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QUANTUM PHASES OF TIME-REVERSAL INVARIANT

BOSE-EINSTEIN CONDENSATES

Matthew C. Maisberger, PhD
The University of Texas at Dallas, 2020

Supervising Professor: Chuanwei Zhang, Chair

Recent experimental realization of spin-orbit coupling (SOC) for ultracold atomic gases with

the use of synthetic gauge fields provides a powerful platform for the study of novel quantum

phenomena and the simulation of exotic condensed matter phases. However, in conventional

schemes of SOC in ultracold bosonic gases, time-reversal symmetry, which plays a critical

role in topologically nontrivial states, is broken by an effective transverse Zeeman field.

We study the quantum phases of SOC Bose-Einstein condensates (BECs) with the use of

a Hermite-Gaussian (HG) beam to induce Raman transitions. This treatment allows for

SOC in bilayer BECs with inter-layer tunneling where time-reversal symmetry is preserved.

New ground-state phases are introduced that are not seen in conventional SOC BECs. We

propose a experimentally feasible setup and discuss the physical parameters under which

time-reversal symmetry can be preserved.

The Hamiltonians for SOC BECs are often nonlinear and the methods used for calculating

the ground-state wavefunctions are computationally expensive. The wavefunctions need

to be calculated on an individual basis to study the ground-state quantum phases on a

granular level. We propose the use of convolutional-neural-networks (CNN) to train SOC

BEC systems and reduce the computational cost of these ground-state calculations. We

show the overall network setup and discuss the ranges over which the model is realizable.
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The proposed CNN uses a reverse-flow algorithm that allows for complex phases of the

wavefunction and thus permits for a broader study of SOC BEC systems.

In summary, this dissertation details how time-reversal symmetry can be preserved in SOC

BECs and how predictive analytics can be used to further understand the ground-state

properties of these systems.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Bose-Einstein Condensates (BECs) were first theorized in 1924 [1]. However, It was not until

1995 that the first BECs would be realized experimentally [2, 3]. Since this realization, a

large field of research has been opened in both theoretical and experimental ultracold atomic

gases [4]. Current research focuses on both simulating more complex novel systems as well as

unique nontrivial systems [5]. In this dissertation, we will focus on the analysis of producing

spin-orbit coupling (SOC) in BECs via artificial gauge fields. This will be expanded into

the importance of time-reversal invariance and how we propose a realistic setup to preserve

this symmetry in a spin-orbit coupled BEC [6]. We then shift the focus on how the use of

neural networks can be utilized to enhance the computational performance of ground-state

calculations in SOC BECs.

1.2 Bose-Einstein Condensation

Below a critical temperature, Tc, a bosonic gas will condense into a low energy ground state.

The critical temperature is defined as,

Tc ∝
~2n2/3

mkB
, (1.1)

where n is the particle density, m is the boson atomic mass, and kb is the Boltzmann constant.

The BEC will have interatomic collisions where the strength of the interactions is given

by,

g =
4π~2as
m

, (1.2)

where as is the s-wave scattering length, which is positive for repulsive interactions and

negative for attractive interactions.
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If we consider the temperature of the gas to be low enough so that all atoms are in

the condensed state, and taking the gas to be dilute, the ground state of the BEC can be

obtained from the time-independent Gross-Pitaevskii equation (GPE),(
− ~2

2m

∂2

∂r2
+ Vext(r) + g|ψ(r)|2

)
ψ(r) = µψ(r) (1.3)

where Vext(r) can be any external potential applied to the system, such as a typical harmonic

trap. The GPE is a mean field theory approach to the solution of BECs systems. The

nonlinearity in the interaction term makes exact solutions of the GPE a rarity. Therefore,

approximation methods are often applied when using the GPE to solve a physical system.

1.3 Spin-Orbit Coupling

Spin-orbit coupling (SOC) is the interaction of a particles spin with its orbital angular

momentum. In a simple hydrogen atom, this effect is seen by the relativistic motion of a

spin-1/2 electron around a single proton, creating an interaction between the spin of the

electron and the magnetic field caused by the relative motion of the proton. However,

creating SOC in BECs can prove to be difficult as BECs are charge neutral.

The use of artificial gauge fields has allowed for the study of SOC in BECs. Popular

methods of generating artificial gauge fields include rotation of a trapping potential, rapid

or resonant modulation of a lattices, and atom-light interactions [7]. This dissertation will

be focusing on and building off of the hallmark case of atom-light interactions in 87Rb [8].

First, a bias magnetic field is applied to energetically separate the hyperfine levels in the

F = 1 manifold. Artificial gauge fields are then created by the use of counter-propagating

Raman lasers allowing coupling between the states in this manifold. Through the process of

adiabatic elimination [9], one can select just two of the hyperfine states |F = 1,mF = −1〉

and |F = 1,mf = 0〉. This creates a 2-component BEC whose hyperfine states can be referred

to as psuedospins; i.e. |↑〉 = |mf = 0〉 and |↓〉 = |mf = −1〉.
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Figure 1.1. (a) Lambda diagram illustrating the transition of 87Rb hyperfine states using
two counter-propagating lasers. (b) Shows a scheme for a common orientation of the Ra-
man lasers with a bias magnetic field to generate spin-orbit coupling in a Bose-Einstein
condensate.

First, we consider the single particle picture of a simulated spin-1/2 system, where the

basis can be recognized as |ψ〉 = (ψ↑, ψ↓)
T as seen in Fig. 1.1. After using the rotating

wave approximation to rid the Hamiltonian of the fast oscillating terms [10], the 1-D single

particle two component Hamiltonian can be seen as,

H =

 p2x
2m

+ ∆E
2

~Ω
2
ei(2krx−∆ωt)

~Ω
2
e−i(2krx−∆ωt) p2x

2m
− ∆E

2

 , (1.4)

where kr is the wave vector along the x-axis, ∆E is the energy difference between the coupled

states, and ∆ω is the frequency difference between the two lasers. Then, by using a unitary

transformation to the rotating reference frame,

UR =

 ei(krx−
1
2

∆ωt) 0

0 e−i(krx−
1
2

∆ωt)

 (1.5)
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Figure 1.2. Single particle band dispersion Eq. (1.7). Parameters are chosen to be k0 = 1
and δ = 0 for varying Ω. The largest value Ω = 2.4 (yellow) shows a single minimum in the
lower band leading to a zero-momentum phase.

we end up with the transformed Hamiltonian as,

Hk = U †RHUR − i~U
†
R

∂UR
∂t

=

 (px+~k0)2

2m
+ δ

2
Ω
2

Ω
2

(px−~k0)2

2m
− δ

2

 . (1.6)

where δ = ∆E − ~∆ω. The wavefunction thus transforms as |ψ〉 = U †R |ψ〉.

