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ABSTRACT  

As more and more data is collected, it is growing beyond the scale humans could ever have 

imagined. Not only data but also data collection and analysis techniques have evolved and have 

enabled researchers to advance many fields such as medical science. Although health data can 

have a huge impact on the future success of research, data is usually distributed among various 

stakeholders. Organizations need to share this data to help research move forward, but health data 

sharing is a regulated domain. Due to privacy concerns, the U.S. Department of Health and Human 

Services (HHS) has taken steps to ensure privacy protection of individuals by regulating data 

sharing through Health Insurance Portability and Accountability Act of 1996 (HIPAA). HIPAA 

policy restricts publishers from sharing identification information as well as any auxiliary 

information that can be used for record re-identification.  

To make data sharing compliant with the HIPAA policy, various data privacy protection 

techniques evolved. Differential privacy techniques focused on query accuracy maximization in 

statistical databases while minimizing the “risk” of record identification, whereas, data 

anonymization allows the publisher to share original data at lesser precision, i.e., sharing attribute 

value of age as 25-35 instead of 30. These techniques are considered as an industry standard. 
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Newer risk-based models determine record anonymization level based on the hidden “risk” of re-

identification of the record. With constantly increasingly sanitization requests around big data, 

sanitization algorithms need to be adapted for distributed computing frameworks. Frameworks like 

Hadoop-MapReduce achieve parallelism by distributing tasks on multiple machines and executing 

them in parallel. Apache Spark is a Hadoop-MapReduce based in-memory distributed framework 

with support for data caching making it more suitable choice for iterative anonymization 

algorithms. This study focuses on developing distributed in-memory data sanitization techniques.  

To extend traditional k-anonymity methods, we implemented Mondrian k-anonymization 

algorithm for Apache Spark. The Mondrian algorithm performs multidimensional partitioning cuts 

until data cannot be divided further without violating k-anonymity property. We propose a locality 

sensitive hashing (LSH) based one pass anonymization algorithm in which we use LSH functions 

for the formation of clusters of size k and finding a summary statistic for each cluster.  

To support newer data anonymization methods, we implement an in-memory version of risk 

estimation based anonymization algorithm that leverages game theoretical approach for deciding 

optimal generalization level for each record. We then propose a hybrid risk anonymization 

algorithm that uses LSH bucketing to minimize the number of risk estimation algorithm 

executions. 

To support online sanitization, we propose an aspect-oriented approach for modifying Apache 

Spark RDD’s computation at runtime. We show how an aspect can suppress identifier field based 

on predefined policy at runtime. 

With evolving functional requirements like within-dataset anonymization vs within population 

anonymization, centralized vs distributed anonymization, risk-based vs strict k-anonymization, it 
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is crucial to select the method that fits the requirement correctly. This study offers different 

solutions that are suitable for different functional requirements. The analysis and comparison of 

above methods would enable data publishers to make efficient computation cost anonymization 

decisions. 
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CHAPTER 1  
 

INTRODUCTION 
 
 

Increasingly, medical research is becoming highly data driven and it uses big data sets ranging 

from hospital discharge data to genomic data. Genomic datasets are so huge that they are claimed 

to be beyond what big data technologies can handle today (Stephens, et al., 2015), thus leading to 

high-performance big data sanitization requirements. The research data is usually scattered and 

collection typically involves gathering data from different health organizations. However, due to 

privacy concerns, the process of health data sharing is highly regulated. In the USA, Health 

Insurance Portability and Accountability Act of 1996 (HIPAA) was introduced to regulate data 

distribution and for the protection of individual’s privacy (HHS, 2000). In essence, HIPAA states 

that individual’s privacy must be protected while sharing data (HHS, 2000). In order to enable 

privacy protection in shared data, data sanitization is used.  Sanitization is a process of removing 

the sensitive information so that the data can be distributed to a larger audience. Sanitization is 

achieved through data anonymization, i.e., anonymizing identification information. Data 

sanitization is typically done out of two intents – secrecy protection and privacy protection. 

Secrecy protection is about converting secret/top secret data into less harmful versions that can be 

shared at a lower protection level. Privacy protection is about protecting the privacy of the 

individuals about whom data is being shared. The privacy of individuals is considered to be a 

human right (Wogara, 2001) and thus needs to be enforced. Countries have defined laws for the 

protection of individual’s privacy, although these laws differ from country to country, the essence 

remains the same – to protect individual’s privacy. In the United States, the law permits lawsuits 
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to be filed against the individual/institution that intruded aggrieved party’s private affairs (Gostin, 

Lazzarini, & Neslund, 1996).  

With HIPAA, the Department of Health and Human Services addresses the issue of protection of 

privacy in data distribution and use of individual’s health information. The failure to implement 

and comply with these policies results in penalties, and in some cases, even imprisonment (HHS, 

2000). In their earliest versions of implementation specification, HIPAA shared a list of attributes 

that must be removed or generalized to make sure that the data meets HIPAA safe harbor policy. 

HIPAA primarily covered individually identifiable information and stated that data is safe as long 

as it is de-identified.  The list included SSN, telephone numbers, account ids, license numbers, zip 

code and all possible identifier fields. At glance, the HIPAA list looks pretty exhaustive, but it is 

not. Several successful re-identification attempts made and it has been shown that the above 

approach is just not sufficient to protect privacy (El Emam, Jonker, Arbuckle, & Malin, 2011). 

This lead to HIPAA acknowledging that de-identification is more of a risk analysis problem rather 

than a simple process of removing identifiers (HHS, 2000). In order to rectify this issue, HIPAA 

came up with a second implementation specification that states that an individual with appropriate 

qualification and knowledge of accepted scientific and statistical methods for identification, can 

claim that health information is not individually identifiable if and only if, the individual is able to 

confidently state that data has extremely low risk of re-identification based on generally available 

knowledge, and documents the methods used for coming to this conclusion (HHS, 2000). This 

specification accepts data with relatively low risk of re-identification as de-identified data. 

  In order to comply with HIPAA policies, data publishers have to share data with relatively 

low risk of re-identification. To address this challenge, multiple approaches were proposed and 
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several algorithms evolved (Dwork, 2008; Ramakrishnan, LeFevre, & DeWitt, 2006). An 

evolution of serial sanitization algorithms happened during the phase when the world was still 

getting ready for the big data. Since then, the data has grown exponentially and current data 

processing proposals focus on building algorithms that can run in distributed mode on distributed 

frameworks like Apache Spark. Most of the published data sanitization algorithms work well in a 

serial setting; however, they do not scale in a distributed setting. An experiment conducted as part 

of this study, outlined in Chapter 7 confirms this conclusion. Due to the very nature of these 

algorithms itself, they do not scale well in a distributed environment. Future data sanitization 

requirements are going to be big data based, which is why we need to analyze existing data 

sanitization algorithms and test them in a distributed environment.  

 The key contribution of this study is the development of efficient big data sanitization 

algorithms for distributed in-memory frameworks. As a result, we developed four unique 

algorithms for four different use cases. First is a scalable, distributed sanitization solution using a 

game theoretical approach (Wan, et al., 2015), second is a risk-based locality sensitive hashing 

bucketing sanitization solution. The third is an LSH bucketing based strict k-anonymity solution 

and fourth is a novel, aspect-based on-the-fly data sanitization technique. To our knowledge, these 

techniques have never been proposed for data sanitization using distributed in-memory 

frameworks, before.  

1.1 Outline of the thesis 

We discuss big data frameworks available as part of Chapter 2 and identify Apache Spark as the 

distributed framework that one could use for implementing iterative distributed algorithms. We 

then elaborate how Apache Spark performs distributed in-memory job processing. Chapter 2 also 
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outlines attribute types, i.e. identifiers, quasi-identifiers, sensitive fields, and domain specific 

attributes; quasi-identifiers being the focus of sanitization algorithms proposed in this study. We 

then continue to define the related work that has been done in the field of big data, data sanitization 

using LSH, and online data sanitization approaches using aspect-based methods.  

 Chapter 3 introduces currently known clustering mechanisms and identifies the clustering 

technique that can be used for performing clustering in high dimensional spaces. While evaluating 

strategies for big data problems, it is important to select the technique, which provides maximum 

information preservation while having low time complexity. This chapter suggests the use of 

locality sensitive hashing (LSH) bucketing technique for performing data anonymization. Locality 

sensitive hashing provides sub-quadratic time complexity for performing bucketing. This chapter 

then defines the internal mechanism of locality sensitive hashing. 

 Before introducing a new model for performing anonymization, we must understand 

popular methods used for performing k-anonymity. Chapter 4 introduces Mondrian 

multidimensional k-anonymity algorithm that achieves k-anonymity by performing repetitive 

multidimensional cuts until data becomes indivisible. Chapter 4 explains the algorithm and 

modifies it further to make use of distributed computing capabilities. In Chapter 4, we also 

introduce a one pass k-anonymity algorithm, using locality sensitive hashing bucketing technique.  

 Current k-anonymizations approaches involve computations on a subset of data while the 

risk-based game theoretical approach works on single data record at a time. In Chapter 5, we 

elaborate a game theoretical approach used for data sanitization using risk estimation techniques 

(Wan, et al., 2015). In this chapter, we also elaborate information loss evaluation technique that 

we would use in Chapter 7, in order to compare and contrast different anonymization approaches 
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suggested in this study. We then show how to modify lattice based search algorithm, to make use 

of distributed computing capabilities. We further extend it by using LSH bucketing in order to 

evaluate whether the performance of LBS algorithm can be further improved with the help of LSH 

bucketing algorithm. 

 There can be scenarios, which specifically demand online approaches. In order to provide 

solutions for such problems, we introduce an on-the-fly sanitization solution in Chapter 6. On-the-

fly sanitization typically requires modification of the execution environment itself.  However, it is 

not practical to modify the framework, as it requires re-work every time we want to upgrade 

framework to a newer version.   Also, RDD computation being a cross cutting concern, needs a 

cross-cutting solution. We propose an aspect-based approach in Chapter 6, which focusses on 

modification of Apache Spark execution environment at runtime. We introduce an aspect called 

BlueRay for suppressing identifiers in a structured file. We elaborate how to extend BlueRay 

aspect to perform several things like attribute generalization and attribute suppression. 

  As part of Chapter 7, we document the experimental evaluations performed for both – 

batch as well as online approaches. We start by comparing how LSH based technique performs 

compared to Mondrian k-anonymity, both being strict k-anonymity methods. We contrast the 

information preserved in above-mentioned approaches with the LBS algorithm and study how LBS 

algorithm scales with increasing file size. We then shift the focus of the study to online approaches 

and study performance impact of BlueRay aspect itself on different operations like reading a 

dataset, writing a sanitized dataset and performing a group by query. We also compare and contrast 

the performance of two policy management techniques suggested in the study. As part of Chapter 

8, we document our conclusions and highlight possible future work to take the study ahead. 
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CHAPTER 2 
 

BACKGROUND AND RELATED WORK 
 
 

To be able to discuss and propose newer methods, we need to first elaborate existing data 

sanitization algorithms along with related research done in the big data sanitization field. In this 

chapter, we first discuss current data sanitization approaches, and then analyze available platforms 

and choose the platform that is right for performing big data sanitization. We also define 

characteristics of the data before describing related work that has been done in the field of big data 

sanitization. 

2.1 Current big data sanitization approaches  

Based on HIPAA §164.514 specification, various anonymization techniques have been suggested. 

T-closeness, l-diversity, Mondrian are some of the examples of such techniques (Ramakrishnan, 

LeFevre, & DeWitt, 2006; Machanavajjhala, 2007; Ruggieri, 2014). K-anonymity is a strategy 

that relies upon increasing anonymity in the data in order to make the probability of re-

identification in de-identified data very small; higher value of k implies lower risk. 

These algorithms anonymize data just enough to get the risk to a smaller value.  However, 

some address only part of the problem like numeric quasi-identifiers (Chakravorty, 2016) whereas 

some perform anonymization of only personal or identifying information (PII) data (Judson, 2015), 

etc. Many of the approaches have very high time complexity, which makes them infeasible for 

data size beyond few megabytes. We need algorithms, which are more feasible for big data. In this 

study, we focus on distributed high-performance anonymization algorithms.  Considering data 

growth rate, as well as increasing performance expectations from software, soon serial 
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anonymization approaches just are not going to be enough. Typically, anonymization algorithms 

are iterative in nature and given that big datasets are usually in gigabytes, a sanitization solution 

needs a computing framework with built-in performance. For this reason, it is important that 

problem of data privacy be researched for distributed big data frameworks.   

2.2 Big data frameworks   

With the innovation of disruptive technology known as the internet, data has grown beyond the 

scale humans could imagine, two decades ago. Big data has become common term everywhere. 

The field of distributed computing has risen in order to provide for high compute/high memory 

big data algorithms. Hadoop-MapReduce cluster computing field has gained and flourished 

enormously. There are several distributed big data processing tools and techniques available in the 

market that serve specific needs. MapReduce works mainly by providing two methods; map 

method runs in parallel on multiple smaller splits of the original data, and reduce method 

aggregates result produced by the map function. In last few years, MapReduce framework has 

become extremely popular because of the parallel computing capability. One of the major reasons 

behind the popularity of the framework is data code locality. The framework optimizes the 

execution of the task in such a way that computation takes place on the node on which data is 

stored. The reduce function is executed on the reducer and it typically aggregates map function’s 

output. Two or more map-reduce sequences can be chained, but in order to do so, we need to 

persist first map-reduce function’s output and pass it as input to the second map function. For this 

reason, MapReduce does not typically work well for iterative algorithms. 

