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Recent advancements in machine learning and artificial intelligence have significantly im-

pacted the way humans interact with machines. Voice assistant based solutions are examples

of emerging technology advancements that impact human-machine interaction. Since, speech

is the most natural form of human communication, voice assistant devices have received wide

user acceptance, and have become a pleasant way to facilitate and address everyday living

needs, including access to the current news, events, etc. These voice-based technologies have

been made possible through advanced robust processing of speech signals. Depending on

the application, various speech processing techniques are required to achieve an effective

overall robust solution. Speech recognition is required when text content of spoken words is

needed; for example adding text captions to broadcast news or YouTube videos. If a service

should become available based on who is interacting with the device, speaker recognition

becomes a required step; for example, if an individual gains access to a data account (e.g.,

music, voice-mail, health or financial records), effective speaker recognition is needed for

that service. Overall, a range of solutions in speech processing can be required to address an

overall request. Other areas of speech processing that benefit the human-machine interac-

tion include language/dialect recognition, speech enhancement, machine translation, speech

synthesis, voice conversion, general diarization, etc.
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The environment where a person interacts with a device and input tools employed (such

as phone or microphone) can impact performance. It is common to have intrinsic/extrinsic

mismatch between train data and application data; in other words, data used for training the

speech processing tasks is often different than those at the test time. These variations need

to be considered while developing effective speech systems, especially when performance

is impacted significantly due to mismatch conditions. In this dissertation, we study the

problem of speaker recognition for domain mismatch. Recognizing the identity of a speaker

is an important task in speaker-dependent applications, and providing robust performance

regardless of how data is captured for model training and considering environmental/extrinsic

changes within the application phase is very important.

In this dissertation, we propose two categories of solutions to address the mismatch problem

in speaker recognition: discriminant analysis based adaptation methods (generalized dis-

criminant analysis-GDA, and support vector discriminant analysis-SVDA) and deep learn-

ing based adaptation technique (a-vector speaker embeddings). The proposed solutions are

evaluated on NIST SRE-10, NIST SRE-16 and NIST SRE-18 tasks. The GDA and SVDA

achieved 20% and 32% improvement in terms of EER for SRE-10 task. A-Vectors with

incorporating SVDA achieved up to 18% improvement over the previous best performing

solution on SRE-16 task. In addition, we propose a solution for speaker de-identification

task.

In more detail, the first category of solutions we propose is based on domain mismatch

compensation with discriminant analysis methods. Traditional speaker recognition use lin-

ear discriminant analysis to reduce the dimensionality of speaker embeddings and provide

a better discriminant feature representations for speaker classes. We propose non-linear

discriminant analysis to compensate for variabilities included during recording through gen-

eralized discriminant analysis. In addition, domain adaptation is also incorporated through
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our proposed support vector discriminant analysis method; which also provides improved

discrimination by considering the boundary structure of speaker classes.

The second category of solutions are based on domain mismatch compensation with deep

learning approaches. We propose a deep learning based technique to compensate for un-

wanted directions and information included in speaker embeddings, and provide domain-

invariant speaker representations.

Finally, we address speaker de- identification advancements to help protect confidential

speaker or text-content within a given audio stream. Taken collectively, these three domains

highlight technological advancement, which strengthen and make speaker recognition more

useful in commercial, personal, and governmental/society applications, which incorporate

human-speech engagement.
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CHAPTER 1

INTRODUCTION

Recent advancements in machine learning and artificial intelligence have significantly im-

pacted the way humans interact with machines. The growth of voice assistant devices

through these advancements shows the desire for integrating machine learning into our ev-

eryday needs. As speech is the most natural way of communication, voice assistant devices

have received a great acceptance, and they have became a pleasant way to interact with these

devices. The voice-based human-machine interactions have been made possible through ro-

bust processing of speech signals. Depending on the application, various speech processing

techniques can be integrated into the device/service. Speaker recognition (recognizing the

identity of a speaker from his/her voice, or just verifying the identity of a speaker) provides

personalized communication, and secure access to speaker-specific information. Therefore,

accurate speaker recognition systems can play a significant role in establishing a secure

connection between human and machines. In this dissertation, we focus on the speaker

recognition task specifically for mismatch conditions; when data used for development of the

system and data used for testing the system are collected under different conditions.

Generally speaking, speaker recognition refers to the task of recognizing whether a tar-

get/desired speaker is talking during a given test segment or not [3, 4], which is the main

task we study here. Approaches proposed for speaker recognition have evolved significantly

over the past few years to overcome the limitations and variations of the training data as well

as to provide consistent performance on naturalistic audio streams [4]; however, challenges

still remain, especially when there is a mismatch between data used to develop the system

and data used at the application phase. Speaker recognition provides very good performance

when there is a minor noise or distortions in testing utterances (or generally when there is

a minor mismatch between training and test data); however, with adding more distortions

and variabilities, the task becomes more difficult. Mismatch conditions can be divided into
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two categories, extrinsic (channel, noise, etc) and intrinsic (duration, language, and speaker

traits including stress, emotion, Lombard effect, vocal effort, accent). Both have been widely

studied for developing robust speaker recognition systems. With current advancements in

speaker recognition, intrinsic mismatch introduces more difficulty and challenge; which we

specifically focus on this type of mismatch during this dissertation. Domain mismatch prob-

lem as an intrinsic mismatch, i.e., when train (system development data) and enrollment/test

data (application data) are collected from different sources, is one of the problems which is

addressed further here. We investigate speaker recognition for the domain mismatch problem

(intrinsic mismatch); specially for those challenges introduced by NIST (National Institute

of Standards and Technology) SRE (speaker recognition evaluation) in 2010, 2016 and 2018.

In addition, we study the performance of speaker recognition systems when speakers are

de-identified by a voice conversion based system. With growing the amount of data become

available everyday through the internet, speaker de-identification can provide secure access

to this data; therefore, from one aspect de-identifying the identity of a speaker introduces

an approach to use the huge amount of available data securely. Another application is in

related with medical data; processing medical data is very difficult as we cannot access

private information of patients, i.e., information of the patient should not be revealed; both

the voice characteristics and the content. One strategy for processing medical records while

protecting the privacy of the patients is de-identifying the utterance and voice. Removing

personal information in linguistic features and para-linguistic features is a direction towards

making those data available for accurate processing through automatic systems.

1.1 Dissertation Contributions

The key contributions of this dissertation are summarized as follows:

• Generalized discriminant analysis (GDA): Dimension reduction with linear dis-

criminant analysis (LDA) is usually employed after normalizing the speaker embeddings
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to further discriminate the speaker classes. Here, we propose to extend the linear dis-

criminator to a nonlinear one with utilizing kernel functions. The GDA simply provides

discriminatory directions non-linearly, and it is shown to compensate for the distortion

and mismatch problem in developing the speaker recognition systems [5].

• Support-vector discriminant analysis (SVDA): Here, we further improve the

discriminant analysis and dimension reduction of speaker embeddings with SVDA.

The discrimination is provided with considering boundary structure of the speaker

classes rather than the mean centroid of them. On the other hand, domain mismatch

is the most common and challenging problem for speaker recognition systems. SVDA

can successfully be trained to address the domain adaptation in supervised as well

as unsupervised approaches. Our experiments show that SVDA successfully performs

adaptation when language of training data is different from enrollment and test data

[2, 6, 7].

• Domain adaptive auxiliary features for i-Vector (a-Vector): Appending auxil-

iary information features to the input features in order to compensate for the mismatch

and normalize language related information is studied here. We trained a model to

learn domain adaptive features and concatenated them with the i-Vectors; we call the

new embeddings as a-Vectors. Experiments show that a-Vectors along with the SVDA

technique provide strong performance on NIST SRE-16 data [8].

• Voice conversion based speaker de-identification: With growing artificial in-

telligence based assistant devices and availability of more speech data, one of the

important problems is related to protecting the privacy of speakers. We provide a so-

lution for that based on voice conversion systems, and evaluate how speaker recognition

systems can be successful to recognize the de-identified speakers. From one point, ex-

periments show that simply applying voice conversion techniques provides promissing
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performance evaluated by speaker recognition systems. In addition, voice conversion

techniques can help to generate new identities for each individual given speaker [9],

which serves as an augmentation technique to generate more speakers and data.

1.2 Dissertation Organization

The dissertation is organized as follows:

• Chapter 2: This chapter presents background on the speaker recognition task, in-

cluding problems and issues related to this task. We introduce the configuration of

our developed modules in a traditional speaker recognition system (used in the exper-

iments as our baseline systems). The general description of data and metrics used to

evaluate the performance of our solutions are also covered in this chapter.

• Chapter 3: Here, we introduce our two novel methods for domain adaptation in

speaker recognition. The methods are developed based on machine learning techniques

and address the problems of linear discriminant analysis in concern with the domain

mismatch. Our two methods named GDA and SVDA are shown to be effective for

NIST SRE-10 and SRE-16 tasks.

• Chapter 4: This chapter describes our novel deep learning based solutions for do-

main adaptation in speaker recognition. Our proposed method specifically targets the

unsupervised domain adaptation, where only very limited unlabeled in-domain data is

available.

• Chapter 5: In this chapter, we integrate multiple techniques for domain adaptation

together. Throughout experiments are designed to emphasize the effect of domain

adaptation and integration of multiple techniques for NIST SRE-16 and NIST SRE-18

tasks.
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• Chapter 6: In this chapter, we study the performance of speaker recognition systems

towards speaker de-identification. With using voice conversion techniques we modify

speakers voice, and the results show that it achieves high de-identification accuracy by

evaluating with the state-of-the-art speaker recognition solution.

• Chapter 7: In this chapter, we summarize our proposed dissertation contributions

for domain adaptation in speaker recognition; and our additional study on speaker

de-identification. This chapter also highlights areas for future work.
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CHAPTER 2

SPEAKER RECOGNITION: BACKGROUND

Text-independent speaker recognition is defined as recognizing whether a specific target or

desired speaker is talking during a given speech segment or not [3, 4].

To address the problems and challenges in speaker recognition, the proposed solutions

over the past few years have migrated from GMM (Gaussian mixture model)-UBM (universal

background model) [10] based systems towards i-Vector and deep learning based solutions

(i.e., t-Vector [11] and x-Vector [12]), where a speaker embedding is extracted for each

utterance of the speaker. The speaker embeddings are next fed into a classification or

scoring module to perform recognition/verification task. During this migration, we can

also include methods based on: joint factor analysis (JFA) [13], i-Vector [14] solutions with

cosine distance scoring or support vector machine (SVM) classification [14], and i-Vector

with PLDA (probabilistic linear discriminant analysis) scoring [14, 15] as well. These also

include both UBM/i-Vector and DNN/i-Vector, where i-Vector/PLDA is the state-of-the-

art method for speaker recognition (depending on the data configuration) as well as other

speech areas, such as language recognition. These advancements in speaker recognition had

provided satisfactory performance on NIST (National Institute of Standards Technology)

SRE (speaker recognition evaluation) tasks until 2012. However, for challenges introduced

in the SRE-16 and SRE-18, current solutions are not sufficiently effective and require further

investigation. More specifically, the focus of NIST SRE-16 and SRE-18 are on the domain

mismatch problem (training data used for development had different language sets than

those in enrollment/test data which are used at the application phase; there were handset

and microphone mismatch options as well), where current solutions in speaker recognition do

not provide effective performance for them. Here, we mainly focus on the speaker recognition

under mismatch conditions; specifically, for those challenges introduced in SRE-16 and SRE-

18.
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Domain mismatch compensation for speaker recognition has been previously studied for

diverse datasets and tasks (other than SRE-16 and SRE-18), including [5, 16, 17, 18, 19, 20].

For NIST SRE tasks specifically, multiple studies have proposed methods to compensate

for the domain mismatch. Here, we review some earlier works on these tasks. Generally

speaking, domain mismatch compensation techniques can be applied to speaker recognition

systems at different phases: front-end level compensation; (e.g., MAP - maximum a poste-

rior - adaptation of GMMs model [21], speaker embedding extraction), and back-end level

(e.g., PLDA adaptation [12]). Figure 2.1 represents an overall block-diagram of an i-Vector

based speaker recognition system specifying front-end and back-end level processing. From

an alternative viewpoint, domain mismatch compensation methods can be categorized into

supervised or unsupervised techniques as well. When in-domain data are unlabeled, pseudo

labeling can be integrated into the system to provide for supervised adaptation.

To compensate for the domain mismatch at speaker-embedding extraction level (i.e.,

front-end), [21] introduced GMM-SVM with Nuisance Attribute Projection (NAP) trained

using clustered unlabeled in-domain data for SRE-16 task. They also studied other methods

for unsupervised domain mismatch compensation, using in-domain data for MAP adaptation

of GMM models which both were shown to be effective. In addition, [22] proposed training

a speaker classifier neural network for extraction of d-vectors. Interestingly, they did not

attempt to assign pseudo speaker labels to the unlabeled data. [23] applied an unsupervised

Bayesian adaptation method and achieved promising results. [24] replaced i-Vectors with two

new proposed embeddings which are derived based on a DNN architecture. They evaluated

the performance of the embeddings on both SRE-10 and SRE-16 tasks, although the idea

is general and not necessarily developed for domain adaptation, experiments show that the

discriminative training of speaker embeddings can be helpful towards the domain mismatch

compensation rather than the traditional i-Vector embeddings. x-Vector [12] which uses

data augmentation as well as PLDA adaptation is among the top performing systems for
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SRE-16 and SRE-18 (where a small unlabeled in-domain data is provided for the adaptation

purpose) tasks.

Overall, the performance of most of these methods have been reported along with other

modifications at the back-end level. For the x-Vector, the back-end level techniques are

shown to directly affecting the superiority of x-Vector over the i-Vector. Therefore, it would

be difficult to drew a conclusion on how much the front-end level domain adaptation is

successful, considering the fact that available in-domain data for SRE tasks is very limited.

To compensate for domain mismatch at the dimension reduction step, [22] used the LDA

with within class covariance correction (WCC) technique, which updates the within class

covariance matrix using in-domain data. Mismatch compensation at score calculation and

score normalization steps are also studied in [21] where they added the replicate copies of

in-domain data to the training set for modeling the classifiers. In addition, [21] used the in-

domain data in multiple score normalization techniques. [25] not only applied whitening and

mean centralization using in-domain data (both labeled and unlabeled), but also proposed

multi-stage PLDA adaptation technique (which uses clustered unlabeled data). They also

incorporated in-domain data into score normalization as well. [22] normalized the resulting

scores using speaker dependent s-norm with a cohort created from training and unlabeled in-

domain data. [25, 26] also mentioned they used unlabeled data for score calibration. These

techniques were all proposed to compensate the domain mismatch at the back-end level and

they are shown to be effective for NIST SRE tasks. Other studies on the SRE tasks targeting

the domain mismatch compensation include [27, 28, 29, 30].

The block-diagram of a traditional i-Vector based speaker recognition system with PLDA

scoring is shown in Figure 2.1 with focusing on the front-end and back-end level process-

ing. In continue, we provide detailed explanation on the front-end processing and back-end

processing of speaker recognition systems we developed in this dissertation and use as our

baseline models throughout our experiments.
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2.1 Front-End Processing

The front-end processing in speaker recognition systems refers to extracting speaker em-

beddings for each utterance, which captures the speaker-specific information. In traditional

speaker recognition frameworks, concatenation of GMM (Gaussian mixture model) mean

supervectors was used as speaker embeddings. However, they are very high dimensional and

besides the speaker information they carry other unrelated information too. Therefore, over

the past few years new methods are proposed for speaker embedding extraction. In this

dissertation, we use three different speaker embeddings including i-Vector, x-Vector and t-

Vector. Detailed description of these embeddings are presented in the following subsections.

These embeddings have lower dimensions and are trained to exclusively contain information

related to the voice characteristics of the speaker rather than other interfering information,

such as channel and noise.

2.1.1 i-Vector

i-Vectors are successfully applied in speaker recognition [3, 7, 14, 26] and language recognition

[31] to compactly represent speaker-dependent features while discarding channel and noise

dependent directions. The block diagram of an i-Vector/PLDA speaker recognition is shown

in Figure 2.1. It is worth mentioning that, the back-end processing is shared between other

speaker embeddings in this study, which will be discussed in detail in section 2.2.

