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Maps generated by many visual Simultaneous Localization and Mapping (SLAM) algorithms

consist of geometric primitives such as points, lines or planes. These maps offer a topo-

graphic representation of the environment, but they lack semantic information about the

scene and objects in the environment. Object classifiers leveraging advances in machine

learning are highly accurate and reliable, capable of detecting and classifying thousands of

objects. Classifiers can be incorporated into a SLAM pipeline to add semantic information

to a scene. Frequently, this semantic information is conducted for each frame of the image,

but semantic labeling is not persistent over time. Another element of SLAM is loop closure,

which determines previously visited locations in the trajectory generated during the mapping

and localization process. Identifying these loops in the trajectory is challenging due to the

changes of viewing angles, illumination and environmental dynamics etc.

In this dissertation, we introduce two novel approaches to address these problems. First,

we present a non-parametric statistical approach to perform association/matching between

detected objects over consecutive image frames. An unsupervised clustering method then

localizes these associated classified objects in accrued map. We test our approach on several

public data sets and our own data-set, which shows promising results in terms of objects

correctly associated from frame to frame and localization of the existing objects in the map.
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We also have tested our algorithm on three data sets in our lab environment using tag markers

to demonstrate the accuracy of classified object localization process. Second, we present a

solution to the loop closure problem based on deep reinforcement learning. The framework

is a reward-driven optimization process to learn loop closure detection. We demonstrate the

framework in a simulated grid environment that generates data for a learning agent. The

agent learns from data to perform loop closure in different environments. We demonstrate

our results based on the rewards from the simulation and correct loop closure detection, and

show that our outcomes are comparable to traditional loop-closure methods.
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CHAPTER 1

INTRODUCTION

The consistent probabilistic mapping of an environment is a fundamental problem in robotics.

The origin of this problem occurred when probabilistic methods were introduced into robotics

and artificial intelligence. The solution to this problem was coined Simultaneous Localization

and Mapping (SLAM) [26]. This is the problem of localizing a mobile robot moving through

an unknown environment while building a distinct map of the surroundings. SLAM is an

important research topic, with numerous notable contributions. Excellent overviews with

extensive references were provided [95], Durrant-Whyte and Bailey [26], and others. Even

though SLAM has been studied and researched over many years, the complete practical

and perceptual representation of maps remains of huge interest to all. Vision-based SLAM

(VSLAM) uses cameras as the primary sensor (e.g., [31, 35]). An important area of current

research is adding semantic information in the environment map, which can be used for

navigation, localization, retrieval, etc.

Most SLAM algorithms generate a map consisting of estimated geometric features such

as points, lines or planes. These maps do not include semantic meaning or information

[10, 15]. We seek to add semantic information to maps in the form of labeled, persistent

objects present in the environment, such as furniture, office equipment, kitchen items, etc.

It is not sufficient for objects to be detected and classified in an image, but objects must be

matched/associated with the correct objects in previous images over time. This remains a

difficult problem in SLAM and object classification.

Loop closure is another import element of SLAM, which indicates a return to a previ-

ously visited location in the SLAM trajectory. Loop closure also has been attempted using

extracted visual features to search and locate a matching location in the previous observa-

tions from the sensor. This requires storing previously observed visual features, which may

require large amount of memory as the map becomes larger.
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This dissertation addresses these aforementioned problems. We present a solution using

a vision based system to localizing objects in the scene while simultaneously localizing and

building a map. No specific information about the objects is needed in advance, in contrast

with recent approaches that require specific models of objects. We also provide a solution to

loop closure problem using reinforcement learning method in a simulated environment. To

achieve this, we leverage several already developed methods such as deep machine learning,

clustering and reinforcement learning.

1.1 What is SLAM?

Simultaneous Localization and Mapping (SLAM) is the problem of localizing a robot mov-

ing through an unknown environment while building a distinct map of the surroundings.

SLAM has been heavily researched in the last few decades. It has made its succession from

theoretical development to practical implementation in recent years. SLAM initially was

thought of as either a localization or a mapping problem. The breakthrough happened after

the realization of SLAM as combined localization and mapping process. The solution to

the SLAM problem is the estimation of motion between observations and a generalization

of the observations into a map representation. This solution has been regarded as one of

the most prestigious successes of the robotics community, and it has paved the way for fully

autonomous robots.

SLAM has been studied dating back to 1986 and continues into the current period. A

thorough analysis of the initial SLAM problem is given by Durrant-Whyte and Bailey in

[26, 5]. In its formative period from 1986 to 2004, SLAM was introduced as a probabilistic

problem, which included approaches from Kalman Filter, Particle filter and maximum like-

lihood estimation. The later years focused on improving observability, convergence and use

of different type of sensors. Recent years, we have seen the introduction of efficient SLAM

solvers such as g2o [50] and GTSAM [24]. There are many existing SLAM solutions based on
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Figure 1.1: A generalization of the SLAM problem. The green circles are observed states
and the yellow are hidden states.

the type of map representation, sensor, algorithm etc. The prominent list of SLAM methods

includes EKF SLAM, Fast SLAM, GraphSLAM, Occupancy Grid SLAM, ORB SLAM, etc.

Figure 1.2 shows several output of existing SLAM solutions.

The structure of the SLAM problem consists of many parts, but mainly there are two

parts that require probabilistic modeling. These are an observation and motion model. The

other essential parts may include Landmark Extraction, Data Association, State Estimation

and Update and Loop Closure.

SLAM, in general terms, is seen as a chicken or egg problem. The localization and map-

ping are both needed to solve the problem. A map is needed for the localization problem, and

pose estimate of the required for the mapping problem. SLAM is primarily defined using a

probabilistic model. Given a robot’s control or odometry sequence, UT = {u1, u2, ...., ut} and
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measurements from sensor, ZT = {z1, z2, ...., zt}, SLAM aims to find the map of the environ-

ment, m, and a sequence of the robot’s path or locations in the map, XT = {x1, x2, ...., xt}.

Now, the full SLAM problem requires the following probability distribution be computed

repeatedly,

p(XT ,m|ZT , UT ). (1.1)

This means the full SLAM is trying to calculate the joint posterior probability over XT and

m from observed states, UT and ZT . Generally, this estimation has been demonstrated with

Expectation Maximization, extended Kalman filter, etc. The existing methods using full

SLAM solutions tends to be offline and process data in batches. The other solution is to use

online SLAM solution which is defined as,

p(xt,m|ZT , UT ). (1.2)

Online SLAM tries to estimate the current location instead of the full sequence of locations.

These methods are incremental and can be performed in real time. Our proposed method in

this dissertation is based on online SLAM. Figure 1.1 shows the a general SLAM problem.

It shows the connection between the variables u, x, z and m.

To solve either SLAM problem, we need to model two distributions mentioned earlier,

the observation and motion model. This can be described in the following form,

Observation Model: p(zt|xt,m)

Motion Model: p(xt|xt−1, ut)
(1.3)

1.2 What is Classified Object Localization in SLAM?

An essential part of SLAM is landmark observation and establishment. A consistent, full

solution to the combined localization and mapping problem would require a joint state

composed of the vehicle pose and every landmark position. In theory, the trajectory of

4



(a) Direct SLAM [28] (b) ORB SLAM [71]

(c) Occupancy Grid SLAM [42] (d) Lidar SLAM [104]

Figure 1.2: The figure shows output of various SLAM solutions.

the observation sensor and location of all landmarks are calculated without the need for

any a prior knowledge of environment. In practice, some solutions of SLAM have known

or prior knowledge about landmarks. Landmarks can be geometric features like extracted

image features, walls, corners, tag markers, etc. Although the localization process essentially

requires pose estimation, which can be estimated with a limited number of feature points, a

complete map of the environment requires a large number of features.

Geometric feature-based SLAM approaches generally build maps containing geometric

and physical information but lack semantic information of the scene such as difference. SLAM

based on geometric features have matured to an extent where a precise, large-scale map can

be generated [70]. However, recognizable objects in the environment cannot be infused in
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the map using most visual feature based SLAM systems. In Figure 1.2 the output of the

SLAM solution resembles the environment, but it does not incorporate any of information

about any objects in it.

Such objects can be now classified with high accuracy in an image using deep convolu-

tional neural network (CNN). This object is localized in an image frame, but the location

in the map remains unknown. Also the existence of multiple similar objects in sequential

images need to be distinguished, which an object detection module does not solve. This

dissertation demonstrates the procedure of localizing the classified objects in the map.

1.2.1 Related Work

There is notable research interest in semantic mapping of environments [9, 10, 15]. Most

of these works use SLAM as a process to leverage the position and trajectory of a sensing

element and object centric semantic information is generally collected from a another process

such as object detection, 3D object database, etc. The object centric information also needs

a data association process for it to be added in SLAM. Data association for detected objects

has been attempted in several recent SLAM solutions [9, 66]. These methods formulated

the data association as a optimization problem over different state probabilities extracted

from sensor and object detection. In contrast, we perform data association in a continuous

fashion using a non-parametric statistical method.

Pillai et al. [75] presented an object recognition system that uses SLAM to provide

consistent object proposals over consecutive frames. They showed that data association for

objects in a map can be solved given a map and known robot poses [66, 75]. Salas-Moreno

et al. [80] proposed an SLAM method that can match objects in the scene to a database

of 3D models and establish them as landmarks. The 3D model database must be manually

established prior to execution. Figure 1.3 shows the results of SLAM++ where the matched

chair models were placed in the map. In contrast, our approach can detect and localize

previously unknown objects without knowledge of the full robot pose or map.
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Figure 1.3: SLAM++ result [80]

Nicholson et al. [74] proposed a object oriented QudaraticSLAM where object land-

marks are parameterized as constrained dual quadratics. Their method has shown how dual

quadratics can be combined with object detection to integrate 3D landmark locations within

the map in SLAM. Caste et al. [11, 12] presented an approach that can recognize known

planar objects and localize them in the map; however, it is restricted to planar environments.

SemanticFusion [59] demonstrated a dense semantic 3D reconstruction using ElasticFusion

SLAM and CNNs. These works add semantic labels to each point in the map after creation,

but this approach is not object-centric. Integrating recognized objects in SLAM was per-

formed in [27, 103]. Figure 1.4 shows the SemanticFusion result in an indoor environment,

where detected objects are localized as highlighted in the map. Atanasov et al. [9] separately

addressed pose and data association optimization as separate problems in a SLAM pipeline.

In contrast, the approach in this dissertation utilizes general purpose visual object detection

and classification methods (e.g., CNNs or histogram of gradients methods) and localizes

them in the map using statistical data association and unsupervised clustering analysis.
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Figure 1.4: SemanticFusion result [59]

Ataer-Cansizoglu et al. [4] presented an object detection and tracking framework that

jointly runs with an RGB-D SLAM system. They introduced the concept of hierarchical

feature grouping which uses segments to represent object in map. Objects in this process

were detected through appearance matching between the segments and existing object map.

In contrast, we rely on object classification detection module to provide detected regions

of object. They demonstrated their result to successfully grasp the objects from different

viewpoints.

Grinvald et al. [36] proposed a volumetric object-centric mapping process. It uses geo-

metric depth segmentation and object detection masks to provide consistent object labels.

This information is later fused in global volumetric map. Choudhary et al. [14] proposed

object discovery and modeling in SLAM where they utilized aggregated per frame segmen-

tation matching with previous and current estimate to produce a final form. Later it gets

refined and added as constraints to the map. In contrast, we match the depth samples of

detected objects using a non-parametric statistical process. The associated samples over

time gets added to the map through a clustering process.

Bowman et al. [9] introduced probabilistic data association, where semantic information

was included in the optimization step. The SLAM was formulated in EM method with
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additional information from classes and semantic measurements of objects. In contrast, our

method uses SLAM in parallel to perform data association, localization of objects and later

these information can be infused in SLAM.