Compute heavy algorithms typically involve complex calculations and little I /O. Iterative 

algorithms typically belong to this category; they iterate over and reuse intermediate data. Writing 
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a complex transformation of data typically involves chaining multiple map-reduce functions and 

thus leading to a lot of I/O.  For this reason, we need a distributed computing framework 

appropriate for distributed iterative processing. Based on analysis of big data frameworks available 

and our requirement of iterative distributed processing, we decided to go ahead with Apache Spark. 

2.2.1 Apache Spark: Introduction 

Apache Spark is an open-source, in-memory, and distributed computing framework. It enhances 

Hadoop’s data locality principle by adding a provision for data caching.  It provides programmers 

an application program interface (API) around a central, fault-tolerant data structure known as 

Resilient Distributed Datasets (RDD). RDDs are lazily evaluated parallel immutable data 

structures (Zaharia, et al., 2012). RDDs are created by combining multiple RDDs or by reading 

files. RDDs let us chain multiple map-reduce/map-map commands without requiring read/write of 

intermediary outputs from or to an I/O device. Apache Spark achieves fault tolerance in RDDs by 

maintaining lineage graph for each RDD. Lineage graph explains RDD creation process. 

2.2.2 Apache Spark Execution framework 

When a program is submitted to an Apache Spark cluster, the node on which it is submitted is 

referred to as Driver. When the script is launched, driver coordinates with cluster manager and 

assigns executors to the program. A DAGScheduler running on driver reads user’s program and 

creates a DAG, a directed acyclic graph of operations involved (map or reduce). Typically, it forms 

a graph of jobs where one job consists of multiple stages, and a stage depends on another stage or 

file(s). A stage typically consists of several tasks. DAG is then sent to TaskScheduler for task 

assignment. TaskScheduler coordinates with the cluster manager and launches tasks on the cluster. 
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A task includes task’s closure, i.e. all input variables and methods used by the task. The driver 

creates a copy of input variables and methods and sends the same to the executor. Executors are 

launched on worker nodes present in the cluster. Each executor executes the task and sends the 

result to the driver. The executor can also cache intermediary results and improve the overall 

performance of the program. Executors execute more than one task during their lifetime on the 

worker node.  

In Figure 2-1, inspired from the Apache Spark documentation (Zaharia, Spark Internals 

documentation, 2012), we can see a simple execution flow in Apache Spark framework. Here we 

are joining two RDDs and then executing the action called count. Execution of an action leads to 

the evaluation of the DAG and hence execution of the code. We can see in Figure 2-1 that both the 

RDDs contain 3 input splits each. Each input split is read and emitted by a task. This forms the 

stage 1 of the DAG. 

Figure 2-1. Apache Spark Execution framework 
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Stage 2 is a join stage; here we are joining one input split each of both the RDDs. Assuming 

that there is one to one join, we can see a set of tasks getting created in stage 2. These are map 

tasks. This forms as an input to the stage 3, in which count task gets executed. These all tasks are 

sent to cluster manager stage by stage. Once a stage has been executed, and inputs for next stage 

are ready, next stage gets executed. 

Cluster manager is aware of all spark slaves, as well as the data required by tasks. Cluster 

manager communicates with HDFS and gets the details of data nodes on which data resides and 

sends tasks to slaves located on corresponding data nodes.  

As we can see, Apache Spark framework is suitable for iterative data processing, respects 

data locality, and is also widely adopted. The framework, originally launched in 2010, has become 

mature and has stood the test of time. These attributes make Apache Spark a good candidate for 

implementation of distributed algorithms.  

2.3 Dataset and metadata for privacy analysis 

Defining data characteristics is the first step we take before we define, elaborate and evaluate 

distributed sanitization algorithms. Data typically consists of four parts, identifiers, quasi-

identifiers, sensitive attributes, and domain specific attributes. 

Identifiers are attribute(s) that uniquely identify the individual the record corresponds to. 

These must be suppressed before sharing, as they may be universally unique identifiers and 

typically do not follow a specific pattern. Typical examples of this column are social security 

number, license number, full name, etc. Most of them were included in the first list released by 

HHS as part of HIPAA policy (HHS, 2000). 
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 Sensitive attributes are the attributes that are extremely sensitive and must not be revealed 

or associated with the identity of the individual. These attributes are the ones which data consumer 

is interested in, and hence cannot be generalized/suppressed by data publisher. 

 Typical examples of sensitive columns are “bank balance of an individual”, “individual’s medical 

condition”, “number of parking tickets received”, etc. 

             Quasi-identifiers are a group of attributes that together can uniquely identify the identity 

of the individual data belongs to.  Knowledge of these attributes can lead to very high possibility 

of successful re-identification of the individual corresponding to the record. These attributes need 

to be either suppressed or generalized in order to reduce the risk of attack. E.g., Consider the 

attribute list of zip code, age, gender, race.  In sparsely populated regions, knowledge of all four 

of these can easily lead to re-identification of individual data belongs to. 

           Domain attributes are remaining attributes which data publisher is interested in, but are not 

particularly harmful to individual’s privacy. Although knowledge of these can help get insight, the 

information is considered harmless, and it does not always lead to the breach of privacy. E.g., does 

individual prefer spring over fall?  

         The data sanitization approach studied in this thesis is focused on providing anonymization 

techniques for solving problem outlined in §164.514 of HIPAA (HHS, 2000). While studying 

anonymization techniques, we assume that data has already been pre-processed and does not 

contain any identifiers. For removal of identifier fields, we propose an aspect-based online model 

in Chapter 6. In sanitization algorithms suggested, we focus only on quasi-identifiers. 

For our study, we consider a simple dataset that consists of 4 quasi-identifiers - age, zip 

code, race, and gender. We used the data from adult dataset found in UCI machine learning 
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repository (Lichman, 2013). We extracted quasi-columns from the dataset and used the census 

dataset from U.S. Census Bureau’s website, 2010 Census tables PCT12A through PCT12G 

(Census Summary File prepared by the US Census Bureau., Oct). We also used the transformed 

data set used in the game theoretical framework for analyzing risk paper (Wan, et al., 2015), in 

order to validate our algorithm implementations.  We use the census data to calculate the risk 

probability for a given generalization level in the entire population. Sample data format, 

generalization hierarchy, as well as metadata used for expediting processing of algorithm, is 

described in Appendix A. Apart from data definition, we also define metadata generalization 

hierarchy. Generalization hierarchy contains all possible variants at the bottommost level and 

completely suppressed row at the topmost level.  

2.4 Related Work 

In this section, we summarize studies relevant to our work. In Section 2.4.1, we elaborate 

previously known aspect-based solutions and document the learnings from each of the paper. In 

section 2.4.2, we discuss known use cases in which LSH was used for purpose of anonymization 

of data. In section 2.4.3, we discuss currently known scalable anonymization models and highlight 

their shortcomings. In order to setup the environment for distributed in-memory sanitization 

algorithms, we explain LSH, Mondrian k-anonymity, and risk-based approach algorithms in initial 

sections of Chapter 3, Chapter 4, and Chapter 5. Once done, we introduce the in-memory 

distributed versions along with LSH based anonymization algorithms. 
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2.4.1 Aspect-oriented approaches 

The idea of AspectJ for runtime modification of bytecode is extremely popular and has multiple 

utilities. In past, aspect-based approaches have been considered for runtime modification of the 

behavior of the system. In Vigiles (Ulusoy, Kantarcioglu, Pattuk, & Hamlen, 2014), a fine-grained 

access control system for MapReduce, the aspect-based approach was used in order to enforce 

fine-grained access control (FGAC) in Hadoop MapReduce environment. The system incorporates 

a policy manager and demonstrates how aspect-oriented approach can be used in Hadoop-

MapReduce ecosystem. The paper also states that using AspectJ is a wise way of extending a 

functionality, as it removes the need to maintain a copy of the software. However, the paper 

elaborates technique only for MapReduce framework and does not explain how it can be achieved 

in Apache Spark. 

2.4.2 LSH for Privacy Preservation 

Locality sensitive hashing has been a known de-facto method for Approximate nearest neighbor 

search (Indyk & Motwani, 1998). In a paper on the anonymous publication of sensitive 

transactional data (Ghinita, Kalnis, & Tao, 2010), LSH was suggested for anonymization of high 

dimensional data.  The paper suggests the use of LSH, but for sparse data. The paper (Zhang, et 

al., 2016) suggests using local recoding anonymization using LSH for Hadoop Map-Reduce 

systems. The approach, however, does expect data to be converted into binary data leading to 

imprecise numeric data distance calculation. The technique does not involve any normalization 

and uses agglomerative approach for forming a cluster of size k, whereas LSH based algorithm 

proposed in this study focusses on increasing number of buckets in order to cluster more precisely. 
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2.4.3 Anonymization in big data 

 Apart from the paper (Zhang, Yang, & Liu, Hadoop based Anonymization , 2013), several 

approaches have been suggested for performing anonymization in Hadoop-MapReduce 

ecosystem. However, these algorithms are designed keeping the serial MapReduce type of 

execution model in mind. They do not leverage intermediary data caching nor do they provide 

iterative in-memory solutions. Hortonworks does offer a solution for data masking (Syed & 

Srikanth, 2016), but it does not offer a complete anonymization solution. 
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CHAPTER 3 
 

CLUSTERING: APPROXIMATE NEAREST NEIGHBOURS 
 
 

Clustering is a technique for finding the group of elements that are close to each other in some 

aspect. Consider sample data in Figure 3-1 for gender, age, race, zip code combination. We can 

clearly identify two clusters, each one having two points very close to each other. We can see that 

first two entries in Figure 3-1 form the first cluster and remaining two the second.  

              
(a) Sample data 

             
(b) Clustered sample data 

                                              
 Figure 3-1. Clustering of sample data 

 
The technique of clustering has several advantages and one can infer that all the data points 

in a cluster have a special relationship and that they all are within some small Euclidean distance 

of each other. We can use this information in order to apply an identical generalization to close 

points and lower total information loss. 

3.1 Clustering techniques 

A numerous number of algorithms have been suggested for performing clustering and these 

algorithms are mainly based on following four categories (Jain, M.N., & P.J., 1999).   

Hierarchical clustering: Hierarchical clustering is a technique of building hierarchical clusters. 

Clustering is performed based on two primary approaches - top down and bottom up.  A divisive 

approach is a top-down approach that focuses on dividing the cluster recursively into separate 

clusters whereas agglomerative approach is bottom-up clustering approach that joins small clusters 
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into bigger one until only one cluster remains. The joining of the clusters is done based on two 

metrics, single linkage clustering, and complete linkage clustering. Based on the performance, the 

agglomerate clustering techniques are considered to be good as they have a time complexity of  

O(n3) as compared to the divisive approach that has a time complexity of O(2n-1) (Everitt, 2011). 

Hierarchical clustering is an approach that provides a specific type of clustering solution. 

Centroid-based clustering: Centroid-based technique typically relies on the distance of points 

from centroids. An example of this technique is Kmeans. In Kmeans, we define K centroids and 

identify the nearest centroid for each element, and we continue with cluster formation until 

centroids do not change. This technique typically uses squared error for optimization of the 

distances within the cluster. Kmeans++ is a variant of Kmeans that uses probabilistic distribution 

in order to select k centroids in the initialization step. 

Distribution based clustering: These algorithms typically rely on the distribution of the data 

within clusters. An example of this type is Gaussian mixture models, in which we assume a certain 

number of Gaussian distributions in the data and use the iterative model to fit the model to the 

dataset. These algorithms work pretty well when there are unobserved/latent variables or missing 

values in the data, however, this method cannot always be used because data distribution may not 

always be known. 

Density-based clustering: Density-based clustering methods rely on a technique known as 

density-reachability. E.g., DBScan starts by grouping points that are close to each other, to form a 

cluster, leaving all the points that are far as outliers. This type of clustering suffers when data has 

varying densities (Mumtaz K, 2010). 



 

17 
 

3.2 Clustering technique evaluation 

 Overall, we are not really interested in the hierarchy of the clusters itself; we just want the 

bottommost level of clusters, which is why hierarchical clustering does not sound like a right 

choice.  Distribution based clustering “assume” distribution of the data which may not always be 

known, which is why distribution based clustering may not be the right choice either. Density-

based clustering technique works when there are distinct classes available, but because of lack of 

knowledge about the data, we cannot assume that that distinct classes would be available. We can 

consider centroid-based clustering as it does not really make any specific assumptions about data 

distributions or density. Kmeans is an extremely popular centroid-based clustering algorithm and 

its time complexity is O (ndk+1) (Inaba, Katoh, & Imai, 1994) where 

N = total number of points to be clustered 

K = number of clusters 

D = dimensions in the point 

The time complexity of Kmeans suffers from the curse of dimensionality. We cannot afford 

such high time complexity, as a number of quasi-identifier columns present in the dataset can be 

very high.  Having four quasi-identifier attributes in the dataset is definitely not a rare use-case. 

