

BIG DATA SANITIZATION USING SCALABLE IN-MEMORY FRAMEWORKS

by

Kanchan Prakash Waikar

 APPROVED BY SUPERVISORY COMMITTEE:

 Dr. Murat Kantarcioglu, Chair

 Dr. Latifur Khan

 Dr. Bhavani Thuraisingham

Copyright 2017

Kanchan Prakash Waikar

All Rights Reserved

Dedicated to, my husband, my parents, and my family.

BIG DATA SANITIZATION USING SCALABLE IN-MEMORY FRAMEWORKS

by

Kanchan Prakash Waikar, B. Tech

THESIS

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN

COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

May 2017

v

ACKNOWLEDGMENTS

First and foremost, I would like to thank Dr. Murat Kantarcioglu, for being an inspirational mentor,

motivator, and for his constant support throughout my master’s in computer science. I feel

privileged to have had the opportunity to learn so much from him. Apart from the curricular course,

I was fortunate enough to learn from him advanced concepts in the semantic web, machine

learning, and big data frameworks. I cannot compare learnings I received while doing master’s

thesis with any coursework, and I will always remain grateful towards him for the same. I am also

thankful to Dr. Bhavani Thuraisingham and Dr. Latifur Khan for their feedback, encouragement

and for supervising my master’s thesis. Discussions with Dr. Lalana Kagal and Alec Heifetz from

MIT were extremely helpful, and I would like to thank them for their ideas. I would also like to

thank Dr. Balaji Raghavachari, Dr. Mithun Balakrishna, Dr. Anjum Chidha, and Dr. Keven Ates

for their guidance throughout my master’s at UT Dallas. I feel I have learned a lot in the last two

years and I would like to thank all my professors for being excellent teachers.

Living in a foreign country becomes easier when you have great friends and a supportive family.

I would like to thank my husband, and my family, for constant support and encouragement.

Thanks, Kavya, Sruti, Rachna, Tushar, Saagarikha, Javnika, Ravali, Kruthika, Madhuri, Ameya,

Maryam, Himanshu, Parth, Dharmam, for always being there for me. Moreover, last but not least,

I would like to thank the staff at UT Dallas for helping me in all possible ways.

March 2017

vi

BIG DATA SANITIZATION USING SCALABLE IN-MEMORY FRAMEWORKS

Kanchan Prakash Waikar, MSCS
The University of Texas at Dallas, 2017

 Supervising Professor: Dr. Murat Kantarcioglu

ABSTRACT

As more and more data is collected, it is growing beyond the scale humans could ever have

imagined. Not only data but also data collection and analysis techniques have evolved and have

enabled researchers to advance many fields such as medical science. Although health data can

have a huge impact on the future success of research, data is usually distributed among various

stakeholders. Organizations need to share this data to help research move forward, but health data

sharing is a regulated domain. Due to privacy concerns, the U.S. Department of Health and Human

Services (HHS) has taken steps to ensure privacy protection of individuals by regulating data

sharing through Health Insurance Portability and Accountability Act of 1996 (HIPAA). HIPAA

policy restricts publishers from sharing identification information as well as any auxiliary

information that can be used for record re-identification.

To make data sharing compliant with the HIPAA policy, various data privacy protection

techniques evolved. Differential privacy techniques focused on query accuracy maximization in

statistical databases while minimizing the “risk” of record identification, whereas, data

anonymization allows the publisher to share original data at lesser precision, i.e., sharing attribute

value of age as 25-35 instead of 30. These techniques are considered as an industry standard.

vii

Newer risk-based models determine record anonymization level based on the hidden “risk” of re-

identification of the record. With constantly increasingly sanitization requests around big data,

sanitization algorithms need to be adapted for distributed computing frameworks. Frameworks like

Hadoop-MapReduce achieve parallelism by distributing tasks on multiple machines and executing

them in parallel. Apache Spark is a Hadoop-MapReduce based in-memory distributed framework

with support for data caching making it more suitable choice for iterative anonymization

algorithms. This study focuses on developing distributed in-memory data sanitization techniques.

To extend traditional k-anonymity methods, we implemented Mondrian k-anonymization

algorithm for Apache Spark. The Mondrian algorithm performs multidimensional partitioning cuts

until data cannot be divided further without violating k-anonymity property. We propose a locality

sensitive hashing (LSH) based one pass anonymization algorithm in which we use LSH functions

for the formation of clusters of size k and finding a summary statistic for each cluster.

To support newer data anonymization methods, we implement an in-memory version of risk

estimation based anonymization algorithm that leverages game theoretical approach for deciding

optimal generalization level for each record. We then propose a hybrid risk anonymization

algorithm that uses LSH bucketing to minimize the number of risk estimation algorithm

executions.

To support online sanitization, we propose an aspect-oriented approach for modifying Apache

Spark RDD’s computation at runtime. We show how an aspect can suppress identifier field based

on predefined policy at runtime.

With evolving functional requirements like within-dataset anonymization vs within population

anonymization, centralized vs distributed anonymization, risk-based vs strict k-anonymization, it

viii

is crucial to select the method that fits the requirement correctly. This study offers different

solutions that are suitable for different functional requirements. The analysis and comparison of

above methods would enable data publishers to make efficient computation cost anonymization

decisions.

ix

TABLE OF CONTENTS

ACKNOWLEDGMENTS ...v

ABSTRACT ... vi

LIST OF FIGURES ... xi

LIST OF TABLES ... xiii

CHAPTER 1 INTRODUCTION ...1

1.1 Outline of the thesis ...3

CHAPTER 2 BACKGROUND AND RELATED WORK ...6

2.1 Current big data sanitization approaches ...6

2.2 Big data frameworks ..7

2.3 Dataset and metadata for privacy analysis ...10

2.4 Related Work ...12

CHAPTER 3 CLUSTERING: APPROXIMATE NEAREST NEIGHBOURS15

3.1 Clustering techniques ...15

3.2 Clustering technique evaluation ...17

3.3 Locality sensitive hashing ..18

CHAPTER 4 K-ANONYMITY TECHNIQUES ..22

4.1 Existing k-anonymity approaches ..22

4.2 Mondrian multidimensional k-anonymity algorithm ...24

4.3 Distributed Mondrian multidimensional k-anonymity algorithm25

4.4 LSH based k-anonymity algorithm ..27

CHAPTER 5 RISK-BASED APPROACH ...30

5.1 Algorithm parameters ..32

5.2 Anonymization evaluation technique ..33

5.3 LBS algorithm ..34

5.4 Distributed LBS algorithm ...36

5.5 LBS-LSH approximation technique for dense data ...37

x

CHAPTER 6 SCALABLE ON-THE-FLY SANITIZATION ARCHITECTURE ON APACHE
SPARK ...39

6.1 How do aspects work? ...39

6.2 Scalable on-the-fly sanitization architecture - Apache Spark & AOP41

CHAPTER 7 EXPERIMENTAL EVALUATION ..51

7.1 Comparison of strict k-anonymization based algorithms51

7.2 Effect of number of hash functions on strict LSH k-anonymity algorithm53

7.3 Effect of bucket precision on strict LSH k-anonymity algorithm..........................54

7.4 Effect of k on strict LSH k-anonymity algorithm ..56

7.5 Performance of risk-based LBS algorithm ..57

7.6 Comparison of data sanitization techniques ..58

7.7 Experimental evaluation of on-the-fly sanitization approach60

CHAPTER 8 CONCLUSION AND FUTURE WORK ..66

APPENDIX A DATASET AND METADATA...69

APPENDIX B SOURCE CODE ..73

APPENDIX C CONFIGURATION AND COMMANDS ..84

REFERENCES ..90

BIOGRAPHICAL SKETCH ...93

CURRICULUM VITAE ..94

xi

LIST OF FIGURES

Figure 2-1. Apache Spark Execution framework ..9

Figure 3-1. Clustering of sample data ..15

Figure 4-1. Three level age generalization hierarchy ..22

Figure 5-1. Sample lattice based on 3 layer hierarchy of age and race ...31

Figure 6-1. Sample AOP.xml...40

Figure 6-2. Modified Apache Spark workflow ..43

Figure 7-1. Mondrian k-anonymity vs. LSH bucketing based k-anonymity Model52

Figure 7-2. Effect of number of hash functions on LSH algorithm ...54

Figure 7-3. Percentage information preserved for different bucket precisions55

Figure 7-4. Percentage information preserved for different cluster sizes56

Figure 7-5. Performance of distributed LBS algorithm ...58

Figure 7-6. Time taken by LBS vs. LSH Vs one pass LBS-LSH anonymization techniques59

Figure 7-7. Local vs. web policy manager performance ...61

Figure 7-8. Sanitized vs plain functionality: Read vs. group by vs. write queries62

Figure 7-9. Overhead graph read vs. group by vs. write queries ...63

Figure 7-10. Performance of generalization vs. suppression ...64

Figure 7-11. Overhead graph for generalization vs. suppression ..65

Figure A-1. Sample CSV file ...69

Figure A-2. Metadata file format ...70

Figure A-3. Race generalization hierarchy ..71

Figure A-4. Age generalization hierarchy ...71

xii

Figure A-5. Gender generalization hierarchy ..72

Figure A-6. Zip code generalization hierarchy (Top Level) ..72

Figure A-7. Zip code generalization hierarchy (bottom level) ..72

xiii

LIST OF TABLES

Table 4-1.Single dimensional partitioning ...24

Table 4-2. Multidimensional partitioning ..24

Table 5-1. Algorithm parameters for evaluating a game theoretical model32

Table 6-1. Policy manager API (RESTful) ..46

1

CHAPTER 1

INTRODUCTION

Increasingly, medical research is becoming highly data driven and it uses big data sets ranging

from hospital discharge data to genomic data. Genomic datasets are so huge that they are claimed

to be beyond what big data technologies can handle today (Stephens, et al., 2015), thus leading to

high-performance big data sanitization requirements. The research data is usually scattered and

collection typically involves gathering data from different health organizations. However, due to

privacy concerns, the process of health data sharing is highly regulated. In the USA, Health

Insurance Portability and Accountability Act of 1996 (HIPAA) was introduced to regulate data

distribution and for the protection of individual’s privacy (HHS, 2000). In essence, HIPAA states

that individual’s privacy must be protected while sharing data (HHS, 2000). In order to enable

privacy protection in shared data, data sanitization is used. Sanitization is a process of removing

the sensitive information so that the data can be distributed to a larger audience. Sanitization is

achieved through data anonymization, i.e., anonymizing identification information. Data

sanitization is typically done out of two intents – secrecy protection and privacy protection.

Secrecy protection is about converting secret/top secret data into less harmful versions that can be

shared at a lower protection level. Privacy protection is about protecting the privacy of the

individuals about whom data is being shared. The privacy of individuals is considered to be a

human right (Wogara, 2001) and thus needs to be enforced. Countries have defined laws for the

protection of individual’s privacy, although these laws differ from country to country, the essence

remains the same – to protect individual’s privacy. In the United States, the law permits lawsuits

2

to be filed against the individual/institution that intruded aggrieved party’s private affairs (Gostin,

Lazzarini, & Neslund, 1996).

With HIPAA, the Department of Health and Human Services addresses the issue of protection of

privacy in data distribution and use of individual’s health information. The failure to implement

and comply with these policies results in penalties, and in some cases, even imprisonment (HHS,

2000). In their earliest versions of implementation specification, HIPAA shared a list of attributes

that must be removed or generalized to make sure that the data meets HIPAA safe harbor policy.

HIPAA primarily covered individually identifiable information and stated that data is safe as long

as it is de-identified. The list included SSN, telephone numbers, account ids, license numbers, zip

code and all possible identifier fields. At glance, the HIPAA list looks pretty exhaustive, but it is

not. Several successful re-identification attempts made and it has been shown that the above

approach is just not sufficient to protect privacy (El Emam, Jonker, Arbuckle, & Malin, 2011).

This lead to HIPAA acknowledging that de-identification is more of a risk analysis problem rather

than a simple process of removing identifiers (HHS, 2000). In order to rectify this issue, HIPAA

came up with a second implementation specification that states that an individual with appropriate

qualification and knowledge of accepted scientific and statistical methods for identification, can

claim that health information is not individually identifiable if and only if, the individual is able to

confidently state that data has extremely low risk of re-identification based on generally available

knowledge, and documents the methods used for coming to this conclusion (HHS, 2000). This

specification accepts data with relatively low risk of re-identification as de-identified data.

 In order to comply with HIPAA policies, data publishers have to share data with relatively

low risk of re-identification. To address this challenge, multiple approaches were proposed and

3

several algorithms evolved (Dwork, 2008; Ramakrishnan, LeFevre, & DeWitt, 2006). An

evolution of serial sanitization algorithms happened during the phase when the world was still

getting ready for the big data. Since then, the data has grown exponentially and current data

processing proposals focus on building algorithms that can run in distributed mode on distributed

frameworks like Apache Spark. Most of the published data sanitization algorithms work well in a

serial setting; however, they do not scale in a distributed setting. An experiment conducted as part

of this study, outlined in Chapter 7 confirms this conclusion. Due to the very nature of these

algorithms itself, they do not scale well in a distributed environment. Future data sanitization

requirements are going to be big data based, which is why we need to analyze existing data

sanitization algorithms and test them in a distributed environment.

 The key contribution of this study is the development of efficient big data sanitization

algorithms for distributed in-memory frameworks. As a result, we developed four unique

algorithms for four different use cases. First is a scalable, distributed sanitization solution using a

game theoretical approach (Wan, et al., 2015), second is a risk-based locality sensitive hashing

bucketing sanitization solution. The third is an LSH bucketing based strict k-anonymity solution

and fourth is a novel, aspect-based on-the-fly data sanitization technique. To our knowledge, these

techniques have never been proposed for data sanitization using distributed in-memory

frameworks, before.

1.1 Outline of the thesis

We discuss big data frameworks available as part of Chapter 2 and identify Apache Spark as the

distributed framework that one could use for implementing iterative distributed algorithms. We

then elaborate how Apache Spark performs distributed in-memory job processing. Chapter 2 also

4

outlines attribute types, i.e. identifiers, quasi-identifiers, sensitive fields, and domain specific

attributes; quasi-identifiers being the focus of sanitization algorithms proposed in this study. We

then continue to define the related work that has been done in the field of big data, data sanitization

using LSH, and online data sanitization approaches using aspect-based methods.

 Chapter 3 introduces currently known clustering mechanisms and identifies the clustering

technique that can be used for performing clustering in high dimensional spaces. While evaluating

strategies for big data problems, it is important to select the technique, which provides maximum

information preservation while having low time complexity. This chapter suggests the use of

locality sensitive hashing (LSH) bucketing technique for performing data anonymization. Locality

sensitive hashing provides sub-quadratic time complexity for performing bucketing. This chapter

then defines the internal mechanism of locality sensitive hashing.

 Before introducing a new model for performing anonymization, we must understand

popular methods used for performing k-anonymity. Chapter 4 introduces Mondrian

multidimensional k-anonymity algorithm that achieves k-anonymity by performing repetitive

multidimensional cuts until data becomes indivisible. Chapter 4 explains the algorithm and

modifies it further to make use of distributed computing capabilities. In Chapter 4, we also

introduce a one pass k-anonymity algorithm, using locality sensitive hashing bucketing technique.

 Current k-anonymizations approaches involve computations on a subset of data while the

risk-based game theoretical approach works on single data record at a time. In Chapter 5, we

elaborate a game theoretical approach used for data sanitization using risk estimation techniques

(Wan, et al., 2015). In this chapter, we also elaborate information loss evaluation technique that

we would use in Chapter 7, in order to compare and contrast different anonymization approaches

5

suggested in this study. We then show how to modify lattice based search algorithm, to make use

of distributed computing capabilities. We further extend it by using LSH bucketing in order to

evaluate whether the performance of LBS algorithm can be further improved with the help of LSH

bucketing algorithm.

