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Graphical models provide a general framework for representing and reasoning about data.

Once these models are fit to data, they can be used to answer statistical queries about the

observed data. Unfortunately these answering these queries, or performing inference, is NP-

hard in general. To tackle this problem, many approximate inference methods have been

proposed. Belief propagation, a widely used inference method for probabilistic graphical

models, is exact on tree-structured models but does not guarantee convergence or correct-

ness on general graphs. Alternative approaches based on variational inference have also been

proposed. Variational inference methods start by approximating the intractable model with

a more friendly surrogate model by minimizing the KL divergence between the surrogate and

original models. The marginals from the surrogate model can then be treated as approxima-

tions to the intractable marginals of original model. However the performance of variational

inference methods can be highly dependent on the surrogate model and performance can be

terrible if surrogate model cannot well approximate the original model. Another drawback

of variational inference methods is that extra approximations are necessary in some cases to

make the approach computationally feasible. Also it is very hard to prove any theoretical

guarantees for these methods.
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In this work, we propose a new variational inference method that adopts a mixture of in-

dependent distributions as our surrogate model. Instead of minimizing the KL divergence

between surrogate and original model, we propose to maximize the Bethe free energy with

respect to the surrogate marginals standard optimization strategies. Our method has many

advantages compared to existing methods and is provably correct under certain conditions.

We demonstrate the superior performance of our method on a variety of large-scale real-

world problems, where we show that not only can our method can achieve better results

on these tasks compared existing state-of-the-art methods, but it can also be implemented

efficiently at scale.
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CHAPTER 1

INTRODUCTION

Probabilistic graphical models (PGMs) such as Bayesian networks and Markov random fields

provide a unified framework for modeling and prediction. They have been applied in diverse

fields such as machine learning, bioinformatics, natural language processing, computer vision,

image processing, and more (Koller and Friedman, 2009; Wainwright and Jordan, 2008; Blei

et al., 2003; Fleet and Weiss, 2006a). In these models, dependencies among random variables

are encoded via a graphical structure, which can then be exploited to build efficient exact

and approximate inference routines. In this way, PGMs bring together the study of graph

theory, probability theory, and algorithms.

The concept of PGMs was first introduced by Pearl and Paz (1985) in the mid 80s.

Bayesian networks (also known as belief networks), introduced by Pearl (1985), are a family

of probabilistic graphical models defined on a directed acyclic graphs (DAGs), where vertices

represent the random variables and directed edges capture statistical dependencies.Markov

random fields (Ross Kindermann, 1980) are a family of PGMs defined on a undirected factor

graph, where each factor is represented by a function (potential) defined over a clique (a

single node, an edge, a triangle, etc.). Similar to Bayesian networks, MRFs also can represent

the dependencies between variables, but MRFs can have cycles in their graphical structure,

which allows MRFs the ability to model certain dependencies that Bayesian networks cannot.

These PGMs and their variants, such as clique trees (Halin, 1976), hidden Markov models

(HMM) (Lafferty et al., 2001), conditional random fields (CRF) (Stratonovich, 1965), etc.,

have found applications in a wide variety of problem domains.

Probabilistic graphical models are usually fit to data, e.g., using maximum likelihood

estimation, and then reasoning/prediction (inference) is performed on the learned models.

A variety of different inference queries can be performed. In this work, we will be primarily

concerned with marginal inference, i.e., computing marginal distributions over subsets of the
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random variables, maximum a posteriori (MAP) inference, i.e., finding an assignment of the

random variables that maximizes the joint probability, and marginal MAP inference, which

combines the two. Unfortunately both marginal inference and MAP inference are NP-hard

(Cooper, 1990; Park, 2002), especially when the number of random variables in the model is

large.

Since exact inference in these models is intractable in general, approximate inference

algorithms, which sacrifice accuracy in exchange for scalability, have been popular in prac-

tice. The belief propagation (BP) algorithm (Pearl, 1982), originally developed as an exact

inference algorithm on tree-structured graphs, can be extended to yield an approximate in-

ference method on general PGMs. These kinds of approximate message-passing algorithms

are most useful when the random variables under consideration are from a discrete domain.

When the random variables are continuous, the standard belief propagation algorithm can

be difficult to apply: calculating the exact messages cannot be done in closed form. This

necessitates additional approximations that can makes the BP method approximate even for

tree-structured models. Variants of BP method have been proposed to address these issues

in the continuous case, e.g. nonparametric belief propagation (NBP) (Sudderth et al., 2003),

particle belief propagation (PBP) (Ihler and McAllester, 2009), expectation particle belief

propagation (EPBP) (Lienart et al., 2015) and kernel belief propagation (KBP) (Song et al.,

2011). However, each these approaches have their own drawbacks and limitations. First, in

many of the methods, the potential functions that describe the model are often restricted,

sometimes severely, in order to make the approach tractable or mathematically sound. Sec-

ond, convergence guarantees can be difficult to establish for these models as they often rely

on sampling in order to approximate integrals required as part of the message passing. Last

but not least, the message update procedure of these methods can be either time or space

consuming - especially if accurate answers are required. This limits their applicability to

small-scale problems.
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Variational inference methods are another popular family of approximate inference meth-

ods for PGMs Jordan et al. (1999). Variational inference (VI) approximates the joint prob-

ability distribution with a surrogate model from a more tractable family of distributions.

Optimization is done to minimize the difference, typically the KL divergence, between the

original model and the surrogate model. Inference queries are answered using the simpler

surrogate model. The simplest VI methods are based on mean-field lower bounds (Ander-

son and Peterson, 1987), but more modern approaches are based on mixtures of Gaussians,

e.g., nonparametric variational inference (NVI) (Gershman et al., 2012) or Stein variational

methods (Wang et al., 2018). The quality of the approximation highly depends on how close

the surrogate model is to the original model. In practice, the optimization procedure used to

fit the tractable family is most efficient when closed form updates are possible. If the updates

are not in closed form, further approximations must be made. Finally, the VI optimization

problem is non-convex and NP-hard in general - the procedure need not converge to the best

model from the tractable family.

In this dissertation, we propose a general purpose scalable approximate inference algo-

rithm for PGMs. Specifically, we propose a new approximate variational that can be applied

to general graphs, i.e., graphs with loops, and has no restrictions on the form of the potential

functions. Out method can handle discrete variables, continuous variables, and the mixed

case with both discrete and continuous variables. Our method can be applied to large-scale

real world problems by taking advantage of modern GPUs. We demonstrate the efficiency

and scalability of our method in several synthetic and real world inference applications; we

show that our method advances the state-of-the-art by achieving better or comparable results

when compared with the existing approximate inference methods discussed above.
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1.1 Contributions

The main contribution of this dissertation is a novel approximate variational inference

method called Bethe variational inference (BVI) method. Our method has many advan-

tages over existing methods, including, but not limited to the following.

• Our method makes no assumptions on the potential functions in the probabilistic

graphical models, other than their product must be normalizable. As such, it can

handle the kinds of generic potential functions that arise in real-world applications.

• Unlike other approximations built off of the Bethe free energy, our method yields a

joint distribution from which approximate joint marginals can easily be computed.

• Our method can be easily extended to the hybrid case, i.e., models with both discrete

and continuous variables, with only minor modifications. This gives the flexibility of

adding hidden variables (discrete or continuous) to the model.

• The gradients required for our optimization procedure can be naturally vectorized to

take advantage of modern GPU/parallel computing.

• We can provide theoretical guarantees on the accuracy our method in certain cases,

e.g., when using Gaussian quadrature methods for integral approximation.

• Any other expectation approximation methods can be integrated into our framework,

e.g., approximate sampling methods and Stein variational methods.

• Our method often converges much faster than particle-based message-passing algo-

rithms and frequently achieves comparable or better results.
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1.2 dissertation Outline

The remaining chapters in this dissertation are organized as follows: we begin by reviewing

relevant background material in Chapter 2. We introduce the definition and representation

of probabilistic graphical model as well as two major types of PGMs and discuss variable

elimination. Chapter 3 describes approximate message passing algorithms. We start with

the belief propagation algorithm and describe several variants specifically applicable in the

continuous case. Chapter 4introduces variational inference methods. In Chapter 5, we

present the details of our method - Bethe variational inference. We describe the schema of our

method and provide a detailed analysis. In Chapter 6, we generalize our method to mixtures

of tree-structured models. Chapter 7 considers the approximating the beliefs using different

types of mixture distributions, e.g., Dirichlet mixtures. Chapter 8 provides an experimental

evaluation of our method on both synthetic problems and real world applications. We show

that our method outperforms the state-of-the-art methods on most of the tasks. Finally,

Chapter 9 concludes the dissertation and discusses both the limitations of this work and

potential directions for future work.
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CHAPTER 2

BACKGROUND

In this chapter, we introduce probabilistic graphical models (PGMs) and two popular PGMs,

i.e., Bayesian networks and Markov random fields (MRFs). In addition, we describe the types

of inference tasks that we will be interested in and discuss simple algorithmic approaches for

exact inference.

2.1 Probabilistic Graphical Models

A graph G = (V,E) is a tuple where V is a set of vertices (nodes) and E ⊆ V × V is a set

of edges connecting those vertices. Graphs can be either directed or undirected. In directed

graphs, (i, j) ∈ E indicates that there is an directed edge from node i to node j. A directed

graph is acyclic if there is no sequence of directed edges starting at a vertex i ∈ V and ending

at i. Given an edge (i, j) ∈ E in a directed acyclic graph (DAG), node i is called the parent

of node j and node j is the child of node i.

In the undirected case, (i, j) ∈ E represents an undirected edge between node i and

node j. An example of directed and undirected graphs can be found in Figures 2.1a and

2.1b. In an undirected graph, two nodes in the vertex set are called neighbors if they are

connected by an edge in the graph. We will write N(i) to denote the set of neighbors of

node i ∈ V . A undirected graph is called a tree if there are no cycles, i.e., a sequence of

vertices v0, . . . , vn ∈ V starting at a vertex v0 = i ∈ V and ending at vn = i ∈ V such that

(vt, vt+1) ∈ E for all t ∈ {0, . . . , n− 1} and all vertices are distinct (except for v0 and vn).

A probabilistic graphical model (Koller and Friedman, 2009; Pearl, 2014) is described by

four elements: a graph G = (V,E), a set of random variables X, a domain X for X, and

a set of functions f ∈ F that describe a joint probability distribution that factorizes over

the graphical structure. PGMs provide a simple framework for modeling and compactly
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(a) Example of a directed graph. (b) Example of an undirected graph.

Figure 2.1: Example graphs.

representing complicated distributions. In addition, the graphical structure of PGMs can

be leveraged in the design of exact or approximate inference schemes in order to reduce the

computational cost of these procedures. In the following subsections, we will introduce two

types of most popular PGMs: Bayesian networks and Markov random fields.

2.1.1 Bayesian Networks

Consider modeling the join probability distribution of n random variables x1, . . . , xn. Even

in the simplest case with n binary random variables, i.e., xi ∈ {0, 1}, the joint distribution

requires the specification of 2n−1 values to be completely specified. As n grows, even storing

general distributions quickly becomes intractable and more compact representations of the

joint distribution are required. Observe that the complexity of modeling the joint distribution

would be greatly reduced if it could be factorized into product of smaller (conditional)

distributions. For example, consider a joint probability distribution P (A,B,C) over three

random variables {A,B,C} with domain {1, . . . , k}, which requires the specification of k3−1

values. However, if the joint distribution can be factorized as a product of conditional
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distributions, say P (A,B,C) = P (A)P (B|A)P (C|B), then k − 1 + 2k(k − 1) values would

be sufficient.

The above approach, formalized as Bayesian networks (BNs), was proposed by Pearl

(1985). A BN is a type of PGM that represents the joint probability distribution of a

collection of random variables as a product of conditional distributions associated with a

directed graph. Like general PGMs, a BN consists of four elements:a directed acyclic graph

(DAG) G = (V,E), a set of random variables X (one for each i ∈ V ), a set of domains X for

the random variables X, and a collection of conditional probability distributions of the form

pi(xi|xparent(i)) for each node i ∈ V , i.e., the conditional probability of node i given its parent

nodes, parent(i), in the DAG. The joint probability distribution of a Bayesian network can

be expressed as follows.

P (X) =
∏
i∈V

pi(xi|xparent(i)) (2.1)

An example of a Bayesian network is shown in Figure 2.2 - note that parent(i) can be the

empty set.

By making the assumption that the variable’s distribution of each node only depend on

its parent node, Bayesian networks represent a special factorization of the joint probability

distribution thus significantly reduce the model complexity. Thus Bayesian networks are

perfect for combining prior knowledge into the model (Heckerman, 2008) and easy to inter-

pret. It is also very easy to generate data from a Bayesian network. With these advantages,

Bayesian networks have been broadly applied to the areas of machine learning, speech recog-

nition, medical diagnosis and etc. (Heckerman and Nathwani, 1992; Geiger and Heckerman,

1996; Zweig and Russell, 1998).

2.1.2 Markov Random Fields

Markov random fields (MRFs) are a family of undirected probabilistic graphical models

first used in statistical physics to model physical phenomena (Ross Kindermann, 1980).
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Figure 2.2: Example of Bayesian network

Given their flexibility, MRFs have been popular in the research fields of machine learning,

bioinformatics, natural language processing, computer vision, and many more (Koller and

Friedman, 2009; Wainwright and Jordan, 2008; Blei et al., 2003; Fleet and Weiss, 2006a;

Szeliski et al., 2008).

Distinct from BNs, MRF models are defined via a collection of nonnegative potential

functions defined over the cliques of an undirected graph G = (V,E). In graph theory, a

clique c ⊆ V is a fully connected subgraph: a subset of nodes such that every pair of nodes

in c is connected by an edge in E. A clique can be a single node, an edge, a triangle, etc.

The joint probability distribution of an MRF is then given by the product of the potential

functions.

P (X) =
1

Z
∏
c∈C

fc(xc), (2.2)

where C is the set of cliques of an undirected graph G, Xc for c ∈ C is the subset of variables

corresponding to the vertices in c, fc∈C are nonnegative potential functions whose scope is
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restricted to the random variables in c, and Z is the normalizing constant, also known as

the partition function, that makes P a probability distribution. For example, of the domain

of each random variable is a discrete set, the partition function can be calculated as

Z =
∑
X

∏
c∈C

fc(xc). (2.3)

If the potential functions of an MRF are defined only over edges and nodes, i.e., the only

cliques with non-constant potential functions are nodes and edges, then we call it a pairwise

MRF. And if the domain of all variables in a MRF are continuous, we call it a continuous

MRF. A pairwise continuous MRF can be written in the form of:

P (X) =
1

Z
∏
i∈V

φi(xi)
∏

(i,j)∈E

ψij(xi, xj), (2.4)

where φi : R → R≥0 are node potential functions and ψij : R2 → R≥0 are edge poten-

tial functions. Z is the normalizing constant and can be calculated as Z =
∫
P (X)dX.