We can clearly see that these algorithms do not scale as dimensionality in the data increases. We 

need solutions that scale well in high dimensional spaces. 

The intent of evaluation of clustering technique was to find out nearest neighbors and see 

if the generalization level applied to a point can be extended to its nearest neighbors. For such 

problems, we do not really need a concrete cluster boundary. Due to these reasons, we consider 
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locality sensitive hashing, which is an effective way to find out nearest neighbors for a particular 

point. 

3.3 Locality sensitive hashing 

Locality sensitive hashing is a high-performance approximate nearest neighbor (ANN) search 

algorithm for high dimensional data. It relies on probabilistic hashing of data in such a way that 

elements that are near to each other have a higher probability of being hashed into the same bucket. 

It uses multiple LSH family hash functions, hashes all elements into their respective buckets, in 

turn reducing the neighbor search space.  LSH family of hash functions satisfies the property 

defined in equation (3.1). 

∀ row vectors a, b  ∈ N,  
distance (a, b)  ≤  d1       ⇒         P(h(a)=h(b)) ≥ P1            
distance (a, b)  ≥  d2       ⇒         P(h(a)=h(b)) ≤ P2 

Where   d1 < d2 & P1> P2 

 
(3.1) 

 
The above function is said to be (d1, d2, P1, P2) sensitive. For all row vectors a, b belonging to total 

search space N, if the distance between points a and b is less than or equal to d1, then the probability 

of a and b being hashed to the same bucket is greater than or equal to P1 and if the distance between 

a and b is greater than d2, the probability of a and b being hashed into the same bucket is less than 

P2 (Locality Sensitive Hashing, 2016). 

There are two very popular hash functions that follow the above property. MinHash, based 

on Jaccard distance, and bucketed random projection, based on Euclidean distance. Jaccard 

distance typically works better when the distance measure is purely binary and it does not work 

well with quantitative data. Euclidean distance accommodates quantitative data better by 

considering the granularity in the data. For our experimentation, we consider Euclidean distance-
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based measure ݀(ݔ, (ݕ = ට∑ ௜ݔ) − ௜)ଶݕ
௜  .   Where x = (x1, x2, x3 .. xk) and y = (y1, y2, y3 …. yk) are 

any two vectors, each having k attributes. Bucketed random projection method involves 

multiplying vector x with random unit vector v and assigning it to a bucket by dividing it with 

bucket length r.  Please find the detailed bucketing algorithm explained in section 3.3.1.  

3.3.1 LSH - bucketing algorithm 

In LSH, we first perform bucketing, i.e. apply all hash functions on all records and store the result 

in a hash table. We extend this further by forming individual clusters of all elements which were 

hashed into the same bucket by all hash functions. In getBuckets method, we implement the 

formula h(x) =
௫∗௩

௥
. This formula is based on LSH scheme for p-stable distributions paper (Datar, 

Immorlica, Indyk, & Mirrokni, 2004 ). The paper states that this formula can be used on stable 

distributions in order to get locality sensitive hashing of data. As per this formula, we generate a 

random unit vector, multiply the same with the row vector and then divide the dot product by a 

value "r"; result is the bucket id that vector should be hashed into. LSH ANN search uses multiple 

such hash functions and narrows down the list of elements on which approximate neighbor search 

needs to be performed. We use identical mechanism, but instead of executing ANN search, we 

simply use buckets in order to get summary statistic. In step 3.1 of the algorithm described in 

Listing 1, we create a concatenated hash as the master hash and use grouping method in order to 

extract clusters. We use these clusters in algorithms defined in sections 5.5 and 4.4 for defining 

LSH bucketing based batch anonymization algorithms. 
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Listing 1:Algorithm for bucketing using LSH 
____________________________________________________________________________ 
 
Input: LinesRDD 
Output: Buckets: RDD [Array [Row]] 
getBuckets (linesRDD, precision) 
1. Get random unit vectors. 
2. For each Row in linesRDD, apply normalization transformation, i.e., 
each row gets converted into an array of Double. 
3. for each row vector, do following, 
 3.1 Create a "concatenatedHash". 
 3.2 For each unit vector do following, 
  3.1.1 Multiply row with the unit vector obtained in step 1 
and store result in sum. 
  3.1.2 Divide sum by "r", this is the bucketID to which the 
row gets hashed into based on the current unit vector. 
  3.1.3 Round the bucketID to precision provided. 
  3.1.3 Append it to concatenatedHash. 
 3.3 emit (concatenatedHash, row) tuple. 
3. Group rows by concatenatedHash and lose concatenatedHash. 
4. Return the RDD [Array [Row]] as buckets. 
5. Stop. 

____________________________________________________________________________ 

3.3.2 Categorical data mapping, normalization of quantitative attributes 

Before we execute the LSH algorithm, we must preprocess the data. We normalize all numeric 

attributes. We use normalization formula 
௩௔௟௨௘ି௠௜

௠௔௫ି௠௜௡
 for calculating the normalized value. Apart 

from numeric values, we convert qualitative attributes, gender, and race, into quantitative data by 

adding a number of columns corresponding to the number of unique possible values in the column.  

E.g., gender column has two possible values, male and female, so we create two columns, one 

corresponding to each value, and map each to a unique index. According to the mapping, attribute 

male gets mapped to <1, 0> whereas female gets mapped to <0, 1>. Similarly race attribute is 

converted into quantitative form too. 
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 Apache Spark MLlib 2.1.0 has a built-in provision for LSH algorithm with bucketed 

random projection technique for numeric data, but it does not expose access to buckets. Also, the 

buckets are in non-materialized form. For this reason, we chose to implement the bucketing 

algorithm as part of the study. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 



 

22 
 

CHAPTER 4 
 

K-ANONYMITY TECHNIQUES 
 
 

According to k-anonymity mechanism, quasi-identifiers must be generalized or suppressed in 

order to make records “k-anonymous”. That is, there should be at least k records for any given 

record that have exactly the same attribute generalization level for all quasi-identifier attributes. 

Attribute generalization is a process of generalizing a value, to a higher dimension value, in the 

hierarchy of the domain value of the record. E.g., consider the hierarchy for age attribute from 

Figure 4-1, a generalization of the tuple <age, 45> one level up would mean its conversion into 

<age, 31-60>.  

 
Figure 4-1. Three level age generalization hierarchy 

 

Generalization can lead to information loss, thus it is important to define granular 

hierarchies for quantitative as well as qualitative attributes. Typically, these hierarchies can be 

defined based on statistics available for the data. Suppression incurs the highest possible 

information loss in generalization, i.e. generalizing a record to the topmost level. Suppression of 

<age, 45> would mean conversion of <age, 45> to <age,*> 

4.1 Existing k-anonymity approaches 

Optimal k-anonymity is a known NP-hard problem, In order to implement k-anonymity, several 

heuristic/approximation based algorithms have been suggested (Ramakrishnan, LeFevre, & 
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DeWitt, 2006). Since we have high dimensionality in data, we decided to implement Mondrian k-

anonymity algorithm, which is a high-performance global recoding based greedy approach for 

implementing k-anonymity in the data.  Global recoding is a greedy technique for achieving k-

anonymity. Global recoding is of two types, single dimensional global recoding, and 

multidimensional global recoding.  Single dimensional global recoding is a process of coming up 

with generalization or suppression rules for each of the quasi-identifier attributes and applying the 

same to all rows individually. This involves converting a tuple of the form T (a, b, c), into T’(a’,b’, 

c’). Single dimensional global recoding involves partitioning the data based on a single region. 

Single dimensional partitioning typically takes a value as an input and applies a function that maps 

the value to its region.  Multidimensional global recoding is the process of defining a single rule 

for specific tuples in the dataset and applying the same to all. Multidimensional global recoding 

involves creating rules that are more granular, and thus gives better results. Multidimensional 

partitioning extends the concept of single dimensional global recoding to multiple dimensions. A 

multidimensional partition requires multiple attributes <att1, att2, att3, ..attd> for definition of a 

region.   We call a partitioning as strict partitioning when these regions when do not overlap, and 

relaxed partitioning when they do. E.g., with relaxed partitioning, <zip code, 51223> can be 

generalized into <zip code, 51233-51234> or <zip code, 51232-51233> whereas, with strict 

partitioning, zip code of 51223 can be generalized only into one of the two.  
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Table 4-1.Single dimensional partitioning  

Sr. No.   Age Gender Zip Code Salary 

1.   36-39 Male 22710-22711 >50k 

2.   36-39 Female 22712 <=50k 

3.   36-39 Male 22710-22711 >50k 

4.   36-39 Male 22710-22711 <=50k 

5.   36-39 Female 22712 >50k 

6.   36-39 Male 22710-22711 <=50k 

 
Table 4-2. Multidimensional partitioning 

Sr. No. Age Gender Zip Code Salary 

1. 36-37 Male 22710  >50k 

2. 36-38 Female 22712 <=50k 

3. 36-37 Male 22710 >50k 

4. 38-39 Male 22710-22711 <=50k 

5. 36-38 Female 22712 >50k 

6. 38-39 Male 22710-22711 <=50k 

 
In Table 4-1 and Table 4-2, we can clearly see that single dimensional anonymization has higher 

loss as compared to multidimensional 2-anonymization. 

4.2 Mondrian multidimensional k-anonymity algorithm 

Mondrian k-anonymity algorithm is a greedy algorithm that performs multidimensional cut until 

no more cuts can be made without violating the k-anonymity property. A multidimensional cut is 

the division of data into two subsets in such way that both the subsets follow the k-anonymity 

property. Please find the algorithm in Listing 2. 
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Listing 2. Top-Down greedy algorithm for multidimensional recoding from (Ramakrishnan, 

LeFevre, & DeWitt, 2006) 
____________________________________________________________________________ 
 
Input: Partition of rows 
Output: k-anonymized Partition 
k-anonymize (partition) 
1. If multidimensional cut is not possible, 

a. Return summary (partition). 
2. Else 

a. dimension ← selectDimension(). 
b. leftSet & rightSet ← splitOnMedian(partition, dimension) 
c. return k-anonymize (leftSet) U k-anonymize (rightSet) 

______________________________________________________________________________ 
 

When it comes to handling huge data, non-distributed frameworks typically do not scale 

well, because of their linear nature, which is why we decided to use Apache Spark. 

4.3 Distributed Mondrian multidimensional k-anonymity algorithm 

 Apache Spark converts dataset into the form of an RDD and RDD allows Apache Spark to execute 

code in parallel. Along with the data, we also read metadata file that contains hierarchy metadata 

for each of the column in the data. The metadata, as well as data used for the experiment, is defined 

in APPENDIX A. We read the metadata and use Apache Spark broadcast variable feature in order 

to remove the need for the variable to be distributed with each of the tasks. Before we start the 

algorithm, we preprocess the data and convert textual CSV data into following map format.  

i.e., Row of  <15, Female, Asian, 38363> gets converted into RDD[0,Map[(0,15),(1,Female),(2, 

Asian),(3,38363)]…]. 

In Mondrian multidimensional k-anonymity algorithm, selection of dimension is made 

through a method called selectDimension. Please find algorithm for the same described in Listing 
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3. The Mondrian multidimensional k-anonymity paper (Ramakrishnan, LeFevre, & DeWitt, 2006) 

suggests that dimension selection can be made in two ways, one based on a number of normalized 

values and second based on anticipated workload. We choose the prior, with strict partitioning. 

That is, we select attribute with the maximum number of unique values, and we do not overlap 

ranges. Range based selection does tend to give preference to the numeric attribute selection due 

to inherent variability present in the numeric data. 

Listing 3. Distributed selectDimension method 
______________________________________________________________________________ 

selectDimension (linesRDD, k) 
1. For Each record, emit (attribute-index, attribute-value) tuple and 

cache the result. 
2. Aggregate unique values for each column. 
3. Aggregate the number of occurrences for each value for each column 

and store it as frequency. 
4. Select column with the maximum number of unique values from step 2 

as the column on which cut should be performed. 
5. If column type is Categorical 

1. Loop over frequency map of categorical attribute and based on 
frequency, divide the set into two parts, leftSet and rightSet and 
return the same. 

6. If column type is Numeric,  
1. Sort values corresponding to selected column, select min, median, 

and max and return the same. 
7. In the case of error, return -1 as the dimension. 
______________________________________________________________________ 
 

In the Mondrian k-anonymity algorithm, when we partition, we associate the summary 

statistic with the partition itself.   Paper suggests that there are two possible ways to associate the 

summary statistic and range statistic. For this study, we choose range statistic instead of the 

summary statistic. As we can see, the algorithm in Listing 4 looks very much identical to the 

Mondrian multidimensional k-anonymity algorithm from paper (Ramakrishnan, LeFevre, & 
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DeWitt, 2006) but it does take advantage of distributed processing supported by Apache Spark. It 

is important to note that algorithm relies heavily on the selection of dimension. 