 There can be scenarios, which specifically demand online approaches. In order to provide

solutions for such problems, we introduce an on-the-fly sanitization solution in Chapter 6. On-the-

fly sanitization typically requires modification of the execution environment itself. However, it is

not practical to modify the framework, as it requires re-work every time we want to upgrade

framework to a newer version. Also, RDD computation being a cross cutting concern, needs a

cross-cutting solution. We propose an aspect-based approach in Chapter 6, which focusses on

modification of Apache Spark execution environment at runtime. We introduce an aspect called

BlueRay for suppressing identifiers in a structured file. We elaborate how to extend BlueRay

aspect to perform several things like attribute generalization and attribute suppression.

 As part of Chapter 7, we document the experimental evaluations performed for both –

batch as well as online approaches. We start by comparing how LSH based technique performs

compared to Mondrian k-anonymity, both being strict k-anonymity methods. We contrast the

information preserved in above-mentioned approaches with the LBS algorithm and study how LBS

algorithm scales with increasing file size. We then shift the focus of the study to online approaches

and study performance impact of BlueRay aspect itself on different operations like reading a

dataset, writing a sanitized dataset and performing a group by query. We also compare and contrast

the performance of two policy management techniques suggested in the study. As part of Chapter

8, we document our conclusions and highlight possible future work to take the study ahead.

6

CHAPTER 2

BACKGROUND AND RELATED WORK

To be able to discuss and propose newer methods, we need to first elaborate existing data

sanitization algorithms along with related research done in the big data sanitization field. In this

chapter, we first discuss current data sanitization approaches, and then analyze available platforms

and choose the platform that is right for performing big data sanitization. We also define

characteristics of the data before describing related work that has been done in the field of big data

sanitization.

2.1 Current big data sanitization approaches

Based on HIPAA §164.514 specification, various anonymization techniques have been suggested.

T-closeness, l-diversity, Mondrian are some of the examples of such techniques (Ramakrishnan,

LeFevre, & DeWitt, 2006; Machanavajjhala, 2007; Ruggieri, 2014). K-anonymity is a strategy

that relies upon increasing anonymity in the data in order to make the probability of re-

identification in de-identified data very small; higher value of k implies lower risk.

These algorithms anonymize data just enough to get the risk to a smaller value. However,

some address only part of the problem like numeric quasi-identifiers (Chakravorty, 2016) whereas

some perform anonymization of only personal or identifying information (PII) data (Judson, 2015),

etc. Many of the approaches have very high time complexity, which makes them infeasible for

data size beyond few megabytes. We need algorithms, which are more feasible for big data. In this

study, we focus on distributed high-performance anonymization algorithms. Considering data

growth rate, as well as increasing performance expectations from software, soon serial

7

anonymization approaches just are not going to be enough. Typically, anonymization algorithms

are iterative in nature and given that big datasets are usually in gigabytes, a sanitization solution

needs a computing framework with built-in performance. For this reason, it is important that

problem of data privacy be researched for distributed big data frameworks.

2.2 Big data frameworks

With the innovation of disruptive technology known as the internet, data has grown beyond the

scale humans could imagine, two decades ago. Big data has become common term everywhere.

The field of distributed computing has risen in order to provide for high compute/high memory

big data algorithms. Hadoop-MapReduce cluster computing field has gained and flourished

enormously. There are several distributed big data processing tools and techniques available in the

market that serve specific needs. MapReduce works mainly by providing two methods; map

method runs in parallel on multiple smaller splits of the original data, and reduce method

aggregates result produced by the map function. In last few years, MapReduce framework has

become extremely popular because of the parallel computing capability. One of the major reasons

behind the popularity of the framework is data code locality. The framework optimizes the

execution of the task in such a way that computation takes place on the node on which data is

stored. The reduce function is executed on the reducer and it typically aggregates map function’s

output. Two or more map-reduce sequences can be chained, but in order to do so, we need to

persist first map-reduce function’s output and pass it as input to the second map function. For this

reason, MapReduce does not typically work well for iterative algorithms.

Compute heavy algorithms typically involve complex calculations and little I /O. Iterative

algorithms typically belong to this category; they iterate over and reuse intermediate data. Writing

8

a complex transformation of data typically involves chaining multiple map-reduce functions and

thus leading to a lot of I/O. For this reason, we need a distributed computing framework

appropriate for distributed iterative processing. Based on analysis of big data frameworks available

and our requirement of iterative distributed processing, we decided to go ahead with Apache Spark.

2.2.1 Apache Spark: Introduction

Apache Spark is an open-source, in-memory, and distributed computing framework. It enhances

Hadoop’s data locality principle by adding a provision for data caching. It provides programmers

an application program interface (API) around a central, fault-tolerant data structure known as

Resilient Distributed Datasets (RDD). RDDs are lazily evaluated parallel immutable data

structures (Zaharia, et al., 2012). RDDs are created by combining multiple RDDs or by reading

files. RDDs let us chain multiple map-reduce/map-map commands without requiring read/write of

intermediary outputs from or to an I/O device. Apache Spark achieves fault tolerance in RDDs by

maintaining lineage graph for each RDD. Lineage graph explains RDD creation process.

2.2.2 Apache Spark Execution framework

When a program is submitted to an Apache Spark cluster, the node on which it is submitted is

referred to as Driver. When the script is launched, driver coordinates with cluster manager and

assigns executors to the program. A DAGScheduler running on driver reads user’s program and

creates a DAG, a directed acyclic graph of operations involved (map or reduce). Typically, it forms

a graph of jobs where one job consists of multiple stages, and a stage depends on another stage or

file(s). A stage typically consists of several tasks. DAG is then sent to TaskScheduler for task

assignment. TaskScheduler coordinates with the cluster manager and launches tasks on the cluster.

9

A task includes task’s closure, i.e. all input variables and methods used by the task. The driver

creates a copy of input variables and methods and sends the same to the executor. Executors are

launched on worker nodes present in the cluster. Each executor executes the task and sends the

result to the driver. The executor can also cache intermediary results and improve the overall

performance of the program. Executors execute more than one task during their lifetime on the

worker node.

In Figure 2-1, inspired from the Apache Spark documentation (Zaharia, Spark Internals

documentation, 2012), we can see a simple execution flow in Apache Spark framework. Here we

are joining two RDDs and then executing the action called count. Execution of an action leads to

the evaluation of the DAG and hence execution of the code. We can see in Figure 2-1 that both the

RDDs contain 3 input splits each. Each input split is read and emitted by a task. This forms the

stage 1 of the DAG.

Figure 2-1. Apache Spark Execution framework

10

Stage 2 is a join stage; here we are joining one input split each of both the RDDs. Assuming

that there is one to one join, we can see a set of tasks getting created in stage 2. These are map

tasks. This forms as an input to the stage 3, in which count task gets executed. These all tasks are

sent to cluster manager stage by stage. Once a stage has been executed, and inputs for next stage

are ready, next stage gets executed.

Cluster manager is aware of all spark slaves, as well as the data required by tasks. Cluster

manager communicates with HDFS and gets the details of data nodes on which data resides and

sends tasks to slaves located on corresponding data nodes.

As we can see, Apache Spark framework is suitable for iterative data processing, respects

data locality, and is also widely adopted. The framework, originally launched in 2010, has become

mature and has stood the test of time. These attributes make Apache Spark a good candidate for

implementation of distributed algorithms.

2.3 Dataset and metadata for privacy analysis

Defining data characteristics is the first step we take before we define, elaborate and evaluate

distributed sanitization algorithms. Data typically consists of four parts, identifiers, quasi-

identifiers, sensitive attributes, and domain specific attributes.

Identifiers are attribute(s) that uniquely identify the individual the record corresponds to.

These must be suppressed before sharing, as they may be universally unique identifiers and

typically do not follow a specific pattern. Typical examples of this column are social security

number, license number, full name, etc. Most of them were included in the first list released by

HHS as part of HIPAA policy (HHS, 2000).

11

 Sensitive attributes are the attributes that are extremely sensitive and must not be revealed

or associated with the identity of the individual. These attributes are the ones which data consumer

is interested in, and hence cannot be generalized/suppressed by data publisher.

 Typical examples of sensitive columns are “bank balance of an individual”, “individual’s medical

condition”, “number of parking tickets received”, etc.

 Quasi-identifiers are a group of attributes that together can uniquely identify the identity

of the individual data belongs to. Knowledge of these attributes can lead to very high possibility

of successful re-identification of the individual corresponding to the record. These attributes need

to be either suppressed or generalized in order to reduce the risk of attack. E.g., Consider the

attribute list of zip code, age, gender, race. In sparsely populated regions, knowledge of all four

of these can easily lead to re-identification of individual data belongs to.

 Domain attributes are remaining attributes which data publisher is interested in, but are not

particularly harmful to individual’s privacy. Although knowledge of these can help get insight, the

information is considered harmless, and it does not always lead to the breach of privacy. E.g., does

individual prefer spring over fall?

 The data sanitization approach studied in this thesis is focused on providing anonymization

techniques for solving problem outlined in §164.514 of HIPAA (HHS, 2000). While studying

anonymization techniques, we assume that data has already been pre-processed and does not

contain any identifiers. For removal of identifier fields, we propose an aspect-based online model

in Chapter 6. In sanitization algorithms suggested, we focus only on quasi-identifiers.

For our study, we consider a simple dataset that consists of 4 quasi-identifiers - age, zip

code, race, and gender. We used the data from adult dataset found in UCI machine learning

12

repository (Lichman, 2013). We extracted quasi-columns from the dataset and used the census

dataset from U.S. Census Bureau’s website, 2010 Census tables PCT12A through PCT12G

(Census Summary File prepared by the US Census Bureau., Oct). We also used the transformed

data set used in the game theoretical framework for analyzing risk paper (Wan, et al., 2015), in

order to validate our algorithm implementations. We use the census data to calculate the risk

probability for a given generalization level in the entire population. Sample data format,

generalization hierarchy, as well as metadata used for expediting processing of algorithm, is

described in Appendix A. Apart from data definition, we also define metadata generalization

hierarchy. Generalization hierarchy contains all possible variants at the bottommost level and

completely suppressed row at the topmost level.

2.4 Related Work

In this section, we summarize studies relevant to our work. In Section 2.4.1, we elaborate

previously known aspect-based solutions and document the learnings from each of the paper. In

section 2.4.2, we discuss known use cases in which LSH was used for purpose of anonymization

of data. In section 2.4.3, we discuss currently known scalable anonymization models and highlight

their shortcomings. In order to setup the environment for distributed in-memory sanitization

algorithms, we explain LSH, Mondrian k-anonymity, and risk-based approach algorithms in initial

sections of Chapter 3, Chapter 4, and Chapter 5. Once done, we introduce the in-memory

distributed versions along with LSH based anonymization algorithms.

13

2.4.1 Aspect-oriented approaches

The idea of AspectJ for runtime modification of bytecode is extremely popular and has multiple

utilities. In past, aspect-based approaches have been considered for runtime modification of the

behavior of the system. In Vigiles (Ulusoy, Kantarcioglu, Pattuk, & Hamlen, 2014), a fine-grained

access control system for MapReduce, the aspect-based approach was used in order to enforce

fine-grained access control (FGAC) in Hadoop MapReduce environment. The system incorporates

a policy manager and demonstrates how aspect-oriented approach can be used in Hadoop-

MapReduce ecosystem. The paper also states that using AspectJ is a wise way of extending a

functionality, as it removes the need to maintain a copy of the software. However, the paper

elaborates technique only for MapReduce framework and does not explain how it can be achieved

in Apache Spark.

2.4.2 LSH for Privacy Preservation

Locality sensitive hashing has been a known de-facto method for Approximate nearest neighbor

search (Indyk & Motwani, 1998). In a paper on the anonymous publication of sensitive

transactional data (Ghinita, Kalnis, & Tao, 2010), LSH was suggested for anonymization of high

dimensional data. The paper suggests the use of LSH, but for sparse data. The paper (Zhang, et

al., 2016) suggests using local recoding anonymization using LSH for Hadoop Map-Reduce

systems. The approach, however, does expect data to be converted into binary data leading to

imprecise numeric data distance calculation. The technique does not involve any normalization

and uses agglomerative approach for forming a cluster of size k, whereas LSH based algorithm

proposed in this study focusses on increasing number of buckets in order to cluster more precisely.

14

2.4.3 Anonymization in big data

 Apart from the paper (Zhang, Yang, & Liu, Hadoop based Anonymization , 2013), several

approaches have been suggested for performing anonymization in Hadoop-MapReduce

ecosystem. However, these algorithms are designed keeping the serial MapReduce type of

execution model in mind. They do not leverage intermediary data caching nor do they provide

iterative in-memory solutions. Hortonworks does offer a solution for data masking (Syed &

Srikanth, 2016), but it does not offer a complete anonymization solution.

15

CHAPTER 3

CLUSTERING: APPROXIMATE NEAREST NEIGHBOURS

Clustering is a technique for finding the group of elements that are close to each other in some

aspect. Consider sample data in Figure 3-1 for gender, age, race, zip code combination. We can

clearly identify two clusters, each one having two points very close to each other. We can see that

first two entries in Figure 3-1 form the first cluster and remaining two the second.

(a) Sample data

(b) Clustered sample data

 Figure 3-1. Clustering of sample data

The technique of clustering has several advantages and one can infer that all the data points

in a cluster have a special relationship and that they all are within some small Euclidean distance

of each other. We can use this information in order to apply an identical generalization to close

points and lower total information loss.

3.1 Clustering techniques

A numerous number of algorithms have been suggested for performing clustering and these

algorithms are mainly based on following four categories (Jain, M.N., & P.J., 1999).

Hierarchical clustering: Hierarchical clustering is a technique of building hierarchical clusters.

Clustering is performed based on two primary approaches - top down and bottom up. A divisive

approach is a top-down approach that focuses on dividing the cluster recursively into separate

clusters whereas agglomerative approach is bottom-up clustering approach that joins small clusters

16

into bigger one until only one cluster remains. The joining of the clusters is done based on two

metrics, single linkage clustering, and complete linkage clustering. Based on the performance, the

agglomerate clustering techniques are considered to be good as they have a time complexity of

O(n3) as compared to the divisive approach that has a time complexity of O(2n-1) (Everitt, 2011).

Hierarchical clustering is an approach that provides a specific type of clustering solution.

Centroid-based clustering: Centroid-based technique typically relies on the distance of points

from centroids. An example of this technique is Kmeans. In Kmeans, we define K centroids and

identify the nearest centroid for each element, and we continue with cluster formation until

centroids do not change. This technique typically uses squared error for optimization of the

distances within the cluster. Kmeans++ is a variant of Kmeans that uses probabilistic distribution

in order to select k centroids in the initialization step.

Distribution based clustering: These algorithms typically rely on the distribution of the data

within clusters. An example of this type is Gaussian mixture models, in which we assume a certain

number of Gaussian distributions in the data and use the iterative model to fit the model to the

dataset. These algorithms work pretty well when there are unobserved/latent variables or missing

values in the data, however, this method cannot always be used because data distribution may not

always be known.

Density-based clustering: Density-based clustering methods rely on a technique known as

density-reachability. E.g., DBScan starts by grouping points that are close to each other, to form a

cluster, leaving all the points that are far as outliers. This type of clustering suffers when data has

varying densities (Mumtaz K, 2010).