1.2.2 Our Contributions

This dissertation addresses these aforementioned challenges by extracting and localizing ob-

jects in the scene while simultaneously localizing and building a map. No specific information

about the objects is needed in advance, in contrast with recent approaches that require spe-

cific models of objects. To achieve this, we leverage deep machine learning methods available

via deep neural network toolboxes e.g. Tensorflow [1], Torch [17], and Caffe [45]. However,

deep learning classifiers excel at detection from a single image, and are not suited for asso-

ciating or matching the same object in multiple images, such as from a video stream. Our

approach tackles this problem through data association of multiple detected and classified

objects. Another problem is to find the unknown number of exiting objects in the environ-

ment and the localization of these objects in the mapping process. The solutions to both

these problems are initiated with no prior knowledge about any of the existing objects or

its surrounding environment. The only assumption is the objects in the environment are

not dynamic and the environment itself does not have dynamic elements to distort SLAM

process. The environment can have moving objects but the locations of these objects cannot

be estimated using our proposed method.

In this dissertation, we propose three primary contributions:

• We establish that non-parametric statistical methods can perform association of de-

tected objects in consecutive images based on the distribution of depth data for object.

Later, we use depth prediction whenever there is large motion in between two images.

This helps data association remain applicable after a sudden frame loss or motion.
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• We provide an unsupervised clustering process to localize objects in a map of an

environment and incorporate the aforementioned non-parametric data association to

reduce the complexity of the clustering process in SLAM.

• We evaluate our proposed method on public datasets and our own dataset to show the

significant results. Our dataset will be made available to the public to provide ground

truth data for future research in object localization in SLAM.

The proposed method in this dissertation is dependent on VSLAM and RGBD data. We

leverage the pose estimation, mapping and loop closure of SLAM to achieve the outcome of

this method. Figure 2.10 shows a result of our process on a RGB-D dataset, and Figure 2.1

shows the flowchart of our proposed method.

1.3 What is Loop Closure?

Loop closure (LC) is used in SLAM to indicate a return to a previously visited location

and help correct drift and re-localization in the trajectory estimation [2, 88]. Successful

loop closure to requires a high probability that the robot or agent will identify two identical

locations and improve the overall accuracy of localization and mapping. The accuracy of

loop closure detection is also crucial, as a single incorrect loop closure decision can easily

disrupt the mapping process. The most difficult elements of loop closure is not just the

detection of a loop in the trajectory but finding the similarity with previous locations in the

map. This has been a challenging problem in SLAM, because the appearance or observations

of a place or location can differ due to viewing angle, illumination, weather and dynamics

of the environment. Figure 1.5 shows a before and after demonstration of a loop detection

and correction in SLAM [40].

10



Figure 1.5: A demonstration of Loop Closure detection and correction [40].

1.3.1 Related Work

Loop closure in SLAM has already been attempted, with several established solutions such

as EKF-SLAM, Monte Carlo localization, VSLAM, etc. [16, 101]. The idea behind most

of these implementations is to perform loop closures using data association that matches

visually salient features with current and previous observations. The same features that were

used in localization and mapping can be used for loop closure detection. These methods can

be applied with SLAM in online or offline fashion.

Offline methods require a database of images acquired beforehand. Kosecka et al. [47]

and Ulrich et al [97] use maximum likelihood estimation with voting method to find matches

in a pre-built image database of the target location. The voting method requires steep

computation of pair matching for most the likely hypothesis, and the maximum likelihood

is not proper for these multiple hypotheses scenario[2]. Krose et al. [49] reduced the di-

mension of images of the map through principal component analysis and then performed

probabilistic localization on the appearance model. Ramos et al.[76] demonstrated a similar
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approach combining Bayesian learning to represent places. These methods used a global

feature descriptor, which is not robust against image effects such as illumination and per-

spective changes, rotation, scaling, etc. In contrast, our method relies on reinforcement

learning using deep convolutional neural network to learn the features to use in loop closure

detection.

Advances in computer vision led to the introduction of local feature descriptor, which is

focused on different regions of the image rather the whole image. The most popular local

feature descriptor in use are SIFT [57], ORB [79], SURF [6], HOG [22], etc. The visual fea-

ture based models use image as a text-based representation known as bag-of-words [105, 18].

It models the image like a text documents, where a word represents a region in the space of

invariant descriptors and stores them in a tree structure for fast real-time search operations.

It also requires a dictionary, which is built beforehand by clustering indistinguishable visual

descriptors from a training dataset. This method has been used in [100] and [73] for localiza-

tion in map and loop closure detection. Cummins et al. [19] proposed a method to estimate

the similarity between two observation of the same location. This model performed loop

closure with linear complexity for the number of locations in the map. Angeli et al. [2] pro-

posed an online method of loop closure using bag-of-words and Bayesian filtering. Cumming

et al. [20] introduced a probabilistic navigation based on mapping named FAB-MAP. They

used bag-of-words and Recursive Bayes model to demonstrate online loop closure on a very

large scale dataset consisting of 2km length path. In contrast, our proposed method assumes

a fixed number of loop closures in the environment and uses a reinforcement learning method

to learn loop closure detection at the the pre-determined locations. The existing methods

relies on storing extracted features as areas of a map explored. This storage of this features

can become problem if the map is large. In our proposed method, we specify the memory

required for the trained loop closure policy beforehand. This way, once the model is trained,

we do not need to add anymore information to the loop closure process, and it only needs

sensor data to perform loop closure in the known map.
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Recent advances in machine learning have introduced new methods in navigation and

mapping. Convolutional neural networks have been used in place of feature descriptors.

Sünderhauf et al. [90] introduced ConvNet Landmark, where combined CNN and region-

based features were used to match and identify landmark proposals for loop closure, but it

was computationally expensive to deploy in real-time. Chen et al. [13] generated a large

place-recognition dataset with appearance changes and interpreted the problem as an image

classification task. Arandjelovic et al. [3] proposed a novel place recognition framework

named NetVLAD, which is trained on weakly supervised Google Street View images on

geotags. Gao et al. [32] proposed a solution to loop closure using stacked denoising auto-

encoder (SDA). They retrieved a similarity score for loop closure using raw images through

unsupervised learning. Their method is susceptible to parameter tuning, and the method

was applicable to offline setting. Mirowski et al.[62] demonstrated a deep RL algorithm in a

simulated 3D environment where the agents were able perform navigation and loop closure

tasks with high accuracy. This method is focused on simulated environments and has not

been tested on real world environments. In contrast, our proposed method relies on deep

CNN to extract features from the map for loop closure detection and are trained on our own

simulated environment, which is designed based on indoor environment. Our CNN is not

employed on the sensor data which can be expensive to extract features.

1.3.2 Our Contributions

Our contribution in this dissertation is the use of deep reinforcement learning in loop closure.

Our implementation has similarity to [62] and [65], which also showcased a deep RL method

to learn loop closure in a simulated environment. Our implementation is primarily focused

on the loop closure solution using a learning method. We also provide an improvement over

[63] to include an optimization technique for varying batch size each episode, so entropy of

actions in the batch is maximized.
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In this dissertation, we are proposing the following contributions,

• We show that loop closure problem can be solved using deep reinforcement learning

with some assumption and prior knowledge about the environment. We demonstrate

entropy maximization for sampling trajectories for sparse actions

• A simulated grid environment is demonstrated for training loop closure in a reinforce-

ment learning framework

• We also demonstrate how our object localization module can incorporated in loop

closure module.

1.4 Outline of the Dissertation

The remainder of the dissertation has been organized in two chapters to describe the two

research topics. In Chapter 2, we describe data association and object localization procedure,

and in Chapter 3, we describe loop closure using deep reinforcement learning.

Chapter 2 starts with problem formulation, followed by the step-by-step description of

the algorithm. We begin with a mathematical description of the non-parametric statistical

method, Mann-Whitney U test, in data association of classified objects. Then we provide

details about how SLAM helps with this process of data association. Later, an unsupervised

clustering method is demonstrated to localize the unknown number of objects in the map.

Finally, experimental analysis is performed on public and our own dataset to show the

efficiency and accuracy of our proposed method.

Chapter 3 starts with the problem formulation of loop closure. We describe the rein-

forcement learning framework and the policy optimization techniques used in the training

of loop closure. We introduce our simulated grid environment and how rewards were pro-

vided to the learning module to perform loop closure. We provide details about the training

procedure using the simulated environment and discuss the problems in training the on the
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environment and provide solutions. Finally, we show experimental results with reward curve

and accuracy of the trained model on several simulated environment.
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CHAPTER 2

LOCALIZATION OF CLASSIFIED OBJECT IN SLAM

2.1 Introduction

This chapter introduces the process of data association and localization of classified objects

during the SLAM problem. Object detection and classification have advanced rapidly in

recent years but are only applied to a single image. Data association establishes connection

between two images of object classification. In our approach, we assume no prior knowledge

or model about the objects in the map; therefore, we use a nonparametric statistical method

to solve this data association problem. Afterwards, we merge the associated objects in SLAM

and demonstrate a procedure to localize these classified objects in the SLAM established

map.

We start with the formulation for the problem of data association and object localization.

Both problems are an ongoing research problem for semantic SLAM and HD mapping.

We describe a short summary of deep learning for object detection and explain why data

association is required for object localization in SLAM. We provide a description of the

elements of SLAM used in the process of localization and show how it helps both association

and localization. The localization involves retrieving the unknown number of objects and

each objects’ corresponding location. We used an unsupervised clustering method to provide

us the solution to this problem. Even though data association and clustering are independent

processes, we introduce an intermittent process to enable the data association and clustering

processes to interact with each other and act accordingly to benefit the SLAM process. This

intermittent process can help run the method in real time. Finally, We demonstrate the

results of our method on public datasets and our own dataset. We will also describe how

this process can also be incorporated in our next work.
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2.2 Notation

We first establish some notation used in the subsequent developments. Our proposed method

is dependent on RGB-D data, which can be captured using a camera and IR sensor or a

stereo camera. The following list is a summary of the notations used in this chapter:

N the set of natural numbers

i ∈ Nn×m×3 3-channel RGB color image

d ∈ Nn×m a single channel depth image

C the Cartesian reference frame of camera

W the world/inertial reference frame

P ∈ R3 a 3D point co-ordinate

PW ∈ R3 the coordinates of a 3D point in W

PC ∈ R3 the coordinates of a 3D point in C

t ∈ N when used as a superscript, indicates the discrete time iteration
that an image, estimate, measurement, etc. was made.

Rt ∈ SO(3) rotation at the current time t in the corresponding frame

τ t ∈ R3 translation at the current time t in the corresponding frame

k, l ∈ N when used as a subscript, indicates a specific subset from the cor-
responding space

objt a set of measured depth values of classified objects at time t, objt =
{dt1, dt2, ...., dtk}

| · | designates cardinality of a set

F (x) denote the cumulative distribution of data set x

F (x1) ∼ F (x2) indicates that two distributions are similar in the sense that data
sets x1 and x2 come from the same original distribution.

Some examples of these notations in use are dtk and itk, which are the sets of depth

values and color values for the subset (image region) k at time t. Also, for each discrete

pixel location x ∈ R2 in the image, the corresponding color value is i(x) ∈ R3 and the

corresponding depth value is d(x) ∈ R.
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2.3 Problem Formulation

The classical localization and mapping model processes data from a sensor while moving

through an unknown environment. It interprets the environment as a collection of landmarks

or features. At any time instance, the landmark position and a sequence of poses of the

sensor is estimated using the current and previous sensor measurement of the environment.

Since our goal is to localize classified objects in the map of the environment, there are two

underlying problems that need to be solved:

1. Data Association of classified objects in consecutive observations

2. Estimation of the location of the classified objects in the map

We assume that a SLAM process can estimate, at time instance t, the pose of the camera

in world frame W and a map M t, and an object detection module will provide a probability

of the existence of the object in an image, it.

The first problem is to associate a classified object from different observations of the

environment. Objects in an environment can be classified using a object detection module.

This process is described in Sec. 2.4.1. Consider two sets of depth values corresponding to

classified objects from time t1 and t2, obj
t1 and objt2 , as described in Sec. 2.2,

objt1 =
{
dt11 , d

t1
2 , ...., d

t1
m

}
objt2 =

{
dt21 , d

t2
2 , ...., d

t2
n

}
where, m and n are the number of classified objects from observations at t1 and t2 and

0 < t1 < t2 ≤ t.

If a classified object dt11 from t1 is the same object in t2 as dt22 , then we need to associate

them in these two observations. We define an association matrix At1,t2 ∈ Rm×n,

At1,t2 =


p(F (dt11 ) ∼ F (dt21 )) p(F (dt11 ) ∼ F (dt22 )) . . . p(F (dt11 ) ∼ F (dt2n ))

...
...