Throughout this work, we will assume that the product of potential functions in a MRF is

integrable. An example of continuous pairwise MRF is shown in Figure 2.3. For the re-

mainder of this dissertation, we only primarily work with pairwise continuous MRFs unless

otherwise specified.

2.2 Inference Tasks in PGMs

Given a PGM, statistical inference seeks to answer probabilistic queries. These inference

problems arise naturally in a variety of application domains such as optical flow estimation

(Fleet and Weiss, 2006b), image denoising (Lienart et al., 2015), spam detection (Rayana

and Akoglu, 2015), etc.

Typical inference tasks involve some kind of high dimensional summation, multiplication,

or maximization over sets of random variables. As the number of possible configurations of

the random variables grows exponentially in the model size, even computing the partition

10



Figure 2.3: Example of an MRF

function, which requires summing over all possible states of the variables is intractable in gen-

eral (Roth, 1996). To make these models practical, efficient exact/approximate algorithms

are needed.

Here, we will consider three main inference tasks in PGMs: marginal inference, maximum

a posteriori (MAP) inference, and marginal maximum a posteriori (marginal MAP) inference.

Define a partition of random variables to be X = {XS, XT}. The marginal inference problem

is the task of computing the marginal probability of a subset of variables by summing out

all the other variables, e.g., for a subset of variables XS, marginal inference is interested in

calculating the probability P (XS)

P (XS) =
∑
XT

P (XS, XT ) (2.5)

Marginal inference in PGMs is NP-hard (Cooper, 1990) and in fact #P-complete(Roth,

1996), which has inspired the development of approximate inference algorithms for practical

applications (Murphy et al., 2013; Yedidia et al., 2005a).
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The maximum a posteriori (MAP) estimation problem is to find an assignment to a set

of variables that has the highest probability under the model.

X∗ = arg max
X

P (X) (2.6)

The MAP inference problem is also NP-hard as many natural NP-hard problems can be

reduced to MAP inference in an MRF, e.g., see (Park, 2002). Many approximate MAP

inference methods have been proposed based on linear programming relaxations, and can

perform well in practice even on loopy graphs (Kolmogorov and Wainwright, 2012; Globerson

and Jaakkola, 2008; Werner, 2007).

The aim of marginal maximum a posteriori (marginal MAP) estimation is to find the

assignment with highest probability of a subset of variables while summing out the remaining

variables.

X∗S = arg max
XS

∑
XT

P (XS, XT ) (2.7)

Marginal MAP is NP-hard even in tree-structured models (Koller and Friedman, 2009).

Recent research on marginal MAP problems has focused on the discrete case, e.g., using

AND/OR search and NP oracles (Marinescu et al., 2014, 2017; Xue et al., 2016).

2.3 Exact Inference in PGMs

Exact inference in PGMs is intractable in the worst case. The situation is even worse

when the variables are continuous: exact inference requires calculating the high dimensional

integrals of arbitrary continuous functions, which may not result in explicit closed forms.

Despite this, the structure of PGMs can sometimes be exploited to efficiently perform exact

inference.

To motivate the role that structure plays in inference, consider the simple discrete MRF

model in Figure 2.4. The joint probability is given by

p(x1, x2, x3) = φ1(x1)φ2(x2)φ3(x3)ψ12(x1, x2)ψ23(x2, x3), (2.8)
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Figure 2.4: Example of an discrete MRF

where each variable can take one of k discrete values. The marginal distribution of p(x1)

can be computed by a straightforward summation.

p(x1) =
∑
x2,x3

φ1(x1)φ2(x2)φ3(x3)ψ12(x1, x2)ψ23(x2, x3) (2.9)

Näıve computation of this summation requires O(k2) operations, exhausting all possible

combinations of x2 and x3 values. However, if we change the summation order

p(x1) = φ1(x1)
∑
x2

[
φ2(x2)ψ12(x1, x2)

∑
x3

[
φ3(x3)ψ23(x2, x3)

]]
, (2.10)

then only O(2k) calculations are required to compute the marginal.

The order in which the summations are performed can greatly affect the computational

cost. With this motivation, we can first find a good summation (or elimination) ordering,

and then perform the summations in that order. This is the motivation behind the variable

elimination algorithm Zhang and Poole (1994). Unfortunately, finding an optimal elimination

ordering is NP-hard in general. However, a variety of heuristics that can perform well in

practice are often used, e.g., minimum degree and minimum fill (Darwiche, 2009).

If a good elimination ordering exists, it can greatly reduce the computational cost of

exact inference. However, in general, no elimination ordering may reduce the computational

cost enough to make this approach viable in practice. In next two chapters, we will introduce

efficient approximate inference methods that also exploit the graph structure, but as they

are only approximate, remain tractable even for large PGMs.
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CHAPTER 3

MESSAGE-PASSING ALGORITHMS

As exact inference is NP-hard in PGMs, researchers have proposed a variety of approximate

inference algorithms to tackle these problems in practice. Message-passing methods, which

are based on a dynamic programming representation of the variable elimination method,

are a popular alternative. In this approach, directed messages that are functions of local

information are passed over edges in the (factor) graph until convergence. In this section, we

describe the basic message-passing approach from the belief propagation algorithm to more

recent variants applicable in the continuous case.

3.1 Belief Propagation

The belief propagation (BP) algorithm, also known as the sum-product algorithm, was first

introduced by Pearl (1982) to solve inference problems in tree-structured PGMs. In BP, a

set of functions called messages are defined along the edges in the graph, see Figure 3.1.

Messages are updated iteratively in the following form:

mt
i→j(xj) ∝

∫
φi(xi)ψij(xi, xj)

∏
k∈N(i)\j

mt−1
k→i(xi)dxi (3.1)

where N(i) is the set of neighbor nodes of node i. The new message mt
i→j(xj) is computed

based on potential functions and the old messages mt−1
k→i(xi). Marginal approximations,

sometimes called pseudomarginals or beliefs, over the nodes and edges can be calculated

directly from the potential functions and the messages.

bi(xi) ∝ φi(xi)
∏

k∈N(i)

mk→i(xi)

bij(xi, xj) ∝ φi(xi)φj(xj)ψij(xi, xj)
∏

k∈N(i)\j

mk→i(xi)
∏

k∈N(j)\i

mk→j(xj) (3.2)
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Figure 3.1: Example of message passing schema

The BP method is exact in the case of tree-structured graphical models (Pearl, 1982). That

is, at convergence, the above beliefs correspond to the true univariate and pairwise marginals.

For general graphs, e.g., graphs with loops), BP is not guaranteed to converge nor does it

yield the correct marginals. Despite this, BP can still be applied directly on loopy graphs,

where it is called loopy belief propagation (LBP), to yield a reasonable approximation in

some cases (Murphy et al., 1999; Taga and Mase, 2006).

Though effective in the discrete case, the BP method cannot, in general, be directly

applied in the continuous case without modification (though it can for special cases, e.g.,

Gaussian graphical models (Weiss and Freeman, 2001)). Consider the message update in

(3.1). Calculating the integral with respect to arbitrary an continuous potential function is

a nontrivial task. Further, the messages may not be able to be represented in closed form,

i.e., the integral for each fixed xj can be computed but results in an arbitrary univariate

continuous function.

3.2 Nonparametric Belief Propagation

A variety of alternatives to BP in the continuous case have been investigated. Sudderth

et al. (2003) proposed the Nonparametric Belief Propagation method (NBP). The basic idea
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is to approximate the continuous messages as a L-component Gaussian mixtures:

mij(xj) =
M∑
m=1

wmj N (xj;µ
m
j ,Λj) (3.3)

where M is the number of mixtures, w is the vector of mixture weights, which are nonnegative

and sum to one, µ and Λ are the parameters of the component Gaussians. Note that, for

simplicity, the NBP method only considers Gaussian mixtures with diagonal a covariance

matrix.

Message updates in NBP result in product of Gaussian mixtures which is again a Gaussian

mixture. However, given a vertex with d + 1 neighbors each of which passes a Gaussian

mixture message with M mixture components, the method will produce a Md component

Gaussian mixture. As a result, the number of mixture components will grow exponentially

with the number of iterations. To handle this, NBP uses an efficient sampling scheme to

approximate the Md component mixture by drawing M independent samples in each message

update. This sampling approach is referred to as message-based sampling. Ihler et al. (2005)

also proposed a belief-based sampling approach for the NBP method where a single set of

samples is drawn from the product of all messages.

Despite these improvements, the message update sampling is still time consuming in

practice: the NBP method has complexity of O(MD) where M is the number of mixture

component and D is the maximum degree of the nodes in the graph, which scales poorly

when the graph structure has high degree nodes.

3.3 Particle Belief Propagation

A practical improvement over NBP, Particle Belief Propagation (PBP) uses a relatively small

number of particles instead of Gaussian mixtures to represent messages and beliefs (Ihler

and McAllester, 2009; Frank et al., 2009). The basic idea of the PBP method is to represent

the messages via set of points (particles) instead of a continuous function. For each node
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in the graph, PBP keeps track of a collection of K sampled particle points. The message

updates are evaluated on these particles and the particles are re-sampled, using importance

sampling, every iteration. Given a set of sampled particles {x(1)t , x
(2)
t , ..., x

(K)
t } drawn from

proposal function Wt, the message value at particle x
(i)
s can be estimated as:

mt→s(x
(i)
s ) =

1

K

K∑
j=1

ψts(x
(j)
t , x(i)s )

φt(x
(j)
t )

Wt(x
(j)
t )

∏
u∈N(t)\s

mu→t(x
(j)
t ) (3.4)

The beliefs can be calculated in similar way as in (3.2) based on the converged messages.

Compared to NBP, the key difference is that in PBP, the collection of particles over one node

is shared over all of the message products while NBP draws new samples for each message

product. The PBP method also does not require the messages to be finitely integrable while

NBP method does have this restriction.

PBP has a complexity of O(|E|K2) per iteration, where |E| is the number of edges in the

graph and K is the number of particles per node. But the running time of the PBP method

highly depends on the efficiency of the sampling scheme and a proposal function close to the

real node marginals can greatly improve the performance of PBP in practice.

3.4 Expectation Particle Belief Propagation

Based on PBP method, Lienart et al. (2015) introduced Expectation Particle Belief Propaga-

tion (EPBP). The EPBP method considers the fact that sampling with a proposal from Eq.

3.4 can be expensive. Instead they propose using proposal functions from tractable exponen-

tial families. Their proposals are adaptive based on the current node beliefs. EPBP starts

tries to approximate the beliefs using tractable distributions in the some simple exponential

family, e.g.,

qu(xu) ∝ ηou(xu)
∏

w∈N(u)

ηwu(xu), (3.5)
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where ηou(xu) and ηwu(xu) are elements of the tractable family that approximate φu(xu)

and m̂wu(xu) respectively. The tractable messages are updating by constructing the cavity

distribution q
\w
u ,

q\wu (xu) ∝ qu(xu)/ηwu(xu) (3.6)

and then, using the same strategy as expectation propagation (EP)(Minka, 2001) algorithm,

ηwu(xu) is updated by minimizing the following KL divergence.

ηwu(xu) = arg min
η∈exp.fam.

KL
[
m̂wu(xu)q

\w
u (xu)||ηu(xu)q\wu (xu)

]
(3.7)

The complexity of EPBP is O(|E|MK) per iteration where M is the number of samples used

to approximate the message updates. By choosing smaller M , EPBP can be more efficient

than PBP.

3.5 Kernel Belief Propagation

Song et al. (2011) proposed a new BP based algorithm to solve the inference problem called

kernel belief propagation (KBP). KBP is a joint method that performs learning and inference

at the same time. The intuition behind the KBP method is that since calculating closed form

for message updates with arbitrary continuous function is intractable in the general case,

we can transfer the message update into tractable form where the calculation is obtainable.

Given the reproducing kernel Hilbert space (RKHS) (Aronszajn, 1950; Schölkopf et al., 2002),

the message update in BP can be expressed as a linear operation in RKHS.

mij(xj) =
〈⊗
k\j

mki,EXi|xj [ξ(Xi)]
〉
H (3.8)

where ξ(Xi) =
⊗

k\j φ(xi) and in RKHS the incoming message product can be written as a

single inner product
⊗

k\jmki. The beliefs then can be calculated as:

b(xi) = P ∗(xi)
∏

k∈N(i)

mki(xi) (3.9)
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where P ∗ (xi) is true node marignal distribution estimated using Parzen windows (kernel

density estimation).

The cost of one message update is O(m2dmax), where dmax is the maximum degree of a

node in the graph and m is the number of training data samples. The cost is reasonable for

low-degree graphs, but it become very costly for complicated graphs. To compensate, Song

et al. (2011) proposed a feature matrix approximation method that uses Gram-Schmidt

orthogonalization process (Shawe-Taylor et al., 2004) to reduce the cost of each message

update to O(l2dmax) where l� d.

As KBP does joint inference and learning, it can only be applied in a learning context (not

for inference in an existing model). In addition, like all kernel methods, KBP has tunable

hyperparameters that can result in sever overfitting if set poorly. Also, the KBP method can

return beliefs that are not strictly positive, i.e., they may not be valid distributions. This is,

again, a consequence of the kernel mapping.
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CHAPTER 4

VARIATIONAL INFERENCE METHODS

A popular alternative to message passing algorithms, variational inference (VI) methods ap-

proximate intractable inference tasks by performing them on appropriately chosen surrogate

models (Jordan et al., 1999; Blei et al., 2017). The intuition behind VI methods are simple:

since the original distribution p(X) is intractable, a more friendly surrogate distribution

q(X) is proposed. The optimal surrogate distribution is chosen from a family of (typically

tractable) models by minimizing an appropriate notion of distance. Inference problems are

then answered by performing inference in the surrogate model where, by design, inference

is easier. There are a lot of variational inference methods, including but not limited to

mean field approximation (Jaakkola and Jordan, 1998), tree-re-weighted belief propagation

(Wainwright et al., 2003), and expectation propagation (Minka, 2013).

4.1 Variational Inference

Given a set of observed variables x = {x1, x2, ..., xn}, consider computing the the posterior

probability distribution p(y|x) of a set of latent variables y = {y1, y2, ..., ym} conditioned on

x:

p(y|x) =
p(y, x)

p(x)
=

p(y, x)∫
p(y, x)dz

. (4.1)

The integral involved in calculating the p(x), the probability of the evidence, is usually either

not available in closed form or intractable. As a result, computing p(y|x) via Bayes rule as

above is often computationally infeasible without approximations.