17

3.2 Clustering technique evaluation

 Overall, we are not really interested in the hierarchy of the clusters itself; we just want the

bottommost level of clusters, which is why hierarchical clustering does not sound like a right

choice. Distribution based clustering “assume” distribution of the data which may not always be

known, which is why distribution based clustering may not be the right choice either. Density-

based clustering technique works when there are distinct classes available, but because of lack of

knowledge about the data, we cannot assume that that distinct classes would be available. We can

consider centroid-based clustering as it does not really make any specific assumptions about data

distributions or density. Kmeans is an extremely popular centroid-based clustering algorithm and

its time complexity is O (ndk+1) (Inaba, Katoh, & Imai, 1994) where

N = total number of points to be clustered

K = number of clusters

D = dimensions in the point

The time complexity of Kmeans suffers from the curse of dimensionality. We cannot afford

such high time complexity, as a number of quasi-identifier columns present in the dataset can be

very high. Having four quasi-identifier attributes in the dataset is definitely not a rare use-case.

We can clearly see that these algorithms do not scale as dimensionality in the data increases. We

need solutions that scale well in high dimensional spaces.

The intent of evaluation of clustering technique was to find out nearest neighbors and see

if the generalization level applied to a point can be extended to its nearest neighbors. For such

problems, we do not really need a concrete cluster boundary. Due to these reasons, we consider

18

locality sensitive hashing, which is an effective way to find out nearest neighbors for a particular

point.

3.3 Locality sensitive hashing

Locality sensitive hashing is a high-performance approximate nearest neighbor (ANN) search

algorithm for high dimensional data. It relies on probabilistic hashing of data in such a way that

elements that are near to each other have a higher probability of being hashed into the same bucket.

It uses multiple LSH family hash functions, hashes all elements into their respective buckets, in

turn reducing the neighbor search space. LSH family of hash functions satisfies the property

defined in equation (3.1).

∀ row vectors a, b ∈ N,
distance (a, b) ≤ d1 ⇒ P(h(a)=h(b)) ≥ P1
distance (a, b) ≥ d2 ⇒ P(h(a)=h(b)) ≤ P2

Where d1 < d2 & P1> P2

(3.1)

The above function is said to be (d1, d2, P1, P2) sensitive. For all row vectors a, b belonging to total

search space N, if the distance between points a and b is less than or equal to d1, then the probability

of a and b being hashed to the same bucket is greater than or equal to P1 and if the distance between

a and b is greater than d2, the probability of a and b being hashed into the same bucket is less than

P2 (Locality Sensitive Hashing, 2016).

There are two very popular hash functions that follow the above property. MinHash, based

on Jaccard distance, and bucketed random projection, based on Euclidean distance. Jaccard

distance typically works better when the distance measure is purely binary and it does not work

well with quantitative data. Euclidean distance accommodates quantitative data better by

considering the granularity in the data. For our experimentation, we consider Euclidean distance-

19

based measure ݀(ݔ, (ݕ = ට∑ ௜ݔ) − ௜)ଶݕ
௜ . Where x = (x1, x2, x3 .. xk) and y = (y1, y2, y3 …. yk) are

any two vectors, each having k attributes. Bucketed random projection method involves

multiplying vector x with random unit vector v and assigning it to a bucket by dividing it with

bucket length r. Please find the detailed bucketing algorithm explained in section 3.3.1.

3.3.1 LSH - bucketing algorithm

In LSH, we first perform bucketing, i.e. apply all hash functions on all records and store the result

in a hash table. We extend this further by forming individual clusters of all elements which were

hashed into the same bucket by all hash functions. In getBuckets method, we implement the

formula h(x) =
௫∗௩

௥
. This formula is based on LSH scheme for p-stable distributions paper (Datar,

Immorlica, Indyk, & Mirrokni, 2004). The paper states that this formula can be used on stable

distributions in order to get locality sensitive hashing of data. As per this formula, we generate a

random unit vector, multiply the same with the row vector and then divide the dot product by a

value "r"; result is the bucket id that vector should be hashed into. LSH ANN search uses multiple

such hash functions and narrows down the list of elements on which approximate neighbor search

needs to be performed. We use identical mechanism, but instead of executing ANN search, we

simply use buckets in order to get summary statistic. In step 3.1 of the algorithm described in

Listing 1, we create a concatenated hash as the master hash and use grouping method in order to

extract clusters. We use these clusters in algorithms defined in sections 5.5 and 4.4 for defining

LSH bucketing based batch anonymization algorithms.

20

Listing 1:Algorithm for bucketing using LSH
__

Input: LinesRDD
Output: Buckets: RDD [Array [Row]]
getBuckets (linesRDD, precision)
1. Get random unit vectors.
2. For each Row in linesRDD, apply normalization transformation, i.e.,
each row gets converted into an array of Double.
3. for each row vector, do following,
 3.1 Create a "concatenatedHash".
 3.2 For each unit vector do following,
 3.1.1 Multiply row with the unit vector obtained in step 1
and store result in sum.
 3.1.2 Divide sum by "r", this is the bucketID to which the
row gets hashed into based on the current unit vector.
 3.1.3 Round the bucketID to precision provided.
 3.1.3 Append it to concatenatedHash.
 3.3 emit (concatenatedHash, row) tuple.
3. Group rows by concatenatedHash and lose concatenatedHash.
4. Return the RDD [Array [Row]] as buckets.
5. Stop.

__

3.3.2 Categorical data mapping, normalization of quantitative attributes

Before we execute the LSH algorithm, we must preprocess the data. We normalize all numeric

attributes. We use normalization formula
௩௔௟௨௘ି௠௜

௠௔௫ି௠௜௡
 for calculating the normalized value. Apart

from numeric values, we convert qualitative attributes, gender, and race, into quantitative data by

adding a number of columns corresponding to the number of unique possible values in the column.

E.g., gender column has two possible values, male and female, so we create two columns, one

corresponding to each value, and map each to a unique index. According to the mapping, attribute

male gets mapped to <1, 0> whereas female gets mapped to <0, 1>. Similarly race attribute is

converted into quantitative form too.

21

 Apache Spark MLlib 2.1.0 has a built-in provision for LSH algorithm with bucketed

random projection technique for numeric data, but it does not expose access to buckets. Also, the

buckets are in non-materialized form. For this reason, we chose to implement the bucketing

algorithm as part of the study.

22

CHAPTER 4

K-ANONYMITY TECHNIQUES

According to k-anonymity mechanism, quasi-identifiers must be generalized or suppressed in

order to make records “k-anonymous”. That is, there should be at least k records for any given

record that have exactly the same attribute generalization level for all quasi-identifier attributes.

Attribute generalization is a process of generalizing a value, to a higher dimension value, in the

hierarchy of the domain value of the record. E.g., consider the hierarchy for age attribute from

Figure 4-1, a generalization of the tuple <age, 45> one level up would mean its conversion into

<age, 31-60>.

Figure 4-1. Three level age generalization hierarchy

Generalization can lead to information loss, thus it is important to define granular

hierarchies for quantitative as well as qualitative attributes. Typically, these hierarchies can be

defined based on statistics available for the data. Suppression incurs the highest possible

information loss in generalization, i.e. generalizing a record to the topmost level. Suppression of

<age, 45> would mean conversion of <age, 45> to <age,*>

4.1 Existing k-anonymity approaches

Optimal k-anonymity is a known NP-hard problem, In order to implement k-anonymity, several

heuristic/approximation based algorithms have been suggested (Ramakrishnan, LeFevre, &

23

DeWitt, 2006). Since we have high dimensionality in data, we decided to implement Mondrian k-

anonymity algorithm, which is a high-performance global recoding based greedy approach for

implementing k-anonymity in the data. Global recoding is a greedy technique for achieving k-

anonymity. Global recoding is of two types, single dimensional global recoding, and

multidimensional global recoding. Single dimensional global recoding is a process of coming up

with generalization or suppression rules for each of the quasi-identifier attributes and applying the

same to all rows individually. This involves converting a tuple of the form T (a, b, c), into T’(a’,b’,

c’). Single dimensional global recoding involves partitioning the data based on a single region.

Single dimensional partitioning typically takes a value as an input and applies a function that maps

the value to its region. Multidimensional global recoding is the process of defining a single rule

for specific tuples in the dataset and applying the same to all. Multidimensional global recoding

involves creating rules that are more granular, and thus gives better results. Multidimensional

partitioning extends the concept of single dimensional global recoding to multiple dimensions. A

multidimensional partition requires multiple attributes <att1, att2, att3, ..attd> for definition of a

region. We call a partitioning as strict partitioning when these regions when do not overlap, and

relaxed partitioning when they do. E.g., with relaxed partitioning, <zip code, 51223> can be

generalized into <zip code, 51233-51234> or <zip code, 51232-51233> whereas, with strict

partitioning, zip code of 51223 can be generalized only into one of the two.

24

Table 4-1.Single dimensional partitioning

Sr. No. Age Gender Zip Code Salary

1. 36-39 Male 22710-22711 >50k

2. 36-39 Female 22712 <=50k

3. 36-39 Male 22710-22711 >50k

4. 36-39 Male 22710-22711 <=50k

5. 36-39 Female 22712 >50k

6. 36-39 Male 22710-22711 <=50k

Table 4-2. Multidimensional partitioning

Sr. No. Age Gender Zip Code Salary

1. 36-37 Male 22710 >50k

2. 36-38 Female 22712 <=50k

3. 36-37 Male 22710 >50k

4. 38-39 Male 22710-22711 <=50k

5. 36-38 Female 22712 >50k

6. 38-39 Male 22710-22711 <=50k

In Table 4-1 and Table 4-2, we can clearly see that single dimensional anonymization has higher

loss as compared to multidimensional 2-anonymization.

4.2 Mondrian multidimensional k-anonymity algorithm

Mondrian k-anonymity algorithm is a greedy algorithm that performs multidimensional cut until

no more cuts can be made without violating the k-anonymity property. A multidimensional cut is

the division of data into two subsets in such way that both the subsets follow the k-anonymity

property. Please find the algorithm in Listing 2.

25

Listing 2. Top-Down greedy algorithm for multidimensional recoding from (Ramakrishnan,

LeFevre, & DeWitt, 2006)
__

Input: Partition of rows
Output: k-anonymized Partition
k-anonymize (partition)
1. If multidimensional cut is not possible,

a. Return summary (partition).
2. Else

a. dimension ← selectDimension().
b. leftSet & rightSet ← splitOnMedian(partition, dimension)
c. return k-anonymize (leftSet) U k-anonymize (rightSet)

__

When it comes to handling huge data, non-distributed frameworks typically do not scale

well, because of their linear nature, which is why we decided to use Apache Spark.

4.3 Distributed Mondrian multidimensional k-anonymity algorithm

 Apache Spark converts dataset into the form of an RDD and RDD allows Apache Spark to execute

code in parallel. Along with the data, we also read metadata file that contains hierarchy metadata

for each of the column in the data. The metadata, as well as data used for the experiment, is defined

in APPENDIX A. We read the metadata and use Apache Spark broadcast variable feature in order

to remove the need for the variable to be distributed with each of the tasks. Before we start the

algorithm, we preprocess the data and convert textual CSV data into following map format.

i.e., Row of <15, Female, Asian, 38363> gets converted into RDD[0,Map[(0,15),(1,Female),(2,

Asian),(3,38363)]…].

In Mondrian multidimensional k-anonymity algorithm, selection of dimension is made

through a method called selectDimension. Please find algorithm for the same described in Listing

26

3. The Mondrian multidimensional k-anonymity paper (Ramakrishnan, LeFevre, & DeWitt, 2006)

suggests that dimension selection can be made in two ways, one based on a number of normalized

values and second based on anticipated workload. We choose the prior, with strict partitioning.

That is, we select attribute with the maximum number of unique values, and we do not overlap

ranges. Range based selection does tend to give preference to the numeric attribute selection due

to inherent variability present in the numeric data.

Listing 3. Distributed selectDimension method
__

selectDimension (linesRDD, k)
1. For Each record, emit (attribute-index, attribute-value) tuple and

cache the result.
2. Aggregate unique values for each column.
3. Aggregate the number of occurrences for each value for each column

and store it as frequency.
4. Select column with the maximum number of unique values from step 2

as the column on which cut should be performed.
5. If column type is Categorical

1. Loop over frequency map of categorical attribute and based on
frequency, divide the set into two parts, leftSet and rightSet and
return the same.

6. If column type is Numeric,
1. Sort values corresponding to selected column, select min, median,

and max and return the same.
7. In the case of error, return -1 as the dimension.
__

In the Mondrian k-anonymity algorithm, when we partition, we associate the summary

statistic with the partition itself. Paper suggests that there are two possible ways to associate the

summary statistic and range statistic. For this study, we choose range statistic instead of the

summary statistic. As we can see, the algorithm in Listing 4 looks very much identical to the

Mondrian multidimensional k-anonymity algorithm from paper (Ramakrishnan, LeFevre, &

27

DeWitt, 2006) but it does take advantage of distributed processing supported by Apache Spark. It

is important to note that algorithm relies heavily on the selection of dimension.

Listing 4. Distributed Mondrian k-anonymity algorithm

distributed-K-anonymize (linesRDD: RDD, K)
1. Set dim = selectDimension (linesRDD, k).
2. If dim is less than 0, execute assignSummaryStatistic (linesRDD).
3. Else do following,

a. If dim is of type categorical, find leftRDD and rightRDD by
using leftSet and rightSet for selected dimension.

b. Else, divide linesRDD based on numeric ranges into leftRDD and
rightRDD.

c. If both datasets are of a size greater than or equal to K,
then follow following logic otherwise call
assignSummaryStatistic on linesRDD itself.

i. If the size of leftRDD is greater than “K” then call K-
distributed-K-anonymize (leftRDD), if it is equal to K,
then call assignSummaryStatistic (leftRDD).

ii. If the size of rightRDD is greater than “K” then call K-
distributed-K-anonymize (rightRDD), if it is equal to K,
then call assignSummaryStatistic (rightRDD).

The assignSummaryStatistic method calculates the summary statistic for a region and assigns

the summary to all quasi-identifier attributes.

4.4 LSH based k-anonymity algorithm

In this section, we propose a distributed one pass algorithm for implementing k-anonymity using

LSH bucketing approach. The main idea behind k-anonymization is finding the optimal set of

entries that should be part of the k-anonymized set. The problem of optimal k-anonymity remains

NP-hard mainly because it is impossible to find the optimal set of K entries that should belong the

set to be anonymized. However, we can take a greedy approach and find a set of entries that

28

definitely should belong together. This is where LSH comes into the picture. As explained in

Section 3.3, LSH is an algorithm for finding approximate nearest neighbors in sublinear query

time, because of its bucketing technique. We can use this property of LSH to find out optimal set

of elements of size k and then generalize them by simply calculating a range statistic. In the

algorithm described in Listing 5, we first execute getBuckets method on an entire dataset with

very high precision. This leads to almost identical values being hashed into same buckets. We

convert all those buckets that have at least k elements into summarized versions by calling the

assignSummaryStatistic method. This method is same as the one from Mondrian k-anonymity

implementation. We now simply suppress all buckets that have less than k elements. To ensure we

get good accuracy, we do simulation in order to decide the optimal value for number of hash

functions to be used as well as bucket id precision.

Listing 5. LSH k-anonymity algorithm

Input: linesRDD [Long, Map [Integer, String]]
Output: k-anonymized dataset
LSH-k-anonymity (linesRDD, k)
1. Compute buckets by calling getBuckets(linesRDD)
2. Store buckets that have a size greater than or equal to k, in a

variable called neighbors.
3. Execute assignSummaryStatistic(neighbors) and add result to

outputRDD.
4. Suppress all buckets with size less than k and add the result to

outputRDD.
5. Merge all outputRDD values and write result to output.

Input: lines [Long, Map [Integer, String]]
Output: Summarized dataset
assignSummaryStatistic (lines)
1. For each line, emit (attribute-index, attribute) tuple.
2. For each Attribute index, do following

a. If the attribute is a categorical type of attribute, find
distinct entries. Use utility functions to find the common
ancestor of all entries and set it as the range.

