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We present a theoretical study of the negative differential transconductance (NDT) recently

observed in the lateral-quantum-well Si n-channel field-effect transistors [J. Appl. Phys. 118,

124505 (2015)]. In these devices, pþ doping extensions are introduced at the source-channel and

drain-channel junctions, thus creating two potential barriers that define the quantum well across

whose quasi-bound states resonant/sequential tunneling may occur. Our study, based on the quan-

tum transmitting boundary method, predicts the presence of a sharp NDT in devices with a nominal

gate length of 10-to-20 nm at low temperatures (�10 K). At higher temperatures, the NDT weakens

and disappears altogether as a result of increasing thermionic emission over the pþ potential bar-

riers. In larger devices (with a gate length of 30 nm or longer), the NDT cannot be observed

because of the low transmission probability and small energetic spacing (smaller than kBT) of the

quasi-bound states in the quantum well. We speculate that the inability of the model to predict the

NDT observed in 40 nm gate-length devices may be due to an insufficiently accurate knowledge of

the actual doping profiles. On the other hand, our study shows that NDT suitable for novel logic

applications may be obtained at room temperature in devices of the current or near-future genera-

tion (sub-10 nm node), provided an optimal design can be found that minimizes the thermionic

emission (requiring high pþ potential-barriers) and punch-through (that meets the opposite require-

ment of potential-barriers low enough to favor the tunneling current). Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4974469]

I. INTRODUCTION

One little-explored route towards achieving the very

aggressive high frequency and high sensitivity goals outlined

in the International Technology Roadmap for Semiconductors

(ITRS)1 for the silicon semiconductor industry is to move

beyond the conventional semi-classical device physics. This

can be done by integrating explicitly the quantum mechanical

transport into industrial Si complementary metal-oxide-semi-

conductor (CMOS) technology. This route would enable the

Si CMOS to emulate the path of III–V devices that incorpo-

rate transport through electronic states that are localized and

whose energy is discretized by quantum confinement. Esaki

diodes2,3 and resonant tunneling diodes (RTDs)4–6 undoubt-

edly constitute the best-known examples of devices based on

III-V compound semiconductors that have concretely realized

this idea. These instances have yielded new capabilities in

very high speed and very low-noise applications,7–9 a level of

performance that is beyond the reach of conventional semi-

classical devices. However, Si CMOS quantum devices must

be fabricated within the standardized progression of industrial

process nodes (now approaching the 7 nm node at the high

end of the performance scale, but still commonly relying on

the processing technology of the 28 or 22 nm nodes) to guar-

antee economically scalable production. This restriction rules

out the two primary methods of fabricating quantum struc-

tures in III–V devices, hetero-epitaxial layer growth, and

electron-beam lithography, therefore rendering more difficult

the possibility of entering the quantum-transport regime in Si

CMOS devices. Recently, however, tantalizing hints of quan-

tum transport have been observed in Si CMOS devices using

lateral quantum wells (QWs) defined by ion implantation.10,11

Here, we present a theoretical study of quantum electron

transport in these devices, emphasizing the limitations of both

their practical realization as well as of our understanding of

the basic physical processes involved. At the same time, we

also show that this type of quantum transport may be achieved

in practice and indicate possible future promising paths that

the technology may follow.

The paper is organized as follows: In Sec. II, we

describe the experimental observations. In Sec. III, we pre-

sent the physical and numerical methods we have used to

study the devices. In Sec. IV, we present the results of our

study for devices of gate length ranging from 40 to 10 nm

and, finally, we draw our conclusions in Sec. V. Our main
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conclusions show that negative differential transconductance

(NDT) may result only if several design criteria are met: (1)

The pþ potential barriers that define the lateral QW must be

spatially close enough to result in an energetic spacing of the

quasi-bound states larger than the thermal energy, kBT. This

requires the channel lengths of the order of 20 nm or shorter at

cryogenic temperatures and even shorter for room-temperature

operation. (2) The potential barriers must be high enough to

prevent thermionic emission at high temperatures. (3) These

barriers must be simultaneously small enough to favor the

tunneling current across the quasi-bound states in the QW,

rather than the punch-through current “around” the barriers.

II. DEVICE DESCRIPTION AND EXPERIMENTAL
OBSERVATIONS

An explicit experimental demonstration of quantum

transport in Si n-channel MOS (nMOS) transistors fabricated

using an industrially standard 45 nm-node process technol-

ogy has been recently reported.10,11 These nMOS devices

have a lateral quantum well (QW) built into the surface

channel. This is obtained by reversing the ion-implantation

dopant polarity of the shallow source/drain (S/D) extensions

(pSDE) from the standard n-type (for an nMOS transistor) to

p-type, as sketched in Fig. 1. The p-type extensions create an

energy barrier for electrons between the nþþ S/D and the

surface channel beneath the gate. A two-dimensional (2D)

electron quantum well (QW) is formed when the gate voltage

VGS is large enough to invert the channel between the p-type

extensions. The depth of the QW can be controlled by the

source/gate bias VGS. Explicit evidence of quantum transport

in these QW nMOS devices was shown in the form of a neg-

ative differential transconductance (NDT). This occurs when

the drain-source current (IDS) behaves non-monotonically, so

that gm ¼ @IDS=@VGS < 0. This has been observed only in

QW nMOS devices, but not in standard nMOS devices fabri-

cated on the same chip as experimental controls, thus show-

ing that indeed the quantized electronic states in the lateral

QW play a fundamental role in controlling the electronic

transport. Whereas NDT is an expected signature of direct or

sequential tunneling through discrete QW bound states,4,12

several quantitative aspects of the reported NDT indicate

that the detailed physical mechanism causing the NDT is

more complicated than a straightforward QW tunneling phe-

nomenon. Among these apparently anomalous features is the

observation of only a small number of NDT peaks (no more

than 3) observed in any given device with a width and VGS-

separation much larger than expected, given the nominal

QW lengths. Poorly understood is also the need to apply a

positive body current or voltage bias that introduces the

bipolar-like operational characteristics in order to observe

the NDT.11

We present here numerical simulations with explicitly

quantum mechanical charge transport that we have performed

in order to elucidate more clearly and quantitatively the

device physics underlying the NDT phenomenon in such QW

nMOS transistors. This also allows us to establish a route

towards optimizing the quantum behavior of the devices.