In variational inference, a surrogate distribution from a simpler family q(y) ∈ Q is pro-

posed to approximate the conditional distribution p(y|x). Typically, the approximation

distribution q(y) will make extra independence assumptions among variables so that q(y)

20



does not have to model the full relationship between x and y. When Q is chosen to be a

more computationally friendly family of distributions, inference on q(y) is much easier than

on p(y|x). Notice that a similar method of approximating p(y|x) would be to sample the

values of y from p(y|x) with sampling methods, e.g. MCMC sampling method (Chib and

Carlin, 1999), and then train a simpler model q(y) on those samples. However, sampling

methods in general are very slow and with high variance. In the mean time, variational

methods do not require any sampling procedure which are fast and deterministic. The term

”variational” is derived from the term ”calculus of variations” which is from mathematical

analysis meaning choosing the best function in optimization problems.

The aim then is to find an optimal q(y) which can best approximate p(y|x). This is usu-

ally accomplished by minimizing the KullbackLeibler divergence (KL-divergence) between

two distributions. The KL-divergence measures the difference between two probability dis-

tributions (Kullback and Leibler, 1951).

KL
(
P (x)||Q(x)

)
= −

∫
P (x) log

Q(x)

P (x)
dx (4.2)

The KL-divergence is always non-negative and is equal to zero only when the two distribu-

tions are identically equal.

Variational inference selects the surrogate model by minimizing the KL-divergence.

q∗(y) ∈ arg min
q∈Q

KL
(
q(y)||p(y|x)

)
(4.3)

Consider rewriting the KL-divergence as

KL
(
q(y)||p(y|x)

)
= −

∫
q(y) log

p(y|x)

q(y)
dy

=

∫
q(y) log q(y)dy −

∫
q(y) log p(y|x)dy

= Eq(y)
[

log q(y)
]
− Eq(y)

[
log p(y|x)

]
= Eq(y)

[
log q(y)

]
− Eq(y)

[
log

p(y, x)

p(x)

]
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= Eq(y)
[

log q(y)
]
− Eq(y)

[
log p(y, x)

]
+ log p(x). (4.4)

Note that log p(x) can be treated as a constant as it does not depend on q. This leads to an

optimization problem over what is known as the evidence lower bound (ELBO).

ELBO(q) = Eq(y)
[

log p(y, x)
]
− Eq(y)

[
log q(y)

]
(4.5)

Minimizing the KL-divergence is equivalent to maximizing the ELBO. As the KL-divergence

is always non-negative, we have that ELBO(q) ≤ log(p(x)) for all q ∈ Q (this is where the

ELBO gets its name). We can see that, by construction, maximizing the ELBO yields an

estimate of the intractable integral log p(x).

4.2 Variational Mean Field

The mean field approximation (Anderson and Peterson, 1987) assumes that the surrogate

distribution q(y) is a product of independent single variable factors.

q(y) =
m∏
j=1

qj(yj) (4.6)

Each independent factor qj(yj) can take different parametric form, e.g., Gaussians for con-

tinuous variables and categorical for discrete variables. Given the simplicity of inference in

these types of models, the mean-field approximation is a popular choice for VI methods.

When it comes to optimizing ELBO with mean field approximations, the coordinate

ascent variational inference (CAVI) method (Bishop, 2006) is the most commonly used ap-

proach. As each variable in the mean field model is independent of the others, we can update

the parameter of one factor while keeping the other parameters fixed. In some cases, we can

derive the optimal q∗j (yj) in closed form by rewriting the ELBO. For example, if all of the

latent variables are discrete, the optimal q∗j (yj) is proportional to the expectation below,

which is obtained by differentiating the ELBO and setting it equal to zero.

q∗j (yj) ∝ exp
(
E∏

s6=j qs(xs)

[
log p(yj|ys 6=j, x)

])
(4.7)
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Since all parameters related to ys 6=j are treated as constants in the right hand side of Eq.

4.7, we can expand to conditional probability to its joint form p(y, x).

q∗j (yj) ∝ exp
(
E∏

s 6=j qs(xs)

[
log p(yj, ys 6=j, x)

])
(4.8)

Note that the proportionality constant is chosen so that q∗j sums to one. In this case, the

CAVI method will iteratively update each qj using Eq. 4.8. As each qj is chosen to maximize

the ELBO with the remaining q’s fixed, the ELBO can only increase by performing these

updates. However, the ELBO is typically a non-concave function of the parameters describing

the surrogate models, so the coordinate ascent can get stuck at local optima.

The mean field approximation can be extended by introducing dependencies between the

variables, see, for example, structured variational inference (Barber and Wiegerinck, 1999).

Bishop et al. (1998) expanded the mean field method to mixtures by adding latent variables

within the family.

4.3 Nonparametric Variational Inference

The mean-field approach can yield a poor approximation when the target distribution is

multimodal or otherwise has more complicated correlations. As an alternative, Gershman

et al. (2012) suggested proposed a new family of variational approximations called nonpara-

metric variational inference (NPVI). Inspired by the nonparametric kernel density estimation

method, NPVI chooses the surrogate model to be a mixture of Gaussians over all the vari-

ables (note this assumes that the latent variables are continuous).

q(z) =
1

N

N∑
n=1

N (y;µn, σ
2
nI), (4.9)

where N is the number of mixtures andN (X;µn, σ
2
nI) is a multivariate Gaussian distribution

with mean µn and diagonal covariance matrix σnI, i.e., independent univariate Gaussians.
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With this surrogate model, NPVI rewrites the ELBO (Eq. 4.5) into two pieces: an entropy

term H
(
q(y)

)
and an expectation term Eq(y)

[
p(y, x)

]
.

ELBO(q) = Eq(y)
[

log p(y, x)
]
− Eq(y)

[
log q(y)

]
= H

(
q(y)

)
+ Eq(y)

[
log p(y, x)

]
(4.10)

Approximations are made separately on each of these two parts. The entropy term is ap-

proximated using Jensen’s inequality (Huber et al., 2008):

H
(
q(y)

)
= −

∫
q(y) log q(y)dy

= −
∫
q(y) log

1

N

N∑
n=1

N (y;µn, σ
2
nI)dy

≥ − 1

N

N∑
n=1

log

∫
q(y)N (y;µn, σ

2
nI)dy (4.11)

Note that each of the integrals here compute sums of convolutions of two Gaussian distribu-

tions – the convolution of two Gaussians is also a Gaussian.

H
(
q(y)

)
≥ − 1

N

N∑
n=1

log
[ 1

N

N∑
j=1

N (µn;µj, (σ
2
n + σ2

j )I)
]

(4.12)

Gershman et al. (2012) then approximate the expectation using the multivariate delta

method for moments (Bickel and Doksum, 2015). In this approach, log p(z, x) is approxi-

mated by its second order Taylor series expansion at the point µn. The approximation is

then

Eq(y)
[

log p(y, x)
]
≈ 1

N

N∑
n=1

log p(µn, x) +
σ2
n

2
Tr(Hn), (4.13)

where Hn = O2
z log p(z, x) is Hessian matrix of second derivatives. Finally the approximate

ELBO is as below.

ELBO(q) ≈ 1

N

N∑
n=1

[
log p(µn, x) +

σ2
n

2
Tr(Hn) +

1

N

N∑
j=1

N (µn;µj, (σ
2
n + σ2

j )I)
]

(4.14)
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Optimizing Eq. 4.14 can be done in different ways. Gradient based methods solve

this optimization problem but requires calculating the gradients of Eq. 4.13, which can

be computationally expensive as it involves computing the third order derivatives. As an

alternative, Gershman et al. (2012) proposed to optimize the parameters iteratively using the

second order approximation (4.14) for the variances and using a first-order approximation

of the ELBO to optimize the means. The method is reported to converge in only a few

iterations.

The NPVI method is similar to the approximate VI method we propose here. They differ

primarily on the choice of entropy approximation. We will discuss this in more detail in later

chapters.
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CHAPTER 5

BETHE VARIATIONAL INFERENCE

In this chapter, we will present Bethe Variational Inference, a novel variational method for

inference. We begin by introducing the basic idea of our method.

5.1 Bethe Free Energy

It has been shown that the fixed point messages in BP method correspond to the local

optima of an optimization problem under constraints (Yedidia et al., 2005b), known as the

Bethe Free Energy (BFE). In an MRF G = (V,E) with nonnegative potential functions

φi∈V , ψ(i,j)∈E, we can define a set of probability distributions, also called beliefs, satisfying

the following (local) marginalization constraints.

∀i ∈ V,
∫
bi(xi) = 1

∀(i, j) ∈ E,
∫
bij(xi, xj)dxi = b(xj) (5.1)

Under the above constraints, the (negative) Bethe Free Energy F (b) is defined as:

F (b) =
∑
i∈V

Ebi(xi)[log φi(xi)− log bi(xi)]

+
∑

(i,j)∈E

Ebij(xi,xj)[logψij(xi, xj)− log
bij(xi, xj)

bi(xi)bj(xj)
] (5.2)

As to the BP method, beliefs in BFE can also be treated as pseudo marginals and used to

solve inference problems. Maximizing (5.2) over the beliefs will result in an approximation

to the log-partition function logZ,

logZ ≈ max
b∈L(G)

F (b) (5.3)

where L(G) is the collection of all beliefs satisfying the local marginalization constraints.
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Similar to the BP method, when the graph is a tree, the maximum value of (5.2) is equal

the true log-partition function and the optimal beliefs are equal to the true node and edge

marginals. This does not hold for the BFE on general graphs, where optimizing the BFE

only yields an approximation.

While BP based methods are not guaranteed to converge on general graphs, gradient

based optimization algorithms using the BFE can yield convergent alternatives, though, in

practice, the rate of convergence is often slower than their message-passing counterparts.

We note that the (5.2) is not a concave function in general – so gradient methods can

become stuck on local optima. There have been efforts made to transform (5.2) into a

concave optimizing problem using so-called double counting numbers (Wainwright et al.,

2005; Meltzer et al., 2009; London et al., 2015). These approaches introduce a collection of

weights that alter the entropy approximation.

5.2 Bethe Variational Inference

Consider a surrogate distribution b(X) in the form of mixture of mean-field distributions as

follows.

b(X) =
M∑
m=1

λm
∏
i∈V

bmi (xi) (5.4)

where M is the number of mixture components, λm is the mth mixture weight, and each

bmi (xi) is an arbitrary univariate probability distribution. Recall the constraints for BFE

in (5.1), these constraints are naturally satisfied by the above surrogate distribution: a

mixture of probability distributions is also a probability distribution and marginalization of

product of independent univariate distributions is itself a product of independent univariate

distributions.

Instead of minimizing the KL-divergence between the surrogate and original distributions,

our proposed strategy is to minimize the difference between them by optimizing over the BFE
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using beliefs that correspond to marginals of (5.4). That is, we attempt to maximize the

BFE by applying gradient ascent over the parameters that describe the beliefs. We call this

approximate variational scheme Bethe Variational Inference (BVI).

Compared to the message passing based methods, our method optimizes directly on the

beliefs, which obviates the difficulty of calculating the message updates with continuous

variables (since the message updates are not always available in closed form). Another

advantage of our method is that we can use any integral approximation that we would like

to approximate the expectations in the BFE. Our method also does not have requirements

on the potential functions, any non-negative normalizable continuous functions will work

while many of the message-passing algorithms only work with a more limited set of potential

functions. BVI can also handle the mixed PGMs, i.e., models with both continuous and

discrete variables, with essentialy the same high-level approach.

Compared to other variational inference methods, the approximation produced by BVI

has several advantages. First, in pairwise MRFs, integrals in the BFE are limited to the local

marginal polytope so that the order of the integrals are at most two. Standard VI methods

optimize a lower bound on the KL-divergence. Depending on the approximation, this can

result in high dimensional integrals, which necessitates additional approximations. Second,

the BFE yields an exact solution on tree models while other entropy approximations, such

the one considered by NPVI based on Jensen’s inequality, have no such guarantees.

5.3 Expectation Approximation in BVI

Exact computation of the gradient of the BFE is often not possible in practice if the ex-

pectations that result in continuous integrals cannot be calculated in closed form. However,

given that these integrals integrals can be treated as expectations with respect to the beliefs,

a variety of approximation procedures can be applied. In this section, we will discuss several
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possible expectation approximation methods that can be applied as part of the gradient

procedure.

5.3.1 Gauss-Hermite Quadrature Method

Numerical quadrature methods provide one source of approximate integration methods. Con-

sider a continuous model in which the the beliefs are chosen to be Gaussian distributions.

The node and edges belief are in the form:

bi(xi) =
M∑
m=1

λmN (Xxi;µi, σ
2
ii)

bij(xi, xj) =
M∑
m=1

λmN


xi
xj

 ;

µi
µj

 ,
δii δij

δij δjj


 (5.5)

As any nonnegative, continuous function can be arbitrarily well approximated by a mixture

of Gaussians (Scott, 1992), this family is very expressive, but, as a result, more local optima

are likely to exist when optimizing the BFE. Since we are integrating against a Gaussian

distribution, the Gauss-Hermite Quadrature (GHQ) method is a natural choice (Golub and

Welsch, 1969). Gauss-Hermite Quadrature methods are used to approximate integrals in a

certain form. Given a real-valued function f(x), GHQ approximates the expectation, E[f ],

with respect to a Gaussian distribution as:

EN (µ,σ2)[f(x)] ≈
KQ∑
k=1

wk√
π
f
(√

2σ2yk + µ
)

(5.6)

where KQ is the number of quadrature points, and the wk’s and yk’s are determined by the

GHQ method (and are independent of the mean and variance). For the multivariate case,

the integrals can be approximated iteratively, i.e. applying the GHQ method one variable

at a time.

GHQ methods come a with strong theoretical guarantee:
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Theorem 1 (Golub and Welsch (1969)). For a positive integer KQ, mean µ ∈ R, and

variance σ2 ∈ R>0, GHQ constructs w1, . . . , wKQ ∈ R and y1, . . . , yKQ ∈ R such that there

exists a ξ ∈ R with

EN (µ,σ2)f(x) =

KQ∑
k=1

wk√
π
f
(√

2σ2yk + µ
)
+
n!
√
π

2n
f (2KQ)(ξ)

(2n)!

As inferred from theorem above, using KQ quadrature points, the approximation is exact

whenever f is a polynomial of degree at most 2KQ − 1 in each variable separately.