29

b. If the attribute is a numeric type of attribute, find min and
max. Set min_max as the range.

3. For all rows, update value to the range calculated in step 2.

Summary statistic calculation is done on numeric data based on min and max found in the

neighbor list and range of categorical data is decided based on the nearest common ancestor. We

then replace the value of attributes by its corresponding range. These records are then written to

the output. The output of algorithm can be further improved by adding multiple iterations of LSH

bucketing but at the cost of performance. Based on the data, tradeoff analysis can be done and a

number of iterations can be added in order to improve the accuracy of this algorithm.

30

CHAPTER 5

RISK-BASED APPROACH

Several data sanitization approaches have been suggested for protecting privacy, most revolving

around k-anonymity. These algorithms focus on anonymization of data to the extent that the data

becomes unidentifiable. These approaches, however, lead to a huge information loss. In recent

past, a completely new approach towards the problem was suggested, risk-based approach,

according to which, we release the data at a certain generalization level based on the risk of re-

identification of the data (Wan, et al., 2015). We consider one such solution identified in an article

published on a game theoretical approach for analyzing re-identification risk (Wan, et al., 2015).

In order to illustrate the risk-based approach, let’s consider a hypothetical scenario.

Imagine there is a publishing company that wants to publish some health data to potential data

buyers. Although data buyers claim that they intend to use the data for research purpose, they

might have the malicious intention of re-identifying identities of individuals corresponding to the

data. In order to avoid the re-identification, publishers have the option of applying k-anonymity

algorithms. Publishers, however, realized that sharing highly generalized data reduces monetary

gain hence publisher is willing to take some risk in order to get a higher price for the shared data

without wanting to lose money in the process. Adversary (or data buyer) does want to perform re-

identification attack but not at the cost of losing money. In order to achieve such optimal level of

generalization, the paper (Wan, et al., 2015) suggests an algorithm called lattice based search

(LBS).

A record lattice can be imagined as a lattice that contains the original record at the top and

attribute-generalized children at subsequent levels. The sample lattice from the paper is as shown

31

below. We can see that (Amer-Indian, 42) is the topmost level record. While constructing lattice,

we generalize only one child at a time.

Figure 5-1. Sample lattice based on 3 layer hierarchy of age and race

In Figure 5-1. Sample lattice based on 3 layer hierarchy of age and race, we draw a lattice

for the record (Amer-Indian, 22) based on the generalization hierarchy defined in Figure A-4. Age

generalization hierarchy. Please note that in above lattice, Amer-Indian-Eskimo was renamed as

“Amer-Indian” for keeping texts smaller. Based on generalization hierarchy, we know that age 22

can be generalized into the range 0-30, and similarly, race Amer-Indian can be generalized into

Amer-Indian-Others. Hence, the topmost node has two children <Amer-Indian-Others, 22> &

<Amer-Indian, 0-30>. Each of them has their own two children, <Amer-Indian-Others, 0-30>

being the common child of the two. This continues until the hierarchy has been exhausted. All

32

generalizations end in the top most level of generalization, i.e., complete suppression, leading to

the formation of a lattice instead of a tree. The risk-based approach involves evaluation of lattice

for each record. We find the level of generalization for every record that reduces the risk of the

record being re-identified while sharing maximum information.

5.1 Algorithm parameters

To be able to illustrate algorithm better, we first define algorithm parameters in Table 5-1.

Table 5-1. Algorithm parameters for evaluating a game theoretical model

Sr. No Parameter Description

1. R Record in its original form.

2. V The benefit publisher receives when he/she shares the record in original
form(R) and adversary does not perform the attack.

3. L Amount publisher loses when an attacker succeeds in re-identification
of the individual.

4. C Amount adversary pays for buying the record.

5. g The generalized form of the original record.

6. V(g) Publisher benefit when the record is shared at a generalization level ‘g’.

7. π(g) The re-identification risk of the record. This would be 1 if individual
corresponding to the record is clearly identifiable and 0 if there exist
quite a few individuals at this level of generalization.

8. IL(g) Information loss incurred when record R is shared at generalization
level ‘g’.

9. gc Child of generalization level ‘g’ obtained by a generalization of one of
its attributes.

10. f Feature/attribute in the record.

33

5.2 Anonymization evaluation technique

The benefit publisher receives by sharing record in its generalized form ‘g’ is calculated based on

formula shown in equation (5.1). The formula calculates V(g) based on the ratio of information

loss [IL(g)] present in generalization level g and the max information loss possible[Max(IL(g))].

V(g) = V x ቀ1 −
ூ௅(௚)

ெ௔௫(ூ௅(௚))
ቁ (5.1)

The information loss is derived by the total number of entries that are present at given

generalization level.

IL(g) = ∑ − log ቀ
ଵ

௦௜௭௘(ீ௘௡௘௥௔௟௜௭௔௧௜௢௡ ௥௔௡௚௘ ௢௙ ௙ ௜௡ ௚)
ቁ௙ (5.2)

For numeric feature f, generalization range of the feature can be calculated by subtracting

f.min from f.max, for selected generalization level g. For the categorical feature, generalization

range would be a complete list of possible values at selected generalization hierarchy level. To

understand this formula better, let us consider two simple examples. First, a single numeric

attribute, and second, a single categorical attribute. Let us first consider numeric attribute. For a

generalized record of (age, 40-49) containing a single feature age, the information loss would be

calculated by calculating range.max minus range.min, i.e. 49 minus 40, taking the inverse of the

value, taking the log of the inverted value, and negating the same. Similarly, for a generalization

record (race, White OR Black OR African American), the information loss would be calculated by

calculating the total number of unique categories (i.e. two), taking inverse and then taking the log

of the value and negating the same. Typically, overall information loss can be calculated by taking

summation of log values for each feature, as defined in equation (5.2). Similarly, we can calculate

the max information loss by applying information loss formula on the suppressed record. The

formula for the same is outlined in equation (5.3)

34

Max (IL(g)) = ∑ − log ቀ
ଵ

௦௜௭௘(ீ௘௡௘௥௔௟௜௭௔௧௜௢௡ ௥௔௡௚௘ ௢௙ ௙)
ቁ௙ (5.3)

Apart from information loss, the algorithm also calculates the risk of the record by using the

formula (5.4) on the entire population.

 π(g) =
ଵ

௉௢௣௨௟௔௧௜௢௡ ௦௜௭௘(௚)
 (5.4)

Calculation of population size for (40-49,*, White, 39360-39369) can be done by taking

Cartesian product of each of the attribute, i.e. population size of [(40,41,42,43,44,45,46,47,48,49)

X (Male, Female) X (White) X (39360, 39361, 39362, 39363, 39364,

39365,39366,39367,39368,39369)]. After counting total number of unique individuals, we take

the inverse and obtain the risk of generalization level.

5.3 LBS algorithm

Listing 6 describes the LBS algorithm from the paper (Wan, et al., 2015). The algorithm starts

with the initialization of g; it is initialized to value R, i.e. the original record itself. While g is not

the completely suppressed form of the original record, the search continues by traversing through

its most optimal child. If loss multiplied by the probability of successful identification exceeds the

record cost, it means that adversary would be benefited if he chooses to perform re-identification

attack. However, if that is not the case, we explore all the children of record g as long as we get

better payoff than the record itself. If we see that any child has a better payoff than the parent, we

select the child and explore its children in order to find the minimum risk child in the lattice. For

selected strategy, if we find that L*π(g) <= C, then adversary won’t have any reason to perform

the attack hence algorithm would stop. The algorithm from Listing 6 looks performance intensive,

35

but the bottleneck actually exists in risk calculation function. This function returns a total number

of entries present in current generalization level.

Listing 6. LBS algorithm (Wan, et al., 2015)

Input: Lattice entry point - R
Output: Risk optimal generalization level for R
findOptimalGeneralization (R)
1. Initialize g = R.
2. While g is not completely suppressed generalization, do,

a. If L* π(g) <=C, it means that if adversary attacks, he or she
would not get any benefit, hence g is the optimal
generalization level, return the same.

b. Otherwise, initialize the highest payoff Um =V(g)-L*π(g), and
assign gm=g.

c. For Each child gc of g,
i. If L* π(gc)> C, then consider V(gc) - L * π(gc) as payoff,

else consider V(gc) as payoff.
ii. If the payoff is greater the highest payoff Um, Then

update Um.
iii. If none of the children of “g” had a greater payoff than

its parent, then return “g” as the optimal generalization
level.

iv. Else update g=gm and continue from step 1.
3. Stop.

The risk function calculates risk for every child in the lattice, and since lattice would be sparse,

because of huge range in zip code column, the function would suffer when executed serially. The

above algorithm can be easily extended to scale on distributed frameworks. We can leverage the

inbuilt parallelism present in Apache Spark in order to compute the generalization levels for

records in parallel.

36

5.4 Distributed LBS algorithm

Distributed LBS algorithm looks exactly like standalone version itself. Apache Spark reads CSV

file in the form of RDD. The RDD supports parallelism inherently and launches

findOptimalGeneralization on multiple worker nodes concurrently. Apart from this, instead of

computing inputs required for calculation of risk on each node, we can use the broadcast variable

feature of the Apache Spark framework and distribute the centrally computed population hash map

across all executors.

Listing 7. Distributed LBS algorithm

Input: file path
Output: Risk optimal generalization level for all records
findOptimalStrategy ()
1. Read input file as an RDD.
2. Iterate over RDD in the following manner.

Set generalizations = rdd.map({ case (x, y) (x,
findOptimalGeneralization(y)) })
This causes findOptimalGeneralization method to be executed in
parallel on all executors.

3. Store output.
4. Stop.

We can see that distributed version specified in Listing 7, achieves the parallelism by

converting the input into the form of an RDD and thus achieving parallelism at the record level.

This means that each record can be evaluated in parallel and result will be aggregated in the end.

Currently, Apache Spark does not support nested evaluations of RDD, but once it does, we can

convert g’s children into RDD, and evaluate all children in parallel by using a map and a filter

method. Also, another compute heavy code is the one that calculates risk for selected

generalization level. This portion of the code can be further parallelized by converting

37

combinations into RDD and evaluating in parallel. The approach we take for calculation of record

risk has a direct impact on the performance of the LBS algorithm. Using map is the optimal way

of performing this search. An optimal strategy must be chosen in order to balance the performance

and memory for performing this search. After careful study, we decided to have two maps, one for

top value lookup, HashMap ((race, gender, age, zip code), population size), and second, for

generalization lookup, HashMap ((race, gender), TreeMap (Age, TreeMap (zip code, population

size))).

5.5 LBS-LSH approximation technique for dense data

Distributed LBS-LSH algorithm tries to reduce the number of records for which LBS algorithm

gets executed. As shown in Listing 8, We start by bucketing all records using method outlined in

section 3.3.1 and then iterating over each bucket. While iterating, we first execute LBS on the first

record and see if its generalization is applicable for all remaining entries in the bucket. For those

records, for which entry is applicable, we apply the generalization, for rest we compute LBS. This

approach leads to the LBS calculation complexity reduction proportional to the denseness of the

cluster. If clusters present in the data are sparse, the above technique does not yield very good

results. This is because LBS itself preserves very high information of original record, leading to

lesser number of neighbors being capable of sharing the generalization level.

Listing 8. LBS-LSH algorithm

Input: LinesRDD, LBS parameters - pubBenefit, recordCost, loss, K –
Number of neighbors
Output: risk anonymized dataset
lbslsh (linesRDD, lbsParams, K)
1. Call getBuckets method and store output in a variable called buckets.

38

2. For each bucket in buckets, do following,
a. For the first entry in the bucket, perform lattice based search

and get generalization hierarchy.
b. Declare an empty List of rows and add the generalization from

step 2.a to the same.
c. For each remainingEntry in the bucket, do following,

i. If generalization from step 2.a is applicable for
remainingEntry, add the row_id and generalization to the
list.

ii. Else, perform a lattice-based search on remainingEntry and
return the same.

d. Return the list.
3. Group output and write it to a file.

Discussion:

Although LBS-LSH is designed to improve the performance of LBS algorithm, it does assume that

the memory overhead of LSH is very small. It also assumes that LSH bucketing is performed with

extremely high precision so that buckets contain only near-duplicate elements. LBS-LSH would

suffer badly if any of the above two assumptions does not hold.

39

CHAPTER 6

SCALABLE ON-THE-FLY SANITIZATION ARCHITECTURE ON APACHE SPARK

Sometimes, batch sanitization is not an option, as data sanitization needs to be done on-the-fly.

For such scenarios, we need to modify the execution framework itself, but this, however, is not

always possible. Sometimes the requirement is to change the behavior without modifying the

software. This can be achieved through aspects. Aspects provide a way to modify the behavior of

the system by altering bytecode at runtime.

6.1 How do aspects work?

Aspect-Oriented Programming (AOP) is about the implementation of modularity to serve cross-

cutting concerns. Aspects are typically used when a functionality needs to be added, amended, or

removed at runtime. Function name logging, transaction management across a suite of classes,

access control over a variety of classes are typical instances of cross-cutting concerns for which

AOP is used. Typically, the elements on which cross-cutting concern needs to be applied are

scattered. AOP enables us to add extra functionality to an existing method without modifying the

method itself. Consider following example.

Problem Statement: We have close to 1000 algorithms implemented in UTD’s historical algorithm

implementation package edu.utd.common.algo”. Each class has a method called “describe” that

prints the description of the algorithm. The describe method can be called by any other program

directly, and execution takes place on a centralized Apache Spark cluster. We need to print a

copyright message just after algorithm description has been printed.

40

When we look at the above problem statement, the first thought that comes to our mind is to modify

the source code of all 1000 algorithms. The solution will not work if the source code is not

available. Even if somehow we find the source code, the strategy would still fail if there are a

million such programs. In such a scenario, modifying each program is not a valid solution. This

type of problem falls into the category of cross-cutting problems. For solving such types of

problems, aspect-oriented programming is used. An aspect consists of an advice that describes

how the method must be modified, and a pointcut that specifies which behavior needs to be

modified. There are three types of advice – before, after and around. The before advice executes

just before the method and thus allows us to modify inputs to the original method. The after advice

allows us to modify the output of the original method. The around advice allows us to modify

input as well as the output of the method. Aspectjweaver can be started in the background of the

JVM. It scans for META-INF/aop.xml file that contains details of aspect to be weaved in, as well

as a list of types to weave. Please find a sample aop.xml in Figure 6-1.

<aspectj>
 <aspects>
 <aspect name="edu.utd.security.blueray.AccessAuthorizerAspect" />
 </aspects>

 <weaver options="">
 <include within="org.apache.Apache Spark.rdd..*"/>
 <include within="edu.utd.security.blueray..*"/>

</weaver>
<aspectj>

Figure 6-1. Sample AOP.xml

Aop.xml has two key tags - aspects and weaver. The aspects tag is used to specify aspects

to be weaved in. All aspects that we want to weave must be specified in this tag. The weaver tag

can be used for specification of types or packages that need to be woven. If no include tags are

41

specified, weaver tries to weave all classes thus degrading the overall aspect injection performance.

Hence, we must specify the include tag. AspectJWeaver does the weaving of the aspect at load-

time. This means that every time a method gets loaded in the JVM, AspectJWeaver will modify

its bytecode and attach the additional behavior, defined in the advice, to the method.

AspectJWeaver has access to all classes that are loaded in its JVM.

Benefits of aspect-oriented approach: Aspect-oriented approach lets us separate cross-cutting

concerns. The overhead of modifying, maintaining local copies of modified code, and updating

code as framework evolves is completely removed by implementing the cross-cutting approach

using AOP. Aspects do incur little performance overhead, but it is extremely low considering

advantages it offers. The aspect-oriented approach does provide us a convenient way for modifying

data on-the-fly.