III. THEORETICAL FORMULATION

The phenomenon that we wish to see and which is the

motivation behind this whole project, is the presence of NDT

in the current-voltage characteristics as a consequence of res-

onant or sequential tunneling in the channel of the QW

nMOS device. The objective of the two-dimensional confine-

ment created in the channel is to produce bound electronic

states in that region. Electrons injected into the channel at

energies equal to these bound states will undergo resonant

tunneling that occurs with a very high transmission coeffi-

cient. The magnitude of the transmission coefficient depends

on the relative height of the potential barriers. The gate bias

acts as a control for the energy of the bound states. At certain

gate biases, the energy of these bound states will coincide

with the Fermi energy of the electrons in the source region.

Therefore, at the appropriate gate bias, the source-to-drain

current, IDS, should exhibit sharp peaks, as the electrons that

contribute most to the current have a high resonant transmis-

sion coefficient.

The simulation of the device characteristics follows an

extensive work that has been performed on the ballistic sim-

ulation of RTDs (see, for example, Ref. 13) although RTD

simulations including inelastic scattering, ignored here, have

been performed using the non-equilibrium Green’s function

(NEGF) method with tight-binding models14,15 or using the

Wigner function formalism16,17 and, more generally, on the

use of the quantum transmitting boundary method

(QTBM)18—employing the effective-mass approximation—

also in two spatial dimensions.19,20

Before delving into technical details, it is convenient to

summarize the main features of the calculation method

employed. We proceed in two steps. First, we solve the two-

dimensional (2D) Schr€odinger equation under closed bound-

ary condition self consistently with the Poisson equation24,25

with a source-to-drain bias VDS ¼ 0 and for several values of

the gate-to-source bias, VGS. This gives quantitative informa-

tion about the energetic positions of the confined states for

various gate-bias conditions and provides the equilibrium

electrostatic potential. As a second step, electron transportFIG. 1. Schematic cross-section of the lateral QW nMOSFET.
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via tunneling through the confined states—the effect that

gives rise to the NDT—is studied by solving the Schr€odinger

equation with open boundary conditions.18,20,21 This allows

us to calculate the current-voltage characteristics. We per-

form this calculation step by using the self-consistent poten-

tial obtained from the previous step. Indeed, self-consistent

effects between the Schr€odinger equation with open bound-

ary conditions and the Poisson equation are not expected to

alter the potential profile significantly at the low source-to-

drain bias, VDS, of interest (of the order of a few tens of

mV). This choice of low VDS, also employed in the experi-

mental observations,10,11 ensures that electrons remain in

near-equilibrium conditions, so that the use of the self-

consistent solution obtained for the closed system constitutes

an excellent approximation also for the open system. Thus,

having obtained the electrostatic potential, we calculate the

current by applying a small shift VDS of a few mV between

the Fermi levels in the source and drain.

The model we employ approximates the conduction

bands of silicon with six parabolic ellipsoidal valleys and the

only ballistic transport of electrons is considered. We

account for finite-temperature operation and the fact that the

fabricated devices have the channel being oriented along the

½110� direction. The device geometry attempts to reproduce

as faithfully as possible the geometry of the devices used in

Refs. 10 and 11. In particular, the doping profile we have

used, shown in Fig. 2, has been obtained using the TCAD

process simulation tool SentaurusVR by Synopsys, using the

known fabrication process data such as the mask layout,

implant types, energies, doses and angles, and post-implant

annealing conditions.

Scaling the device from its nominal size (printed gate

length of about 40 nm) to the smaller dimensions that we

have considered (30, 20, and 10 nm gate length), has been

done following the conventional scaling laws22,23 as strictly

as possible. Obvious exceptions had to be made regarding

the scaling of the doping concentrations, since their high val-

ues in the 40 nm device cannot be realistically increased with

scaling demands. Moreover, the SiO2-equivalent thickness

of the gate insulator (EOT) has been kept fixed at 2 nm. This

is not a crucial parameter for the application of interest here.

Crucial, instead, is the scaling of the doping profiles of the p-

type substrate, S/D regions, and of the pSDEs: Preventing

the short-channel effects (mainly punch-through) in short

devices, requires increasing the p-type substrate doping.

Since the peak pSDE doping is already quite large in the

40 nm device, the higher scaled substrate doping results in a

reduced height of the pSDE potential barriers in shorter devi-

ces. This does result in the desired boost of the tunneling cur-

rent across the QW and in a reduced punch-through current.

On the other hand, it also results in the undesired occurrence

of a large thermionic current (over the pSDE barriers) that

hides the (resonant) tunneling current. The problem caused

by this narrow “design window” will be discussed below.

We now present details regarding the physical models

and their numerical implementation that are most relevant to

our study. The simulation region (cross-section of the

device) is 200 nm� 160 nm for the 40 nm device. Devices of

smaller gate lengths, 10 nm, 20 nm, and 30 nm, are also sim-

ulated by shrinking the length and height of the 40 nm device

doping profile (both the lateral S/D doping and the S/D-body

junction-depth) by the relevant factors (of 0.25, 0.5, and

0.75, respectively).