A known drawback of the BFE is that, in the case of continuous random variables, it

need not be bounded from below over the local marginal constraint set. This unboundedness

can occur even in Gaussian MRFs (Cseke and Heskes, 2011). This makes BFE potentially

undesirable for continuous MRFs in practice. However, for the optimization problem con-

sidered here (over a subset of marginals that arise from a joint distribution), we can show

that the BFE is bounded from below for Gaussian MRFs.

Theorem 2. The BFE optimization problem (5.2) is bounded below whenever p is a Gaus-

sian distribution and the optimization is performed over beliefs that arise from any joint

distribution q with finite first and second moments (for example, when q is a mixture of

Gaussians).

Proof. Given a Gaussian distribution over n variables p(x) = p̃(x)Z, p̃(x) = exp(−1
2
xTJx+

hTx), J positive definite, suppose we approximate it by a continuous distribution q, such

that Eq[X] = µ,Vq[X] = Σ (which are assumed to exist). Denote mutual information by I,

entropy by H, and the set of edges in the Gaussian MRF by E . By simple algebra, the BFE

is then

F(q) = Eq[
1

2
xTJx− hTx] +

∑
(i,j)∈E

I[qij]−
∑
i

H[qi]

≥ Eq[
1

2
xTJx− hTx]−

∑
i

H[qi]
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=
1

2
Tr[JΣ] +

1

2
µTJµ− hTµ−

∑
i

H[qi],

where the inequality follows from the fact that mutual information is always non-negative.

Since J is positive definite, the quadratic form 1
2
µTJµ− hTµ is bounded from below. So it’s

sufficient to show that g(q) , 1
2
Tr[JΣ]−

∑
iH[qi] is bounded from below.

Lemma 3. Let A,B be two n×n real symmetric matrices, with B positive definite; let λn(A)

be the smallest eigenvalue of A. Then Tr[AB] ≥ λn(A)Tr[B].

Proof. Denote the eigenvalues of A by λ1, ..., λn, and denote the eigenvalues of B by γ1, ..., γn.

Let A = UΛUT , B = V ΓV T be the eigen-decompositions of A and B, such that U, V are

orthogonal matrices, and Λ and Γ are diagonal matrices with Λii = λi and Γii = γi for

i = 1, ..., n. Then

Tr[AB] = Tr[UΛUTV ΓV T ] = Tr[V TUΛUTV Γ] = Tr[W TΛWΓ] = Tr[(ΛW )TWΓ]

=
∑
i,j

ΛW �WΓ =
∑
i

〈Λwi, γiwi〉 =
∑
i

γiw
T
i Λwi ≥

∑
i

γiλmin(A)

= λmin(A)Tr[B]

where W := UTV and let wi be the ith column of W . Note that ‖wi‖ = 1 since W is

orthogonal. The greater or equal sign can be explained by the variational characterization

of λmin(A), and γi > 0

As a result, we have

g(q) ≥ λn(J)

2
Tr[Σ]−

∑
i

H[qi]

≥ λn(J)

2

∑
i

Σii −
1

2

∑
i

log(2πeΣii),

where the first inequality follows from Lemma 3 and the second inequality is a consequence

of the fact that differential entropy of a distribution with variance σ is maximized by a

Gaussian distribution with variance σ. Finally, as λn(J),Σ11, . . . ,Σnn > 0, we have that

(λn(J)Σii − log Σii) is bounded below for all i.
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5.3.2 Sampling Methods

Sampling provides a generic alternative to quadrature methods that can be efficiently applied

whenever the beliefs represent distributions that are easy to sample from. In particular, the

beliefs in (5.2) are in the form of a mixture of products of univariate distributions, which

are convenient to sample from as long as the univariate distributions are simple to sample

from. For the each expectation with respect to beliefs of this form, we can first sample a

mixture component based on the mixture weights, then sample from each of the independent

distributions separately. Sampling can be inefficient whenever the univariate distributions

are not easy to sample from. As a result, many of the standard distributions can be handled

in this framework. Take the Dirichlet distribution as an example.

Dir(X|α) =
Γ(
∑K

i=1 αi)∏K
i=1 Γ(αi)

K∏
i=1

xαi−1i , (5.7)

where {x1, ..., xK} belongs to the K − 1 dimensional simplex which means that xi ≥ 0 and∑K
i−1 xi = 1. The normalization constant involves the Gamma function, Γ(α), which is

defined as Γ(αi) =
∫
xαi−1 exp(−x)dx.

To sample from a Dirichlet distribution, first, draw K independent samples {y1, ..., yK}

from the Gamma distribution:

Gamma(αi, 1) =
yαi−1i exp−yi

Γ(αi)
(5.8)

Then, normalize {y1, ..., yK},

xi =
yi∑K
i=1 yi

, (5.9)

and {x1, ..., xK} will follow the Dirichlet distribution Dir(X|α).

Varying the number of samples can greatly affect the performance of sampling approxi-

mation. However, the flexibility of our method’s choices of independent belief distributions
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makes it very easy to choose the most suitable sampling method for expectation approxima-

tion. And in practice, we observe that with proper choice of independent belief distributions,

only a few sampling points (usually less than 10) could achieve reasonably accurate approx-

imations for our computations. We should note that highly accurate answers may not be

necessary here - the sampling procedure, when used to estimate the gradient of the BGE,

can be viewed as a stochastic gradient method.

5.4 Gradient Ascent on the BFE

Regardless which approximation scheme is selected, the aim is to apply gradient ascent

to optimize the BFE with respect to the parameters of the beliefs. The entire process

can be easily vectorized, i.e., coded into matrix operations, making it very efficient to be

implemented on modern GPUs. However, there are still a few remaining issues that need to

be resolved before applying our method in practice. First, The entropy terms in the BFE

for Gaussian mixtures cannot be computed closed form. Thus we will need to approximate

it as well. Taylor series expansions have been shown to work well in this case (Huber et al.,

2008), so we expect quadrature methods, for example, to perform reasonably well here too.

Second, the mixture weights after gradient update need not correspond to a valid probability

distribution. To deal with this case, we could apply a projected gradient method. Instead,

we utilize a change of variables and represent the mixture weights as a softmax of so that

they are non-negative and always sum to one. Finally, when approximating the gradient, we

can apply one of two strategies. The first way is to approximate the expectations directly

and then calculate the derivatives on the already approximated terms. Another way is to

calculate the exact form of derivatives and then approximate on these derivatives. Due to

the specific form of BFE definition, the derivatives are also in the form of an expectation.

The latter form approximation is more closely related to stochastic gradient methods, and

we adopt this approach here.
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The complexity of BVI method varies with the form of beliefs as well as the expectation

approximation methods. For Gaussian mixture beliefs with the GHQ method, the gradient

can be computed in O(|E|K2
QM

2) time on a single machine. If stochastic gradient meth-

ods are used, the complexity will be reduced to O(|E|K2
QM), which can result in better

performance with large M . In addition, KQ can be kept small in practice as long as the

log-potential functions can be well-approximated by low-degree polynomials. We will show

via experiments that a small number of mixture components is already sufficient in many

practical applications.

5.4.1 Derivative calculation of BFE with mixture of independent distributions

beliefs

Define the beliefs to be:

bi(xi) =
∑
m

λmπ
m
i (xi)

bij(xi, xj) =
∑
m

λmπ
m
i (xi)π

m
j (xj) (5.10)

where πmi (xi) is the discrete distribution for variable xi.

The Bethe Free Energy with the above set of beliefs can be written as

F (b) =
∑
i∈V

∑
xi

bi(xi) log φi(xi)

+
∑

(i,j)∈E

∑
xi

∑
xj

bij(xi, xj) logψij(xi, xj)

−
∑
i∈V

(1−N(xi))
∑
xi

bi(xi) log bi(xi)

−
∑

(i,j)∈E

∑
xi

∑
xj

bij(xi, xj) log bij(xi, xj) (5.11)

where N(xi) represents the number of neighbors of node i.
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Calculating the partial derivatives of parameter πmi (xi) and λm.

∇πmi (xi) =λm log φi(xi)

+λm
∑

j∈N(xi)

∑
xj

πmj (xj) logψij(xi, xj)

−λm(1−N(xi))(log bi(xi) + 1)

−λm
∑

j∈N(xi)

∑
xj

πmj (xj)(log bij(xi, xj) + 1) (5.12)

∇λm =
∑
i∈V

∑
xi

πmi (xi) log φi(xi)

+
∑

(i,j)∈E

∑
xi

∑
xj

πmi (xi)π
m
j (xj) logψij(xi, xj)

−
∑
i∈V

(1−N(xi))
∑
xi

πmi (xi)(log bi(xi) + 1)

−
∑

(i,j)∈E

∑
xi

∑
xj

πmi (xi)π
m
j (xj)(log bij(xi, xj) + 1) (5.13)

We also apply a change of variable technique to πmi (xi) and λm with the soft-max function

so that the updated parameters are still a discrete distribution.

5.5 One Shot Inference

BVI can be viewed as a one shot inference method; meaning that after the gradient update

converges, each of the typical inference tasks can be approximated directly from the joint

probability distribution generated by the beliefs, perhaps with some small additional com-

putations. This is a significant advantage in practice, especially for those applications in

which repeated inference with different query variables is needed.
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5.5.1 Marginal Inference

The marginal distribution over a subset variables XS can be approximated directly from

(5.4):

p(XS) =
M∑
m=1

λm
∏
xi∈XS

bmi (xi), (5.14)

where XS represents a subset of variables in the model. Since each bmi (xi) is independent of

the other beliefs in its mixture component, the marginal distribution p(XS) under our model

assumptions only requires the terms containing variables in XS. Calculating the values of

the marginal distributions is straightforward and efficient.

5.5.2 MAP Inference

MAP inference tries to find the assignment with highest probability (mode of the distribu-

tion):

X∗ = arg max
X

M∑
m=1

λm
∏
xi∈V

bmi (xi) (5.15)

Consider the special form of mixture beliefs in our model, this can be done either by using a

standard projected gradient ascent method or by applying a gradient ascent method start-

ing from each of the M modes of the mixture components and select the highest probability

assignment. An example of MAP inference gradient ascent on an Gaussian mixture model is

shown in Fig. 5.1. Notice that starting from the separate modes of each mixture component

(blue points in the figure), the gradient ascent method will typically not need many itera-

tions to converge the the mode of the mixture distribution (red point in the figure). Our

experimental results also suggest that this method works quite well in practice.
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Figure 5.1: Example of MAP inference gradient ascent

5.5.3 Marginal MAP Inference

The marginal MAP inference problem can be regarded as a combination of the previous two

inference tasks. For a subset XS,

X∗S = arg max
XS

M∑
m=1

λm
∏
xi∈XS

bmi (xi) (5.16)

To answer marginal MAP inference queries with our model, we can simply combine the two

steps from last two sections. First we get the marignal distribution p(XS) and then apply

gradient ascent on it, starting from each of the mixture modes.

5.5.4 Conditional Marginals

Our model can even achieve desirable conditional marginal distributions with converged

beliefs. And inference of conditional marginals for our method is also trivial. Given observed

subset of variables XE, the conditional marginal distribution of subset XS is given by the
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Bayes rules

p(XS|XE) =
p(XS, XE)

p(XE)
=

∑M
m=1 λm

∏
xi∈XS∪XE b

m
i (xi)∑M

m=1 λm
∏

xi∈XE b
m
i (xi)

(5.17)

Since XE are usually observed, calculating the conditional marginal distributions can be

fast. Note that our model with converged beliefs can actually represent any conditional

relationships between variables without further processing. This is due to the assumption

of our specific belief forms - mixture of independent distributions and this shows another

advantage of our proposed method.

5.5.5 Sampling for Generative Models

Even more our method is not only limited to answer inference queries, it can also be used for

generative models. Sampling from converged beliefs in our model can be done effectively. If

each univariate belief distribution is easy to sample from, then samples can be drawn by first

sampling a mixture component according to the mixture weights λ and then sampling from

the corresponding univariate independent belief distribution. This is the same procedure for

our expectation approximation part.
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CHAPTER 6

INFERENCE IN GAUSSIAN MARKOV RANDOM FIELDS WITH

MIXTURE OF TREES

In this chapter, we explore the potential possibilities of applying beliefs from mixture of trees

model to the BVI algorithm. We first start with introducing the mixture of trees model.

6.1 Mixture of Trees Model

Meila and Jordan (2000) proposed the mixture of trees models which can represent joint

probability distributions with a set of mixture weights associated with tree structured PGMs,

e.g., Bayesian networks and Markov random fields. A tree structured MRF can always be

defined as:

T (X) =

∏
(i,j)∈E pij(xi, xj)∏
i∈V pi(xi)

deg(xi)−1
(6.1)

where pi(xi) and pij(xi, xj) are unary and pairwise marginal functions. deg(xi) represents the

degree of node xi in the graph. Following the definition in (6.1), the probability distribution

of mixture of trees model can be defined as:

P (X) =
M∑
m=1

λmTm(X) (6.2)

where M is the number of mixtures and λm are nonnegative mixture weights which sum

to one
∑

m λm = 1. Tree PGMs Tm(X) are called mixture components and they can have

different structures and parameters.

Learning a mixture of trees models can be done by minimizing the KL-divergence using

an EM algorithm. However, the learning performance highly depends on the initialization.

Kumar and Koller (2009) proposed an efficient algorithm to obtain good initial trees for

mixture of trees models by minimizing the α-divergence with α = ∞. In the mean time,
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inference tasks such as marginal inference and MAP inference can be solved in polynomial

time on mixtures of trees. In particular, the marginal distribution of a subset of variables

XS from mixture of trees is a combination of the corresponding marginals from each of the

component trees and we take advantages of this feature in our method.

P (XS) =
M∑
m=1

λmTm(XS) (6.3)

However, marginal MAP inference is NP-hard in (mixtures of) tree models and usually

approximate algorithms are required in practice (Liu and Ihler, 2013).

6.2 Binary Mixture of Trees Belief

We start from the simple tree case with binary variables to learn the different behavior of

optimization algorithms with local polytopes and global marginal polytopes. Each mixture

component tree can be defined as

Tm(X) =
1

Zm
exp

 ∑
(i,j)∈Em

θmij (xi, xj)

, (6.4)

where the θmij (xi, xj) are the parameters in the model and the marginals can be defined as:

pmi (xi) =
∑
X\xi

1

Zm
exp

 ∑
(a,b)∈Em

θmab(xa, xb)


pmij (xi, xj) =

∑
X\xi,xj

1

Zm
exp

 ∑
(a,b)∈Em

θmab(xa, xb)


(6.5)

The Bethe Free Energy with beliefs corresponding to marginals in a mixture of trees model

can be defined as follows.