6.2 Scalable on-the-fly sanitization architecture - Apache Spark & AOP

For distributed on-the-fly sanitization, we need an innovative solution. Before we design a system

for on-the-fly data sanitization approach, let us first look at how Apache Spark executes a program.

For simplicity purposes, we submit the program to Apache Spark in a standalone mode. When we

submit a program, a workflow that gets executed is described in Listing 9.

6.2.1 Current Apache Spark Work-Flow

Whenever an input file is being read, Apache Spark converts it into an RDD. RDD is a logical unit

that gets mapped to MapPartitionsRDD depending upon the number of splits done on the input

HDFS file. MapPartitionsRDD is computed whenever any of the Apache Spark actions is

42

executed. This RDD is typically computed on worker machines that are nearest to the data. Please

find workflow described in detail, in Listing 9.

Listing 9. Apache Spark Workflow

Apache Spark Workflow
1. The driver reads input File and creates an RDD.
2. The driver then converts RDD into a set of MapPartitionsRDD.
3. Driver scans user program and computes a DAG.
4. Whenever any action gets called, its DAG is sent to DAGScheduler for

execution.
5. DAGScheduler controls executions of stages.
6. Each stage consists of tasks on individual MapPartitionsRDDs.
7. Each MapPartitionsRDD is assigned along with its task closure, to an

executor near the data node on which partition exists.
8. Executor invokes the compute method that has following signature.

override def compute(split: Partition, context: TaskContext):
Iterator[U]

9. The compute method returns the iterator for given partition.
10. Task uses an iterator to iterate and performs the desired action.
11. Task completes.

We propose an aspect-based design for performing on-the-fly sanitization. In order to perform

sanitization on-the-fly, we must inject our aspect in above workflow with minimum overhead. This

is the reason why we modified the behavior of the compute method itself instead of modifying

individual action methods.

6.2.2 Modified Apache Spark Execution workflow

As we can see in Figure 6-2, we have injected AspectJWeaver on each of the executors.

AspectJWeaver is responsible for BlueRay aspect getting loaded in the executor’s JVM. This

Aspect has full access to executor JVM.

43

Figure 6-2. Modified Apache Spark workflow

6.2.3 BlueRay aspect

We can see that aspect described in Listing 10 is an around aspect which joins at the compute

method of org.apache.spark.rdd.MapPartitionsRDD class. Here, we have used around method

because we need to read the inputSplit’s file path in order to apply policy, and output because we

want to return the sanitized iterator instead of a normal iterator.

Listing 10. BlueRay aspect: Scala source code

@Aspect
class BlueRayAspect
{
 @Around("execution(*
 org.apache.apache.spark.rdd.MapPartitionsRDD.compute(..)))
 aroundAdvice(jp: ProceedingJoinPoint, partition: Partition,
 context: TaskContext)
 {

44

 val iterator = (jp.proceed(jp.getArgs()));
 val policy = getPolicy(context, jp);
 if (policy != None)
 {

return new SanitizedIterator(context, iterator, policy);
 }
 return iterator
 }

}

SanitizedIterator is a subclass of org.apache.spark.InterruptibleIterator, a typical iterator

class which has two methods hasNext and next. SanitizedIterator overrides next method in order

to return the sanitized version of the original value. The compute method’s one of the inputs is

partition details. We find the policy details by extracting the filename from the inputSplit attribute

of the partition. Once found, we send the policy to SanitizedIterator.

6.2.4 Architectural assumptions:

We assume that modified architecture is controlled by having complete control over how

the user gets to submit the program. Also, we assume that program’s output is a simple output that

is written to the console. To facilitate this, we assume that the access to Apache Spark cluster is

controlled through a web-application, where the user uploads the source code he/she intends to

execute. This code is then executed on the Apache Spark cluster by injecting the AspectJWeaver

at runtime. The output of the program is displayed on the web-console once it has finished

execution. The architecture is assumed to be very simplistic and can be easily extended for meeting

realistic expectations.

45

6.2.5 Policy manager

We assume a very simple policy model. A policy comprises of three things – role or username,

file path, and text or REGEX (regular expression) to be sanitized. Typically, file path would be

obtained from the partition, role or username can be extracted from task’s context or system

configuration and text or regex to be sanitized would be maintained per file, in the policy store.

Policy manager can be local or centralized.

Distributing policy store on slaves increases headache of policy store maintenance.

Although this can be mitigated by maintaining policies on a common file server that is accessible

to all policy manager, it would lead to additional network cost for each policy store read.

Alternately, policy manager can be a web application deployed in Tomcat server residing

outside the cluster, but on the same network. This way Apache Spark executors do not incur the

network overhead while communicating with policy manager. As part of the study, we

implemented both types of policy managers and evaluated their performance. Please find APIs

supported by policy manager described in Table 6-1. The /enforcePolicy endpoint lets the user add

a new policy to be enforced at runtime, the /deregisterPolicy endpoint simply lets the user take

down a policy, and /policies lists currently registered policies. We deploy the BlueRay aspect in

Apache Spark cluster by bundling BlueRay aspect and aop.xml in a JAR file and keeping it in

<Spark_Home/jars> folder on all nodes in the Apache Spark cluster. This simply takes care of the

loading process. Whenever Apache Spark program is executed, all JAR files present in

Spark_Home/jars are loaded into the JVM.

46

Table 6-1. Policy manager API (RESTful)

Sr.
No.

API endpoint Type Input Output Description

1. /enforcePolicy POST filePath,
REGEX,
role
OR
username

Boolean This API is used for
registering new policy with
the manager.

2. /deregisterPolicy POST filePath,
role
OR
username

Boolean This API is used for
deregistering the policy in
real-time.

3. /policy GET

filePath,
role
OR
username

Policy This API is used for
retrieving policy details.

4. /policies GET None List[Policy] This API returns a
complete list of policies
that are registered with
policy manager.

After deployment, along with Apache Spark jars, BlueRay.jar also gets loaded in the

executor JVM. Now all that is required is registering the aspect present in the jar with

AspectJWeaver, which would, in turn, weave the advice around compute method on the executor.

This is done at runtime by specifying AspectJWeaver javaagent as shown in Listing 11. Apache

Spark allows the user to specify extra JVM options through spark.executor.extraJavaOptions and

driver-java-option properties. We use these properties to tell JVM to start AspectJWeaver daemons

that would have access to all classes in its host JVM.

47

Listing 11. Apache Spark submit command with AspectJ injection

./Apache Spark-submit --conf "spark.executor.extraJavaOptions=-
javaagent:/data/blueray/aspectjweaver-1.8.5.jar" --driver-java-
options "-javaagent:/data/blueray/aspectjweaver-1.8.5.jar" --class
<Class_Name> --master "Apache Spark://cloudmaster3:7077"
<CLass_Jar_Path> <Class_Args>

We do so by injecting our aspect at executor as well as driver level. This is done by sending

javaagent parameter containing the full path of aspectjweaver.jar. The assumption is that

AspectJWeaver is present on all nodes of Apache Spark cluster. After setting up above

environment, the Apache Spark execution flow gets modified as described in Listing 12.

Listing 12. Apache Spark - new workflow

1. Whenever a spark-submit command is executed, a driver is launched in
the cluster.

2. The driver loads BlueRay aspect jar along with AspectJWeaver jar.
3. This makes sure that the bytecode representation of MapPartitionsRDD

on the driver is consistent with executors.
4. The worker is responsible for launching executor. Worker launches

executor and we can see the following command in worker log.
ExecutorRunner: Launch command: "/home/cloud/pkg/jdk/bin/java" "-cp"
"/Cloud/Apache Spark-2.1.0-bin-hadoop2.7/conf/:/Cloud/Apache Spark-
2.1.0-bin-hadoop2.7/jars/*" "-Xmx1024M" "-Dspark.driver.port=58584"
"-javaagent:/data/blueray/aspectjweaver-1.8.5.jar" "-
XX:MaxPermSize=256m"
"org.apache.spark.executor.CoarseGrainedExecutorBackend" "--driver-
url" "<driver_url>" "--executor-id" "0" "--hostname" "192.168.4.11"
"--cores" "8" "--app-id" "<app_id>" "--worker-url" "Apache
Spark://Worker@192.168.4.11:50547"

Whenever a new executor is started, all jars present in Spark_Home/jars
are loaded in the classpath of the JVM. This also loads BlueRay aspect
and modifies the execution of compute method of MapPartitionsRDD.

5. The driver reads input File, creates an RDD, and then converts the

RDD into MapPartitionsRDD.
6. Driver Scans user program and computes its DAG.

48

7. Whenever any action gets called, its DAG is sent to DAGScheduler for
execution.

8. DAGScheduler controls executions of stages.
9. Each stage consists of tasks on individual MapPartitionsRDD.
10. Each MapPartitionsRDD is assigned to an executor present near or

on the data node on which data exists.
11. Instead of executing the original MapPartitionsRDD class’s compute

method, the bytecode of the class created by the advice gets
executed. This class follows the following process.

1. It extracts the exact filename from the input split metadata of
the partition.

2. It then contacts policy manager and requests policy for the
filename found in the partition.

3. Policy manager returns policy if a policy exists.

12. If the policy is available, SanitizedIterator is returned.
Otherwise, the original iterator or blocking iterator is returned –
based on the requirement.

13. Tasks use iterator received and performs the desired action.
14. Task completes.

The SanitizedIterator now returns sanitized wrapper around original RDD iterator. The

behavior of this wrapper can be defined in multiple ways. We can make it generalize a record,

suppress a record, or even call a record level anonymization algorithm and make wrapper return

the algorithm’s output. Please find different approaches elaborated below.

6.2.6 Suppression with SanitizedIterator

The SanitizedIterator extends InterruptibleIterator [T] (context, delegate) class from Apache

Spark and is expected to have two methods by contract. The first one is hasNext and the second

one is next. When we sanitize a value, we replace the value by some other value. A simple

SanitizedIterator simply replaces the value by a string of predefined characters like a dash or a

star. MapPartitionsRDD typically works on string data, so the replacement becomes pretty

49

straightforward while working on Apache Spark. However, for Apache Spark-SQL, iterator of

UnSafeRow is returned. This is an instance of a special class, and the object must be carefully

modified to return the new instance. Data suppression is a simple way for removing identifier

fields at runtime. Identifier fields should always be removed from the data before it is shared

otherwise it leads to the identification of individuals. We could define a simple policy that

suppresses given columns completely. We can easily convert the original data into data with

suppressed identifier by simply executing a program that reads a file, and then writes the RDD to

another file and lets BlueRay aspect with SanitizedIterator take care of the suppression of

identifiers.

6.2.7 Data generalization with GeneralizationIterator

GeneralizationIterator is an extension of sanitized iterator with a key difference; it generalizes

columns instead of suppressing them. Along with the policy, it also requires metadata.

GeneralizationIterator makes the assumption that the data to be processed is in accordance with

the metadata provided in the metadata file. GeneralizationIterator also requires additional

runtime data like column indices to be blocked and a total number of columns expected in the data.

In order to specify the same, we have to set following environment variable in Apache Spark

executor.

BlockColumns=Num_Columns [List of columns to be generalized]

If the RDD’s parent data file has a policy associated and the RDD has a total number of

columns same as specified in Num_Columns, the iterator splits the value by commas and replaces

the data at columns specified in the environment variable, by their parent categories. Implementing

GeneralizationIterator for identifier field generalization is definitely not a great idea as keys are

50

arbitrary and they do not follow any specific hierarchy. However, it is a perfectly good solution

for any general purpose anonymization requirement that focusses on reducing the amount of

information provided in a certain column.

51

CHAPTER 7

EXPERIMENTAL EVALUATION

In this section, we compare different data sanitization implementations covered as part of this

study. We start by comparing strict within-dataset k-anonymity approaches and then move onto

comparison of the same with newer risk-based approaches. We also compare and contrast

performance of BlueRay aspect for generalization and suppression. We compare algorithms based

on the percentage of information preserved and time taken for sanitization.

7.1 Comparison of strict k-anonymization based algorithms

We start by comparing Mondrian k-anonymity algorithm with LSH bucketing based k-anonymity

algorithm suggested in Section 4.4. Results from Figure 7-1 were obtained by executing both the

algorithms on a single Apache Spark node with 8 cores, on an original dataset of size 32K. For

LSH, we executed simulation for each of the value of k and found out the optimal value of a

number of hash functions as well as the precision factor. We can see that % information preserved

in Mondrian is better than LSH bucketing; however, the time taken by LSH is less than one

hundredth of the time taken by LSH. For big data, Mondrian algorithm does not scale despite

preserving a higher amount of original information. However, the amount of information preserved

is low with LSH bucketing but only for a smaller population. We executed the same algorithm on

a randomly generated adult dataset of size 50 million, with a precision factor of 10000 and three

hash functions, and got result preserving ~87% of the original information.

52

(a) One pass LSH vs Mondrian: Time taken vs cluster size

(b) LSH vs Mondrian: percent information preserved

Figure 7-1. Mondrian k-anonymity vs. LSH bucketing based k-anonymity Model

This means that as the size of dataset increases, LSH tends to preserve more information, thus

standing out as a clear winner.

 We can clearly see in the performance graph that LSH based k-anonymization

performance is far superior to Mondrian k-anonymization. This happens because LSH uses the

bucketing technique to find out the close points whereas Mondrian algorithm relies upon the “cut”

0

500

1000

1500

2000

2500

k=5 k=10 k=20 k=50

Ti
m

e
ta

ke
n

(s
ec

od
s)

Cluster size

Mondrian LSH

0

20

40

60

80

K=5 K=1 0 K =2 0 K=5 0

%
 In

fo
rm

at
io

n
pr

es
er

ve
d

Cluster size

Mondrian % Info preserved LSH bucketing

53

to decide which points are near to each other. The cut leads to the selection of maximum range but

does not give any preference to the selection of points within the cluster. We also note that the

value of k does not have much impact on LSH strict k-anonymity algorithm’s time taken because

of its constant time complexity. This is because the value of k simply decides the necessary cluster

size for summarization; rest of the elements are simply suppressed. However, Mondrian algorithm

time complexity is directly dependent upon the value of k. The height of the tree of stages to be

cut is logk (N). This means that as the value of k decreases, the depth of the tree increases. Higher

depth leads to more number of jobs being formed hence leading to higher time complexity. As

Mondrian is iterative in nature, the DAG formed in LSH k-anonymity algorithm is much simpler

and smaller than the one formed in Mondrian algorithm.

7.2 Effect of number of hash functions on strict LSH k-anonymity algorithm

In order to check the impact of a number of hash functions on performance, we conducted an

experiment on dataset described in section 7.3, on the entire cluster. In Figure 7-2, we see that the

effect of increasing number of hash functions remains more or less constant beyond five. When

we use three hash functions, although it takes lesser time, the information preserved is lesser. This

is because the concatenated bucket id is composed of less number of bucket ids. However, when

we increase the number of hash functions, the overall information preserved increases. This is

because using a higher number of hash functions leads to more specific concatenated bucket id.

Since evaluation was done on a huge dataset, most of the buckets had more than “k” elements

leading to a good amount of information being preserved. We also note that as number of hash

functions increase, overall time taken by the algorithm increases too. We must select a number of

hash functions to be used after doing time vs information preserved tradeoff analysis.

54

(a) Percent information preserved vs number of hash functions

(b) Time taken vs bucket precision

Figure 7-2. Effect of number of hash functions on LSH algorithm

7.3 Effect of bucket precision on strict LSH k-anonymity algorithm

In order to understand the value that must be specified for bucket precision, we ran an experiment.