. . .
...

p(F (dt1m) ∼ F (dt21 )) p(F (dt1m) ∼ F (dt22 )) . . . p(F (dt1m) ∼ F (dt2n ))

 (2.1)
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where element (i, j) of the matrix At1,t2 is the probability that the ith object in objt1 and jth

in objt2 are same. The following condition needs to be satisfied for a successful association

of the ith classified object in objt1 with jth classified object in objt2 ,

At1,t2 (i, j) ≥ T ; 0 ≤ j < n (2.2)

where, T is the probability threshold for successful association. The elements of At1,t2 (i, j)

satisfying (2.2) can be considered for association.

The second problem is to localize the associated objects in the map. At time t, given the

a history of camera trajectory, cW
t
, association of classified objects in the environment, At1,t2

and map mt, a probable location of classified objects in the map needs to be established.

This extends from our previous definition of observation model (1.3). In this dissertation,

we model the location of each classified object in the map as a normal distribution

p(zt|xt,m) ∼ N (µt1:k, σ
t
1:k) (2.3)

where, µt1:k and σt1:k are the mean and variance of the location of the object at time, t in the

map, m. Figure 2.1 shows the layered outline of our proposed method in this dissertation.

2.4 Algorithm Description

This section describes the algorithm step-by-step, starting with the object detection and

classification, then data association of the classified objects using depth data. Next, we

provide details about how SLAM is incorporated in the process to help both association and

localization procedure. Also an intermittent process is introduced help run both association

and clustering in parallel. A flowchart of the the algorithm is shown in Figure 2.1. The

figure outlines the full process from sensor data to the final map with object information.
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Figure 2.1: A flowchart of our proposed method for data association and localization of
classified object in VSLAM.
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2.4.1 Deep Learning-Based Object Detection

Object detection is the problem of recognizing that an object appears in an image and

determining its location in the image, generally using a trained model. The advent of deep

convolutional neural networks (e.g. [96, 33]) has led to major advancements in this field.

Modern approaches can train classifiers to recognize thousands of categories of objects with

an accuracy rate higher than 90%. The learning capability of CNNs is due to the multiple

feature extraction stages using back propagation that can learn rich features from data.

The availability of vast amount of image data and advancement in hardware capability have

helped deep learning reach its current level of success. Before CNNs, image classifiers used

handcrafted feature descriptors such as SIFT, SURF, Haar [99], etc. These methods did

not achieve a high accuracy rate and the extracted features were limited to certain classes

[72]. CNNs introduced a different architecture that follows a hierarchical design similar to

how a human brain functions [77]. It has varied architectural models but generally can be

described as a multiple stacked layers of convolutional filtering and pooling or sub-sampling

layers, followed one or more fully connected neural network layers. The modeling of a CNN

is very complex and requires a very time-intensive period to train, which can span weeks

and even months. The first breakthrough results using CNNs was published by Krizhevsky

et al. using Alexnet in the ImageNet LSVRC-2010 contest [48]. Subsequent years have seen

modification of the CNN architecture such as VGG [87], Resnet [38], Inception [93], etc.

Figure 2.2 shows results from a CNN detector on the our own datasets and other public

datasets.

Our algorithm employs a detection model to retrieve the location and class of a recognized

object. It is intentionally flexible in regards to the choice of object detector, as detection

and classification is an active research field with frequent updates and improvements. In our

experiments, we used MobileNets [43] and Faster-RCNN [78], but any detector can be used

as long as they provide a class and region for the detected objects. Our models are trained
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Figure 2.2: This figure shows object detection results using a CNN with region proposal net-
work (R-CNN) on the datasets we are testing our algorithm. Classified objects are indicated
by a bounding box, which features a classification label and confidence score.

on Microsoft COCO dataset [55], and our training sets contain no images of objects in our

test experiment. Our model extracts the regions of detected objects in a RGB image frame,

i, in the form of a bounding box (a mask could also work). Let Bt
k ⊂ R2 denote the region

of an image corresponding to object k at time t, and let dtk denote the set of depths for all

points in Bt
k. The set dtk is utilized in the next steps for data association, depth estimation,

clustering and localization of objects in the map.

2.4.2 Non-parametric Data Association (NPDA)

Although object detection has become dramatically more accurate in recent years, associa-

tion of detected objects over consecutive frames is still a challenging problem. Often, there
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Figure 2.3: This figure shows detection results from two frames of a scene in TUM dataset.
There are 2 chairs and 3 bottles in both image. A chair and bottle in left image does not get
detected in right image. Also the bounding box region for the objects changes from frame
to frame. So only relying on the object detection we cannot perform data association.

are multiple occurrences of an identical class of object detected in sequential images, and

these occurrences need to be distinguished from one another from frame to frame. Addi-

tionally, objects may be occluded over multiple frames, and the object detection module can

fail to detect an object or misclassify an object over a multiple frames. A data association

process helps find the interconnection between these occurrences of object.

To solve this problem, we use the the Mann-Whitney statistic [58], a non-parametric

inferential statistical method for data association between two observations. The Mann-

Whitney test is used in statistics to determine the likelihood that two sets of samples were

selected from populations having the same distribution. We use it to determine if the set

of point depths for the classified objects in different frames are adequately similar that they

likely correspond to the same 3D object.

The Mann-Whitney test involves calculation of a statistic, U . To calculate U to solve the

object association problem, two sets of depth values are taken from the set of observations

at times t and t− 1, objt and objt−1. Let these sets of depth values be dtk and dt−1l , where k

and l indicate two objects detected at time t and t− 1, with regions Bt
k and Bt−1

l . Then the
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U statistic can be specified as

U =
∣∣∣ {dtk (x) , dt−1l (y)

} ∣∣∣, s.t. dtk (x) < dt−1l (y) (2.4)

and x ∈ Bt
k, y ∈ Bt−1

l (2.5)

The cumulative distribution functions of the two sets of depth values are F (dtk) and

F (dt−1l ). We do not reject the null hypothesis that dtk and dt−1l originated from the same

distribution if

F (dtk) = F (dt−1l −∆). (2.6)

Here, ∆ is the nonparametric confidence interval, which reflects the expected difference

between dtk and dt−1l due to motion and noise. Let V define an ordered set of all pairwise

differences between dtk and dt−1l ,

V =
{
dtk (x)− dt−1l (y)

}
∀x ∈ Bt

k and ∀y ∈ Bt−1
l . (2.7)

If pwd(q) is the qth smallest pairwise difference of the set V , then the inequality,

pwd(qa) < ∆ ≤ pwd(qb); qa < qb (2.8)

will hold if and only if there are at minimum qa and no more than qb elements of the set V

that satisfy,

dtk (x)− dt−1l (y) < ∆. (2.9)

In other words, if a sufficient number of elements in V have differences less than our confi-

dence interval, then the origin of dtk and (dt−1l − ∆) are likely to have been from the same

distribution. So, the probability p for the inequalities of (2.8) and (2.9) can be estimated

from the U statistics [39]. For example, for a 90% confidence interval we have

p (pwd(qa) < ∆ ≤ pwd(qb)) = p (qa ≤ U < qb) = 0.90. (2.10)
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Figure 2.4: This figure shows the object detection, depth estimation and data association
process. Objects are detected in it1 and it2 , and the estimated depth dt1→t2 is calculated and
to determine the likelihood that detected objects are associated.

Non-parametric statistical techniques applied on large sample-size data can be approx-

imated using normal theory based approximation. Since sets of depth values have a large

sample size, the distribution of U can be estimated using normal approximations. Moreover,

the depth channels of two consecutive frames are expected to contain similar values for the

same object. These similar values in
{
dtk (x) , dt−1l (y)

}
in such cases are called ties. If we

have g number of tie groups and tz denotes the number of observations in zth tie group, then

using normal approximation for U ,

E(U) =
mn

2
,

V ar(U) =
mn(m+ n+ 1)

12
(1− TC).

(2.11)
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where m = |dtk|, n =
∣∣dt−1l

∣∣
and tie correction,

TC =

∑g
z=1(t

3
z − tz)

(m+ n)((m+ n)2 − 1)
. (2.12)

Now, the values of qa and qb are calculated to use in (2.10) through normal approximations.

Using (2.11) and 90% confidence interval, we can approximately estimate qa and qb,

qa ≈ E(U)− 1.645
√
var(U)

qb ≈ 1 + E(U) + 1.645
√
var(U).

(2.13)

Using the estimated values of (2.13), if (2.10) is satisfied, then we cannot reject the null

hypothesis. So, in retrospect dtk and dt−1l likely correspond to the same object when there

are at least qa and at most qb elements that satisfy dtk (x) < dt−1l (y) + ∆. Also, it is easy to

see in (2.13) that the existence of ties will increase qa and decrease qb, thus giving U a lower

margin to satisfy in (2.10). In general, the motion between two frames will be small if they

are from consecutive frames, such that we expect ties in dtk and dt−1l . Therefore, no ties is

also an indication of an different object. Although these are intuitive speculations, we do

not derive data association based on these assumptions.

The confidence interval is the threshold for accepting the association between two sets of

depth values. Since the sets of depth values used for association are discrete, the distribution

of U will also be discrete. We will not be able to find qa and qb to precisely satisfy the

confidence interval. Therefore, we vary our confidence interval from 80% to 99% for any

association. In cases where multiple intervals satisfy (2.10), we use the larger confidence

interval for association. This establishes the probability that the elements in (2.1) are equal

to (2.10) corresponding to the specific confidence interval. Figure 2.4 shows two images it1

and it2 , which shows detected object with regions Bt
k and Bt−1

l , the corresponding estimated

depth dt1→t2 and dt2 . An object in dt2 (highlighted with a red rectangle) is checked against

all the objects in dt1→t2 (highlighted with a green rectangle) in the NPDA process to find
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Algorithm 1 Nonparametric Data Association Process

1: Obtain image it, it−1 and depth dt, dt−1,

2: Detect objects using an object detector in it and it−1, extract region proposals for the

detected objects, Bt and Bt−1 and obtain the number of objects detected in it−1, m

3: For a object k in dt obtained using Bt,

4: for l = 0 to m in and Bt, do

5: Calculate U statistic using (2.4)

6: Find the ties in
{
dtk (x) , dt−1l (y)

}
using (2.12)

7: Calculate E(U) and V ar(U) using (2.11)

8: for confidence interval, ∆ = 80% to 99%, do

9: Find values of qa and qb for corresponding ∆,

10: if (2.10) is satisfied, then

11: then for association matrix (2.1), p(F (dtk) ∼ F (dt−1l )) = ∆

12: else

13: break

14: end if

15: end for

16: The associated object for dtk is the object number, argmax
l=0,1,...,m

p(F (dtk) ∼ F (dt−1l )) in

dt−1l .

17: end for

the correct association. The result is of the process is also shown in Figure 2.4 in the third

column. The process to perform NPDA on depth samples is expressed in further detail in

Algorithm 1.

2.4.3 Depth Map Estimation for NPDA

Generally, NPDA can be applied without any modification to the depth images when there is

minimal motion. But in cases when there is large motion we use a depth estimation process
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Figure 2.5: This figure shows depth estimation process for NPDA. It illustrates the depth t1

is used to estimate depth at t2

based on the previous observation to produce a depth image for association. This process uses

the camera extrinsic and intrinsic information to generate depth from previous observation.

This helps reduce the difference in depth for the two observations used for association. If

we can estimate the depth at t2 from the observation at t1, then we can perform association

in the case that motion was large between these two time instances. Let the observed

motion between t1 and t2 be represented as rotation Rt1→t2 and translation τ t1→t2 retrieved

from a SLAM pose estimation step. First, we back-project the depth dt1 to 3D to obtain

PCt1 ⊂ R3×N . It is then converted to homogeneous co-ordinate as PCt1 ⊂ R4×N . Next we

apply the transformation obtained from SLAM pose estimation between t1 and t2 to obtain

PCt1→t2 ⊂ R4×N ,

PCt1→t2 = H t1→t2 PCt1
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where,

H t1→t2 =

Rt1→t2 τ t1→t2

0 1

 .
Then, PCt1→t2 is projected to the image plane at the camera position t1 on the image plane,

I t1 . This projection, projI
t1

PC
t1→t2 , provides the 3D to 2D correspondence between the points

in W and image plane I t1 . The z element of PCt1→t2 represents the predicted depth value

for the corresponding I t1 . This way, we retrieve the depth, dt1→t2 , for all the image points

on I t1 .