The energy eigenvalues of this Hamiltonian are easily solvable giving the energy disper-

sion,

E±(k) =
k2
x

2
±

√(
k0kx −

δ

2

)2

+

(
Ω

2

)2

. (1.7)

This spectrum can be seen in Fig. 1.2 for varying Ω, with m = ~ = 1 for simplicity.
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Now consider the effect of many body interactions on the ground state of this system.

For this 2-component system the Hamiltonian Eq. (1.6) is modified by a spin-dependent

nonlinear interaction term which can be expressed as

Hint =

 g↑↑|ψ↑|2 + g↑↓|ψ↓|2 0

0 g↓↑|ψ↑|2 + g↓↓|ψ↓|2

 . (1.8)

We take symmetrical intraspecies interactions g = g↑↑ = g↓↓ and δ = 0 throughout the

remainder of this section. To solve Eq. (1.3) and achieve a rich phase diagram, we take use

of the variational method with an associated energy functional,

ε =

∫
dx
[
ψ†Hkψ +

g

2
|ψ↑|4 +

g

2
|ψ↓|4 + g↑↓ψ↑|2ψ↓|2

]
. (1.9)

We take as our ansatz

Ψ =
√
ρ

|C1|

 cos θ

− sin θ

 eik1x + |C2|

 sin θ

− cos θ

 e−ik1x

 , (1.10)

where ρ is the number particle density and k1 is the momentum of the BEC [11]. Inserting

Eq. (1.10) into Eq. (1.9) and minimizing with respect to the four variational parameters ρ,

k1, C1, and C2 with normalization condition |C1|2 + |C2|2 = 1 leads to the ground state

wavefunction.

For a given set of the non-variational parameters of Eq. (1.9), the interacting ground

state exhibits three quantum phases: (I) stripe phase having k1 6= 0, |C1| = |C2| = 1√
2
, and

〈σz〉 = 〈σx〉 = 0; (II) plane-wave phase having k1 6= 0, |C1C2| = 0 and |〈σz〉| > 0; (III)

zero-momentum phase having k1 = |〈σz〉| = 0.

1.4 Traditional Methods for Ground-State Calculations

One method for ground-state calculations is known as imaginary time propagation (ITP) [12].

Generally, one can evolve any initial wavefunction |ψ(0)〉 in time in a given system by use of
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unitary time evolution operator U = e−iHt/~,

|ψ(t)〉 = e−iHt/~ |ψ(0)〉 . (1.11)

This operation can be modified by use of a Wick rotation τ = −it to find an approxima-

tion to the lowest energy eigenstate of H. Under this rotation, the time evolution operator

becomes U = e−Hτ/~. If then an appropriate guess of the initial wave function |ψ(0)〉 is taken

(i.e. a Gaussian distribution for the ground state of a 1-D simple harmonic oscillator), one

can asymptotically approach the true ground state of H,

|ψ〉g = e−Hτ/~ |ψ(0)〉 . (1.12)

In practice, ITP is an iterative process done on sufficiently small time steps. More details

on of this procedure can be seen in Appendix A.

Another common method is the well-known variational method where one takes a trial

wavefunction of the given system, known as an ansatz, with varying parameters. In general,

this can be an iterative process to obtain multiple lower level eigenstates. For the purposes of

the research presented in this dissertation, only the ground state is needed with this method.

To obtain the ground-state wavefunction for a given Hamiltonian H, with |φ〉 defined as the

predetermined ansatz, the energy functional is defined as,

ε =
〈φ|H |φ〉
〈φ|φ〉

. (1.13)

This functional has the property ε ≥ E0, where E0 is the ground state energy of H. The

functional is then minimized across all variational parameters, defined in the ansatz, to

achieve the ground-state wavefunction and corresponding energy.

These two methods are frequently used in current research on ultracold atomic systems.

Both are invaluable tools used for the research discussed in the subsequent portions of this

dissertation. More detailed analysis for each of these methods is given when the need for

each method is presented.
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1.5 Machine Learning in Quantum Systems

Predictive analytics, in the most basic form, have been around for centuries. For instance,

least squares, a minimization method used in the prediction of regression models, has been

used since the early 19th century [13]. However, it was not until the recent advance of

computer processing power, along with the even more recent progress of graphical-processing

units (GPUs), that algorithms could be taught to learn patterns and perform predictive

analysis without the need to use explicit programming. This process of learning by example

is now known globally as machine learning [14]. Currently, machine learning is used across

various industrial applications and in many academic settings.

There are a ever growing number of algorithms encompassed in the broad field of study

known as machine learning. Each of these algorithms exceeding in specific subcategories of

problems. For instance, XGBoost [15], a popular (eXtreme) gradient-tree boosting algorithm

has had a lot of recent success in classification problems. However, for teaching a computer

to play video games at a competitive level, deep reinforcement neural networks are a better

choice [16].

Of particular interest to this study is the use of convolutional neural networks (CNNs) [17].

These neural networks make use of multiple convolutional layers to filter inputs before prop-

agating throughout the rest of the network. In this way, the convolutional layers can be

thought of as pattern-recognition layers. This is a powerful tool that is of great use to

research done in imagine classification and modern computer vision. This includes the in-

valuable use of CNNs in current condensed matter research to detect and classify crystal

structures from diffraction patterns [18].

A basic example of how such image classification can be done using CNNs is seen Fig. 1.3.

Here, the input image, which the computer sees as an array of pixel values, is fed into multiple

convolutional layers. Each of these convolutional filters is independent of each other and

serves a unique purpose. The total number, and overall types, of convolutional layers used

7



Figure 1.3. Setup of a typical convolutional neural network for imagine classification. The
first layers (input) are images that can realized as matrices of pixel values. These matrices
are fed into preprocessing (not shown) and convolutional layers (orange). The outputs from
the convolutional layers then are fed into two fully-connected (also known as dense) layers
(green). The final output layer is a normalized vector whose components relate to each
possible predefined category.

is dependent on the given problem. The output of these convolutional layers is fed into the

more traditional dense neural network layers. The final layer is an output vector consisting

of the classification probabilities.