A. 2D Schr€odinger equation with closed boundary
conditions

The finite-difference method is used to solve numerically

the time-independent single electron “effective mass” Luttinger-

Kohn (Schr€odinger) equation26 using the parabolic-band

approximation to approximate the anisotropic (“ellipsoidal”)

electron dispersion close to the six minima of the conduction

band. Only electrons in the first conduction band are considered.

For the simplest case in which the channel is oriented along the

½100� direction, the two-dimensional Schr€odinger equation takes

the form:24,27

� �h2

2

1

mx

@2n x; zð Þ
@x2

þ 1

mz

@2n x; zð Þ
@z2

" #

þV x; zð Þn x; zð Þ ¼ Exzn x; zð Þ ; (1)

where the envelope wavefunction is wðx; y; zÞ ¼ eikyynðx; zÞ
and mx;my, and mz are the transport mass (on the plane

(x, z)-plane of the Si/gate-insulator interface and along the

channel), the out-of-plane mass (along the y-direction perpen-

dicular to the interface), and the quantization mass (on the

plane of the interface, but along the z direction perpendicular

to the transport direction). V is the potential distribution in the

(x, z) plane, Exz is the energy of the two-dimensional wave-

function nðx; zÞ and ky represents the wavevector in the y
direction. These quantities take different values for each of

the six ellipsoidal valleys close to the X symmetry-point in

the Si Brillouin zone. In order to render our notation more

agile, we shall not explicitly introduce a “valley index” to

reflect this six-fold degeneracy. However, all calculations pre-

sented in the following must be understood as repeated three

times, once for each pair of inequivalent valley-orientations.

The electrostatic potential is assumed to be independent

of the y coordinate. This amounts to assuming an infinitely
FIG. 2. Magnitude of the net doping profile of the device with a nominal

gate length of 40 nm. The white region at the top represents the gate oxide.
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wide channel. We denote by Exz þ �h2k2
y=2my the total energy

of an electronic state described by the wavefunction

wðx; y; zÞ.
In its discretized form, Eq. (1) can be recast as:

a1

n xiþ1; zið Þ
Dx2

i

þ
n xi�1; zið Þ
DxiDxi�1

" #
þ a2

n xi; ziþ1ð Þ
Dz2

i

þ
n xi; zi�1ð Þ
DziDzi�1

" #

� a1

Dx2
i

þ a1

DxiDxi�1

þ a2

Dz2
i

þ a2

DziDzi�1

þ V xi; zið Þ
� �

n xi; zið Þ

¼ Ei
xzn xi; zið Þ ; (2)

where a1 ¼ ��h2=2mx; a2 ¼ ��h2=2mz and, i represents each

of the N discretization points. We employ a two-dimensional

mesh given by the tensor product of two one-dimensional

meshes consisting of Nx and Nz points, so that N ¼ Nx � Nz.

The N�N Hamiltonian matrix (H) is created using the terms

on the left-hand-side of the discretized equation. We assume

the Dirichlet boundary conditions, assuming that the wave-

functions vanish outside the simulated region (the “device”).

In particular, the wavefunctions are assumed to vanish on

virtual mesh points just inside the “leads.” We have also

performed the simulation employing both Dirichlet and

Neumann boundary conditions in order to verify that no

numerical artifacts at the contacts affect the electron density

of states, the electron density, and the transmission coeffi-

cient. Therefore, Eq. (2) takes the form of an eigenvalue

problem of rank N

H � nl ¼ Elnl; (3)

where nl and El are the lth eigenfunction and eigenvalue,

respectively, and, l ¼ 1; 2;… ;N. As we have already men-

tioned, these are calculated by solving the eigenvalue prob-

lem of Eq. (3) separately for each of the six equivalent

valleys that are characterized by different effective masses.

For channels oriented along the ½110� direction, as in the fab-

ricated devices of Refs. 10 and 11, the effective mass tensor

is a full 3� 3 matrix, instead of a diagonal matrix. In this

case, the Schr€odinger equation includes mixed second order

derivatives, increasing the complexity of the problem,

� �h2

2

(
1

2

1

mx

þ 1

my

� �
@2

@x02
þ @2

@y02

" #
þ 1

mz

@2

@z2

þ 1

mx

� 1

my

� �
@2

@x0@y0
þ V x0; y0; z

� �)
w x0; y0; z
� �

¼ Exzw x0; y0; z
� �

; (4)

where, x0 ¼ 1ffiffi
2
p xþ yÞ; y0 ¼ 1ffiffi

2
p x� yÞð

�
. Through rotation of

the coordinate system and some mathematical manipulation,

the mixed second derivatives can be removed and the modified

Schr€odinger equation for the ½110� direction takes the form:

� �h2

2

1

mc

@2n x; zð Þ
@x2

þ 1

mz

@2n x; zð Þ
@z2

" #
þ V x; zð Þn x; zð Þ

¼ Exzn x; zð Þ �
�h2k2

y

2

1

mc

� mc

4m2
xy

" #
n x; zð Þ ; (5)

where the full (envelope) wavefunction w0ðx; y; zÞ is given by:

w0 x; y; zð Þ ¼ eikyy e
�i mc

mxy
kyxn x; zð Þ ; (6)

with 1=mc ¼ ðmxþmyÞ=ð2mymxÞ and 1=mxy ¼ 1=mx� 1=my.