We perform NPDA on dt1→t2 and dt2 , as there will be less motion difference between

them. Figure 2.5 shows a illustrative diagram how depth from time t1 is utilized to estimate

depth at t2 of an object. Later, we will demonstrate in experiments how much motion can be

observed in between two observations for NPDA using depth estimation. Figure 2.4 shows

the estimated depth, dt1→t2 , which is estimated from dt1 using the motion in between t1 and

t2. Figure 2.6 shows the results of the depth estimation process with different sets of depth

images. Generally, when the motion in between two key frames is large (more than a preset

threshold), a depth estimation helps the NPDA to perform association.

2.4.4 Object Back-Projection using SLAM Pose

We have gathered information about objects in the environment and its association in pre-

vious observations. Now we are focused to infuse this information with SLAM and find the

actual location of these objects in the SLAM established map. Every SLAM process provides

a map and a location of the sensor in the map. Modern VSLAM procedures consist of two

components, front-end and back-end. The front-end operates on the the raw sensor data

for model estimation which may provide feature detection, association and sensor odometry.

The back-end executes on the inference of the data from front-end and provide feedback

for verification and correction. This primarily generates map of the global environment and
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Figure 2.6: Depth estimation results on TUM dataset: The left and middle column shows
the source and target image. The right column shows the estimated depth of the target
image using only the source image and estimated pose from SLAM.
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Figure 2.7: This figure shows SIFT matching performed in C with images from UTD Dataset.

perform any correction from loop closure detection. The front-end is generally works on

camera co-ordinate frame and back-end works on the back-end. The interplay between these

two produces the map and trajectory. There are many implementation of the VSLAM pro-

cess. We use a feature-based localization and mapping process to extract pose and establish

mapping of the environment.

In our implementation, the front-end consists of pose estimation module based on SIFT

[57] feature extraction and matching process. Other implementations can use other existing

feature point detectors and descriptors such as SURF, ORB, etc. The extracted feature in

both frames are paired using Brute-Force matching, then classified and the associated objects

in NPDA, using dt and dt−1, are back-projected in C to acquire PCt

k and PCt−1

k . Next, an

iterative closest point (ICP) algorithm is used to estimate the pose between t and t−1. The

points are tracked over time to estimate motion in world co-ordinate frame W . ICP is often

used for 3D reconstruction, robot localization, etc.

In the back-end, first we transform the current feature points PCt

k to the last camera posi-

tion in W to estimate PW t

k . Then, the tracked pool of features from PW t

k are associated with

the features in PW t−n

k to estimate camera motion in W . Any unmatched feature is associated

through a nearest neighbor search, only if its within a certain radius. The motion estimation
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is performed using an ICP variant based on Levenberg-Marquardt (LM) optimization [41].

It is a point to point correspondence error minimization procedure. Let PW t

m be the set of

points in the maintained map that are candidate matches for PW t

k at time t. Let a ∈ PW t

k

and b ∈ PW t

m be a matched set of points. Then the minimization in ICP to find the camera

rotation R ∈ SO(3) and translation τ ∈ R3 composed as rigid body motion T = {R, τ},

can be stated as,

τ t,Rt = arg min
τ,R

∑
a,b

wk‖Ra+ τ − b‖2 (2.14)

here wk is the weights for (a, b) pair to provide significance during LM optimization.

A classified object k in it is back-projected to W . This requires knowledge of its associated

depth values dtk, the camera pose at t and the camera intrinsic parameters. If the object k

has had a successful association using the NPDA process from t− n to t, then all the back-

projected points from PW t−n

k to PW t

k are integrated into a joint distribution to represent a

single feature vector. The feature vector f for an object is expressed as,

f = {X, Y, Z, S}

where X : (µ(xk), σ
2(xk)), Y : (µ(yk), σ

2(yk)), Z :

(µ(zk), σ
2(zk)). The µ(xk), µ(yk), µ(zk) are the mean and σ2(xk), σ

2(yk), σ
2(zk) are the vari-

ance in (x, y, z) axes accordingly. S is the class of the object. The feature vector, f represents

a classified object for the time duration (t−n)→ t. It is later used in clustering process (Sec

2.4.5) to calculate a distance metric. Figure 2.4 shows the associated objects from NPDA

back-projected in W .

2.4.5 Density based Clustering of Objects

The NPDA process associates objects from the current frame to the next captured frame.

However, it will fail to associate objects with obstruction and cannot distinguish if a pre-

viously seen object is observed again after a period of not being observed. Due to this, we
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cannot determine the number of objects in the map solely from the NPDA process. We

address this problem using a clustering process to determine the number and location of

these associated objects in the map.

Clustering is the process of grouping physical or abstract objects into classes of similar

objects. A cluster is a group of data which are similar, and dissimilar to data in other

clusters. There are different clustering methods depending on various factors such as data

space, number of clusters, hard or soft grouping, etc. Each of the existing method has its

own strengths and weakness. Most of the existing methods are based on connectivity, den-

sity, subspace, centroid and hierarchy. The prominent clustering algorithm in practice are

K-means, Mean Shift, Hierarchical Clustering, Density-Based Spatial Clustering, Expecta-

tion Maximization Clustering, etc [7]. K-means clustering is the most popular clustering

which finds a fixed number of cluster through alternating between assignment and update.

Although it is very effective it requires fixed number of cluster to perform analysis which in

our case we do not have. Hard clustering method provides a specific cluster for each object

in the data whereas soft clustering provide a probability of each object belonging to existing

clusters. Density based clustering searches for higher density areas in the data compared to

the rest of the data. Distribution based clustering is based on the concept that a cluster is

generated from same distribution if there is several distinguishing distribution in the data.

We opted to use a density based clustering because in data space the classified objects are

concentrated in their respective locations.

Our process requires a clustering algorithm to estimate the unknown number and loca-

tions of the objects from the data of the map and NPDA. Based on these requirements,

we selected an unsupervised clustering algorithm known as hierarchical density-based spa-

tial clustering of applications with noise (HDBSCAN) [60, 61]. HDBSCAN is an extension

to DBSCAN [29] to make it into a hierarchical clustering algorithm. It uses unsupervised

learning to find clusters and is shown to be more robust to parameter selection and has been
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shown to outperform exiting density based methods. It also requires a fairly low compu-

tational complexity compared to other existing methods [102]. It first transforms the data

according to the density,then build a minimum spanning tree and construct a cluster hier-

archy of connected components. Then based on minimum number of cluster size the cluster

hierarchy is condensed and stable clusters are extracted from the condensed tree [60, 61].

The clustering process requires an estimate of density to group similar objects. This

density estimate is usually calculated using distance between neighbors. There are many

popular distance metric in use e.g. Euclidean, Manhattan, Pearson’s correlation coefficient,

etc. We use Bhattacharyya distance (BD) [8] to measure the distance between all the feature

vectors. BD is selected because it accounts for the mean and variance in the distance

calculation between two distribution. The distance metric D between two feature vector fa

and fb is,

D(fa, fb) =BD(fa (X) , fb (X)) +BD(fa (Y ) , fb (Y ))

+BD(fa (Z) , fb (Z)) + g(fa(S), fb(S))

where BD is given by

BD(fa (X) , fb (X)) =
1

4
log

(
1

4

(
σ2
fa(X)

σ2
fb(X)

+
σ2
fb(X)

σ2
fa(X)

+2

))

+
1

4

((
µfa(X) −mµfb(X)

)2
σ2
fa(X) + σ2

fb(X)

)

and g(fa(S), fb(S)) is a penalty function for non-matching classes. For example, g(·, ·) :

N× N→ R can be given by

g(x, y) =

 0 if x = y

100 else
.

2.4.6 Intermittent Clustering with NPDA

The clustering process generates a number of clusters corresponding to the distance metric,

which shows a density of similar objects in the world coordinate frame W . However, the
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distance metric calculation of the clustering process becomes computationally expensive as

more feature vectors from observations are added over time. This makes it impractical to

calculate the distance metric and train the cluster after every frame. For example, for every

n new and already exiting m observations, the process will require (m + n) ∗ n additional

operations for the new distance metric D. This extensive operation can be performed inter-

mittently with the help of NPDA. Since the operation of NPDA only occurs on two frames

for data association, it computational complexity requires less operations than clustering.

Now we demonstrate how NPDA and clustering process can be used together to overcome

this problem. NPDA is used to query the model and indicate when it is necessary to train

cluster again.

The NPDA process provides association information between detected objects at the

current and the previous time frame. As this association process continues, we do not use

clustering to find any new objects. Instead we use the trained clusters at current time to

see if it fits the current associated objects. If the currently associated objects fit to the

existing clusters, then we assume that no new objects have been observed since the last

clustering process. However, if the currently associated objects do not fit to any of the

existing clusters, it indicates the existence of new objects in the environment. Then we need

to calculate distance metric for the new observation and train the cluster again to locate the

new objects in the map.

Let us denote, after time t, the set of detected objects as N . The set of associated

objects from the NPDA process in the same duration is denoted M . Now, if the set of

detected objects fitting in the current clusters is T , then the rest are the set of outliers,

denoted O. So, by convention, N = T ∪ O and M ⊆ N . If the following condition is

satisfied, we add new observations in the D and run the clustering again,

|M ∩ T | < |M ∩O| . (2.15)
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Figure 2.8: Results of the intermittent Clustering Process: The results are from a simulation
on TUM. freiburg3 long office household dataset.
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In our process, we have a threshold for the number of new objects to observe before we

train the clusters. Figure 2.8 shows the intermittent clustering process in the TUM dataset.

It displays four locations where clustering was performed based on (2.15) and shows the

clusters as ellipsoids. Each ellipsoid constitutes a probable location and size of an object.

2.4.7 Loop Closure Correction

Loop closure is used to indicate a return to previously visited location and help correct drift in

the trajectory estimation [2, 88]. In the event of a loop closure correction, the trajectory and

the position of localized objects in the map needs to be updated. The clustering process is

only affected by loop closure correction, as NPDA only occurs in between two observations.

After a loop detection and correction from batch optimization, the poses of the agent at

the previously visited places are updated, if required. The updated pose of the previous

observations are used to correct the feature vectors f and run the clustering process again

on this new f to find the new positions of the classified objects in the map. This way, the

locations of the objects are corrected within the map along with the loop closure information.

2.5 Experimental Results

We have evaluated our algorithm on three different public datasets and our own dataset.

The public datasets are from Technical University of Munich (TUM) RGB-D data set [88],

Microsoft RGB-D Dataset 7-Scenes [34] and RGB-D Object Dataset [52]. Our own dataset

consists of 3 routes, each through a lab environment populated by different arrangements of

common objects. The object detection modules used here are the MobileNet SSD detection

network and Faster-RCNN, which is trained on the Microsoft COCO dataset [55]. MobileNet

is efficient for mobile and embedded vision applications, as the network itself is a light-

weight deep neural network. All of our codes are implemented using Python libraries. The

Tensorflow platform [1] is used for object detection.
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Algorithm 2 Data Association and Localization of Classified Objects

1: Obtain image it and depth dt,

2: Detect objects using an object detector in it, extract region proposals for the detected

objects, Bt and get number of object detected, k

3: Perform pose estimation between it and it−l to obtain H t,

4: if observed motion H(t−l)→t is greater than threshold, then

5: Use depth estimation to obtain d(t−l)→t,

6: end if

7: Perform NPDA to associate currently detected objects to the previous frame, l, to acquire

the associated observation A(t−l),t,

8: Back-project the currently detected and associated objects in world map again using the

estimated pose in W and acquire feature vectors, fa, a ∈ {1 . . . k}

9: if there are no cluster in map, then

10: Find group of clusters, Gt, using the clustering process,

11: else

12: if the feature vectors from the associated observation fits any of the current clusters,

then

13: keep the group of clusters same, Gt = G(t−l)

14: else

15: if (2.15) is satisfied then

16: Retrain the clusters

17: update Gt

18: end if

19: end if

20: end if
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2.5.1 Evaluation Metric

Our results were evaluated with standard performance metrics in scientific literature. We

precision rate, recall rate as metric to report data association accuracy. The precision metric

is defined as,

Precision =
TP

TP + FP

where,

TP = True Positive which is correctly identified instance

FP = False Positive which is incorrectly identified instance.

