, A. Gaudiello ${ }^{55 b, 55 a}$, G. Gaudio ${ }^{70 a}$, I.L. Gavrilenko ${ }^{110}$, A. Gavrilyuk ${ }^{111}$, C. Gay ${ }^{175}$, G. Gaycken ${ }^{24}$, E.N. Gazis ${ }^{10}$, C.N.P. Gee ${ }^{144}$, J. Geisen ${ }^{53}$, M. Geisen ${ }^{99}$, M.P. Geisler ${ }^{61 \mathrm{a}}$, C. Gemme ${ }^{55 \mathrm{~b}}$, M.H. Genest ${ }^{58}$, C. Geng ${ }^{105}$, S. Gentile ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, S. George ${ }^{93}$, T. Geralis ${ }^{44}$, D. Gerbaudo ${ }^{14}$, L.O. Gerlach ${ }^{53}$, G. Gessner ${ }^{47}$, S. Ghasemi ${ }^{151}$, M. Ghasemi Bostanabad ${ }^{176}$, M. Ghneimat ${ }^{24}$, A. Ghosh ${ }^{77}$, B. Giacobbe ${ }^{23 b}$, S. Giagu ${ }^{72 a, 72 b}$, N. Giangiacomi ${ }^{23 b, 23 a}$, P. Giannetti ${ }^{71 a}$, A. Giannini ${ }^{69 a, 69 b}$, S.M. Gibson ${ }^{93}$, M. Gignac ${ }^{146}$, D. Gillberg ${ }^{34}$, G. Gilles ${ }^{182}$, D.M. Gingrich ${ }^{3, a v}$, M.P. Giordani ${ }^{66 a, 66 c}$, F.M. Giorgi ${ }^{23 b}$, P.F. Giraud ${ }^{145}$, G. Giugliarelli ${ }^{66 a, 66 c}$, D. Giugni ${ }^{68 \mathrm{a}}$, F. Giuli ${ }^{135}$, M. Giulini ${ }^{61 \mathrm{~b}}$, S. Gkaitatzis ${ }^{162}$, I. Gkialas ${ }^{9, h}$, E.L. Gkougkousis ${ }^{14}$, P. Gkountoumis ${ }^{10}$, L.K. Gladilin ${ }^{113}$, C. Glasman ${ }^{98}$, J. Glatzer ${ }^{14}$, P.C.F. Glaysher ${ }^{46}$, A. Glazov ${ }^{46}$, M. Goblirsch-Kolb ${ }^{26}$, S. Goldfarb ${ }^{104}$, T. Golling ${ }^{54}$, D. Golubkov ${ }^{123}$, A. Gomes ${ }^{140 \mathrm{a}, 140 \mathrm{~b}}$, R. Goncalves Gama ${ }^{53}$, R. Gonçalo ${ }^{140 \mathrm{a}, 140 \mathrm{~b}}$, G. Gonella ${ }^{52}$, L. Gonella ${ }^{21}$, A. Gongadze ${ }^{79}$, F. Gonnella ${ }^{21}$, J.L. Gonski ${ }^{59}$, S. González de la Hoz^{174}, S. Gonzalez-Sevilla ${ }^{54}$, G.R. Gonzalvo Rodriguez ${ }^{174}$, L. Goossens ${ }^{36}$, P.A. Gorbounov ${ }^{111}$, H.A. Gordon ${ }^{29}$, B. Gorini ${ }^{36}$, E. Gorini ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$, A. Gorišek ${ }^{91}$, A.T. Goshaw ${ }^{49}$, C. Gössling ${ }^{47}$, M.I. Gostkin ${ }^{79}$, C.A. Gottardo ${ }^{24}$, C.R. Goudet ${ }^{132}$, D. Goujdami ${ }^{35 c}$, A.G. Goussiou ${ }^{148}$, N. Govender ${ }^{33 \mathrm{~b}, \mathrm{a}}$, C. Goy ${ }^{5}$, E. Gozani ${ }^{160}$, I. Grabowska-Bold ${ }^{83 a}$, P.O.J. Gradin ${ }^{172}$, E.C. Graham ${ }^{90}$, J. Gramling ${ }^{171}$, E. Gramstad ${ }^{134}$, S. Grancagnolo ${ }^{19}$, M. Grandi ${ }^{156}$, V. Gratchev ${ }^{138}$, P.M. Gravila ${ }^{27 f}$, F.G. Gravili ${ }^{67 a, 67 b}$, C. Gray ${ }^{57}$, H.M. Gray ${ }^{18}$, C. Grefe ${ }^{24}$, K. Gregersen ${ }^{96}$, I.M. Gregor ${ }^{46}$, P. Grenier ${ }^{153}$, K. Grevtsov ${ }^{46}$, N.A. Grieser ${ }^{128}$, J. Griffiths ${ }^{8}$, A.A. Grillo ${ }^{146}$, K. Grimm ${ }^{31, \mathrm{k}}$, S. Grinstein ${ }^{14, \mathrm{x}}$, J.-F. Grivaz ${ }^{132}$, S. Groh ${ }^{99}$, E. Gross ${ }^{180}$, J. Grosse-Knetter ${ }^{53}$, Z.J. Grout ${ }^{94}$, C. Grud ${ }^{105}$, A. Grummer ${ }^{118}$, L. Guan ${ }^{105}$, W. Guan ${ }^{181}$, J. Guenther ${ }^{36}$, A. Guerguichon ${ }^{132}$, F. Guescini ${ }^{168 a}$, D. Guest ${ }^{171}$, R. Gugel ${ }^{52}$, B. Gui ${ }^{126}$, T. Guillemin ${ }^{5}$, S. Guindon ${ }^{36}$, U. Gul ${ }^{57}$, J. Guo ${ }^{60 \mathrm{c}}$, W. Guo ${ }^{105}$, Y. Guo ${ }^{60 \mathrm{a}, \mathrm{r}}$, Z. Guo ${ }^{101}$, R. Gupta ${ }^{46}$, S. Gurbuz ${ }^{12 \mathrm{c}}$, G. Gustavino ${ }^{128}$, P. Gutierrez ${ }^{128}$, C. Gutschow ${ }^{94}$, C. Guyot ${ }^{145}$, M.P. Guzik ${ }^{83 a}$, C. Gwenlan ${ }^{135}$, C.B. Gwilliam ${ }^{90}$, A. Haas ${ }^{124}$, C. Haber ${ }^{18}$, H.K. Hadavand ${ }^{8}$, N. Haddad ${ }^{35 e}$, A. Hadef ${ }^{60 a}$, S. Hageböck ${ }^{36}$, M. Hagihara ${ }^{169}$, M. Haleem ${ }^{177}$, J. Haley ${ }^{129}$, G. Halladjian ${ }^{106}$, G.D. Hallewell ${ }^{101}$, K. Hamacher ${ }^{182}$, P. Hamal ${ }^{130}$, K. Hamano ${ }^{176}$, H. Hamdaoui ${ }^{35 \mathrm{e}}$, G.N. Hamity ${ }^{149}$, K. Han ${ }^{60 a \mathrm{aj}}$, L. $\operatorname{Han}^{60 a}$, S. Han ${ }^{15 a, 15 d}$, K. Hanagaki ${ }^{81, \mathrm{u}}$, M. Hance ${ }^{146}$, D.M. Handl ${ }^{114}$, B. Haney ${ }^{137}$, R. Hankache ${ }^{136}$, P. Hanke ${ }^{61 a}$, E. Hansen ${ }^{96}$, J.B. Hansen ${ }^{40}$, J.D. Hansen ${ }^{40}$, M.C. Hansen ${ }^{24}$, P.H. Hansen ${ }^{40}$, E.C. Hanson ${ }^{100}$, K. Hara ${ }^{169}$, A.S. Hard ${ }^{181}$, T. Harenberg ${ }^{182}$, S. Harkusha ${ }^{107}$, P.F. Harrison ${ }^{178}$, N.M. Hartmann ${ }^{114}$, Y. Hasegawa ${ }^{150}$, A. Hasib ${ }^{50}$, S. Hassani ${ }^{145}$, S. Haug^{20}, R. Hauser ${ }^{106}$, L. Hauswald ${ }^{48}$, L.B. Havener ${ }^{39}$, M. Havranek ${ }^{142}$, C.M. Hawkes ${ }^{21}$, R.J. Hawkings ${ }^{36}$, D. Hayden ${ }^{106}$, C. Hayes ${ }^{155}$, R.L. Hayes ${ }^{175}$, C.P. Hays ${ }^{135}$, J.M. Hays ${ }^{92}$, H.S. Hayward ${ }^{90}$, S.J. Haywood ${ }^{144}$, F. He ${ }^{60 a}$, M.P. Heath ${ }^{50}$, V. Hedberg ${ }^{96}$, L. Heelan ${ }^{8}$, S. Heer ${ }^{24}$, K.K. Heidegger ${ }^{52}$, J. Heilman ${ }^{34}$, S. Heim ${ }^{46}$, T. Heim ${ }^{18}$, B. Heinemann ${ }^{46, a q}$, J.J. Heinrich ${ }^{131}$, L. Heinrich ${ }^{36}$, C. Heinz ${ }^{56}$, J. Hejbal ${ }^{141}$,
L. Helary ${ }^{61 \mathrm{~b}}$, A. Held ${ }^{175}$, S. Hellesund ${ }^{134}$, C.M. Helling ${ }^{146}$, S. Hellman ${ }^{45 a, 45 b}$, C. Helsens ${ }^{36}$, R.C.W. Henderson ${ }^{89}$, Y. Heng ${ }^{181}$, S. Henkelmann ${ }^{175}$, A.M. Henriques Correia ${ }^{36}$, G.H. Herbert ${ }^{19}$, H. Herde ${ }^{26}$, V. Herget ${ }^{177}$, Y. Hernández Jiménez ${ }^{33 c}$, H. Herr ${ }^{99}$, M.G. Herrmann ${ }^{114}$, T. Herrmann ${ }^{48}$, G. Herten ${ }^{52}$, R. Hertenberger ${ }^{114}$, L. Hervas ${ }^{36}$, T.C. Herwig ${ }^{137}$, G.G. Hesketh ${ }^{94}$, N.P. Hessey ${ }^{168 a}$, A. Higashida ${ }^{163}$, S. Higashino ${ }^{81}$, E. Higón-Rodriguez ${ }^{174}$, K. Hildebrand ${ }^{37}$, E. Hill ${ }^{176}$, J.C. Hill ${ }^{32}$, K.K. Hill ${ }^{29}$, K.H. Hiller ${ }^{46}$, S.J. Hillier ${ }^{21}$, M. Hils ${ }^{48}$, I. Hinchliffe ${ }^{18}$, F. Hinterkeuser ${ }^{24}$, M. Hirose ${ }^{133}$, S. Hirose ${ }^{52}$, D. Hirschbuehl ${ }^{182}$, B. Hiti ${ }^{91}$, O. Hladik ${ }^{141}$, D.R. Hlaluku ${ }^{33 \mathrm{c}}$, X. Hoad^{50}, J. Hobbs ${ }^{155}$, N. Hod ${ }^{180}$, M.C. Hodgkinson ${ }^{149}$, A. Hoecker ${ }^{36}$, F. Hoenig ${ }^{114}$, D. Hohn ${ }^{52}$, D. Hohov ${ }^{132}$, T.R. Holmes ${ }^{37}$, M. Holzbock ${ }^{114}$, L.B.A.H Hommels ${ }^{32}$, S. Honda ${ }^{169}$, T. Honda ${ }^{81}$, T.M. Hong ${ }^{139}$, A. Hönle ${ }^{115}$, B.H. Hooberman ${ }^{173}$, W.H. Hopkins ${ }^{6}$, Y. Horii ${ }^{117}$, P. Horn ${ }^{48}$, A.J. Horton ${ }^{152}$, L.A. Horyn ${ }^{37}$, J-Y. Hostachy ${ }^{58}$, A. Hostiuc ${ }^{148}$, S. Hou ${ }^{158}$, A. Hoummada ${ }^{35 a}$, J. Howarth ${ }^{100}$, J. Hoya ${ }^{88}$, M. Hrabovsky ${ }^{130}$, J. Hrdinka ${ }^{76}$, I. Hristova ${ }^{19}$, J. Hrivnac ${ }^{132}$, A. Hrynevich ${ }^{108}$, T. Hryn'ova ${ }^{5}$, P.J. Hsu ${ }^{64}$, S.-C. Hsu ${ }^{148}$, Q. Hu^{29}, S. Hu ${ }^{60 \mathrm{c}}$, Y. Huang ${ }^{15 \mathrm{a}}$, Z. Hubacek ${ }^{142}$, F. Hubaut ${ }^{101}$, M. Huebner ${ }^{24}$, F. Huegging ${ }^{24}$, T.B. Huffman ${ }^{135}$, M. Huhtinen ${ }^{36}$, R.F.H. Hunter ${ }^{34}$, P. Huo ${ }^{155}$, A.M. Hupe ${ }^{34}$, N. Huseynov ${ }^{79, a e}$, J. Huston ${ }^{106}$, J. Huth ${ }^{59}$, R. Hyneman ${ }^{105}$, S. Hyrych ${ }^{28 a}$, G. Iacobucci ${ }^{54}$, G. Iakovidis ${ }^{29}$, I. Ibragimov ${ }^{151}$, L. Iconomidou-Fayard ${ }^{132}$, Z. Idrissi ${ }^{35 e}$, P.I. Iengo ${ }^{36}$, R. Ignazzi 40, O. Igonkina ${ }^{120, z}$, R. Iguchi ${ }^{163}$, T. Iizawa ${ }^{54}$, Y. Ikegami ${ }^{81}$, M. Ikeno ${ }^{81}$, D. Iliadis 162, N. Ilic ${ }^{119}$, F. Iltzsche ${ }^{48}$, G. Introzzi ${ }^{70 a}$, 70 b , M. Iodice ${ }^{74 \mathrm{a}}$, K. Iordanidou ${ }^{39}$, V. Ippolito ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, M.F. Isacson ${ }^{172}$, N. Ishijima ${ }^{133}$, M. Ishino ${ }^{163}$, M. Ishitsuka ${ }^{165}$, W. Islam ${ }^{129}$, C. Issever ${ }^{135}$, S. Istin 160, F. Ito ${ }^{169}$, J.M. Iturbe Ponce ${ }^{63 a}$, R. Iuppa ${ }^{75 a, 75 b}$, A. Ivina ${ }^{180}$, H. Iwasaki ${ }^{81}$, J.M. Izen ${ }^{43}$, V. Izzo ${ }^{69 a}$, P. Jacka ${ }^{141}$, P. Jackson ${ }^{1}$, R.M. Jacobs ${ }^{24}$, V. Jain ${ }^{2}$, G. Jäkel ${ }^{182}$, K.B. Jakobi ${ }^{99}$, K. Jakobs ${ }^{52}$, S. Jakobsen ${ }^{76}$, T. Jakoubek ${ }^{141}$, J. Jamieson ${ }^{57}$, D.O. Jamin ${ }^{129}$, R. Jansky ${ }^{54}$, J. Janssen ${ }^{24}$, M. Janus ${ }^{53}$, P.A. Janus ${ }^{83 a}$, G. Jarlskog ${ }^{96}$, N. Javadov ${ }^{79, a e}$, T. Javůrek ${ }^{36}$, M. Javurkova ${ }^{52}$, F. Jeanneau ${ }^{145}$, L. Jeanty ${ }^{131}$, J. Jejelava ${ }^{159 a, a f}$, A. Jelinskas ${ }^{178}$, P. Jenni ${ }^{52, b}$, J. Jeong ${ }^{46}$, N. Jeong ${ }^{46}$, S. Jézéquel ${ }^{5}$, H. Ji ${ }^{181}$, J. Jia ${ }^{155}$, H. Jiang ${ }^{78}$, Y. Jiang ${ }^{60 a}$, Z. Jiang ${ }^{153, p}$, S. Jiggins ${ }^{52}$, F.A. Jimenez Morales ${ }^{38}$, J. Jimenez Pena ${ }^{174}$, S. Jin ${ }^{15 c}$, A. Jinaru ${ }^{27 \mathrm{~b}}$, O. Jinnouchi ${ }^{165}$, H. Jivan ${ }^{33 c}$, P. Johansson ${ }^{149}$, K.A. Johns ${ }^{7}$, C.A. Johnson ${ }^{65}$, K. Jon-And ${ }^{45 a, 45 b}$, R.W.L. Jones ${ }^{89}$, S.D. Jones ${ }^{156}$, S. Jones ${ }^{7}$, T.J. Jones ${ }^{90}$, J. Jongmanns ${ }^{61 a}$, P.M. Jorge ${ }^{140 a, 140 b}$, J. Jovicevic ${ }^{168 a}$, X. Ju ${ }^{18}$, J.J. Junggeburth ${ }^{115}$, A. Juste Rozas ${ }^{14, \mathrm{x}}$, A. Kaczmarska ${ }^{84}$, M. Kado ${ }^{132}$, H. Kagan ${ }^{126}$, M. Kagan ${ }^{153}$, T. Kaji ${ }^{179}$, E. Kajomovitz ${ }^{160}$, C.W. Kalderon ${ }^{96}$, A. Kaluza ${ }^{99}$, A. Kamenshchikov ${ }^{123}$, L. Kanjir ${ }^{91}$, Y. Kano ${ }^{163}$, V.A. Kantserov ${ }^{112}$, J. Kanzaki ${ }^{81}$, L.S. Kaplan ${ }^{181}$, D. Kar ${ }^{33 \mathrm{c}}$, M.J. Kareem ${ }^{168 \mathrm{~b}}$, E. Karentzos ${ }^{10}$, S.N. Karpov ${ }^{79}$, Z.M. Karpova ${ }^{79}$, V. Kartvelishvili ${ }^{89}$, A.N. Karyukhin ${ }^{123}$, L. Kashif ${ }^{181}$, R.D. Kass ${ }^{126}$, A. Kastanas ${ }^{45 a, 45 b}$, Y. Kataoka ${ }^{163}$, C. Kato ${ }^{60 d, 60 c}$, J. Katzy ${ }^{46}$, K. Kawade ${ }^{82}$, K. Kawagoe ${ }^{87}$, T. Kawaguchi ${ }^{117}$, T. Kawamoto ${ }^{163}$, G. Kawamura ${ }^{53}$, E.F. Kay ${ }^{176}$, V.F. Kazanin ${ }^{122 b, 122 a}$, R. Keeler ${ }^{176}$, R. Kehoe ${ }^{42}$, J.S. Keller ${ }^{34}$, E. Kellermann ${ }^{96}$, J.J. Kempster ${ }^{21}$, J. Kendrick ${ }^{21}$, O. Kepka ${ }^{141}$, S. Kersten ${ }^{182}$, B.P. Kerševan ${ }^{91}$, S. Ketabchi Haghighat ${ }^{167}$, R.A. Keyes ${ }^{103}$, M. Khader ${ }^{173}$, F. Khalil-Zada ${ }^{13}$, A. Khanov ${ }^{129}$, A.G. Kharlamov ${ }^{122 b}, 122 \mathrm{a}$, T. Kharlamova ${ }^{122 \mathrm{~b}, 122 \mathrm{a}}$, E.E. Khoda ${ }^{175}$, A. Khodinov ${ }^{166}$, T.J. Khoo ${ }^{54}$, E. Khramov ${ }^{79}$, J. Khubua ${ }^{159 b}$, S. Kido ${ }^{82}$, M. Kiehn ${ }^{54}$, C.R. Kilby ${ }^{93}$, Y.K. Kim ${ }^{37}$, N. Kimura ${ }^{66 a, 66 c}$, O.M. Kind ${ }^{19}$, B.T. King ${ }^{90, *}$, D. Kirchmeier ${ }^{48}$, J. Kirk ${ }^{144}$, A.E. Kiryunin ${ }^{115}$, T. Kishimoto ${ }^{163}$, V. Kitali ${ }^{46}$, O. Kivernyk ${ }^{5}$, E. Kladiva ${ }^{28 b}$,* , T. Klapdor-Kleingrothaus ${ }^{52}$, M.H. Klein ${ }^{105}$, M. Klein ${ }^{90}$, U. Klein ${ }^{90}$, K. Kleinknecht ${ }^{99}$, P. Klimek ${ }^{121}$, A. Klimentov ${ }^{29}$, T. Klingl ${ }^{24}$, T. Klioutchnikova ${ }^{36}$, F.F. Klitzner ${ }^{114}$, P. Kluit ${ }^{120}$, S. Kluth ${ }^{115}$, E. Kneringer ${ }^{76}$, E.B.F.G. Knoops ${ }^{101}$, A. Knue ${ }^{52}$, D. Kobayashi ${ }^{87}$, T. Kobayashi ${ }^{163}$, M. Kobel ${ }^{48}$, M. Kocian ${ }^{153}$, P. Kodys ${ }^{143}$, P.T. Koenig ${ }^{24}$, T. Koffas ${ }^{34}$, N.M. Köhler ${ }^{115}$, T. Koi ${ }^{153}$, M. Kolb ${ }^{61 \mathrm{~b}}$, I. Koletsou ${ }^{5}$, T. Kondo ${ }^{81}$, N. Kondrashova ${ }^{60 \mathrm{c}}$, K. Köneke ${ }^{52}$, A.C. König ${ }^{119}$, T. Kono ${ }^{125}$, R. Konoplich ${ }^{124, a m}$, V. Konstantinides ${ }^{94}$, N. Konstantinidis ${ }^{94}$, B. Konya ${ }^{96}$, R. Kopeliansky ${ }^{65}$, S. Koperny ${ }^{83 a}$,
K. Korcyl ${ }^{84}$, K. Kordas ${ }^{162}$, G. Koren ${ }^{161}$, A. Korn ${ }^{94}$, I. Korolkov ${ }^{14}$, E.V. Korolkova ${ }^{149}$, N. Korotkova ${ }^{113}$, O. Kortner ${ }^{115}$, S. Kortner ${ }^{115}$, T. Kosek ${ }^{143}$, V.V. Kostyukhin ${ }^{24}$, A. Kotwal ${ }^{49}$, A. Koulouris ${ }^{10}$, A. Kourkoumeli-Charalampidi ${ }^{70 a}, 70 \mathrm{~b}$, C. Kourkoumelis ${ }^{9}$, E. Kourlitis ${ }^{149}$, V. Kouskoura ${ }^{29}$, A.B. Kowalewska ${ }^{84}$, R. Kowalewski ${ }^{176}$, C. Kozakai ${ }^{163}$, W. Kozanecki ${ }^{145}$, A.S. Kozhin ${ }^{123}$, V.A. Kramarenko ${ }^{113}$, G. Kramberger ${ }^{91}$, D. Krasnopevtsev ${ }^{60 a}$, M.W. Krasny ${ }^{136}$, A. Krasznahorkay ${ }^{36}$, D. Krauss ${ }^{115}$, J.A. Kremer ${ }^{83 a}$, J. Kretzschmar ${ }^{90}$, P. Krieger ${ }^{167}$, A. Krishnan ${ }^{61 b}$, K. Krizka ${ }^{18}$, K. Kroeninger ${ }^{47}$, H. Kroha ${ }^{115}$, J. Kroll ${ }^{141}$, J. Kroll ${ }^{137}$, J. Krstic ${ }^{16}$, U. Kruchonak ${ }^{79}$, H. Krüger ${ }^{24}$, N. Krumnack ${ }^{78}$, M.C. Kruse ${ }^{49}$, T. Kubota ${ }^{104}$, S. Kuday ${ }^{4 b}$, J.T. Kuechler ${ }^{46}$, S. Kuehn ${ }^{36}$, A. Kugel ${ }^{61 a}$, T. Kuhl ${ }^{46}$, V. Kukhtin ${ }^{79}$, R. Kukla ${ }^{101}$, Y. Kulchitsky ${ }^{107, \text { ai }}$, S. Kuleshov ${ }^{147 \mathrm{~b}}$, Y.P. Kulinich ${ }^{173}$, M. Kuna ${ }^{58}$, T. Kunigo ${ }^{85}$, A. Kupco ${ }^{141}$, T. Kupfer ${ }^{47}$, O. Kuprash ${ }^{52}$, H. Kurashige ${ }^{82}$, L.L. Kurchaninov ${ }^{168 a}$, Y.A. Kurochkin ${ }^{107}$, A. Kurova ${ }^{112}$, M.G. Kurth ${ }^{15 a, 15 d}$, E.S. Kuwertz ${ }^{36}$, M. Kuze ${ }^{165}$, J. Kvita ${ }^{130}$, T. Kwan ${ }^{103}$, A. La Rosa ${ }^{115}$, J.L. La Rosa Navarro ${ }^{80 \mathrm{~d}}$, L. La Rotonda ${ }^{41 \mathrm{~b}, 41 \mathrm{a}}$, F. La Ruffa ${ }^{41 \mathrm{~b}, 41 \mathrm{a}}$, C. Lacasta ${ }^{174}$, F. Lacava ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, D.P.J. Lack 100, H. Lacker ${ }^{19}$, D. Lacour ${ }^{136}$, E. Ladygin ${ }^{79}$, R. Lafaye ${ }^{5}$, B. Laforge ${ }^{136}$, T. Lagouri ${ }^{33 c}$, S. Lai ${ }^{53}$, S. Lammers ${ }^{65}$, W. Lampl ${ }^{7}$, E. Lançon ${ }^{29}$, U. Landgraf ${ }^{52}$, M.P.J. Landon ${ }^{92}$, M.C. Lanfermann ${ }^{54}$, V.S. Lang ${ }^{46}$, J.C. Lange ${ }^{53}$, R.J. Langenberg ${ }^{36}$, A.J. Lankford ${ }^{171}$, F. Lanni ${ }^{29}$, K. Lantzsch ${ }^{24}$, A. Lanza ${ }^{70 a}$, A. Lapertosa ${ }^{55 b}$ b 55 a , S. Laplace ${ }^{136}$, J.F. Laporte ${ }^{145}$, T. Lari ${ }^{68 \mathrm{a}}$, F. Lasagni Manghi ${ }^{23 \mathrm{~b}, 23 \mathrm{a}}$, M. Lassnig ${ }^{36}$, T.S. Lau ${ }^{63 \mathrm{a}}$, A. Laudrain ${ }^{132}$, A. Laurier ${ }^{34}$, M. Lavorgna ${ }^{69 a, 69 b}$, M. Lazzaroni ${ }^{68 \mathrm{a}, 68 \mathrm{~b}}$, B. Le 104, O. Le Dortz ${ }^{136}$, E. Le Guirriec ${ }^{101}$, M. LeBlanc ${ }^{7}$, T. LeCompte ${ }^{6}$, F. Ledroit-Guillon ${ }^{58}$, C.A. Lee ${ }^{29}$, G.R. Lee ${ }^{147 a}$, L. Lee ${ }^{59}$, S.C. Lee ${ }^{158}$, S.J. Lee ${ }^{34}$, B. Lefebvre ${ }^{168 \mathrm{a}}$, M. Lefebvre ${ }^{176}$, F. Legger ${ }^{114}$, C. Leggett ${ }^{18}$, K. Lehmann ${ }^{152}$, N. Lehmann ${ }^{182}$, G. Lehmann Miotto ${ }^{36}$, W.A. Leight ${ }^{46}$, A. Leisos ${ }^{162, v}$, M.A.L. Leite ${ }^{80 d}$, R. Leitner ${ }^{143}$, D. Lellouch ${ }^{180, *}$, K.J.C. Leney ${ }^{42}$, T. Lenz ${ }^{24}$, B. Lenzi ${ }^{36}$, R. Leone ${ }^{7}$, S. Leone ${ }^{71 a}$, C. Leonidopoulos ${ }^{50}$, A. Leopold ${ }^{136}$, G. Lerner ${ }^{156}$, C. Leroy ${ }^{109}$, R. Les ${ }^{167}$, C.G. Lester ${ }^{32}$, M. Levchenko ${ }^{138}$, J. Levêque ${ }^{5}$, D. Levin ${ }^{105}$, L.J. Levinson ${ }^{180}$, D.J. Lewis ${ }^{21}$, B. $\mathrm{Li}^{15 \mathrm{~b}}, \mathrm{~B} . \mathrm{Li}^{105}, \mathrm{C}-\mathrm{Q} . \mathrm{Li}^{60 \mathrm{a}, \mathrm{al}}, \mathrm{F} . \mathrm{Li}^{60 \mathrm{c}}, \mathrm{H} . \mathrm{Li}^{60 \mathrm{a}}, \mathrm{H} . \mathrm{Li}^{60 \mathrm{~b}}, \mathrm{~J}_{\mathrm{Li}}{ }^{60 \mathrm{c}}, \mathrm{K} . \mathrm{Li}^{153}, \mathrm{~L}^{2} \mathrm{Li}^{60 \mathrm{c}}, \mathrm{M} . \mathrm{Li}^{15 \mathrm{a}}$, Q. $\mathrm{Li}^{15 \mathrm{a}, 15 \mathrm{~d}}$, Q.Y. $\mathrm{Li}^{60 \mathrm{a}}, \mathrm{S} . \mathrm{Li}^{60 \mathrm{~d}, 60 \mathrm{c}}, \mathrm{X} . \mathrm{Li}^{46}$, Y. Li^{46}, Z. Liang ${ }^{15 \mathrm{a}}$, B. Liberti ${ }^{73 \mathrm{a}}$, A. Liblong ${ }^{167}$, K. Lie ${ }^{63 c}$, S. Liem ${ }^{120}$, C.Y. Lin 32, K. Lin ${ }^{106}$, T.H. Lin ${ }^{99}$, R.A. Linck ${ }^{65}$, J.H. Lindon ${ }^{21}$, A.L. Lionti ${ }^{54}$, E. Lipeles ${ }^{137}$, A. Lipniacka ${ }^{17}$, M. Lisovyi ${ }^{61 b}$, T.M. Liss ${ }^{173, \text { as }}$, A. Lister ${ }^{175}$, A.M. Litke ${ }^{146}$, J.D. Little ${ }^{8}$, B. Liu ${ }^{78}$, B.L Liu ${ }^{6}$, H.B. Liu^{29}, H. Liu ${ }^{105}$, J.B. Liu ${ }^{60 \mathrm{a}}$, J.K.K. Liu ${ }^{135}$, K. Liu ${ }^{136}$, M. Liu ${ }^{60 \mathrm{a}}$, P. Liu ${ }^{18}$, Y. Liu ${ }^{15 \mathrm{a}, 15 \mathrm{~d}}$, Y.L. Liu ${ }^{105}$, Y.W. Liu ${ }^{60 \mathrm{a}}$, M. Livan ${ }^{70 \mathrm{a}, 70 \mathrm{~b}}$,