We calculate the electron wavefunctions nlðx; zÞ (labeled by

the index l) and the corresponding eigenvalues El
xz by solv-

ing this eigenvalue problem. The second factor at the right-

hand-side of Eq. (6) is incorporated into calculations at a

later stage.

The more complicated form of the Schr€odinger equa-

tion, Eq. (5), must be employed to treat only four of the six

valleys, since the in-plane rotation from the ½100� to the ½110�
direction does not affect the two ellipsoids with mz ¼ mL.

Here mL ¼ 0:91m0 (m0 is the mass of an electron) is the lon-

gitudinal effective mass (we also assume mT ¼ 0:19m0 for

the transverse effective mass). These valleys can be treated

using the slightly simpler form given by Eq. (2).

The spatial mesh used to perform the simulation consists

of 100 points in the x direction and 105 points in the z direc-

tion. The Hamiltonian H becomes a 10 500� 10 500 matrix.

The eigenvalues up to 5 kBT above Fermi level are calcu-

lated, which typically amounts to around 2000 eigenvalues

for the 40 nm device and around 400–1200 for the smaller

devices.

B. Charge distribution and Poisson equation

The Poisson equation is solved on the two-dimensional

cross-section of the device,

r2V x; zð Þ ¼
e2

�Si

p x; zð Þ � n x; zð Þ þ NA x; zð Þ � ND x; zð Þ
� 	

;

(7)

where p, n, NA; ND are the hole, electron, donor, and accep-

tor doping distributions, respectively, and �Si is the permittiv-

ity of silicon. This is a linear system,

P � V ¼ D ; (8)

where P is an N�N matrix containing the terms that repre-

sent the r2 operator, V is a N � 1 matrix containing the

potential distribution at each of the N mesh points, and D is a

N � 1 matrix containing the charge terms.

The electron wavefunctions obtained from the solution

of the closed-system are used to calculate the electron charge

distribution in the device. This can be obtained by account-

ing for the density of states along the “homogeneous” (out-

of-plane) direction y obtaining the well-known expression:

n x; zð Þ ¼
X

l

1

p�h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mykBT

2

r
F�1

2

EF � El
xz

kBT


 �
jnl x; zð Þj2 ; (9)

where nl and El are the wavefunction and energy of the quan-

tum state l, kB is Boltzmann’s constant, EF is the Fermi energy

measured from the bottom of the conduction band, and F�1
2

is

the Fermi-Dirac integral of order �1/2, defined by Eq. (11).

The hole charge distribution, p, is calculated using the

classical three-dimensional density of states,
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p x; zð Þ ¼
1

2
ffiffiffi
p
p 2mhkBT

p�h2


 �3
2

F1
2

EF � V x; zð Þ
� 	

; (10)

where mh ¼ 0:8m0 is the hole effective mass, the Fermi energy

EF is now measured from the top of the valence band, and, F1
2

is the Fermi-Dirac integral of order 1/2, defined by Eq. (11).

The Fermi-Dirac integral of order r is written as:

Fr gð Þ ¼
ð1

0

erde
1þ exp e� gð Þ

: (11)

Eq. (11) is computed using the Gauss-Legendre quadrature

method.28 The Poisson equation is solved over the same

region as the Schr€odinger equation and, therefore, the Poisson

matrix P is also a 10 500� 10 500 matrix.

C. Self-consistent scheme

The electrostatic potential in the device is obtained by

solving the Schr€odinger and Poisson equations self-consistently

employing a conventional Newton iteration scheme.

The Fermi level of the device is first fixed at a value that

results in charge neutrality deep in the substrate of the

device. An initial “guess” for the electrostatic potential is

made so as to satisfy the condition of charge neutrality at

each point in the device, using the three-dimensional den-

sity-of-states for electrons and holes. The Schr€odinger equa-

tion is then solved numerically using this initial guess for the

potential and the electron wavefunctions nlðx; zÞ and the cor-

responding energies, El
xz, are calculated. The electron charge

distribution is then calculated from these wavefunctions and

the hole charge distribution using the classical expression

Eq. (10). Thereafter, the Poisson equation is solved numeri-

cally, using the electron, hole, and doping charge densities,

to generate a new potential. The root-mean-square (“infinity-

norm”) error between the “new” and “old” potential is then

determined. If the error is greater than a predefined minimum

value, typically of the order of 10�7 eV, then the procedure

is repeated using the “new” potential. Otherwise, the itera-

tive procedure ends and the “new” potential is the equilib-

rium electrostatic potential in the device.

In order to accelerate the convergence of this iterative

procedure, Newton’s method29 is used. In this method, the

Poisson equation is not solved directly to generate the “new”

potential. Rather, a Jacobian matrix J is constructed using

first order derivatives (with respect to the potential at each

mesh point) of the classical expressions of electron and hole

charge distributions and the new potential is obtained from:

Vnew ¼ Vold � VN; (12)

where J � VN ¼ P � Vold � D.