Since the input of CNNs can be thought of a tensor containing spatial information, the

use of CNNs is not just limited to image classification. Recently, the ground-state solutions

to the Schrodinger equation for various potentials was solved using CNNs [19]. The input for

the network were the potentials chosen belonging to the classes of simple harmonic oscillators,

infinite wells, double-well inverted Gaussians, and pseudo-random potential functions. The

network trained in this study showed promising results with a median absolute error of

5.90 mHa across all classes. Fig. 1.4 shows a simplistic schematic of the components of

this network. In direct comparison to the classification of image inputs (as in Fig 1.3),

the potential energy function is simply a tensor of values relating to the magnitude of the

8



Figure 1.4. Illustration of how a convolutional neural network can be used to predict ground-
state wavefunctions for various potentials in a quantum system. Here, the input of the
network is a tensor whose components correspond to the magnitude of the potential at each
point in space. The setup of the hidden layers is similar to imagine classification problems
and can be tuned for robustness. The output is the ground-state wavefunction Ψg. This is
a regression network in contrast to Fig. 1.3, which is setup to output a classification.

potential at each discrete point in space. However, in contrast to image classification, this is

a regression problem and the outputs will be the normalized ground-state wavefunction for

each input potential. The research presented here will be crucial to studies presented later

in this dissertation.
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CHAPTER 2

TIME-REVERSAL-INVARIANT SPIN-ORBIT-COUPLED

BILAYER BOSE-EINSTEIN CONDENSATES1

Authors – Matthew C. Maisberger*, L.-C. Wang*, K. Sun, Y. Xu, and C. Zhang

The Department of Physics, SCI10

The University of Texas at Dallas

800 West Campbell Road
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2.1 Time-Reversal Symmetry

Time-reversal invariance constitutes a fundamental symmetry in quantum physics. A half-

integer spin system always possesses two-fold degenerate quantum states, or Kramers de-

generacy [20], under the time-reversal symmetry. In solid-state materials, the presence of

time-reversal symmetry and spin-orbit coupling, interaction between particle spin and orbital

degrees of freedom, is responsible for many exotic phenomena such as quantum spin Hall

effects and topological insulators [21, 22, 23], whose key physical features—a gapless edge

state—is guaranteed by Kramers degeneracy. Recently, a class of exotic quantum phases

have been found in ultracold atoms through the engineering of various types of spin-orbit

coupling via light-matter interaction [24, 25, 26, 27, 28, 29], including spin-linear-momentum

coupling [30, 31, 32, 33, 34, 35, 36, 11, 37, 38, 39, 40, 41, 42, 43, 44], which has been widely

studied in experiments [8, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55], and proposed spin-orbital-

angular-momentum [56, 57, 58, 59, 60, 61] as well as spin-tensor-momentum [62] couplings.

However, in these schemes, the spin-orbit interaction is generated by a laser-induced Raman

transition between atomic hyperfine states, which manifests as a constant Zeeman field along

a fixed direction and hence inevitably breaks the time-reversal symmetry. For further pursuit

of new quantum phases with nontrivial physics due to the interplay between time-reversal

symmetry and spin-orbit couplings, we look to create time-reversal invariance coexisting

with spin-orbit coupling in these systems.

Recently, there has been a focus on spin-orbit coupled degenerate Fermi gases preserving

time-reversal symmetry [63]. In the succeeding, I provide detailed analysis on such a scheme

that generates time-reversal symmetry in ultracold atoms and investigate interacting Bose-

Einstein condensates (BECs) realized with it. This approach generalizes the scheme of

Sec. 1.3 [8], in which two Gaussian lasers are applied to a spinor gas, by replacing one

laser beam with a first-order Hermite-Gaussian (HG) beam [see Fig. 2.1(b)]. The HG beam
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Figure 2.1. (a) Raman transition of 87Rb hyperfine states. (b) Scheme for generating spin-
orbit coupled BECs preserving time-reversal symmetry. A pair of counter-propagating Gaus-
sian (G) and Hermite-Gaussian (HG) beams induce a Raman transition that have opposite
amplitudes between upper (y > 0, red) and lower (y < 0, blue) regions. Additional far-
detuned HG laser beam can be used to create a bilayer structure with interlayer tunneling
t. The modes for the beams (Ω1,0 and Ω0,0) can be seen in Eq. (2.2)

.

confines the bosonic gas into two coupled spatial layers, induces spin-orbit coupling, and

preserves the bilayer system under time-reversal operation,

Θ = iσyτxK, (2.1)

where σ and τ are Pauli matrices in spin and layer space, respectively, and K is the conjugate

operator. Note that Θ exhibits the same physical properties as the regular time-reversal

operator by being anti-unitary and Θ2 = −1. This setup focuses on both the single-particle

picture and interacting Bose gases to find interesting ground-state phase diagrams and other

correlations that have not been found in regular spin-orbit coupled BECs. The key results

of this study can be summarized as:

(i) The system’s single-particle energy bands pair as time-reversal partners and are also

subject to a spin-layer symmetry σzτx. The Kramers degeneracy prevents the gap opening

between the paired two bands at zero momentum, resulting in double finite-momentum band

minima that always exist, i.e., the zero-momentum state can never be the single-particle

ground state even at a large Raman coupling, unless the two layers completely decouple.
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(ii) The interacting phase diagram of a ground-state Bose gas exhibits layer-stripe, plane-

wave, and zero-momentum phases. The layer-stripe phase (and its Kramers partner), occur-

ring at weak Raman coupling, exhibits spatially modulating layer polarization but no total

density modulation due to the time-reversal symmetry. At large interaction and large Ra-

man coupling, the many-body effects drive the BEC to a zero-momentum ground state (or

its Kramers partner), even if the zero momentum is not the single-particle band minimum.

(iii) The Bose gas exhibits a global spin-layer correlation 〈σxτz〉 6= 0, while either the

spin or the layer component vanishes, 〈σx〉 = 〈τz〉 = 0. This is needed for experiments to

measure spin and layer properties simultaneously rather separately.