In i-Vector speaker embedding extraction, first mel-frequency cepstral features (MFCCs)

are extracted for utterances in the dataset. Next, non-speech segments are removed with

a speech activity detection module (SAD). Universal background model (UBM) and total-

variability matrix (TV-matrix) are trained using the training data. The TV-matrix is used

to map the high-dimensional GMM supervectors (GMMs are speaker adaptation models of

the UBM) which include both speaker and channel related directions into a lower-dimension

representation with focus only on speaker discriminatory features.
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Figure 2.1: Block-diagram of i-Vector/PLDA speaker recognition.

In more detail, in the i-Vector framework, a channel and speaker dependent GMM su-

pervector is factorized as,

M = m+ Tw, (2.1)

where m is the UBM speaker and channel dependent supervector, and T is the low rank

total variability matrix (TV-matrix) which maps the high-dimensional GMM supervector

into w, known as i-Vector. Alternatively, i-Vectors can be extracted from the output of

DNN rather than the UBM. For the DNN/i-Vector framework [32, 33], w is extracted by

mapping the senones (frame posteriors for tied triphone states) of the DNN network using

the total variability matrix.

2.1.2 x-Vector

The x-Vector is another speaker embedding extraction method that has been reported to

achieve very effective speaker recognition performance in recent studies [12, 24]. First, for

each utterance in the dataset, filterbank features are extracted and non-speech segments are

then removed with a SAD module. Next, the extracted features are passed to a speaker

discriminative model. The model is a deep neural network (DNN) based framework ben-

efiting from practical techniques such as data augmentation and statistical pooling. The
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embeddings are extracted over the entire utterance instead of at the frame-level. The last

layer of the network is softmax activation and the network is trained by multi-class cross

entropy objective function using corresponding speaker labels given by:

Ls = − 1

N

N∑
i=1

log
eW

T
yi
f(xi)+byi∑C

j=1 e
WT

j f(xi)+bj
, (2.2)

where N is the batch size, C is the total speaker number in the training set, f(xi) is the

output of the embedding layer of the network ( i.e., speaker embedding). Here, yi is the

corresponding class label, and W and b are the weights and bias for the last softmax layer

of the network which acts as a classifier. Therefore, in contrast to i-Vector framework

where embeddings are extracted from a generative model, x-Vectors are extracted from a

discriminative framework.

2.1.3 t-Vector

The other speaker embedding extraction framework which we developed in this dissertation

is t-Vector. t-Vectors are extracted from a discriminative model using triplet loss objective

function. First, filter bank features are extracted for each utterance in the training set; then

non-speech segments are discarded using SAD. The features are fed into inception-resnet-v1

network [1] to extract speaker embeddings. The parameters of the model are trained with

jointly optimizing the triplet loss function and softmax loss. Triplet loss is popular objective

function for training face or speaker verification systems [34, 35].

Inspired by the success of the softmax loss used in x-Vector models, the training of the

t-Vector model is performed with a multi-task learning framework; and it is formulated by

adding a L2 normalized softmax loss (LsL2
), which is an upgrade of original softmax loss:

LsL2
= − 1

N

N∑
i=1

log
eW

T
yi
f(xi)+byi∑C

j=1 e
WT

j f(xi)+bj
, (2.3)

subject to ‖f(xi)‖2 = α, ∀i = 1, 2, ..., N

11



where a simple L2 normalization is applied to the embedding layer before softmax layer, α

is a constant that constrains the radius of the speaker embedding hypersphere. Finally, α is

set to 24 empirically. The total loss function is an integration of three components: a triplet

loss term Ltriplet, a L2-norm softmax loss term LsL2
, and a regularization term L2 which

alleviates the over-fitting issue during training,

Ltotal = Ltriplet + ω1LsL2
+ ω2L2. (2.4)

Practically, the ω1 = 0.1 and ω2 = 2e−5 is found to result in a good overall combination.

The triplet sampling module plays an important role in the performance of t-Vector

embedding extraction framework. Previously in [11], a subset of speakers in the training

pool was selected for triplet formulation in each epoch. With the additional LsL2
, it is better

to see all the speakers in one epoch. In our experiments, always randomly selected segments

from all training speakers are used for the triplet generation, and they are shuffled to ensure

all classes can be seen within one epoch.

2.2 Back-End Processing

After extracting the speaker embeddings, usually mean-centralization, length normaliza-

tion, discriminant analysis are applied to provide a robust speaker-dependent representation.

Next, a scoring technique such as PLDA (probabilistic linear discriminant analysis) or simply

cosine distance scoring performs the verification or recognition task. In order to fuse and

combine multiple systems together, the back-end process continues with score calibration,

score normalization and fusion. In this section, we describe the main components at the

back-end level, which we integrated into our system development. All of these steps with no

change are applicable to all the speaker embeddings introduced in the front-end section.
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2.2.1 Normalization and Whitening

Immediately after extracting the speaker embeddings, it is shown that mean centralization,

length normalization [36] and whitening are effective approaches to further discard speaker

invariant information.

Mean centralization of the speaker embeddings provide an effective yet simple technique

for removing information that are fixed over the whole training data and definitely not

representing the speaker related information. On the other hand, if mean statistics are

calculated from a target domain, it provides a simple domain adaptation technique as well.

Mean statistics are calculated from training data (or adaptation data) and it is subtracted

from all test and train data.

Length normalization simply ensures the speaker embeddings can be modeled with Gaus-

sian distribution and are consistent with PLDA scoring assumptions.

In our systems, we include both mean centralization and length normalization.

2.2.2 Dimension Reduction

The block-diagram in Figure 2.1 shows that after extracting i-Vectors (as an example),

mean-centralization and length-normalization, usually LDA (linear discriminant analysis) is

applied to reduce the dimension size of the resulting i-Vectors (or generally speaker embed-

dings) as well as improve the discrimination of the speaker classes.

LDA is a supervised approach for learning a transformation matrix which maps the input

into a lower dimensional space where the distance between speaker classes is larger and the

classes are more centered around their mean. As a result, the covariance between samples

in a class is smaller while the covariance between mean of different classes is larger.
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2.2.3 PLDA Scoring

The task of speaker recognition is for given two embeddings to decide are they belong to one

speaker or not. To perform this task, we can either calculate the cosine similarity between the

two embeddings and comparing the score to the threshold value make a decision. Another

approach is based on the PLDA (probabilistic linear discriminant analysis) scoring, which is

effective for further suppressing the channel and noise distortions. In this study, we apply

PLDA (as it is the state-of-the-art scoring method for speaker recognition) to calculate the

likelihood scores representing either the inputs are from the same speaker or not.

PLDA models the speaker embedding wij as,

wij = m+ Φβi + εij, (2.5)

where j is the j-th utterance for speaker i, Φ contains the basis for speaker subspace, βi

corresponds to the coordinates in the speaker i-th subspace, and εij represents a Gaussian

distribution with zero mean and a covariance matrix (as one of the parameters of the PLDA

model). The parameters of the model are estimated with the expectation maximization

(EM) algorithm. At the test time, given two embeddings ŵ1 and ŵ2, we need to determine

whether these two belong to one speaker (target) or not (non-target) with the following

log-likelihood ratio,

log-likelihood = log
p(ŵ1, ŵ2|target)

p(ŵ1, ŵ2|non-target)
. (2.6)

2.2.4 Score Normalization, Calibration and Fusion

To combine multiple complementary speaker recognition systems (which is an effective ap-

proach to boost the performance), it is essential to normalize the scores or calibrate them.

In this dissertation, score calibration is performed using PAV calibration methods from the
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BOSARIS toolkit [37]. Alternatively, score normalization such as s-norm can be applied

to prepare the scores for the fusion phase. Score normalization, s-norm is applied with an

adaptive cohort selection scheme followed by a top score selection [38].

We accomplish the score fusion by building a fused model. This step is performed based

on the training of a logistic regression model. Let x = {x1, x2, ..., xn} be a feature vector

by concatenating each single system scores. The target variable y is a Bernoulli random

variable and the probability of occurrence for that is dependent on the prediction given in

Eq. 2.7. Regression coefficients ω are estimated using maximum-likelihood (ML) estimation.

Scores from each single system are finally combined together with the estimated coefficients

to obtain the fusion score ŷ.

p(y = 1|x, ω) =
1

1 + exp (−ωTx)
(2.7)

ŷ = ωTx, (2.8)

2.3 Corpora and Experimental Setup

The methods we proposed in this dissertation are examined on three different datasets re-

leased for NIST SRE evaluations. These data are widely used for development and evaluation

of speaker recognition systems and they present the recent challenges for speaker recognition

task. The general description of data is provided in the following sub-sections. In addition,

we introduce the metrics we used to perform the evaluation and compare different systems.

2.3.1 NIST SRE-10

NIST SRE-10 telephone condition (condition 5) [39] is used in our experiments. Training data

includes data collected from SRE2004, 2005, 2006, 2008, and Switchboard II Phase 2 and 3,

and Switchboard Cellular Part 1 and 2 (both male and female speakers). Training data for
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the back-end processing is restricted to only male speakers from NIST SRE2004, 2005, 2006,

2008 data. In addition, the trials used for experiments just contain male enrollment and test

segments. The enrollment/test segment condition combinations that have been evaluated

in this study includes core/core, core/10sec, and Coreext/3, 5, 10, 20, 40s, full [39]. Core

and extended core (coreext) conditions have duration ranging between 3 to 5 minutes. To

examine the effectiveness of the proposed method for short test segments, the coreext test

data was truncated into 3-sec, 5-sec, 10- sec, 20-sec, and 40-sec segments. Extracting these

short test data has been carried out after applying SAD; therefore, they do not contain non-

speech frames. In addition, no modifications have been applied to the enrollment or training

data. The number of speakers/segments for training UBM and TV-matrix are 5756/57273.

And, number of speakers/segments for training the back-end modules are 1115/13605. For

core/core, core/10sec, coreext/3,5,10,20,40s,full the number of target/non-target trials are

353/13707, 290/11700 and 3465/175873, respectively. In addition, number of enrollment

segments for core and coreext are 2426 and 5237.

In any of the experiments, if the setup is different than the above mentioned one, it is

explicitly mentioned.

2.3.2 NIST SRE-16

NIST SRE-16 fixed condition includes data from Call My Net corpus, previous Mixer/SRE

data, both landline and cellular Switchboard and Fisher [3]. Here, we did not use Fisher

data and Call My Net corpus for the training. Therefore, in our system, the total number

of speakers and segments used for training UBM and TV-matrix are 5756 and 57273 respec-

tively. At the back-end, we also did not use any of the Switchboard data, which leads to a

total of 3794 speakers and 36410 segments for training LDA/PLDA.

Data assigned to the development and evaluation sets were collected from the Call My

Net corpus. Data was collected outside of North America and consists of two subsets:
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(1) Major : contains Tagalog and Cantonese languages, (2) Minor : contains Cebuano and

Mandarin languages. Development data includes data from both minor and major language

sets; evaluation data only contains data from the major set [3].

In addition, development data includes labeled and unlabeled sets. The labeled set is only

from minor languages; 10 speakers talking Cebuano and 10 speakers talking Mandarin, with

each possessing 10 segments. The unlabeled one has 2272 and 200 calls from major and minor

languages, respectively (they do not have speaker id, language, gender, etc information) [3].

Overall, the total number of speakers/segments in enrollment set for development and

evaluation are 80/120, and 802/1202, respectively. In addition, number of target/non-target

trials for development and evaluation are 4828/19312 and 1986729/1949666, respectively.

Throughout the dissertation, we refer to the development as DEV and evaluation as EVAL.

2.3.3 NIST SRE-18

The NIST SRE-18 as well targets a similar challenge with some modifications. For the fixed

condition, the training data includes all previous SRE data, consisting of switchboard, Fisher,

VoxCeleb, SITW (speaker in the wild); and the development set of SRE-16 were allowed to

be used. The task includes two separate parts: CMN2 (Call My Net), and VAST (Video

Annotation for Speech Technology), where for our study here we mainly focus on the CMN2

part. The CMN2 dataset used for the development and evaluation purposes contains data

with the Tunisian Arabic language; while the training data is mostly in American English.

In contrast to SRE-16 where DEV and EVAL sets did not share the same languages,

SRE-18 DEV and EVAL are considered to belong to one domain (i.e., the language for both

are the same). The CMN2 part of the DEV set includes 25 speakers (with approximately 10

utterances per speaker). The SRE-18 DEV set also includes in-domain unlabeled data (no

speaker ID, gender, or language labels) with 2332 utterances and speech duration ranging

between 10s to 60s uniformly.
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2.3.4 Performance Measurement

For SRE-10 evaluation metric includes equal error rate (EER) and minimum detection

(minDCF) cost function [39] calculated by,

CDet = CMiss×PMiss|Target×PTarget+CFalseAlarm×PFalseAlarm|NonTarget×(1−PTarget). (2.9)

Default values for parameters in this equation has been set as CMiss = CFalseAlarm = 1

and PTarget = 1/1000 from the NIST SRE-10 definition for minDCF.

For SRE-16, NIST provided a scoring software to the participating sites; it calculates

the equal error rate (EER), minimum primary cost (min-Cprimary), and actual primary

cost. In addition, the software reports both equalized (false alarm and false reject counts

were equalized over various partitions) and unequalized scores. Details on these costs are

provided in [3, 40].

For SRE-18 as well, NIST provided a scoring software to calculate the equal error rate

(EER), minimum primary cost (min-Cprimary), and actual primary cost [41].

2.4 Summary

This chapter has provided a broad overview of the problem of speaker recognition with

specific background advancements and references to prior work. This chapter has established

the necessary foundation needed to advance speaker recognition to address intrinsic/extrinsic

variability mismatch. Next chapter describes two of our proposed solutions for speaker

recognition under mismatch conditions.
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CHAPTER 3

DOMAIN ADAPTATION WITH DISCRIMINANT ANALYSIS

c©2017 IEEE. Portions of this chapter are based on the following publication with permission, from Bahma-

ninezhad, Fahimeh, and John HL Hansen. ”i-Vector/PLDA speaker recognition using support vectors with

discriminant analysis.” In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 5410-5414. IEEE, 2017.

Mismatch between data at the development and application steps is very common, not

only for speaker recognition but also in other speech research areas. Developing systems

specifically for an application domain can be a solution to this problem. However, it is not

reasonable to build a system from scratch for every possible mismatch scenario. There are

challenges in general which make this approach less effective. From one aspect, available data

for the target domain might be limited; therefore, the system may not be robust and overall

performance is poor. On the other hand, when there is sufficient amount of data available

from alternate domains, this can be used to help to capture other informative features for

system development. In addition, in some scenarios, the development data may consist of

only unlabeled data or poorly labeled data for the target domain. Accurate labeling of data

is a difficult task; therefore, it is more beneficial to have a large pool of correctly labeled

data at the development phase. With this content, at the application step it is possible

to introduce a small amount of data from the target domain to adjust model parameters.

Therefore, incorporating all available data within the adaptation or normalization methods

can be a promissing approach to address variabilities present in the application phase.

In this chapter, we present our proposed methods to compensate for the mismatch condi-

tions. Generalized discriminant analysis (GDA) places more emphasis on noise and channel

mismatch conditions, which are non-linearly included in the speaker embedding representa-

tions. Therefore, GDA is a very general solution to suppress speaker-irrelevant information
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from the embeddings. Next, the support vector discriminant analysis (SVDA) solution pro-

vides an adaptation technique specifically for language mismatch conditions. Therefore,

SVDA provides an adaptation technique for mismatch conditions, which introduces a small

amount of unlabeled data from the target domain which can effectively adapts the models.

3.1 Introduction

Here, we focus on the domain mismatch compensation at the back-end level; specifically

when discriminant analysis is applied to reduce the dimension of speaker embeddings and to

further discriminate the speaker classes.

Traditional LDA (linear discriminant analysis) finds the transformation matrix for a

dimensionality reduction with the objective of minimizing the ratio of the within-class to

between-class covariance matrices. LDA assumes different classes have a Gaussian distri-

bution and share the same covariance matrix. Many variations of discriminant analysis

have been proposed to partly relax the LDA assumptions. Kernel discriminant analysis or

generalized discriminant analysis (GDA) [42, 43] finds a non-linear transformation, hetero-

cedastic LDA (HLDA) [44] employs alternate covariance matrices for different classes, and

mixture discriminant analysis (MDA) [45] assumes the distribution of each class is a mixture

of Gaussians.