The self-consistent simulation typically achieves the

desired degree of convergence in 25–30 iterations. In the

IBM AIX7 P55 computer cluster we have used, this process

requires about 48 central-processing-unit (CPU) hours for

each bias point in the case of the 40 nm device. Devices with

smaller channel lengths are less computationally intensive

with the 10 nm device, for example, requiring only about

2 CPU hours to reach convergence.

D. 2D Schr€odinger equation with open boundary
conditions and electron current

In the closed boundaries system, the wavefunction is

assumed to vanish outside the device, so there is no current

flow through the device. However, we are interested in the

open system in which electrons can flow into and out of

the device. This describes the behavior of the system in the

presence of an applied drain-source voltage VDS. The

method we follow is the QTBM proposed by Lent and

Kirkner.18 The source and drain contacts are imagined as

infinite leads going into the device, as illustrated schemati-

cally in Fig. 3. A separate coordinate system ðxr; jrÞ is

defined for each lead r, as shown in the figure. The potential

is assumed to be constant along the direction xr and, along

jr, the potential profile is assumed to be the same as that

along the lead-device interface. Another assumption made

is that outside the device as well as outside the lead edges,

the wavefunction vanishes. Using these conditions, the

wavefunctions in the leads can be separated into two inde-

pendent components—traveling waves along xr and wave-

functions with a discretized energy spectrum along jr due

to the confinement in that direction. The latter part is deter-

mined by solving the one-dimensional Schr€odinger equation

along jr ,

� �h2

2mz

@2ur
m jrð Þ
@j2

r

þ Vr jrð Þur
m jrð Þ ¼ Er

mur
m jrð Þ; (13)

where ur
m and Er

m represent the mth eigen-state and eigen-

energy, respectively in lead r, VrðjrÞ is the potential along

jr in lead r and mz is the quantization mass. These eigen-

states are normalized along jr direction, and the total wave-

function in lead r is then given by:

FIG. 3. Schematic illustration showing

the implementation of the Quantum

Transmitting Boundary Method used

to simulate the QW nMOSFETs.
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Wb;rðxr; jrÞ ¼
XNr

m¼1

ar
mur

mðjiÞe�ikr
m;bxr þ br

m;bu
r
mðjiÞeikr

m;bxr

h i

þ
X1

m¼Nrþ1

br
m;bu

r
mðjrÞe�kr

m;bxr : (14)

Here, the terms inside the first summation on the right-hand-

side represent the Nr traveling waves (traveling modes) with

energy (along the x and z directions) Eb > Er
m, going into

and out of the device, respectively, through lead r. The index

b denotes the different wavefunctions Wb;r and the corre-

sponding energies Eb. The third term on the right-hand-side

represents the evanescent modes with energy Eb < Er
m. The

coefficients ar
m’s are chosen as input for the different waves

traveling into the device, while the coefficients br
m;b need to

be determined. The wavevectors kr
m for the traveling modes

are given by: ½2mxðEb � Er
mÞ�

1=2=�h and, for the evanescent

modes, by: ½2mxðEr
m � EbÞ�1=2=�h. The energy Eb will be

referred to as the “injection energy.”

The boundary conditions at the interface Cr between the

device and lead r involve the continuity of both the wave-

function at the interface, /b;rjCr
¼ Wb;rðxr ¼ 0; jrÞ and the

normal derivative, r/b;r:ĵr jCr
¼ rWb;rðxr ¼ 0; jrÞ:ĵr for

all m � Nr. Here /b;rðx; zÞ represents the wavefunction

inside the device. Using Eq. (14) and combining the two

boundary conditions together:

r/b;r:ĵr jCr
¼
XNr

m¼1

ikr
mur

mðjrÞ

� �2ar
mþ
ðdr

0

djru
r
mðjrÞ/b;rðxr¼0;jrÞ

 !

�
X1

m¼Nrþ1

kr
mur

mðjrÞ
ðdr

0

djru
r
mðjrÞ/b;rðxr¼0;jrÞ:

(15)

Here, dr is the vertical height of lead r, which in our case is

same as the height of the device. In order to obtain this

expression, we use the relation:

br
m;b ¼

ðdr

0

djru
r
mðjrÞ/m;b;rðxr ¼ 0; jrÞ � ar

m : (16)

Eq. (16) stems from the fact that the wavefunctions u are

eigenstates of a Hermitian operator (the one-dimensional

Schr€odinger Hamiltonian), and so are mutually orthogonal.

Note that the wavefunctions / in Eq. (16) depend on m as

well, since they are calculated separately for each m.

The two-dimensional Hamiltonian H, determined in

Sec. III A, is again used here to calculate the wavefunctions

/m;b;r in the device. However, the matrix elements that corre-

spond to the edges of the device are modified to account for

the proper boundary conditions described above. The equi-

librium electrostatic potential obtained from the self-

consistent solution of the closed system is utilized here. The

resulting linear system is solved to obtain the electron wave-

functions /m;b;r separately for different injection energies Eb

and the different traveling modes m. These wavefunctions

are then used to calculate the transmission coefficient, local

density-of-states (LDOS) and, most importantly, the current.

The transmission coefficient TSDðEb;m1Þ for a traveling

mode m1 in lead r ¼ S (“source”) with injection energy Eb,

going into lead r ¼ D (drain), is defined as:

TSD Eb;m1ð Þ ¼
X
m2

jbD
m2;b
j2

jaS
m1
j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eb � EB

m2

Eb � ES
m1

s
; (17)

where m2 is the number of traveling modes in lead D. In

order to compensate for discretization errors and maintain

unitariety, the following discretized version of the transmis-

sion coefficient is used:

TSD Eb;m1ð Þ ¼
X
m2

jbD
m2;b
j2

jaS
m1
j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eb � EB

m2

Eb � ES
m1

s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�h2 � mx Eb � ED

m2

� �
Dx2

2�h2 � mx Eb � ES
m1

� �
Dx2

vuut
: (18)

The two-dimensional LDOS for lead r, Dr
locðE; x; zÞ can be

calculated for each injection energy, Eb, from the expression:

Dr
loc Eb; x; zð Þ ¼

XNr

m¼1

2

ffiffiffiffiffiffiffiffi
2mx

�h2

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eb � Er
m

p j/m;b;r x; zð Þj2 : (19)

Note that the wavefunction /m;b;r has been normalized

assuming infinite-volume normalization along the x direc-

tion, but using a finite-volume normalization along the z
direction. Therefore j/m;b;rj2 has dimensions of inverse

length, and the local density of states given in Eq. (19)

expresses the states per unit energy and area.