2.2 Model and Hamiltonian

The setup begins with ultracold atoms with two hyperfine spin states ( ψ↑ ψ↓ )T , subject

to a pair of counter-propagating lasers E± along the x-direction, with transverse electromag-

netic modes of a general Hermite form. The laser amplitudes are given as

Ω±m,n = AHm(

√
2y

w
)Hn(

√
2z

w
)e−

y2+z2

w2 ±ikRx, (2.2)

where A represents the overall beam strength, Hn is the nth Hermite polynomials, w is

the beam waist, and kR is the wave vector. The two beams impart spin-dependent linear

momentum into the atoms and also induce Raman transition ΩR(r) = Ω+∗Ω−/∆ between the

spin states, as shown in Fig. 2.1(a) (∆ is a uniform detuning). If both beams are of the lowest

mode Ω±0,0 (two Gaussian beams), we have the traditional setup for generating the spin-linear-

momentum coupling as discussed in Sec. 1.3. To generate time-reversal invariance, the focus

will be on a practical generalization of the Hermite modes Ω+
1,0 and Ω−0,0, i.e., left-propagating

Gaussian and right-propagating HG beams. A schematic of this setup is shown in Fig. 2.1(b).

The Raman transition amplitude ΩR(r) now has an odd spatial parity along the y direction

with maximum strength at y = ±w/
√

2. Along the y direction, a bilayer trapping potential
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can be realized using a repulsive potential at the center of a tight harmonic trap or a single

far-detuning HG laser beam of the (1,0) mode. Such additional far-detuning trapping lasers

avoid the heating from the trapping and ensure the independent tunability of the interlayer

tunneling. Performing a unitary transformation as in Eq. (1.5) and integrating out the y

and z degrees of freedom leads to the effective single-particle Hamiltonian for upper and

lower layers, respectively, as 1
2
(p2
x − 2pxσz ±Ωσx), where pxσz is the spin-orbit coupling and

Ω is the effective Raman coupling. Here we take kR and ~2k2
R/2m as momentum and energy

units, respectively (m is the atomic mass). The only difference between the two layers is

the opposite sign of Raman coupling due to the HG beam. If the two layers have a slight

overlap, the dominant interlayer coupling is particle tunneling between the two layers. We

can treat the two layers as another two-level degrees of freedom and write down the whole

Hamiltonian in spin-layer basis ( ψ1↑ ψ1↓ ψ2↑ ψ2↓ )T , as

H =
1

2
(p2
x − 2pxσz + Ωσxτz − tτx), (2.3)

where t is the tunneling strength. In general, the Hamiltonian can have a detuning term

δzσz. This term, however, needs to be tuned to zero for the symmetry we are interested in.

The Hamiltonian exhibits a spin-layer time-reversal symmetry,

ΘH(px)Θ
−1 = H(−px), (2.4)

with the energy dispersion of the lower bands expressed as,

E±0 (k) =
1

2
(k2 −

√
(2k ± t)2 + Ω2). (2.5)

These bands become time-reversal partners, i.e., E+(k) andE−(−k) form degenerate Kramers

pairs, as shown in Fig. 2.2. The fact E+(0) = E−(0) leads to a symmetry protected band

crossing (or gap closing) at k = 0. Similarly, the upper two bands,

E±1 (k) =
1

2
(k2 +

√
(2k ± t)2 + Ω2), (2.6)
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Figure 2.2. Single particle band dispersion Eq. (2.5) and Eq. (2.6) in the spin-layer basis.
The band crossing at k = 0 is time-reversal symmetry protected. Each band also satisfies a
spin-layer symmetry 〈σzτx〉 = ±1 (light red and dark blue, respectively). Other parameters
are set to Ω = 1 and t = 0.5.

are also time-reversal partners crossing at k = 0. At Ω = 0, the lower band E0 has its

minimum at kmin = ±1. As Ω increases, the minimum shifts toward the zero momentum

and approaches kmin = t
Ω−2

+O(Ω−3) in the large Ω limit (Ω� 2). Considering the minimum

of the E±0 bands at ±kmin, we see that the single-particle ground states are double degenerate

and always possess finite momentum ±kmin 6= 0—the crossing point k = 0 can never be the

ground state—with the presence of interlayer coupling t 6= 0. If the layers are completely

decoupled, or t = 0, the lower bands E±0 (k) become identical, and the ground states undergo

a transition from finite to zero momentum at Ωc = 2, the same critical value as in the

conventional spin-orbit coupled system.

In addition to the time-reversal symmetry, the Hamiltonian also exhibits a spin-layer

symmetry,

[H, σzτx] = 0. (2.7)
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The paired bands E∓0 (E±1 ) exhibit spin-layer symmetry 〈σzτx〉 = ±1 [red and blue colors in

Fig. 2.2, respectively]. By measuring this symmetry, one could distinguish a state from its

Kramers partner.

2.3 Interacting Bose Gases

Now we consider of the effects of particle interactions Bose gas in this time-reversal-invariant

setup. As outlined in Sec. 1.4, two complementary methods are used to find the ground state

wavefunction: variational analysis and Gross-Pitaeviskii equation (GPE) numerics. Details

of the variational method are outlined in the following.

We adopt a variational wavefunction as a general superposition of a Kramers pair as

Ψ =
√
ρ


|C1|



cos θ cos γ1e
iδ1

cos θ sin γ1e
iδ2

sin θ cos γ2e
iδ3

sin θ sin γ2


eik1x

+ |C2|



sin θ sin γ2

− sin θ cos γ2e
−iδ3

cos θ sin γ1e
−iδ2

− cos θ cos γ1e
−iδ1


e−ik1x


, (2.8)

with particle number density ρ and normalization condition |C1|2 + |C2|2 = 1. The ansatz is

generalized from the conventional spin-orbit-coupled system but respects the time-reversal

associated degeneracy. By setting θ = π/4 and γ1 = γ2, the top-layer components (first two

rows) of Ψ reproduce the previous results without time-reversal symmetry in Ref. [11].

The BEC’s energy density is expressed as

ε =

∫
dx

[
Ψ†HΨ +

g

2
|Ψ|4 + g↑↓

∑
j=1,2

|ψj↑|2|ψj↓|2
]
, (2.9)
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where g and g↑↓ are interatomic interaction between same and opposite spin species, respec-

tively. Inserting Eq. (2.8) into Eq. (2.9), leads to the energy density as a functional of 8

independent variables k1, |C1|, θ, γ1,2, and δ1,2,3. The energy functional can be broken down

into three terms: the single-particle ε0, intraspin interaction εg, and the interspin interaction

εf . Combining these terms gives the full energy functional ε = ε0 + εg + εf . A full overview

of this energy functional and all of its terms can be seen in Appendix B.