The recall metric is defined as,

Precision =
TP

TP + FN

where,

FN = False Negative which is incorrectly rejected instance.

These metrics are used to report data association accuracy. We also use a rotation metric

described in [44] to measure the difference in rotation between the two observations. This

is a bi-invariant metric on SO(3). Let Rt1 and Rt2 ∈ SO(3) represent rotation observed in

W for observation t1 and t2, then the following bi-invariant metric is used to measure the

difference between them,

φ(Rt1 ,Rt2) =
∥∥∥log (Rt1Rt2T

)∥∥∥ , 0 ≤ φ < π. (2.16)

The metric for translation, is the norm of the translation difference between the two obser-

vations.

τ =
∥∥τ 1 − τ 2∥∥

We use metric φ and τ to report results for the NPDA with depth estimation process. This

demonstrates the observed motion(translation and rotation) between two observations and

their corresponding precision and recall.
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Table 2.1: Precision and Recall Statistics of NPDA Process

Dataset Sequence Precision Recall

TUM freiburg3 teddy 95.7 75.8
TUM freiburg2 desk 92.4 68.4
TUM freiburg3 long office
household

89.9 65.6

MS Scene Fire 90.5 68.6
MS Scene Office 95.2 72.3
MS Scene Pumpkin 89.3 65.4
MS Scene Chess 92.1 69.7

2.5.2 NPDA Accuracy

We report two types of results for NPDA data association accuracy. The first is the accuracy

of the association process in consecutive frames. We use the precision and recall score

to report the accuracy of this process. The results are from 7 data sequence from the

aforementioned public data sets. NPDA was performed over 5000 frames from the public

datasets. Table 2.1 shows overall precision and recall results for the corresponding data

sequence. It is clear from Table 2.1 that the NPDA process shows an high precision rate. The

recall rate can be higher by tuning the NPDA process, but it reduces the precision rate. We

opted for a higher precision over recall rate. One of the reasons is incorrect data associations

can disproportionately distort the object localization process; that is, false positives have

more detrimental effect on clustering than false negatives. The clustering process involves a

large number of observations where feature vectors of correct data association localize objects

in the map. False positive from observations can distort this process, while false negatives

do not distort the process as long as there are true positive samples.

Second, we demonstrate again the association accuracy with PR statistics for the depth

estimation process. These results are for different amounts of rotation and translation be-

tween two observations. Table 2.2 summarizes the precision and recall statistics of the NPDA

process with depth estimation. ∅ indicates there was no data for this combination of φ and
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Table 2.2: Precision and Recall Statistics of NPDA with depth estimation

HHH
HHH

HH
‖τ‖

φ
φ =

0.05
φ = 0.1 φ = 0.2 φ = 0.3 φ = 0.4 φ = 0.6 φ = 0.8 φ = 1

‖τ‖ = 0.05 96\68 95\58 92\53 89\49 88\39 89\35 ∅ ∅

‖τ‖ = 0.1 98\65 96\60 90\52 88\41 89\36 ∅ ∅ ∅

‖τ‖ = 0.2 96\64 92\55 94\49 92\39 91\35 89\33 88 \29 84 \25

‖τ‖ = 0.4 95\65 96\58 97\53 98\45 88\36 92\28 86\29 89 \26

‖τ‖ = 0.6 93\58 91\45 92\43 90\37 87\31 88\26 85\21 88 \19

‖τ‖ = 0.8 93\54 91\40 92\36 90\33 87\28 88\22 85\20 ∅

‖τ‖ = 1 95\44 96\37 97\31 98\25 88\15 92\8 86\9 89 \6

‖τ‖ = 2 88\30 89\26 87\19 86\15 88\8 87\5 ∅ 89 \6

τ . Figure 2.9 also demonstrates the results of the table 2.2. It can be seen from Figure

2.9 that the precision for NPDA stays more than 80% for all cases, but the recall rate falls

as more motion occurs in between observations. As stated earlier, the recall drop is due to

the fact that we want to maintain a high precision for a correct data association process.

Whenever there is little overlap in the camera field of view of two observations, the recall

rates are low.

2.5.3 Classified Object Localization Accuracy

One challenge in evaluating our approach is that most of public datasets do not provide

ground truth semantic labels of objects in the scene, nor do they provide ground truth for

the location of the objects in the environment. To provide a qualitative evaluation we report

two numbers, the number of unique objects detected in a dataset and the number of clusters

in the map at the end of the data sequence. The number of clusters should be close to

the number of detected objects to prove the effectiveness of our algorithm. However, our
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(a) Precision Statistic

(b) Recall Statistic

Figure 2.9: Precision and recall statistics of depth estimation process: The results are re-
ported with different combinations of τ and φ. The horizontal axis is for translation difference
τ and each line is for a different rotational difference φ described in (2.16).
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algorithm is intended to be conservative and only add clusters that are repeatedly detected,

reducing false matches.

Multiple objects are generally detected in an environment during a sequence. In this

proposed method, an object is associated and clustered only after it has been observed for a

certain number of frames. First, we consider an object has been detected in a dataset if it is

being detected by the CNN for at least 25 frames in the complete sequence. The minimum

sampling size for a cluster was selected to be 50. This is intended to only add reliably

detected objects to the clusters. Objects that are only briefly seen or are misclassified due

to ambiguous appearance are not clustered. The numbers for classified objects and clusters

in each data sequence is reported in the respected tables.

The clustering process is based on the open source HDBSCAN library [61]. The final

outcome consists of a point cloud map with each object cluster represented as an ellipsoid.

The center of the ellipsoid is the mean of the cluster, and the radii are the standard deviation

of the cluster along the principal axes of the cluster. The final maps shown in this paper

have been down-sampled using VoxelGrid filter for clarity of viewing. The red color curve

indicates the trajectory of the camera or observation sensor.

TUM RGB-D dataset

We tested on four TUM sequences. The datasets are, freiburg3 teddy, freiburg2 desk, freiburg3

long office household and freiburg3 long office household validation. All of these sequences

are indoor environment with walls and tables and common office objects such as book, chair,

keyboard, monitor, plants, balls, etc.

We demonstrate the intermittent clustering procedure in Figure 2.8. The results are from

a simulation on the TUM freiburg3 long office household dataset at four different times with

the results of the the clustering operation, as described in Section 2.4.6. It shows camera

images, and the results of the object detection are shown in bounding box regions. The
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Figure 2.10: Object Localization Result on TUM Dataset, long office household - The ellip-
soids represents the probable location and size of the objects.

bottom row shows the map for the corresponding time at the image as black points. It also

shows ellipsoids representing each cluster for a classified object. Each ellipsoid constitutes a

probable location and size of the object.

Figure 2.11a shows the results of freiburg3 teddy. It focuses on 1 object, a teddy bear, in

the middle of a room with other objects. The classifier detected 3 objects in this sequence,
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Table 2.3: Result Statistics for TUM Dataset

Dataset Sequence
Number of

Classified Objects

Number of
Mapped
Objects

freiburg3 teddy [ Figure 2.11a ] 3 2
freiburg2 desk [ Figure 2.11b ] 15 11
freiburg3 long office household
validation [ Figure 2.10 ]

21 15

freiburg3 long office household [
Figure 2.8 ]

21 13

and the final set of two clusters consists of a teddy and a chair. The other consistent detection

was a person in the background. It was represented as a cluster, as either their motion or

number of observations resulted in a distribution that was not appropriately dense to meet

our criteria to constitute a cluster. freiburg2 desk contains several office items on a desk.

The map, path, and final clusters are shown in Figure 2.11b. freiburg3 long office household

and freiburg3 long office household validation have similar environments consisting of two

desks divided by a wall.

The results, including final clusters for freiburg3 long office household validation are shown

in Figure 2.10. The results for all TUM datasets are consolidated in Table 2.3. We are able

to localize about 65% of the unique objects in the map. The number of localized objects

depends on the number of observations that contribute to the feature vector in the clustering

process. If the object does not have enough observations then it may not be recognized as

a cluster. This demonstrates a strength of our approach, as mobile objects and difficult to

classify objects are not added. Also the shape of the cluster ellipsoid depends on how the

object was observed. In Figure 2.11a, the object was observed from all angles so it has an

ellipsoid similar to the object size and location. In cases where an object is partially observed,

the ellipsoid will only resemble the observed data. Overall, the localized entities shown in

Figure2.11a,2.10,2.11b visually resembles the location and size of the existing objects in the

map.
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(a) TUM: freiburg3 teddy (b) TUM: freiburg2 desk

Figure 2.11: Object Localization Result on TUM Dataset

Table 2.4: Result Statistics for MS RGB-D Dataset 7 Scenes

Dataset Sequence
Number of
Classified
Objects

Number of
Mapped
Objects

Scene Fire [2.12a] 5 4
Scene Office [2.12b] 14 12
Scene Pumpkin [2.12c] 6 5
Scene Chess [2.12c] 6 5

RGB-D Dataset 7-Scenes

The RGB-D Dataset 7-Scenes from Microsoft consists of 7 different environment, each with

its own different sequences. Figure 2.12a - 2.12d shows the results of our simulation for the 4

scenes, and outcomes are reported in Table. 2.4. Each of the sequence has a unique objects

(such as chessboard, pumpkin, fire hydrants and, etc) with other commonplace object in the

office environment. We were able to localize all of these unique objects in the map. Table.

2.4 shows overall we clustered about 75% of the classified objects in the environment.
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(a) Scene: Fire (b) Scene: Office

(c) Scene: Pumpkin (d) Scene: Chess

Figure 2.12: Object Localization Result on Microsoft RGB-D 7 scenes Dataset

RGB-D Object Dataset

The RGB-D Scenes Dataset v2 consists of 14 scenes that contain multiple pieces of furniture

and different objects such as cereal boxes, coffee mugs, bowls, caps, and soda cans. This

dataset was introduced by Kevin Lai [52, 51]. Lai demonstrated unsupervised feature learn-

ing with this dataset. On all of the sequences, small objects are placed on a flat surface, and

the camera moved around the objects. Due to the object centered view and camera obser-

vations of the objects were attained from almost all angles, we chose this dataset for object
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(a) RGB-D Scenes v2: scene 01
(b) RGB-D Scenes v2: scene 06

(c) RGB-D Scenes v2: scene 10 (d) RGB-D Scenes v2: scene 13

Figure 2.13: Object Localization Result on Washington RGB-D Scenes Dataset

localization. We tested on sequences 1, 6, 10, 13, 14. The results for these sequences are

shown in Figure 2.13a-2.13d, and Table 2.5 shows the reported results. The results indicate

that for these sequences, the majority of detected objects were localized in the map. The

classified objects with observations from multiple viewpoints are localized in the map. It

shows the localized objects with proportional size ellipsoid. This represents we were able to

locate the objects on the correct location with its correct corresponding size.
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Table 2.5: Result Statistics for RGB-D Scenes Dataset

Dataset Sequence
Number of
Classified
Objects

Number of
Mapped
Objects

Scene 1 [ Figure 2.13a ] 7 5
Scene 6 [ Figure 2.13b ] 9 7
Scene 10 [ Figure 2.13c ] 8 6
Scene 13 [ Figure 2.13d ] 4 3
Scene 14 5 4

UTD Dataset

The goal of this dissertation is to demonstrate the process of data association and localization

of classified objects in SLAM. The public datasets we tested on are primarily used for SLAM

and 3D scene or object reconstruction, These dataset does not include the ground truth

information about the location, shape, orientation, and class of the existing objects in it.

So, we introduce a dataset to compare object localization accuracy. We have captured

three data sequence using a Kinect v2 RGB-D sensor moving through a lab environment

with rearrange-able walls and a variety of objects. The datasets included regular everyday

objects such chairs, mugs, cups, toys, bottles, etc. These objects can be easily classified using

any traditional CNN-based model. In all of the sequences objects are placed at scattered

locations in the environment. Figures 2.14 and 2.15 show images from the datasets along

with the results. The three setup is as follows,

• Scene 1: It contains no wall and has objects scattered all around the map.