Listing 4. Distributed Mondrian k-anonymity algorithm 
_____________________________________________________________________________ 

 
distributed-K-anonymize (linesRDD: RDD, K) 
1. Set dim = selectDimension (linesRDD, k). 
2. If dim is less than 0, execute assignSummaryStatistic (linesRDD). 
3. Else do following, 

a. If dim is of type categorical, find leftRDD and rightRDD by 
using leftSet and rightSet for selected dimension.  

b. Else, divide linesRDD based on numeric ranges into leftRDD and 
rightRDD. 

c. If both datasets are of a size greater than or equal to K, 
then follow following logic otherwise call 
assignSummaryStatistic on linesRDD itself. 

i. If the size of leftRDD is greater than “K” then call K- 
distributed-K-anonymize (leftRDD), if it is equal to K, 
then call assignSummaryStatistic (leftRDD).  

ii. If the size of rightRDD is greater than “K” then call K- 
distributed-K-anonymize (rightRDD), if it is equal to K, 
then call assignSummaryStatistic (rightRDD).    

_____________________________________________________________________________ 
 

 
The assignSummaryStatistic method calculates the summary statistic for a region and assigns 

the summary to all quasi-identifier attributes. 

4.4 LSH based k-anonymity algorithm 

In this section, we propose a distributed one pass algorithm for implementing k-anonymity using 

LSH bucketing approach. The main idea behind k-anonymization is finding the optimal set of 

entries that should be part of the k-anonymized set. The problem of optimal k-anonymity remains 

NP-hard mainly because it is impossible to find the optimal set of K entries that should belong the 

set to be anonymized. However, we can take a greedy approach and find a set of entries that 
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definitely should belong together. This is where LSH comes into the picture. As explained in 

Section 3.3, LSH is an algorithm for finding approximate nearest neighbors in sublinear query 

time, because of its bucketing technique. We can use this property of LSH to find out optimal set 

of elements of size k and then generalize them by simply calculating a range statistic.  In the 

algorithm described in Listing 5, we first execute getBuckets method on an entire dataset with 

very high precision. This leads to almost identical values being hashed into same buckets. We 

convert all those buckets that have at least k elements into summarized versions by calling the 

assignSummaryStatistic method. This method is same as the one from Mondrian k-anonymity 

implementation. We now simply suppress all buckets that have less than k elements. To ensure we 

get good accuracy, we do simulation in order to decide the optimal value for number of hash 

functions to be used as well as bucket id precision. 

Listing 5. LSH k-anonymity algorithm 

 
Input: linesRDD [Long, Map [Integer, String]] 
Output: k-anonymized dataset 
LSH-k-anonymity (linesRDD, k) 
1. Compute buckets by calling getBuckets(linesRDD) 
2. Store buckets that have a size greater than or equal to k, in a 

variable called neighbors. 
3. Execute assignSummaryStatistic(neighbors) and add result to 

outputRDD. 
4. Suppress all buckets with size less than k and add the result to 

outputRDD.  
5. Merge all outputRDD values and write result to output. 
 
 
Input: lines [Long, Map [Integer, String]] 
Output: Summarized dataset 
assignSummaryStatistic (lines) 
1. For each line, emit (attribute-index, attribute) tuple. 
2. For each Attribute index, do following  

a. If the attribute is a categorical type of attribute, find 
distinct entries. Use utility functions to find the common 
ancestor of all entries and set it as the range.  
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b. If the attribute is a numeric type of attribute, find min and 
max. Set min_max as the range. 

3. For all rows, update value to the range calculated in step 2. 
 

 
Summary statistic calculation is done on numeric data based on min and max found in the 

neighbor list and range of categorical data is decided based on the nearest common ancestor. We 

then replace the value of attributes by its corresponding range. These records are then written to 

the output. The output of algorithm can be further improved by adding multiple iterations of LSH 

bucketing but at the cost of performance. Based on the data, tradeoff analysis can be done and a 

number of iterations can be added in order to improve the accuracy of this algorithm.  
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CHAPTER 5 
 

RISK-BASED APPROACH 
 
 

Several data sanitization approaches have been suggested for protecting privacy, most revolving 

around k-anonymity. These algorithms focus on anonymization of data to the extent that the data 

becomes unidentifiable. These approaches, however, lead to a huge information loss. In recent 

past, a completely new approach towards the problem was suggested, risk-based approach, 

according to which, we release the data at a certain generalization level based on the risk of re-

identification of the data (Wan, et al., 2015). We consider one such solution identified in an article 

published on a game theoretical approach for analyzing re-identification risk (Wan, et al., 2015). 

In order to illustrate the risk-based approach, let’s consider a hypothetical scenario. 

Imagine there is a publishing company that wants to publish some health data to potential data 

buyers. Although data buyers claim that they intend to use the data for research purpose, they 

might have the malicious intention of re-identifying identities of individuals corresponding to the 

data. In order to avoid the re-identification, publishers have the option of applying k-anonymity 

algorithms. Publishers, however, realized that sharing highly generalized data reduces monetary 

gain hence publisher is willing to take some risk in order to get a higher price for the shared data 

without wanting to lose money in the process. Adversary (or data buyer) does want to perform re-

identification attack but not at the cost of losing money. In order to achieve such optimal level of 

generalization, the paper (Wan, et al., 2015) suggests an algorithm called lattice based search 

(LBS). 

A record lattice can be imagined as a lattice that contains the original record at the top and 

attribute-generalized children at subsequent levels. The sample lattice from the paper is as shown 
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below. We can see that (Amer-Indian, 42) is the topmost level record.  While constructing lattice, 

we generalize only one child at a time.  

 

Figure 5-1. Sample lattice based on 3 layer hierarchy of age and race 
 

In Figure 5-1. Sample lattice based on 3 layer hierarchy of age and race, we draw a lattice 

for the record (Amer-Indian, 22) based on the generalization hierarchy defined in Figure A-4. Age 

generalization hierarchy. Please note that in above lattice, Amer-Indian-Eskimo was renamed as 

“Amer-Indian” for keeping texts smaller. Based on generalization hierarchy, we know that age 22 

can be generalized into the range 0-30, and similarly, race Amer-Indian can be generalized into 

Amer-Indian-Others. Hence, the topmost node has two children <Amer-Indian-Others, 22> & 

<Amer-Indian, 0-30>. Each of them has their own two children, <Amer-Indian-Others, 0-30> 

being the common child of the two. This continues until the hierarchy has been exhausted. All 
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generalizations end in the top most level of generalization, i.e., complete suppression, leading to 

the formation of a lattice instead of a tree. The risk-based approach involves evaluation of lattice 

for each record. We find the level of generalization for every record that reduces the risk of the 

record being re-identified while sharing maximum information.    

5.1 Algorithm parameters 

To be able to illustrate algorithm better, we first define algorithm parameters in Table 5-1. 

Table 5-1. Algorithm parameters for evaluating a game theoretical model 

Sr. No Parameter Description 

1. R Record in its original form. 

2. V The benefit publisher receives when he/she shares the record in original 
form(R) and adversary does not perform the attack. 

3. L Amount publisher loses when an attacker succeeds in re-identification 
of the individual. 

4. C Amount adversary pays for buying the record. 

5. g The generalized form of the original record. 

6. V(g) Publisher benefit when the record is shared at a generalization level ‘g’. 

7. π(g) The re-identification risk of the record. This would be 1 if individual 
corresponding to the record is clearly identifiable and 0 if there exist 
quite a few individuals at this level of generalization. 

8. IL(g) Information loss incurred when record R is shared at generalization 
level ‘g’. 

9. gc Child of generalization level ‘g’ obtained by a generalization of one of 
its attributes. 

10. f Feature/attribute in the record. 
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5.2 Anonymization evaluation technique 

The benefit publisher receives by sharing record in its generalized form ‘g’ is calculated based on 

formula shown in equation (5.1). The formula calculates V(g) based on the ratio of information 

loss [IL(g)] present in generalization level g and the max information loss possible[Max(IL(g))]. 

V(g) = V x ቀ1 −
ூ௅(௚)

ெ௔௫(ூ௅(௚))
ቁ (5.1) 

The information loss is derived by the total number of entries that are present at given 

generalization level. 

IL(g) = ∑ − log ቀ
ଵ

௦௜௭௘(ீ௘௡௘௥௔௟௜௭௔௧௜௢௡ ௥௔௡௚௘ ௢௙ ௙ ௜௡ ௚)
ቁ௙     (5.2) 

 
For numeric feature f, generalization range of the feature can be calculated by subtracting 

f.min from f.max, for selected generalization level g. For the categorical feature, generalization 

range would be a complete list of possible values at selected generalization hierarchy level.  To 

understand this formula better, let us consider two simple examples. First, a single numeric 

attribute, and second, a single categorical attribute.  Let us first consider numeric attribute. For a 

generalized record of (age, 40-49)  containing a single feature age, the information loss would be 

calculated by calculating range.max minus range.min, i.e. 49 minus 40, taking the inverse of the 

value, taking the log of the inverted value, and negating the same.  Similarly, for a generalization 

record (race, White OR Black OR African American), the information loss would be calculated by 

calculating the total number of unique categories (i.e. two), taking inverse and then taking the log 

of the value and negating the same. Typically, overall information loss can be calculated by taking 

summation of log values for each feature, as defined in equation (5.2). Similarly, we can calculate 

the max information loss by applying information loss formula on the suppressed record. The 

formula for the same is outlined in equation (5.3) 



 

34 
 

Max (IL(g)) = ∑ − log ቀ
ଵ

௦௜௭௘(ீ௘௡௘௥௔௟௜௭௔௧௜௢௡ ௥௔௡௚௘ ௢௙ ௙)
ቁ௙  (5.3) 

Apart from information loss, the algorithm also calculates the risk of the record by using the 

formula (5.4) on the entire population. 

                      π(g) = 
ଵ

௉௢௣௨௟௔௧௜௢௡ ௦௜௭௘(௚)
 (5.4) 

Calculation of population size for (40-49,*, White, 39360-39369) can be done by taking 

Cartesian product of each of the attribute, i.e. population size of [(40,41,42,43,44,45,46,47,48,49) 

X (Male, Female) X (White) X (39360, 39361, 39362, 39363, 39364, 

39365,39366,39367,39368,39369)]. After counting total number of unique individuals, we take 

the inverse and obtain the risk of generalization level. 

5.3 LBS algorithm  

Listing 6 describes the LBS algorithm from the paper (Wan, et al., 2015). The algorithm starts 

with the initialization of g; it is initialized to value R, i.e. the original record itself. While g is not 

the completely suppressed form of the original record, the search continues by traversing through 

its most optimal child. If loss multiplied by the probability of successful identification exceeds the 

record cost, it means that adversary would be benefited if he chooses to perform re-identification 

attack. However, if that is not the case, we explore all the children of record g as long as we get 

better payoff than the record itself. If we see that any child has a better payoff than the parent, we 

select the child and explore its children in order to find the minimum risk child in the lattice. For 

selected strategy, if we find that L*π(g) <= C, then adversary won’t have any reason to perform 

the attack hence algorithm would stop. The algorithm from Listing 6 looks performance intensive, 
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but the bottleneck actually exists in risk calculation function. This function returns a total number 

of entries present in current generalization level.  

Listing 6. LBS algorithm (Wan, et al., 2015) 

Input: Lattice entry point - R 
Output: Risk optimal generalization level for R 
findOptimalGeneralization (R) 
1. Initialize g = R. 
2. While g is not completely suppressed generalization, do, 

a. If L* π(g) <=C, it means that if adversary attacks, he or she 
would not get any benefit, hence g is the optimal 
generalization level, return the same. 

b. Otherwise, initialize the highest payoff Um =V(g)-L*π(g), and 
assign gm=g. 

c. For Each child gc of g,  
i. If L* π(gc)> C, then consider V(gc) - L * π(gc) as payoff, 

else consider V(gc) as payoff. 
ii. If the payoff is greater the highest payoff Um, Then 

update Um. 
iii. If none of the children of “g” had a greater payoff than 

its parent, then return “g” as the optimal generalization 
level. 

iv. Else update g=gm and continue from step 1. 
3. Stop. 

 

The risk function calculates risk for every child in the lattice, and since lattice would be sparse, 

because of huge range in zip code column, the function would suffer when executed serially. The 

above algorithm can be easily extended to scale on distributed frameworks. We can leverage the 

inbuilt parallelism present in Apache Spark in order to compute the generalization levels for 

records in parallel.   
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5.4 Distributed LBS algorithm 

Distributed LBS algorithm looks exactly like standalone version itself.  Apache Spark reads CSV 

file in the form of RDD. The RDD supports parallelism inherently and launches 

findOptimalGeneralization on multiple worker nodes concurrently. Apart from this, instead of 

computing inputs required for calculation of risk on each node, we can use the broadcast variable 

feature of the Apache Spark framework and distribute the centrally computed population hash map 

across all executors. 

Listing 7. Distributed LBS algorithm 
 

 
Input: file path 
Output: Risk optimal generalization level for all records 
findOptimalStrategy () 
1. Read input file as an RDD. 
2. Iterate over RDD in the following manner. 

Set generalizations = rdd.map({ case (x, y) (x, 
findOptimalGeneralization(y)) }) 
This causes findOptimalGeneralization method to be executed in 
parallel on all executors. 

3. Store output. 
4. Stop. 

 
We can see that distributed version specified in Listing 7, achieves the parallelism by 

converting the input into the form of an RDD and thus achieving parallelism at the record level. 