Minimizing the functional with respect to the 8 variables leads to the ground state wave-

function. It is important to note that ΘΨ, the time-reversal state of Ψ, is always orthogonal

to Ψ and gives the same energy functional ε. This means that the ground states are always

doubly degenerate and are time-reversal partners of each other. The variational ansatz also

allows us to compute the associated physical properties as

〈σz〉 = (cos2 θ cos 2γ1 + sin2 θ cos 2γ2)(|C1|2 − |C2|2),

〈σx〉 = [sin 2γ1 cos2 θ cos δ12 + sin 2γ2 sin2 θ cos δ3]

×(|C1|2 − |C2|2),

〈σxτz〉 = cos2 θ sin 2γ1 cos δ12 − sin2 θ sin 2γ2 cos δ3,

〈σzτx〉 = sin 2θ[cos γ1 cos γ2 cos δ13 − sin γ1 sin γ2 cos δ2]

×(|C1|2 − |C2|2), (2.10)

where δij ≡ δi − δj.

The interacting ground state exhibits three phases: (I) layer-stripe phase having k1 6= 0,

|C1| = |C2| = 1√
2
, and 〈σz〉 = 〈σx〉 = 〈σzτx〉 = 0, which results in a spatially modulated layer

polarization; (II) plane-wave phase having k1 6= 0, |C1C2| = 0, |〈σz〉| > 0, and |〈σzτx〉| = 1;

(III) zero-momentum phase having k1 = |〈σz〉| = 0.

First we look at typical phase transitions for moderately interacting BEC (g, g↑↓) =

(1, 0.9) as the Raman strength Ω varies. Figure 2.3(a) shows the momentum k1 as a mono-

tonically decreasing function of Ω for either coupled (t = 0.5, green curve) or decoupled
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Figure 2.3. (a) Momentum k1 vs Raman strength Ω for cases of decoupled layers t = 0
(purple) and coupled layers t = 0.5 (green). The discontinuity in both curves (enlarged in
the inset) indicates the transition between layer-stripe and plane-wave phases. In the t = 0
case, the plane-wave phase can make a transition to the zero-momentum phase (k1 dropping
to zero), which does not occur at t = 0.5. (b) Spin polarization |〈σz〉| (red) and spin-layer
symmetry |〈σzτx〉| (blue) vs Ω at t = 0.5. Note that both curves are zero and hence overlap
each other in the layer-stripe phase region at small Ω. In both (a) and (b), the interaction
is set to (g, g↑↓) = (1, 0.9), and curves (symbols) represent the variational (numerical GPE)
results.

(t = 0, purple curve) layers. At small Ω, the system is in the layer-stripe phase (I). As Ω

increases, the k1 curves exhibit discontinuities, at which the system undergoes a first-order

phase transition to the plane-wave phase (II). With further increase in Ω, the k1 curve of

decoupled layer drops to zero at a critical value, representing a second-order transition to

the zero-momentum phase (III), while that of coupled layers smoothly decreases but does

not drops to zero, i.e. no transition to phase (III). The disappearance of phase (III) due to

the interlayer coupling agrees with the single-particle physics discussed previously.

Figure 2.3(b) shows spin polarization |〈σz〉| and spin-layer symmetry |〈σzτx〉| as a function

of Ω for coupling strength t = 0.5. The layer-stripe phase (I) is spin unpolarized |〈σz〉| = 0,

while the plane-wave phase (II) is spin polarized. This implies that the large discontinuity in

spin polarization could provide a measurable experimental signature for the (I)–(II) transi-
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Figure 2.4. (a) Phase diagram in the g–Ω plane for t = 0.5. In g < 40 (> 40), the system
undergoes a transition from the layer-stripe phase (I) to the plane-wave phase (II) [zero-
momentum phase (III)]. (b) Phase diagram in the t–Ω plane for g = 1. The zero-momentum
phase only occurs in the case of decoupled layers t = 0 at Ω > 2. The color in both (a)
and (b) represents momentum k1, as scaled in the bar graph. (c) Top (black) and bottom
(blue) layer density profiles ρ±(x) of a layer-stripe phase at Ω = t = 0.5 in (b), exhibiting
out-of-phase modulations between maximum ρM and minimum ρm, or spatial modulations
in 〈τz〉. (d) Modulation amplitude τz,max [≡ (ρM − ρm)/2] versus t (orange, top axis) and g
(green, bottom axis). The interspin interaction is set to be g↑↓ = 0.9g for all the panels.

tion. The spin-layer symmetry |〈σzτx〉| = 0 in the layer-stripe phase indicates an interaction

induced symmetry breaking that equally mixes two states of opposite symmetry.

We turn to explore the interacting ground-state phases in a wider parameter region.

Figure 2.4(a) shows the ground-state phase diagram in the g–Ω plane for t = 0.5 and g↑↓ =

0.9g. The (I)–(II) phase transition is shown to be allowed for 0 < g < 40, in which the layer-
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stripe phase region increases with g. When g > 40, the plane-wave phase (II) disappears,

and the system make transitions from layer-stripe (I) to the zero-momentum (III) phase

for varying Ω. Since the zero-momentum state is never energetically favored by the single-

particle Hamiltonian with finite t, this zero-momentum phase region is fully attributed to the

interaction effect. In fact, the system staying at zero-momentum state costs higher single-

particle energy but saves more ferromagnetic interaction energy∝ (g−g↑↓)ρ. Experimentally,

this region can be achieved by increasing the atomic two-body scattering length through the

Feshbach resonance [64] as well as the atomic density.

Additionally, we study the phase diagram in the t-Ω plane for fixed (g, g↑↓) = (1, 0.9)

in Fig. 2.4(b). The interlayer tunneling is shown to linearly increase the layer-stripe phase

region with respect to an increase in Ω. In the plane-wave phase (II), the system momentum

increases with t at given Ω. The zero-momentum phase (III) appears only at t = 0, in which

the system returns to the layer-independent conventional spin-orbit coupled BEC and hence

exhibits the (II)–(III) transition at Ωc = 2 as shown in Fig. 2.3(a) (green curve).