F (b) =
∑
i∈V

∑
xi

bi(xi)[log φi(xi)− (1−N(xi)) log bi(xi)]
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+
∑

(i,j)∈E

∑
xi

∑
xj

bij(xi, xj)[logψij(xi, xj)− log bij(xi, xj)], (6.6)

where N(xi) is the number of neighbors of node i. Define the node and edge beliefs from

mixture of trees in the following form.

bi(xi) =
M∑
m=1

λmp
m
i (xi)

bij(xi, xj) =
M∑
m=1

λmp
m
ij (xi, xj), (6.7)

where λm is the mixture weights and pmi (xi) and pmij (xi, xj) are the corresponding marginals

from the mixture component trees.

The derivatives with respect to node and edge beliefs can be calculated as

∂bi(xi)

∂θmij (xi, xj)
=λm

∂pmi (xi)

∂θmij (xi, xj)

=λm
−
∑

X\xi,xj exp(
∑

)

Z2
m

∑
X\xi

exp(
∑

) + λm
1

Zm

∑
X\xi,xj

exp(
∑

)

=− λmpmij (xi, xj)pmi (xi) + λmp
m
ij (xi, xj)

∂b\i(x̂i)

∂θmij (xi, xj)
=λm

∂pm\i(x̂i)

∂θmij (xi, xj)

=λm
−
∑

X\xi,xj exp(
∑

)

Z2
m

∑
X\x̂i

exp(
∑

)

=− λmpmij (xi, xj)pm\i(x̂i)

∂bij(xi, xj)

∂θmij (xi, xj)
=λm

∂pmij (xi, xj)

∂θmij (xi, xj)

=− λmpmij (xi, xj)pmij (xi, xj) + λmp
m
ij (xi, xj)

∂b\ij( ˆxi, xj)

∂θmij (xi, xj)
=λm

∂pm\ij( ˆxi, xj)

∂θmij (xi, xj)

=− λmpmij (xi, xj)pm\ij( ˆxi, xj), (6.8)

where
∑

are short for the term
∑

(i,j)∈Em θ
m
ij (xi, xj).
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The derivatives with respect to BFE are then in the following form.

∂F (b)

θmij (xi, xj)
= λmp

m
ij (xi, xj)

[
log φi(xi) + log φj(xj)

−
∑
i∈V

∑
x̂i

pmi (x̂i) log φ(x̂i)

+ logψij(xi, xj)−
∑

(i,j)∈E

∑
x̂i

∑
x̂j

pmij (x̂i, x̂j) logψij(x̂i, x̂j)
]

− λmpmij (xi, xj)
[
(1−N(xi))(log bi(xi) + 1)

+ (1−N(xj))(log bj(xj) + 1)

−
∑
i∈V

∑
x̂i

pmi (x̂i)(1−N(x̂i))(log bi(x̂i) + 1)
]

− λmpmij (xi, xj)
[
(log bij(xi, xj) + 1)

−
∑

(i,j)∈E

∑
x̂i

∑
x̂j

pmij (x̂i, x̂j)(log bij(x̂i, x̂j) + 1)
]

=λmp
m
ij (xi, xj)

[
log φi(xi) + log φj(xj) + logψij(xi, xj)

− (1−N(xi))(log bi(xi) + 1)− (1−N(xj))(log bj(xj) + 1)

− (log bij(xi, xj) + 1)

+
∑
i∈V

Epmi (x̂i)

[
(1−N(x̂i))(log bi(x̂i) + 1)− log φ(x̂i)

]
+
∑

(i,j)∈E

Epmij (x̂i,x̂j)
[
(log bij(x̂i, x̂j) + 1)− logψ(x̂i, x̂j)

]]
(6.9)

This effectively expresses the gradient of the BFE in terms of expectations with respect to

marginals of the joint mixture of tree structued model. We can transform each component

tree into a Bayesian network and sample from it.

6.2.1 Parameter Update with FrankWolfe Algorithm

Updating the parameters of the model, i.e. pmi (xi) and pmij (xi, xj) can be challenging because

the updated distributions almost always do not satisfy the marginalization constraints. Fol-
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lowing the discussion in (Belanger et al., 2013), we apply the Frank-Wolfe algorithm to

project the updated parameters back to the constraint space. Define µt−1 to be the current

set of parameters for all pMi (xi) and pmij (xi, xj) in one mixture component tree, the Frank-

Wolfe algorithm tries to optimize the product of derivative vector ∇f(µt−1) and vectors µ

over the constraint space M . The intuition is that the optimal parameters µ̂ should be the

ones in the constraint space and at the same time closest to the gradient, which means achiev-

ing the maximum value under the vector product calculation. The new updated parameters

then can be set to be on a point between µt−1 and µ̂.

µ̂ =argmaxµ∈L〈∇f(µt−1), µ〉

µt =(1− γt)µt−1 + γtµ̂, (6.10)

where L is the set of constraints and γ is the step size, set to 2
t+2

in our case.

This maximization problem can be further viewed as a MAP inference problem by treat-

ing the derivatives of parameters as log node and edge potential functions log φi(xi) and

logψij(xi, xj).

µ̂ =argmaxµ∈L〈∇f(µt−1), µ〉

=argmaxµ∈L
∑
i∈V

∑
xi

µi(xi) log φi(xi)

+
∑

(i,j)∈E

∑
xi

∑
xj

µij(xi, xj) logψij(xi, xj) (6.11)

Any efficient MAP inference algorithm can be applied to solve this problem. Since the graph

structure is a tree, we can run the max-product algorithm (Loeliger, 2004) to compute the

exact answer in linear time.

6.3 Gaussian Mixture of Trees Belief

For continuous models, we can also make another assumption about the mixture of trees

model: We assume that each component tree corresponds to a multivariate exponential
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family distribution Pm(X) over a tree-structured graph and only those non-diagonal inverse

co-variance elements corresponding to the edges in the tree graph are non-zero. We assume

the joint model is a Gaussian.

Pm(X) =
1

Zm
exp

{
− 1/2(X − µ)TΣ−1(X − µ)

}
, (6.12)

where Zm = (2π)(−k/2)det(Σ) and covariance matrix Σ has to be positive-definite. µ and Σ

are known as the moment parameters of Gaussian distributions. And Σ−1ij = 0 if there are

no edges connecting node i and node j.

The marginals of Gaussian distributions can be easily calculated.

µij = [µi, µj]

Σij = [σii, σij;σji, σjj] (6.13)

Note that σij is the variance parameter and
√
σij represents the standard deviation.

The beliefs then turn out to be as follows

b(X) =
∑
m

λmb
m(X) =

∑
m

λmN(X;µm,Σm) (6.14)

The log belief are given by log bm(X) = logN(X;µm,Σm) and in order to simplify calculation

we further define the inverse covariance matrix ∆ = Σ−1ij .

∆ = Σ−1ij = [δii, δij; δji, δjj] (6.15)

The derivative of log bm(X) with respect to the parameters µmi and δij can be derived as:

∂ log bm(X)

∂µmi
=
∑
j

(xj − µmj )Σ−1ij

∂ log bm(X)

∂δmij
= [

1

2
Σm − 1

2
(X − µm)T (X − µm)]ij (6.16)

The Bethe Free Energy can be defined as:

F (b) =
∑
i∈V

∫
xi

bi(xi)[log φi(xi)− (1−N(i)) log bi(xi)]
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+
∑

(i,j)∈E

∫
xixj

bij(xi, xj)[logψij(xi, xj)− log bij(xi, xj)] (6.17)

We propose to use a sampling strategy to approximately calculate the derivatives. Following

our previous arguments, the derivatives are naturally in the form of expectations with respect

to the joint belief b(X) and sampling from our proposed joint beliefs can be implemented

efficiently. Given M samples drawn from the joint distribution, {X1, X2, ..., XM} ∼ b(X),

the derivatives can be calculated as follows.

dF (b)

dµs
=

d

dµs

∑
i∈V

∫
xi

bi(xi)
[

log φi(xi)− (1−N(i)) log bi(xi)
]

+
d

dµs

∑
(i,j)∈E

∫
xi,xj

bij(xi, xj)
[

logψij(xi, xj)− log bij(xi, xj)
]

=
∑
i∈V

∫
xi

d

dµs
bi(xi)

[
log φi(xi)− (1−N(i))(log bi(xi) + 1)

]
+
∑

(i,j)∈E

∫
xi,xj

d

dµs
bij(xi, xj)

[
logψij(xi, xj)− log bij(xi, xj)

]
=
∑
i∈V

∫
xi

∫
X−xi

dbi(xi)

dµs

[
log φi(xi)− (1−N(i))(log bi(xi) + 1)

]
+
∑

(i,j)∈E

∫
xi,xj

dbij(xi, xj)

dµs

[
logψij(xi, xj)− (log bij(xi, xj) + 1)

]
=
∑
i∈V

∫
xi

∫
X\xi

db(X)

dµs

[
log φi(xi)− (1−N(i))(log bi(xi) + 1)

]
+
∑

(i,j)∈E

∫
xi,xj

∫
X\xi,xj

db(X)

dµs

[
logψij(xi, xj)− (log bij(xi, xj) + 1)

]
=
∑
i∈V

∫
X

db(X)

dµs

[
log φi(xi)− (1−N(i))(log bi(xi) + 1)

]
+
∑

(i,j)∈E

∫
X

db(X)

dµs

[
logψij(xi, xj)− (log bij(xi, xj) + 1)

]
=
∑
i∈V

∫
X

b(X)
d log b(X)

dµs

[
log φi(xi)− (1−N(i))(log bi(xi) + 1)

]
+
∑

(i,j)∈E

∫
X

b(X)
d log b(X)

dµs

[
logψij(xi, xj)− (log bij(xi, xj) + 1)

]
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=
∑
i∈V

Eb(X)

[d log b(X)

dµs

[
log φi(xi)− (1−N(i))(log bi(xi) + 1)

]]
+
∑

(i,j)∈E

Eb(X)

[d log b(X)

dµs

[
logψij(xi, xj)− (log bij(xi, xj) + 1)

]]

≈
∑
i∈V

M∑
m=1

1

M

[d log b(X)

dµs

[
log φi(xi)− (1−N(i))(log bi(x

m
i ) + 1)

]]
+
∑

(i,j)∈E

M∑
m=1

1

M

[d log b(X)

dµs

[
logψij(xi, xj)− (log bij(x

m
i , x

m
j ) + 1)

]]
(6.18)

dF (b)

dδst
=
∑
i∈V

Eb(X)

[d log b(X)

dδst

[
log φi(xi)− (1−N(i))(log bi(xi) + 1)

]]
+
∑

(i,j)∈E

Eb(X)

[d log b(X)

dδst

[
logψij(xi, xj)− (log bij(xi, xj) + 1)

]]

≈
∑
i∈V

M∑
m=1

1

M

[d log b(X)

dδst

[
log φi(xi)− (1−N(i))(log bi(x

m
i ) + 1)

]]
+
∑

(i,j)∈E

M∑
m=1

1

M

[d log b(X)

dδst

[
logψij(xi, xj)− (log bij(x

m
i , x

m
j ) + 1)

]]
(6.19)

In order to maximize the Bethe Free Energy, gradient ascent method with diminishing step

size can then be applied until convergence, again using sampling to approximate the partial

derivatives.
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CHAPTER 7

LEARNING TOPIC MODELS WITH BETHE VARIATIONAL INFERENCE

In this chapter, we discuss the potential of applying the Bethe Variational Inference method

to topic models. Topic models are statistical models that try to discover latent topics from

collection of documents. We start by formulating the learning problem in the lanaguage of

probabilistic graphical models.

7.1 Topic Models and Latent Dirichlet Allocation

In Natural Language Processing (NLP), topic models refer to a type of statistical models that

discover abstract “topics” from collection of documents (corpus). Latent Dirichlet Allocation

(LDA) is an example of a topic model proposed by Blei et al. (2003). LDA assumes that

the topic distribution over documents and word distribution over topics are both Dirichlet

distributions. In a hierarchical Bayesian model, the joint distribution of the smoothed LDA

model can be defined as

p(w, z, θ, β|γ, η) =
K∏
k=1

p(βk|η)
D∏
d=1

[
p(θd|γ)

Nd∏
n=1

p(zd,n|θd)p(wd,n|zd,n, β)
]
, (7.1)

where K is the number of topics, D is the number of documents, Nd is the number of

words in dth document, and V denotes the vocabulary size. We assume p(βk|η) and p(θd|α)

are Dirichlet distributions: βk ∼ Dir(η) and θd ∼ Dir(γ). βk = (βk,1, βk,2, ..., βk,V ) and

θd = (θd,1, θd,2, ..., θd,K) are vectors representing distributions of words for topic k and vector

representing the distribution of topics for document d respectively. We will denote the

collection of all K topics as β = {β1, ..., βK}. wd,n is an integer in {1,...,V} that represents

the nth word in dth document while zd,n is an integer in {1,...,K} that indicates the topic of

wd,n. η and wd,n are treated as given constants. γ is a K dimensional variable that represents

the parameters of the corresponding Dirichlet distribution. The graphical representation of
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(a) Original LDA model
(b) Surrogate LDA model

Figure 7.1: Bayesian Network Representation of the LDA Model (Blei et al., 2003).

smoothed LDA model is shown in Figure 7.1a. The standard approach to fitting topic

models is to perform variational inference using a simpler surrogate model. Blei et al. (2003)

proposed a surrogate model by dropping edges that couple θ and β together. We arrive at

the graphical model shown in Figure 7.1b so that the joint distribution can be written as:

q(β1:K , z1:V , θ1,D|λ, φ, γ) =
K∏
i=1

Dir(βi|λi)
D∏
d=1

[
q(θd|γd)

Nd∏
n=1

q(zd,n|φd,n)
]
, (7.2)

where λ and γ are Dirichlet parameters and φd,n is discrete topic distribution for word wd,n.

Blei et al. (2003) applied variational inference optimization to minimize the KL-divergence

between this surrogate distribution q(β, z, θ|λ, φ, γ) and the true posterior p(θ, z, β|w, α) =

p(w,z,θ,β|α,η)
p(w,β|α,η) with respect to the variational parameters λ, γ and φ.