A. Lleres ${ }^{58}$, J. Llorente Merino ${ }^{15 \mathrm{a}}$, S.L. Lloyd ${ }^{92}$, C.Y. Lo $^{63 \mathrm{~b}}$, F. Lo Sterzo ${ }^{42}$, E.M. Lobodzinska ${ }^{46}$, P. Loch ${ }^{7}$, S. Loffredo ${ }^{73 a, 73 b}$, T. Lohse ${ }^{19}$, K. Lohwasser ${ }^{149}$, M. Lokajicek ${ }^{141}$, J.D. Long ${ }^{173}$, R.E. Long ${ }^{89}$, L. Longo ${ }^{36}$, K.A. Looper ${ }^{126}$, J.A. Lopez ${ }^{147 \mathrm{~b}}$, I. Lopez Paz ${ }^{100}$, A. Lopez Solis ${ }^{149}$, J. Lorenz ${ }^{114}$, N. Lorenzo Martinez ${ }^{5}$, M. Losada ${ }^{22}$, P.J. Lösel ${ }^{114}$, A. Lösle ${ }^{52}$, X. Lou ${ }^{46}$, X. Lou ${ }^{15 a}$, A. Lounis ${ }^{132}$, J. Love ${ }^{6}$, P.A. Love ${ }^{89}$, J.J. Lozano Bahilo ${ }^{174}$, H. Lu ${ }^{63 a}$, M. Lu ${ }^{60 a}$, Y.J. Lu ${ }^{64}$, H.J. Lubatti ${ }^{148}$, C. Luci ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, A. Lucotte ${ }^{58}$, C. Luedtke ${ }^{52}$, F. Luehring ${ }^{65}$, I. Luise ${ }^{136}$, L. Luminari ${ }^{72 a}$, B. Lund-Jensen ${ }^{154}$, M.S. Lutz ${ }^{102}$, D. Lynn ${ }^{29}$, R. Lysak ${ }^{141}$, E. Lytken ${ }^{96}$, F. Lyu ${ }^{15 a}$, V. Lyubushkin ${ }^{79}$, T. Lyubushkina ${ }^{79}$, H. Ma^{29}, L.L. $\mathrm{Ma}^{60 \mathrm{~b}}$, Y. Ma ${ }^{60 \mathrm{~b}}$, G. Maccarrone ${ }^{51}$, A. Macchiolo ${ }^{115}$, C.M. Macdonald ${ }^{149}$, J. Machado Miguens ${ }^{137,140 \mathrm{~b}}$, D. Madaffari ${ }^{174}$, R. Madar ${ }^{38}$, W.F. Mader ${ }^{48}$, N. Madysa ${ }^{48}$, J. Maeda ${ }^{82}$, K. Maekawa ${ }^{163}$, S. Maeland ${ }^{17}$, T. Maeno ${ }^{29}$, M. Maerker ${ }^{48}$, A.S. Maevskiy ${ }^{113}$, V. Magerl ${ }^{52}$, N. Magini ${ }^{78}$, D.J. Mahon ${ }^{39}$, C. Maidantchik ${ }^{80 \mathrm{~b}}$, T. Maier ${ }^{114}$, A. Maio ${ }^{140 a, 140 b, 140 d}$, O. Majersky ${ }^{28 a}$, S. Majewski ${ }^{131}$, Y. Makida ${ }^{81}$, N. Makovec ${ }^{132}$, B. Malaescu ${ }^{136}$, Pa. Malecki ${ }^{84}$, V.P. Maleev ${ }^{138}$, F. Malek ${ }^{58}$, U. Mallik ${ }^{77}$, D. Malon ${ }^{6}$, C. Malone ${ }^{32}$, S. Maltezos ${ }^{10}$, S. Malyukov ${ }^{36}$, J. Mamuzic ${ }^{174}$, G. Mancini ${ }^{51}$, I. Mandić ${ }^{91}$,
L. Manhaes de Andrade Filho ${ }^{80 a}$, I.M. Maniatis ${ }^{162}$, J. Manjarres Ramos ${ }^{48}$, K.H. Mankinen ${ }^{96}$,
A. Mann ${ }^{114}$, A. Manousos ${ }^{76}$, B. Mansoulie ${ }^{145}$, I. Manthos ${ }^{162}$, S. Manzoni ${ }^{120}$, A. Marantis ${ }^{162}$, G. Marceca ${ }^{30}$, L. Marchese ${ }^{135}$, G. Marchiori ${ }^{136}$, M. Marcisovsky ${ }^{141}$, C. Marcon ${ }^{96}$,
C.A. Marin Tobon ${ }^{36}$, M. Marjanovic ${ }^{38}$, F. Marroquim ${ }^{80 b}$, Z. Marshall ${ }^{18}$, M.U.F Martensson ${ }^{172}$, S. Marti-Garcia ${ }^{174}$, C.B. Martin ${ }^{126}$, T.A. Martin ${ }^{178}$, V.J. Martin ${ }^{50}$, B. Martin dit Latour ${ }^{17}$, M. Martinez ${ }^{14, x}$, V.I. Martinez Outschoorn ${ }^{102}$, S. Martin-Haugh ${ }^{144}$, V.S. Martoiu ${ }^{27 b}$, A.C. Martyniuk ${ }^{94}$, A. Marzin ${ }^{36}$, L. Masetti ${ }^{99}$, T. Mashimo ${ }^{163}$, R. Mashinistov ${ }^{110}$, J. Masik ${ }^{100}$, A.L. Maslennikov ${ }^{122 b, 122 a}$, L.H. Mason ${ }^{104}$, L. Massa ${ }^{73 a, 73 b}$, P. Massarotti ${ }^{69 a, 69 b}$, P. Mastrandrea ${ }^{71 a, 71 b}$, A. Mastroberardino ${ }^{41 \mathrm{~b}, 41 \mathrm{a}}$, T. Masubuchi ${ }^{163}$, A. Matic ${ }^{114}$, P. Mättig ${ }^{24}$, J. Maurer ${ }^{27 \mathrm{~b}}$, B. Maček ${ }^{91}$, S.J. Maxfield ${ }^{90}$, D.A. Maximov ${ }^{122 \mathrm{~b}, 122 \mathrm{a}}$, R. Mazini ${ }^{158}$, I. Maznas ${ }^{162}$, S.M. Mazza ${ }^{146}$, S.P. Mc Kee ${ }^{105}$, T.G. McCarthy ${ }^{115}$, L.I. McClymont ${ }^{94}$, W.P. McCormack ${ }^{18}$, E.F. McDonald ${ }^{104}$, J.A. Mcfayden ${ }^{36}$, M.A. McKay ${ }^{42}$, K.D. McLean ${ }^{176}$, S.J. McMahon ${ }^{144}$, P.C. McNamara ${ }^{104}$, C.J. McNicol ${ }^{178}$, R.A. McPherson ${ }^{176, \mathrm{ac}}$, J.E. Mdhluli ${ }^{33 \mathrm{c}}$, Z.A. Meadows ${ }^{102}$, S. Meehan ${ }^{148}$, T. Megy ${ }^{52}$, S. Mehlhase ${ }^{114}$, A. Mehta ${ }^{90}$, T. Meideck ${ }^{58}$, B. Meirose ${ }^{43}$, D. Melini ${ }^{174}$, B.R. Mellado Garcia ${ }^{33 \mathrm{c}}$, J.D. Mellenthin ${ }^{53}$, M. Melo ${ }^{28 \mathrm{a}}$, F. Meloni ${ }^{46}$, A. Melzer ${ }^{24}$, S.B. Menary ${ }^{100}$, E.D. Mendes Gouveia ${ }^{140 \mathrm{a}, 140 \mathrm{e}}$, L. Meng ${ }^{36}$, X.T. Meng ${ }^{105}$, S. Menke ${ }^{115}$, E. Meoni ${ }^{41 \mathrm{~b}, 41 \mathrm{a}}$, S. Mergelmeyer ${ }^{19}$, S.A.M. Merkt ${ }^{139}$, C. Merlassino ${ }^{20}$, P. Mermod ${ }^{54}$, L. Merola ${ }^{69 a, 69 b}$, C. Meroni ${ }^{68 \mathrm{a}}$, O. Meshkov ${ }^{113}$, J.K.R. Meshreki ${ }^{151}$, A. Messina ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, J. Metcalfe ${ }^{6}$, A.S. Mete ${ }^{171}$, C. Meyer ${ }^{65}$, J. Meyer ${ }^{160}$, J-P. Meyer ${ }^{145}$, H. Meyer Zu Theenhausen ${ }^{61 \mathrm{a}}$, F. Miano ${ }^{156}$, R.P. Middleton ${ }^{144}$, L. Mijović ${ }^{50}$, G. Mikenberg ${ }^{180}$, M. Mikestikova ${ }^{141}$, M. Mikuž ${ }^{91}$, H. Mildner ${ }^{149}$, M. Milesi ${ }^{104}$, A. Milic ${ }^{167}$, D.A. Millar ${ }^{92}$, D.W. Miller ${ }^{37}$, A. Milov ${ }^{180}$, D.A. Milstead ${ }^{45 \mathrm{a}, 45 \mathrm{~b}}$, R.A. Mina ${ }^{153, \mathrm{p}}$, A.A. Minaenko ${ }^{123}$, M. Miñano Moya ${ }^{174}$, I.A. Minashvili ${ }^{159 b}$, A.I. Mincer ${ }^{124}$, B. Mindur ${ }^{83 \mathrm{a}}$, M. Mineev ${ }^{79}$, Y. Minegishi ${ }^{163}$, Y. Ming ${ }^{181}$, L.M. Mir ${ }^{14}$, A. Mirto ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$, K.P. Mistry ${ }^{137}$, T. Mitani ${ }^{179}$, J. Mitrevski ${ }^{114}$, V.A. Mitsou ${ }^{174}$, M. Mittal ${ }^{60 \mathrm{c}}$, A. Miucci ${ }^{20}$, P.S. Miyagawa ${ }^{149}$, A. Mizukami ${ }^{81}$, J.U. Mjörnmark ${ }^{96}$, T. Mkrtchyan ${ }^{184}$, M. Mlynarikova ${ }^{143}$, T. Moa ${ }^{45 \mathrm{a}, 45 \mathrm{~b}}$, K. Mochizuki ${ }^{109}$, P. Mogg ${ }^{52}$, S. Mohapatra ${ }^{39}$, R. Moles-Valls ${ }^{24}$, M.C. Mondragon ${ }^{106}$, K. Mönig ${ }^{46}$, J. Monk ${ }^{40}$, E. Monnier ${ }^{101}$, A. Montalbano ${ }^{152}$, J. Montejo Berlingen ${ }^{36}$, M. Montella ${ }^{94}$, F. Monticelli ${ }^{88}$, S. Monzani ${ }^{68 a}$, N. Morange ${ }^{132}$, D. Moreno ${ }^{22}$, M. Moreno Llácer ${ }^{36}$, P. Morettini ${ }^{55 b}$, M. Morgenstern ${ }^{120}$, S. Morgenstern ${ }^{48}$, D. Mori ${ }^{152}$, M. Morii ${ }^{59}$, M. Morinaga ${ }^{179}$, V. Morisbak ${ }^{134}$, A.K. Morley ${ }^{36}$, G. Mornacchi ${ }^{36}$, A.P. Morris ${ }^{94}$, L. Morvaj ${ }^{155}$, P. Moschovakos ${ }^{10}$, B. Moser ${ }^{120}$, M. Mosidze ${ }^{159 b}$, H.J. Moss ${ }^{149}$, J. Moss ${ }^{31, \mathrm{~m}}$, K. Motohashi ${ }^{165}$, E. Mountricha ${ }^{36}$, E.J.W. Moyse ${ }^{102}$, S. Muanza ${ }^{101}$, F. Mueller ${ }^{115}$, J. Mueller ${ }^{139}$, R.S.P. Mueller ${ }^{114}$, D. Muenstermann ${ }^{89}$, G.A. Mullier ${ }^{96}$, J.L. Munoz Martinez ${ }^{14}$, F.J. Munoz Sanchez ${ }^{100}$, P. Murin ${ }^{28 b}$, W.J. Murray ${ }^{178,144}$, A. Murrone ${ }^{68 \mathrm{a}, 68 \mathrm{~b}}$, M. Muškinja ${ }^{18}$, C. Mwewa ${ }^{33 a}$, A.G. Myagkov ${ }^{123, a n}$, J. Myers ${ }^{131}$, M. Myska ${ }^{142}$, B.P. Nachman ${ }^{18}$, O. Nackenhorst ${ }^{47}$, K. Nagai ${ }^{135}$, K. Nagano ${ }^{81}$, Y. Nagasaka ${ }^{62}$, M. Nagel ${ }^{52}$, E. Nagy ${ }^{101}$, A.M. Nairz ${ }^{36}$, Y. Nakahama ${ }^{117}$, K. Nakamura ${ }^{81}$, T. Nakamura ${ }^{163}$, I. Nakano ${ }^{127}$, H. Nanjo ${ }^{133}$, F. Napolitano ${ }^{61 a}$, R.F. Naranjo Garcia ${ }^{46}$, R. Narayan ${ }^{11}$, D.I. Narrias Villar ${ }^{61 a}$, I. Naryshkin ${ }^{138}$, T. Naumann ${ }^{46}$, G. Navarro ${ }^{22}$, H.A. Neal ${ }^{105, *}$, P.Y. Nechaeva ${ }^{110}$, F. Nechansky ${ }^{46}$, T.J. Neep ${ }^{145}$, A. Negri ${ }^{70 a}{ }^{70 b}$, M. Negrini ${ }^{23 b}$, S. Nektarijevic ${ }^{119}$, C. Nellist ${ }^{53}$, M.E. Nelson ${ }^{135}$, S. Nemecek ${ }^{141}$, P. Nemethy ${ }^{124}$, M. Nessi ${ }^{36, d}$, M.S. Neubauer ${ }^{173}$, M. Neumann ${ }^{182}$, P.R. Newman ${ }^{21}$, T.Y. Ng ${ }^{63 \mathrm{c}}$, Y.S. Ng^{19}, Y.W.Y. Ng^{171}, H.D.N. Nguyen ${ }^{101}$, T. Nguyen Manh ${ }^{109}$, E. Nibigira ${ }^{38}$, R.B. Nickerson ${ }^{135}$, R. Nicolaidou ${ }^{145}$, D.S. Nielsen ${ }^{40}$, J. Nielsen ${ }^{146}$, N. Nikiforou ${ }^{11}$, V. Nikolaenko ${ }^{123, \text { an }}$, I. Nikolic-Audit ${ }^{136}$, K. Nikolopoulos ${ }^{21}$, P. Nilsson ${ }^{29}$, H.R. Nindhito ${ }^{54}$, Y. Ninomiya ${ }^{81}$, A. Nisati ${ }^{72 \mathrm{a}}$, N. Nishu ${ }^{60 \mathrm{c}}$, R. Nisius ${ }^{115}$, I. Nitsche ${ }^{47}$, T. Nitta ${ }^{179}$, T. Nobe ${ }^{163}$, Y. Noguchi ${ }^{85}$, M. Nomachi ${ }^{133}$, I. Nomidis ${ }^{136}$, M.A. Nomura ${ }^{29}$, M. Nordberg ${ }^{36}$, N. Norjoharuddeen ${ }^{135}$, T. Novak ${ }^{91}$, O. Novgorodova ${ }^{48}$, R. Novotny ${ }^{142}$, L. Nozka ${ }^{130}$, K. Ntekas ${ }^{171}$, E. Nurse ${ }^{94}$, F. Nuti ${ }^{104}$, F.G. Oakham ${ }^{34, \text { av }}$, H. Oberlack ${ }^{115}$, J. Ocariz ${ }^{136}$, A. Ochi ${ }^{82}$, I. Ochoa ${ }^{39}$, J.P. Ochoa-Ricoux ${ }^{147 a}$, K. O'Connor ${ }^{26}$, S. Oda ${ }^{87}$, S. Odaka ${ }^{81}$, S. Oerdek ${ }^{53}$, A. Ogrodnik ${ }^{83 a}$, A. Oh^{100}, S.H. Oh ${ }^{49}$, C.C. Ohm^{154}, H. Oide ${ }^{55 \mathrm{~b}, 55 \mathrm{a}}$, M.L. Ojeda ${ }^{167}$, H. Okawa ${ }^{169}$, Y. Okazaki ${ }^{85}$, Y. Okumura ${ }^{163}$, T. Okuyama ${ }^{81}$, A. Olariu ${ }^{27 b}$, L.F. Oleiro Seabra ${ }^{140 \mathrm{a}}$, S.A. Olivares Pino ${ }^{147 a}$,
D. Oliveira Damazio ${ }^{29}$, J.L. Oliver 1, M.J.R. Olsson ${ }^{171}$, A. Olszewski ${ }^{84}$, J. Olszowska ${ }^{84}$, D.C. O’Neil ${ }^{152}$, A. Onofre ${ }^{140 a, 140 e}$, K. Onogi ${ }^{117}$, P.U.E. Onyisi ${ }^{11}$, H. Oppen ${ }^{134}$, M.J. Oreglia ${ }^{37}$, G.E. Orellana ${ }^{88}$, Y. Oren ${ }^{161}$, D. Orestano ${ }^{74 \mathrm{a}, 74 \mathrm{~b}}$, N. Orlando ${ }^{14}$, R.S. Orr ${ }^{167}$, B. Osculat ${ }^{555}{ }^{555 a, *}$, V. O'Shea ${ }^{57}$, R. Ospanov ${ }^{60 \mathrm{a}}$, G. Otero y Garzon ${ }^{30}$, H. Otono ${ }^{87}$, M. Ouchrif ${ }^{35 \mathrm{~d}}$, F. Ould-Saada ${ }^{134}$, A. Ouraou ${ }^{145}$, Q. Ouyang ${ }^{15 a}$, M. Owen ${ }^{57}$, R.E. Owen ${ }^{21}$, V.E. Ozcan ${ }^{12 \mathrm{c}}$, N. Ozturk ${ }^{8}$, J. Pacalt ${ }^{130}$, H.A. Pacey ${ }^{32}$, K. Pachal ${ }^{49}$, A. Pacheco Pages ${ }^{14}$, C. Padilla Aranda ${ }^{14}$, S. Pagan Griso ${ }^{18}$, M. Paganini ${ }^{183}$, G. Palacino ${ }^{65}$, S. Palazzo ${ }^{50}$, S. Palestini ${ }^{36}$, M. Palka ${ }^{83 b}$, D. Pallin ${ }^{38}$, I. Panagoulias ${ }^{10}$, C.E. Pandini ${ }^{36}$, J.G. Panduro Vazquez ${ }^{93}$, P. Pani ${ }^{46}$, G. Panizzo ${ }^{66 a, 66 c}$, L. Paolozzi ${ }^{54}$, C. Papadatos ${ }^{109}$, K. Papageorgiou ${ }^{9, h}$, A. Paramonov ${ }^{6}$, D. Paredes Hernandez ${ }^{63 b}$, S.R. Paredes Saenz ${ }^{135}$, B. Parida ${ }^{166}$, T.H. Park ${ }^{167}$, A.J. Parker ${ }^{89}$, M.A. Parker ${ }^{32}$, F. Parod ${ }^{55 b}$, 55 a , E.W.P. Parrish ${ }^{121}$, J.A. Parsons ${ }^{39}$, U. Parzefall ${ }^{52}$, L. Pascual Dominguez ${ }^{136}$, V.R. Pascuzzi ${ }^{167}$, J.M.P. Pasner ${ }^{146}$, E. Pasqualucci ${ }^{72 a}$, S. Passaggio ${ }^{55 b}$, F. Pastore ${ }^{93}$, P. Pasuwan ${ }^{45 a, 45 b}$, S. Pataraia ${ }^{99}$, J.R. Pater ${ }^{100}$, A. Pathak ${ }^{181}$, T. Pauly ${ }^{36}$, B. Pearson ${ }^{115}$, M. Pedersen ${ }^{134}$, L. Pedraza Diaz ${ }^{119}$, R. Pedro ${ }^{140 a, 140 b}$, S.V. Peleganchuk ${ }^{122 b, 122 a}$, O. Penc ${ }^{141}$, C. Peng ${ }^{15 a}$, H. Peng ${ }^{60 a}$, B.S. Peralva ${ }^{80 a}$, M.M. Perego ${ }^{132}$, A.P. Pereira Peixoto ${ }^{140 a, 140 e}$, D.V. Perepelitsa ${ }^{29}$, F. Peri ${ }^{19}$, L. Perini ${ }^{68 a, 68 b}$, H. Pernegger ${ }^{36}$, S. Perrella ${ }^{69 a, 69 b}$, V.D. Peshekhonov ${ }^{79, *}$, K. Peters ${ }^{46}$, R.F.Y. Peters ${ }^{100}$, B.A. Petersen ${ }^{36}$, T.C. Petersen ${ }^{40}$, E. Petit ${ }^{58}$, A. Petridis ${ }^{1}$, C. Petridou ${ }^{162}$, P. Petroff ${ }^{132}$, M. Petrov ${ }^{135}$, F. Petrucci ${ }^{74 a, 74 b}$, M. Pettee ${ }^{183}$, N.E. Pettersson ${ }^{102}$, K. Petukhova ${ }^{143}$, A. Peyaud ${ }^{145}$, R. Pezoa ${ }^{147 \mathrm{~b}}$, T. Pham ${ }^{104}$, F.H. Phillips ${ }^{106}$, P.W. Phillips ${ }^{144}$, M.W. Phipps ${ }^{173}$, G. Piacquadio ${ }^{155}$, E. Pianori ${ }^{18}$, A. Picazio ${ }^{102}$, R.H. Pickles ${ }^{100}$, R. Piegaia ${ }^{30}$, D. Pietreanu ${ }^{27 b}$, J.E. Pilcher ${ }^{37}$, A.D. Pilkington ${ }^{100}$, M. Pinamonti ${ }^{73 a, 73 b}$, J.L. Pinfold ${ }^{3}$, M. Pitt ${ }^{180}$, L. Pizzimento ${ }^{73 \mathrm{a}, 73 \mathrm{~b}}$, M.-A. Pleier ${ }^{29}$, V. Pleskot ${ }^{143}$, E. Plotnikova ${ }^{79}$, D. Pluth ${ }^{78}$, P. Podberezko ${ }^{122 \mathrm{~b}, 122 \mathrm{a}}$, R. Poettgen ${ }^{96}$, R. Poggi ${ }^{54}$, L. Poggioli ${ }^{132}$, I. Pogrebnyak ${ }^{106}$, D. Pohl ${ }^{24}$, I. Pokharel ${ }^{53}$, G. Polesello ${ }^{70 a}$, A. Poley ${ }^{18}$, A. Policicchio ${ }^{72 a, 72 b}$, R. Polifka ${ }^{36}$, A. Polini ${ }^{23 b}$, C.S. Pollard ${ }^{46}$, V. Polychronakos ${ }^{29}$, D. Ponomarenko ${ }^{112}$, L. Pontecorvo ${ }^{36}$, S. Popa ${ }^{27 a}$, G.A. Popeneciu ${ }^{27 d}$, D.M. Portillo Quintero ${ }^{136}$, S. Pospisil ${ }^{142}$, K. Potamianos ${ }^{46}$, I.N. Potrap ${ }^{79}$, C.J. Potter ${ }^{32}$, H. Potti ${ }^{11}$, T. Poulsen ${ }^{96}$, J. Poveda ${ }^{36}$, T.D. Powell ${ }^{149}$, M.E. Pozo Astigarraga ${ }^{36}$, P. Pralavorio ${ }^{101}$, S. Prell ${ }^{78}$, D. Price ${ }^{100}$, M. Primavera ${ }^{67 a}$, S. Prince ${ }^{103}$, M.L. Proffitt ${ }^{148}$, N. Proklova ${ }^{112}$, K. Prokofiev ${ }^{63 c}$, F. Prokoshin ${ }^{147 \mathrm{~b}}$, S. Protopopescu ${ }^{29}$, J. Proudfoot ${ }^{6}$, M. Przybycien ${ }^{83 a}$, A. Puri ${ }^{173}$, P. Puzo ${ }^{132}$, J. Qian ${ }^{105}$, Y. Qin ${ }^{100}$, A. Quadt ${ }^{53}$, M. Queitsch-Maitland ${ }^{46}$, A. Qureshi ${ }^{1}$, P. Rados ${ }^{104}$, F. Ragusa ${ }^{68 \mathrm{a}, 68 \mathrm{~b}}$, G. Rahal ${ }^{97}$, J.A. Raine ${ }^{54}$, S. Rajagopalan ${ }^{29}$, A. Ramirez Morales ${ }^{92}$, K. Ran ${ }^{15 a, 15 d}$, T. Rashid ${ }^{132}$, S. Raspopov ${ }^{5}$, M.G. Ratti ${ }^{68 a, 68 b}$, D.M. Rauch ${ }^{46}$, F. Rauscher ${ }^{114}$, S. Rave ${ }^{99}$, B. Ravina ${ }^{149}$, I. Ravinovich ${ }^{180}$, J.H. Rawling ${ }^{100}$, M. Raymond ${ }^{36}$, A.L. Read ${ }^{134}$, N.P. Readioff ${ }^{58}$, M. Reale ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$, D.M. Rebuzzi ${ }^{70 a, 70 b}$, A. Redelbach ${ }^{177}$, G. Redlinger ${ }^{29}$, R.G. Reed ${ }^{33 \mathrm{c}}$, K. Reeves ${ }^{43}$, L. Rehnisch ${ }^{19}$, J. Reichert ${ }^{137}$, D. Reikher ${ }^{161}$, A. Reiss ${ }^{99}$, A. Rej ${ }^{151}$, C. Rembser ${ }^{36}$, H. Ren ${ }^{15 a}$, M. Rescigno ${ }^{72 a}$, S. Resconi ${ }^{68 a}$, E.D. Resseguie ${ }^{137}$, S. Rettie ${ }^{175}$, E. Reynolds ${ }^{21}$, O.L. Rezanova ${ }^{122 \mathrm{~b}, 122 \mathrm{a}}$, P. Reznicek ${ }^{143}$, E. Ricci ${ }^{75 a, 75 b}$, R. Richter ${ }^{115}$, S. Richter ${ }^{46}$, E. Richter-Was ${ }^{83 b}$, O. Ricken ${ }^{24}$, M. Ridel ${ }^{136}$, P. Rieck ${ }^{115}$, C.J. Riegel ${ }^{182}$, O. Rifki ${ }^{46}$, M. Rijssenbeek ${ }^{155}$, A. Rimoldi ${ }^{70 a}$, 70 b , M. Rimoldi ${ }^{20}$, L. Rinaldi ${ }^{23 b}$, G. Ripellino ${ }^{154}$, B. Ristić ${ }^{89}$, E. Ritsch ${ }^{36}$, I. Riu ${ }^{14}$, J.C. Rivera Vergara ${ }^{147 a}$, F. Rizatdinova ${ }^{129}$, E. Rizvi ${ }^{92}$, C. Rizzi ${ }^{36}$, R.T. Roberts ${ }^{100}$, S.H. Robertson ${ }^{103, \mathrm{ac}}$, D. Robinson ${ }^{32}$, J.E.M. Robinson ${ }^{46}$, A. Robson ${ }^{57}$, E. Rocco ${ }^{99}$, C. Roda ${ }^{71 a, 71 b}$, Y. Rodina ${ }^{101}$, S. Rodriguez Bosca ${ }^{174}$, A. Rodriguez Perez ${ }^{14}$, D. Rodriguez Rodriguez ${ }^{174}$, A.M. Rodríguez Vera ${ }^{168 \mathrm{~b}}$, S. Roe ${ }^{36}$, O. Røhne ${ }^{134}$, R. Röhrig ${ }^{115}$, C.P.A. Roland ${ }^{65}$, J. Roloff ${ }^{59}$, A. Romaniouk ${ }^{112}$, M. Romano ${ }^{23 \mathrm{~b}, 23 \mathrm{a}}$, N. Rompotis ${ }^{90}$, M. Ronzani ${ }^{124}$, L. Roos ${ }^{136}$, S. Rosati ${ }^{72 \mathrm{a}}$, K. Rosbach ${ }^{52}$, N-A. Rosien ${ }^{53}$, G. Rosin ${ }^{102}$, B.J. Rosser ${ }^{137}$, E. Rossi ${ }^{46}$, E. Rossi ${ }^{74 a, 74 b}$, E. Rossi ${ }^{69 a, 69 b}$, L.P. Rossi ${ }^{55 b}$, L. Rossini ${ }^{68 a, 68 b}$, J.H.N. Rosten ${ }^{32}$, R. Rosten ${ }^{14}$, M. Rotaru ${ }^{27 b}$, J. Rothberg ${ }^{148}$, D. Rousseau ${ }^{132}$, D. Roy ${ }^{33 \mathrm{c}}$, A. Rozanov ${ }^{101}$, Y. Rozen ${ }^{160}$,