• Scene 2: It has a wall at the center and the objects are placed around this wall. The

camera moves around the center wall and also creates a loop in its trajectory.

• Scene 3: It has two wall positioned at center and objects are placed similar to sequence

2. The camera movement in this sequence follows an 8 shape pattern and has two loops

in the trajectory.
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Figure 2.14: The layout of the Scene 1 of UTD Dataset and the mapping results with
ellipsoids representing the objects: Object are placed at several locations with tag marks
around them in the images. The tag markers can provide a region of the objects in the map
similar to a bounding box in object detection.
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Table 2.6: IoU Statistics of different object class for UTD Dataset

Sequence
Object Class

chair 1 chair 2 Bowl teddy 1 teddy 2 head keyboard bottle 1 bottle 2 bottle blue

Scene 1 0.52 0.42 0.75 0.68 0.68 0.48 0.48 0.55 0.48 0.47
Scene 2 0.48 0.52 ∅ 0.53 ∅ 0.59 0.55 0.51 ∅ 0.42
Scene 3 0.51 0.56 0.6 0.47 0.55 0.55 0.45 0.44 0.44 0.53

We placed detectable planar markers in a rectangle around each object to estimate its

location in the map. In Figure 2.14, it can be seen that the environment also has tag markers

placed on the floor and around the objects. Each one of the marker is a square identifier

that has a wide black border and a inner binary matrix. This design of the matrix represents

a number that acts as an unique ID for the marker. By properly placing the markers in an

environment, it can be used to estimate pose and map. We used Marker Mapper [68] and

UcoSLAM [69] to obtain locations of the markers, which we compare against our results.

The marker IDs around each of the object were recorded, and these markers will provide a

region where an object is located in the map. This allows us to report object localization

results using the Intersection over Union (IoU) metric. IoU is defined as,

IoU =
Area of Overlap

Area of Union
.

Let A be the region on the ground plane of the rectangle defined by the markers for an object

on the map, and let B be the region of a rectangle that bounds the projection of the cluster

ellipse onto the ground plane.

IoU =
A ∩B
A ∪B

.

Figures 2.14 and 2.15 show the datasets with captured images, a generated map and our

results with bounding box regions for the corresponding object. Table 2.7 shows the results

of our proposed method on the datasets. All the datasets consisted of regular objects such
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Figure 2.15: The layout of the Scene 2 of UTD Dataset and the mapping results with
ellipsoids representing the objects: Object are placed at several locations with tag marks
around them in the images. The tag markers can provide a region of the objects in the map
similar to a bounding box in object detection.

Table 2.7: Result Statistics for UTD Dataset

Dataset Sequence
Number of
Classified
Objects

Number of
Mapped
Objects

Scene 1 [Figure 2.14] 7 7
Scene 2 [Figure 2.15] 10 10
Scene 3 10 9
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as a chair, a keyboard, cups, etc. It also has duplicates of the same class objects in the map

to show how our method can distinguish between them. The results show that we are able

to localize almost all of the objects in the map. The IoU results show the ellipsoid for the

classified objects lie within the marked region. It gets an average about 50% overlap with

the marked region. A process with 0.5 IoU results are generally considered a good detector.

2.5.4 Comparisons

We now compare our results with other related works in areas such as semantic SLAM,

object localization in SLAM, etc. The methods we compare in this section have used their

own captured sequence and public datasets. The datasets we use in our evaluation and the

compared methods here are not same, but they do share similar characteristics such as indoor

office environment, objects, etc. The public datasets some use do not include depth data

that our data association method needs, so we cannot run a comparison on these datasets.

Also, some of the reported statistics are not similar to our evaluation metric. We will provide

a comparison to our method in cases where the metrics are same and convert to our metrics

if possible. In general, we define success rate of the proposed mapping process as

Success Rate =
Number of mapped object

Number of existing objects in the map
.

In the case of average success rate, we take the average of all the results on different datasets

reported on the method.

Mu et al. [67] proposed a non-parametric graph SLAM (NP-Graph) in which they demon-

strated association of object detection and localization in SLAM. The results were demon-

strated on an office environment and a simulated environment. The results are based on

their own datasets and for comparison, we are reporting our results on similar environment

that includes office space. Table 2.8 shows the comparison results between our method and
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NP-Graph. The average success rate of NP-Graph was 93.87% in their datasets. Our pro-

posed method on public dataset has an average success rate of 75% and on the UTD dataset

showed an average success rate of 96%.

Table 2.8: Comparison between NP-Graph and our method

NP-Graph
Dataset Number of Objects Number of Mapped Objects
Office 36 31

Simulated Environment 15 15
Our Method

Dataset Number of Objects Number of Mapped Objects
TUM fr3 office 22 15

Washington office 20 14
MS office 8 6

Sünderhauf et al. [89] demonstrated a object-oriented semantic mapping with a SLAM

solution. Their experiments were performed in indoor environments, which included a single

desk, a larger office, a kitchen, etc. Their results were reported as true positive detection

(successful mapping of an object), missed objects (unsuccessful mapping of an object) and

false detection (mapping an object although it was not there in reality). We use these

numbers to report the results in our evaluation metric, the number of existing objects in

the map (true positive detection+missed objects) and the number of mapped objects (true

positive detection) in the map. The dataset used for comparison are not same so we compare

our results based on similar environments. Table 2.9 shows the statistical results of the

proposed method by Sünderhauf et al. and the similar data sequences in our proposed

method. In comparison, Sünderhauf et al. demonstrated an average success rate of 71.68%,

and our proposed method on similar datasets has an success rate of 71.62%.

Salas Moreno et al [80] proposed SLAM++, which showed its results in a large common

room cluttered with chairs and table. The room contained 35 objects of 5 different classes.

54



Table 2.9: Comparison between proposed method by Sünderhauf et al. and our method

Meaningful Maps With Object-Oriented Semantic Mapping
Dataset Number of Objects Number of Mapped Objects

Lab 60 43
Desk 16 15

Kitchen 4 4
Office 33 19

Our Method
Dataset Number of Objects Number of Mapped Objects

TUM fr3 office 22 15
TUM fr2 desk 15 11

Washington office 20 14
MS office 8 6

RGBD scene 6 9 7

Their proposed method mapped 34 objects out of 35 in the environment. The method

requires 3D model database of objects and the objects to sit on the ground plane. In

comparison, we are able to map 26 out of 27 objects in our own 3 data sequences.

Long et al. [56] provided results for semantic segmentation using CNN on datasets such

as NYUDv2, SIFT Flow, etc. Their results were presented with mean intersection over

union (IoU) metric and our results are reported as IoU. Mean IoU of the image is calculated

by taking the IoU of each class and averaging them. The IoU metric used in our method

is calculated on the final localization results on the map. Table 2.10 shows the statistical

results of semantic segmentation and our proposed method. The semantic segmentation

shows mean IoU of 0.34 and 0.39 and, in comparison, our proposed method on our dataset

demonstrates better IoU statistics, which ranges from 0.42 − 0.68 with mean of 0.52. Note

that the objective and outcomes of [56] are focused on segmentation of classes from a single

image. We do not intend to report a direct comparison of our results, but intend to show

that our IoU results are in the range, or better, of what is considered successful for the IoU

metric.
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Table 2.10: Comparison between Semantic Segmentation [56] and our method

Semantic segmentation using FCN-16s
Dataset mean IoU
NYUv2 0.34

Sift Flow 0.395
Our Method

Dataset IoU range
UTD dataset 0.42-0.68

2.6 Conclusions

In this chapter, we address the problem of localization of classified objects during SLAM

tasks. The number of objects is not known in this method, and the approach can be employed

with most classifiers, such as CNNs. The objects are first extracted by classifiers from images,

and their location in the map are established using a novel employment of data association

and clustering processes. We demonstrated that non-parametric statistics can successfully

solve the data association problem between classified objects using depth data. When there

is significant motion in between two observations, we are able to associate objects using a

depth estimation process.

Our method can easily incorporate RGB-D based SLAM systems and contributes to the

filed by including semantics information to the environment through the labeling of detected

objects. Experiments on the three public datasets showed our methods were successfully able

to determine the probable location and size of objects, modeled as ellipsoids, in the environ-

ment. Also we have reported the precision and recall statistics for the NPDA procedure. It

possesses a high precision rate, even when motion is introduced. Although the recall drops

as motion is introduced in between observation, a higher precision for will ensure that the

localization process is robust. We also captured our own dataset and showed IoU statistics

using marker tags on our datasets. Our goal of the work is to demonstrate the accuracy of
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the object localization and not the registration accuracy of SLAM. Our diversified experi-

mental results are focused on demonstrating the capability of finding these classified objects

in the map. In future, we expect the procedure to fully integrate with a SLAM process and

demonstrate results on a large scale city environment.
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CHAPTER 3

LOOP CLOSURE THROUGH REINFORCEMENT LEARNING

3.1 Introduction

In this chapter, we present a solution to an essential element of SLAM, loop closure. Loop

closure is the problem of correctly asserting that an agent has returned to a previously visited

area. A SLAM solution without loop closure is essentially just the estimation of odometry.

Loop closure was introduced because SLAM odometry suffers from drift over time, leading

to accumulated error in the pose and map estimation process. Odometry will only explore

the environment through mapping, as shown in Figure 3.1, and is unable to re-localize itself

in a previously visited location. Loop closure helps SLAM to identify the intersection of

the path in the environment and recover any error by indicating matching locations in its

trajectory. SLAM fixes the errors in the map and trajectory through batch optimization

using this information. Generally, loop closure has been performed using visual features in

VSLAM, but we are proposing a novel solution to loop closure. We demonstrate that loop

closure can be solved using a reinforcement learning (RL) algorithm. The information of

the location of classified objects added to a map by the previous Chapter 2 can be used as

features to help solve the loop closure problem.

We start by describing the mathematical problem behind loop closure and show how

it can be solved using a RL algorithm. We show the formulation for loop closure and

describe how we incorporate it in RL based on a few assumptions. We will discuss how these

changes provide advantage over traditional methods. We provide an introduction to RL

and its application in deep machine learning methods. We will then describe the simulated

environment for the training of loop closure. The important details of this environment,

such as observation, action, reward, structure, etc are discussed in detail, with examples.

We provide description of the interaction of the RL-agent with environment, through which
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the RL algorithm trains the agent to learn how to perform loop closure. Next, we describe

the training procedure and the model used in the procedure. We will describe how we handle

an entropy issue with simulated environment for loop closure. Lastly, we demonstrate our

results on several different simulated environment scenarios.

3.2 Notation and Assumptions

We use the notation N := 1, 2, ..., n to represent a set of natural numbers. We use capital

letters for random variables and lower case letters for values of random variables and scalar

functions. A list of notations used are mentioned below:

s states or observations from the simulated environment

S a set of states or observations

t discrete time steps of an episode

T final time step of an episode

π policy of the RL-agent

θ parameter vector of a network network

πθ policy parameterized by θ

A set of actions the agent can perform in the environment

at an action taken by policy, π at time t, at ∈ A

π(s) probability of taking an action under policy π in state s

π(a|s) probability of taking an action a under policy π in state s

rt reward received at time t following policy, π

γ discount factor or the penalty to uncertainty of future rewards; 0 < γ < 1

V (s) state-value function that measures the expected return of state s

E expected value of a random variable
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Figure 3.1: The left image is an illustration of odometry only, and the right image shows an
illustration with loop closure and odometry.

3.3 Problem Formulation

A robot or a mobile agent moves in an environment and gathers observations from the sensor

over time. Whenever the current observation has a sufficient similarity with any of the pre-

vious observations, then we can indicate a loop closure to perform error correction in SLAM.

We formulate the loop closure problem in a probabilistic Bayesian filtering framework [2].

The overall environment can be modeled as a discrete set of locations or unique observations,

where each observations can be described as a distribution over sensor measurements. For a

current observation st the loop closure problem can be formulated as,

j = arg max
i=0,...,t−c

p(LCt = i|St) (3.1)

where,

• LCt is a random variable representing loop closure hypothesis at current time t.

• The event LCt = i represents that the current position at t matches with the ith

(previous) observation

• St = [s0, s1, . . . , st−c] is the history of previous states. The states from t to t− c (where

c ∈ N is a preset threshold) are not considered for loop closure hypothesis, as they

are expected to be similar to current states and will result in repeated loop closure to

recent positions.
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• if j = 0, then it indicates a no loop closure situation.