7.2 Bethe Variational Inference on LDA model

Instead of optimizing on the surrogate model in (7.2), we propose a new surrogate model

for the beliefs in the BFE that factorized into distributions on single variables and pairs of

variables. The beliefs are treated as pseudo-marginals and optimized over Bethe Free Energy

to achieve a surrogate model close to the true marginals.

b(β, θ, z) =
M∑
m=1

λm

K∏
i=1

bβk(βk)
D∏
d=1

[
bθd(θd)

Nd∏
n=1

b(zd,n|wd,n)
]

(7.3)
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In this work, we assume the beliefs are mixtures of independent distribution with M

mixture components:

bβk(βk) =
M∑
m=1

λmDir(βk|αmβk)

bβ(β) =
M∑
m=1

λm

K∏
k=1

Dir(βk|αmβk)

bθd(θd) =
M∑
m=1

λmDir(θd|αmθd)

bwd,n(z) =
M∑
m=1

λmπ
m
wd,n

(z)

bwd,n(z, θd) =
M∑
m=1

λmπ
m
wd,n

(z)Dir(θd|αmθd)

bwd,n(z, β) =
M∑
m=1

λmπ
m
wd,n

(z)
K∏
k=1

Dir(βk|αmβk) (7.4)

where λm are the mixture weights, Dir(βk|αmβk) and Dir(θd|αmθd) are Dirichlet distributions

where αmβk and αmθd are the corresponding Dirichlet parameters. πmwd,n(z) is a discrete distri-

bution of topics for each unique word.

The inference procedure in the LDA model can be done by approximating the BFE with

respect to proper beliefs. We start from deriving the BFE for the LDA model in (7.1) and

assume unique words share the same beliefs:

F (b) =
K∑
k=1

∫
βk

bβk(βk) log p(βk|η)dβk +
D∑
d=1

∫
θd

bθ(θd) log p(θd|γ)dθd

+
D∑
d=1

Nd∑
n=1

∫
θd

K∑
z=1

bwd,n(z, θd) log p(zd,n|θd)dθd

+
D∑
d=1

Nd∑
n=1

∫
β

K∑
z=1

bwd,n(z, β) log p(wd,n|zd,n, β)dβ

−
K∑
k=1

∫
βk

bβk(βk) log bβ(βk)dβk
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−
D∑
d=1

∫
θd

bθd(θd) log bθd(θd)dθd

−
D∑
d=1

Nd∑
n=1

K∑
z=1

bwd,n(z) log bwd,n(z)

−
D∑
d=1

Nd∑
n=1

∫
θd

K∑
z=1

bwd,n(z, θd) log
bwd,n(z, θd)

bwd,n(z)bθd(θd)
dθd

−
D∑
d=1

Nd∑
n=1

∫
β

K∑
z=1

bwd,n(z, β) log
bwd,n(z, β)

bwd,n(z)bβ(β)
dβ (7.5)

The BFE can be further viewed as sum of expectations:

F (b) =
D∑
d=1

Nd∑
n=1

Ebwd,n (z)
[

log bwd,n(z)
]

+
K∑
k=1

Ebβk (βk)
[

log p(βk|η)− log bβk(βk)
]

+
D∑
d=1

Ebθd (θd)
[

log p(θd|γ)− (1−Nd) log bθd(θd)
]

+
D∑
d=1

Nd∑
n=1

Ebβ(β)
[

log bβ(β)
]

+
D∑
d=1

Nd∑
n=1

Ebwd,n (z,β)
[

log p(wd,n|zd,n, β)− log bwd,n(z, β)
]

+
D∑
d=1

Nd∑
n=1

Ebwd,n (z,θd)
[

log p(zd,n|θd)− log bwd,n(z, θd)
]

(7.6)

Not surprising, (7.6) is still not a convex function, but we can adopt the stochastic gradient

method to converge to a local optimum as is done in typical LDA.

7.3 Expectation Approximation of BFE in LDA model

In order to apply gradient ascent on the BFE, we calculate the derivatives of the parameters.

As shown in Appendix A, the derivatives are also in the form of expectations. The exact

calculation of expectations in these derivatives is impossible since the vocabulary size can
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be tens of thousands of words, resulting in intractable integrals in the expectations. Tradi-

tional approximation methods like quadrature approximation and particle methods cannot

be applied here because the number of quadrature/particle points required to yield accurate

approximations is likely too large considering the dimension of the integrals.

A more efficient way to approximate the expectations is on demand. Sampling is an

intuitive choice to approximate the expectations. The beliefs in (7.4) are in the mixture

forms which, are convenient to sample from. For the singleton beliefs, we can first sample a

mixture component based on the mixture weights, and then sample from either discrete or

Dirichlet distributions. Sampling from discrete distribution is trivial while sampling from a

Dirichlet distribution is also straightforward (draw independent random samples with each of

the parameters from Gamma distribution and normalize them). As for the pairwise beliefs,

the sampling routine is similar. After sampling one mixture component, we can sample from

the discrete and Dirichlet separately since they are independent of each other.

7.4 MAP Assignment Derivation from Converged Beliefs

In order to calculate the log-likelihood, we need to derive a set of MAP assignment from our

converged beliefs, i.e., topics for each word in the corpus zd,n, topic distributions for each

document θd, and word distributions for each topic βk. We can easily iterate through all

possible topics to achieve the MAP assignment for zd,n.

z∗d,n = max
z

M∑
m=1

λmπ
m
wd,n

(z) (7.7)

We conduct the gradient ascent again on the log beliefs log b(θd) and log b(βk), starting

from M mode points corresponding to each mixture component. After convergence, the

assignment with highest belief value is chosen as the MAP assignment for θd and βk. We

care about the derivative for θdi in the log belief log b(θd) and the derivative for βki is similar.

∇θdi log b(θd) =
1

b(θd)

M∑
m=1

λm
1

B(αmθd)

K∏
i=1

θ
αmθdi
−1

di ·
αmθdi − 1

θdi
(7.8)
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7.5 Full Bayesian Inference with Bethe Approximation

Our method can also solve the so called full Bayesian inference problems (Vrontos et al.,

2000). Most Bayesian inference models focus on optimizing the probability distribution

given data, in this section we consider optimizing the pure data probability by maximizing

the expectation of the probability distribution. Define the graphical model as follows:

P (X) =
∏
d

∏
(i,j)∈E

p(θdij|α)p(xdi , x
d
j |θdij) (7.9)

where D is the given data and E represents the edges in the graph structure which can be

learned using Chow-Liu tree algorithm. Based on the joint probability setting, we can define

the Bethe Free Energy.

F (b) =
∑
d

∑
(i,j)∈E

∑
xdi ,x

d
j

∫
θdij

b(xdi , x
d
j , θ

d
ij) log p(xdix

d
j |θdij)

+
∑
d

∑
(i,j)∈E

∫
θdij

b(θdij) log p(θdij|αd)

−
∑
d

∑
i∈V

∑
xi

bi(xi) log bi(xi)−
∑
d

∑
(i,j)∈E

∑
xixj

p(θdij) log p(θdij)

−
∑
d

∑
(i,j)∈E

∑
xdi ,x

d
j

∫
θdij

b(xdi , x
d
j , θ

d
ij) log

b(xdix
d
j , θ

d
ij)

b(xdi )b(x
d
j )b(θ

d
ij)

(7.10)
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CHAPTER 8

EXPERIMENTAL RESULTS

In the following experiments, we evaluate our method on a variety of inference tasks:

marginal inference, MAP inference, and marginal MAP inference problems. We also ap-

ply our method on different graph structures, e.g., trees and loopy graphs. The goal is to

showcase the performance on different inference tasks, all the potential functions are assumed

to be known in advance. The BVI method is implemented using a mixture of Gaussian be-

liefs, dubbed QBethe. The standard projected gradient ascent with a decaying step size is

used in these experiments. Our method is compared with Gaussian expectation propagation

(EP) (Minka, 2001), particle belief propagation (PBP) (Ihler and McAllester, 2009), and

expectation particle belief propagation (EPBP) (Lienart et al., 2015). All the methods are

implemented in MATLAB and run on same machine without parallelization. For PBP, the

proposal function is chosen to be the beliefs in the current iteration and Markov chain Monte

Carlo (MCMC) sampling method is used for sampling. We sample the initial means and

particle points from a normal distribution determined by data.

8.1 Synthetic Tree Experiments

We begin our experiments on a synthetic tree model. The goal of this experiment is to inspect

the differences between particle based methods and our method on a simple tree structure

with different potential function settings. The tree structure is shown in Figure 8.1, we

ran experiments with two different settings of potential functions. In the first experiment,

we considered a model in which the node potentials are Gaussian mixtures and the edge

potentials are Laplace distributions.

φu(xu) = α1N (xu − yu;−1, 1) + α2N (xu − yu; 2, 0.5)

ψuv(xu, xv) = L(xu − xv; 0, 1), (8.1)
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2 3

4 5 6 7 8

Figure 8.1: Synthetic tree graph.

where N (x;µ, σ2) is the standard normal distribution with mean µ and variance σ2 and

L(x;µ, ν) = 1
2ν

exp(−|x|
ν

) is the standard Laplace distribution. For our experiments, we set

α1 = .3 and α2 = .7.

Loopy Belief Propagation (LBP) method is first run on this model with an evenly spaced

200 point discretization of the interval [−10, 10], to serve as a baseline for all methods. For

the particle methods, PBP and EPBP are run with the number of particles, K, set to 10.

Generally, increasing the number of particles ensures better results, but the per iteration

complexity increases as the number of particles increases. QBethe is run with six mixture

components and three quadrature points so that both the particle methods and QBethe have

comparable per iteration complexities. We compute the approximate marginals obtained by

these algorithms after 20 iterations where one iteration corresponds to updating all messages

once. The resulting marginal for each node is displayed in Figure 8.2 (left). In general, the

particle methods perform well in this experiment while EP produces poor approximations in

all cases. QBethe also appears to underperform slightly compared to the particle methods,

and we suspect that this is due to the limited number of quadrature points as well as the

difficulty that gradient methods have when a variety of local optima are close together in

space and value: the distance between such solutions is less than 10−8, which means that

there may be convergence issues near the optimum that may require a large number of

iterations to resolve (this is observed empirically).

For our second choice of potentials we select the edge potentials to be multi-modal with

two separated peaks, but fix the node potentials to be uni-modal. The goal of this exper-
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Figure 8.2: Single node marginal beliefs for the eight node tree in which node potentials are
multi-modal and edge potentials are uni-modal (left) and single node marginal beliefs for the
eight node tree in which node potentials are uni-modal and edge potentials are multi-modal
(right).

iment is to illustrate the limitations of the message passing based approaches. Each of the

message-passing algorithms will produce approximate univariate marginals that are obtained

by multiplying the node potentials by the corresponding messages - this can, and does, result

in poor approximations. Specifically, the node and edge potentials are selected as follows.

φu(xu) = exp(−|xu|
10

)

ψuv(xu, xv) = exp(α1(xu − 10)2 + α2(xv + 10)2)

+ exp(α1(xu + 10)2 + α2(xv − 10)2) (8.2)

where α1 and α2 are both set to be −0.1. The edge potentials are bi-modal functions with

peaks at ±10 and zero mean. We expect that the Gaussian EP algorithm, in particular, will

have significant difficulty with these potentials as the mean and mode are very different and

the univariate potential functions are not multi-modal.

For this experiment, all algorithm settings are the same as the previous. The marginal

distributions obtained by the different algorithms for a fixed node are shown in Figure 8.2
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(right). PBP and EPBP only manage to find one of the two peaks in the LBP marginals,

though if the number of particles were increased significantly, we expect that particle methods

would also yield a multi-modal answer. Gaussian EP places a normal distribution at the

mean, resulting in a very inaccurate estimate of the marginal distributions. Contrast this

with the first experiment where most of the methods produced a reasonable estimate of the

marginals. These observations suggest that, in practice, even for tree structured models,

if the shape of the true marginal distributions is unknown, then QBethe may provide a

good alternative to the message-passing procedures, at least for comparable per-iteration

complexities.

8.2 Marginal Inference with Chow-Liu Trees

The goal of this experiment is to evaluate the performance of different methods in tree-

structured, continuous MRFs on the marginal inference task. The reason we restrict ourselves

to tree models is that though expensive, the exact ground truth for these tree models can

be obtained. While it’s very hard to calculate the ground truth for arbitrary continuous

potential functions. With the ground truth answers, a more accurate evaluation is possible.

Note that tree cases are also the best scenario for the particle based BP methods as they are

guaranteed to converge to the optimum on trees. Despite the approximations made by BVI

method, we show that QBethe can achieve comparable results with these particle methods

on the tree structure models on real world data.

As for the data sets, we select a variety of data sets from the UCI Machine Learning

Repository (Dheeru and Karra Taniskidou, 2017) within 4 to 30 variables. The dataset

‘B.N.’ stands for the Bank Note dataset, ‘I.S.E.’ stands for Istanbul Stock Exchange, ‘Wdbc’

is short for Breast Cancer Wisconsin (Diagnostic) Data Set and ‘CMSC’ is Climate Model

Simulation Crashes dataset. We first learned a tree structured model using Chow-Liu tree

algorithms (Chow and Liu, 1968) over the continuous variables using Parzen windows (Ni
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et al., 2017). However, because of the variances are slightly different, the probabilities

produced by this method do not marginalize to each other. We ensure the marginalization

conditions are always satisfied for our evaluation purpose. The resulting model is a tree

G = (V,E) with a collection of probabilities pi(xi) and pij(xi, xj) for each node and edge

in the graph. From these probabilities learned with Chow-Liu tree method, We define the

potential functions to be:

φi(xi) = pi(xi)
∏

k∈N(i)

Mki(xi)

ψij(xi, xj) = pij(xi, xj)/(pi(xi)pj(xj)Mij(xj)Mji(xi)) (8.3)

where each message Mij : R → R>0 is an arbitrary continuous function. By this way, the

partition function Z is always one and the real marginal probabilities are exactly the same

as the probabilities pi(xi) and pij(xi, xj) learned from the Chow-Liu tree method. If the

messages are constants and PBP method uses the node beliefs as proposal distributions,

then this will result in initializing PBP with the true distributions. To make the problem

more realistic, we chose Mij to be:

Mij(xj) = pj(xj)
−1/dj (8.4)

where dj is the degree of node j in the graph. In this case, the potential functions become:

φi(xi) = 1

ψij(xi, xj) =
pij(xi, xj)

pi(xi)1−dipj(xj)1−dj
(8.5)

Other forms of Mij could also work but we found that the performance of all of the methods

to be roughly stays the same when varying the reparameterizations.

For these experiments, we run our method (QBethe in figures) from random initialization

with KQ = 4 quadrature points and M = 5 mixture components. PBP and EPBP are run
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with 20 particle points. In this setting, all methods share roughly the same per iteration

complexity. The converged beliefs (pseudo marginals) are plugged into BFE to calculate the

log-partition function logZ. Gaussian EP method is not included in these experiments as

it produces poor results on all data sets. Note that in all data sets, the exact Z value is one

and smaller KL divergence value indicates better approximations. Each method is run for

20 times and the results are reported in the form of µ ± σ where µ is the mean value and

σ represent the standard deviation. The average Z value and the average KL divergence

values between the exact and approximate node beliefs over all variables are reported in

Table 8.1. For PBP and EPBP, the KL divergence is calculated assuming that the particles

are continuous beliefs evaluated at the particle points.