We created a random adult dataset with 4 attributes, of size 50 million and tried different values

50
55
60
65
70
75
80
85
90
95

num#f ns=3 num#fns=5 num#fns=1 0 num #fns=1 5 num#fns=2 0

%
 In

fo
rm

at
io

n
pr

es
er

ve
d

Number of hash functions

0

20

40

60

80

100

120

140

num#f ns=3 num#fns=5 num#f ns=1 0 num#fns=1 5 num #fns=2 0

Ti
m

e
ta

ke
n

(s
ec

on
ds

)

Number of hash functions

55

for precision. In order to perform the experiment, we set the value of a number of hash functions

as 3 and value of k as 3. As we can see in Figure 7-3, the optimal percent information preserved

occurs when we preserve the higher number of digits in the bucket id. When we see following

diagram we clearly see that the value of information preserved is lowest for one digit, this is

because the hash function used is based on normal distribution(0,1) and dataset used just has 4

fields with values normalized in the range of (0.0,1.0). However, as we go beyond 4 decimal

places, more and more unique hashes get generated leading to more buckets. This graph was

generated on a big dataset. For smaller datasets, the percent information preserved does not

increase with precision; in fact, it decreases because most of the buckets contain less than k

elements leading to more suppression and hence higher data loss. The analysis must be performed

on the data in order to decide the bucket id precision to be set for the algorithm.

Figure 7-3. Percentage information preserved for different bucket precisions

10

20

30

40

50

60

70

80

90

100

1 D I G I T 2 D I G I T 3 D I G I T 4 D I G I T 5 D I G I T

%
 In

fo
rm

at
io

n
pr

es
er

ve
d

Bucket ID precision

56

7.4 Effect of k on strict LSH k-anonymity algorithm

In order to understand the effect of cluster size on information preserved by LSH k-anonymity

algorithm, we used the same dataset as the one described in section 7.3. We set precision factor as

10000, number of hash functions as 3, and for different cluster sizes, we executed LSH. As we can

see in Figure 7-4, the percentage information preserved reduces as cluster size increases. We see

that for a huge dataset of 55 million, the cluster size of 80 works just fine but if we go beyond that,

we see a sharp decline in the amount of information preserved.

Figure 7-4. Percentage information preserved for different cluster sizes

This happens because fewer clusters qualify for summary statistic generalization and all remaining

clusters get completely suppressed, hence leading to higher information loss. The value of k must

be chosen based on the size of the data.

60

65

70

75

80

85

90

k=3 k=5 k=10 k=20 k=40 k=80 k=120 k=400

%
 In

fo
rm

at
io

n
pr

es
er

ve
d

Cluster size

57

7.5 Performance of risk-based LBS algorithm

Distributed LBS algorithm involves very few stages leading to a very simple DAG. DAG contains

5 jobs, first for reading data, second for executing LBS algorithm on each entry, third for

calculation of mean of the publisher benefit, fourth for calculation of mean of the advisory benefit

and fifth for writing output to a file. This leads to a very simple code execution flow requiring only

single caching. Caching leads to RDD getting replicated on multiple nodes, hence leading to

efficient computations even in the event of executor failure. In Figure 7-5, we can see that

performance of LBS algorithm is linear. In order to perform this experiment, we scaled the LBS

parameters from the paper (Wan, et al., 2015) to 1/12’Th of its value (i.e. V=100, L=8.333,

C=0.333) and adjusted the number of partitions (1600 partitions for the 1GB file) as dataset size

increased.

(a) LBS: Time taken vs file size

0

10

20

30

40

50

60

1 G B 5 G B 1 0 G B 2 0 G B 4 0 G B 8 0 G B

Ti
m

e
ta

ke
n

(m
in

ut
es

)

File size (gigabytes)

58

(b) LBS: percent information preserved vs file size

Figure 7-5. Performance of distributed LBS algorithm

Despite the LBS algorithm being compute intensive, it scales linearly. The distributed LBS

algorithm executes LBS algorithm for each record concurrently on all executors. This leads to a

high level of parallelism clearly reflecting in Figure 7-5. Also, we can clearly see that LBS

algorithm preserves the high amount of information, ~99% as opposed to Mondrian and LSH

bucketing based k-anonymity.

7.6 Comparison of data sanitization techniques

In order to compare how much of the original information is preserved after the anonymization

process, we conducted a simple experiment on seven large files created by replicating original

dataset. While executing these algorithms, we kept the same configuration for all algorithms. The

value of k was set as 3 and the precision factor was set to 10000. The performance of LBS, LSH-

k-anonymity, and LBS-LSH is as shown in Figure 7-6. We can clearly that LBS is a clear winner.

It takes minimum time and overall, as dataset increases, the time increase remains within

99.74

99.76

99.78

99.8

99.82

99.84

99.86

1GB 5GB 10GB 20GB 40GB 80GB

%
 In

fo
rm

at
io

n
pr

es
er

ve
d

File Size (gigabytes)

59

proportion. In strict k-anonymity area, LSH based k-anonymity performs best. We executed

Mondrian algorithm on the smallest dataset, and after an hour when it did not finish, we decided

to end the program.

Figure 7-6. Time taken by LBS vs. LSH Vs one pass LBS-LSH anonymization techniques

We tried scaling all three algorithms to sanitize a file of size 80 GB. LBS finished in less

than an hour, LSH finished in 9 hours whereas LBS-LSH failed to finish. LBS-LSH incurs the

overhead of both the algorithms, leading to higher computation time. Space requirements of LBS-

LSH are also higher; it needs space for caching buckets as well as space for caching intermediary

RDD that gets computed thrice if not cached. This leads to extremely high memory requirements

and LBS-LSH starts suffering the moment file size increases beyond 10 GB. This is because data

does not fit in memory anymore and Apache Spark has to perform a lot of shuffle write operations.

LSH takes a higher amount of time than LBS because of bucket grouping. Grouping of data leads

to a lot of data shuffling leading to the high network I/O. Due to this reason, the computation time

for LSH increases as data size increases.

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

1 GB 5 G B 1 0 GB 2 0 GB 4 0 G B

Ti
m

e
ta

ke
n

(m
in

ut
es

)

File size

Time taken by LBS-LSH Time taken by LBS Time taken by LSH

60

 Although it is not pictorially shown, LBS and LBS-LSH algorithms provide close to

99.72% information preservation, and LSH based k-anonymity preserved ~87% of the original

information. Since datasets were created by replication of original data set, 100% information

preservation is possible because of the existence of duplicates. LBS, as well as LBS-LSH, preserve

most of the information. However, LSH bucketing based k-anonymity algorithm heavily depends

on the master “concatenatedHash” key, in order to group, and this hash key is computed using

floating point operations like division. Since the result of the floating point operation can differ

slightly across machines, the algorithm suffers, leading to variation in concatenatedHash generated

on different machines for the very same record.

7.7 Experimental evaluation of on-the-fly sanitization approach

In this section, we describe and compare the performance of on-the-fly sanitization technique

described in Chapter 6. Since the technique was suggested for on-the-fly sanitization, we

performed an experiment in order to analyze and report the impact of the aspect.

7.7.1 Experiment Setup

We used latest stable Apache Spark version available while performing the experiment. Please

find configuration details below.

Number of executors: 18

Worker RAM: 10GB each

Apache Spark version: 2.1.0

Apache Spark add-ons:

 BlueRay aspect jar stored in <Apache Spark_Home>/jars

61

 Aspectjweaver jar – version 1.8.5, stored in /data/blueray folder

 Local policy store - policies.csv, stored in /data/blueray folder

Apart from Apache Spark, we also host Apache Tomcat server version 8.0 and deploy BlueRay

web application, which serves as centralized RESTful policy manager. The BlueRay aspect

communicates with RESTful policy manager using JSON data interchange format.

7.7.2 Comparisons: web policy manager vs local policy manager:

In order to compare the performance of web policy manager with local policy manager, we

executed a simple count program that simply iterated over entire dataset once. Figure 7-7 shows

the performance difference between local policy store and centralized web policy manager. We

can clearly see that for small files, the performance of both the approaches is almost identical. This

is because we specified fixed number of executors throughout, approximately 80. This means that

the local policy store was read exactly eighty times, once by each executor. The time spent in

reading local policy store was negligible, and this lead to the almost identical performance of both

approaches.

Figure 7-7. Local vs. web policy manager performance

0
50

100
150
200
250
300

1 GB 5 GB 1 0 GB 2 0 GB 4 0 GB 80 GBTi
m

e
ta

ke
n

(s
ec

on
ds

)

File size (gigabytes)

Web policy manager Local policy manager

62

As data size increases, Apache Tomcat’s latency increases because of limitation of the load

it can handle, which clearly explains why local policy performs slightly better for higher data loads.

The policy store selection depends upon requirement too. For huge policy stores, it would be wise

to have a web-based RESTful policy manager instead of local one. RESTful policy manager can

be further load balanced to support a higher number of concurrent HTTP GET requests.

7.7.3 Performance comparisons: read, group by, read-write:

In order to analyze the impact of aspect on overall processing, we performed a simple experiment.

We wrote small scripts that simply did read/write/group by operations. We executed BlueRay

aspect on each of the files. We can see in Figure 7-8 that read query performance curves are parallel

for sanitized and non-sanitized executions, and so are save functionality curves. However, group

by internally can lead to several calls of read method leading to a higher performance overhead.

Figure 7-8. Sanitized vs plain functionality: Read vs. group by vs. write queries

0

50

100

150

200

250

1 GB 5 GB 1 0 GB 2 0 GB 4 0 GB 8 0 GB

Ti
m

e
ta

ke
n

(s
ec

on
ds

)

File size (gigabytes)

Read Groupby Write Plain read Plain write Plain groupby

63

We see that overhead caused by aspect scales linearly as data increases exponentially. This

means that BlueRay aspect scales linearly even with exponentially growing data. In order to

calculate sanitization overhead, we came up with the following formula.

Overhead=
୘୧୫ୣ ୲ୟ୩ୣ୬ ୤୭୰ ୱୟ୬୧୲୧୸ୟ୲୧୭୬ ି ୘୧୫ୣ ୲ୟ୩ୣ୬ ୵୧୲୦୭୳୲ ୱୟ୬୧୲୧୸ୟ୲୧୭୬

୘୧୫ୣ ୲ୟ୩ୣ୬ ୵୧୲୦୭୳୲ ୱୟ୬୧୲୧୸ୟ୲୧୭୬
 (7.1)

We can see in Figure 7-9 that for computational queries like write, as time passes, the

overhead reduces whereas, for queries like read, it remains constant. Group by seems to be going

up until we exhaust complete memory of all executors. This is mainly because, in a write operation,

the cost of I/O dominates whereas in the group by operation, the cost of iteration dominates.

Figure 7-9. Overhead graph read vs. group by vs. write queries

Another reason behind this anomaly is because of the nature of Apache Spark platform

itself. Apache Spark computes RDD for every action. If we are invoking two actions on single

RDD, it would compute the RDD twice. This part of the framework definitely affects the

performance. In order to remedy this Apache Spark suggests the use of the cache and unpersist

0

0.5

1

1.5

2

2.5

1GB 5GB 10GB 20GB 40GB 80GB

O
ve

rh
ea

d

File size (gigabytes)

Sanitized read Sanitized groupby Sanitized write

64

function calls. However, incorrect use of these calls leads to values getting cached in memory on

worker nodes, which may result in incorrect output.

7.7.4 Performance impact of generalization vs suppression

Graph in Figure 7-10 was created by generalizing and suppressing two of the quasi-identifier

attributes, namely zip code, and age. We used performance of count method in order to accurately

plot the cost of reading generalized or suppressed data. The process of variable suppression is

achieved by reading data at a particular index through the BlueRay aspect and converting it into

suppressed form. The process of generalization is performed by replacing the value with its parent.

Although generalization involves lookup of the parent category, it can be easily fixed by using a

hash map as the cache for attribute and their generalizations.

Figure 7-10. Performance of generalization vs. suppression

We can clearly see in above graph that generalization takes higher time as compared to

suppression. Despite using a hash map, the diversity in the zip code causes cache misses leading

to higher time consumption compared to suppression. We also notice that both the graphs start at

0

50

100

150

200

1 GB 5 GB 1 0 GB 2 0 GB 4 0 GB 8 0 GB

Ti
m

e
ta

ke
n

(s
ec

on
ds

)

File size (gigabytes)

Suppression Generalization

65

a high value because of the initial aspect setup cost and gradually go up as the size of the dataset

increases. The overhead graph for generalization as well as suppression can be obtained using

following formula.

Overhead=
୘୧୫ୣ ୲ୟ୩ୣ୬ ୤୭୰ ୥ୣ୬ୣ୰ୟ୪୧୸ୟ୲୧୭୬ ୓ୖ ୱ୳୮୮୰ୣୱୱ୧୭୬ ି ୘୧୫ୣ ୲ୟ୩ୣ୬ ୤୭୰ ୧୲ୣ୰ୟ୲୧୭୬

୘୧୫ୣ ୲ୟ୩ୣ୬ ୤୭୰ ୧୲ୣ୰ୟ୲୧୭୬

(7.2)

From overhead graph in Figure 7-11, we can see that generalization and suppression both

have maximum overhead for smallest dataset. This is because the setup cost of injecting aspect

itself and reading metadata, in the case of generalization, adds up. The impact of these additional

costs decreases as we increase dataset size and the cost of BlueRay aspect starts adding up. We

can see that the least overhead occurs for a file of size 10 gigabytes.

Figure 7-11. Overhead graph for generalization vs. suppression

0

0.5

1

1.5

2

1GB 5GB 10GB 20GB 40GB 80GB

O
ve

rh
ea

d

File size (gigabytes)

Suppression overhead Generalization overhead

66

CHAPTER 8

CONCLUSION AND FUTURE WORK

Distributed algorithms do better than centralized algorithms, and thus are a better fit for scalable

big data anonymization. That being said, how distributed framework itself is architected has a

direct correlation with how a particular algorithm is going to perform. Thus, it is important to select

the right platform. Since most anonymization algorithms are typically iterative in nature, they

demand big data solution tuned for in-memory, iterative requirements. When compared to Hadoop,

Apache Spark provides additional support for iterative environments through data caching and

thus are more suitable for data sanitization implementations. In order to enable big data

sanitization, we implemented risk-based, strict k-anonymity based, batch, as well as online

sanitization algorithms for distributed frameworks, and then compared and contrasted their

performances.

In online big data sanitization space, the key contribution of this thesis is the BlueRay

aspect, a non-intrusive aspect-based approach for modifying runtime behavior of Apache Spark

RDD computation. To our knowledge, this is the first study that uses aspect-oriented programming

on Apache Spark in order to perform online data sanitization. Although, as part of this study, we

considered two utilities of the BlueRay aspect, namely, attribute suppression or generalization in

a structured context, the model has several more uses. In future, the BlueRay aspect framework

can be used to perform risk based sanitization, on-the-fly HDFS file encryption, role-based access

control, on-the-fly encrypted HDFS file decryption, RDD computation logging, RDD performance

metric analysis, etc. The approach does not require the developer to maintain a separate codebase

for Apache Spark, thus removing headache associated with framework branch maintenance. The

67

BlueRay aspect framework can also be extended to other distributed in-memory frameworks like

Impala, Apache Storm etc.

In the field of strict k-anonymity, the key contribution of this study is one pass distributed

LSH bucketing based k-anonymity algorithm. The distributed LSH bucketing method uses locality

sensitive hashing for performing bucketing in higher dimensional spaces. We further empirically

show that one pass LSH with data normalization can yield results that are better than Mondrian k-

anonymity. Not only it offers better scalability as well as efficiency compared to Mondrian

algorithm, but it also provides superior original information preservation for larger datasets.