This formulation requires a full posterior, p(LCt|St) for all t = 0, 1, ..., t− c. In general, most

implementations of loop closure follow Bayes’ rules and assume the Markov property. This

assumption decomposes (3.1) as

j = arg max
i=0,...,t−c

ζ p(st|LCt = i) p(LCt = i|St−1) (3.2)

where, ζ is a normalization term. This way, the full posterior at t is achieved by the belief,

p(LCt = i|St−1) and likelihood, p(st|LCt = i).

Our approach to solving this classical problem of loop closure is through training a model

by RL. Our solution is dependent upon the locations rather than on the time and all possible

previous locations. We have some assumptions on solving this problem:

• The full map of the environment is known to the model beforehand as a simulated

model

• The number of loop closure locations are predefined

Because of these assumptions, the formulation of the loop closure problem’s dependence on

previous observations is changed to include only the locations in the map. We demonstrate

a similar scenario in a generic graph slam solution. Figure 3.2 shows three scenarios, ground

truth trajectory, odometry estimate and loop closure correction based on our assumptions.

It shows that if loop closure is performed only at the two predefined locations, we can still

recover the approximately correct solution. We can compare this formulation of loop closure

to an offline loop closure, which uses stored images of the environment to obtain a bag-of-

words dictionary and uses it in SLAM to perform loop closure. Similarly, we are assuming

loop closure has a knowledge about the environment only to match the current observations

to a previously trained environment. Note that the assumption of knowledge of the grid map

for training the RL model is not the same as having a fully established map provided. The
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predefined loop closure locations can be set to the intersections of the possible trajectories

in the known map or the corner locations in the structure of the map. These locations are

provided to the RL model to provide rewards to train

Based on these assumption, the (3.1) and (3.2) is changed accordingly,

j = arg max
l=0,...,n

p(LCt = l|St)

j = arg max
l=0,...,n

ζ p(st|LCt = l) p(LCt = l|St−1)
(3.3)

where, l is the index of possible loop closure locations and n is total number of loop closure

locations.

Our solution is to train a policy with RL, which outputs the probability, p(LCt = l|St)

or p(LCt = l|St−1). In this way, LCt is the action taken by an RL agent, and St or St−1

is the observation provided to the RL agent. We will start with the description of the

RL framework and then provide training details about the policy to solve the loop closure

problem.

3.4 Reinforcement Learning

Reinforcement learning is one of the major branches of machine learning. It is a goal driven

learning process that seeks to maximize a complex goal. It is distinct from supervised and

unsupervised learning in that it depends on interaction with the environment or model and

receives a reward as feedback. Supervised learning requires a labeled training dataset, and

it then approximates a mapping between the label and data. The classifiers in our object

localization are an example of supervised learning. Unsupervised learning is also provided

with a training dataset, but there are no labels to the data. This method of self learning

develops distinction or inferences in datasets. Our clustering method for object localization

is an example of unsupervised learning.
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(a) Ground Truth Trajectory

(b) Odometry Estimate (c) Loop closure output using our assumptions

Figure 3.2: This figure shows three scenarios to demonstrate a result of loop closure based
on our assumptions. The top picture shows the ground truth trajectory. In the bottom left,
the odometry estimate is shown which has drift error in trajectory. The bottom right images
shows loop closures with only 2 locations (indicated in red) and the corrected trajectory
after optimization.
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Figure 3.3: A general RL procedure

The basic components of an RL process are a policy, an agent, action and a reward.

Sometimes, a model of the training environment is given. The goal of a RL algorithm is to

train an agent to make correct decisions when it encounters different states. RL is generally

a cyclical process. The process starts with an agent and environment. At each time step t,

an RL agent receives a state or observation, st, from the environment and takes an action, at.

Based on the action, the agent receives a reward, rt, and moves to the next state, st+1. This

interaction with the environment goes on until the agent reaches a final or end state. The

RL algorithm attempts to fully maximize the total reward, R received during this period

through trial and error process. Figure 3.3 illustrates a typical RL algorithm process.

3.4.1 Markov Decision Process

A Markov Decision Process (MDP) is a discrete stochastic process that describes the interac-

tion of an RL agent with the environment. All states of a MDP follow the Markov property,

meaning future and past states are conditionally independent, given the knowledge of the

present state. A MDP in RL generally consists of five elements, {S,A, Pr,R, γ}. Pr is the

transition probability distribution that describes the probability of receiving a reward r and

transition into a state s′ based on current state-action pair {s, a}.

This dissertation is focused on the episodic nature of RL with a finite MDP. The inter-

action with the environment is divided into sequences or trajectories with states, action and
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reward. These sequences or trajectories typically follow the format

s0 → a0 → r0︸ ︷︷ ︸
sequence 0

→ s1 → a1 → r1︸ ︷︷ ︸
sequence 1

→ ...→ sT → aT → rT︸ ︷︷ ︸
sequence T

. (3.4)

3.4.2 Partial Observability

The environment for our loop closure provides the RL agent only a partial observation that

may include noisy and limited information about the current state. This means we only

have observations of a portion of the environment rather than a full observation. In this

case, the RL agent needs to accumulate the information from previous steps to train and

optimize a policy. Usually this is done through a set of previous observations, O. At any

time step t, if y is the partial observable state, then Ot = {y0, a0, y1, a1, ....., yt−1, at−1, yt}.

Also, an observation model can also help update the belief of the RL agent. In general, a

partially observable Markov decision process (POMDP) is not much different from a fully

observed one, as we can use Ot to derive an approximately fully observed state. Most real

world scenarios are designed as POMDP.

3.4.3 RL Policy

The RL algorithm trains the agent using trajectories stated in (3.4) to find a policy, π. This

will map the states s to the probabilities of selecting an action a ∈ A. In RL, a policy

can be deterministic, π(s) or stochastic, π(a|s). Deterministic policies are mostly used in

deterministic environments that have no uncertainty involved in the states or the actions.

Examples of such cases may be chess, pong, solaris, etc. Stochastic policies are mostly used

whenever there is an uncertainty involved in the states or actions. It outputs a probability

over all the possible action on a state. Most real-world scenario and POMDPs require a

stochastic policy to train an agent. In this dissertation, we are interested to find a stochastic

policy for loop closure.
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The stochastic policy π(a|s) is the probability of taking an action a while being in state

s. A policy gets updated in every iteration of training to maximize the overall return. A

policy can be evaluated using state-value function or action-value function. A state-value

function, denoted as υπ(s), is the expected return if starting at state s and following policy

π thereafter

υπ(s)
.
=Eπ

[
T∑
k=0

γkRt+k+1|s

]

υπ(s) =
∑
a

π(a|s)
∑
st+1,r

p(st+1, r|s, a)[r + γυ(st+1)]

(3.5)

υπ(s) evaluates how much can be achieved from the current state. The action-value function,

denoted as qπ, is the expected return if starting at state, s, performing an action a and

following policy, π afterwards

qπ(s, a)
.
= Eπ

[
T∑
k=0

γkRt+k+1|s, a

]
. (3.6)

A solution to an RL problem is a policy that provides the highest return in the training

sequence. A RL policy gets updated after every training period, so there is one policy in the

run that is better than all others. This policy is known as the optimal policy, denoted as π∗.

So the optimal state-value function is defined as,

υ∗(s)
.
= max

π
υπ(s), (3.7)

and the optimal action-value function is defined as,

q∗(s, a)
.
= max

π
qπ(s, a) (3.8)

3.4.4 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) is the subset of of RL methods that use deep neural

network as a function approximation for the policy. Deep neural networks perform better as

function approximators for nonlinear cases compared to other existing methods. The success

66



of deep learning in speech [21] and object recognition [48] has paved the way for it to be

integrated in RL. Most initial success in RL came from linear or tabular functions, but the

first breakthrough using deep learning came from [64]. Mnih et al. demonstrated that DRL is

able to play Atari games using a variant of Q-learning. He used the game screen as a input to

a CNN and showed results on par with human performance. [85] trained a RL framework on

the game of Go that defeated an European Go champion and achieved a 99.9% winning rate

against other players. They introduced a novel method of combining Monte Carlo simulation

with value and policy network to train itself from supervised and self-play data. Levine, et

al. demonstrated an end-to-end training using CNNs and guided policy search from images

to control a robot’s arm or motor [54]. Their experiments showed it was able to perform

several complex manipulation skills, such as grasping different shaped objects. There have

been multiple algorithms proposed by [37], [81], and their variants [98], and improvements

been introduced in the last few years. Several open-source platforms have been introduced

to explore algorithms for RL. OpenAI has demonstrated several improvement of DRL and

introduced numerous simulated environments to test RL algorithms. Recent advancement

has been shown to overcome some of the drawbacks of traditional RL, such as learning to

learn [30], demonstrated learning adaptability to new task without a reward feedback, etc.

Recent advancement has mostly focused on simulated environments rather than on real-

world dataset. The success and promise of DRL in these simulations can be extended to

real world robotics application with efficient and accurate design of the simulation. In this

dissertation, we demonstrate one of the classical robotics problem, loop closure in DRL and

showcase how it can be applied to a indoor environment.

3.4.5 Policy Optimization Techniques

There are many existing methods to optimize a stochastic policy in RL. Policy-based op-

timization methods are different from value-based methods such as TD learning and Q-

learning. Policy-based optimization methods view RL as numerical optimization problem in
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which the expected return is optimized against the policy parameters. There are generally

three ways to optimize a policy:

• Policy Iteration methods optimize the policy by alternating between estimating υπ

and improving π. These method may converge in relatively few iterations, as they

always moves toward improving the policy. However, for large systems of equations, it

becomes computationally expensive [91].

• Derivative free optimization (DFO) treats the problem as a block box function, which in

turn provides better policy parameters. Cross-Entropy methods and co-variance matrix

adaptation are a few DFO algorithms. These are vulnerable to variance reduction and

converging to local optima [94].

• Policy Gradient methods model and optimize π directly with a parameterized function

with respect to θ. It is one of the most popular method in practice and provides better

results on large training datasets.

An in-depth discussion of these methods is outside the scope of this dissertation. So, we

will describe here a policy optimization technique related to our proposed method. We use

a gradient-based stochastic policy optimization method that operates on a discrete action

space. Policy gradient methods can generally be grouped into two categories, on-policy

and off-policy. On-policy primarily interacts with a target policy, π. It follows and obtains

samples from a target policy, which is the same policy the RL is being trained on. On the

other hand, off-policy has a second policy named behavior policy. In this setting, the agent

trains the target policy and selects actions based on the behavior policy. REINFORCE is a

Monte Carlo on-policy gradient method that collects episodic trajectories of policy, π and

uses them to update policy parameters. A baseline value is subtracted from the return to

reduce the variance. Actor-Critic is a another popular method, in which a model is split
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into two. The two components are policy model and value function. The actor or policy

decides which action a to take in a state s, and the critic evaluates the performed action

using a value-based function. We use actor-critic in the implementation of the RL algorithm.

Actor-critic methods have certain advantages over other methods such as

• This method can acquire multiple episodes of sample trajectory and then optimize

based on all sample trajectories, whereas previous methods were based on a single run

of an episode. Using multiple parallel trajectories helps incorporate various samples in

one batch of episode.

• The use of two separate modules enables to have two different updates where the critic

helps the actor by fixing its wrong actions

Our parameterized stochastic policy is denoted as πθ(a|s). Here, θ ∈ Rn is the parameters

of a neural network. The policy is improved using a performance measure. It is usually

defined as

J (θ)
.
= υπθ(s0)

J (θ) =
∑
s∈S

η(s)υπθ(s)

J (θ) =
∑
s∈S

ηπ(s)
∑
a∈A

qπ(s, a)∆π(a|s)

(3.9)

where, s0 is the initial starting state, and η(s) =
∑∞

k=0 Pr(s0 → s, k, π) is the on-policy

distribution under π. Equation (3.9) can be expanded using a derivation from [91],

∇J (θ)
.
=∇υπθ(s0)

=
∑
s∈S

η(s)
∑
a∈A

πθ(a|s)qπ(s, a)
∇θπθ(a|s)
πθ(a|s)

=Eπ

[∑
a

qπ(St, a)∇θ ln πθ(a|St)

]
.