This means that each record can be evaluated in parallel and result will be aggregated in the end.   

Currently, Apache Spark does not support nested evaluations of RDD, but once it does, we can 

convert g’s children into RDD, and evaluate all children in parallel by using a map and a filter 

method. Also, another compute heavy code is the one that calculates risk for selected 

generalization level. This portion of the code can be further parallelized by converting 



 

37 
 

combinations into RDD and evaluating in parallel. The approach we take for calculation of record 

risk has a direct impact on the performance of the LBS algorithm. Using map is the optimal way 

of performing this search. An optimal strategy must be chosen in order to balance the performance 

and memory for performing this search. After careful study, we decided to have two maps, one for 

top value lookup, HashMap ((race, gender, age, zip code), population size), and second, for 

generalization lookup, HashMap ((race, gender), TreeMap (Age, TreeMap (zip code, population 

size))).   

5.5 LBS-LSH approximation technique for dense data  

Distributed LBS-LSH algorithm tries to reduce the number of records for which LBS algorithm 

gets executed. As shown in Listing 8, We start by bucketing all records using method outlined in 

section 3.3.1 and then iterating over each bucket. While iterating, we first execute LBS on the first 

record and see if its generalization is applicable for all remaining entries in the bucket. For those 

records, for which entry is applicable, we apply the generalization, for rest we compute LBS.  This 

approach leads to the LBS calculation complexity reduction proportional to the denseness of the 

cluster. If clusters present in the data are sparse, the above technique does not yield very good 

results. This is because LBS itself preserves very high information of original record, leading to 

lesser number of neighbors being capable of sharing the generalization level.   

Listing 8. LBS-LSH algorithm 
 

  
Input: LinesRDD, LBS parameters - pubBenefit, recordCost, loss, K – 
Number of neighbors 
Output: risk anonymized dataset 
lbslsh (linesRDD, lbsParams, K) 
1. Call getBuckets method and store output in a variable called buckets. 
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2. For each bucket in buckets, do following, 
a. For the first entry in the bucket, perform lattice based search 

and get generalization hierarchy. 
b. Declare an empty List of rows and add the generalization from 

step 2.a to the same.  
c. For each remainingEntry in the bucket, do following, 

i. If generalization from step 2.a is applicable for 
remainingEntry, add the row_id and generalization to the 
list.   

ii. Else, perform a lattice-based search on remainingEntry and 
return the same. 

d. Return the list. 
3. Group output and write it to a file. 

 
 

Discussion: 

Although LBS-LSH is designed to improve the performance of LBS algorithm, it does assume that 

the memory overhead of LSH is very small. It also assumes that LSH bucketing is performed with 

extremely high precision so that buckets contain only near-duplicate elements. LBS-LSH would 

suffer badly if any of the above two assumptions does not hold. 
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CHAPTER 6 
 

SCALABLE ON-THE-FLY SANITIZATION ARCHITECTURE ON APACHE SPARK  
 
 

Sometimes, batch sanitization is not an option, as data sanitization needs to be done on-the-fly. 

For such scenarios, we need to modify the execution framework itself, but this, however, is not 

always possible. Sometimes the requirement is to change the behavior without modifying the 

software. This can be achieved through aspects. Aspects provide a way to modify the behavior of 

the system by altering bytecode at runtime. 

6.1 How do aspects work? 

Aspect-Oriented Programming (AOP) is about the implementation of modularity to serve cross-

cutting concerns. Aspects are typically used when a functionality needs to be added, amended, or 

removed at runtime. Function name logging, transaction management across a suite of classes, 

access control over a variety of classes are typical instances of cross-cutting concerns for which 

AOP is used. Typically, the elements on which cross-cutting concern needs to be applied are 

scattered. AOP enables us to add extra functionality to an existing method without modifying the 

method itself. Consider following example. 

Problem Statement: We have close to 1000 algorithms implemented in UTD’s historical algorithm 

implementation package edu.utd.common.algo”. Each class has a method called “describe” that 

prints the description of the algorithm. The describe method can be called by any other program 

directly, and execution takes place on a centralized Apache Spark cluster.  We need to print a 

copyright message just after algorithm description has been printed.  
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When we look at the above problem statement, the first thought that comes to our mind is to modify 

the source code of all 1000 algorithms. The solution will not work if the source code is not 

available. Even if somehow we find the source code, the strategy would still fail if there are a 

million such programs. In such a scenario, modifying each program is not a valid solution. This 

type of problem falls into the category of cross-cutting problems. For solving such types of 

problems, aspect-oriented programming is used. An aspect consists of an advice that describes 

how the method must be modified, and a pointcut that specifies which behavior needs to be 

modified. There are three types of advice – before, after and around. The before advice executes 

just before the method and thus allows us to modify inputs to the original method. The after advice 

allows us to modify the output of the original method. The around advice allows us to modify 

input as well as the output of the method. Aspectjweaver can be started in the background of the 

JVM. It scans for META-INF/aop.xml file that contains details of aspect to be weaved in, as well 

as a list of types to weave. Please find a sample aop.xml in Figure 6-1. 

<aspectj> 
 <aspects> 
  <aspect name="edu.utd.security.blueray.AccessAuthorizerAspect" /> 
 </aspects> 

 <weaver options=""> 
 <include within="org.apache.Apache Spark.rdd..*"/> 
 <include within="edu.utd.security.blueray..*"/> 

</weaver> 
<aspectj> 

Figure 6-1. Sample AOP.xml 
 

Aop.xml has two key tags - aspects and weaver. The aspects tag is used to specify aspects 

to be weaved in. All aspects that we want to weave must be specified in this tag. The weaver tag 

can be used for specification of types or packages that need to be woven. If no include tags are 
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specified, weaver tries to weave all classes thus degrading the overall aspect injection performance. 

Hence, we must specify the include tag. AspectJWeaver does the weaving of the aspect at load-

time. This means that every time a method gets loaded in the JVM, AspectJWeaver will modify 

its bytecode and attach the additional behavior, defined in the advice, to the method. 

AspectJWeaver has access to all classes that are loaded in its JVM. 

Benefits of aspect-oriented approach: Aspect-oriented approach lets us separate cross-cutting 

concerns. The overhead of modifying, maintaining local copies of modified code, and updating 

code as framework evolves is completely removed by implementing the cross-cutting approach 

using AOP. Aspects do incur little performance overhead, but it is extremely low considering 

advantages it offers. The aspect-oriented approach does provide us a convenient way for modifying 

data on-the-fly.   

6.2 Scalable on-the-fly sanitization architecture - Apache Spark & AOP 

For distributed on-the-fly sanitization, we need an innovative solution. Before we design a system 

for on-the-fly data sanitization approach, let us first look at how Apache Spark executes a program. 

For simplicity purposes, we submit the program to Apache Spark in a standalone mode. When we 

submit a program, a workflow that gets executed is described in Listing 9. 

6.2.1 Current Apache Spark Work-Flow 

Whenever an input file is being read, Apache Spark converts it into an RDD. RDD is a logical unit 

that gets mapped to MapPartitionsRDD depending upon the number of splits done on the input 

HDFS file. MapPartitionsRDD is computed whenever any of the Apache Spark actions is 
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executed. This RDD is typically computed on worker machines that are nearest to the data. Please 

find workflow described in detail, in Listing 9. 

Listing 9. Apache Spark Workflow 
 

 
Apache Spark Workflow 
1. The driver reads input File and creates an RDD. 
2. The driver then converts RDD into a set of MapPartitionsRDD. 
3. Driver scans user program and computes a DAG. 
4. Whenever any action gets called, its DAG is sent to DAGScheduler for 

execution. 
5. DAGScheduler controls executions of stages. 
6. Each stage consists of tasks on individual MapPartitionsRDDs. 
7. Each MapPartitionsRDD is assigned along with its task closure, to an 

executor near the data node on which partition exists. 
8. Executor invokes the compute method that has following signature. 

override def compute(split: Partition, context: TaskContext):  
Iterator[U]  

9. The compute method returns the iterator for given partition. 
10. Task uses an iterator to iterate and performs the desired action. 
11. Task completes. 
 

 

We propose an aspect-based design for performing on-the-fly sanitization. In order to perform 

sanitization on-the-fly, we must inject our aspect in above workflow with minimum overhead. This 

is the reason why we modified the behavior of the compute method itself instead of modifying 

individual action methods. 

6.2.2 Modified Apache Spark Execution workflow 

As we can see in Figure 6-2, we have injected AspectJWeaver on each of the executors. 

AspectJWeaver is responsible for BlueRay aspect getting loaded in the executor’s JVM. This 

Aspect has full access to executor JVM. 
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Figure 6-2. Modified Apache Spark workflow 

6.2.3 BlueRay aspect 

We can see that aspect described in Listing 10 is an around aspect which joins at the compute 

method of org.apache.spark.rdd.MapPartitionsRDD class. Here, we have used around method 

because we need to read the inputSplit’s file path in order to apply policy, and output because we 

want to return the sanitized iterator instead of a normal iterator. 

Listing 10. BlueRay aspect: Scala source code  
 
 
@Aspect 
class BlueRayAspect  
{  
     @Around("execution(*    
     org.apache.apache.spark.rdd.MapPartitionsRDD.compute(..))) 
     aroundAdvice(jp: ProceedingJoinPoint, partition: Partition,  
     context: TaskContext) 
    {   
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    val iterator = (jp.proceed(jp.getArgs())); 
   val policy = getPolicy(context, jp); 
   if (policy != None)  
   {  

return new SanitizedIterator(context, iterator, policy); 
   } 
   return iterator 
 } 

} 

 
SanitizedIterator is a subclass of org.apache.spark.InterruptibleIterator, a typical iterator 

class which has two methods hasNext and next. SanitizedIterator overrides next method in order 

to return the sanitized version of the original value. The compute method’s one of the inputs is 

partition details. We find the policy details by extracting the filename from the inputSplit attribute 

of the partition. Once found, we send the policy to SanitizedIterator. 

6.2.4 Architectural assumptions: 

We assume that modified architecture is controlled by having complete control over how 

the user gets to submit the program. Also, we assume that program’s output is a simple output that 

is written to the console. To facilitate this, we assume that the access to Apache Spark cluster is 

controlled through a web-application, where the user uploads the source code he/she intends to 

execute. This code is then executed on the Apache Spark cluster by injecting the AspectJWeaver 

at runtime. The output of the program is displayed on the web-console once it has finished 

execution. The architecture is assumed to be very simplistic and can be easily extended for meeting 

realistic expectations. 
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6.2.5 Policy manager 

We assume a very simple policy model. A policy comprises of three things – role or username, 

file path, and text or REGEX (regular expression) to be sanitized. Typically, file path would be 

obtained from the partition, role or username can be extracted from task’s context or system 

configuration and text or regex to be sanitized would be maintained per file, in the policy store. 

Policy manager can be local or centralized.  

Distributing policy store on slaves increases headache of policy store maintenance. 

Although this can be mitigated by maintaining policies on a common file server that is accessible 

to all policy manager, it would lead to additional network cost for each policy store read.  

Alternately, policy manager can be a web application deployed in Tomcat server residing 

outside the cluster, but on the same network. This way Apache Spark executors do not incur the 

network overhead while communicating with policy manager. As part of the study, we 

implemented both types of policy managers and evaluated their performance. Please find APIs 

supported by policy manager described in Table 6-1. The /enforcePolicy endpoint lets the user add 

a new policy to be enforced at runtime, the /deregisterPolicy endpoint simply lets the user take 

down a policy, and /policies lists currently registered policies. We deploy the BlueRay aspect in 

Apache Spark cluster by bundling BlueRay aspect and aop.xml in a JAR file and keeping it in 

<Spark_Home/jars> folder on all nodes in the Apache Spark cluster. This simply takes care of the 

loading process. Whenever Apache Spark program is executed, all JAR files present in 

Spark_Home/jars are loaded into the JVM. 
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Table 6-1. Policy manager API (RESTful) 

Sr. 
No. 

API endpoint Type Input Output   Description 

1. /enforcePolicy POST filePath, 
REGEX, 
role 
OR 
username 

Boolean This API is used for 
registering new policy with 
the manager. 

2. /deregisterPolicy POST filePath, 
role 
OR 
username 

Boolean This API is used for 
deregistering the policy in 
real-time. 

3. /policy GET 
 
 
 

filePath, 
role 
OR 
username 

Policy This API is used for 
retrieving policy details. 

4. /policies GET None List[Policy] This API returns a 
complete list of policies 
that are registered with 
policy manager. 

 
After deployment, along with Apache Spark jars, BlueRay.jar also gets loaded in the 

executor JVM. Now all that is required is registering the aspect present in the jar with 

AspectJWeaver, which would, in turn, weave the advice around compute method on the executor. 