Although it scales easily for datasets of size equal to cluster memory itself, improving the

performance of LSH k-anonymity to scale beyond cluster memory capacity is a possible future

work.

 In risk-based modern data sanitization approaches, this thesis contributes LSH bucketing

based LBS algorithm. Although the experimental section results show that LBS is superior to LBS-

LSH when it comes to performance (because of smaller risk lookup cost), The LBS-LSH algorithm

would definitely start performing better in two cases; when population lookups are extremely time-

consuming, and when the population is too sparse leading to LBS exploring most of its lattice. In

such scenarios, LBS-LSH may provide better performance.

While risk-based approach evaluates dataset against the population, k-anonymity based

methods focus on attaining k-anonymization within the dataset itself. This is not always the

requirement. A hybrid Mondrian in population k-anonymity algorithm can be formulated which

would decide whether to select a given generalization level based on a number of individuals in

the population. This approach would not only provide within population strict k-anonymity but

68

would also be more efficient because of its distributed nature. Apart from future work

opportunities mentioned above, it would be worth comparing them with other clustering based

models like Kmeans.

We evaluated all three batch algorithms for data set the size of approximately 2 billion

rows, the combined population size of Europe and China, and showed how each of the algorithms

can scale to meet such big data demands on a cluster of limited size. Optimizing performance of

these algorithms to work beyond four attributes in limited time, on limited hardware is definitely

something that can be addressed in future.

In summary, anonymization techniques need to scale to large data, and given advances in

memory cost per unit reduction, in-memory distributed computing frameworks would be right

tools for solving these problems. The decision of algorithm selection would simply remain to be a

factor of the anonymization requirement. For strict k-anonymity, LSH bucketing can be used

whereas for risk-based anonymization, LBS or LBS-LSH would be a perfect fit. The results

reported in this thesis would enable data publishers to decide right tools and techniques for

performing big data sanitization.

69

APPENDIX A

DATASET AND METADATA

In Appendix A, we describe the metadata used for performing experiments explained in

CHAPTER 7.

Input dataset and metadata file format

All batch algorithms explained in this thesis expect input data as in the following format. Please

find an example of the sample in Figure A-1.

Male,38019,19,White
Male,38114,19,Asian-Pac-Islander
Male,37887,18,Amer-Indian-Eskimo
Male,37212,18,Other

Figure A-1. Sample CSV file

Metadata file format

In order to process data efficiently, we also create a metadata file of the format shown in Figure

A-2. This XML file describes the structure of the data. The root element of the XML is <columns>.

<columns>
<column>

 <name>[column_name]</name>
 <type>[Numeric or Categorical]</type>
 <index>0</index>
 <num_unique>2</num_unique>
 <isQuasiIdentifier>true</isQuasiIdentifier>

 <min></min>
 <max></max>
 <hierarchy>

<value>*</value> <!Implicitly assumed.-->
 <children>
 <value>[column_unique_value_2]</value>
 </children>
 <children>
 <value>[column_unique_value_1]</value>
 </children>

70

 </hierarchy>
 </column>
 <!-- … Other columns -->
</columns>

Figure A-2. Metadata file format

The <columns> element contains metadata for each column present in the CSV file. Along with

other attributes, <column> element contains name or title of the column, index of the column, and

type of the column. Type of the column is expected to be provided as “i” for numeric data and “s”

for string data. For simplicity, the numeric data is assumed to be in form of double data type. It

also contains a column indicating whether the column selected is a quasi-identifier or not. For

numeric data, metadata is expected to include minimum and maximum value possible for data

found in this column. There are no validations performed to enforce this, but we simply assume

that data respects min-max range provided. Along with the above metadata, a generalization

hierarchy is also provided for each column. Since granular generalization hierarchies play a major

role in better anonymization of the data, we have defined granular hierarchies.

Metadata generalization hierarchy

Please find generalization hierarchy for the race attribute, denoted in the pictorial format in Figure

A-3. Based on the data available, following generalization hierarchy was created for race attribute.

Please note that all attributes have a common top most level of generalization, complete

suppression.

71

Figure A-3. Race generalization hierarchy

Similarly, for attribute age, we defined two high-level generalization hierarchies, 0-59 and 60-120,

each of these levels are further subdivided into two equal portions until we reach a level where a

number of entries become odd. At this level, we divide the range into 3 groups each and make it

the leaf of the generalization hierarchy. Please find the same in Figure A-4

Figure A-4. Age generalization hierarchy

For gender attribute, a simple hierarchy was created. As shown in Figure A-5, both values can be

generalized into a single common ancestor that suppresses the attribute completely.

72

Figure A-5. Gender generalization hierarchy

For zip code, the data contained was found to be in the range of 37010-72338. The hierarchies

defined for the zip code attribute are shown in Figure A-6. This was kept consistent with

hierarchies used in the risk-based paper (Wan, et al., 2015).

Figure A-6. Zip code generalization hierarchy (Top Level)

Because of the space constraint, the bottommost level was not included in Figure A-6. A sample

generalization level for 370**, is expanded as shown in Figure A-7.

Figure A-7. Zip code generalization hierarchy (bottom level)

73

APPENDIX B

SOURCE CODE

This section includes source code implemented as part of the thesis. Shown below is the source

code of BlueRay aspect, which is responsible for injection of aspect that performs data sanitization.

The following code calls extractPathForSpark, which is responsible for extraction of the name of

the HDFS file on which aspect injection is being performed.

As we can see in the following code, we loop over fields of the joint point and extract the one

which is either InputSplit or split, we then extract the entire path of the same.

74

The aspect chooses different iterators based on the requirement. Shown below is the declaration

of one the iterators. Specifically, the ColumnBlockingInteruptibleIterator, which blocks or

generalizes columns provided. This iterator extends the InterruptibleIterator that is returned as

the output of MapPartitionRDD’s compute method.

We do not modify hasNext method but we do override next method. As we can see, the algorithm

blocks column specified if the nextElement’s length matches length specified.

75

In order to perform suppression or generalization, we use the following code.

76

LBS source code for implementing risk-based approach implementation

Please find the implementation of the findOptimalStrategy method described in section 5.3,

below. This method implements the risk-based sanitization approach paper (Wan, et al., 2015).

The implementation of IL(g) method that calculates information loss for a generalized record, is

shown below. This method computes information loss for each attribute individually and then adds

it in order to compute total information loss for generalization level g.

77

Shown below is the source code of getChildren method used for creating a lattice. This method is

called by the findOptimalStrategy method in order to form a lattice to compute generalization on.

Following method is used in order to check whether lattice based search has reached the bottom

of the lattice, i.e. every attributed is generalized to its highest possible value.

78

Shown below is the source code of metadata class that is used for expediting the execution of

LSH/Mondrian/LBS algorithms.

79

Mondrian source code

Please find the source code for distributed Mondrian algorithm described in section 4.3, below.

80

Please find the source code of selectDimension method called by the k-anonymize method,

below.

81

LBS

Please find the source code for distributed LBS algorithm explained in section 5.3, below.

LSH bucketing (strict k-anonymity)

Please find the source code for LSH using strict k-anonymity algorithm outlined in section 4.4

described below.

82

83

LBS-LSH source code

Please find the source code of LBS-LSH code below. As we can see, we first convert lines into the

quantitative format and then we bucket them. Once done, we invoke LBS on each of the buckets

individually based on the LBS-LSH algorithm defined in section 5.5.

84

APPENDIX C

CONFIGURATION AND COMMANDS

This appendix shows commands used in order to execute online as well as batch sanitization

implementations.

Apache Spark job configuration

The performance of job submitted to Apache Spark heavily depends on several parameters. Before

submitting a job request, we must perform analysis and decide parameters for the job. Apache

spark is extremely sensitive to these configuration parameters. Number of partitions to be

performed on input dataset determines how many partitions will be created. A task gets created

per partition and is assigned to an executor. The number of partitions chosen will be different based

on dataset size and analysis must be performed to select the appropriate size for each partition.

More executor memory causes heavy garbage collection breaks, leading to reduced performance.

Smaller executor memory can cause OOM. Similarly, driver memory, as well as a number of cores

on the driver, must be similarly tuned too. Some jobs can run for a long time, spark network

timeout must be set in order to accommodate same. Also, some jobs get stuck, to not let that

happen, we need to enable speculation. Speculation depends on multiplier and quantile. Quantile

checks decide when speculation should be enabled. Enabling this early (0) can cause performance

to degrade hence we set it to a higher value of 0.9, which means that speculation is started only

after 90% of the jobs have completed execution. Similarly, speculation multiplier is used for

stating that these many times slower job than the median should be killed. We modified the value

to three because too many jobs were getting killed for a smaller value. This, however, is subjective

85

and is completely dependent on the state of the cluster as well the DAG. Please find a subset of

parameters, which were tuned for this thesis, listed below.

 Number of dataset partitions

 spark.executor.cores=2/5/10

 spark.executor.memory=2G/5G/10G

 spark.network.timeout=800

 spark.speculation=true

 spark.speculation.multiplier=3

 spark.driver.memory=6G/8G

 spark.driver.cores=8

 spark.speculation.quantile=0.9

 spark.shuffle.consolidateFiles=true

 spark.executor.heartbeatInterval=50s

Please find commands used for executing LBS/LBS/LBS-LSH implementations, listed below.

Please note that a single codebase was maintained for batch as well as online implementation. In

order to invoke LBS/LSH/LBS-LSH, a single class LBSAndLSH needs to be executed. The format

of attributes to be provided to this class is as shown below.

<spark_master><hdfs_data_file_path><output_file_path><recordcost><maxpublisherbenefi>

<publishersloss><numpartitions><algorithm (lbs/lbslsh/lsh)><lsh_num_neighbors>

Please find sample commands for execution of each of the algorithm, below.

86

Command for Invoking LSH

./spark-submit --class edu.utd.security.risk.LBSAndLSH --deploy-mode client --conf
spark.executor.cores=10 --conf spark.executor.memory=10G --conf
spark.network.timeout=800 --conf spark.speculation=true --conf spark.speculation.multiplier=3 --
conf spark.driver.memory=6G --conf spark.driver.cores=8 --conf spark.speculation.quantile=0.9
--conf spark.shuffle.consolidateFiles=true --conf spark.executor.heartbeatInterval=50s --master
"spark://cloudmaster3:7077" "/data/kanchan/blueray-1.2-ASPECT-SNAPSHOT.jar"
"spark://cloudmaster3:7077"
"hdfs://cloudmaster3:54310/user/adult_zip80G.csv" "hdfs://cloudmaster3:54310/user/" 0.3333
100 8.3333 31000 lsh 3

Command for Invoking LBS

./spark-submit --class edu.utd.security.risk.LBSAndLSH --deploy-mode client --conf
spark.executor.cores=10 --conf spark.executor.memory=10G --conf
spark.network.timeout=800 --conf spark.speculation=true --conf spark.speculation.multiplier=3 --
conf spark.driver.memory=6G --conf spark.driver.cores=8 --conf spark.speculation.quantile=0.9
--conf spark.shuffle.consolidateFiles=true --conf spark.executor.heartbeatInterval=50s --master
"spark://cloudmaster3:7077" "/data/kanchan/blueray-1.2-ASPECT-SNAPSHOT.jar"
"spark://cloudmaster3:7077"
"hdfs://cloudmaster3:54310/user/adult_zip80G.csv" "hdfs://cloudmaster3:54310/user/" 0.3333
100 8.3333 31000 lbs 3

Command for Invoking LBS-LSH

./spark-submit --class edu.utd.security.risk.LBSAndLSH --deploy-mode client --conf
spark.executor.cores=10 --conf spark.executor.memory=10G --conf
spark.network.timeout=800 --conf spark.speculation=true --conf spark.speculation.multiplier=3 --
conf spark.driver.memory=6G --conf spark.driver.cores=8 --conf spark.speculation.quantile=0.9
--conf spark.shuffle.consolidateFiles=true --conf spark.executor.heartbeatInterval=50s --master
"spark://cloudmaster3:7077" "/data/kanchan/blueray-1.2-ASPECT-SNAPSHOT.jar"
"spark://cloudmaster3:7077"
"hdfs://cloudmaster3:54310/user/adult_zip80G.csv" "hdfs://cloudmaster3:54310/user/" 0.3333
100 8.3333 31000 lbslsh 3

Similarly, we can invoke online implementation by specifying following command. Please note

that following commands assume that blueray has been deployed in /data/kanchan folder instead

of /data/blueray. This was done in order to comply with the UTD’s policy of storing user files in

user folders. We can see that with the following command, we are trying to execute “BlueRayTest”

87

class while setting the user as “kanchan” in the system environment. This variable will be read by

BlueRay aspect in order to apply the appropriate policy.

Command:

./spark-submit --conf spark.executor.cores=2 --conf spark.executor.memory=2G --master
"spark://cloudmaster3:7077" --class BlueRayTest --conf "spark.executorEnv.USER=kanchan" -
-master "spark://cloudmaster3:7077" /data/kanchan/BlueRayTest-0.0.9-SAVE-SNAPSHOT.jar
kanchan "hdfs://cloudmaster3:54310/user/adult_zip1G.csv"
"hdfs://cloudmaster3:54310/user/GENER_12G.csv" "spark://cloudmaster3:7077"

Executing RESTFul policy manager on BlueRay aspect

In order to execute a specific type of iterator, we need to set appropriate parameters in the system

environment of the driver as well as the executor. The BlueRay aspect offers following options to

be selected based on the requirement.

POLICYMANAGER_END_POINT – For RESTful policy manager based sanitization.

BLUERAY_POLICIES_PATH – For local policy store based sanitization.

BlockColumns – for Identifier field generalization or suppression.

Please find a sample invocation of command provided below. Please note that following command

assumes that RESTful policy manager is available on http://192.168.4.1:8084/bluerayWebapp

link.

Command:

./spark-submit --conf spark.executor.cores=2 --conf spark.executor.memory=2G --master
"spark://cloudmaster3:7077" --conf "spark.executor.extraJavaOptions=-
javaagent:/data/kanchan/aspectjweaver-1.8.5.jar" --conf "spark.executorEnv.USER=kanchan" -
-conf
"spark.executorEnv.POLICYMANAGER_END_POINT=http://192.168.4.1:8084/bluerayWebap
p" --driver-java-options "-
DPOLICYMANAGER_END_POINT=http://192.168.4.1:8084/bluerayWebapp -
javaagent:/data/kanchan/aspectjweaver-1.8.5.jar" --class BlueRayTest --master
"spark://cloudmaster3:7077" /data/kanchan/BlueRayTest-0.0.9-SAVE-SNAPSHOT.jar kanchan

88

"hdfs://cloudmaster3:54310/user/adult_zip20G.csv"
"hdfs://cloudmaster3:54310/user/GENER_12G.csv" "spark://cloudmaster3:7077"

Similarly, please find command to be used for invoking local policy manager, below. Please note

that policies file must be kept in sync on all executors to ensure that this is done the right way.

Command for execution of local policy manager on BlueRay aspect

./spark-submit --conf spark.executor.cores=2 --conf spark.executor.memory=2G --master
"spark://cloudmaster3:7077" --conf "spark.executor.extraJavaOptions=-
javaagent:/data/kanchan/aspectjweaver-1.8.5.jar" --conf "spark.executorEnv.USER=kanchan" -
-conf "spark.executorEnv.BLUERAY_POLICIES_PATH=/data/kanchan/policies.csv" --driver-
java-options "-DBLUERAY_POLICIES_PATH=/data/kanchan/policies.csv -
javaagent:/data/kanchan/aspectjweaver-1.8.5.jar" --class BlueRayTest --master
"spark://cloudmaster3:7077" /data/kanchan/BlueRayTest-0.0.9-SAVE-SNAPSHOT.jar kanchan
"hdfs://cloudmaster3:54310/user/adult_zip1G.csv"
"hdfs://cloudmaster3:54310/user/GENER_10G.csv" "spark://cloudmaster3:7077"

In order to perform multi-field generalization or suppression, we can specify BlockColumns.