We further look into the detailed structure of the layer-stripe phase. Figure 2.4(c)

shows the top and bottom layer density profiles, respectively, of a layer-stripe state Ψs

at Ω = t = 0.5 and (g, g↑↓) = (1, 0.9). The two density profiles show out-of-phase spa-

tial modulations. In other words, the system exhibits a layer-polarization stripe pattern

τz(x) = Ψ∗s(x)τzΨs(x) with wavelength λs = π/k1. The zero total density modulation is a

direct consequence of time-reversal symmetry, which makes the plane-wave states of k and

−k in Eq. (2.8) orthogonal to each other at any spatial point. This contrasts the conventional

system of Ref. [11] or a bilayer system with same-sign Raman coupling on both layers, the

stripe phase exhibits total density modulations. Moreover, the layer-stripe phase is doubly

degenerate. The other degenerate state is the Kramer partner ΘΨs, which has a time re-

versed layer-polarization modulation −τz(x). Figure 2.4(d) shows the oscillation amplitude

of τz(x), denoted by τz,max, vs tunneling strength t and interaction strength g. This quantity
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Figure 2.5. (a) Spin-layer correlation 〈σxτz〉 vs. Raman strength Ω in the case of decoupled
layers t = 0 (red) and coupled layers t = 0.5 (blue). (b) Phase diagram in the t–Ω plane with
color scale representing 〈σxτz〉. In both (a) and (b), the interaction is set to (g, g↑↓) = (1, 0.9).

decreases as either t or g increases. Experimentally, he layer-stripe phase can be detected

by the standard time-of-fight (TOF) image, showing the co-occupation of both momentum

minima. The out-of-phase stripe pattern may be probed with the Bragg diffraction, which

has successfully revealed the density stripe structure of ultracold atomic gases [65].

Final analysis is done on the intrinsic spin-layer correlation 〈σxτz〉 of the bilayer BEC.

All three phases of the system are unpolarized in the x-spin direction 〈σx〉 = 0 and density

balanced between the two layers 〈τz〉 = 0. However, the product observable of both quantities

〈σxτz〉 does exhibits non-zero expectation value. In Fig. 2.5(a) we plot 〈σxτz〉 vs Ω for t = 0

and 0.5 at (g, g↑↓) = (1, 0.9). As Ω increases there is a gradual increase in the spin-layer

correlation, along with a discontinuity in the curves that represents a (I)–(II) phase transition

for both coupled and decoupled layers. When the system is in the zero-momentum phase it

is shown that the spin-layer correlation is at it maximum value of 〈σxτz〉 = 1, which is only

the case for t = 0 at low interaction strengths. Figure 2.5(b) shows the ground-state phase

diagram in the t–Ω plane with color denoting 〈σxτz〉. The layer-stripe phase has relatively
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small correlations compared with the plane-wave phase. Such a spin-layer correlation is

particularly useful for characterizing the phase diagram in experiments.

The experimental conditions for our time-reversal invariant system are similar to but

slightly modified from the current setups. We consider a 87Rb bilayer BEC created in a

quasi-one-dimensional harmonic trap in the x direction and a double-well shaped potential

in the y direction. The wavelength of HG Raman laser is 788 nm, which corresponds to the

recoil energy ER = h × 3697 Hz. If one tunes the bilayer separation to be 0.4 µm and the

double-well barrier to be 2ER, the effective tunneling is t = 0.2ER, with which important

physics of our model can be explored. Higher tunneling is achievable by decreasing the

separation or the barrier.

The layer-stripe phase can be detected by the standard time-of-fight (TOF) image, show-

ing the co-occupation of both momentum minima. The out-of-phase stripe pattern may be

probed with the Bragg diffraction, which has successfully revealed the density stripe struc-

ture of ultracold atomic gases [65]. Moreover, we suggest the use of spin-layer correlation

〈σxτz〉 to experimentally determine the phase diagram and phase transitions. In experiment,

such correlation must be determined by performing both spin-resolved and layer-resolved

measurements. Simply measuring spin or layer components leads to trivial results.
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CHAPTER 3

CONVOLUTIONAL NEURAL NETWORKS FOR

BOSE-EINSTEIN CONDENSATES

The study presented in this chapter focuses on the building and training of a convolutional

neural network (CNN) to predict the ground-state wavefunctions of a bosonic many body

system. We generalize the ideas presented in Sec. 1.5 by expanding on the network and

results presented in Ref. [66] by modifying the CNN structure to allow for complex phases.

In general, the ground-state wavefunctions of SOC BECs are complex and therefore the

ability to calculate these complex phases is crucial. We will focus on building a CNN for a

two-component BEC with SOC such as that presented in Ref. [8] and detailed in Sec. 1.3.

However, the generalization of the CNN presented in the following sections allows for easy

modifications to study many areas in ultracold atomic gases, including time-reversal invariant

SOC BECs.

3.1 Network Generalization for Spin-Orbit Coupling

Exact analytical ground-state solutions of ultracold quantum many-body systems, particu-

larly SOC BECs, are a rarity. This is due primarily to the nonlinearity of the Hamiltonian

in these systems. Studies of the ground-state wavefunctions and their phases require various

numerical strategies that are often computationally intensive. These traditional methods are

detailed, and not limited to those shown, in Sec. 1.4. Recently, convolutional neural net-

works (CNNs), most commonly today used in problems involving computer vision [67], were

trained to predict the solutions of a two-component BEC without SOC [66]. We propose a

modified use of CNNs to allow for the prediction of the complex components in SOC BECs

ground-state wavefunctions.

The procedure taken in this study can be seen in Fig. 3.1 and is as follows: First, we

define the parameters to create the Hamiltonian of the two-component SOC BEC. Then, we
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Figure 3.1. Flowchart showing our process from problem assessment to network evaluation.
After defining the our Hamiltonian Eq. (3.1), the entire dataset is generated over the range
of Ω using an iterative imaginary-time evolution process for each data point. The dataset
is then broken into two subsets. The network is then trained on the larger training dataset
minimizing the MSE and watching for overfitting. The network is then evaluated on the
smaller test dataset. Any further network tuning is then used at this point to retrain the
network and to increase its predictive performance capabilities.

create a base dataset using imaginary-time evolution on the dimensionless Gross-Pitaevskii

equation [68]. The CNN is then trained on a large subset of the base dataset and further

tested on the remaining hold-out validation set. Any further tuning to the network’s param-

eters, known as hyperparameters, is then performed to optimize the defined loss-function

(error metric).