In speaker recognition systems, specifically those based on i-Vector representation, the

effectiveness of various discriminant analysis methods have also been studied. [46] employed

non-parametric or nearest neighbor discriminant analysis (NDA). The experimental results

showed that NDA outperforms LDA especially when data are multimodal [47]. In addition,

[48] used source-normalized LDA (SN-LDA), and [49] employed weighted LDA (WLDA) and

weighted SN-LDA which were shown to be more effective in special mismatch conditions.

Here, we first propose generalized discriminant analysis (GDA) for speaker recognition

[5], which assumes that the speaker-irrelevant information are not necessarily added to the
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speaker embeddings in a linear linear manner. Therefore, GDA addresses the issues of non-

linear distortions.

In addition, we propose another variation of LDA named discriminant analysis via sup-

port vectors (SVDA) into the speaker recognition framework. SVDA calculates the within

and between class covariance matrices using only the support vectors. In contrast to LDA,

SVDA captures the boundary structure of the speaker classes (which is important in clas-

sification), and is shown to perform well for small sample size scenarios which is present

in NIST SRE tasks (i.e. when the dimensionality is greater than sample size). The idea

of using support vectors with discriminant analysis has been previously introduced in [50]

which made significant improvement over LDA. In this chapter, the effectiveness of SVDA

within an i-Vector/PLDA system will be evaluated for both long and short duration test

segments and extended to a domain adaptation technique as well.

3.2 Linear Discriminant Analysis

LDA finds a linear transformation that maximizes the Fisher-Rao criterion. The separation

of speaker classes in the direction of W is equal to,

λ =
W TSBW

W TSWW
, (3.1)

where SB and SW represents the between class and within class covariance matrices,

respectively. When W maximizes S−1W SB, the class separation will be maximized as well. In

other words, the eigenvectors corresponding to the largest eigenvalues in solving λSWW =

SBW leads to the optimal projection matrix W .

For dimensionality reduction to k, the eigenvectors of the k largest eigenvalues are placed

in matrix W . Thereafter, the projected feature vectors are calculated by W Tx, where x

represents the input feature vector.
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In Eq. 3.1, the terms SB and SW are defined as,

SB =
1

C

C∑
c=1

nc(µc − µ)(µc − µ)T (3.2)

SW =
1

C

C∑
c=1

∑
k∈c

(xk − µc)(xk − µc)
T , (3.3)

where C represents the number of speaker classes and nc represents the number of samples

in class c. In addition, µc and µ are the mean of class c and overall mean of the samples,

respectively.

3.3 Generalized Discriminant Analysis

i-Vector speaker embeddings are not accurate when utterances are of short duration; even

with the presence of noise their robustness can be affected. Many studies have attempted to

make i-Vector based systems more robust to noise [51], or short duration utterances [52, 53].

In other previous studies, the uncertainty of i-Vectors has been propagated back through the

system, or different score calibration methods [52] have been introduced to partially address

the problem. Here, we aim to study the effectiveness of GDA for long and short duration test

segments on the NIST SRE-10 [39] task that already spans a range of distortions. We will

assess the effectiveness of an i-Vector/PLDA system when GDA post-processed i-Vectors

are employed. GDA is expected to help suppress general mismatch conditions which can

occur at the application time; such as, when the recording condition is different than the

development phase.

3.3.1 Method

Traditional LDA assumes data to be normally distributed and distinct classes share the

same covariance matrix; from which it finds a linear transformation to map the input feature
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vectors into a new subspace. On the other hand, GDA first maps the data into a new feature

space and then finds a mapping linear transformation. Mapping to the new space is carried

out using kernel methods. As the mapped feature vectors are non-linearly related to the

input versions, GDA effectively provides a non-linear discriminant analysis for the input

feature data [43].

More specifically, GDA first maps the feature vectors x in space X to the feature vectors

φ(x) in space F . Next, the between and within class scatters are updated as (assuming

observations are centered in F ) as follows,

SBf =
1

C

C∑
c=1

ncφ̄cφ̄c
T

(3.4)

SWf =
1

C

C∑
c=1

∑
k∈c

φ(xk)φ(xk)T (3.5)

where φ̄c is the mean of class c in feature space F (i.e., mean of φ(x) for x in class c).

To generalize LDA, we need to formulate the eigenvalue resolution problem in a dot-product

format. Let us define the following kernel function:

k(xi, xj) = φ(xi)
Tφ(xj), (3.6)

where i and j range from 1 to the total number of training samples, (i.e., nx). Next, define

K to be an nx × nx matrix containing k(xi, xj). By defining the block-diagonal matrix

M = (Mc)c=1,...,C with the same size as K for each Mc =
1

nc

× I(nc × nc); then Eq. 3.1 in

the feature space F can be formulated as,

λf =
αTKMKα

αTKKα
, (3.7)

where α are the coefficient vectors that satisfy ν =
∑C

c=1

∑
k∈c αkφ(xk); and ν are the

eigenvectors of λfSWfν = SBfν. Since, the eigenvectors are linear combinations of feature
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vectors in space F , there exist a non-unique set of α coefficients. More details are provided

in [43].

To solve Eq. 3.7, matrix K can be decomposed as:

K = PΓP T . (3.8)

By defining β = ΓP Tα and replacing K with Eq. 3.8 in Eq. 3.7 and simplifying the

equation, we can reach the following eigenvector system:

λfβ = P TMPβ. (3.9)

For eigenvectors β, there exists α = PΓ−1β. From α, the eigenvectors ν can be computed

which leads to the necessary projection matrix in feature space F .

3.3.2 Experimental Setup

For all systems in the experiments, 60 dimensional Mel-frequency features are extracted,

that include 19 dimensional static features as well as frame energy along with their delta

and delta-delta coefficients. Speech signals have been framed using 25-ms length windows

with a 10-ms skip rate. In addition, features have been normalized using a 3-sec sliding

window. Next, energy-based speech activity detection (SAD) is used to remove non-speech

frames.

Experiments are carried out on the NIST SRE-10 task [39], telephone condition (condition

5). A 2048-mixture UBM and total variability matrix have been trained using data collected

from SRE2004, 2005, 2006, 2008, and Switchboard-II Phase 2 and 3, and Switchboard Cel-

lular Part 1 and 2 (both male and female speakers). Next, 600-dimensional i-Vectors are

extracted for all utterances. For LDA and GDA, the dimension size is reduced to 400, fol-

lowed by length normalization. Training data for LDA, GDA, and PLDA is restricted to
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male speakers from the NIST SRE2004, 2005, 2006, 2008 data. In addition, trials used for

experiments contain only male enrollment and test segments.

The enrollment/test segment condition combinations that have been evaluated in this

study, the number of speakers and segments for training the UBM, total variability matrix,

LDA, GDA and PLDA, data used for enrollment, and statistics of trials have previously

been described in Section 2.3.1. Core and extended core conditions (coreext) have durations

ranging between 3 to 5 minutes.

To examine the effectiveness of GDA for short test segments, the coreext test data was

truncated into 3-sec, 5-sec, 10-sec, 20-sec, and 40-sec segments. Extracting these short test

data has been carried out after applying SAD; therefore, they do not contain non-speech

frames. In addition, no modifications have been applied on the enrollment or training data.

3.3.3 Kernel Variations for GDA

The various kernel functions that are used in the experiments are presented in this subsection.

The linear kernel leads to traditional LDA, where the between i-Vectors w1 and w2 are defined

as,

k(w1, w2) = 〈w1, w2〉. (3.10)

We use this as a baseline discriminant analysis method. The cosine kernel is also used

and defined as,

k(w1, w2) =
〈w1, w2〉
‖ w1 ‖‖ w2 ‖

. (3.11)

The angles between i-Vectors is the only aspect captured by the cosine kernel. The study

by authors in [14] states that the magnitude of i-Vectors may simply contain information

about the channel and session which is not valuable in speaker recognition; therefore, when

the cosine kernel suppresses the magnitude, we expect an improvement over a linear kernel.

The Within Class Covariance Normalization (WCCN) suppresses channel affects without

removing any dimensions in the feature space. The projection matrix B for WCCN is
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achieved by a Cholesky decomposition of the within class covariance matrix in Eq. 3.3 as

S−1w = BBT . Here, we apply WCCN to the cosine kernel which updates it as (this kernel

will be referred to ”WCCN-Cosine” kernel in the experiments):

k(w1, w2) =
(BTw1)

T (BTw2)√
(BTw1)T (BTw1)

√
(BTw2)T (BTw2)

. (3.12)

The other kernel variation (named as ”LDA-Cosine”) uses the LDA projection matrix in

the cosine kernel. The background on LDA was provided earlier in Section 3.2. If we name

the projection matrix as A, which are the ordered eigenvectors based on the highest values

of eigenvalues, then the kernel would be,

k(w1, w2) =
(ATw1)

T (ATw2)√
(ATw1)T (ATw1)

√
(ATw2)T (ATw2)

. (3.13)

Here, we have extracted 600-dimensional i-Vectors, and for this kernel the eigenvectors

of the 600 largest eigenvalues have been selected as the projection matrix A. Therefore, we

did not reduce the dimensionality of the i-Vectors with this projection matrix A; however,

after transforming with A and applying the cosine kernel, the dimension is reduced to 400,

as is the case for the other kernels as well.

We also use the cascade of LDA and WCCN to project the feature vectors, and then

employ the cosine kernel. LDA and WCCN have different objectives in finding the projection

matrix; therefore, we examine their combination in the application of the kernel for GDA.

We will refer to this kernel as the ”LDA-WCCN-Cosine” kernel.

In [54], the authors proposed Gaussianized Cosine Distance Scoring (GCDS) that im-

proves traditional cosine distance scoring. It was claimed there that estimating the WCCN

projection matrix in noisy and/or channel mismatched conditions is difficult. Therefore,

they replaced the cascade of LDA, WCCN, and cosine distance scoring with the GCDS

method. Here, we take advantage of this idea and modify the algorithm to be used as a

kernel function. Therefore, our proposed Gaussianized cosine kernel is derived based on the

the following routine:
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• The mean m and standard deviation v of the training data are first calculated.

• All data including training, enrollment and test data are Gaussianized. In other words,

for every i-Vector w, the new vector will be modified to w =
w −m
v

.

• The Gaussianized i-Vectors are length normalized.

• The LDA projection matrix A trained over the training data is calculated next.

• All data are then projected into the new feature space. In other words, for every

i-Vector w, the transformed i-Vector will be w = ATw.

• The new i-Vectors are length normalized again.

• Finally, these data are used in calculating the cosine kernel defined in Eq. 3.11.

The linear kernel in GDA is equivalent to the traditional LDA method, and is compared

to the above-mentioned variations of cosine kernel. For training GDA and LDA, a smaller

subset of the training speech segments (e.g., 10000 vs. 13605) are used (to limit the amount

of memory needed); while, PLDA is trained on the entire male data set (e.g., 13605).

3.3.4 Results and Analysis

This subsection provides evaluation of speaker recognition comparing the effectiveness of

LDA and GDA methods for discriminant analysis and dimensionality reduction.

To assess the system, we use Equal Error Rate (EER) and the minimum of decision cost

function (minDCF) calculated as,

CDet = CMiss×PMiss|Target×PTarget+CFalseAlarm×PFalseAlarm|NonTarget×(1−PTarget). (3.14)

Default values for parameters in this equation have been set as CMiss = CFalseAlarm = 1

and PTarget = 1/1000 as defined for the NIST SRE-10.
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Results in terms of EER and minDCF are summarized in Table 3.1. The EER re-

sults show that in all enrollment/test segment condition combinations, GDA improves LDA.

Specifically, Cosine and WCCN-Cosine achieve the best results for EER. For minDCF, just in

coreext/coreext, coreext/coreext10sec, coreext/coreext40sec combinations, the linear kernel

provides slightly better results, but in other cases GDA performed better.

In general, the improvement of GDA over LDA is more clear in longer duration test

segments. Because i-Vectors extracted for shorter test data are not as accurate as the longer

ones; therefore, non-linear discrimination cannot effectively locate them in their correct

speaker classes.

Here, the cosine kernel performs the best among all kernel functions including the linear

kernel (or LDA). After that, WCCN-Cosine and Gaussianized-Cosine and Linear kernels

achieved effective performance. However, the LDA-Cosine kernel and LDA-WCCN-Cosine

unexpectedly did not provide sufficient improvement over the other kernel functions. In

summary, experimental results show that GDA is a promising dimensionality reduction and

discrimination approach for i-Vector/PLDA system. With GDA, the relative improvement

of 20% in EER and 18% in minDCF with core/core condition is achieved.

3.4 Support Vector Discriminant Analysis

Here, we apply another variation of LDA which we name as discriminant analysis via support

vectors (SVDA) into the i-Vector/PLDA system. This approach can be integrated with

other speaker embeddings as well, which is studied in more detail in Chapter 5. SVDA

calculates the within and between class covariance matrices using only the support vectors,

which represents the structure of speaker classes. In contrast to LDA, SVDA captures the

boundary of the classes (which is important in classification), and performs well for small

sample size problems which are typical in NIST SRE tasks (i.e., when the dimensionality is

greater than the sample size). The idea of using support vectors with discriminant analysis
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has been previously introduced in [50] which made a significant improvement over LDA. In

this study, the effectiveness of SVDA in the i-Vector/PLDA system has been evaluated on

NIST SRE-10 and NIST SRE-16 speaker recognition evaluation [39] tasks with the telephony

condition for both long and short duration test segments. In Chapter 5, it is extended to

SRE-18 and other speaker embeddings as well. Compared to other dimension reduction

approaches, from the aspect of the number of hyper-parameters, training time, and also the

equal error rate (EER) and minimum detection cost function (minDCF) criteria, SVDA will

be shown to be effective.

3.4.1 Method

The class separation measure for SVDA is similar to LDA; however, only the distinct support

vectors will be used to calculate the within class and between class covariance matrices. More

specifically, if we define wc1c2 =
∑l

i=1 yiαixi as the optimal directions to classify two classes

c1 and c2 by a linear SVM (yi represents target value (+1 for first class, -1 for second class)

of learning pattern xi, and αi is its coefficient), then the between class covariance matrix is

updated as,

Vb =
∑

1≤c1≤c2≤C

wc1c2w
T
c1c2

. (3.15)

Also, let X̂ = [x̂1, x̂2, ..., x̂N̂ ] be the support vectors and N̂ represent their total number.

Therefore, the within class covariance matrix is formulated as,

Vw =
C∑
c=1

∑
i∈Îc

(x̂i − µ̂c)(x̂i − µ̂c)
T , (3.16)

where Îc includes the index of support vectors in class c, and µ̂c denotes their mean. Finally,

similar to LDA, the optimum transformation Â contains the k eigenvectors corresponding

to the k largest eigenvalues of V −1w Vb.

From the aspect of classification, [50] showed that SVM performs better than LDA. For

multi-class problems, the Fisher criterion in LDA finds the subspace that gives well-separated
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classes more importance than those that are closer. Therefore, the classes that are already

distinct will move further away from each other; however, the closer classes will not be

treated the same. In contrast, SVM focuses more on the hard-to-separate classes. From this

viewpoint, we expect that a transformation found by SVDA should work better for closer

classes (or hard to separate speaker classes).

Moreover, the within class and between class covariance matrices calculated by SVDA

only uses the support vectors instead of using all the training samples. Obviously, SVDA

finds the discriminatory directions using the boundary structure of the classes; and also

SVM is a well-known method for small sample size problems [50]. On the other hand,

while addressing the SVM problem, we can adjust the tolerance of the classification error;

therefore, generalization can be controlled more conveniently in SVDA rather than LDA.

To calculate the between and within class covariance matrices using SVDA, three strate-

gies are considered:(i) traditional one-versus-one, (ii) weighted one-versus-one, and (iii) one-

versus-rest. In the one-versus-one strategy, the SVM is applied to just two classes, therefore

we need to model a total of C(C − 1)/2 SVMs; in contrast to the one-versus-rest approach,

where each class is classified against all data from all other speakers (i.e., need to train a

total of C SVM classifiers). As stated earlier, C represents the number of speaker classes. It

is worth mentioning that the one-versus-one strategy is more appropriate for an imbalanced

data problem. The weighted one-versus-one has been designed to punish classes that do not

have sufficient number of samples to define their structure (or may have noisy or random

samples). In other words, some of the classes do not have well-defined structure and when

we apply SVM, all the samples in the class are recognized as the support vectors. Therefore,

by giving these types of classes smaller weight for their contribution in simply calculating Vb

in Eq. 3.15, the SVM classifier is forced to place more emphasis on the well-defined classes.