As shown in the table, QBethe significantly outperforms both PBP and EPBP on aver-

age on most data sets considering both the partition function estimation and the average

univariate KL divergence. This can be explained in the sense that all methods are using

roughly the same number of points for integral approximation when calculating the beliefs,

QBethe can select optimal points based on quadrature method as suggested in Theorem

1. Another drawback for the particle based methods is that even they do a reasonable job

on estimating the marginals, these methods do not guarantee the marginalization of the

approximate beliefs. As a result, plugged their marginals into BFE is not accurate. One

example is the EPBP results for Wdbc in Table 8.1. Though EPBP has the best performance

when estimating the partition function, its KL-divergence is significant worse than QBethe.

This suggests that most likely the EPBP method produces beliefs that do not satisfy the

marginalization constraints in (5.1). Also increasing the number of particles may seem to

help improving accuracy, but comes at significant cost, e.g., PBP requires more than 100

particles (25× slower) to result in comparable performance comparing to QBethe on the Iris

data set.

In an additional set of experiments, we used the same UCI data sets and similarly derived

potential functions but changed from Chow-Liu trees, which are often close to star graphs, to
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chain-structured models. Note that chain structure is also a tree structure. For data sets with

a small number of variables, the chain structure that maximizes the likelihood was chosen

while a greedy procedure that iteratively adds the edge with maximum mutual information

to the chain is used for larger data sets. The purpose of this investigation was to determine if

there is a significant effect on the performance of the methods based on the actual structure

of the trees. For example, we might think that errors in the message-passing algorithms

may propagate and reduce performance in chain-structured models. For this experiment,

the parameters of each method remained the same as the previous experiment, and the

results are described in Table 8.2. Again, QBethe outperforms the sampling methods on

average, but surprisingly, there does not appear to be a significant difference between the

two different structures in terms of quality of approximation. This suggests that the quality

of the approximation, at least in these data sets, is largely determined by the actual potential

functions rather than the underlying structure. In summary, while all methods can achieve

reasonable results on the KL-divergence, if the aim is to compute logZ, QBethe appears to

be the better choice in practice.

8.3 MAP Inference with Image Denoising

In this experiment, we consider an image denoising MAP inference problem (Lienart et al.,

2015). The edge potentials in this case are not integrable which makes the problem even

harder. The aim of this experiment is to demonstrate that BVI method can perform well

on medium sized models (thousands of continuous variables) in practical. Our method

outperforms the particle methods on this task. The input of this denoising model is a

50× 50 image that has been corrupted with Gaussian noise. The corresponding MRF model

is a 50× 50 grid graph with each pixel treated as a node. The potential functions are chosen

to be:

φu(xu) = N (xu − yu; 0, 0.01)
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Table 8.1: Marginal inference on tree-structure models. All numbers are rounded to two
decimal places. In all cases, Z = 1.

Average Z Average Univariate KL divergence

Dataset PBP EPBP QBethe PBP EPBP QBethe

Iris 0.20± 0.17 0.37± 0.16 0.97± 0.02 0.35± 0.33 0.25± 0.14 0.00± 0.00

B.N. 0.15± 0.18 0.00± 0.00 0.87± 0.01 0.62± 0.59 0.83± 0.01 0.06± 0.00

I.S.E. 0.00± 0.01 0.06± 0.00 0.54± 0.02 0.78± 0.37 0.30± 0.00 0.21± 0.05

Seeds 0.12± 0.12 0.49± 0.15 0.84± 0.05 0.29± 0.18 0.12± 0.03 0.02± 0.01

Yeast 0.04± 0.12 0.00± 0.00 0.67± 0.07 3.31± 3.61 1.18± 0.09 0.24± 0.05

Wdbc 0.05± 0.18 0.27± 0.20 0.21± 0.06 0.10± 0.07 0.58± 0.14 0.18± 0.19

Letter 0.00± 0.00 0.00± 0.00 0.26± 0.05 0.57± 0.26 0.73± 0.01 0.07± 0.02

Poker 0.62± 0.12 0.01± 0.00 0.63± 0.05 0.02± 0.01 0.32± 0.00 0.06± 0.01

CMSC 0.32± 0.08 0.47± 0.01 0.56± 0.02 0.03± 0.01 0.02± 0.00 0.02± 0.00

Table 8.2: Marginal inference on tree-structure models. All numbers are rounded to two
decimal places. In all cases, Z = 1.

Average Z Average KL divergence

Dataset PBP EPBP QBethe PBP EPBP QBethe

Iris 0.19± 0.11 0.39± 0.16 0.95± 0.02 0.22± 0.10 0.20± 0.12 0.00± 0.00

B.N. 0.75± 0.10 0.92± 0.01 0.92± 0.03 0.02± 0.01 0.01± 0.00 0.01± 0.01

I.S.E. 0.00± 0.01 0.06± 0.00 0.70± 0.01 0.78± 0.37 0.30± 0.00 0.08± 0.02

Seeds 0.08± 0.10 0.16± 0.04 0.92± 0.01 0.38± 0.21 0.39± 0.05 0.00± 0.00

Yeast 0.00± 0.00 0.00± 0.00 0.67± 0.02 4.71± 4.09 1.18± 0.14 0.20± 0.04

Wdbc 0.00± 0.00 0.00± 0.00 0.19± 0.01 0.50± 0.25 1.58± 0.07 0.23± 0.02

Letter 0.00± 0.00 0.00± 0.00 0.20± 0.02 0.50± 0.50 0.64± 0.01 0.08± 0.02

Poker 0.60± 0.09 0.06± 0.00 0.60± 0.06 0.02± 0.01 0.16± 0.00 0.05± 0.01

CMSC 0.35± 0.09 0.44± 0.01 0.58± 0.03 0.03± 0.01 0.02± 0.00 0.01± 0.00
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(a) Original (b) Noisy (c) EP

(d) PBP (e) EPBP (f) QBethe

Figure 8.3: Approximate denoising of the 50× 50 image (b).

ψuv(xu, xv) = Lλ(xu − xv; 0, 0.03), (8.6)

where yu is the observed noisy data and Lλ(x;µ, ν) is a truncated Laplace distribution.

Lλ(x;µ, ν) =


L(x;µ, ν), |x| ≤ λ

L(λ;µ, ν), otherwise

. (8.7)

In the experiments, λ was set to 0.2 to be the same as in prior work (Lienart et al., 2015).

The number of particles for PBP and EPBP is set to 100. QBethe is run with M = 1,

i.e., single Gaussian beliefs and three quadrature points. For all the method, the mode

(mean value of Gaussian distribution) of the approximate node marginals was selected as

the denoised value for each node.

Figure 8.4 shows the denoising results of all methods in grayscale in which the values

for all pixels were scaled into the interval [0, 1]. Gaussian EP produces a poor estimation
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Figure 8.4: Estimate of the partition function and mean square error of EPBP and QBethe
for the image denoising problem.

which suggests that the true marginal distributions are mult-modal since the Gaussian EP

method only matches the first two moments. QBethe achieves the best performance as

the denoising image is more clear and closest to the original one. Figure 8.4 shows the

comparison of the particle methods and QBethe method, dubbed Quadrature, with respect

to each iteration. The value of the log-partition function and the mean-squared error (MSE)

are calculated. Even though QBethe method starts at a significantly worse initialization,

it quickly outperforms PBP method and EPBP method both in terms of the log-partition

function and the MSE. It seems that QBethe needs more iterations to achieve comparable

results to the particle based methods. However, due to the per iteration complexity, QBethe

can achieve comparable solutions in roughly the same amount of time. The average per

iteration running times are quite different: QBethe (.02s), EPBP (50s) and PBP (305s). As

a result, QBethe can run for 2500 iterations in the same amount of time as EPBP run for
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Table 8.3: Average log-partition function on a 3-cycle of PBP method. M for number of
particle points. The exact log-partition function of this model is −16.17.

PBP M = 5 M = 25 M = 50 M = 75 M = 100

logZ −47.34± 38.03 −25.57± 31.05 −22.24± 19.05 −20.64± 19.34 −10.61± 12.62

Table 8.4: Average log-partition function on a 3-cycle of QBethe method. M for number of
mixture components. The exact log-partition function of this model is −16.17.

QBethe M = 2 M = 3 M = 4 M = 5 M = 6
logZ −17.56± 0.36 −17.32± 0.42 −17.07± 0.45 −16.88± 0.41 −16.78± 0.42

only one iteration. This indicates that QBethe is more likely to perform better on larger

scale problems.

8.4 3 Node Cycle Graph

The motivation for this experiment is that, while the particle based methods can perform rea-

sonable well on a tree, we expect that errors in estimating the individual messages combined

with the convergence issues of message-passing algorithms on loopy graphs may combine

together to yield very high variance on graphs with cycles. We use a simple 3 node cycle

graph to demonstrate this.

For this experiment, the node and edge potentials are carefully chosen to be in certain

form so that the true univariate marginal distributions are with three separated modes:

φu(xu) = e−0.1|xu|

ψuv(xu, xv) = f10(xu, xv) + f−10(xu, xv) (8.8)

where function f are defined as follows.

fa(xu, xv) = e−0.1(xu−a)
2−0.1(xv+a)2 (8.9)

Figure 8.5 shows the true univariate marignal with three separated modes. As also shown

in the same figure: PBP brely captures two modes and EPBP only manages to capture two
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Figure 8.5: One node belief on the three node cycle

modes well. QBethe is the only method that can capture all three modes in this case. We

also examined the value of the partition function produced by QBethe with different numbers

of mixture components and compared with PBP with different numbers of particle points.

We computed the average log-partition function by running 50 trials of each method to 150

iterations. The results of the PBP method are shown in Table 8.3 and the QBethe method

in Table 8.4. As the increase of number of particle points, the performance of PBP does

improve, but the variance remains large with even 100 particles. A closer inspection on

the messages produced by the PBP method suggests that the method is not converging.

We also varied the sampling procedure to rejection sampling with a Gaussian proposal to

reduce the variance, but this did not seem to improve convergence. QBethe produces a much

better approximation on this cycle graph and with more mixture components the method

approaches the exact solution. This experiment shows that particle based methods suffer on

loopy graphs with certain potentials while the QBethe is more robust to the graph structure

as well as different potential functions.
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2 3 4

5 6 7 8

Figure 8.6: Synthetic Tree for Marginal MAP

(a) Percentage of correct solutions (b) Relative error

Figure 8.7: Marginal inference results for synthetic tree model.

8.5 Marginal MAP on Synthetic Trees

This experiment is to demonstrate BVI’s performance on marginal MAP inference tasks. We

compare our method with a state-of-the-art Marignal MAP algorithm called mixed product

BP (MPBP) (Liu and Ihler, 2013). We start from a synthetic tree model with discrete

random variables. The synthetic tree structure is shown in Figure 8.6 and probability model

is defined as:

p(X) =
1

Z
exp

∑
i∈V

θi(xi) +
∑

(i,j)∈E

θij(xi, xj)

 (8.10)

The parameters θi and θij are sampled from Gaussian distributions, θi(xi) ∼ N (0, 0.01) and

θij(xi, xj) ∼ N (0, σ2), where σ is varied from 0.1 to 1.0 and called the coupling strength.

100 different set of θ parameters are sampled for each different σ. And we pick three nodes

to be MAP nodes and the rest to be marginal (sum) nodes. We consider all (8) !
(3) !(8−3) ! = 56
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MAP/sum nodes combinations and the reported results are averaged over all these combi-

nations. Note that inference using BVI only has to be run once for all combinations while

MPBP has to rerun for each of the 56 possibilities. BVI is run with 3, 5, and 10 mixture

components, dubbed mixture-3, mixture-5 and mixture-10, for 500 iterations each. We ini-

tialize the BVI method with uniform mixture weights and random initial discrete beliefs.

We initialize MPBP with random initial messages and run it until convergence1.

We report the average percentage of correctly identified MMAP assignments in Figure

8.7a and the average relative error in Figure 8.7b. Given the optimal MMAP assignment

x∗B, the relative error RE(x̂B, x
∗
B)is defined as:

RE(x̂B, x
∗
B) =

p(x̂B)− p(x∗B)

p(x∗B)
, (8.11)

where x̂B is the estimated MMAP assignment. The Relative Error is non-positive due to the

fact that optimal MMAP will always have the highest probability. BVI finishes within 40

seconds while MPBP method requires roughly 250 seconds. This matches our intuition as

MPBP method has to be rerun for each MAP/sum node combination. BVI performs better

with respect to both the percentage of correct solutions and the relative error on harder

problems (larger coupling strength). Further looking into the results shows us that for smaller

coupling strength, though the BVI method achieves a worse percentage of correct solutions,

the method is missing very close, i.e., the incorrect solution also has very high probability

though not optimal. This is likely a consequence the construction of the BVI method: it is

designed to return a good approximate distribution not a specific MAP assignment. As the

coupling strength does to zero, many solutions are near optimal. Note that, in practice, a

solution close to optimal may be sufficient, depending on the application.

1At least 50 iterations, if not converged, we run another 200 extra iterations
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Table 8.5: Relative error of OSI and mixed-product BP for a marginal MAP task on various
UCI datasets.

Dataset mixed-BP mixture-3 mixture-5 mixture-10

Iris −0.1848± 0.0743 −0.1242± 0.1238 −0.1473± 0.1326 −0.1188± 0.0566

Letter −0.0236± 0.0380 −0.0253± 0.0312 −0.0223± 0.0290 −0.0216± 0.0273

S.F. −0.0404± 0.0620 −0.0370± 0.0654 −0.0369± 0.0664 −0.0367± 0.0627

M.M. −0.1736± 0.2014 −0.1884± 0.1892 −0.1637± 0.1614 −0.1732± 0.1784

T.T.T. −0.0789± 0.0768 −0.1078± 0.0750 −0.0791± 0.0562 −0.0757± 0.0778

Y.H. −0.0590± 0.1371 −0.0245± 0.0538 −0.0245± 0.0538 −0.0211± 0.0514

8.6 Marginal MAP ON UCI Datasets

We also evaluate our method with different number of mixtures on marginal MAP problems

over several UCI repository datasets: Iris, Letter, Solar Flare (S.F.), Mammographic masses

(M.M.), Tic-Tac-Toe (T.T.T.) and Yacht Hydrodynamics (Y.H.). For each of the data set,

we learn a separate discrete tree-structured distribution with the Chow-Liu Tree method

(Chow and Liu, 1968). The number of random variables for these data sets ranges from 5

to 17.