We now discuss the Hamiltonian and parameters chosen for this study. We consider a

one-dimensional two-component SOC BEC in the presence of an external potential. The

external trapping potential is weak harmonic potential Vext(x) = 0.25x2. The Hamiltonian

in terms of the time-independent GPE is defined as

H =
1

2
(p2
x − 2pxσz + Ωσx) + Vext(x) +Hint (3.1)

where σi are the Pauli matrices, Ω is the Raman coupling strength, and Hint, given as

Eq. (1.8), is the particle interaction term. The ground-state wavefunctions of this Hamilto-

nian are well known and have been studied extensively [11], where comparison to the GPE
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Figure 3.2. A reverse setup of a convolutional neural network for imagine classification (Like
that shown in Fig. 1.3). The main layers of the network are the same (fully-connected and
convolutional layers) expect the network is now propagating in the reverse direction. The
intuition is that a certain input classification, or a combination of classification inputs, could
be used to generate an output tensor. Here, the output tensor would be an image. The
network setup in this orientation serves as a template for a single-input to wavefunction-
output network.

solutions can be compared against the variational minimization of the energy functional to

a very high degree of accuracy.

The algorithm used in this study is a deep convolutional neural network with Ω as the

true inputs and ground-state wavefunctions as the outputs. The overall setup of the network

will be similar in structure to [66]. The composition of the network cleverly mimics a

high dimensional input classification convolutional neural network propagating in the reverse

direction, an intuitive example of which is shown in Fig. 3.2. The true input Ω is modified

to an input-tensor via two sequential dense layers. The input-tensor is then fed into the first

convolutional layers (seen in Fig. 3.3 in orange) where the pattern recognition takes place.

The two-component ground-state wavefunctions of the Hamiltonian Eq. (3.1) will be the

output. In general, each spin-component of the ground-state wavefunction is complex. For
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Figure 3.3. Our convolutional neural network setup to take the Raman coupling strength
Ω as an input and to output the ground-state wavefunction of a two-component spin-orbit
coupled BEC. The input Ω is fed into two fully-connected layers before going into a series of
convolutional layers. The output of the network will be the two components of the ground-
state. Note that since, in general, the ground-state will be a complex function, the output is
divided into real and imaginary pairs for both spin components, leaving us with four output
vectors. Leaky ReLu activation functions are used after each convolutional layer (not shown).

that reason, the spin-component outputs (ψ↑ ψ↓) are further split into real and imaginary

components. Therefore, the output of the neural network will be a four-component vector

(ψ↑r ψ↑i ψ↓r ψ↓i), as can be seen in the right of Fig. 3.3. Further generalization of this

CNN leads to an output of a 2× j vector, where j would be the number of components (for

spin, layers, etc...) of the original ground-state wavefunction.

For creating the training samples, we vary the Raman coupling strength Ω ∈ [0, 3]. We

hold the particle interaction terms for the BEC static in the moderately interacting regime

(g, g↑↓) = (1, 0.9) for the rest of this study. The parameter space in this range will display all

three ground-state phases of a traditional SOC BEC: stripe-phase, plane-wave phase, and

zero-momentum phase. Further details of these ground-state phases and a discussion of the

experimental setup of this scheme are outlined in Sec. 1.3. The number of points chosen for

the position space is 29 in one-dimensional space. The overall size of the dataset is 3000 GPE
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Figure 3.4. Sample of two momentum space wavefunctions for stripe-phase and plane-wave
phase. The left column shows the wavefunctions obtained from imaginary time evolution of
the GPE with spin-up in red and spin-down in blue. The right column shows the predicted
wavefunctions generated from the trained CNN model. The stripe-phase was taken at Ω =
0.25 and the plane-wave phase at Ω = 1.7.

generated ground-state wavefunctions uniformly distributed over the full range of Ω, with

2400 used as the training dataset and 600 used as the validation dataset. Care was taken to

ensure that the train-test splitting contained an equal ratio of ground states between each

of the three phases. This process, generally known as stratified-splitting, is a critical step to

guarantee that the network is not trained on a majority of phases belonging to one, or at

most two, classes and tested on the left-over phases.

The loss-function used in the training of the deep CNN uses mean-squared-error between

the predicted ground-state wavefunctions and the ones obtained from the GPE evolution

MSE =
∫
dx|ψpred − ψreal|2, where we take real wave-function to be the GPE solution

and the predicted wave-function to be the CNN generated solution for the remainder of this
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study. The CNN is trained until the mean-squared-error has reached a minimum value, while

watching for overfitting. Since an acceptable lower bound of MSE is difficult to quantify,

we compare the ground-state energy calculations of the CNNs predicted values vs GPE

evolutions using the relative energy difference after training has completed. The relative

energy difference is given by,

ε = 〈φ|H |φ〉 ,

εrd =
|εreal − εpred|

εreal
, (3.2)

where H is given as Eq. (3.1). This error term gives a better sense of how close the CNN is

to predicting the true ground-states.

We now will analyze the output of the CNN which has been trained on the full spectrum

training dataset. Fig. 3.4 shows an example of two GPE generated momentum-space wave-

functions (left), one stripe-phase and one plane-wave phase, compared to the CNN output

(right) for the same parameters. Fig. 3.5(a) shows the momentum k1 as a function of Ω,

while Fig. 3.5(b) shows spin polarization |〈σz〉| as a function of Ω. The GPE results are

shown in blue. A random subsample of the test dataset is used to predict both k1 and

|〈σz〉| (shown as red-circles). For small Ω, we see the largest discrepancy between the two

methods. For larger values of Ω, past the range of the stripe-phase, the results of the CNN

and the GPE are fairly similar. The average relative energy difference over full range of Ω

for the test set is 〈εrd〉 = 1.67 × 10−2, with particularly poor performance near the phase

transition boundaries (shown by the dotted-lines in Fig. 3.5). This performance metric can

be improved with a larger training dataset over a more granular range of Ω. Overall, the

average computational cost decreased for the generation of one ground-state wavefunction

from 100 seconds for imaginary-time evolution (over 8× 105 iterations) to 1 millisecond for

CNN prediction. This model was trained with a learning-rate of 10−2 on 1000 epochs.
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Figure 3.5. (a) Momentum k1 vs Raman strength Ω. The plane-wave phase makes a transi-
tion to the zero-momentum phase at Ω = 2. (b) Spin polarization |〈σz〉| vs Ω. In both (a)
and (b), the interaction is set to (g, g↑↓) = (1, 0.9), and dotted-blue and open-red represent
the numerical GPE results and subsampled CNN results respectively. All three phases are
shown: stripe, plane-wave (P-W), and zero-momentum (Z-M) phases. The discontinuity
indicates the transition between stripe and plane-wave phases.
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3.2 Stripe-Phase

Designing and building a singular CNN that allows for accurate regression across phase tran-

sitions is a formidable task. To achieve more precise results, the CNN should be segmented

for each phase; i.e., one CNN for each of the three phases. We now take the generalization of

Sec. 3.1 and narrow the focus to training one of the segmentations, namely the stripe-phase.