This is done at runtime by specifying AspectJWeaver javaagent as shown in Listing 11. Apache 

Spark allows the user to specify extra JVM options through spark.executor.extraJavaOptions and 

driver-java-option properties. We use these properties to tell JVM to start AspectJWeaver daemons 

that would have access to all classes in its host JVM. 
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Listing 11. Apache Spark submit command with AspectJ injection 
 

./Apache Spark-submit --conf "spark.executor.extraJavaOptions=-
javaagent:/data/blueray/aspectjweaver-1.8.5.jar"    --driver-java-
options "-javaagent:/data/blueray/aspectjweaver-1.8.5.jar" --class 
<Class_Name>  --master "Apache Spark://cloudmaster3:7077" 
<CLass_Jar_Path> <Class_Args>  

 
 

We do so by injecting our aspect at executor as well as driver level. This is done by sending 

javaagent parameter containing the full path of aspectjweaver.jar. The assumption is that 

AspectJWeaver is present on all nodes of Apache Spark cluster. After setting up above 

environment, the Apache Spark execution flow gets modified as described in Listing 12. 

Listing 12. Apache Spark - new workflow 
 

1. Whenever a spark-submit command is executed, a driver is launched in 
the cluster. 

2. The driver loads BlueRay aspect jar along with AspectJWeaver jar. 
3. This makes sure that the bytecode representation of MapPartitionsRDD 

on the driver is consistent with executors. 
4. The worker is responsible for launching executor. Worker launches 

executor and we can see the following command in worker log. 
ExecutorRunner: Launch command: "/home/cloud/pkg/jdk/bin/java" "-cp" 
"/Cloud/Apache Spark-2.1.0-bin-hadoop2.7/conf/:/Cloud/Apache Spark-
2.1.0-bin-hadoop2.7/jars/*" "-Xmx1024M" "-Dspark.driver.port=58584" 
"-javaagent:/data/blueray/aspectjweaver-1.8.5.jar" "-
XX:MaxPermSize=256m" 
"org.apache.spark.executor.CoarseGrainedExecutorBackend" "--driver-
url" "<driver_url>" "--executor-id" "0" "--hostname" "192.168.4.11" 
"--cores" "8" "--app-id" "<app_id>" "--worker-url" "Apache 
Spark://Worker@192.168.4.11:50547" 

 
Whenever a new executor is started, all jars present in Spark_Home/jars 
are loaded in the classpath of the JVM. This also loads BlueRay aspect 
and modifies the execution of compute method of MapPartitionsRDD. 

 
5. The driver reads input File, creates an RDD, and then converts the 

RDD into MapPartitionsRDD. 
6. Driver Scans user program and computes its DAG. 
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7. Whenever any action gets called, its DAG is sent to DAGScheduler for 
execution. 

8. DAGScheduler controls executions of stages. 
9. Each stage consists of tasks on individual MapPartitionsRDD. 
10. Each MapPartitionsRDD is assigned to an executor present near or 

on the data node on which data exists. 
11. Instead of executing the original MapPartitionsRDD class’s compute 

method, the bytecode of the class created by the advice gets 
executed.  This class follows the following process. 

1. It extracts the exact filename from the input split metadata of 
the partition. 

2. It then contacts policy manager and requests policy for the 
filename found in the partition. 

3. Policy manager returns policy if a policy exists. 

12. If the policy is available, SanitizedIterator is returned. 
Otherwise, the original iterator or blocking iterator is returned – 
based on the requirement. 

13. Tasks use iterator received and performs the desired action. 
14. Task completes. 

The SanitizedIterator now returns sanitized wrapper around original RDD iterator. The 

behavior of this wrapper can be defined in multiple ways. We can make it generalize a record, 

suppress a record, or even call a record level anonymization algorithm and make wrapper return 

the algorithm’s output. Please find different approaches elaborated below. 

6.2.6 Suppression with SanitizedIterator 

The SanitizedIterator extends InterruptibleIterator [T] (context, delegate) class from Apache 

Spark and is expected to have two methods by contract. The first one is hasNext and the second 

one is next. When we sanitize a value, we replace the value by some other value. A simple 

SanitizedIterator simply replaces the value by a string of predefined characters like a dash or a 

star. MapPartitionsRDD typically works on string data, so the replacement becomes pretty 
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straightforward while working on Apache Spark. However, for Apache Spark-SQL, iterator of 

UnSafeRow is returned. This is an instance of a special class, and the object must be carefully 

modified to return the new instance.   Data suppression is a simple way for removing identifier 

fields at runtime. Identifier fields should always be removed from the data before it is shared 

otherwise it leads to the identification of individuals. We could define a simple policy that 

suppresses given columns completely. We can easily convert the original data into data with 

suppressed identifier by simply executing a program that reads a file, and then writes the RDD to 

another file and lets BlueRay aspect with SanitizedIterator take care of the suppression of 

identifiers. 

6.2.7 Data generalization with GeneralizationIterator 

GeneralizationIterator is an extension of sanitized iterator with a key difference; it generalizes 

columns instead of suppressing them. Along with the policy, it also requires metadata. 

GeneralizationIterator makes the assumption that the data to be processed is in accordance with 

the metadata provided in the metadata file.   GeneralizationIterator also requires additional 

runtime data like column indices to be blocked and a total number of columns expected in the data. 

In order to specify the same, we have to set following environment variable in Apache Spark 

executor.  

BlockColumns=Num_Columns [List of columns to be generalized] 

If the RDD’s parent data file has a policy associated and the RDD has a total number of 

columns same as specified in Num_Columns, the iterator splits the value by commas and replaces 

the data at columns specified in the environment variable, by their parent categories. Implementing 

GeneralizationIterator for identifier field generalization is definitely not a great idea as keys are 
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arbitrary and they do not follow any specific hierarchy. However, it is a perfectly good solution 

for any general purpose anonymization requirement that focusses on reducing the amount of 

information provided in a certain column. 
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CHAPTER 7 
 

EXPERIMENTAL EVALUATION 
 
 

In this section, we compare different data sanitization implementations covered as part of this 

study. We start by comparing strict within-dataset k-anonymity approaches and then move onto 

comparison of the same with newer risk-based approaches. We also compare and contrast 

performance of BlueRay aspect for generalization and suppression. We compare algorithms based 

on the percentage of information preserved and time taken for sanitization.  

7.1 Comparison of strict k-anonymization based algorithms 

We start by comparing Mondrian k-anonymity algorithm with LSH bucketing based k-anonymity 

algorithm suggested in Section 4.4. Results from Figure 7-1 were obtained by executing both the 

algorithms on a single Apache Spark node with 8 cores, on an original dataset of size 32K.  For 

LSH, we executed simulation for each of the value of k and found out the optimal value of a 

number of hash functions as well as the precision factor. We can see that % information preserved 

in Mondrian is better than LSH bucketing; however, the time taken by LSH is less than one 

hundredth of the time taken by LSH. For big data, Mondrian algorithm does not scale despite 

preserving a higher amount of original information. However, the amount of information preserved 

is low with LSH bucketing but only for a smaller population. We executed the same algorithm on 

a randomly generated adult dataset of size 50 million, with a precision factor of 10000 and three 

hash functions, and got result preserving ~87% of the original information.  
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(a) One pass LSH vs Mondrian: Time taken vs cluster size 

 
 

(b) LSH vs Mondrian: percent information preserved 

Figure 7-1. Mondrian k-anonymity vs. LSH bucketing based k-anonymity Model 
 

This means that as the size of dataset increases, LSH tends to preserve more information, thus 

standing out as a clear winner. 

 We can clearly see in the performance graph that LSH based k-anonymization 

performance is far superior to Mondrian k-anonymization. This happens because LSH uses the 

bucketing technique to find out the close points whereas Mondrian algorithm relies upon the “cut” 
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to decide which points are near to each other. The cut leads to the selection of maximum range but 

does not give any preference to the selection of points within the cluster. We also note that the 

value of k does not have much impact on LSH strict k-anonymity algorithm’s time taken because 

of its constant time complexity. This is because the value of k simply decides the necessary cluster 

size for summarization; rest of the elements are simply suppressed.   However, Mondrian algorithm 

time complexity is directly dependent upon the value of k. The height of the tree of stages to be 

cut is logk (N). This means that as the value of k decreases, the depth of the tree increases. Higher 

depth leads to more number of jobs being formed hence leading to higher time complexity. As 

Mondrian is iterative in nature, the DAG formed in LSH k-anonymity algorithm is much simpler 

and smaller than the one formed in Mondrian algorithm.  

7.2 Effect of number of hash functions on strict LSH k-anonymity algorithm 

In order to check the impact of a number of hash functions on performance, we conducted an 

experiment on dataset described in section 7.3, on the entire cluster. In Figure 7-2, we see that the 

effect of increasing number of hash functions remains more or less constant beyond five. When 

we use three hash functions, although it takes lesser time, the information preserved is lesser. This 

is because the concatenated bucket id is composed of less number of bucket ids. However, when 

we increase the number of hash functions, the overall information preserved increases. This is 

because using a higher number of hash functions leads to more specific concatenated bucket id. 

Since evaluation was done on a huge dataset, most of the buckets had more than “k” elements 

leading to a good amount of information being preserved. We also note that as number of hash 

functions increase, overall time taken by the algorithm increases too. We must select a number of 

hash functions to be used after doing time vs information preserved tradeoff analysis. 
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(a) Percent information preserved vs number of hash functions 

(b) Time taken vs bucket precision 

Figure 7-2. Effect of number of hash functions on LSH algorithm 
 

7.3 Effect of bucket precision on strict LSH k-anonymity algorithm 

In order to understand the value that must be specified for bucket precision, we ran an experiment. 
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for precision. In order to perform the experiment, we set the value of a number of hash functions 

as 3 and value of k as 3. As we can see in Figure 7-3, the optimal percent information preserved 

occurs when we preserve the higher number of digits in the bucket id. When we see following 

diagram we clearly see that the value of information preserved is lowest for one digit, this is 

because the hash function used is based on normal distribution(0,1) and dataset used just has 4 

fields with values normalized in the range of (0.0,1.0). However, as we go beyond 4 decimal 

places, more and more unique hashes get generated leading to more buckets. This graph was 

generated on a big dataset. For smaller datasets, the percent information preserved does not 

increase with precision; in fact, it decreases because most of the buckets contain less than k 

elements leading to more suppression and hence higher data loss. The analysis must be performed 

on the data in order to decide the bucket id precision to be set for the algorithm. 

 

Figure 7-3. Percentage information preserved for different bucket precisions 

10

20

30

40

50

60

70

80

90

100

1  D I G I T 2  D I G I T 3  D I G I T 4  D I G I T 5  D I G I T

%
 In

fo
rm

at
io

n 
pr

es
er

ve
d

Bucket ID precision



 

56 
 

7.4 Effect of k on strict LSH k-anonymity algorithm 

In order to understand the effect of cluster size on information preserved by LSH k-anonymity 

algorithm, we used the same dataset as the one described in section 7.3. We set precision factor as 

10000, number of hash functions as 3, and for different cluster sizes, we executed LSH. As we can 

see in Figure 7-4, the percentage information preserved reduces as cluster size increases. We see 

that for a huge dataset of 55 million, the cluster size of 80 works just fine but if we go beyond that, 

we see a sharp decline in the amount of information preserved. 

 

Figure 7-4. Percentage information preserved for different cluster sizes 
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7.5 Performance of risk-based LBS algorithm 

Distributed LBS algorithm involves very few stages leading to a very simple DAG. DAG contains 

5 jobs, first for reading data, second for executing LBS algorithm on each entry, third for 

calculation of mean of the publisher benefit, fourth for calculation of mean of the advisory benefit 

and fifth for writing output to a file. This leads to a very simple code execution flow requiring only 

single caching. Caching leads to RDD getting replicated on multiple nodes, hence leading to 

efficient computations even in the event of executor failure. In Figure 7-5, we can see that 

performance of LBS algorithm is linear.  In order to perform this experiment, we scaled the LBS 

parameters from the paper (Wan, et al., 2015) to 1/12’Th of its value (i.e. V=100, L=8.333, 

C=0.333) and adjusted the number of partitions (1600 partitions for the 1GB file) as dataset size 

increased.  

 

(a) LBS: Time taken vs file size 
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(b) LBS: percent information preserved vs file size 

Figure 7-5. Performance of distributed LBS algorithm 
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proportion. In strict k-anonymity area, LSH based k-anonymity performs best. We executed 

Mondrian algorithm on the smallest dataset, and after an hour when it did not finish, we decided 

to end the program. 

 

Figure 7-6. Time taken by LBS vs. LSH Vs one pass LBS-LSH anonymization techniques 
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 Although it is not pictorially shown, LBS and LBS-LSH algorithms provide close to 

99.72% information preservation, and LSH based k-anonymity preserved ~87% of the original 

information. Since datasets were created by replication of original data set, 100% information 

preservation is possible because of the existence of duplicates. LBS, as well as LBS-LSH, preserve 

most of the information. However, LSH bucketing based k-anonymity algorithm heavily depends 

on the master “concatenatedHash” key, in order to group, and this hash key is computed using 

floating point operations like division. Since the result of the floating point operation can differ 

slightly across machines, the algorithm suffers, leading to variation in concatenatedHash generated 

on different machines for the very same record. 

7.7 Experimental evaluation of on-the-fly sanitization approach 

In this section, we describe and compare the performance of on-the-fly sanitization technique 

described in Chapter 6. Since the technique was suggested for on-the-fly sanitization, we 

performed an experiment in order to analyze and report the impact of the aspect. 