X. Ruan ${ }^{33 \mathrm{c}}$, F. Rubbo ${ }^{153}$, F. Rühr ${ }^{52}$, A. Ruiz-Martinez ${ }^{174}$, A. Rummler ${ }^{36}$, Z. Rurikova ${ }^{52}$, N.A. Rusakovich ${ }^{79}$, H.L. Russell ${ }^{103}$, L. Rustige ${ }^{38,47}$, J.P. Rutherfoord ${ }^{7}$, E.M. Rüttinger ${ }^{46, j}$, Y.F. Ryabov ${ }^{138}$, M. Rybar ${ }^{39}$, G. Rybkin ${ }^{132}$, S. Ryu ${ }^{6}$, A. Ryzhov ${ }^{123}$, G.F. Rzehorz ${ }^{53}$, P. Sabatini ${ }^{53}$, G. Sabato ${ }^{120}$, S. Sacerdoti ${ }^{132}$, H.F-W. Sadrozinski ${ }^{146}$, R. Sadykov ${ }^{79}$, F. Safai Tehrani ${ }^{72 a}$, P. Saha ${ }^{121}$, S. Saha ${ }^{103}$, M. Sahinsoy ${ }^{61 a}$, A. Sahu ${ }^{182}$, M. Saimpert ${ }^{46}$, M. Saito ${ }^{163}$, T. Saito ${ }^{163}$, H. Sakamoto ${ }^{163}$, A. Sakharov ${ }^{124, a m}$, D. Salamani ${ }^{54}$, G. Salamanna ${ }^{74 \mathrm{a}, 74 \mathrm{~b}}$, J.E. Salazar Loyola ${ }^{147 b}$, P.H. Sales De Bruin ${ }^{172}$, D. Salihagic ${ }^{115, *}$, A. Salnikov ${ }^{153}$, J. Salt ${ }^{174}$, D. Salvatore ${ }^{41 \mathrm{~b}, 41 \mathrm{a}}$, F. Salvatore ${ }^{156}$, A. Salvucci ${ }^{63 a, 63 b, 63 c}$, A. Salzburger ${ }^{36}$, J. Samarati ${ }^{36}$, D. Sammel ${ }^{52}$, D. Sampsonidis ${ }^{162}$, D. Sampsonidou ${ }^{162}$, J. Sánchez ${ }^{174}$, A. Sanchez Pineda ${ }^{66 a, 66 c}$, H. Sandaker ${ }^{134}$, C.O. Sander ${ }^{46}$, M. Sandhoff ${ }^{182}$, C. Sandoval ${ }^{22}$, D.P.C. Sankey ${ }^{144}$,
M. Sannino ${ }^{55 b, 55 a}$, Y. Sano ${ }^{117}$, A. Sansoni ${ }^{51}$, C. Santoni ${ }^{38}$, H. Santos ${ }^{140 a, 140 b}$, S.N. Santpur ${ }^{18}$,
A. Santra ${ }^{174}$, A. Sapronov ${ }^{79}$, J.G. Saraiva ${ }^{140 a, 140 d}$, O. Sasaki ${ }^{81}$, K. Sato ${ }^{169}$, E. Sauvan ${ }^{5}$,
P. Savard ${ }^{167, \text { av }}$, N. Savic ${ }^{115}$, R. Sawada ${ }^{163}$, C. Sawyer ${ }^{144}$, L. Sawyer ${ }^{95, \text { ak }}$, C. Sbarra ${ }^{23 b}$,
A. Sbrizzi ${ }^{23 a}$, T. Scanlon ${ }^{94}$, J. Schaarschmidt ${ }^{148}$, P. Schacht ${ }^{115}$, B.M. Schachtner ${ }^{114}$,
D. Schaefer ${ }^{37}$, L. Schaefer ${ }^{137}$, J. Schaeffer ${ }^{99}$, S. Schaepe ${ }^{36}$, U. Schäfer ${ }^{99}$, A.C. Schaffer ${ }^{132}$, D. Schaile ${ }^{114}$, R.D. Schamberger ${ }^{155}$, N. Scharmberg ${ }^{100}$, V.A. Schegelsky ${ }^{138}$, D. Scheirich ${ }^{143}$, F. Schenck ${ }^{19}$, M. Schernau ${ }^{171}$, C. Schiavi ${ }^{55 b, 55 a}$, S. Schier ${ }^{146}$, L.K. Schildgen ${ }^{24}$, Z.M. Schillaci ${ }^{26}$, E.J. Schioppa ${ }^{36}$, M. Schioppa ${ }^{41 \mathrm{~b}, 41 \mathrm{a}}$, K.E. Schleicher ${ }^{52}$, S. Schlenker ${ }^{36}$,
K.R. Schmidt-Sommerfeld ${ }^{115}$, K. Schmieden ${ }^{36}$, C. Schmitt ${ }^{99}$, S. Schmitt ${ }^{46}$, S. Schmitz ${ }^{99}$, J.C. Schmoeckel ${ }^{46}$, U. Schnoor ${ }^{52}$, L. Schoeffel ${ }^{145}$, A. Schoening ${ }^{61 b}$, E. Schopf ${ }^{135}$, M. Schott ${ }^{99}$, J.F.P. Schouwenberg ${ }^{119}$, J. Schovancova ${ }^{36}$, S. Schramm ${ }^{54}$, A. Schulte ${ }^{99}$, H-C. Schultz-Coulon ${ }^{61 a}$, M. Schumacher ${ }^{52}$, B.A. Schumm ${ }^{146}$, Ph. Schune ${ }^{145}$, A. Schwartzman ${ }^{153}$, T.A. Schwarz ${ }^{105}$, Ph. Schwemling ${ }^{145}$, R. Schwienhorst ${ }^{106}$, A. Sciandra ${ }^{24}$, G. Sciolla ${ }^{26}$, M. Scornajenghi ${ }^{41 \mathrm{~b}, 41 \mathrm{a}}$, F. Scuri ${ }^{71 a}$, F. Scutti ${ }^{104}$, L.M. Scyboz ${ }^{115}$, C.D. Sebastiani ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, P. Seema ${ }^{19}$, S.C. Seidel ${ }^{118}$, A. Seiden ${ }^{146}$, T. Seiss ${ }^{37}$, J.M. Seixas ${ }^{80 b}$, G. Sekhniaidze ${ }^{69 a}$, K. Sekhon ${ }^{105}$, S.J. Sekula ${ }^{42}$, N. Semprini-Cesari ${ }^{23 b, 23 a}$, S. Sen ${ }^{49}$, S. Senkin ${ }^{38}$, C. Serfon ${ }^{76}$, L. Serin ${ }^{132}$, L. Serkin ${ }^{66 a, 66 b}$, M. Sessa ${ }^{60 a}$, H. Severini ${ }^{128}$, F. Sforza ${ }^{170}$, A. Sfyrla ${ }^{54}$, E. Shabalina ${ }^{53}$, J.D. Shahinian ${ }^{146}$, N.W. Shaikh ${ }^{45 a, 45 b}$, D. Shaked Renous ${ }^{180}$, L.Y. Shan ${ }^{15 a}$, R. Shang ${ }^{173}$, J.T. Shank ${ }^{25}$, M. Shapiro ${ }^{18}$, A.S. Sharma ${ }^{1}$, A. Sharma ${ }^{135}$, P.B. Shatalov ${ }^{111}$, K. Shaw ${ }^{156}$, S.M. Shaw ${ }^{100}$, A. Shcherbakova ${ }^{138}$, Y. Shen ${ }^{128}$, N. Sherafati ${ }^{34}$, A.D. Sherman ${ }^{25}$, P. Sherwood ${ }^{94}$, L. Shi ${ }^{158, a r}$, S. Shimizu ${ }^{81}$, C.O. Shimmin ${ }^{183}$, Y. Shimogama ${ }^{179}$, M. Shimojima ${ }^{116}$, I.P.J. Shipsey ${ }^{135}$, S. Shirabe ${ }^{87}$, M. Shiyakova ${ }^{79, \text { aa }}$, J. Shlomi ${ }^{180}$, A. Shmeleva ${ }^{110}$, M.J. Shochet ${ }^{37}$, S. Shojaii ${ }^{104}$, D.R. Shope ${ }^{128}$, S. Shrestha ${ }^{126}$, E. Shulga ${ }^{180}$, P. Sicho ${ }^{141}$, A.M. Sickles ${ }^{173}$, P.E. Sidebo ${ }^{154}$, E. Sideras Haddad ${ }^{33 \mathrm{c}}$, O. Sidiropoulou ${ }^{36}$, A. Sidoti ${ }^{23 b, 23 a}$, F. Siegert ${ }^{48}$, Dj. Sijacki 16, M. Silva Jr. ${ }^{181}$, M.V. Silva Oliveira ${ }^{80 a}$, S.B. Silverstein ${ }^{45 a}$, S. Simion ${ }^{132}$, E. Simioni ${ }^{99}$, M. Simon ${ }^{99}$, R. Simoniello ${ }^{99}$, P. Sinervo ${ }^{167}$, N.B. Sinev ${ }^{131}$, M. Sioli ${ }^{23 b}, 23 a$, I. Siral ${ }^{105}$, S.Yu. Sivoklokov ${ }^{113}$, J. Sjölin ${ }^{45 a, 45 b}$, E. Skorda ${ }^{96}$, P. Skubic ${ }^{128}$, M. Slawinska ${ }^{84}$, K. Sliwa ${ }^{170}$, R. Slovak ${ }^{143}$, V. Smakhtin ${ }^{180}$, B.H. Smart ${ }^{144}$, J. Smiesko ${ }^{28 a}$, N. Smirnov ${ }^{112}$, S.Yu. Smirnov ${ }^{112}$, Y. Smirnov ${ }^{112}$, L.N. Smirnova ${ }^{113, \mathrm{~s}}$, O. Smirnova ${ }^{96}$, J.W. Smith ${ }^{53}$, M. Smizanska ${ }^{89}$, K. Smolek ${ }^{142}$,
A. Smykiewicz ${ }^{84}$, A.A. Snesarev ${ }^{110}$, I.M. Snyder ${ }^{131}$, S. Snyder ${ }^{29}$, R. Sobie ${ }^{176, a c}$, A.M. Soffa ${ }^{171}$, A. Soffer ${ }^{161}$, A. Søgaard ${ }^{50}$, F. Sohns ${ }^{53}$, G. Sokhrannyi ${ }^{91}$, C.A. Solans Sanchez ${ }^{36}$, E.Yu. Soldatov ${ }^{112}$, U. Soldevila ${ }^{174}$, A.A. Solodkov ${ }^{123}$, A. Soloshenko ${ }^{79}$, O.V. Solovyanov ${ }^{123}$, V. Solovyev ${ }^{138}$, P. Sommer ${ }^{149}$, H. Son ${ }^{170}$, W. Song ${ }^{144}$, W.Y. Song ${ }^{168 b}$, A. Sopczak ${ }^{142}$, F. Sopkova ${ }^{28 b}$, C.L. Sotiropoulou ${ }^{71 a, 71 b}$, S. Sottocornola ${ }^{70 a, 70 b}$, R. Soualah ${ }^{66 a, 66 c, g}$, A.M. Soukharev ${ }^{122 \mathrm{~b}, 122 \mathrm{a}}$, D. South ${ }^{46}$, S. Spagnolo ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$, M. Spalla ${ }^{115}$, M. Spangenberg ${ }^{178}$, F. Spanò ${ }^{93}$, D. Sperlich ${ }^{19}$, T.M. Spieker ${ }^{61 \mathrm{a}}$, R. Spighi ${ }^{23 \mathrm{~b}}$, G. Spigo ${ }^{36}$, L.A. Spiller ${ }^{104}$, M. Spina ${ }^{156}$, D.P. Spiteri ${ }^{57}$, M. Spousta ${ }^{143}$, A. Stabile ${ }^{68 \mathrm{a}, 68 \mathrm{~b}}$, B.L. Stamas ${ }^{121}$, R. Stamen ${ }^{61 \mathrm{a}}$, M. Stamenkovic ${ }^{120}$, S. Stamm ${ }^{19}$, E. Stanecka ${ }^{84}$, R.W. Stanek ${ }^{6}$, B. Stanislaus ${ }^{135}$,