Please find sample commands for both listed below.

Command for suppressing columns 2 and 3

./spark-submit --conf spark.executor.cores=2 --conf spark.executor.memory=2G --master
"spark://cloudmaster3:7077" --conf "spark.executor.extraJavaOptions=-
javaagent:/data/kanchan/aspectjweaver-1.8.5.jar" --conf
"spark.executorEnv.BlockColumns=4[1,2]" --conf "spark.executorEnv.USER=kanchan" --
driver-java-options "-DBlockColumns=4[1,2] -javaagent:/data/kanchan/aspectjweaver-1.8.5.jar"
--class BlueRayTest --master "spark://cloudmaster3:7077" /data/kanchan/BlueRayTest-0.0.9-
COUNT-SNAPSHOT.jar kanchan "hdfs://cloudmaster3:54310/user/adult_zip80G.csv"
"hdfs://cloudmaster3:54310/user/GENER_10G.csv" "spark://cloudmaster3:7077"

The command for generalization is very much similar to suppression command except that as part

of BlockColumns, we also provide a path of metadata file that contains generalization hierarchy

for columns 2 and 3.

89

Command for generalizing columns 2 and 3:

do ./spark-submit --conf spark.executor.cores=2 --conf spark.executor.memory=2G --master
"spark://cloudmaster3:7077” --conf "spark.executor.extraJavaOptions=-
javaagent:/data/kanchan/aspectjweaver-1.8.5.jar" --conf
"spark.executorEnv.BlockColumns=4[2,3]/data/kanchan/metadata_exp.xml" --conf
"spark.executorEnv.USER=kanchan" --driver-java-options "-
DBlockColumns=4[2,3]/data/kanchan/metadata_exp.xml -
javaagent:/data/kanchan/aspectjweaver-1.8.5.jar" --class BlueRayTest --master
"spark://cloudmaster3:7077" /data/kanchan/BlueRayTest-0.0.9-SAVE-SNAPSHOT.jar kanchan
"hdfs://cloudmaster3:54310/user/adult_zip1G.csv"
"hdfs://cloudmaster3:54310/user/GENER_1G.csv" "spark://cloudmaster3:7077"

90

REFERENCES

Census Summary File prepared by the US Census Bureau. (Oct, 2014). Retrieved from US
Census Bureau: https://www.census.gov/prod/cen2010/doc/sf2.pdf

Chakravorty, A. (2016, June). Incognito library of Apache spark based k-anonymization.
Retrieved 04 07, 2017, from https://github.com/achak1987/incognito

Datar, M., Immorlica, N., Indyk, P., & Mirrokni, V. S. (2004). Locality-Sensitive Hashing
Scheme Based on p-Stable Distributions. SCG '04 Proceedings of the twentieth annual
symposium on Computational geometry (pp. 253-262). New York: ACM .

Dwork, C. (2008). Differential Privacy: A Survey of Results. Lecture Notes in Computer
Science, vol 4978 (pp. 1-19). Berlin Heidelberg: Springer .

El Emam, K., Jonker, E., Arbuckle, L., & Malin, B. (2011, December 2). A Systematic Review
of Re-Identification Attacks on Health Data. PLoS ONE, 6(12).

Everitt, B. (2011). Cluster analysis. Chichester, West Sussex, U.K: U.K: Wiley.

Ghemawat, S., & Jeffrey, D. (2004, Dec). MapReduce: Simplified Data Processing on Large
Clusters. Sixth Symposium on Operating System Design and Implementation. San
Francisco, CA: OSDI'04.

Ghinita, G., Kalnis, P., & Tao, Y. (2010). Anonymous Publication of Sensitive Transactional
Data. IEEE Transactions on Knowledge and Data Engineering, 161 - 174.

Gostin, L. O., Lazzarini, Z., & Neslund, V. S. (1996). A National Review of the Law on Health
Information Privacy. JAMA, 275(24), 1921-1927.

HHS. (2000, December 28). HIPAA Privacy Rule. Retrieved from HHS.gov:
https://www.hhs.gov/sites/default/files/ocr/privacy/hipaa/administrative/privacyrule/prde
cember2000all8parts.pdf?language=en

Inaba, M., Katoh, N., & Imai, H. (1994). Applications of weighted Voronoi diagrams and
randomization to variance-based k-clustering. 10th ACM Symposium on Computational
Geometry (pp. 332–339). doi:10.1145/177424.178042.

Indyk, P., & Motwani, R. (1998). Approximate nearest neighbors: towards removing the curse of
dimensionality. Proceedings of the thirtieth annual ACM symposium on Theory of
computing (pp. 604-613). Dallas, Texas, USA: STOC.

Jain, A., M.N., M., & P.J., F. (1999). Data clustering: A review. ACM Computing Surveys
(CSUR), 31(3), 264-323.

91

Judson, B. S. (2015, June). Data Anonymizing in Hadoop: A TED Case Study. Retrieved 04 07,
2017, from https://blogs.msdn.microsoft.com/partnercatalystteam/2015/06/04/data-
anonymizing-in-hadoop-a-ted-case-study/

K-Anonymity. (n.d.). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/K-anonymity

Lichman, M. (2013). Adult Data Set. Retrieved 12 12, 2016, from UCI Machine Learning
Repository: http://archive.ics.uci.edu/ml/datasets/Adult

Locality Sensitive Hashing. (2016, Dec 28). Retrieved 02 07, 2017, from Apache Spark
Documentation: https://spark.apache.org/docs/latest/ml-features.html#lsh-operations

Machanavajjhala, A. a. (2007, March). L-diversity: Privacy beyond k-anonymity. ACM
Transactions on Knowledge Discovery from Data (TKDD).

Mumtaz K, D. K. (2010). An Analysis on Density Based Clustering of Multi Dimensional
Spatial Data. 1(1), 8-12.

Ramakrishnan, R., LeFevre, K., & DeWitt, D. J. (2006). Mondrian Multidimensional K-
Anonymity. ICDE '06 Proceedings of the 22nd International Conference on Data
Engineering (p. 25). IEEE Computer Society Washington, DC, USA ©2006.

Ruggieri, S. (2014, August). Using t-closeness anonymity to control for non-discrimination.
Transactions on Data Privacy, 7(2), 99-129.

Safran, C., Bloomrosen, M., Hammond, W. E., Labkoff, S., Markel-Fox, S., Tang, P. C., &
Detmer, D. E. (2007, 01 01). Toward a National Framework for the Secondary Use of
Health Data: An American Medical Informatics Association White Paper. An American
Medical Informatics Association, 14(1), pp. 1-9.

Stephens, Z. D., Lee, S. Y., Faghri, F., Campbell, R. H., Zhai, C., Efron, M. J., . . . Robinson, G.
E. (2015). Big Data: Astronomical or Genomical? PLOS : Biology.

Syed, M., & Srikanth, V. (2016, September). FOR YOUR EYES ONLY: DYNAMIC COLUMN
MASKING & ROW-LEVEL FILTERING IN HDP2.5. Retrieved from
https://hortonworks.com: https://hortonworks.com/blog/eyes-dynamic-column-masking-
row-level-filtering-hdp2-5/

Ulusoy, H., Kantarcioglu, M., Pattuk, E., & Hamlen, K. (2014). Vigiles: Fine-grained Access
Control for MapReduce Systems. Proceedings of the 2014 IEEE International Congress
on Big Data (pp. 40-47). Washington DC, USA: IEEE Computer Society.

Wan, Z., Vorobeychik, Y., Xia, W., Wright, E., Clayton, Kantarcioglu, M., . . . A. Malin, B.
(2015). A Game Theoretic Framework for Analyzing Re-Identification Risk. PLOS.

92

Wogara, J. (2001, 05 01). Human Rights and Patients’ Privacy in UK Hospitals. Human Rights
and Patients’ Privacy in UK Hospitals. Retrieved 04 07, 2017, from
https://en.wikipedia.org/: Human Rights and Patients’ Privacy in UK Hospitals

Zaharia, M. (2012, 12). Spark Internals documentation. Retrieved 01 01, 2017, from Spark
Internals documentation: http://files.meetup.com/3138542/dev-meetup-dec-2012.pptx

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., . . . Ion, S. (2012).
Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster
computing. NSDI'12 Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation (pp. 2-2). CA, USA: USENIX Association Berkeley.
Retrieved 01 01, 2017, from A Fault-Tolerant Abstraction for In-Memory Cluster
Computing

Zhang, X., Leckie, C., Dou, W., Chen, J., Kotagiri, R., & Salcic, Z. (2016). Scalable Local-
Recoding Anonymization using Locality Sensitive Hashing for Big Data Privacy
Preservation. Proceedings of the 25th ACM International on Conference on Information
and Knowledge Management (pp. 1793-1802). Indianapolis, Indiana: ACM New York,
NY.

Zhang, X., Yang, L., & Liu, C. (2013). A Scalable Two-Phase Top-Down Specialization
Approach for Data Anonymization Using MapReduce on Cloud. IEEE Transactions on
Parallel and Distributed Systems, 363 - 373.

Zhou, B., Pei, J., & Luk, W. (2008). A brief survey on anonymization techniques for privacy
preserving publishing of social network data. ACM SIGKDD Explorations Newsletter,
10(2), 12-22. Retrieved 04 07, 2017

93

BIOGRAPHICAL SKETCH

Kanchan Waikar is a master’s student in the Department of Computer Science at The University

of Texas at Dallas. She received her Bachelor’s degree in Computer Science and Technology from

S.N.D.T University, Juhu, India in 2005. She has over 10 years of industry experience spanning

NLP, J2EE, web designing, development and architecture management of technical products. Her

career interests are data science, big data technologies and distributed system architectures.

94

CURRICULUM VITAE

Synopsis:

I am a curious technologist. I absolutely love development, design, architecting and analyzing

software systems. I have been working as backend lead, technical product lead and have over 10

years of software experience. I have played several roles - UX specialist, NLP developer, java web

developer, full stack engineer, project manager, dev-ops intern, technical product lead and recently

ML/data security researcher. Spring, Hadoop, SOLR, Memcached, Hibernate, Spark, Scala,

Docker are some of my most favorite tools/technologies apart from Java and J2EE.

At School, I have taken very interesting subjects like Machine learning, big data, advanced

algorithms, Natural Language Processing, Semantic Web, etc. My master’s thesis topic is big data

sanitization using distributed in-memory frameworks.

Education

Master’s in Computer Science (Data Science - Graduating in spring 2017)

University: The University of Texas at Dallas

CGPA: 3.85/4.0

Bachelor's in Computer Science

College: Usha Mittal Institute of Technology, S.N.D.T. University, Mumbai

Degree: Bachelor’s degree in Computer Science & Technology (distinction)

CGPA: 7.81/10 (University Topper in 7th Semester)

Recognitions

 Won spotlight award in June 2016

 Received thank you award from FirstFuel, in March - 2015

 CEO excellence award in February 2013

 Received several appreciation letters from Vice President, CEO while working at Credit

Pointe.

 Exhibited ‘Multi-term Entity Extraction Engine’ at Symantec’s annual conference in

Salt Lake City, Utah, USA in October 2008.

 Java Developer Journal/Sys-Con author - kanchanwaikar.sys-con.com

95

Experience Summary:

Organization Role/Duration Tools & Technologies used

The University of Texas

at Dallas

Researcher

[Aug-2016 – April

2017]

Spark, Hadoop, MapReduce, AspectJ,

Scala, Java, and Junit.

Intuit Summer Intern

[May-2016- Aug 2016]

Docker, Docker Swarm, Jenkins, Shell

scripts.

Firstfuel

Account, Xpanxion,

India

Backend Technical Lead

/Scrum Master

[March 2014 – July -

2015]

Spring 3.0.3, Java, MySQL, Junit,

Maven, AGILE methodology, AWS,

Confluence-Bamboo-Jira-GIT suite, and

Hibernate.

Credit Pointe, Indian

subsidiary of Rage

Frameworks

Full Stack Technical

 Lead

[December 2010 to

March 2014]

Java, Spring 3.0.3, Apache Server,

Apache Tomcat, Memcached, Oracle,

PL-SQL, SOLR, JSP, EXT-JS, AM

Charts, Fusion Charts, Jprofiler, Jersey,

and JQuery.

Symantec corporation NLP/Full stack

Developer

[April 2008 to

November 2010]

Java, Struts, JSP, Lucene, SOLR, SVN

Apache Tomcat, MySQL, Apache Tika,

PDFBox, Apache James, ANT,

and Perforce.

Wipro Technologies On-site Review Team

Lead, Developer

[September 2005 to

March 2008]

CSS, Java, JSP, Javascript, JSF, HTML,

and Mainframes.

96

Projects

Firstfuel (http://www.firstfuel.com/) - Xpanxion/Firstfuel limited.

FirstFuel is a SaaS solution that dissects fuel usage data of buildings and applies advanced

analytical models in order to identify actionable insight for decreasing net fuel usage.

 I played the role of technical Epic Lead for several modules like end use bounds

disaggregation, automatic monitoring execution, energy usage peer ranking determination, thermal

regression, deep analysis, etc. I worked on building complex, highly scalable and maintainable

backend pieces involving integration with statistical models energy analytics platform.

Real Time Intelligence (http://www.rageframeworks.com/capital_markets/) - Credit Pointe

RTI application solves the problem of information asymmetry by combining real-time data from

news and social media sources, and by performing a comprehensive analysis in order to identify

the performance trend of the company.

 I owned the technology portion of RTI portal - (1.0, 2.0, and 2.1). I architected & developed

RTI – 2.0, upgraded public facing website, and adjudication and business analytics layer of

customer portal. I architected back-end in order to add support for up to 1000 concurrent users by

using more advanced backend approaches that involved fairly advanced concepts like usage of

SOLR, Memcached, and service level caching.

PricePucho (Personal Project)

This website’s primary purpose was to bridge the gap between Indian consumers and small-scale

businesses. It provided powerful features that let users contact small scale businesses.

 A website that I developed, maintained, and hosted by renting a virtual private server. This

website used SOLR for providing search, filtering and faceting features and Memcached for

caching.

NUI/NUL Tech-Decom - Wipro

This project targeted migration of redundant systems formed because of business mergers and

acquisitions. I worked as a System Analyst & Review Team Lead at Norwich Union's head office,

located in the United Kingdom.

Internship Project - Lacerte/Docker - Intuit, Dallas

97

 Lacerte SCM Build process performance analysis and improvement. I improved the

capacity of Build system by 60% and build job speed by 50% without the addition of any

new hardware.

 I was one of the key members of the team that automated CI-CD pipeline implementation

using Docker Swarm.

SymHelp - Symantec Corporation

SymHelp is a context-sensitive help system that performs content categorization and returns results

based on user query sentiment.

 I was involved in SymHelp 2.0 design, the addition of L10N support, an end to end release

automation and development of several web modules.

Multi-term Entity Extraction Engine - Symantec Corporation

This tool parsed PDF/TXT/Word/presentation files, extracted noun variants, verb variant entities

along with their TF/TDF, and identified domain specific multi-term entities along with their

importance. These entities were consumed by the SymHelp search engine in order to perform user

intent analysis.

 I owned development of this project end-to-end and presented an exhibit of the same at

Cutting edge 2008 annual conference in Salt Lake city, Utah, USA.

Extra-Curricular Activities:

 I own a painting artist page on Facebook.

 I won a 2nd prize at intra-university chess competition.

 I played chess for The SNDT University at the national level.

 I was event manager for several events in FirstFuel and Wipro.