For NIST SRE-16 data and SRE-18 data, where a small unlabeled data set is provided

from the target domain, SVDA can be extended to a domain adaptation technique as well.
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The target domain data can be added to the rest class in the one-versus-rest strategy or we

can assume all data belongs to only the one class and use them with a one-versus-one strategy.

More details on using SVDA as a domain adaptation technique and the experimental results

are provided in Chapter 4 and Chapter 5. In this chapter, we examine specifically the

effectiveness of SVDA for the purpose of general dimensionality reduction in order to address

non-linear distortions included in speaker embeddings.

3.4.2 Experimental Setup

The extracted feature vectors contain 19 Mel-frequency features as well as the frame energy

appended with delta and delta-delta coefficients. The window length and shift size are 25-ms

and 10-ms, respectively. In addition, a 3-s sliding window cepstral mean normalization is

applied on the feature vectors. Non-speech frames are also discarded using energy-based

speech activity detection (SAD).

Here, a 2048-mixture full covariance UBM and total variability matrix are trained using

both male and female data collected from SRE2004, 2005, 2006, 2008 and Switchboard

II phase 2,3 and Switchboard Cellular Part1 and Part2. Next, 600-dimensional i-Vectors

are extracted. The dimension of the i-Vectors are then reduced to 400 using LDA/SVDA

technique. Data used for training LDA, SVDA and PLDA is restricted to the male speakers

(for the sake of tractability) from SRE2004, SRE2005, SRE2006, and 2008. To evaluate the

system, we use male trials of the core and extended core conditions of NIST SRE-10. All

experiments are carried out on the telephony condition (condition 5) of NIST SRE-10.

The enrollment/test condition combinations used in the experiments and the statistics of

training and enrollment data, as well as trials were previously discussed in Section 2.3.1. In

addition, to evaluate the performance of the system on short duration test segments, after

applying SAD, the first 3, 5, 10, 20 and 40s of the extended core test data are extracted.

For training the SVM, the publicly available LIBSVM [55] toolkit is used.
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3.4.3 Results and Analysis

This subsection provides the experimental results comparing SVDA and LDA. Here for per-

formance assessment, we used equal error rate (EER) and minimum detection cost function

(minDCF) defined as,

CDet = CMiss×PMiss|Target×PTarget+CFalseAlarm×PFalseAlarm|NonTarget×(1−PTarget), (3.17)

to evaluate our system. Based on the SRE-10 task, the performance weights are set as

CMiss = CFalseAlarm = 1 and PTarget = 1/1000.

Table 3.2 summarizes the performance of i-Vector/PLDA speaker recognition comparing

SVDA against LDA.

The results demonstrate that SVDA consistently improves LDA in terms of both EER

and minDCF. For SVDA, the weighted one-versus-one strategy approximately works better

than the traditional one (and both are better than one-versus-rest); these results meet our

expectation that: first, the imbalance problem present in the data (some classes have less

than 10 samples and some around 94) will be partly addressed with SVDA. More specifically,

EER and minDCF is relatively improved by 32% and 5.6% (respectively) with traditional

one-versus-one strategy. In addition, with weighted one-versus-one approach and punishing

those classes that are not well-distinguishable with SVM (and probably contain noisy and

error-full data), the relative improvement attained is 25% and 9% for EER and minDCF,

respectively. Second, the capability of SVM for the small sample size problem has been

confirmed (i-Vectors are 600 dimensional but there is not any class with more than 100

samples in the training set).

Table 3.3 reports results comparing LDA and SVDA without dimension reduction for

core and extended core conditions. In terms of EER, SVDA outperforms LDA significantly;

however, in terms of minDCF there is just a marginal improvement.

33



T
ab

le
3.

2:
E

E
R

/m
in

D
C

F
re

su
lt

s
co

m
p
ar

in
g

L
D

A
an

d
S
V

D
A

.
T

h
e

d
im

en
si

on
of

i-
V

ec
to

rs
is

re
d
u
ce

d
fr

om
60

0
to

40
0.

E
n
ro

ll
m

en
t/

T
es

t
L

D
A

S
V

D
A

tr
ad

it
io

n
al

1-
v
s-

1
w

ei
gh

te
d

1-
v
s-

1
1-

v
s-

re
st

C
or

e/
C

or
e

1.
66

/
.0

37
1
.1

3
/

.0
39

9
1.

25
/

.0
3
6
4

1.
42

/
.0

36
8

C
or

ee
x
t/

C
or

ee
x
t

1.
5

/
.0

29
7

1.
35

/
.0

30
8

1
.3

/
.0

2
8
7

1.
39

/
.0

29
C

or
ee

x
t/

C
or

ee
x
t3

se
c

14
.5

/
.0

98
4

14
.2

2
/

.0
97

4
14

.2
3

/
.0

9
7
4

1
4
.2

/
.0

97
5

C
or

ee
x
t/

C
or

ee
x
t5

se
c

9.
71

/
.0

92
4

9.
64

/
.0

91
5

9
.5

5
/

.0
9
0
9

9.
81

/
.0

92
C

or
ee

x
t/

C
or

ee
x
t1

0s
ec

5.
61

/
.0

75
9

5
.5

8
/

.0
74

9
5.

60
/

.0
7
3
7

5.
72

/
.0

76
C

or
ee

x
t/

C
or

ee
x
t2

0s
ec

3.
17

/
.0

58
5

3
.1

2
/

.0
57

4
3.

17
/

.0
5
7
3

3.
35

/
.0

59
3

C
or

ee
x
t/

C
or

ee
x
t4

0s
ec

2.
48

/
.0

44
8

2.
4

/
.0

42
3

2
.3

7
/

.0
4
0
7

2.
42

/
.0

41
1

34



In summary, with regard to the number of hyper-parameters, computation time, and rel-

ative performance (approximate 32% relative improvement in EER), this section has shown

that SVDA works well.

3.5 Summary

In this chapter, we studied the effectiveness of GDA in a state-of-the-art i-Vector based

speaker recognition scenario using PLDA scoring. Most speaker recognition approaches

use LDA to separate speaker classes and reduce the dimensionality of the feature vectors.

Alternatively, GDA relaxes the linear separability of classes, which can be effective if un-

known distortion or mismatch is present. We used the NIST SRE-10 core and coreext con-

ditions for experiments, and results showed that GDA achieves effective gains for improving

i-Vector/PLDA systems.

The cosine kernel, using WCCN before cosine kernel, and the Gaussianized cosine kernel

achieved better performance compared to other kernel functions. The combination of LDA

and WCCN before the cosine kernel did not provide improvement. The LDA used here

merely separates the speaker classes and does not perform dimensionality reduction. In

future effort, a cascade of LDA and WCCN with dimensionality reduction to various sizes

is worth studing in combination with the cosine kernel. In addition, the relative gain for

short test segments is not as comparable as that for the original long versions, which can be

studied further.

In this chapter, the effectiveness of SVDA in the i-Vector/PLDA speaker recognition was

also studied. Both EER and minDCF scores achieved from the experiments carried out on

NIST SRE-10 task proved that SVDA consistently works better than LDA. In contrast to

LDA that limits the discriminatory information to the centroid of classes, SVDA captures

their boundary structure. In addition, the small sample size problem is well treated with

SVDA. Although SVDA has a considerable improvement for longer duration test segments,
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Table 3.3: Speaker recognition results comparing LDA and SVDA in terms of EER/minDCF
without dimension reduction.

Enrollment/Test LDA SVDA
traditional weighted

1-vs-1 1-vs-1

Core/Core 1.58 / .039 1.45 / .038 1.46 / .04
Coreext/Coreext 1.46 / .0302 1.37 / .0301 1.36 / .0302

the decrease in EERs and minDCF is less for short duration test segments. In future work,

the application of kernel SVM instead of traditional SVM in SVDA could be studied as well.

In the next chapter, we consider our proposed deep learning based solution for compensating

for domain mismatch in speaker recognition.
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CHAPTER 4

DOMAIN ADAPTATION WITH DEEP LEARNING

Deep learning has made a great impact on various speech problems, specifically for appli-

cations on naturalistic data [56]. With the growing amount of data becoming available and

improving computational resources, deep learning has became a powerful solution for many

problems, including speech and language processing as well. Domain mismatch is a very gen-

eral problem, which is currently under study for tasks such as image recognition and speech

recognition. Deep learning based solutions have been shown to be effective in compensating

for domain mismatch conditions as well. Here, we propose a solution to normalize speaker

embeddings with domain-related information and make the speaker embedding independent

of the domain, specifically designed for NIST SRE-16 task with integrating deep learning

techniques.

Domain adaptation methods can be categorized into supervised and unsupervised tech-

niques. Unsupervised domain adaptation is a very general solution and applicable to many

scenarios. In addition, usually in-domain (or target-domain) data are very limited at the

development phase, and even if they are labeled, they are not always effective. Depending

on the task and the size of the models, very limited labeled data can even degrade the per-

formance, as each class does not convey informative features. Therefore, combining all data

together and use them in an unsupervised domain adaptation techniques has the potential

of achieving a better performance. Here, we mainly focus on the unsupervised domain adap-

tation and in the next chapter we will compare them against supervised domain adaptation

techniques.

4.1 Introduction

Speaker recognition is the task of recognizing whether an unknown speech segment was

produced by a target speaker or not [4]. NIST has been organizing a series of speaker
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recognition evaluations (SRE) for many years to evaluate new advancements in this area

and continue to explore new challenges to address the recent concerns of automatic speaker

recognition systems as well as more realistic data [3]. SRE-16 was focused primarily on

domain mismatch problem (i.e., train, development and evaluation data belong to separate

sets of languages). In addition, some other differences compared to previous SREs were

introduced in SRE-16; such as, greater duration variability, providing a pool of unlabeled

in-domain data, etc [3]. Interested sites world-wide submit their systems, where results

confirm that there is still a wide gap to achieve effective performance for current mismatch

challenges. In this chapter, we present our continued research for the NIST SRE-16 task

and introduce new insights towards compensating for specific domain mismatch cases seen

in the SRE-16.

In general, most submitted systems to the NIST SRE-16 challenge (as well as ongoing

research after the challenge) used i-Vectors [26] to compress speaker identity of given speech

segments to a fixed low-dimensional representation. However, variations are introduced in

the traditional steps of extracting i-Vectors or calculating scores to suppress the domain

mismatch. The key point here is investigating how to adopt unlabeled in-domain data.

In our solution [7], we extracted i-Vectors using both UBM and DNN based frameworks,

where the UBM/i-Vector had significantly better performance, but UBM-based and DNN-

based i-Vectors are complimentary and their score fusion helped with overall performance.

Support vector discriminant analysis (SVDA), unlabeled probabilistic linear discriminant

analysis (PLDA), mean normalization using unlabeled data are among the strategies we

adopt to compensate for domain mismatch.

One group [21] used different feature sets, two classifiers and three alternate models.

Their submitted system consisted of a fusion of four GMM/i-Vector systems with pairwise

support vector machine (SVM), two DNN/i-Vector with pairwise SVM, and one GMM-SVM

with Nuisance Attribute Projection (NAP). The latter system was trained on unlabeled data
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which was clustered. They also studied other methods for unsupervised compensation, using

in-domain data for MAP adaptation of GMM models which were shown to be effective.

For another team [25], their primary submission consisted of the fusion of four differ-

ent i-Vector based systems. These four systems differed with respect to the feature vector

which was then used for training the UBM, total variability (TV)-matrix and extracting

the i-Vectors. For domain mismatch compensation, they applied multiple techniques: (1)

whitening and mean centralization using in-domain data, and (2) multi-stage PLDA adap-

tation which also uses clustered unlabeled in-domain data.

Another submission [22] used different features (i.e., MFCC, PLP, and BNF) and classi-

fiers (PLDA, discriminative PLDA, SVM, cosine distance, Latent Dirichlet Allocation). One

new aspect in their submission was training a speaker classifier neural network for extraction

of d vectors. They did not attempt to assign pseudo speaker labels to the unlabeled data.

The submissions to the challenge confirm that SRE-16 is a difficult task and needs further

investigation. After the SRE-16 competition, different techniques were also proposed to

overcome the challenges introduced in SRE-16 further. As an example, [23] applied an

unsupervised Bayesian adaptation method and achieved promising results. On the other

hand, [24] replaced i-Vectors with two new proposed embeddings which are derived based

on a DNN architecture. They evaluated performance of the embeddings on both SRE-10

and SRE-16 tasks. In addition, domain mismatch has been previously studied for other

databases or tasks as well, including [5, 16, 17, 18, 19, 20].

In this chapter, we focus on the NIST SRE-16 task for domain mismatch compensa-

tion, and present a solution based on deep learning techniques. Unfortunately, most of the

previous studies on domain mismatch compensation for SRE-16 are a fusion of multiple com-

plementary systems. Here, we focus mainly on developing a strong single system to more

efficiently explain why one solution may be more effective than other.
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4.2 a-Vector

Domain mismatch continues to be a major research challenge for speaker recognition in nat-

uralistic audio streams. In this chapter, we present a new technique for domain mismatch

compensation within a text-independent speaker recognition scenario. The proposed method

is designed for the NIST speaker recognition evaluation 2016 (SRE-16) task, where speakers

from training, development and evaluation data belong to different sets of languages. An

i-Vector/PLDA speaker recognition system is adopted for this study. To address the mis-

match problem, we propose to append auxiliary features to the i-Vectors. These auxiliary

features are adapted representations of the i-Vectors to the specific in-domain data; there-

fore, the new feature vector has two parts: (1) the i-Vectors which represent speaker identity,

and (2) the auxiliary features which are representations of i-Vectors in the in-domain data

feature space (and may not contain speaker identity information). This new concatenated

feature vector (we call this the a-Vector) is then post-processed with support vector discrim-

inant analysis (SVDA) for further domain compensation. Evaluations based on the SRE-16

confirm the effectiveness of this proposed technique. In terms of minimum Cprimary cost,

a-Vector outperforms i-Vector consistently. Moreover, comparing to previous single systems

introduced for SRE-16, we achieved an 8.5%-18% improvement in terms of equal error rate.

Here, our goal is to employ in-domain unlabeled data to achieve further compensation of

domain mismatch. After the challenge, NIST provided ground-truth labels, but here we are

not using them or applying any clustering to generate pseudo labels. The goal of our study

here is leveraging unlabeled data to improve our system in an unsupervised manner. In ad-

dition, we note that score fusion of multiple complimentary systems always helps. However,

here we do not want to focus on score normalization or calibration, our goal is to just focus

on developing an effective single system. We propose using auxiliary and complimentary

features in addition to i-Vectors. These features are specifically designed to only carry di-

rections related to the in-domain languages. For this purpose, we train a simplified version
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of the inception-v4 network [1] and propose a new loss function (we call it domain-adapted

triplet loss).

4.2.1 Method

For NIST SRE-16 challenge, CRSS had 4 baseline systems (2 UBM/i-Vector and 2 DNN/i-

Vector) and then developed 11 single systems based on that with different strategies to

address the domain mismatch. Details of these systems are provided in [7]. Our best single

system used a UBM/i-Vector speaker representation that was post-processed with SVDA,

LDA and final scores were calculated with PLDA. SVDA was able to use unlabeled in-

domain data without any pseudo labels. Based on our experiments and other participating

sites, leveraging unlabeled data for the purpose of adaptation or normalization was the key

point to achieve a good performance.

In this section, we propose a new method for domain mismatch compensation and our

work has been inspired by [57]. The focus of [57] is on speech recognition and authors

propose to incorporate i-Vectors as well for the input of DNN to provide speaker, channel

and background normalization, and achieved a significant reduction in word error rate. Here,

we propose new auxiliary features to be concatenated with the i-Vectors. These features are

domain-adapted representations of i-Vectors and we derived them based on a convolutional

neural network (CNN) and a new proposed loss function (which is a variation of triplet

loss function and we call it domain-adapted triplet loss). In the rest of the dissertation,

the concatenation of i-Vectors and the auxiliary features are referred to as a-Vectors. i-

Vectors represent speaker-dependent information while auxiliary features are domain adapted

representations which are used for the purpose of domain normalization. a-Vectors are post-

processed with SVDA/LDA and likelihoods are calculated by PLDA similar to our best

single system which is used here as the baseline. Details on the network architecture and

the proposed loss function are provided in the following subsections.
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Figure 4.1: Overview of the system designed for generating auxiliary domain-adapted fea-
tures and a-Vectors.