M.M. Stanitzki ${ }^{46}$, M. Stankaityte ${ }^{135}$, B. Stapf ${ }^{120}$, E.A. Starchenko ${ }^{123}$, G.H. Stark ${ }^{146}$, J. Stark ${ }^{58}$, S.H Stark ${ }^{40}$, P. Staroba ${ }^{141}$, P. Starovoitov ${ }^{61 a}$, S. Stärz ${ }^{103}$, R. Staszewski ${ }^{84}$, G. Stavropoulos ${ }^{44}$, M. Stegler ${ }^{46}$, P. Steinberg ${ }^{29}$, B. Stelzer ${ }^{152}$, H.J. Stelzer ${ }^{36}$, O. Stelzer-Chilton ${ }^{168 a}$, H. Stenzel ${ }^{56}$, T.J. Stevenson ${ }^{156}$, G.A. Stewart ${ }^{36}$, M.C. Stockton ${ }^{36}$, G. Stoicea ${ }^{27 \mathrm{~b}}$, M. Stolarski ${ }^{140 a}$, P. Stolte ${ }^{53}$, S. Stonjek ${ }^{115}$, A. Straessner ${ }^{48}$, J. Strandberg ${ }^{154}$, S. Strandberg ${ }^{45 \mathrm{a}, 45 \mathrm{~b}}$, M. Strauss ${ }^{128}$, P. Strizenec ${ }^{28 b}$, R. Ströhmer ${ }^{177}$, D.M. Strom ${ }^{131}$, R. Stroynowski ${ }^{42}$, A. Strubig ${ }^{50}$, S.A. Stucci ${ }^{29}$, B. Stugu ${ }^{17}$, J. Stupak ${ }^{128}$, N.A. Styles ${ }^{46}$, D. Su 153, S. Suchek ${ }^{61 a}$, Y. Sugaya ${ }^{133}$, V.V. Sulin ${ }^{110}$, M.J. Sullivan ${ }^{90}$, D.M.S. Sultan ${ }^{54}$, S. Sultansoy ${ }^{4 c}$, T. Sumida ${ }^{85}$, S. Sun ${ }^{105}$, X. Sun ${ }^{3}$, K. Suruliz ${ }^{156}$, C.J.E. Suster ${ }^{157}$, M.R. Sutton ${ }^{156}$, S. Suzuki ${ }^{81}$, M. Svatos ${ }^{141}$, M. Swiatlowski ${ }^{37}$, S.P. Swift ${ }^{2}$, A. Sydorenko ${ }^{99}$, I. Sykora ${ }^{28 a}$, M. Sykora ${ }^{143}$, T. Sykora ${ }^{143}$, D. Ta 99, K. Tackmann ${ }^{46, y}$, J. Taenzer ${ }^{161}$, A. Taffard ${ }^{171}$, R. Tafirout ${ }^{168 a}$, E. Tahirovic ${ }^{92}$, H. Takai ${ }^{29}$, R. Takashima ${ }^{86}$, K. Takeda ${ }^{82}$, T. Takeshita ${ }^{150}$, E.P. Takeva ${ }^{50}$, Y. Takubo ${ }^{81}$, M. Talby ${ }^{101}$, A.A. Talyshev ${ }^{122 b, 122 a}$, J. Tanaka ${ }^{163}$, M. Tanaka ${ }^{165}$, R. Tanaka ${ }^{132}$, B.B. Tannenwald ${ }^{126}$, S. Tapia Araya ${ }^{173}$, S. Tapprogge ${ }^{99}$, A. Tarek Abouelfadl Mohamed ${ }^{136}$, S. Tarem ${ }^{160}$, G. Tarna ${ }^{27 \mathrm{~b}, \mathrm{c}}$, G.F. Tartarelli ${ }^{68 \mathrm{a}}$, P. Tas ${ }^{143}$, M. Tasevsky ${ }^{141}$, T. Tashiro ${ }^{85}$, E. Tassi ${ }^{41 \mathrm{~b}, 41 \mathrm{a}}$, A. Tavares Delgado ${ }^{140 \mathrm{a}, 140 \mathrm{~b}}$, Y. Tayalati ${ }^{35 \mathrm{e}}$, A.J. Taylor ${ }^{50}$, G.N. Taylor ${ }^{104}$, P.T.E. Taylor ${ }^{104}$, W. Taylor ${ }^{168 \mathrm{~b}}$, A.S. Tee ${ }^{89}$, R. Teixeira De Lima ${ }^{153}$, P. Teixeira-Dias ${ }^{93}$, H. Ten Kate ${ }^{36}$, J.J. Teoh ${ }^{120}$, S. Terada ${ }^{81}$, K. Terashi ${ }^{163}$, J. Terron ${ }^{98}$, S. Terzo ${ }^{14}$, M. Testa ${ }^{51}$, R.J. Teuscher ${ }^{167, \text { ac }, \text { S.J. Thais }}{ }^{183}$, T. Theveneaux-Pelzer ${ }^{46}$, F. Thiele ${ }^{40}$, D.W. Thomas ${ }^{93}$, J.O. Thomas ${ }^{42}$, J.P. Thomas ${ }^{21}$, A.S. Thompson ${ }^{57}$, P.D. Thompson ${ }^{21}$, L.A. Thomsen ${ }^{183}$, E. Thomson ${ }^{137}$, Y. Tian ${ }^{39}$, R.E. Ticse Torres ${ }^{53}$, V.O. Tikhomirov ${ }^{110, \mathrm{ao}}$, Yu.A. Tikhonov ${ }^{122 b, 122 a}$, S. Timoshenko ${ }^{112}$, P. Tipton ${ }^{183}$, S. Tisserant ${ }^{101}$, K. Todome ${ }^{23 \mathrm{~b}, 23 \mathrm{a}}$, S. Todorova-Nova ${ }^{5}$, S. Todt ${ }^{48}$, J. Tojo ${ }^{87}$, S. Tokár ${ }^{28 a}$, K. Tokushuku ${ }^{81}$, E. Tolley ${ }^{126}$, K.G. Tomiwa ${ }^{33 \mathrm{c}}$, M. Tomoto ${ }^{117}$, L. Tompkins ${ }^{153, p}$, K. Toms ${ }^{118}$, B. Tong ${ }^{59}$, P. Tornambe ${ }^{102}$, E. Torrence ${ }^{131}$, H. Torres ${ }^{48}$, E. Torró Pastor ${ }^{148}$, C. Tosciri ${ }^{135}$, J. Toth ${ }^{101, \mathrm{ab}}$, D.R. Tovey ${ }^{149}$, C.J. Treado ${ }^{124}$, T. Trefzger ${ }^{177}$, F. Tresoldi ${ }^{156}$, A. Tricoli ${ }^{29}$, I.M. Trigger ${ }^{168 a}$, S. Trincaz-Duvoid ${ }^{136}$, W. Trischuk ${ }^{167}$, B. Trocmé ${ }^{58}$, A. Trofymov ${ }^{132}$, C. Troncon ${ }^{68 a}$, M. Trovatelli ${ }^{176}$, F. Trovato ${ }^{156}$, L. Truong ${ }^{33 b}$, M. Trzebinski ${ }^{84}$, A. Trzupek ${ }^{84}$, F. Tsai ${ }^{46}$, J.C-L. Tseng ${ }^{135}$, P.V. Tsiareshka ${ }^{107, \text { ai }}$, A. Tsirigotis ${ }^{162}$, N. Tsirintanis ${ }^{9}$, V. Tsiskaridze ${ }^{155}$, E.G. Tskhadadze ${ }^{159 a}$, M. Tsopoulou ${ }^{162}$, I.I. Tsukerman ${ }^{111}$, V. Tsulaia ${ }^{18}$, S. Tsuno ${ }^{81}$, D. Tsybychev ${ }^{155}$, Y. Tu ${ }^{63 \mathrm{~b}}$, A. Tudorache ${ }^{27 \mathrm{~b}}$, V. Tudorache ${ }^{27 \mathrm{~b}}$, T.T. Tulbure ${ }^{27 \mathrm{a}}$, A.N. Tuna ${ }^{59}$, S. Turchikhin ${ }^{79}$, D. Turgeman ${ }^{180}$, I. Turk Cakir ${ }^{4 b, t}$, R.J. Turner ${ }^{21}$, R.T. Turra ${ }^{68 a}$, P.M. Tuts ${ }^{39}$, S Tzamarias ${ }^{162}$, E. Tzovara ${ }^{99}$, G. Ucchielli ${ }^{47}$, I. Ueda ${ }^{81}$, M. Ughetto ${ }^{45 a, 45 b}$, F. Ukegawa ${ }^{169}$, G. Unal ${ }^{36}$, A. Undrus ${ }^{29}$, G. Unel ${ }^{171}$, F.C. Ungaro ${ }^{104}$, Y. Unno ${ }^{81}$, K. Uno ${ }^{163}$, J. Urban ${ }^{28 b}$, P. Urquijo ${ }^{104}$, G. Usai ${ }^{8}$, J. Usui ${ }^{81}$, L. Vacavant ${ }^{101}$, V. Vacek ${ }^{142}$, B. Vachon ${ }^{103}$, K.O.H. Vadla ${ }^{134}$, A. Vaidya ${ }^{94}$, C. Valderanis ${ }^{114}$, E. Valdes Santurio ${ }^{45 a, 45 b}$, M. Valente ${ }^{54}$, S. Valentinetti ${ }^{23 b, 23 a}$, A. Valero ${ }^{174}$, L. Valéry ${ }^{46}$, R.A. Vallance ${ }^{21}$, A. Vallier ${ }^{36}$, J.A. Valls Ferrer ${ }^{174}$, T.R. Van Daalen ${ }^{14}$, P. Van Gemmeren ${ }^{6}$, I. Van Vulpen ${ }^{120}$, M. Vanadia ${ }^{73 a, 73 b}$, W. Vandelli ${ }^{36}$, A. Vaniachine ${ }^{166}$, R. Vari ${ }^{72 \mathrm{a}}$, E.W. Varnes ${ }^{7}$, C. Varni ${ }^{55 b, 55 a}$, T. Varol ${ }^{42}$, D. Varouchas ${ }^{132}$, K.E. Varvell ${ }^{157}$, M.E. Vasile ${ }^{27 b}$, G.A. Vasquez ${ }^{176}$, J.G. Vasquez ${ }^{183}$, F. Vazeille ${ }^{38}$, D. Vazquez Furelos ${ }^{14}$, T. Vazquez Schroeder ${ }^{36}$, J. Veatch ${ }^{53}$, V. Vecchio ${ }^{74 a, 74 b}$, L.M. Veloce ${ }^{167}$, F. Veloso ${ }^{140 \mathrm{a}, 140 \mathrm{c}}$, S. Veneziano ${ }^{72 \mathrm{a}}$, A. Ventura ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$, N. Venturi ${ }^{36}$, A. Verbytskyi ${ }^{115}$, V. Vercesi ${ }^{70 a}$, M. Verducci ${ }^{74 \mathrm{a}, 74 \mathrm{~b}}$, C.M. Vergel Infante 78, C. Vergis ${ }^{24}$, W. Verkerke ${ }^{120}$, A.T. Vermeulen ${ }^{120}$, J.C. Vermeulen ${ }^{120}$, M.C. Vetterli ${ }^{152, \text { av }}$, N. Viaux Maira ${ }^{147 \mathrm{~b}}$, M. Vicente Barreto Pinto ${ }^{54}$, I. Vichou ${ }^{173, *}$, T. Vickey ${ }^{149}$, O.E. Vickey Boeriu ${ }^{149}$, G.H.A. Viehhauser ${ }^{135}$, L. Vigani ${ }^{135}$, M. Villa ${ }^{23 b, 23 a}$, M. Villaplana Perez ${ }^{68 \mathrm{a}, 68 \mathrm{~b}}$, E. Vilucchi ${ }^{51}$, M.G. Vincter ${ }^{34}$, V.B. Vinogradov ${ }^{79}$, A. Vishwakarma ${ }^{46}$, C. Vittori ${ }^{23 b}$, 23 a , I. Vivarelli ${ }^{156}$, M. Vogel ${ }^{182}$, P. Vokac ${ }^{142}$, G. Volpi ${ }^{14}$, S.E. von Buddenbrock ${ }^{33 \mathrm{c}}$, E. Von Toerne ${ }^{24}$, V. Vorobel ${ }^{143}$, K. Vorobev ${ }^{112}$, M. Vos 174, J.H. Vossebeld ${ }^{90}$, N. Vranjes ${ }^{16}$, M. Vranjes Milosavljevic ${ }^{16}$, V. Vrba ${ }^{142}$,
M. Vreeswijk ${ }^{120}$, T. Šfiligoj ${ }^{91}$, R. Vuillermet ${ }^{36}$, I. Vukotic ${ }^{37}$, T. Ženiš ${ }^{28 a}$, L. Živković ${ }^{16}$, P. Wagner ${ }^{24}$, W. Wagner ${ }^{182}$, J. Wagner-Kuhr ${ }^{114}$, H. Wahlberg ${ }^{88}$, S. Wahrmund ${ }^{48}$, K. Wakamiya ${ }^{82}$, V.M. Walbrecht ${ }^{115}$, J. Walder ${ }^{89}$, R. Walker ${ }^{114}$, S.D. Walker ${ }^{93}$, W. Walkowiak ${ }^{151}$, V. Wallangen ${ }^{45 \mathrm{a}, 45 \mathrm{~b}}$, A.M. Wang ${ }^{59}$, C. Wang ${ }^{60 \mathrm{~b}}$, F. Wang ${ }^{181}$, H. Wang ${ }^{18}$, H. Wang ${ }^{3}$, J. Wang ${ }^{157}$, J. Wang ${ }^{61 \mathrm{~b}}$, P. Wang ${ }^{42}$, Q. Wang ${ }^{128}$, R.-J. Wang ${ }^{136}$, R. Wang ${ }^{60 a}$, R. Wang ${ }^{6}$, S.M. Wang ${ }^{158}$, W.T. Wang ${ }^{60 \mathrm{a}}$, W. Wang ${ }^{15 c, \text { ad }}$, W.X. Wang ${ }^{60 a, a d}$, Y. Wang ${ }^{60 a, a l}$, Z. Wang ${ }^{60 \mathrm{c}}$, C. Wanotayaroj ${ }^{46}$, A. Warburton ${ }^{103}$, C.P. Ward ${ }^{32}$, D.R. Wardrope ${ }^{94}$, A. Washbrook ${ }^{50}$, A.T. Watson ${ }^{21}$, M.F. Watson ${ }^{21}$, G. Watts ${ }^{148}$, B.M. Waugh ${ }^{94}$, A.F. Webb ${ }^{11}$, S. Webb ${ }^{99}$, C. Weber ${ }^{183}$, M.S. Weber ${ }^{20}$, S.A. Weber ${ }^{34}$, S.M. Weber ${ }^{61 a}$, A.R. Weidberg ${ }^{135}$, J. Weingarten ${ }^{47}$, M. Weirich ${ }^{99}$, C. Weiser ${ }^{52}$, P.S. Wells ${ }^{36}$, T. Wenaus ${ }^{29}$, T. Wengler ${ }^{36}$, S. Wenig ${ }^{36}$, N. Wermes ${ }^{24}$, M.D. Werner ${ }^{78}$, P. Werner ${ }^{36}$, M. Wessels ${ }^{61 a}$, T.D. Weston ${ }^{20}$, K. Whalen ${ }^{131}$, N.L. Whallon ${ }^{148}$, A.M. Wharton ${ }^{89}$, A.S. White ${ }^{105}$, A. White ${ }^{8}$, M.J. White ${ }^{1}$, R. White ${ }^{147 \mathrm{~b}}$, D. Whiteson ${ }^{171}$, B.W. Whitmore ${ }^{89}$, F.J. Wickens ${ }^{144}$, W. Wiedenmann ${ }^{181}$, M. Wielers ${ }^{144}$, C. Wiglesworth ${ }^{40}$, L.A.M. Wiik-Fuchs ${ }^{52}$, F. Wilk ${ }^{100}$, H.G. Wilkens ${ }^{36}$, L.J. Wilkins ${ }^{93}$, H.H. Williams ${ }^{137}$, S. Williams ${ }^{32}$, C. Willis ${ }^{106}$, S. Willocq ${ }^{102}$, J.A. Wilson ${ }^{21}$, I. Wingerter-Seez ${ }^{5}$, E. Winkels ${ }^{156}$, F. Winklmeier ${ }^{131}$, O.J. Winston ${ }^{156}$, B.T. Winter ${ }^{52}$, M. Wittgen ${ }^{153}$, M. Wobisch ${ }^{95}$, A. Wolf ${ }^{99}$, T.M.H. Wolf ${ }^{120}$, R. Wolff ${ }^{101}$, R.W. Wölker ${ }^{135}$, J. Wollrath ${ }^{52}$, M.W. Wolter ${ }^{84}$, H. Wolters ${ }^{140 \mathrm{a}, 140 \mathrm{c}}$, V.W.S. Wong ${ }^{175}$, N.L. Woods ${ }^{146}$, S.D. Worm ${ }^{21}$, B.K. Wosiek ${ }^{84}$, K.W. Woźniak ${ }^{84}$, K. Wraight ${ }^{57}$, S.L. Wu ${ }^{181}$, X. Wu ${ }^{54}$, Y. Wu ${ }^{60 a}$, T.R. Wyatt ${ }^{100}$, B.M. Wynne ${ }^{50}$, S. Xella ${ }^{40}$, Z. Xi ${ }^{105}$, L. Xia ${ }^{178}$, D. Xu ${ }^{15 a}$, H. Xu ${ }^{60 a, c}$, L. Xu ${ }^{29}$, T. Xu^{145}, W. Xu^{105}, Z. Xu ${ }^{60 \mathrm{~b}}$, Z. Xu ${ }^{153}$, B. Yabsley ${ }^{157}$, S. Yacoob ${ }^{33 \mathrm{a}}$, K. Yajima ${ }^{133}$, D.P. Yallup ${ }^{94}$, D. Yamaguchi ${ }^{165}$, Y. Yamaguchi ${ }^{165}$, A. Yamamoto ${ }^{81}$, T. Yamanaka ${ }^{163}$, F. Yamane ${ }^{82}$, M. Yamatani ${ }^{163}$, T. Yamazaki ${ }^{163}$, Y. Yamazaki ${ }^{82}$, Z. Yan ${ }^{25}$, H.J. Yang ${ }^{60 \mathrm{c}, 60 \mathrm{~d}}$, H.T. Yang ${ }^{18}$, S. Yang ${ }^{77}$, X. Yang ${ }^{60 \mathrm{~b}, 58}$, Y. Yang ${ }^{163}$, Z. Yang ${ }^{17}$, W-M. Yao ${ }^{18}$, Y.C. Yap ${ }^{46}$, Y. Yasu ${ }^{81}$, E. Yatsenko ${ }^{60 c, 60 d}$, J. Ye ${ }^{42}$, S. Ye ${ }^{29}$, I. Yeletskikh ${ }^{79}$, E. Yigitbasi ${ }^{25}$, E. Yildirim ${ }^{99}$, K. Yorita ${ }^{179}$, K. Yoshihara ${ }^{137}$, C.J.S. Young ${ }^{36}$, C. Young ${ }^{153}$, J. Yu ${ }^{78}$, X. Yue ${ }^{61 a}$, S.P.Y. Yuen ${ }^{24}$, B. Zabinski ${ }^{84}$, G. Zacharis ${ }^{10}$, E. Zaffaroni ${ }^{54}$, J. Zahreddine ${ }^{136}$, R. Zaidan ${ }^{14}$, A.M. Zaitsev ${ }^{123, \text { an }}$, T. Zakareishvili ${ }^{159 b}$, N. Zakharchuk ${ }^{34}$, S. Zambito ${ }^{59}$, D. Zanzi ${ }^{36}$, D.R. Zaripovas ${ }^{57}$, S.V. Zeißner ${ }^{47}$, C. Zeitnitz ${ }^{182}$, G. Zemaityte ${ }^{135}$, J.C. Zeng ${ }^{173}$, O. Zenin ${ }^{123}$, D. Zerwas ${ }^{132}$, M. Zgubič ${ }^{135}$, D.F. Zhang ${ }^{15 b}$, F. Zhang ${ }^{181}$, G. Zhang ${ }^{60 \mathrm{a}}$, G. Zhang ${ }^{15 b}$, H. Zhang ${ }^{15 \mathrm{c}}$, J. Zhang ${ }^{6}$, L. Zhang ${ }^{15 c}$, L. Zhang ${ }^{60 a}$, M. Zhang ${ }^{173}$, R. Zhang ${ }^{60 a}$, R. Zhang ${ }^{24}$, X. Zhang ${ }^{60 b}$, Y. Zhang ${ }^{15 a, 15 d}$, Z. Zhang ${ }^{63 \mathrm{a}}$, Z. Zhang ${ }^{132}$, P. Zhao ${ }^{49}$, Y. Zhao ${ }^{60 \mathrm{~b}}$, Z. Zhao ${ }^{60 \mathrm{a}}$, A. Zhemchugov ${ }^{79}$, Z. Zheng ${ }^{105}$, D. Zhong ${ }^{173}$, B. Zhou ${ }^{105}$, C. Zhou ${ }^{181}$, M.S. Zhou ${ }^{15 a, 15 d}$, M. Zhou ${ }^{155}$, N. Zhou ${ }^{60 c}$, Y. Zhou ${ }^{7}$, C.G. Zhu ${ }^{60 \mathrm{~b}}$, H.L. Zhu ${ }^{60 \mathrm{a}}$, H. Zhu ${ }^{15 \mathrm{a}}$, J. Zhu ${ }^{105}$, Y. Zhu ${ }^{60 \mathrm{a}}$, X. Zhuang ${ }^{15 \mathrm{a}}$, K. Zhukov ${ }^{110}$, V. Zhulanov ${ }^{122 \mathrm{~b}, 122 \mathrm{a}}$, D. Zieminska ${ }^{65}$, N.I. Zimine ${ }^{79}$, S. Zimmermann ${ }^{52}$, Z. Zinonos ${ }^{115}$, M. Ziolkowski ${ }^{151}$, G. Zobernig ${ }^{181}$, A. Zoccoli ${ }^{23 b, 23 a}$, K. Zoch ${ }^{53}$, T.G. Zorbas ${ }^{149}$, R. Zou ${ }^{37}$, L. Zwalinski ${ }^{36}$

[^1]${ }^{(a)}$ Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul ${ }^{(b)}$, Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul ${ }^{(c)}$, Department of Physics, Bogazici University, Istanbul ${ }^{(d)}$, Department of Physics Engineering, Gaziantep University, Gaziantep; Turkey
3 Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan
14 Institut de Física d'Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona; Spain
15 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing ${ }^{(b)}$, Physics Department, Tsinghua University, Beijing ${ }^{(c)}$, Department of Physics, Nanjing University, Nanjing ${ }^{(d)}$, University of Chinese Academy of Science (UCAS), Beijing; China Nuclear Engineering, Bucharest ${ }^{(c)}$, Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi ${ }^{(d)}$, National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca ${ }^{(e)}$, University Politehnica Bucharest, Bucharest ${ }^{(f)}$, West University in Timisoara, Timisoara; Romania

Sciences, Kosice; Slovak Republic

 Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy ofPhysics Department, Brookhaven National Laboratory, Upton NY; United States of America
Departamento de Física, Universidad de Buenos Aires, Buenos Aires; Argentina
California State University, CA; United States of America
Cavendish Laboratory, University of Cambridge, Cambridge; United Kingdom
${ }^{(a)}$ Department of Physics, University of Cape Town, Cape Town ${ }^{(b)}$, Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg ${ }^{(c)}$, School of Physics, University of the Witwatersrand, Johannesburg; South Africa
Department of Physics, Carleton University, Ottawa ON; Canada
${ }^{(a)}$ Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies Université Hassan II, Casablanca ${ }^{(b)}$, Faculté des Sciences, Université Ibn-Tofail, Kénitra ${ }^{(c)}$, Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech ${ }^{(d)}$, Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda ${ }^{(e)}$, Faculté des sciences, Université Mohammed V, Rabat; Morocco
CERN, Geneva; Switzerland
7 Enrico Fermi Institute, University of Chicago, Chicago IL; United States of America
8 LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand; France
9 Nevis Laboratory, Columbia University, Irvington NY; United States of America
40 Niels Bohr Institute, University of Copenhagen, Copenhagen; Denmark
${ }^{(a)}$ Dipartimento di Fisica, Università della Calabria, Rende ${ }^{(b)}$, INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; Italy Politecnico di Ingegneria e Architettura, Università di Udine, Udine; Italy
${ }^{67}{ }^{(a)}$ INFN Sezione di Lecce ${ }^{(b)}$, Dipartimento di Matematica e Fisica, Università del Salento, Lecce; Italy Roma; Italy
${ }^{(a)}$ INFN-TIFPA ${ }^{(b)}$, Università degli Studi di Trento, Trento; Italy
Institut für Astro und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck; Austria
7 University of Iowa, Iowa City IA; United States of America
78 Department of Physics and Astronomy, Iowa State University, Ames IA; United States of America
${ }^{9}$ Joint Institute for Nuclear Research, Dubna; Russia
${ }^{(a)}$ Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora ${ }^{(b)}$, Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro ${ }^{(c)}$, Universidade Federal de São João del Rei (UFSJ), São João del Rei ${ }^{(d)}$, Instituto de Física, Universidade de São Paulo, São Paulo; Brazil Institute, Moscow; Russia

119 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen; Netherlands Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa ${ }^{(c)}$, Departamento de Física, Universidade de Coimbra, Coimbra ${ }^{(d)}$, Centro de Física Nuclear da Universidade de Lisboa, Universidade de Coimbra, Coimbra ${ }^{(d)}$, Centro de Física Nuclear da Universidade de Lisboa,
Lisboa $^{(e)}$, Departamento de Física, Universidade do Minho, Braga ${ }^{(f)}$, Universidad de Granada, Granada (Spain) $)^{(g)}$, Dep Física and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica; Portugal

America

 156 Department of Physics and Astronomy, University of Sussex, Brighton; United Kingdom157
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam; Netherlands
Department of Physics, Northern Illinois University, DeKalb IL; United States of America
${ }^{(a)}$ Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk ${ }^{(b)}$, Novosibirsk State University Novosibirsk; Russia
Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino; Russia
Department of Physics, New York University, New York NY; United States of America Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo; Japan
Ohio State University, Columbus OH; United States of America
Faculty of Science, Okayama University, Okayama; Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK; United States of America
Department of Physics, Oklahoma State University, Stillwater OK; United States of America Palacky University, RCPTM, Joint Laboratory of Optics, Olomouc; Czech Republic
Center for High Energy Physics, University of Oregon, Eugene OR; United States of America LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay; France Graduate School of Science, Osaka University, Osaka; Japan
Department of Physics, University of Oslo, Oslo; Norway
Department of Physics, Oxford University, Oxford; United Kingdom
LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris; France Department of Physics, University of Pennsylvania, Philadelphia PA; United States of America Konstantinov Nuclear Physics Institute of National Research Centre "Kurchatov Institute", PNPI, St. Petersburg; Russia
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA; United States of America
${ }^{\text {a) }}$ Laboratório de Instrumentação e Física Experimental de Partículas - LIP ${ }^{(b)}$, Departamento de

Institute of Physics of the Czech Academy of Sciences, Prague; Czech Republic Czech Technical University in Prague, Prague; Czech Republic
Charles University, Faculty of Mathematics and Physics, Prague; Czech Republic Particle Physics Department, Rutherford Appleton Laboratory, Didcot; United Kingdom IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette; France Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA; United States of America
${ }^{(a)}$ Departamento de Física, Pontificia Universidad Católica de Chile, Santiago ${ }^{(b)}$, Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso; Chile
Department of Physics, University of Washington, Seattle WA; United States of America
Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom
Department of Physics, Shinshu University, Nagano; Japan
Department Physik, Universität Siegen, Siegen; Germany
Department of Physics, Simon Fraser University, Burnaby BC; Canada
SLAC National Accelerator Laboratory, Stanford CA; United States of America
Physics Department, Royal Institute of Technology, Stockholm; Sweden
Departments of Physics and Astronomy, Stony Brook University, Stony Brook NY; United States of

School of Physics, University of Sydney, Sydney; Australia
${ }^{(a)}$ E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi ${ }^{(b)}$, High Energy Physics Institute, Tbilisi State University, Tbilisi; Georgia
Department of Physics, Technion, Israel Institute of Technology, Haifa; Israel
161 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv; Israel

International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo; Japan
${ }^{164}$ Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo; Japan
165 ON; Canada
Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba; Japan America
172 Department of Physics and Astronomy, University of Uppsala, Uppsala; Sweden
173 Department of Physics, University of Illinois, Urbana IL; United States of America
174 Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia; Spain
175 Department of Physics, University of British Columbia, Vancouver BC; Canada
${ }_{176}$ Department of Physics and Astronomy, University of Victoria, Victoria BC; Canada
177 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg; Germany
178 Department of Physics, University of Warwick, Coventry; United Kingdom
179 Waseda University, Tokyo; Japan
180 Department of Particle Physics, Weizmann Institute of Science, Rehovot; Israel
181 Department of Physics, University of Wisconsin, Madison WI; United States of America
182 Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal; Germany
183 Department of Physics, Yale University, New Haven CT; United States of America
184 Yerevan Physics Institute, Yerevan; Armenia
${ }^{a}$ Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town; South Africa
${ }^{b}$ Also at CERN, Geneva; Switzerland
c Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France
${ }^{d}$ Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland
${ }^{e}$ Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona; Spain
${ }^{f}$ Also at Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Lisboa; Portugal
${ }^{g}$ Also at Department of Applied Physics and Astronomy, University of Sharjah, Sharjah; United Arab Emirates
${ }^{h}$ Also at Department of Financial and Management Engineering, University of the Aegean, Chios; Greece
${ }^{i}$ Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY; United States of America
${ }^{j}$ Also at Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom
${ }^{k}$ Also at Department of Physics, California State University, East Bay; United States of America
${ }^{l}$ Also at Department of Physics, California State University, Fresno; United States of America
${ }^{m}$ Also at Department of Physics, California State University, Sacramento; United States of America
${ }^{n}$ Also at Department of Physics, King's College London, London; United Kingdom
${ }^{\circ}$ Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg; Russia
${ }^{p}$ Also at Department of Physics, Stanford University, Stanford CA; United States of America
${ }^{q}$ Also at Department of Physics, University of Fribourg, Fribourg; Switzerland
${ }^{r}$ Also at Department of Physics, University of Michigan, Ann Arbor MI; United States of America
${ }^{s}$ Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow; Russia
${ }^{t}$ Also at Giresun University, Faculty of Engineering, Giresun; Turkey
${ }^{u}$ Also at Graduate School of Science, Osaka University, Osaka; Japan
${ }^{v}$ Also at Hellenic Open University, Patras; Greece
${ }^{w}$ Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; Romania
${ }^{x}$ Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona; Spain
${ }^{y}$ Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg; Germany
${ }^{z}$ Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen; Netherlands
aa Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia; Bulgaria
ab Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest; Hungary
${ }^{\text {ac }}$ Also at Institute of Particle Physics (IPP); Canada
${ }^{\text {ad }}$ Also at Institute of Physics, Academia Sinica, Taipei; Taiwan
ae Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan
${ }^{\text {af }}$ Also at Institute of Theoretical Physics, Ilia State University, Tbilisi; Georgia
${ }^{\text {ag }}$ Also at Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid; Spain
${ }^{\text {ah }}$ Also at Istanbul University, Dept. of Physics, Istanbul; Turkey
ai Also at Joint Institute for Nuclear Research, Dubna; Russia
aj Also at LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay; France
${ }^{a k}$ Also at Louisiana Tech University, Ruston LA; United States of America
al Also at LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris; France
${ }^{\text {am }}$ Also at Manhattan College, New York NY; United States of America
${ }^{a n}$ Also at Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia
ao Also at National Research Nuclear University MEPhI, Moscow; Russia
${ }^{a p}$ Also at Physics Department, An-Najah National University, Nablus; Palestine
${ }^{a q}$ Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany
${ }^{a}$ Also at School of Physics, Sun Yat-sen University, Guangzhou; China
as Also at The City College of New York, New York NY; United States of America
${ }^{\text {at }}$ Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing; China
au Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia
av Also at TRIUMF, Vancouver BC; Canada
${ }^{\text {aw }}$ Also at Universita di Napoli Parthenope, Napoli; Italy

* Deceased

[^0]: ${ }^{1}$ ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta=-\ln \tan (\theta / 2)$. When dealing with massive particles, the rapidity $y=1 / 2 \ln \left[\left(E+p_{z}\right) /\left(E-p_{z}\right)\right]$ is used, where E is the energy and p_{z} is the z-component of the momentum.

[^1]: ${ }^{1}$ Department of Physics, University of Adelaide, Adelaide; Australia
 ${ }^{2}$ Physics Department, SUNY Albany, Albany NY; United States of America
 ${ }^{3}$ Department of Physics, University of Alberta, Edmonton AB; Canada
 ${ }^{4}{ }^{(a)}$ Department of Physics, Ankara University, Ankara ${ }^{(b)}$, Istanbul Aydin University, Istanbul ${ }^{(c)}$, Division of Physics, TOBB University of Economics and Technology, Ankara; Turkey
 ${ }^{5}$ LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy; France
 ${ }^{6}$ High Energy Physics Division, Argonne National Laboratory, Argonne IL; United States of America
 ${ }^{7}$ Department of Physics, University of Arizona, Tucson AZ; United States of America
 8 Department of Physics, University of Texas at Arlington, Arlington TX; United States of America
 ${ }^{9}$ Physics Department, National and Kapodistrian University of Athens, Athens; Greece
 ${ }^{10}$ Physics Department, National Technical University of Athens, Zografou; Greece
 11 Department of Physics, University of Texas at Austin, Austin TX; United States of America