The primary reasons the stripe-phase is chosen as the region of interest is two-fold: (I) the

stripe-phase contains complex phases and thus is suitable to study the of the 4-component

output of the setup seen in Fig. 3.3; (II) this phase has seen a lot of recent interest in SOC

BECs as the stripe-phase behaves like a superfluid [65]. The other phase segmentations

would be assembled and tested in a similar manner to what follows, with a change to the

appropriate range of Ω.

The parameters of learning-rate, number of epochs, external potential, interaction strengths

g, along with the completed structure of the CNN, remain the same as the previous section.

Ω is limited to a smaller range to only encompass the stripe-phase. The size of the training

(validation) dataset is 800 (200). Fig. 3.6 shows the relative energy difference as a func-

tion of increasing Ω. The average relative energy difference over the validation set for the

stripe-phase region is 〈εrd〉 = 6.02×10−3. When Ω is close to zero, the stripe-phase collapses

to a wavefunction resembling a zero-momentum phase, which leads to a larger error in this

region. Note the additional spike in error around the mid-region of Ω given in the figure.

This model was trained with a learning-rate of 10−2 on 1000 epochs, with a similar increase

in computation speed as seen in Sec. 3.1.

In summary, we realized a generalizable CNN to predict the complex ground-state wave-

functions for traditional SOC BECs. The network was first trained over a wide range of

parameters to allow for predictions of three very different quantum phases. The results were

then improved, in terms of relative energy difference, when the CNN became segmented. We

tested the segmented model on the strip-phase. However, we should expect similar results
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Figure 3.6. Relative energy difference (Eq. (3.2)) vs Ω over the range of the stripe phase.
The average relative energy difference for the stripe phase is 〈εrd〉 = 6.02× 10−3.

for the other two segmentations. Additional improvements to the error metric of this model

would follow with a larger training dataset, further hyperparameter tuning, and modification

to the hidden layers of the network. Slight modifications to the input, hidden, and output

layers would allow for the CNN presented in this study to be applied to a wider range of

research. This network is setup using a popular online library developed by Google called

TensorFlow [69]. The minimization of the loss-function during training is done using the

Adam optimizer [70].

31



CHAPTER 4

CONCLUSION

In this dissertation, we have studied the effect of spin-orbit coupling on Bose-Einstein con-

densates through the use of artificial gauge fields. We investigated a realistic setup to pre-

serve time-reversal symmetry, which is typically absent in conventional experiments on spin-

orbit coupled ultracold gases. This was accomplished by using different modes of Hermite-

Gaussian beams to create a bilayer system which would allow for tunneling. We further

studied the ground-state phase diagram and found an interaction-induced layer-stripe phase

which exhibits spatially modulated layer polarization. We also found a zero-momentum

phase region which cannot be described by single-particle physics.

We then transitioned into the use of machine learning, in particular convolutional neural

networks, to predict the ground-states of ultracold atomic gases. For the case of spin-orbit

coupled Bose-Einstein condensates, we varied the Raman coupling strength to encompass all

three ground-state phases and used a static harmonic potential trap and particle interaction

strengths to predict the ground-states. We found that predicting the ground-states over this

full spectrum of Raman strengths of the spin-orbit coupled gas was too complex for the

current CNN structure, and a segmented model was created for the stripe-phase. Overall,

the temporal computational improvement from traditional ground-state calculations to CNN

predicted wavefunctions proved to be several orders of magnitude.

The results of the research presented in this dissertation show that spin-orbit coupling

with artificial gauge fields in Bose-Einstein condensates, produced by the various modes of

Hermite-Gaussian beams, provide for the study of new novel quantum phases. Deep learning

algorithms can be trained to study the ground-states of spin-orbit coupled gases as well more

traditional quantum systems. These algorithms lead to faster ground-state simulations as

they are not as computationally intensive. Deep leaning is a field that has expanded quickly

in recent years due to the rapid increase in both central and graphical processing units. There
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are still many areas of study in the field of ultracold gases where this type of predictive power

can be used for further breakthroughs.
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APPENDIX A

IMAGINARY TIME EVOLUTION

Any general wavefunction Ψ can be expressed as a summation of eigenfunctions of a Hamil-

tonian H,

Ψ(x, τ) =
∑
j

ψj(x)e−iEjτ/~. (A.1)

Using a Wick rotation τ = −it and expanding,

Ψ(x,−it) = e−E0t/~
∑
j

ψj(x)e−∆j0t/~, (A.2)

where ∆j0 = Ej − E0. As t → ∞ the excited states decay and we are left with the ground

state ψ0.
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APPENDIX B

BILAYER ENERGY FUNCTIONAL

For the single-particle,

ε0 =
k2

0

2
+
k2

1

2
− k1k0(cos2 θ cos 2γ1 + sin2 θ cos 2γ2) (B.1)

+
Ω

2
(cos2 θ sin 2γ1 cos δ21 − sin2 θ sin 2γ2 cos δ3)

− t
2

sin 2θ(cos γ1 cos γ2 cos δ13 + sin γ1 sin γ2 cos δ2).

For the interaction energy, the intraspin interaction is,

εg =
ng

2

[
(1− 2β)(cos4 θ cos4 γ1 + cos4 θ sin4 γ1 +

3 sin4 θ

4
+

sin4 θ cos 4γ2

4
)

+2β sin2 2θ(cos2 γ2 sin2 γ1 + cos2 γ1 sin2 γ2)
]
, (B.2)

where β = |C1|2|C2|2, and the interspin interaction,

εf =
ng↑↓

4
(1− 2β)(cos4 θ sin2 2γ1 + sin4 θ sin2 2γ2) +

ng↑↓β cos2 θ sin2 θ
[
2 cos2 γ1 cos2 γ22 sin2 γ1 sin2 γ2

− sin 2γ1 sin 2γ2 cos(δ1 − δ2 − δ3)
]
. (B.3)

Combining these terms gives the full energy functional ε = ε0 + εg + εf .
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