Convolutional Neural Network a-Vector Representation

The proposed system for extracting auxiliary features is a simplified version of inception-v4

[1] and we call that sim-inception-v4. Our network takes i-Vectors as the input and generates

the auxiliary features that minimize the loss function introduced in the following subsections.

These auxiliary features are next concatenated with the i-Vectors and created the a-Vectors.

The overall system representation is shown in Fig. 4.1. The network architecture and the

loss function are explained in more detail in continue.

Network Architecture

The network is illustrated in Fig. 4.2. It has the stem part, inception-A and reduction-A part

of the original inception-v4 network [1] (because of the limitations of our GPU we restricted

the network layers). Details of the network is exactly the same as the inception-v4; however,

tensors here are 1-D therefore the weight shapes of the convolution neural network are also

changed to 1-D. The filter size on the remaining dimension is set to the exact values of the

inception-v4. Please refer to [1] for more details of the system.
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Figure 4.2: Simplified inception-v4 (sim-inception-v4) used for generating domain-adapted
i-Vector. Please refer to [1] for details on the Stem, Inception-A and Reduction-A.

Proposed Domain-Adapted Triplet Loss Function

The loss function proposed here is inspired by the triplet loss function. Triplet loss function

was originally developed for FaceNet [34] and is also successfully applied to speaker recog-

nition [58]. In [58] an end-to-end speaker recognition system is developed to estimate a new

embedding as a replacement for the i-Vector, and triplet loss is applied to make sure that

the embedding carries the speaker-related information. Here, we present a domain-adapted

triplet loss which maps the inputs of the network to the in-domain feature space.

As Fig.4.1 shows, first i-Vectors are sampled into triplet sets. In the original triplet

sampling, for an anchor feature vector one positive and one negative feature vectors are

sampled; the positive one has the same speaker identity as the anchor one and the negative

one has a different identity. Different strategies can be adopted for the selection of triplets

[34, 58].

Domain-adapted triplet loss in contrast has a different meaning for the positive and

negative samples. Here, for each anchor feature vector, the positive samples are in-domain
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unlabeled vectors (both from minor and major languages) and the negative samples are

out-domain vectors which are chosen from previous years SRE data subset.

The loss function used for the training of the network minimizes the distance between the

anchor and positive samples and maximizes the distance between the anchor and negative

samples. It is clear that loss function applies to the output of the sim-inception-v4 which is

our output auxiliary feature vector.

If we represent anchor, positive and negative i-Vectors with xa, xp and xn respectively

and define f(x) as the output auxiliary feature vector, then the network training process

makes the f(x) to satisfy the following relation:

||f(xai )− f(xpi )||22 + α < ||f(xai )− f(xni )||22,

∀xai , x
p
i , x

n
i ∈ T

(4.1)

where T contains all possible triplets (xa, xp, xn), and α is a margin enforced between

negative and positive pairs (we set α = 0.2 in our experiments). Therefore, the loss function

is defined as:

loss = Σi∈Tmax(0,∆i). (4.2)

where ∆ is defined as:

∆i = ||f(xai )− f(xpi )||22 − ||f(xai )− f(xni )||22 + α. (4.3)

Generally, T contains all possible triplets, but this set will be huge if we consider all

combinations and makes the convergence slower [34]; therefore, we selected a smaller subset

of that in the experiments. We chose 5 random samples from the in-domain data as the

positive i-Vectors and 5 random i-Vectors from the previous SREs data as the negative ones.
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The sampling for the domain-adapted triplet loss moves all auxiliary features toward the

in-domain features and far from out-domain auxiliary features, in contrast to the original

triplet loss which makes the same speaker embeddings closer and different speaker embed-

dings farther.

4.2.2 Evaluation Setup

UBM/i-Vector with PLDA Scoring

60-D MFCC features within a 25-ms window with 10-ms skip rate are extracted first. Next,

non-speech frames are removed with energy based SAD. A 2048-mixture full covariance UBM

and TV-matrix are trained using parts of fixed training data of SRE-16 (i.e., SRE2004,

2005, 2006, 2008 and Switchboard II phase 2,3 and Switchboard Cellular Part1 and Part2).

Extracted i-Vectors are centralized with global mean calculated from major and minor in-

domain unlabeled data, and then they are length normalized. Now, i-Vectors are concate-

nated with auxiliary features (output of sim-inception-v4). Output of the system is 600-D

which is reduced to 150-D by PCA. The 750-D a-Vectors are then fed into SVDA and their

dimension reduced to 500, next LDA reduces the dimension to 400. For training LDA and

PLDA only previous years SRE data is used (SWD data is not used at the back-end at all).

For SVDA, in addition to the SREs data, unlabeled in-domain data is also used; which is

added to the rest class while training the SVM.

Sim-Inception-V4

In our experiments, for each epoch we randomly choose 500 speakers. All utterances of

these 500 speakers are selected as anchors, among previous years SRE data 5 utterances are

chosen randomly as negative samples and 5 utterances from in-domain data are chosen as

positive samples. Learning rate starts with 1e-2 and after 50 epochs is set to 1e-3 and after
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200 iterations is 1e-4. The maximum number of epochs is 1000. RMSprop optimizer is also

used for the learning process.

4.2.3 Results and Analysis

This section presents experimental results comparing 4 different systems: (1) i-Vector +

LDA, (2) a-Vector + LDA, (3) i-Vector + SVDA, (4) a-Vector + SVDA. In the tables

i-Vector and a-Vector are referred to as ivec and avec for simplicity.

Table 4.1 and 4.3 summarize EERs for the DEV and EVAL respectively, results are re-

ported for each language as well as on the pooled data. Table 4.2 and 4.4 also represent

min-Cprimary for DEV and EVAL sets, respectively. For all cases, the SVDA-based systems

perform better than the LDA-based ones. In table 4.2, ivec+SVDA has 3%/6% relative

improvement over ivec+LDA; for avec-based one also SVDA has 4%/6% improvement over

LDA. In table 4.4, ivec+SVDA achieved better performance over ivec+LDA with 12%/14%

rate; and for avec one also SVDA achieved 13%/14% improvement over avec+LDA. Improve-

ments for EVAL data is more significant comparing to the DEV data. Comparing a-Vector

against i-Vector in table 4.2, the a-Vector one achieved 0.7%/0.6% and 2%/0.3% relative

improvements for LDA and SVDA based systems. And for the EVAL data also has a similar

range of improvements.

The results show that, SVDA consistently outperforms LDA, and improvements are more

significant for min-Cprimary. Comparing i-Vector and a-Vector, in terms of min-Cprimary

there is always a marginal improvement with a-Vectors. However, in terms of EER improve-

ments are not consistent.

The results show that the proposed a-Vector is a promising representation; however,

we believe that if in each iteration we present a better selection of triplet sets, clear and

consistent improvement might achieve.

Comparing our proposed system against those single systems (systems with no score

fusion) introduced in [23, 24], we achieved 8.5% and 18% improvements respectively in terms
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Table 4.1: EER(%) equalized/unequalized scores on DEV

System Cebuano Mandarin Pool

ivec + LDA 21.42 / 21.78 9.14 / 9.75 15.59 / 16.08
avec + LDA 21.09 / 21.66 9.02 / 9.66 15.93 / 16.28
ivec + SVDA 20.47 / 21.66 8.14 / 8.76 15.58 / 15.95
avec + SVDA 20.69 / 21.70 8.31 / 8.88 15.35 / 15.91

Table 4.2: min-Cprimary equalized/unequalized scored on DEV

System Cebuano Mandarin Pool

ivec + LDA 0.9 / 0.841 0.488 / 0.481 0.701 / 0.671
avec + LDA 0.894 / 0.839 0.471 / 0.475 0.696 / 0.667
ivec + SVDA 0.877 / 0.799 0.464 / 0.453 0.679 / 0.629
avec + SVDA 0.868 / 0.797 0.462 / 0.452 0.668 / 0.627

Table 4.3: EER(%) equalized/unequalized scores on EVAL

System Tagalog Cantonese Pool

ivec + LDA 17.08 / 17.02 7.65 / 8.46 12.42 / 12.68
avec + LDA 17.21 / 17.05 7.48 / 8.25 12.41 / 12.6
ivec + SVDA 15.20 / 15.23 6.05 / 6.88 10.66 / 10.95
avec + SVDA 15.27 / 15.27 6.01 / 6.88 10.7 / 11.04

Table 4.4: min-Cprimary equalized/unequalized scores on EVAL

System Tagalog Cantonese Pool

ivec + LDA 0.902 / 0.906 0.606 / 0.617 0.797 / 0.806
avec + LDA 0.902 / 0.905 0.59 / 0.607 0.791 / 0.8
ivec + SVDA 0.829 / 0.818 0.53 / 0.55 0.698 / 0.697
avec + SVDA 0.828 / 0.815 0.527 / 0.55 0.689 / 0.691

of EER (their best performing single systems have been compared against here); and in terms

of min-Cprimary a-Vector is competitive with those single systems (a-Vector achieved 0.689

and for those systems min-Cprimary are 0.686 and 0.689 respectively).
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4.3 Summary

This chapter has presented a new method for compensation of the domain mismatch problem

in SRE-16; and also extended the SVDA to a domain adaptation technique. The proposed

solution was based on concatenation of domain-adapted auxiliary features and the original

i-Vectors to normalize for specific language-dependent directions. For this purpose, we mod-

eled a simplified version of the inception-v4 network to map i-Vectors to these new auxiliary

features. During the training process, we also proposed a new loss function called domain-

adapted triplet loss function. Evaluations are based on SRE-16 data, with reported EERs

and min-Cprimary costs on DEV and EVAL sets confirming that the proposed method is

promising in effectively addressing mismatch. In the next chapter, we consider multi-stage

domain adaptation in speaker recognition.
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CHAPTER 5

MULTI-STAGE DOMAIN ADAPTATION FOR SPEAKER RECOGNITION

Domain adaptation techniques can be applied at different stages in the speaker recognition

framework; either in the front-end or in the back-end. For front-end domain adaptation,

speaker embedding training module needs to use target domain data as well while learning

the parameters of the model or adjusting the parameters. However, the small unlabeled data

from the target domain makes the front-end domain compensation task harder and riskier.

Robust speaker embeddings are essential to perform speaker recognition and achieve a good

performance. On the other hand, domain adaptation in the embedding feature space or at

the back-end level can be integrated into different steps or they can be combined together.

The back-end processing focuses more on the speaker-irrelevant features. In this chapter, we

present a comprehensive study of domain adaptation at the back-end level. We introduce

new approaches for domain mismatch compensation. We apply them in each step alone or

in combination with each other. In addition, we extend the domain adaptation to t-Vector

and x-Vector speaker embeddings as well for both NIST SRE-16 and NIST SRE-18 tasks.

5.1 Introduction

Figure 5.1 shows the flow diagram of our back-ends with incorporating domain-adaptation

methods. Although we carry out experiments on various combinations of domain adaptation

techniques (together or separately), this figure summarizes the two different pipelines we find

out to be successful and used for our submission to the challenge as well.

Based on our preliminary experiments, we propose performing domain mismatch com-

pensation using either of the pipelines shown in Figure 5.1. In other words, domain mismatch

is either compensated with SVDA or with adapted PLDA model (which can be supervised

adapted PLDA or unsupervised adapted PLDA). In the latter case, scoring can be replaced
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with s-norm scoring as well. Mean centralization, length normalization and LDA are shared

between the two pipelines.

 

a) LDA/PLDA scoring with SVDA for domain adaptation 
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Figure 5.1: Flow diagrams of CRSS back-end classifiers [2].

5.2 Method

This section in detail describes applicable domain adaptation techniques at the back-end

level processing of speaker embeddings. Mean-centralization with target-domain data is a

simple yet very effective approach to transfer the speaker embeddings from the source domain

to the target domain. The other steps, where domain adaptation can be integrated in are

SVDA, LDA, PLDA, score normalization, calibration and fusion. Here, as we mainly focus

on developing a single system for the target-domain, we provide solutions for adaptation in

SVDA, LDA and PLDA steps, which are described in detail, in continue.

50



5.2.1 Adaptation with SVDA

In this subsection, we briefly describe discriminant analysis via support vectors [6] (which

is studied before in Section 3.4 for dimension reduction purpose) and modify the SVDA

framework for adaptation to the domain of interest.

SVDA is a variation of LDA, where both can be used for discriminant analysis, and

optimize the Fisher criterion [59]. LDA uses all samples of all classes to calculate the between

and within class covariance matrices, as:

Sb =
C∑
c=1

nc(µc − µ)(µc − µ)T (5.1)

Sw =
C∑
c=1

∑
k∈c

(xk − µc)(xk − µc)
T , (5.2)

However, SVDA only uses the support vectors to calculate the between and within class

covariance matrices. More specifically, if we define wc1c2 =
∑l

i=1 yiαixi as the optimal

direction to classify two classes c1 and c2 by a linear SVM (yi represents target value (+1 for

first class, -1 for second class) of learning pattern xi, αi is its coefficient), then the between

class covariance matrix will be updated as,

Vb =
∑

1≤c1≤c2≤C

wc1c2w
T
c1c2

. (5.3)

Also, let X̂ = [x̂1, x̂2, ..., x̂N̂ ] be all the support vectors and N̂ represents their total number.

Next, the within class covariance matrix will be formulated as,

Vw =
C∑
c=1

∑
i∈Îc

(x̂i − µ̂c)(x̂i − µ̂c)
T (5.4)

where Îc includes the index of support vectors in class c, and µ̂c denotes the mean of them.

Finally, similar to LDA, the optimum transformation Â will contain the k eigenvectors

corresponding to the k largest eigenvalues of V −1w Vb.
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For training the SVM, two strategies can be adopted; (i.e., 1-VS-1 and 1-VS-Rest [6]).

Data for the domain of interest can be easily integrated into this framework, both supervised

and unsupervised. In the supervised adapted SVDA, first the in-domain data needs to be

clustered (if they are unlabeled), then they will be treated similar to other speaker classes; in

another experiment we considered all unlabeled data as belonging to only one single class and

used it with a 1-VS-1 strategy. On the other hand, unsupervised adapted SVDA does not

perform clustering. In every iteration of SVM, unlabeled in-domain data are added to the rest

class with no information of their labels. Algorithm 1 summarizes our proposed 1-VS-Rest

SVDA. Other advantages of our proposed SVDA includes: SVDA finds the discriminatory

directions using the boundary structure of the classes, and also the SVM is a well-known

method for small sample size problem [50].

Algorithm 1 Algorithm for adapted-SVDA 1-VS-Rest.

C ← Number of speaker classes
X, Y ← i/t/x-Vectors, and their labels
N ← Number of all support vectors
γ ← Regularizer parameter 0 ≤ γ ≤ 1, and here is set to 0.05.
for i = 0 to C do

Xcu = Xi concatenate Xunlabeled

Ycu = Yi concatenate Zeros(0, len(unlabeled))
model = svmtrain(Ycu, Xcu)
Ii = index of SVs for class i
Ij = index of SVs for unlabeled data
w = SV s(Ii)−mean(SV s(Ii))
V w = V w + wT ∗ w
w = SV Coef(Ii) ∗ SV s(Ii) + SV Coef(Ij) ∗ SV s(Ij)
V b = V b+ wT ∗ w

end for
Vw = (1− γ)Vw + γ trace(Vw)

N−C
return eignenvectors corresponding to the k largest eigenvalues of Vba = γVwa

As stated earlier, here, in addition, we perform the adapted SVDA with a 1-VS-1 strategy,

which is summarized in Algorithm 2. We experimented with two different situations, (1) all
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in-domain data are counted as belonging to one speaker class, and (2) we use the pseudo

labels estimated from our clustering approach, which is described in the next subsection.

Algorithm 2 Algorithm for adapted-SVDA 1-VS-1.