The current flowing through the device is obtained by solv-

ing the open boundary-condition’s Schr€odinger problem for

both the left and right sides (drain and source) using the electro-

static potential calculated for VDS ¼ 0, and then subtracting the

calculated current from both sides by shifting the Fermi level of

the drain side by a magnitude VDS above that of the source.

This is a good approximation since the applied VDS is very

small, of the order of 1–10 mV. Using Eq. (18), the current IDS

(per unit height along y direction) is finally calculated as:

IDS ¼
XD

r¼S

X
b

XNr

m¼1

gr

e

2
ffiffiffi
2
p 1

�h3
myð Þ

1
2jar

mj
2Trr0 Eb;mð Þ

� DEb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�h2 � mx Eb � Er

mð ÞDx2

q
�
ð1

0

dEy

E
1=2
y

f Eb þ Eyð Þ : (20)

Here f is the Fermi-Dirac distribution function, r0 ¼ S when

r ¼ D and vice versa, e is the electron charge, DEb is the

energy interval used to discretize the spectrum of the injection

energy Eb, T is the source-to-drain transmission coefficient,

Ey is the energy in the y direction, and gr¼S ¼ 1 for the

source-to-drain term, gr¼D ¼ �1 for the drain-to-source term.

Note that different Fermi energies are used for r ¼ S and

r ¼ D, separated by a magnitude VDS. All the calculations
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described in Sec. III D are repeated for the 6 equivalent Si

energy valleys.

The mesh used to perform the simulation consists of 2000

points in the x direction and 105 points in the z direction. The

Hamiltonian H becomes a 210 000� 210 000 matrix. Note

that the mesh is the same as used before in the closed bound-

aries simulation, only interpolated over a finer grid. A linear

interpolation of the electrostatic potential generated from the

closed boundaries system is done over the finer mesh.

Typically 400–600 injection energies in an energy range that

varies depending on the size of the device, roughly 0.2 meV

around the Fermi level, are used to calculate the current IDS.

The simulation is parallelized to run over the multiple CPU

cores, each core being assigned a specific set of injection ener-

gies. The CPU time required to calculate IDS for each gate bias

(parallelized over 100 cores) is approximately 35 min.

IV. SIMULATION RESULTS AND DISCUSSION

The simulation methods we have just described in detail

are implemented for values of the gate bias VGS varying from 0

to 3 V and with VDS of 1–10 mV. As mentioned above, smaller

devices are simulated by reducing the dimensions of the nomi-

nal 40 nm device following the well-known scaling laws,22,23

with the exceptions and concerns that we have already dis-

cussed. The device characteristics are calculated at cryogenic

temperatures of 10 K and 46 K, as well as at room temperature.

We present the current-voltage (IDS � VGS) characteris-

tics of the 10 nm, 20 nm, and 40 nm devices in Figs. 4, 5,

and 6, respectively. The 10 nm device exhibits NDT at

VGS ¼ 1:18 V at a temperature of 10 K. The NDT is reduced

to a small “kink” in the IDS � VGS characteristics as the tem-

perature is raised to 46 K, as shown in Fig. 4, and disappears

altogether at room temperature. A similar behavior is seen in

the 20 nm device: The NDT is seen at VGS ¼ 1:93 V at 10 K

(Fig. 5), but not at room temperature. A “kink” is seen in the

current voltage characteristics of the 30 nm device at 10 K

(not shown), but no defined NDT is detected. Finally, the

40 nm device does not exhibit any NDT peaks at any temper-

ature (Fig. 6). Note that in all devices as the temperature

increases, the current IDS increases exponentially, as a result

of the thermionic emission over the pSDE potential barriers

(discussed later).

To confirm that the NDT seen at low temperatures is

indeed the result of resonant tunneling through the two-

dimensional quantum well created by the pSDEs, we plot in

Fig. 7, the average local density-of-states (LDOS) for all

devices. The contour plots show the two dimensional LDOS

computed along the length (x direction) of the device, aver-

aged over a thin “vertical” region (z direction). The energy

scale identifies different injection energies. The LDOS is

shown only for injection from the source (left contact). In

Fig. 8, we show the transmission coefficient as a function of

injection energy for the traveling modes that exhibits the

best resonant behavior (wherever applicable). Only the

LDOS and transmission coefficient vs. total injection energy

plots corresponding to the two Si ellipsoidal energy valleys

having the longitudinal mass in the z direction (“unprimed

subbands”) are shown in Figs. 7 and 8, since these are the

only valleys that exhibit NDT.

The dark “streaks” in the middle of the channel seen in

Fig. 7 (first and second frames from the left, respectively)

show the presence of the quasi-bound states in the 10 nm and

20 nm devices. The corresponding peaks seen in the trans-

mission coefficient (first and second frames from the left in

Fig. 8, respectively) at those energies confirm that resonant

tunneling across the QW is indeed the origin of the NDT.

More so, the NDT occurs at a gate bias for which the energy

FIG. 4. Calculated IDS � VGS characteristics at 46 K (black triangles) and

10 K (cyan circles) for the 10 nm device with VDS ¼ 10 mV.

FIG. 5. Calculated IDS � VGS characteristics for the 20 nm device at 10 K.

VDS ¼ 1 mV.