We compared our method with Mixed Product BP method. We use 3, 5, and 10 mixture

components, dubbed mixture-3, mixture-5 and mixture-10. The performance is examined

by calculating the relative MAP assignment error against ground truth. We choose 3 nodes

as MAP nodes and treat the rest as marginal/sum nodes, (N) !
(3) !(N−3) ! combinations for data

set with N variables. The results are averaged over all combinations in the form of µ ± σ

where µ is the mean value and σ the standard deviation. Each method is run for 5 trials

with random initialization. The results are shown in Table 8.5.

8.7 Marignal MAP on UAI Challenge Datasets

In this final set of experiments of this chapter, we evaluate our method on several marginal

MAP UAI challenge data sets. For each of these discrete models, we considered three different

configurations of MAP and sum nodes as in Figure 8.8, 8.9 and 8.10. The graph is a 20× 20
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Figure 8.8: MAP/sum nodes combination 1 for UAI challenge datasets. Shaded for sum
nodes and unshaded for MAP nodes

grid graph. We compare our method with 5 mixture components, dubbed mixture-5, and

Mixed Product BP method. We use variable elimination to conduct exact inference on the

model as ground truth. The results are described in Table 8.6. Our method significantly

outperforms MPBP in this case. This again shows our method’s better robustness against

loopy graphs. One reason that message passing based methods suffer on graphs with cycles

is that iterative updates of messages will propagate the error in the existing messages which

results in never convergence. While our variational method does not have this disadvantages

and makes it a better choice for continuous inference tasks on general graphs (graphs with

loops).
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Figure 8.9: MAP/sum nodes combination 2 for UAI challenge datasets. Shaded for sum
nodes and unshaded for MAP nodes

Figure 8.10: MAP/sum nodes combination 3 for UAI challenge datasets. Shaded for sum
nodes and unshaded for MAP nodes

69



Table 8.6: The marginal MAP value produced by mixed-product and OSI on several UAI
challenge problems.

Combination #1 Combination #2 Combination #3

Dataset mixed-BP mixture-5 mixed-BP mixture-5 mixed-BP mixture-5

Grids26 4378.0± 149.9 4963.0± 40.6 3927.0± 310.3 4621.6± 60.9 3530.5± 276.1 4189.1± 63.8

Grids28 6661.1± 244.4 7442.5± 29.2 5484.1± 412.6 6944.6± 56.3 4851.9± 271.6 6285.6± 16.6

Grids29 2280.8± 85.4 2472.2± 24.4 2000.9± 111.7 2290.8± 22.5 1897.9± 63.6 2087.7± 12.1

Grids30 4661.2± 54.0 5078.7± 31.8 3784.3± 318.0 4606.0± 42.0 3230.5± 558.9 4264.6± 24.6
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CHAPTER 9

CONCLUSION

In this dissertation, we proposed a novel variational inference method for solving inference

problems in probabilistic graphical models. The proposed method is robust to loopy graphs

and can handle mixed case with continuous and discrete variables. The method has many

advantages comparing to both message passing based methods and other variational inference

algorithms. Our method does not suffer from the convergence issues that can limit the

practical performance of particle message-passing approaches, and it scales well to large

size problems. We demonstrate the performance of our method on a variety of different

inference tasks. And the proposed method outperforms the state-of-the-art methods both

in terms of speed and accuracy. There are several limitations as well as possible extensions

for our method. First, our method can not work in the case when BFE is unbounded from

above. BFE can be unbounded either with unbounded potential functions or with unbounded

entropy of beliefs and extra efforts are needed for bounding BFE in this case. Second, our

method can be applied to inference tasks with new kinds of potential functions, e.g. neural

networks. Third, to reach beyond inference problems, our method can also be used as a

subroutine for learning.
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APPENDIX A

STOCHASTIC EXPECTATION DERIVATIVE CALCULATION FOR LDA

MODEL

First let us define a general form which can describe all the expectation terms in (7.6).

Let p(τ) be a probability distribution and f(X, τ) be a function. Assume τ is the set of

parameters of which we want to calculate their derivatives and X represents all the other

parameters which can be regarded as constants.

∇τEp(τ)[f(X, τ)] =

∫
X

∇τ [p(τ)f(X, τ)]dX

=

∫
X

∇τp(τ)f(X, τ) + p(τ)∇τf(X, τ)dX

=

∫
X

∇τp(τ)

p(τ)
p(τ)f(X, τ)dX +

∫
X

p(τ)∇τf(X, τ)dX

=

∫
X

p(τ)f(X, τ)∇τ log p(τ)dX +

∫
X

p(τ)∇τf(X, τ)dX

=Ep(τ)[f(X, τ)∇τ log p(τ)] + Ep(τ)[∇τf(X, τ)]

=Ep(τ)[f(X, τ)∇τ log p(τ) +∇τf(X, τ)] (A.1)

Given the BFE in (7.6), we care about the derivatives with respect to the parameters αmβk ,

αmθd , π
m
wd,n

(z) and the mixture weights λm with all the other variables fixed. Note that αmβk

and αmθd are vectors here. And the derivative of the gamma function can be described in

terms of Γ′(x) = Γ(x)ψ0(x) where ψ0(x) is polygamma function. As for this stochastic

gradient ascent problem, we first sample a random document d and apply Eq. A.1 to the

corresponding terms:

∇πmwd,n
(z)F (b) =λm

[
(log bwd,n(z) + 1)

+E∏K
k=1Dir(βk|αmβk )

[log p(wd,n|zd,n, β)− (log bwd,n(z, β) + 1)]

+EDir(θd|αmθd )[log p(zd,n|θd)− (log bwd,n(z, θd) + 1)]
]

(A.2)
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∇{αmβk}iF (b) =λm

[
EDir(βk|αmβk )

[
[log p(βk|η)− (log bβk(βk) + 1)]

[ψ(
V∑
j=1

{αmβk}j)− ψ({αmβk}i) + log({βk}i)]
]

+

Nd∑
n=1

E∏K
k=1Dir(βk|αmβk )

[
[log bβ(β) + 1]

[ψ(
V∑
j=1

{αmβk}j)− ψ({αmβk}i) + log({βk}i)]
]

+

Nd∑
n=1

K∑
z=1

E∏K
k=1Dir(βk|αmβk )

[
[log p(wd,n|zd,n, β)− (log bwd,n(z, β) + 1)]

πmwd,n(z)[ψ(
V∑
j=1

{αmβk}j)− ψ({αmβk}i) + log({βk}i)]
]]

(A.3)

∇{αmθd}iF (b) =λm

[
EDir(θd|αmθd )

[
[log p(θd|γ)− (1−Nd)(log bθd(θd) + 1)]

[ψ(
K∑
j=1

{αmθd}j)− ψ({αmθd}i) + log({θd}i)]
]

+

Nd∑
n=1

K∑
z=1

EDir(θd|αmθd )
[
[log p(zd,n|θd)− log bwd,n(z, θd)− 1]

πmwd,n(z)[ψ(
K∑
j=1

{αmθd}j)− ψ({αmθd}i) + log({θd}i)]
]]

(A.4)

∇λmF (b) =

Nd∑
n=1

K∑
z=1

πmwd,n(z)(log bwd,n(z) + 1)

+
K∑
k=1

EDir(βk|αmβk )[log p(βk|η)− (log bβk(βk) + 1)]

+EDir(θd|αmθd )[log p(θd|γ)− (1−Nd)(log bθd(θd) + 1)]

+

Nd∑
n=1

E∏K
k=1Dir(βk|αmβk )

[
log bβ(β) + 1

]
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+

Nd∑
n=1

K∑
z=1

E∏K
k=1Dir(βk|αmβk )

[
[log p(wd,n|zd,n, β)− (log bwd,n(z, β) + 1)]πmwd,n(z)

]
+

Nd∑
n=1

K∑
z=1

EDir(θd|αmθd )
[
[log p(zd,n|θd)− (log bwd,n(z, θd) + 1)]πmwd,n(z)

]
(A.5)

Considering the discrete distribution πmwd,n(z) and mixture weights λm may not be a valid

probability distributions after the gradient ascent update, we apply a change of variables to

them:

πmwd,n(z) =
exp (smwd,n(z))∑
z exp (smwd,n(z))

λm =
exp (tm)∑
m exp (tm)

(A.6)

The gradient ascent process is conducted on the parameters αmβk , α
m
θd

, smwd,n(z), tm and γk.
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APPENDIX B

HANDLE LOG-BELIEFS WITH HIGH DIMENSIONAL DIRICHLET

DISTRIBUTION

The calculation of the derivatives require evaluation of sums of high(thousands) dimensional

Dirichlet distributions that are very close to zero, which results in zeros when evaluated

by the machines. Take log-belief term log bβ(βk) as an example, we can transform it into

another form.

log bβ(βk) = log
M∑
m=1

λmDir(βk|αmβk) = log
M∑
m=1

λmDir(βk|αmβk)
λm∗Dir(βk|αm

∗
βk

)
+ log λm∗Dir(βk|αm

∗

βk
)

(B.1)

where m∗ = maxm{log λmDir(βk|αmβk)}.

In this case with log 0 = 0 defined, we only need to evaluate log-Dirichlet function which

is doable for the machines. And we can pre-compute all the log-Dirichlet values as well.
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APPENDIX C

SVGD φ∗(xi) FUNCTION DERIVATION

Consider p(x) = bβ(β) and f(x) = bβ(β). We use RBF kernel function with σ = 1 and

xi = βi is a vocabulary size vector of particles. The φ∗(xi) function can be written as:

φ∗(xi) = φ∗(


βi1
...

βiV

) =
1

N

N∑
j=1

[ 1

bβ(βj)


∑M

m=1

λm(αmβ1
−1)

βj1
Dir(βj|αmβ )

...∑M
m=1

λm(αmβV
−1)

βjV
Dir(βj|αmβ )



·


e−

(βj1−βi1)
2

2

...

e−
(βjV −βiV )2

2

−

e−

(βj1−βi1)
2

2 (βj1 − βi1)
...

e−
(βjV −βiV )2

2 (βjV − βiV )


]

(C.1)

The derivation of φ∗(xti) function of the expectation terms in the BFE are similar to Eq.

C.1.
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APPENDIX D

NONPARAMETRIC VARIATIONAL INFERENCE DERIVATIVES

In LDA model for one sampled document d, the belief under the nonparametric variational

inference assumption can be defined as:

b(z,Xd) =
∑
m

λm
∏
i

πmwd,n(zi)Dir(xθd |αmθd)
∏
k

Dir(xβk |αmβk) (D.1)

The entropy part of BFE with the above beliefs is:

−
∑
z

∫
Xd

b(z,Xd) log b(z,Xd) ≥−
∑
m2

λm2 log
[∑

z

∫
Xd

b(z,Xd)
∏
i

πm2
wd,n

(zi)

Dir(xθd |α
m2
θd

)
∏
k

Dir(xβk |α
m2
βk

)
]

(D.2)

Define �m2 to be in the form of

�m2 =
∑
z

∫
Xd

b(z,Xd)
∏
i

πm2
wd,n

(zi)Dir(xθd|α
m2
θd

)
∏
k

Dir(xβk |α
m2
βk

)

=
∑
m1

λm1

∏
i

(∑
z

πm1
i (z)πm2

i (z)
)
EDir(αm2

θd
)
∏
kDir(α

m2
βk

)

[
Dir(αm1

θd
)
∏
k

Dir(αm1
βk

)
]

(D.3)

The derivatives with respect to the parameters can be calculated as:

∇π
m1
wd,n

(z) =λm1E∏K
k=1Dir(βk|αmβk )

[
log p(wd,n|z, β)

]
+λm1EDir(xθd |α

m1
θd

)

[
log p(z|θd)

]
−
∑

m2 6=m1

λm2

1

�m2

[
λm1

∏
i 6=wd,n

(∑
z

πm1
i (z)πm2

i (z)
)

EDir(αm2
θd

)
∏
kDir(α

m2
βk

)

[
Dir(αm1

θd
)
∏
k

Dir(αm1
βk

)
]]

−λm1

1

�m1

[∑
m2

λm2

∏
i 6=wd,n

(∑
z

πm1
i (z)πm2

i (z)
)

EDir(αm2
θd

)
∏
kDir(α

m2
βk

)

[
Dir(αm1

θd
)
∏
k

Dir(αm1
βk

)
]]

(D.4)

77



∇{αm1
θd
}i =λm1EDir(xθd |α

m1
θd

)

[
log p(xθd |γ)[ψ(

K∑
j=1

{αm1
θd
}j)− ψ({αm1

θd
}i) + log({xθd}i)]

]
+λm1

Nd∑
n=1

K∑
z=1

EDir(xθd |α
m1
θd

)

[
log p(zd,n|xθd)πm1

wd,n
(z)

[ψ(
K∑
j=1

{αm1
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θd
}i) + log({xθd}i)]
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λm2

1
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[
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∏
i
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z
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i (z)πm2

i (z)
)
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)
∏
kDir(α

m2
βk

)

[
Dir(αm1

θd
)
∏
k

Dir(αm1
βk

)

[ψ(
K∑
j=1
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θd
}j)− ψ({αm1

θd
}i) + log({xθd}i)]

]]
−λm1

1

�m1

[∑
m2

λm2

∏
i

(∑
z

πm1
i (z)πm2

i (z)
)

EDir(αm2
θd

)
∏
kDir(α

m2
βk

)

[
Dir(αm1

θd
)
∏
k

Dir(αm1
βk

)

[ψ(
K∑
j=1

{αm1
θd
}j)− ψ({αm1

θd
}i) + log({xθd}i)]
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(D.5)

∇{αm1
βk
}i =λm1EDir(xβk |α

m1
βk

)

[
log p(xβk |η)[ψ(

K∑
j=1

{αm1
βk
}j)− ψ({αm1

βk
}i) + log({xβk}i)]

]
+λm1

Nd∑
n=1
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λm2

1
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[
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i

(∑
z

πm1
i (z)πm2

i (z)
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EDir(αm2
θd

)
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kDir(α

m2
βk

)

[
Dir(αm1

θd
)
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k

Dir(αm1
βk

)

[ψ(
K∑
j=1

{αm1
βk
}j)− ψ({αm1

βk
}i) + log({xβk}i)]

]]
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−λm1

1

�m1

[∑
m2

λm2

∏
i

(∑
z

πm1
i (z)πm2

i (z)
)

EDir(αm2
θd

)
∏
kDir(α

m2
βk

)

[
Dir(αm1

θd
)
∏
k

Dir(αm1
βk

)

[ψ(
K∑
j=1

{αm1
βk
}j)− ψ({αm1

βk
}i) + log({xβk}i)]

]]
(D.6)
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