C ← Number of speaker classes
X, Y ← i/t/x-Vectors, and their labels
N ← Number of all support vectors
γ ← Regularizer parameter 0 ≤ γ ≤ 1, and here is set to 0.05.
model = svmtrain(Y,X)
V w ← Initialize to Zero
for i = 0 to C do

Ii = index of SVs for class i
w = SV s(Ii)−mean(SV s(Ii))
V w = V w + w′ ∗ w

end for
Vw = (1− γ)Vw + γ trace(Vw)

N−C
V b← Initialize to Zero
for i = 0 to C − 1 do

for j = i+ 1 to C do
Xcu = Xi concatenate Xj

Ycu = Yi concatenate Yj
model = svmtrain(Ycu, Xcu)
Ii = index of SVs for class i
Ij = index of SVs for class j
w = SV Coef(Ii) ∗ SV s(Ii) + SV Coef(Ij) ∗ SV s(Ij)
V b = V b+ wT ∗ w

end for
end for
return eignenvectors corresponding to the k largest eigenvalues of Vba = γVwa

5.2.2 Adaptation with LDA

Providing the data from domain of interest in order to find a discriminating transforma-

tion matrix can help with achieving better performance at the application step. LDA is a

supervised dimension reduction tecnique; therefore adding the target-domain data into the

training of LDA requires to provide labels for them as well. In this study, we use a simple
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clustering technique to assign psedo labels to the unlabeled data and then integrated them

in training of the LDA.

Generally, as mentioned before, for compensating the domain mismatch, the use of un-

labeled in-domain data becomes very important. There are several stages where we can use

unlabeled data, such as, LDA/PLDA training, and calibration; however, most of them require

labeled data. Therefore, performing a speaker clustering of the unlabeled data is required

there. After clustering unlabeled data, we can simply use the “estimated” speaker labels for

each utterance with supervised methods. The clustering approach we applied here is similar

to the method used by CRSS in 2015 NIST LRE i-Vector challenge. With these labels, we

incorporate the in-domain information from unlabeled data to train both LDA and PLDA.

In fact, in the experiments, this simple operation improves the LDA/PLDA baseline perfor-

mance for the development set. In practice, we train a gender identification sub-task using

previous SRE data before speaker clustering, and then apply a simple K-means algorithm

over the gender dependent subsets, finally, we pool these two subsets together. Throughout

our experiments, we found out this can provide more accurate speaker clustering and greater

benefit to the subsequent LDA and PLDA training.

5.2.3 Adaptation with PLDA

Here, we perform PLDA adaptation with two different methods, (i.e., supervised and unsu-

pervised adapted PLDA [17, 60]), details are provided in the following description.

For both supervised and unsupervised PLDA adaptation, Γ and Λ parameters, repre-

senting the between class and within class covariance matrices respectively [60] of PLDA

model, need to be updated using the in-domain data. In the supervised adapted PLDA

approach, the in-domain data are first clustered (the unlabeled data for SRE-16 & SRE-18

are in-domain data) and when their pseudo labels are estimated, we can perform the tradi-
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tional PLDA on them. The Λ and Γ parameters of the supervised adapted PLDA are then

interpolated as,

Γadapt = αΓin + (1− α)Γout,

Λadapt = αΛin + (1− α)Λout.
(5.5)

Here, Γin and Λin are the between class and within class covariance matrices for the in-domain

data, Γout and Λout are the same covariance matrices but calculated from out-domain data.

In our experiments, we used (1− α) = 0.85.

For unsupervised adapted PLDA, the in-domain data are not clustered first (if they are

unlabeled; or their actual labels will not be used if they are labeled). Here, mean and

variance of all in-domain data are calculated and used for adapting the PLDA covariance

matrices as,

Γadapt = Γout + βbS,

Λadapt = Λout + βwS,
(5.6)

where βb determines the scale for updating the between class covariance towards the excess

variance in a particular direction, and βw is the same but for updating within class covariance

matrix. In our experiments, we set βb = 0.2 and βw = 0.6. In addition, S corresponds to

the eigenvalues of adaptation-data (in-domain data) total-covariance in PLDA space [12].

5.3 Experimental Setup

For the UBM/i-Vector framework, we extract 60 dimensional features (20-D MFCC and

∆+∆∆) on a 25ms window, with a shift size of 10ms. Non-speech frames are discarded using

an energy-based speech activity detection (SAD). In addition, cepstral mean normalization

is applied with a 3-second sliding window. 2048-mixture full covariance UBM and total

variability matrix are trained for 600 dimensional i-Vector extraction. Next, LDA is used to

reduce the dimension of the i-Vectors to 400-D.
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In our study, we used the standard Kaldi x-Vector recipe to train our baseline x-Vector

based system. The input feature vector is a 24 dimensional filter-bank from a 25-ms frame

length analysis window, these features are then mean-normalized over a 3-s sliding window.

Non-speech segments are removed using an energy-based SAD, though other more advanced

SAD methods such as Combo-SAD [61] or TO-Combo-SAD [61, 62] could also be used for

noisy data. The DNN configuration is described in detail in [12]. The resulting x-Vectors

are 512 dimensional, which are then reduced to 150-D with LDA.

In t-Vector framework, high resolution filter bank features are adopted for system de-

velopment. At the frequency axis, 96 dimensional log mel filter bank features are extracted

from a 32-ms analysis speech frame, with a 50% overlap between neighboring frames. Non-

speech portions of the utterance are removed using an energy based SAD. To deal with long

duration samples in the training data, we uniformly segment the speech utterances into 12-

second chunks without overlap, which is equivalent to 750-D feature set along the time axis

as the input to the network. To estimate the embedding at the utterance level, we perform

segment level embedding averaged in a sequential order, in order to obtain the t-Vector.

Here, we extract 128 dimensional t-Vectors, which are then reduced to 80-D with LDA.

Table 5.1 summarizes the data used for training each of our developed speaker embedding

systems for both SRE-16 and SRE-18 tasks.

Table 5.1: Corpora used in the speaker embedding system training.

Dataset Copora Min-Utt/Spk System
D1 SRE04-08, SWB 1 i-vec
D2 D1+Mixer 6 8 t-vec
D3 D2 + SRE-10 + VoxCeleb 8 x-vec

Here, SWB includes all Switchboard II phase 2 & 3 and Switchboard Cellular Part 1

& 2 corpora. D2 and D3 listed in Table 5.1 are augmented by 3-folds after convolving

with far-field Room Impulse Responses (RIRs), or by adding noise from the MUSAN corpus
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Table 5.2: Number of speakers/segments used for training front-end and back-end processing
within our speaker recognition system for this study.

System Front-end Back-end

i-Vector 5756/57273 3794/36410
x-Vector 13437/169135 3794/36422
t-Vector 5969/132777 3794/36422

[63]. The Kaldi x-Vector recipe is adopted for this portion of our processing. A speaker

filtering criterion is applied to the training dataset as well for t-Vector and x-Vector feature

extraction. For example, 8 min-utt/spk stands for the filtering process that all speakers with

less than 8 utterances and less than 500 frames per utterance were excluded for training.

For training the back-end, no augmentation has been applied, our preliminary experi-

ments showed that no gain can be obtained by including augmented data at the back-end

training. The out-of-domain PLDA is also trained on only previous SRE data. SVDA, LDA

and PLDA all share the same data. In the experiments where unlabeled data are included in

training of SVDA, LDA and PLDA, it is explicitly mentioned in the dissertation. Statistics

of the data used for training front-end and back-end stages are summarized in Table 5.2.

For SRE-16, we report both equalized/unequalized scores.

5.4 Results and Analysis

In this section, we first perform experiments for evaluating the effectiveness of SVDA in

domain adaptation. Table 5.3 summarizes results for i-Vector/PLDA solution for both SRE-

16 and SRE-18. Three different SVDA variations have been applied: (1) 1-VS-1 strategy

where all unlabeled in-domain data are considered to belong to one cluster; (2) 1-VS-1 where

unlabeled data has been clustered first and their clustering (CL) labels used there; and (3)

1-VS-Rest where all unlabeled data are added to the rest class.

Results show that for SRE-16, SVDA achieves +15% and +14% improvement in terms

of min-Cprimary and EER respectively. For SRE-18 as well, +8% and +16% improvement
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were achieved with SVDA in terms of min-Cprimary and EER, respectively. For both SRE-

16 and SRE-18, SVDA has contributed to domain adaptation. Based on these results, for

the following experiment, 1-VS-Rest is used for domain adaptation in SRE-16; and 1-VS-1

(where all unlabeled data considered to belong to only 1 class) is applied for SRE-18.

Table 5.3: SVDA domain adaptation with i-Vector/PLDA for SRE-16 and SRE-18 tasks.

SVDA DEV EVAL
EER min-C EER min-C

SRE-16
No SVDA 15.59 / 16.08 0.7 / 0.67 12.33 / 12.55 0.79 / 0.8

1-VS-1 (all 1 class) 15.77 / 16.05 0.7 / 0.65 10.75 / 11.04 0.7 / 0.69
1-VS-1 (CL labels) 15.89 / 16.32 0.71 / 0.67 12.33 / 12.53 0.8 / 0.8

1-VS-Rest 15.57 / 15.95 0.66 / 0.62 10.56 / 10.91 0.69 / 0.68
SRE-18

No SVDA 12.17 0.73 12.89 0.78
1-VS-1 (all 1 class) 10.23 0.7 11.66 0.72
1-VS-1 (CL labels) 12.07 0.74 12.85 0.77

1-VS-Rest 12.01 0.72 12.92 0.78

In another experiment, we compare supervised and unsupervised PLDA adaptation meth-

ods for SRE-18 and SRE-16 tasks with i-Vector, t-Vector and x-Vector embeddings. Results

are summarized in Table 5.4. Here, SVDA is not applied, in order to measure only the ef-

fectiveness of adapted PLDA. For x-Vector and t-Vector embeddings unsupervised adapted

PLDA achieves consistent improvement over supervised adapted PLDA and original PLDA.

However, for i-Vector, adapted PLDA does not provide a gain. For training t-Vector and

x-Vector, we used augmented data but not for training the i-Vectors; which might affect the

adapted PLDA.

Finally, to comprehensively examine domain adaptation at the back-end level, we use

in-domain data along with alternate back-end blocks; LDA, SVDA, and PLDA. Results are

summarized in Table 5.5. All systems use in-domain data first for centralization: major data

is used for SRE-16 and unlabeled data for SRE-18. For t-Vector and x-Vector, unsupervised

PLDA is used where 3is set for PLDA. LDA needs labeled data for training; therefore, when

3is on for LDA, the clustered unlabeled data is added to the training set. For SRE-16,

58



Table 5.4: Supervised VS Unsupervised PLDA, for SRE-16 and SRE-18.

Adapted PLDA SRE-18 SRE-16
DEV EVAL DEV EVAL

EER min-C EER min-C EER min-C

i-Vector
5 12.17 0.73 12.89 0.78 12.33 / 12.55 0.79 / 0.8

Supervised 15.28 0.78 15.56 0.8 13.93/13.98 0.85/0.84
Unsupervised 14.86 0.73 16.04 0.76 13.96/14.23 0.8/0.8

x-Vector
5 11.4 0.78 11.23 0.77 15.32/15.56 0.99/0.99

Supervised 10.34 0.64 11.05 0.65 14.96/15.74 0.97/0.98
Unsupervised 8.82 0.54 9.64 0.56 8.37/8.29 0.6/0.61

t-Vector
5 13.34 0.88 13.87 0.87 17.2/16.15 0.99/0.99

Supervised 11.04 0.76 12.57 0.78 13.16/12.76 0.92/0.93
Unsupervised 9.5 0.53 9.62 0.67 9.17/9.32 0.7/0.72

1-VS-Rest SVDA is used and unlabeled data are added to the rest class; for SRE-18 1-VS-1

SVDA (where all unlabeled data are considered to belong to only one class) is used.

The scores for all the experiments confirm that domain adaptation at the back-end level

is promissing, specially for x-Vectors and t-Vectors the improvement is more obvious. For

i-Vector as well, SVDA is shown to be effective, specially for the SRE-16 where mean central-

ization is not adequate for domain adaptation. In i-Vector framework, discriminant analysis

and dimension reduction techniques such as SVDA and LDA are shown to be more effective

in compensating the domain mismatch rather than the PLDA. However, for x-Vectors and

t-Vectors more gains are achieved with adapting the PLDA; however, SVDA is still resulting

in better scores. For x-Vector embedding in SRE-18 task, with SVDA domain adaptation

EER on EVAL set is 8.67% and with adapted PLDA is 9.63% which confirms that SVDA is

a promissing approach to compensate for the domain mismatch.

5.5 Summary

In this chapter, we discussed multiple domain adaptation methods for speaker recognition

for the NIST SRE-16 and SRE-18 tasks. We developed three alternate speaker embeddings
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Table 5.5: Using data of interest, in-domain data in LDA, SVDA, and PLDA for x-Vector,
i-Vector and t-Vector, evaluated on both SRE-16 and SRE-18.

SVDA LDA PLDA SRE-18 SRE-16
DEV EVAL EVAL

EER min-C EER min-C EER min-C

i-Vector
5 5 5 12.17 0.73 12.89 0.78 12.42 / 12.68 0.79 / 0.81
3 5 5 12.01 0.71 12.92 0.78 10.66 / 10.95 0.69 / 0.69
3 3 5 10.76 0.7 12.34 0.76 10.69 / 11.02 0.69 / 0.69
3 5 3 12.27 0.71 13.05 0.78 12.58 / 12.77 0.82 / 0.83
3 3 3 10.91 0.69 12.41 0.76 10.69 / 10.97 0.7 / 0.7
5 3 5 11.15 0.73 12.35 0.75 12.32 / 12.56 0.77 / 0.78
5 3 3 11.41 0.72 12.47 0.76 12.4 / 12.51 0.79 / 0.79
5 5 3 12.54 0.72 13.06 0.78 12.79 / 12.95 0.82 / 0.83

t-Vector
5 5 5 13.34 0.88 13.87 0.87 17.2 / 16.15 0.99 / 0.99
3 5 5 11.93 0.7 10.45 0.74 13.12 / 12.86 0.89 / 0.94
3 3 5 11.71 0.7 10.4 0.73 12.98 / 12.91 0.94 / 0.97
3 5 3 9.79 0.57 9.96 0.66 10.01 / 10.29 0.71 / 0.72
3 3 3 9.84 0.57 9.99 0.66 10 / 10.23 0.7 / 0.72
5 3 5 13.7 0.89 14.55 0.9 22.43 / 21.43 0.99 / 0.99
5 3 3 9.52 0.54 9.65 0.67 9.23 / 9.36 0.71 / 0.73
5 5 3 9.49 0.52 9.61 0.67 9.23 / 9.33 0.7 / 0.72

x-Vector
5 5 5 11.4 0.78 11.23 0.77 15.32 / 15.56 0.99 / 0.99
3 5 5 8.86 0.61 8.67 0.58 11.45 / 11.14 0.86 / 0.89
3 3 5 8.89 0.65 8.72 0.59 13.36 / 12.91 0.99 / 0.99
3 5 3 8.7 0.54 9.96 0.57 8.71 / 8.46 0.58 / 0.59
3 3 3 8.66 0.55 9.88 0.56 8.63 / 8.36 0.58 / 0.59
5 3 5 16.97 0.87 13.93 0.86 29.36 / 27.24 1 / 1
5 3 3 8.55 0.54 9.37 0.56 8.45 / 8.23 0.62 / 0.63
5 5 3 8.8 0.54 9.63 0.56 8.42 / 8.32 0.6 / 0.61

here, i-Vector, t-Vector and x-Vector. We explored the use of discriminant analysis with

support vectors (SVDA), with new advancements from our previous methods. We evaluated

the 1-VS-Rest SVDA strategy for domain adaptation. In addition, a new version of SVDA

studied for speaker recognition using unlabeled data; 1-VS-1 where all unlabeled data is con-

sidered to belong to one cluster, and 1-VS-1 where unlabeled in-domain data was clustered.

Results confirmed that SVDA can improve speaker recognition for SRE-16 and SRE-18 by

+15% and +8% in terms on min-Cprimary respectively; and in terms of EER +14% and

+16% respectively, with i-Vector speaker embeddings. Mean centralization, SVDA, LDA,

and PLDA are phases which we incorporated in-domain data. We developed an effective con-
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figuration for each of these steps to properly use the in-domain data. These results suggest

effective steps towards improving domain adaptation for robust speaker recognition.

In the next chapter, we introduce the speaker de-identification task and explain our

proposed solution.
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CHAPTER 6

SPEAKER DE-IDENTIFICATION

Everyday a large amount data is uploaded on the internet and needs to be protected, for

medical data to be processed privacy of patients needs to be preserved. These are only

two examples that require a speaker de-identification technique. By definition, speaker de-

identification means concealing any information that reveals the identity of the speaker.