7.7.1 Experiment Setup 

We used latest stable Apache Spark version available while performing the experiment. Please 

find configuration details below.  

Number of executors: 18 

Worker RAM: 10GB each 

Apache Spark version: 2.1.0 

Apache Spark add-ons:  

 BlueRay aspect jar stored in <Apache Spark_Home>/jars 
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 Aspectjweaver jar – version 1.8.5, stored in /data/blueray folder 

 Local policy store  - policies.csv, stored in /data/blueray folder  

Apart from Apache Spark, we also host Apache Tomcat server version 8.0 and deploy BlueRay 

web application, which serves as centralized RESTful policy manager. The BlueRay aspect 

communicates with RESTful policy manager using JSON data interchange format.    

7.7.2 Comparisons: web policy manager vs local policy manager: 

In order to compare the performance of web policy manager with local policy manager, we 

executed a simple count program that simply iterated over entire dataset once. Figure 7-7 shows 

the performance difference between local policy store and centralized web policy manager. We 

can clearly see that for small files, the performance of both the approaches is almost identical. This 

is because we specified fixed number of executors throughout, approximately 80. This means that 

the local policy store was read exactly eighty times, once by each executor. The time spent in 

reading local policy store was negligible, and this lead to the almost identical performance of both 

approaches. 

 

Figure 7-7. Local vs. web policy manager performance 
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As data size increases, Apache Tomcat’s latency increases because of limitation of the load 

it can handle, which clearly explains why local policy performs slightly better for higher data loads. 

The policy store selection depends upon requirement too. For huge policy stores, it would be wise 

to have a web-based RESTful policy manager instead of local one. RESTful policy manager can 

be further load balanced to support a higher number of concurrent HTTP GET requests.  

7.7.3 Performance comparisons: read, group by, read-write: 

In order to analyze the impact of aspect on overall processing, we performed a simple experiment. 

We wrote small scripts that simply did read/write/group by operations. We executed BlueRay 

aspect on each of the files. We can see in Figure 7-8 that read query performance curves are parallel 

for sanitized and non-sanitized executions, and so are save functionality curves. However, group 

by internally can lead to several calls of read method leading to a higher performance overhead.   

 

Figure 7-8. Sanitized vs plain functionality: Read vs. group by vs. write queries 
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We see that overhead caused by aspect scales linearly as data increases exponentially. This 

means that BlueRay aspect scales linearly even with exponentially growing data. In order to 

calculate sanitization overhead, we came up with the following formula. 

 

Overhead= 
୘୧୫ୣ ୲ୟ୩ୣ୬ ୤୭୰ ୱୟ୬୧୲୧୸ୟ୲୧୭୬ ି ୘୧୫ୣ ୲ୟ୩ୣ୬ ୵୧୲୦୭୳୲ ୱୟ୬୧୲୧୸ୟ୲୧୭୬

୘୧୫ୣ ୲ୟ୩ୣ୬ ୵୧୲୦୭୳୲ ୱୟ୬୧୲୧୸ୟ୲୧୭୬
 (7.1) 

 
We can see in Figure 7-9 that for computational queries like write, as time passes, the 

overhead reduces whereas, for queries like read, it remains constant. Group by seems to be going 

up until we exhaust complete memory of all executors. This is mainly because, in a write operation, 

the cost of I/O dominates whereas in the group by operation, the cost of iteration dominates. 

 

Figure 7-9. Overhead graph read vs. group by vs. write queries 
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function calls. However, incorrect use of these calls leads to values getting cached in memory on 

worker nodes, which may result in incorrect output. 

7.7.4 Performance impact of generalization vs suppression  

Graph in Figure 7-10 was created by generalizing and suppressing two of the quasi-identifier 

attributes, namely zip code, and age. We used performance of count method in order to accurately 

plot the cost of reading generalized or suppressed data. The process of variable suppression is 

achieved by reading data at a particular index through the BlueRay aspect and converting it into 

suppressed form.  The process of generalization is performed by replacing the value with its parent.  

Although generalization involves lookup of the parent category, it can be easily fixed by using a 

hash map as the cache for attribute and their generalizations.  

 

Figure 7-10. Performance of generalization vs. suppression 
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a high value because of the initial aspect setup cost and gradually go up as the size of the dataset 

increases. The overhead graph for generalization as well as suppression can be obtained using 

following formula.  

Overhead= 
୘୧୫ୣ ୲ୟ୩ୣ୬ ୤୭୰ ୥ୣ୬ୣ୰ୟ୪୧୸ୟ୲୧୭୬ ୓ୖ ୱ୳୮୮୰ୣୱୱ୧୭୬ ି ୘୧୫ୣ ୲ୟ୩ୣ୬ ୤୭୰ ୧୲ୣ୰ୟ୲୧୭୬

୘୧୫ୣ ୲ୟ୩ୣ୬ ୤୭୰ ୧୲ୣ୰ୟ୲୧୭୬
 

 

(7.2) 

From overhead graph in Figure 7-11, we can see that generalization and suppression both 

have maximum overhead for smallest dataset. This is because the setup cost of injecting aspect 

itself and reading metadata, in the case of generalization, adds up. The impact of these additional 

costs decreases as we increase dataset size and the cost of BlueRay aspect starts adding up. We 

can see that the least overhead occurs for a file of size 10 gigabytes. 

 

Figure 7-11. Overhead graph for generalization vs. suppression 
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CHAPTER 8 
 

CONCLUSION AND FUTURE WORK 
 
 

Distributed algorithms do better than centralized algorithms, and thus are a better fit for scalable 

big data anonymization. That being said, how distributed framework itself is architected has a 

direct correlation with how a particular algorithm is going to perform. Thus, it is important to select 

the right platform. Since most anonymization algorithms are typically iterative in nature, they 

demand big data solution tuned for in-memory, iterative requirements. When compared to Hadoop, 

Apache Spark provides additional support for iterative environments through data caching and 

thus are more suitable for data sanitization implementations. In order to enable big data 

sanitization, we implemented risk-based, strict k-anonymity based, batch, as well as online 

sanitization algorithms for distributed frameworks, and then compared and contrasted their 

performances.  

In online big data sanitization space, the key contribution of this thesis is the BlueRay 

aspect, a non-intrusive aspect-based approach for modifying runtime behavior of Apache Spark 

RDD computation. To our knowledge, this is the first study that uses aspect-oriented programming 

on Apache Spark in order to perform online data sanitization. Although, as part of this study, we 

considered two utilities of the BlueRay aspect, namely, attribute suppression or generalization in 

a structured context, the model has several more uses. In future, the BlueRay aspect framework 

can be used to perform risk based sanitization, on-the-fly HDFS file encryption, role-based access 

control, on-the-fly encrypted HDFS file decryption, RDD computation logging, RDD performance 

metric analysis, etc. The approach does not require the developer to maintain a separate codebase 

for Apache Spark, thus removing headache associated with framework branch maintenance. The 
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BlueRay aspect framework can also be extended to other distributed in-memory frameworks like 

Impala, Apache Storm etc.  

In the field of strict k-anonymity, the key contribution of this study is one pass distributed 

LSH bucketing based k-anonymity algorithm.  The distributed LSH bucketing method uses locality 

sensitive hashing for performing bucketing in higher dimensional spaces. We further empirically 

show that one pass LSH with data normalization can yield results that are better than Mondrian k-

anonymity. Not only it offers better scalability as well as efficiency compared to Mondrian 

algorithm, but it also provides superior original information preservation for larger datasets. 

Although it scales easily for datasets of size equal to cluster memory itself, improving the 

performance of LSH k-anonymity to scale beyond cluster memory capacity is a possible future 

work. 

 In risk-based modern data sanitization approaches, this thesis contributes LSH bucketing 

based LBS algorithm. Although the experimental section results show that LBS is superior to LBS-

LSH when it comes to performance (because of smaller risk lookup cost), The LBS-LSH algorithm 

would definitely start performing better in two cases; when population lookups are extremely time-

consuming, and when the population is too sparse leading to LBS exploring most of its lattice. In 

such scenarios, LBS-LSH may provide better performance. 

While risk-based approach evaluates dataset against the population, k-anonymity based 

methods focus on attaining k-anonymization within the dataset itself. This is not always the 

requirement. A hybrid Mondrian in population k-anonymity algorithm can be formulated which 

would decide whether to select a given generalization level based on a number of individuals in 

the population.  This approach would not only provide within population strict k-anonymity but 
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would also be more efficient because of its distributed nature.  Apart from future work 

opportunities mentioned above, it would be worth comparing them with other clustering based 

models like Kmeans.  

We evaluated all three batch algorithms for data set the size of approximately 2 billion 

rows, the combined population size of Europe and China, and showed how each of the algorithms 

can scale to meet such big data demands on a cluster of limited size. Optimizing performance of 

these algorithms to work beyond four attributes in limited time, on limited hardware is definitely 

something that can be addressed in future. 

In summary, anonymization techniques need to scale to large data, and given advances in 

memory cost per unit reduction, in-memory distributed computing frameworks would be right 

tools for solving these problems. The decision of algorithm selection would simply remain to be a 

factor of the anonymization requirement. For strict k-anonymity, LSH bucketing can be used 

whereas for risk-based anonymization, LBS or LBS-LSH would be a perfect fit. The results 

reported in this thesis would enable data publishers to decide right tools and techniques for 

performing big data sanitization.  
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APPENDIX A 
 

DATASET AND METADATA 
 
 

In Appendix A, we describe the metadata used for performing experiments explained in 

CHAPTER 7. 

Input dataset and metadata file format 

All batch algorithms explained in this thesis expect input data as in the following format. Please 

find an example of the sample in Figure A-1. 

Male,38019,19,White 
Male,38114,19,Asian-Pac-Islander 
Male,37887,18,Amer-Indian-Eskimo 
Male,37212,18,Other 

Figure A-1. Sample CSV file 

Metadata file format 

In order to process data efficiently, we also create a metadata file of the format shown in Figure 

A-2. This XML file describes the structure of the data. The root element of the XML is <columns>. 

<columns> 
<column> 

  <name>[column_name]</name> 
  <type>[Numeric or Categorical]</type> 
  <index>0</index> 
  <num_unique>2</num_unique> 
  <isQuasiIdentifier>true</isQuasiIdentifier> 

 <min></min> 
  <max></max>  
  <hierarchy> 

<value>*</value> <!Implicitly assumed.--> 
   <children> 
    <value>[column_unique_value_2]</value> 
   </children> 
   <children> 
    <value>[column_unique_value_1]</value> 
   </children> 



 

70 
 

  </hierarchy> 
 </column>  
 <!-- … Other columns   --> 
</columns> 

Figure A-2. Metadata file format 
 

The <columns> element contains metadata for each column present in the CSV file. Along with 

other attributes, <column> element contains name or title of the column, index of the column, and 

type of the column. Type of the column is expected to be provided as “i” for numeric data and “s” 

for string data. For simplicity, the numeric data is assumed to be in form of double data type. It 

also contains a column indicating whether the column selected is a quasi-identifier or not.  For 

numeric data, metadata is expected to include minimum and maximum value possible for data 

found in this column. There are no validations performed to enforce this, but we simply assume 

that data respects min-max range provided. Along with the above metadata, a generalization 

hierarchy is also provided for each column. Since granular generalization hierarchies play a major 

role in better anonymization of the data, we have defined granular hierarchies. 

Metadata generalization hierarchy 

Please find generalization hierarchy for the race attribute, denoted in the pictorial format in Figure 

A-3. Based on the data available, following generalization hierarchy was created for race attribute. 

Please note that all attributes have a common top most level of generalization, complete 

suppression. 
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Figure A-3. Race generalization hierarchy 
 

Similarly, for attribute age, we defined two high-level generalization hierarchies, 0-59 and 60-120, 

each of these levels are further subdivided into two equal portions until we reach a level where a 

number of entries become odd. At this level, we divide the range into 3 groups each and make it 

the leaf of the generalization hierarchy. Please find the same in Figure A-4 

 

 

Figure A-4. Age generalization hierarchy 
 

For gender attribute, a simple hierarchy was created. As shown in Figure A-5, both values can be 

generalized into a single common ancestor that suppresses the attribute completely. 
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Figure A-5. Gender generalization hierarchy 

For zip code, the data contained was found to be in the range of 37010-72338. The hierarchies 

defined for the zip code attribute are shown in Figure A-6. This was kept consistent with 

hierarchies used in the risk-based paper (Wan, et al., 2015). 

 

Figure A-6. Zip code generalization hierarchy (Top Level) 
 

Because of the space constraint, the bottommost level was not included in Figure A-6. A sample 

generalization level for 370**, is expanded as shown in Figure A-7. 

 

Figure A-7. Zip code generalization hierarchy (bottom level) 
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APPENDIX B 
 

SOURCE CODE 
 
 

This section includes source code implemented as part of the thesis. Shown below is the source 

code of BlueRay aspect, which is responsible for injection of aspect that performs data sanitization. 

The following code calls extractPathForSpark, which is responsible for extraction of the name of 

the HDFS file on which aspect injection is being performed. 