FIG. 6. Calculated IDS � VGS characteristics at 10 K (cyan circle) and 300 K

(black triangle) for the 40 nm device with VDS ¼ 10 mV. Negligible current

is seen at 10 K. Thermionic emission is therefore the major cause of the

vastly larger current observed at 300 K.
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of the first bound state (10 nm device) or fourth bound state

(20 nm device) crosses the Fermi energy of the electron gas

in the source region. The LDOS for the 30 nm device (third

frame from the left in Fig. 7) shows closely spaced bound

states, and no quasi-bound states can be seen in the LDOS of

the 40 nm device (right-most frame in Fig. 7). The corre-

sponding transmission coefficient (two rightmost frames in

Fig. 8), show closely spaced peaks with very low transmis-

sion coefficients (30 nm) or no peaks (40 nm), explaining the

absence of any NDT seen in the current-voltage characteris-

tics. We should also emphasize that all devices are affected

by a significant punch-through current. The severity of this

problem is reduced in the shorter devices, thanks to the

reduced height of the potential pSDE barriers, a result of

device scaling, as we have mentioned above. However, this

comes at the price of a larger thermionic current.

The absence of any NDT peak (or “kink”) in the 40 nm

device at any temperature can be explained from the behavior

seen in the smaller devices. Going from the 10 nm to the

30 nm device, the transmission coefficient peaks (Fig. 8)

become sharper and lower in magnitude. This can be expected,

since scaling the device results in the pSDE potential barriers

to become narrower and reduced in height. Narrower barriers

cause a broadening of the peaks in the transmission coefficient,

as the electron lifetimes in these bound states become shorter

as a result of the higher probability of “leaking” out. The trans-

mission coefficient scales inversely and exponentially with the

height of the barriers. Already in the 30 nm device, the trans-

mission peaks are very sharp, spanning an extremely small

energy-width of the order of 10�7 eV, and have low transmis-

sion coefficients of the order 10�12�10�7. This implies that

pSDE barriers in the 40 nm device are too opaque to allow any

significant current through the channel of the device.

Therefore, no NDT is seen theoretically and the current mostly

consists of punch-through current. Moreover, the bound states

are energetically grouped closely together. This results in a

quasi-continuum of states, a situation that is far from ideal for

the generation of NDT at any finite temperature.

FIG. 7. Average LDOS in the channel for 10 nm, 20 nm, 30 nm, and 40 nm devices (from left to right) at 10 K. The cyan colored lines represent the potential-

energy profile at the semiconductor/gate-insulator interface in each device. The energies are measured with respect to the Fermi energy in the source contact.

The bias conditions are VGS ¼ 1:18 V, 1.93 V, 2.2 V, and 2.2 V, respectively (left to right).

FIG. 8. Transmission coefficient vs. injection energy for a particular traveling mode is in the 10 nm, 20 nm, 30 nm, and 40 nm devices, respectively. The travel-

ing mode energies Er
m are, from left to right, �0.83 eV, �0.49 eV, �0.26 eV, and �0.04 eV. These energies are chosen since they exhibit the best resonant

behavior in the respective devices (wherever applicable). VGS ¼ 1:18 V, 1.93 V, 2.2 V, and 2.2 V, respectively (left to right).
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The discrepancy between the theoretical predictions and

the experimentally observed device characteristics can only

be explained by assuming that the doping profile used in the

simulations is significantly different from the actual doping

profile of the fabricated device. This is a common phenome-

non not unlikely to occur in this particular case. As men-

tioned before, the doping profile used in our theoretical

calculations is generated by SentaurusVR TCAD process-

simulation tool. The actual doping profile of the fabricated

device is generally somewhat different from the TCAD

result because of inaccuracies in the modeling of implant

dopant diffusion, even if the device is made using industrial

CMOS processing standards. Moreover, in this case, the

design of the pSDEs is a significant departure from the con-

ventional CMOS design. These sharp, heavily doped, and

highly localized p-type regions may easily be broadened by

lateral diffusion enhanced by the defects (especially vacan-

cies) caused by the ion implantation. This is an effect that is

notoriously difficult to predict accurately.

In order to assess the sensitivity of the NDT on details of

the doping profile of the pSDE, we have modified the original

simulated doping profile of the 40 nm device by reducing the

peak p-doping by a factor of 3 and by widening laterally the

barriers by a factor of 1.8. This is done to roughly simulate

the broadening of the pSDEs due to lateral diffusion. The

modified doping profile and the corresponding LDOS distri-

bution for a specific gate bias and applied VDS are shown in

Figs. 9 and 10, respectively. Interestingly, the modified dop-

ing profile results in the appearance of bound states, as indi-

cated by the peaks of the transmission coefficient having a

decent magnitude, and in the occurrence of resonant tunnel-

ing. This confirms that the device characteristics are very sen-

sitive to small changes of the profile of the pSDEs. Therefore,

we speculate that the devices may behave as intended, with

the occurrence of resonant tunneling along the channel

through the quasi-bound states in the lateral QW, provided

the pSDE doping differs, and not too appreciably, from the

original design specifications and from the SentaurusVR simu-

lated profile.

More generally, in order to produce NDT, tunneling

through the quasi-bound states in the lateral QW must occur

with a probability large enough to overcome the undesired

“leakage paths” of thermionic emission over the pSDE bar-

riers and/or punch-through “around them.” Peaks of the

transmission coefficient in the range of 10�2 or larger are

required to result in NDT. Clear examples are the first bound

state in the 10 nm device and the fourth bound state in the

20 nm device, both giving rise to peaks in the NDT at 10 K.