This information includes both linguistic and para-linguistic features. In this chapter, we

focus on concealing the voice characteristics of the speaker for the purpose of protecting

her/his identity. In addition, the performance of speaker recognition systems on automatic

de-identification methods is examined here, to verify their robustness. If we are protecting

the identity of a speaker, we need to achieve non-recognizable objective performance from

state-of-the-art solutions for speaker recognition.

To perform speaker de-identification, we can simply adjust features of the speech, such as

fundamental frequency, intonation, rate of the speech, etc. This engineering based solutions

can provide effective performance in some scenarios. However, we need to have a prior

knowledge on what aspects of the speakers voice is going to be captured and processed

by the speaker recognition system. A more powerful solution is using voice conversion

based techniques, which provides non-linear transformation from a source speaker to its de-

identified version. With voice-conversion based techniques, the voice characteristics of the

target de-identified speaker can also be adjusted easily. Here, for every source speaker we

generate a new identity which is not present in the training set. Therefore, conveniently, we

can apply our proposed speaker de-identification method to those applications that require

multiple voices at the transformed subspace.

Speaker de-identification, on the other hand can be used as an augmentation method.

When there is a need to increase the number of speakers in the dataset or add more variabil-

ities, we can produce more samples with speaker de-identification and integrate the resulting
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samples into system development; either for speaker recognition task or other applications

of speech processing.

6.1 Introduction

Speaker de-identification is the task of concealing speaker identity, which may be revealed

in linguistic (content of speakers speech) [64, 65] and paralinguistic (spectral and excitation

features of the speech signal uttered by the speaker) [66, 67, 68] features. In this chapter,

we focus on the latter one. Our goal is to map voice characteristics of a given speaker to a

new identity, while preserving the naturalness and intelligibility. Speaker de-identification

has many applications; for instance, protecting privacy of subjects speaking in a recording

(e.g, witness or victim in courtroom/legal scenarios, voices played in some radio or television

programs, and medical records), secure transmission of speech data (e.g., hiding speaker

identity while transmission of speech data gathered from online banking services), prevention

of unauthorized access, data augmentation, etc.

Previous studies in this research area are very limited. In [66] the authors proposed a

method for protecting the privacy of speakers by adding masking sound based on white noise

(considering different SNRs) or adding noise using band-pass filters. The authors showed

that overall intelligibility decreases as the accuracy of protecting privacy increases. Gen-

erally, noise masking speech signals can unintentionally degrade intelligibility. In addition,

masking just may decrease performance of speaker recognition systems, but subjectively

listeners may still recognize the identity of the speaker. On the other hand, the authors

in [68] used GMM-based and phonetic based speaker recognition systems for their evalua-

tions. They transformed a source voice to a synthetic target voice called kal-diphone. Using

synthetic voice as the target data degrades the performance of the de-identification sys-

tem. In addition, authors in [69] manually defined piece-wise linear functions to transform

the spectral parameters and achieved 4.4% - 98.6% accuracy with different settings; and
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no subjective test has been reported. Authors in [70] adopted an available transformation

method, i.e., the weighted frequency warping. They proposed a new method for selection

of a speaker from the database. Transformation applies on the source speaker toward this

selected speaker. The selection method is designed to meet three different criteria to achieve

an overall promising performance.

Here, in contrast to other related works (to the best of our knowledge, they all used

an already available voice transformation method), we propose a new convolution encoder-

decoder based voice mapping and incorporated that into our speaker de-identification system.

We use the publicly available database of voice conversion challenge 2016 (VCC-2016) [71, 72]

to develop our voice mapping system. The convolution neural network (CNN) voice mapping

architecture is specifically designed to consider details of the database and has the ability

to suppress the errors and noises that might occur during the preparation of data for the

voice mapping step. Finally, the speaker de-identification system employs the voice mapping

module to transform the voice characteristics of a given speaker to all target speakers in the

database. Average or gender-dependent average of mapped voices leads to the de-identified

voice.

As a brief summary, the main contribution of this study is the development of a new voice

mapping system using convolutional encoder-decoder neural networks. Other key aspect of

this study is that we evaluate the proposed architecture with an i-Vector/probabilistic linear

discriminant analysis (PLDA) [14] speaker recognizer. In addition, the de-identification

approach proposed here is designed to gain good performance with both human listeners

and machines while preserving quality and naturalness.
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6.2 Method

The details of the proposed speaker de-identification architecture are described in this section.

We first introduce the main idea and the overall architecture of the proposed system, and

then explain each individual subsystem in detail.

Figure 6.1 shows the overall block-diagram of the proposed system. Based on this figure,

the proposed system performs the speaker de-identification in the following 4 steps:

• Feature analysis: In Subsection 6.3.2, the features are introduced which contain

spectral (MCEP) and excitation (AP, Log-F0) features. They are extracted using the

STRAIGHT vocoder.

• Feature mapping: The VCC-2016 database has 5 source and 5 target speakers. 25

(i.e., every potential mapping from any source to any target) mapping functions from

MCEP features of the source to the MCEP features of all target speakers are trained

based on a new convolutional encoder-decoder neural network architecture (which is

described in detail in Subsection 6.2.1). To preserve the variance of training data

and partially resolve the over-smoothing problem, we simply scale the variance of the

generated MCEP features to that of the same speaker in the training data. For Log-F0

a simple linear transformation is applied. In addition, AP is moved directly from the

source speaker to the de-identified speaker without any modification.

• Fusion: For a given source speaker, we map the MCEP and Log-F0 features to all

target speakers in the database (based on the technique explained in the previous

step). Next, mapped features are fused together with two different approaches: (i)

average, and (ii) gender-dependent average. It is clear that we can also apply weighted

averaging to obtain different voices for each source speaker, but in this study for the

sake of simplicity we use equally weighted averaging.
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• Synthesis: In this step, transformed MCEP features are converted back to SP using

SPTK toolkit. We stack the SP, F0 as well as the AP (obtained from the previous steps)

and use STRAIGHT synthesis module to generate the de-identified speech samples.

6.2.1 Convolution Encoder-Decoder Mapping

This subsection introduces a new neural network architecture for mapping acoustic features

from a source speaker to a target speaker. Similar to all neural networks, our mapping

network has train and test (de-identification) phases.

In the training phase, source and target utterances are first aligned using the dynamic

time warping (DTW) algorithm. Next, we prepare the data for our training procedure. The

input and output of the network are stacks of 15 consecutive frames of MCEP features. We

can interpret these 15 frames as one frame that is appended with 7 previous and 7 next

frames. Finally, the mapping network is trained to model the non-linear transformation

from the input sequence to the output sequence.

In the de-identification phase, we slide a 15-frame-length window over the input sequence

and feed each window as the input to the trained network. The network transforms the input

into the same dimensional output; however, we only keep the middle one.

In this study, we introduce a new convolutional neural network (CNN)-based structure to

perform the spectral mapping. CNNs represent a variation of neural networks [73] which have

a unique structure with a cascade of convolution and pooling layers. Three key CNN aspects

benefit our task: local connectivity, weight sharing, and pooling [74]. Local connectivity

makes the system more robust to noise. In addition, while static features are sufficient for

the network, the benefits of using dynamic features are captured by CNN filtering. Also,

weight sharing reduces the number of parameters which partially addresses the issue of

over-fitting. Specially here, the VCC-2016 database is small (this can be valid for most

of paralleled databases) and can cause an over-fitting problem. Pooling as well can help

suppress potential errors of dynamic time warping (DTW) for aligning the two feature sets.
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Figure 6.2: Convolutional encoder-decoder architecture.

Figure 6.3: Encoding layer: encodes input into a lower dimensional representation. BN is
batch-normalization. Each convolution layer uses maxout and is followed by average pooling.

Figure 6.4: Decoding layer: decodes input. The activation function is tanh, and BN is batch
normalization.

Various approaches have been introduced to convert spectral features. Examples include,

joint density Gaussian mixture model (JDGMM) [75] with parameter generation algorithm

[76] (to incorporate dynamic features) which are traditional methods for converting spec-

tral features. LSTM-RNN [77], stacked joint-autoencoder [78], generative training of DNN

[79], exemplar-based conversion [80] are among more recent trends in voice conversion. In

addition, [81] proposed (combining different techniques including) applying direct waveform

modification using spectral differential filtering (DIFFVC) with GMM-based VC and ranked

one of the top systems in the VCC-2016 [72].
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Table 6.1: EER (%) for original source (Female: SF1, SF2, SF3; Male: SM1, SM2) and
target (Female: TF1, TF2; Male: TM1, TM2, TM3) speakers.

SF1 SF2 SF3 SM1 SM2 TF1 TF2 TM1 TM2 TM3

EER (%) 2.516 0.559 0.4892 0.1747 0.7687 1.747 0.3494 0.4542 0.2096 0.2795

CNN-based mapping has multiple advantages over other voice mapping methods which

include: (1) Compared to approaches that use delta features to capture time-dependencies

(such as, JDGMM), our convolutional encoder-decoder network is able to automatically cap-

ture the dependencies between adjacent acoustic feature frames without including dynamic

features. As a result, our method does not need a parameter generation algorithm which is

prone to the over-smooting problem. (2) Compared to LSTM-RNN approaches, our network

is faster and easier to train. Additionally, due to the recurrent nature of LSTM-RNN, it

cannot fully exploit the GPU capabilities.

Figure 6.2 shows the overall structure of the proposed convolutional encoder-decoder. As

it is shown in the figure, the structure contains an encoder followed by a decoder. Encoder is

a stack of convolution and pooling layers (Figure 6.3) and decoder is a stack of convolution-

transpose1 (Figure 6.4) layers. The convolution and pooling layers encode the input into

low resolution representations and convolution-transpose layers up-sample the data to its

original high resolution space. Applying convolution-transpose after the convolutional layers

has shown to be effective in other applications; such as image segmentation [83], emotion

recognition [82], etc.

1Also known as de-convolution, up-convolution, backward strided convolution and fractionally strided
convolution [82]
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6.3 Experimental Setup

6.3.1 Data

We use publicly available database of voice conversion challenge 2016 (VCC-2016) [71, 72]

here. This database is specifically designed for the voice conversion application. In voice

conversion, we map a source speaker to a target speaker. This database contains speech

data of 10 speakers, 5 source speakers (SF1, SF2, SF3, SM1, SM2) and 5 target speakers

(TF1, TF2, TM1, TM2, TM3). S and T represent source and target speakers respectively;

in addition, M and F refer to male and female. This database is parallel; i.e., all speakers

read the same set of sentences. Each speaker has 162 training and 54 test utterances. For

developing our systems, we use 150 training utterances for modeling, and the remaining 12

utterances as development data.

The key points that lead us to choose this database include: (1) to preserve linguistic

information we need a parallel database [71] (however, there are also growing studies on non-

parallel data [84] as well). (2) to the best of our knowledge, there is not any other publicly

available parallel database designed specifically for speech synthesis or voice conversion rather

than CMU-ARCTIC [85] (which only has 7 speakers); therefore, we chose VCC-2016 as it

has more speakers.

Table 6.2: Summary of results. The EER(%) in figure 6.5 are averaged here for each newly
generated speaker.

Voice De-ID NSF1 NSF2 NSF3 NSM1 NSM2

Average 2.764 2.476 3.46 2.301 2.613
Average-F0 1.999 1.807 1.783 2.483 2.709

GD 2.232 2.129 2.751 1.265 1.845
GD-F0 1.701 1.824 1.550 2.682 1.859
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6.3.2 Features

In the proposed speaker de-identification system, we first compress speech into a set of acous-

tic features, we then de-identify speaker information in the extracted feature space, and

finally we synthesize de-identified speech from the acoustic feature space. The STRAIGHT

vocoder [86] is used for analysis and synthesis of utterances. STRAIGHT is a high qual-

ity vocoder that introduces around 0.5 MOS degradation in the naturalness of the speech

signal [87]. STRAIGHT extracts 513-D spectral envelope (SP), 513-D aperiodicity (AP) fea-

tures as well as 1-D fundamental frequency (F0). We employ speech signal processing toolkit

(SPTK) to convert SP to 40-D Mel-cepstral coefficients (MCEP) [88]. The de-identification

is only applied to MCEP and F0 features; the AP features are directly mapped from the

source speaker to the de-identified speaker.

6.3.3 Evaluation Metrics

In this subsection, the metrics used for evaluation of the proposed speaker de-identification

system are explained. Experiments are categorized in objective and subjective tests.

For objective evaluations, we developed an i-Vector/PLDA based speaker recognition

[14] system which is explained in 6.3.4. Similar to other speaker recognition evaluations, we

report equal error rate (EER) to evaluate and compare the performance of the developed

systems [4]. EER measures the error rate of a system at the threshold that miss alarm and

false alarm are equal [4].

For subjective evaluations, we conducted an informal subjective test. Details of the

experiment are described in 6.3.5.

6.3.4 Speaker Recognition Evaluation

Speaker recognition is the task of recognizing whether a given utterance belongs to a target

speaker or not. Here we employ an i-Vector/PLDA speaker recognition solution.
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As mentioned before, in typical i-Vector/PLDA speaker recognition systems, mel fre-

quency cepstral coefficients (MFCCs) are first extracted as input feature vectors, then speech

activity detection (SAD) is applied to remove non-speech segments. Next, a UBM and total

variability matrix (TV) are trained, and i-Vectors are extracted. Thereafter, i-Vectors are

post-processed with length-normalization and LDA. Eventually, PLDA is trained and final

log-likelihood scores are calculated [7].

In detail, the speaker- and channel-dependent GMM supervector in the i-Vector config-

uration is factorized as [14],

M = m+ Tw, (6.1)

where m is the speaker and channel-independent UBM supervector, T is total variability

(TV) matrix that maps the high-dimensional GMM supervector to a lower-dimensional vec-

tor w; or so-called i-Vector representation [14].

The expectation maximization (EM) algorithm is used to train both UBM and TV ma-

trix. In the E-step, w is considered a latent variable with a normal prior distribution N(0, I).

At the end of the optimization, the estimated value for each i-Vector is the mean of the pos-

terior distribution of w [14]. The estimated i-Vector is:

ŵ(u) = (I + T TΣ−1N(u)T )−1T TΣ−1S(u), (6.2)

where Σ is the UBM covariance matrix. In addition, N(u) and S(u) are zeroth and central-

ized first order Baum-Welch statistics for utterance u, respectively.

6.3.5 Naturalness Evaluation

For subjective evaluation, we conducted mean opinion score (MOS)-naturalness test. 20

listeners participated in the evaluations. Listeners are asked to rank the naturalness of 50

randomly chosen utterances from 1 (bad) to 5 (excellent).
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6.3.6 Experimental Conditions

This section describes details on the database used for training the i-Vector/PLDA speaker

recognition system and CNN configuration we adopted in developing of our system.

For the speaker recognition system, we first extract 19 MFCC features and append them

with energy, delta, and delta-delta features using a 25-ms window with sequential 10-ms

frame shifts. Next, energy-based SAD is used to remove non-speech segments. A 2048-

mixture full covariance UBM and total variability matrix are trained using data collected

from SRE2004, 2005, 2006, 2008 and Switchboard II phase 2,3 and Switchboard Cellular

Part1 and Part2 [5, 6]. For training both LDA and PLDA, we use training data from

VCC-2016 database. The enrollment/test data also includes test utterances from VCC-2016

database.

The CNN encoder-decoder introduced in Sec. 6.2.1 uses 2 convolution and 2 convolution-

transpose layers. The first convolution layer converts 15x40-D to 15x40x256, which reduces

to 15x40x128 with maxout. Next, average pooling is used to reduce the dimensions to

8x20x128. In the second convolution layer, the 8x20x128 input data is converted to 4x10x512

and again reduces to 4x10x256 with maxout and average pooling. The filter size in CNN

for the first and second CNN layers are 9x9 and 3x3. In the decoding layers (convolution-

transpose layers) tanh activation function is applied in both layers. The filter size for the

first and second convolution-transpose layers are 3x3 and 9x9, respectively. In all CNN and

convolution-transpose layers, we used batch normalization.