  

As we can see in the following code, we loop over fields of the joint point and extract the one 

which is either InputSplit or split, we then extract the entire path of the same. 
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The aspect chooses different iterators based on the requirement. Shown below is the declaration 

of one the iterators. Specifically, the ColumnBlockingInteruptibleIterator, which blocks or 

generalizes columns provided. This iterator extends the InterruptibleIterator that is returned as 

the output of MapPartitionRDD’s compute method.  

We do not modify hasNext method but we do override next method. As we can see, the algorithm 

blocks column specified if the nextElement’s length matches length specified.  
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In order to perform suppression or generalization, we use the following code. 
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LBS source code for implementing risk-based approach implementation 

Please find the implementation of the findOptimalStrategy method described in section 5.3, 

below. This method implements the risk-based sanitization approach paper (Wan, et al., 2015). 

 

The implementation of IL(g) method that calculates information loss for a generalized record, is 

shown below. This method computes information loss for each attribute individually and then adds 

it in order to compute total information loss for generalization level g. 
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Shown below is the source code of getChildren method used for creating a lattice. This method is 

called by the findOptimalStrategy method in order to form a lattice to compute generalization on. 

 

Following method is used in order to check whether lattice based search has reached the bottom 

of the lattice, i.e. every attributed is generalized to its highest possible value. 
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Shown below is the source code of metadata class that is used for expediting the execution of 

LSH/Mondrian/LBS algorithms. 
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Mondrian source code 

Please find the source code for distributed Mondrian algorithm described in section 4.3, below. 
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Please find the source code of selectDimension method called by the k-anonymize method, 

below. 

 

 

 

 

 

 

 

 



 

81 
 

LBS  

Please find the source code for distributed LBS algorithm explained in section 5.3, below. 

 

LSH bucketing (strict k-anonymity) 

Please find the source code for LSH using strict k-anonymity algorithm outlined in section 4.4 

described below. 
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LBS-LSH source code 

Please find the source code of LBS-LSH code below. As we can see, we first convert lines into the 

quantitative format and then we bucket them. Once done, we invoke LBS on each of the buckets 

individually based on the LBS-LSH algorithm defined in section 5.5. 
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APPENDIX C  
 

CONFIGURATION AND COMMANDS 
 
 

This appendix shows commands used in order to execute online as well as batch sanitization 

implementations. 

Apache Spark job configuration 

The performance of job submitted to Apache Spark heavily depends on several parameters. Before 

submitting a job request, we must perform analysis and decide parameters for the job. Apache 

spark is extremely sensitive to these configuration parameters. Number of partitions to be 

performed on input dataset determines how many partitions will be created. A task gets created 

per partition and is assigned to an executor. The number of partitions chosen will be different based 

on dataset size and analysis must be performed to select the appropriate size for each partition. 

More executor memory causes heavy garbage collection breaks, leading to reduced performance. 

Smaller executor memory can cause OOM. Similarly, driver memory, as well as a number of cores 

on the driver, must be similarly tuned too. Some jobs can run for a long time, spark network 

timeout must be set in order to accommodate same. Also, some jobs get stuck, to not let that 

happen, we need to enable speculation. Speculation depends on multiplier and quantile. Quantile 

checks decide when speculation should be enabled. Enabling this early (0) can cause performance 

to degrade hence we set it to a higher value of 0.9, which means that speculation is started only 

after 90% of the jobs have completed execution. Similarly, speculation multiplier is used for 

stating that these many times slower job than the median should be killed. We modified the value 

to three because too many jobs were getting killed for a smaller value. This, however, is subjective 
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and is completely dependent on the state of the cluster as well the DAG. Please find a subset of 

parameters, which were tuned for this thesis, listed below. 

 Number of dataset partitions 

 spark.executor.cores=2/5/10  

 spark.executor.memory=2G/5G/10G   

 spark.network.timeout=800  

 spark.speculation=true  

 spark.speculation.multiplier=3  

 spark.driver.memory=6G/8G 

 spark.driver.cores=8  

 spark.speculation.quantile=0.9  

 spark.shuffle.consolidateFiles=true 

 spark.executor.heartbeatInterval=50s 

Please find commands used for executing LBS/LBS/LBS-LSH implementations, listed below. 

Please note that a single codebase was maintained for batch as well as online implementation. In 

order to invoke LBS/LSH/LBS-LSH, a single class LBSAndLSH needs to be executed. The format 

of attributes to be provided to this class is as shown below. 

<spark_master><hdfs_data_file_path><output_file_path><recordcost><maxpublisherbenefi>

<publishersloss><numpartitions><algorithm (lbs/lbslsh/lsh)><lsh_num_neighbors>  

Please find sample commands for execution of each of the algorithm, below.  
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Command for Invoking LSH 
 
./spark-submit --class edu.utd.security.risk.LBSAndLSH --deploy-mode client --conf 
spark.executor.cores=10  --conf spark.executor.memory=10G  --conf 
spark.network.timeout=800 --conf spark.speculation=true --conf spark.speculation.multiplier=3 --
conf spark.driver.memory=6G --conf spark.driver.cores=8 --conf spark.speculation.quantile=0.9 
--conf spark.shuffle.consolidateFiles=true --conf spark.executor.heartbeatInterval=50s --master 
"spark://cloudmaster3:7077"  "/data/kanchan/blueray-1.2-ASPECT-SNAPSHOT.jar" 
"spark://cloudmaster3:7077" 
"hdfs://cloudmaster3:54310/user/adult_zip80G.csv"  "hdfs://cloudmaster3:54310/user/"  0.3333 
100 8.3333 31000 lsh 3  
 
Command for Invoking LBS 
 
./spark-submit --class edu.utd.security.risk.LBSAndLSH --deploy-mode client --conf 
spark.executor.cores=10  --conf spark.executor.memory=10G  --conf 
spark.network.timeout=800 --conf spark.speculation=true --conf spark.speculation.multiplier=3 --
conf spark.driver.memory=6G --conf spark.driver.cores=8 --conf spark.speculation.quantile=0.9 
--conf spark.shuffle.consolidateFiles=true --conf spark.executor.heartbeatInterval=50s --master 
"spark://cloudmaster3:7077"  "/data/kanchan/blueray-1.2-ASPECT-SNAPSHOT.jar" 
"spark://cloudmaster3:7077" 
"hdfs://cloudmaster3:54310/user/adult_zip80G.csv"  "hdfs://cloudmaster3:54310/user/"  0.3333 
100 8.3333 31000 lbs 3  
 
Command for Invoking LBS-LSH 
 
./spark-submit --class edu.utd.security.risk.LBSAndLSH --deploy-mode client --conf 
spark.executor.cores=10  --conf spark.executor.memory=10G  --conf 
spark.network.timeout=800 --conf spark.speculation=true --conf spark.speculation.multiplier=3 --
conf spark.driver.memory=6G --conf spark.driver.cores=8 --conf spark.speculation.quantile=0.9 
--conf spark.shuffle.consolidateFiles=true --conf spark.executor.heartbeatInterval=50s --master 
"spark://cloudmaster3:7077"  "/data/kanchan/blueray-1.2-ASPECT-SNAPSHOT.jar" 
"spark://cloudmaster3:7077" 
"hdfs://cloudmaster3:54310/user/adult_zip80G.csv"  "hdfs://cloudmaster3:54310/user/"  0.3333 
100 8.3333 31000 lbslsh 3  
 

Similarly, we can invoke online implementation by specifying following command. Please note 

that following commands assume that blueray has been deployed in /data/kanchan folder instead 

of /data/blueray. This was done in order to comply with the UTD’s policy of storing user files in 

user folders. We can see that with the following command, we are trying to execute “BlueRayTest” 
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class while setting the user as “kanchan” in the system environment. This variable will be read by 

BlueRay aspect in order to apply the appropriate policy. 

Command: 

./spark-submit --conf spark.executor.cores=2  --conf spark.executor.memory=2G --master 
"spark://cloudmaster3:7077"  --class BlueRayTest  --conf "spark.executorEnv.USER=kanchan" -
-master "spark://cloudmaster3:7077" /data/kanchan/BlueRayTest-0.0.9-SAVE-SNAPSHOT.jar  
kanchan "hdfs://cloudmaster3:54310/user/adult_zip1G.csv" 
"hdfs://cloudmaster3:54310/user/GENER_12G.csv" "spark://cloudmaster3:7077" 
 

Executing RESTFul policy manager on BlueRay aspect 

In order to execute a specific type of iterator, we need to set appropriate parameters in the system 

environment of the driver as well as the executor. The BlueRay aspect offers following options to 

be selected based on the requirement. 

POLICYMANAGER_END_POINT – For RESTful policy manager based sanitization. 

BLUERAY_POLICIES_PATH – For local policy store based sanitization. 

BlockColumns – for Identifier field generalization or suppression. 

Please find a sample invocation of command provided below. Please note that following command 

assumes that RESTful policy manager is available on http://192.168.4.1:8084/bluerayWebapp 

link.  

Command: 

./spark-submit --conf spark.executor.cores=2  --conf spark.executor.memory=2G --master 
"spark://cloudmaster3:7077"   --conf "spark.executor.extraJavaOptions=-
javaagent:/data/kanchan/aspectjweaver-1.8.5.jar"    --conf "spark.executorEnv.USER=kanchan" -
-conf 
"spark.executorEnv.POLICYMANAGER_END_POINT=http://192.168.4.1:8084/bluerayWebap
p" --driver-java-options "-
DPOLICYMANAGER_END_POINT=http://192.168.4.1:8084/bluerayWebapp -
javaagent:/data/kanchan/aspectjweaver-1.8.5.jar" --class BlueRayTest  --master 
"spark://cloudmaster3:7077" /data/kanchan/BlueRayTest-0.0.9-SAVE-SNAPSHOT.jar  kanchan 
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"hdfs://cloudmaster3:54310/user/adult_zip20G.csv" 
"hdfs://cloudmaster3:54310/user/GENER_12G.csv" "spark://cloudmaster3:7077"  
 
Similarly, please find command to be used for invoking local policy manager, below. Please note 

that policies file must be kept in sync on all executors to ensure that this is done the right way. 

Command for execution of local policy manager on BlueRay aspect 

./spark-submit --conf spark.executor.cores=2  --conf spark.executor.memory=2G --master 
"spark://cloudmaster3:7077" --conf "spark.executor.extraJavaOptions=-
javaagent:/data/kanchan/aspectjweaver-1.8.5.jar"    --conf "spark.executorEnv.USER=kanchan" -
-conf "spark.executorEnv.BLUERAY_POLICIES_PATH=/data/kanchan/policies.csv" --driver-
java-options "-DBLUERAY_POLICIES_PATH=/data/kanchan/policies.csv -
javaagent:/data/kanchan/aspectjweaver-1.8.5.jar" --class BlueRayTest  --master 
"spark://cloudmaster3:7077" /data/kanchan/BlueRayTest-0.0.9-SAVE-SNAPSHOT.jar  kanchan 
"hdfs://cloudmaster3:54310/user/adult_zip1G.csv" 
"hdfs://cloudmaster3:54310/user/GENER_10G.csv" "spark://cloudmaster3:7077"  
 

In order to perform multi-field generalization or suppression, we can specify BlockColumns. 

Please find sample commands for both listed below. 

Command for suppressing columns 2 and 3 

./spark-submit --conf spark.executor.cores=2  --conf spark.executor.memory=2G --master 
"spark://cloudmaster3:7077" --conf "spark.executor.extraJavaOptions=-
javaagent:/data/kanchan/aspectjweaver-1.8.5.jar"   --conf 
"spark.executorEnv.BlockColumns=4[1,2]"   --conf "spark.executorEnv.USER=kanchan" --
driver-java-options "-DBlockColumns=4[1,2]  -javaagent:/data/kanchan/aspectjweaver-1.8.5.jar" 
--class BlueRayTest  --master "spark://cloudmaster3:7077" /data/kanchan/BlueRayTest-0.0.9-
COUNT-SNAPSHOT.jar  kanchan "hdfs://cloudmaster3:54310/user/adult_zip80G.csv" 
"hdfs://cloudmaster3:54310/user/GENER_10G.csv" "spark://cloudmaster3:7077" 
 

The command for generalization is very much similar to suppression command except that as part 

of BlockColumns, we also provide a path of metadata file that contains generalization hierarchy 

for columns 2 and 3. 
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Command for generalizing columns 2 and 3: 

do ./spark-submit --conf spark.executor.cores=2  --conf spark.executor.memory=2G --master 
"spark://cloudmaster3:7077” --conf "spark.executor.extraJavaOptions=-
javaagent:/data/kanchan/aspectjweaver-1.8.5.jar"   --conf 
"spark.executorEnv.BlockColumns=4[2,3]/data/kanchan/metadata_exp.xml"   --conf 
"spark.executorEnv.USER=kanchan" --driver-java-options "-
DBlockColumns=4[2,3]/data/kanchan/metadata_exp.xml  -
javaagent:/data/kanchan/aspectjweaver-1.8.5.jar" --class BlueRayTest  --master 
"spark://cloudmaster3:7077" /data/kanchan/BlueRayTest-0.0.9-SAVE-SNAPSHOT.jar  kanchan 
"hdfs://cloudmaster3:54310/user/adult_zip1G.csv" 
"hdfs://cloudmaster3:54310/user/GENER_1G.csv" "spark://cloudmaster3:7077" 
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