On the contrary, the 3 lowest-energy bound states (20 nm

device) have much lower transmission coefficients and do

not result in any significant tunneling current, even though

the energy spacing between them might be sufficient enough

to produce NDT at 10 K. On the contrary, in the 30 nm

device, the transmission coefficient peaks are much weaker,

of the order of 10�12�10�7, and no NDT is seen at low tem-

perature, since the current flows in punch-through, or at high

temperatures, because the current now is dominated by

thermionic emission over the barriers.

The important question that we need to answer is: What

is the maximum gate length for which NDT could be

observed at room temperature? And what device design may

be required to reach this goal? Performing simulations with

different gate lengths, doping profiles, at different tempera-

tures, or even considering different alternative device struc-

tures, is an almost impossible task as we scale devices down

to the 5 or 7 nm gate length. However, the results we have

presented so far allow us to formulate an “educated guess.”

We have already noticed that NDT can be observed when

kBT � DE� dE, where DE is the spacing of the quasi-bound

state in the lateral QW (that is: the energetic spacing of

the peaks in the transmission coefficient shown in Fig. 7) and

dE is the full broadening of the confined states. We have also

emphasized the fact that our device-scaling procedure results

in a different width and height of the pSDE barriers at differ-

ent channel lengths. Specifically, Fig. 8 shows that DE
increases as the devices are scaled, from �20 meV for the

FIG. 9. Magnitude of the modified net doping profile along the Si/gate-insu-

lator interface of the 40 nm device compared to the original doping profile.

The pSDE’s have been broadened and their doping concentration has been

reduced, to increase the conduction via resonant tunneling.

FIG. 10. Left: Average LDOS in the channel of the 40 nm device with the

modified doping profile (shown in Fig. 9), at 10 K. The cyan colored line

represents the potential-energy profile at the semiconductor/gate-insulator

interface. Right: Transmission coefficient vs. total injection energy for

the particular traveling mode that exhibits the highest resonant transmis-

sion. The energy Er
m of the traveling mode is �0.16 eV and the gate bias

VGS ¼ 2:0 V.
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20 nm to 37 meV for the 10 nm device. Also, in these devices

dE � 3 meV (20 nm) and 5 meV (10 nm device). Therefore,

at 300 K, 25 meV¼ kBT < DE� dE � 32 meV for the 10 nm

device. Thus, it is the thermionic “leakage path” that hides

the expected NDT. Assuming DE � 1=L2, where L is the

gate length, DE would be as large as 75 or 150 meV in devi-

ces scaled to 7 and 5 nm, respectively. This would be more

than sufficient to ensure the occurrence of NDT at 300 K.

However, as we have already remarked, the possibility of

having current flowing via the thermionic emission over low

pSDE-barriers and via punch-through around high pSDE-

barriers would have to be minimized. The latter requirement

likely demands that we move from a “bulk” MOSFET design

to ultra-thin-body (UTB) silicon-on-insulator (SOI) struc-

tures. This is required by scaling to the 5 nm gate-length,

regardless of the particular goal we have in mind. This is

already “conventional” Si CMOS VLSI technology and no

major difficulties should be expected. Much more difficult is

the constraint posed by the necessity of reducing the therm-

ionic leakage path. This would require narrow and high

pSDE barriers. This would have the welcome effect of reduc-

ing the energetic width of the quasi-bound states, dE, that

scales as dE � expð�aWÞ, where W is the width of the

pSDE barriers, assumed to be proportional to L with proper

scaling (a is a quantity that depends on the energy of the

quasi-bound-state in the QW and on the electron effective

mass in the gap, mx). Clearly, a barrier-width W of the order

of a few nm is hard to envision as achievable by ion implan-

tation. However, the use of larger, slower-diffusion acceptor

impurities, such as In in place of B, and use of doping techni-

ques not relying on ion implantation and subsequent rapid-

thermal annealing (RTA) steps, such as the low-temperature

epitaxy employed for thin-base Si/SiGe epitaxial bipolar

transistors,31 could provide a solution if implemented in a

“horizontal” epitaxy, such as the technology used to regrow

S/D regions in uniaxially strained-Si p-channel MOSFETs.32

We should finally observe that our simulations have

been performed assuming the ballistic quantum transport.

Introducing scattering into the simulation, for example, via a

Master equation30 or a NEGF approach,15 would lead to a

larger broadening dE of the resonant states. Moreover, non-

parabolic corrections to the electron dispersion, ignored

here, would reduce the energetic separation DE of the trans-

mission resonances. Therefore, our estimates should be con-

sidered moderately optimistic, but only “moderately” so.

V. CONCLUSIONS

We have shown with quantum-transport (QTBM) simu-

lations that lateral-quantum-well Si nMOSFETs exhibit the

desired NDT at low temperature and for gate lengths shorter

than about 20 nm. Extrapolating from our results, devices

with a gate length of 10 nm and lower should exhibit a sharp

NDT signature even at room temperature, provided there is

sufficient mitigation of the thermionic and punch-through

currents. The former plays a crucial role in suppressing the

NDT, the latter is favored over the tunneling current for high

pSDE barriers. We have argued that alternative device

designs (UTB SOI devices and/or epitaxial pSDE barriers)

with sub-10 nm gate length are required to observe NDT at

room temperature. Discussing processing and fabrication

issues related to these scaled devices is a problem that tran-

scends the scope of this work. However, the theoretical pre-

diction of NDT in 10 nm devices leaves room for a moderate

optimism. We have also shown the strong dependence of the

resonant tunneling current on details of the doping profile of

the pSDE pockets. This suggests that our inability to explain

the NDT observed in 40 nm gate-length QW nMOS devices

is likely due to the uncertainty of the actual doping profiles.

This observation also bolsters our optimism.
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