The minimum mean square error (MSE) has been chosen as the optimization criterion and

both L1 and L2 regularization are used here to solve the over-fitting problem. The learning

rate starts with 0.01 in initial epochs and decreases gradually. The maximum number of

epochs is set to 1000. Adam optimization is also used here for training the model.
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Figure 6.6: 600-D i-Vectors mapped to 2-D representation with t-SNE. Each source speaker
is mapped to the average of target speakers and new identity is generated. For example,
NSF1 is de-identified version of SF1 which is generated by mapping SF1 to average of all
target speakers.

6.4 Results and Analysis

6.4.1 Objective Test

In this subsection, we evaluate the proposed architecture in terms of equal error rate (EER).

First, we evaluate the performance of the i-Vector/PLDA speaker recognition for VCC-

2016 database. The EER for each individual speaker is shown in Table 6.1. The results show

the average EER for all speakers is 0.75% which is reasonable.

75



Next, for each source speaker (SF1, SF2, SF3, SM1, SM2) we generate a new speaker

(NSF1, NSF2, NSF3, NSM1, NSM2). For example, NSF1 is created by using the AP and

F0 (or linear transformation of F0) of SF1 and average/weighted-average of MCEP features

generated by voice mapping systems; specifically, transformation from SF1 to all target

speakers (TF1, TF2, TM1, TM2, TM3). We claim that NSF1 is different from all available

speakers in the database (all source and target ones). The results are presented in Figure 6.5.

We designed trials in a way that smaller EERs represent better de-identification performance.

Figure 6.5 represents four different approaches for fusing spectral features of different

target speakers.

• Average: AP and F0 of the source speaker are directly (without any change) copied

to the new speaker; while, the MCEP features are equally weighted average of trans-

formation to all target speakers.

• Average-F0: this is exactly similar to the previous version except that F0 of the

new speaker (e.g., NSF1) is a linear transformation of F0 for SF1. Here, if the source

speaker is female, we decrease F0 by 10% and if the source speaker is male, we increase

F0 by 10%.

• Gender-dependent (GD): in this system F0 and AP are copied from the source

speaker to the de-identified speaker. However, the MCEP features are the average

of only the cross-gender voice mapping models. For example, for NSF1, we average

MCEP features generated by SF1-TM1, SF1-TM2, SF1-TM3 voice mapping systems

(in contrast to average between all SF1-TF1, SF1-TF2, SF1-TM1, SF1-TM2, SF1-TM3

voice mapping systems which we had in the first system; i.e. “Average”).

• GD-F0: this is also exactly the same as “GD” however F0 is linearly increased or

decreased by 10% for male and female speakers, respectively.
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In Figure 6.5, it is clear that for both “Average” and “GD” when we change F0 we

obtain better performance. For example, comparing “Average” and “Average-F0” the EER

for NSF3 against SF3 has improved significantly. Therefore, we can conclude that changing

F0 even linearly can help. In addition, comparing “Average” and “GD” systems, in all

cases, we obtain better performance with “GD” (except, comparing EERs of NSF3 and

SF3 that there is not significant improvement). In “GD”, we only use cross-gender models;

therefore we expect that, as target speakers are more different from the source speaker, the

new speaker will be more distinct. The “GD-F0” approximately outperforms the other three

systems. Table 6.2 summarizes the average EERs captured by each of the four systems for

newly created speakers (NSF1, NSF2, NSF3, NSM1, NSM2). These results also confirm that

transforming F0 and using gender information help decrease the EER.

Figure 6.6 uses t-Distributed Stochastic Neighbor Embedding (t-SNE) [89] to map the

600-D i-Vector representation of test data into 2-D space. This figure also confirms that the

10 original speakers of the database and 5 new generated speakers (de-identified speakers)

are almost distinct.

6.4.2 Subjective Test

For subjective evaluation, we conducted MOS-naturalness test for “GD-F0” speaker de-

identification system. We did an informal subjective test at CRSS and obtained 2.8 for

pooled utterances of all new generated speakers.

In addition to the MOS-naturalness, an additional subjective test can be designed. We

also ask participants “if they can distinguish the new speaker from each available speaker in

the database or not”. We did an informal subjective test at CRSS and we obtained 100%

accuracy for “GD-F0”. One of the reasons is that we changed F0, and mapped the source

speaker from male to female and vice versa.
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6.5 Summary

This chapter presented a new solution for the speaker de-identification task. For a given

speech signal of a speaker, first, spectral and excitation features are extracted. The spec-

tral features are mapped non-linearly with a novel convolutional encoder-decoder based

voice conversion system; and F0 is converted linearly. Transformed features are finally com-

bined together and synthesized to generate the de-identified speech signal. The experiments

were carried out on VCC-2016 database and evaluated subjectively and objectively with i-

Vector/PLDA speaker recognition system. Each source speaker in the database was mapped

to a new speaker; for the best proposed system (i.e., “GD-F0”) the EER varies between

1.55%-2.682%, and 2.8 was achieved for the subjective MOS-naturalness test. For similarity

as well, new speakers were discriminated from the source speaker with 100% accuracy for

“GD-F0” speaker de-identification system.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

Mismatch between data used to develop a system and data used at the application step

is a major problem for data-driven learning based algorithms, in many applications such

as speech and image processing. In addition, many of these algorithms benefit from larger

amount of training data; therefore, it is valuable to develop solutions to incorporate data from

different domains to boost the performance, while being invariant to the domain mismatch

problem. Speaker recognition is shown to perform poorly under mismatch conditions. In this

dissertation, we studied various methods and algorithms to address the mismatch problem.

The mismatch we focused on during this study includes both channel or noise distortions

as well as language mismatch. We introduced both supervised and unsupervised techniques

to address the mismatch problem and provide a robust speaker recognition system. We

evaluated our proposed solutions on different corpora which are focused on various challenges

in order to validate the effectiveness of our methods. In addition, we introduced a novel

algorithm for speaker de-identification task; which protects the privacy of speakers as well

as it can be used as an augmentation method. Here, we summarize the key dissertation

contributions and the results, and also highlight several areas for future research.

7.1 Key Dissertation Contributions

We presented approaches based on machine learning and deep learning techniques to address

the mismatch conditions in speaker recognition. We targeted both very general and common

mismatch types, such as channel and noise mismatch, while addressing more challenging

scenarios as well including language mismatch. Our solutions are studied separately and in

combination with each other to comprehensively evaluate the effectiveness of our proposed

methods. In addition, we proposed a new voice conversion based method for speaker de-

identification, that they all are highlighted in continue.
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7.1.1 Speaker Recognition

• Generalized discriminant analysis for speaker recognition (Chapter 3): In

state-of-the-art framework for speaker recognition systems, linear discriminant analysis

(LDA) is usually applied on extracted speaker embeddings to: (i) reduce the dimension,

(ii) map the speaker embeddings into a new subspace, where speaker classes are more

discriminant from each other. LDA assumes speaker classes have Gaussian distribu-

tion and they are linearly separable. However, channel distortions or added noise can

make these assumptions to be not valid. Generally, the linear assumption is simplifying

and might not be valid even if data are not distorted. Providing a more discriminant

speaker embeddings to the score calculation step is also makes the scoring and decision

making steps easier as well. Therefore, we introduced non-linear discriminant analysis

with incorporating kernel functions. From another view point, when speaker utterances

have variable lengths, there are some uncertainty included in the extraction of speaker

embeddings, and can lead to a mismatch problem. Therefore, robust dimension reduc-

tion and discriminant analysis approach can address the variabilities that occur in the

data. We evaluated the effectiveness of our proposed solution on NIST SRE-10 task,

which focuses on channel and noise mismatch conditions. In addition, we evaluated

the performance on long and short utterances as well. In our experiments, it is shown

that in terms of equal error rate (EER) and minimum of detection cost function, GDA

not only improves performance for regular test utterances, but it is also useful for short

duration test segments. The relative improvement in EER is 20% for the cosine kernel

employed with GDA processing.

• Support vector discriminant analysis both as a dimension reduction ap-

proach (Chapter 3) and domain adaptation technique (Chapter 4,5): The

linear discriminant analysis focuses on mean centroid of speaker classes to calculate
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the between class covariance matrix. Therefore, it does not consider the structure of

speaker classes to calculate the between class covariance matrix. Our proposed solu-

tion here, called SVDA, incorporates the boundary structure of speaker classes. It uses

support vectors of speaker classes to calculate the scatters in the objective function.

Therefore, from one aspect SVDA is a general approach which addresses the variabili-

ties included in speaker classes. We evaluated the performance of that on NIST SRE-10

task for noise and channel distortions and The relative improvement in terms of EER

and minDCF with SVDA are about 32% and 9%, respectively.

However, beyond discriminant analysis, SVDA is a domain adaptation technique as

well. While training the support vector machine (SVM) to find the support vectors

(in a multi-class classification task), two different strategies can be used: (1) one-

versus-one, (2) one-versus-rest. Therefore, in SVDA as a domain adaptation technique,

unlabeled in-domain data or poorly labeled in-domain data can be integrated effectively

within the SVDA framework. Adding knowledge to the discriminator that how data

in target-domain is distributed, helps to provide a better transformation matrix. We

can either (i) add all the in-domain data to the rest class in one-versus-rest strategy, or

(ii) estimate pseudo labels for in-domain data with clustering methods and use them

with one-versus-one strategy, or (iii) count them all to belong to one speaker classes

and used them with the one-versus-one strategy. We evaluated the effectiveness of our

proposed SVDA approach for domain adaptation purpose on both NIST SRE-16 and

NIST SRE-18 tasks, with three different speaker embeddings, i-Vector, t-Vector and

x-Vector; considering different strategies to include data from the domain of interest. A

comprehensive evaluation for all the configurations is provided in Chapter 5. Results

confirmed that SVDA can improve speaker recognition for SRE-16 and SRE-18 by

+15% and +8% in terms on min-Cprimary respectively; and in terms of EER +14%

and +16% respectively, with i-Vector speaker embeddings.
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• Domain normalized/adapted speaker embeddings: a-Vectors (Chapter 4):

A deep learning based technique proposed here to perform domain adaptation within

speaker recognition framework. As speaker recognition systems perform poorly for

domain mismatch conditions, it means that speaker embeddings not only contain

speaker-related information, but also include other directions as well which represent

the domain or generally speaker-irrelevant directions. Here, we proposed to append

novel auxiliary features to the speaker embeddings for the purpose of compensating

the domain-related directions (or speaker-irrelevant information). Therefore, the pro-

posed solution is based on concatenation of domain-adapted auxiliary features and

the speaker embeddings to normalize for specific language-dependent directions. In

more detail, we modeled a simplified version of the inception-v4 network to map i-

Vectors to these new auxiliary features. The concatenated feature vector of i-Vectors

and auxiliary features is called a-Vectors. In addition, we also proposed a new loss

function called domain-adapted triplet loss function. The proposed loss function is

a variation of triplet loss function introduced before for image and speaker recogni-

tion/verification. However, here the loss function provides a transformation to map

the out-domain speaker embeddings to those in the target-domain. Therefore, instead

of focusing on the distance between speaker classes, the distance between out-domain

and in-domain data is taken into consideration. This method as well introduces a new

unsupervised adaptation technique. Evaluations based on the NIST SRE-16 confirm

the effectiveness of the proposed technique. In terms of minimum Cprimary cost, a-

Vector outperforms the i-Vector consistently. Moreover, comparing to previous single

systems introduced for SRE-16, we achieved 8.5%-18% improvements in terms of equal

error rate.

• Comprehensive evaluation of domain mismatch compensation solutions at

the back-end level (Chapter 5): In chapter 5, we introduced a supervised and
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an unsupervised PLDA domain adaptation techniques; a clustering algorithm to as-

sign pseudo labels to the unlabeled data; LDA adaptation; and designed comprehensive

experiments to evaluate various methods for domain adaptation separately and in com-

bination with each other. In addition, we summarized the performance for both DEV

and EVAL sets; to emphasize how our proposed solutions address the generalization

issue. We incorporated the domain adaptation techniques with i-Vector, t-Vector and

x-Vector speaker embeddings to verify if they perform well independent of the the

front-end processing in a speaker recognition framework. The results confirm SVDA

consistently provides a boost in the performance. This simple method addresses the

domain adaptation very effectively. In addition, experiments show that the unsuper-

vised adapted PLDA outperforms the supervised PLDA domain adaptation. Since,

data provided from the domain of interest is very limited and they are unlabeled, as

we expected they can provide more gain when they are included in an unsupervised

technique.

7.1.2 Speaker De-Identification

• Convolution encoder-decoder neural network for the voice conversion task

(Chapter 6): A new convolution encoder-decoder based voice conversion system de-

signed in this dissertation. Voice conversion is studied widely, and different methods

are proposed to convert voice from a source speaker to a target speaker. Our pro-

posed CNN-based mapping has multiple advantages over other voice mapping meth-

ods which include: (1) Compared to approaches that use delta features to capture

time-dependencies, our convolutional encoder-decoder network is able to automatically

capture the dependencies between adjacent acoustic feature frames without including

dynamic features. As a result, our method does not need a parameter generation al-

gorithm which is prone to the over-smooting problem. (2) Compared to LSTM-RNN
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approaches, our network is faster and easier to train. Additionally, due to the recurrent

nature of LSTM-RNN, it cannot fully exploit the GPU capabilities.

• Mapping source speakers to new unique identities for speaker de- identi-

fication task (Chapter 6): In chapter 6, we proposed a new approach for speaker

de-identification, which effectively conceals the voice characteristics of a given speaker

as well as provides de-identified samples with high quality and intelligibility. In other

words, our proposed de-identification solution optimizes both objective and subjective

measurements. Here, in contrast to other related works (to the best of our knowl-

edge, they all used an already available voice transformation method), we proposed a

new convolution encoder-decoder based voice mapping and incorporated that into our

speaker de-identification system. The convolution neural network (CNN) voice map-

ping architecture is specifically designed to consider details of the database and has

the ability to suppress the errors and noises that might occur during the preparation of

data for the voice mapping step. Finally, the speaker de-identification system employs

the voice mapping module to transform the voice characteristics of a given speaker to

all target speakers in the database. Average or gender-dependent average of mapped

voices leads to the de-identified voice. In addition, each source speaker in our dataset

is mapped to a new identity; which is not included in our dataset and it is different

from other de-identified voices (achieved from different source speakers). We evaluated

the proposed architecture with an i-vector/probabilistic linear discriminant analysis

(PLDA) speaker recognizer. In addition, the de-identification approach proposed here

is designed to achieve good performance evaluated by both human listeners and ma-

chines while preserving quality and naturalness. In our experiments, the EER varies

between 1.55%-2.682%, and 2.8 was achieved for the subjective MOS-naturalness test.

For similarity as well, new speakers were discriminated from the source speaker with

100% accuracy with our best performing speaker de-identification system.
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7.2 Future Work

In this dissertation, we proposed a number of domain adaptation solutions for speaker recog-

nition to decrease the vulnerability of the system towards the mismatch between train and

enrollment/test data. However, there is still a gap to reduce the error rate further. Here,

we highlight several related directions for future research inspired by thesis contributions

already reported in this dissertation.

• Generalized SVDA with incorporating kernel functions: Generalized discrim-

inant analysis is shown to outperform the linear discriminant analysis in this disser-

tation for speaker recognition; since, it relaxes the linear separable assumption about

speaker classes. Likewise, SVDA can be extended to a non-linear version with incorpo-

rating the kernel functions. Since, SVDA both provides a robust dimension reduction

approach as well as domain adaptation technique; we suggest extending that to the

non-linear SVDA; and it can boost the performance on speaker recognition systems

under mismatch conditions further.

• End-to-end adversarial domain adaptation: Adversarial domain adaptation is

shown to be effective in image recognition task. In addition, in chapter 4, we proposed

a-Vectors which confirmed that providing auxiliary features from target-domain for the

purpose of domain adaptation is an effective approach. Therefore, we suggest training

a new speaker embedding extarction framework while compensating for the domain

variabilities with adversarial training can provide more robust speaker embeddings.

• Speaker de-identification trained on unparalleled data: In development of our

speaker de-identification system, we used a parallel dataset to train our voice conversion

model. Parallel dataset means for every source utterance there is a sample from the

target speaker that utters the same sentence. Therefore, for each mapping the linguistic
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information is preserved with providing the same utterance from a source speaker and

a target speaker. However, there are more unparalleled datasets than the parallel

ones. We suggest training the speaker de-identification algorithm using unparalleled

data, which provides more robust performance, and introducing more data helps with

increasing the quality and intelligibility of the de-identified samples as well.
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