(3.10)

So, the policy can be optimized using,

θk+1 = θk + α∇J (θ) (3.11)
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where, α is the learning rate and k is iteration number in the optimization. There are

numerous policy gradient theorems based on (3.10). The gradient is computed over the

sampled trajectory, based on the policy πθ. Since the sampled trajectory can take different

actions depending on the states, the variance between the samples can be high. Introducing

a bias or baseline in (3.10) helps to reduce the variance. A good overview of mitigating such

problems has been proposed and discussed in detail by Schulman et al. [83]. If the sample

size is very large (meaning if |S| → ∞), then the variance can be low. However, the gradient

for a large sample size data is computationally expensive and not feasible. Our method also

encounters this issue in sampling the correct actions in the trajectory of an episode. We

address this with entropy maximization, which is discussed in section 3.6.

The policy gradient theorem with a function approximation has been proven for on-

policy methods for stochastic policies by Sutton [92] and for deterministic policies by Silver

et al.[86]. In recent works, policy gradient has been proven to work for off-policy, as shown

by Degris et al.[23]. He proposed an algorithm named Off-PAC (Off-Policy Actor-Critic) and

proved the convergence in the standard off-policy setting. There is a justified proof by Degris

et al. [23] on how off-policy can guarantee policy improvement and reach an optimum policy.

We shortly summarize this in this dissertation. Off-policy introduces a behavior policy, b.

The objective function with b can be (3.9),

J (θ) =
∑
s∈S

ηb(s)
∑
a∈A

qπ(s, a)∇π(a|s) (3.12)

and its gradient,

∇J (θ) =
∑
s∈S

ηb(s)
∑
a∈A

[∇π(a|s)qπ(s, a) + π(a|s)∇qπ(s, a)] . (3.13)

Since the term on the right, ∇qπ(s, a), is hard to estimate for off-policy, it is omitted in most

algorithms, and without it, policy has been shown to still guarantee improvement over [23].
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So (3.13) can now be rewritten as an expectation

∇J (θ) =Eb

[∑
a∈A

qπ(St, a)∇π(a|St)

]

=Eb

[∑
a∈A

b(a|St)
π(a|St)
b(a|St)

qπ(St, a)
∇π(a|s)
π(a|s)

]

=Eb
[
π(a|St)
b(a|St)

qπ(St, a)∇ lnπ(a|s)
]

(3.14)

where, π(a|s)
b(a|s) is the importance weight of target policy to behavior policy. This forms the basis

of off-policy gradient methods.

Policy gradient methods have been extended from (3.10) and (3.14) to various expression

to handle issues with bias, variance and convergence [82, 23]. This form can be generalized

to the following expression,

ĝ = E

[
T∑
t=0

ψπ∇θ lnπ(at|st)

]
(3.15)

where, ĝ is the gradient estimator for policy gradient method, ψπ is the advantage function

estimator and the expectation is taken over a number of batch samples. In this dissertation,

we incorporate both trust region policy optimization [82] and proximal policy optimization

method (PPO) [84] to find the loop closure policy. A full detail of these method is out of

scope for this dissertation. So we describe the objective function used in training the policy.

We aim to optimize the objective function as proposed by PPO using batch samples with

the following,

min

(
πθnew(a|s)
πθold(a|s)

ψπθold , g(ε, ψπθold )

)
(3.16)

where,

g(ε, ψπθold ) =

(1 + ε)ψπθold if ψπθold ≥ 0

(1− ε)ψπθold if ψπθold < 0
. (3.17)

Here, the subscript new and old indicate the parameters of network after and before an

optimization, respectively, and ε is a small parameter that is the limitation of the update of
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new and old policy. The advantage function estimator is,

ψπθ = γT−tV (sT )− V (st) +
T∑
i=t

γi−tri (3.18)

where T is the duration of the trajectory from an episode of the training environment. Since

our method involves an actor and a critic, the actor is based on the policy optimization

method we just discussed, and the critic is a value function approximation parameterized by

ψ. This is similar to the target policy with the difference being in off-policy it approximates

the policy and the critic approximates the value function. We describe the process in the

training procedure of Section 3.6.

The same components that essentially fuel the RL framework also create problems for it

to be directly applied to a real world application. One of the reasons are the actions taken by

the RL agent may involve hazardous situations with the environment and object. Therefore,

a simulated environment is widely used in RL to avoid such situations during the training

process. The method we propose here is trained in a simulated environment. We will first

showcase a simulated environment for the RL agent and go through the details about the

training procedure. Later, we demonstrate how this can extended to a real world dataset.

3.5 Simulated Grid World for Training Loop Closure

The learning process of RL is modeled to provide a reward signal for appropriate actions

and provide a penalty or terminate the process when the actions are unwanted or incorrect.

During training, the action taken by the agent can incur damage to the agent and/or the

environment if it is performed in a real-world environment, such as collisions, grasping of

an object, etc. Also, model-free RL requires a large volume of data to train and produce

satisfactory results, as well as data to validate the trained policy. This amount of data

is harder and takes much longer to obtain from a real-world environment compared to a

simulated environment. For these reasons, a simulated environment is often easier than a

72



real-world environment to train an RL. Therefore, we designed a simulated environment for

loop closure scenarios for a RL algorithm. Most recent advancements in RL have been trained

and demonstrated using simulated environments. In the beginning, most RL algorithms were

tested in a 2D grid-based environment. Recently, the environment has included complex

tasks such as memory, 3D perception and navigation. OpenAI has a vast collection of

simulated environment such as CartPole, BipedalWalker, LunarLander, etc. to test RL

efficiency. Mnih et al. [64] at Deepmind demonstrated their RL algorithm on five Atari

2600 Game. Figure 3.4 shows a few of these simulated environments that were tested for RL

efficiency in recent papers.

We demonstrate in this dissertation that the loop closure problem is solvable using a

simulated grid world. Currently this grid is restricted to a two-dimensional representation.

The agent will be allowed to move and observe in this grid environment, so it can be trained

based on these observations. The agent referred here is taking the loop closure detection

action. To achieve this, there are a few elements that need to established: environment

structure, the movement of the agent in the grid world, and the observation of the agent.

We describe this in the following section.

3.5.1 Grid World Structure

We will denote the grid world environment as E, which is a N × M square grid. This

size should be chosen to be similar to the environment the RL-agent is trying perform loop

closure. It is currently designed to represent an indoor environment. As such, each square

in E will be empty space, occupied by the agent, occupied by feature blocks, or occupied by

walls and/or obstacles. A feature block may represent an object, a feature point or landmark

in the real world environment. In the current configuration, the grid contains multiple feature

blocks placed at the walls in the environment. Each feature block is distinguishable from each

other, similar to the associated classified objects discussed in Chapter 2. For visualization,
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(a) ATARI Pong (b) OpenAI Luner Lander

(c) Robotic Grasp (d) ATARI Berzerk

Figure 3.4: Several different simulated environments have been successfully used in recent
DRL.

every feature block is given a different color to distinguish it from others. A feature block

can occupy a single or multiple squares in E. An agent is allowed to move through the

feature blocks existing on the environment. Figure 3.5 shows a few possible configuration of

E. The wall or obstacle square prevents motion through the position of the block. It is used

to represent any wall or non interacting blocks in the environment. They are represented

with white color when visualizing E. The white blocks in Figure 3.5 for the configurations

represent walls.
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: The figure shows six different grid configuration of sizes 10 × 10 (a-d), 15 × 15
(e) and 84 × 84 (f). The features block are placed around the walls, and the white blocks
are the obstacles in the environment.

3.5.2 RL Agent for Loop Closure

The agent is a movable block in the grid E and takes actions based on the trained policy. The

movement, direction and step size of the RL-agent in the grid environment is constrained.

The agent is allowed to move only one or two blocks at a time. The movement and the

direction of the agent at any time can be one of four ways: up, down, left and right. The

direction and movement the agent is generated from a random distribution. The random

distribution generates a different combination of direction and movement for the agent at

each time, which allows the reinforcement learning agent to generate a different trajectory for
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each training period. In practice, the random numbers are sampled from a uniform, discrete

distribution. We always start with a different seed for the random number generator in our

simulation, so one episode of simulation is not similar to the other episode. Figure 3.6 shows

the observations of the agent from sequential movement and its heading indicated by an

arrow in E.

3.5.3 Observation Space for Loop Closure Grid

The RL-agent estimates all relevant information about the current state of the environment

over time necessary to fulfill the task successfully. The movement of the agent in E and

the outcome from the actions of the agent is transcribed to policy through the observation

space. The observation of E at each step is in the topological form or top down view of

E. At each step in the simulation, the agent generates an observation based on its current

“cone of vision”. The “cone of vision” is a 60◦ angle of vision (30◦ to the left and right) that

extends as an imaginary cone. The cone of vision is used here to maintain similarity with an

image sensor or human perception. The observation of the agent at any time includes the

feature and obstacle blocks in the the full extension of “cone of vision”. Figure 3.6 shows

four sequential observations from the simulations. It shows the features and obstacles in the

“cone of vision” of the agent at each step.

3.5.4 Action Space for loop closure Grid

The RL algorithm trains the policy to take appropriate actions to maximize rewards. The

actions of the RL agent determines if the RL algorithm can optimize the reward for the

policy. The action space for the RL agent can be continuous or discrete. If the action is not

discrete, it is difficult to select an action from the huge continuous action space [53]. The

time complexity of the action selection in continuous space is much higher compared to the

a discretized action space. We opted to use a discrete action space, as we do not need a large
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Figure 3.6: The figure show four observations the agent provides to the policy. The arrow
in the agent block shows its current direction of view and the observation is generated using
the ”cone of vision” from the direction and position.
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number of action set at each step, and each action itself is independent from others. Even

though most real-world actions are continuous, such as steering of a car, in our case, we are

trying to perform loop closure at the predefined locations in the simulation. The number

of these locations are discrete, so we opted to use a discrete action space. The number of

actions is equal to the number of loop closure locations in E plus a no loop closure action.

Let {i, j} indicate the current position of the RL agent in E and lt ∈ NN×M be the location

history for E at time t, such that lti,j indicates the number of times the agent has visited

position {i, j}. Then, the action space for the RL agent can be specified as

At =

 Loop closure action, a = i×N + j; a ∈ Z+; a < N ×M ; if ltij > 0

No loop closure action, a = 0 ; otherwise
. (3.19)

When the RL-agent is at location {i, j} in E then, for loop closure for the appropriate action,

a = i×N + j. Figure 3.7 shows the loop closure locations in grey, and its appropriate action

in the corresponding blocks. For example, the position at {2, 2} the loop closure action

should be, a = 2× 10 + 2 = 22. At all other location in black, the appropriate action would

be 0.

3.5.5 Reward function for Loop Closure Environment

A reward function specifies the positive or negative feedback for the current state or state-

action pair resulting from following a policy. The main purpose of any RL is to maximize the

cumulative reward received by the RL agent over the full trajectory. In general, a reward

is provided every time the agent has taken an action in the environment. If a reward is

not provided, or a zero reward is provided, then the policy will not be able to evaluate the

action taken by the agent. Without a proper reward function, RL may not be able to learn

anything or find convergence in its duration of training. So our agent takes either a no loop

closure or a loop closure action in every step of the environment, and a reward is provided

based on the current state of the environment.
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Figure 3.7: The figure shows the locations of the loop closure as grey blocks with numbers.

The reward function is the primary source of information for improving the policy, πθ.

The modeling of the reward is based on what we are trying to teach the agent and what

the agent can learn over time. The reward needs to clearly indicate to the policy what the

environment considers a positive reward and what it penalizes, so the agent can distinguish

between the two cases easily. The distribution of reward provided in the environment can

be sparse or dense. Sparse rewards are provided where the environment is usually designed

to perform only one or two tasks such as hitting a ball, picking an object, etc. Dense

rewards are designed for environment where multiple tasks are needed to solve a problem

such as folding a paper or box. Both rewards are given in the form of positive or negative

discrete number. Since sparse rewards are returned in a relatively low number of states or

observations, they can be provided as a large number, so the total reward for taking the

actions corresponding to the sparse reward will be larger in comparison to other rewards.
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This way, the policy will be able to optimize to take the actions that provides the sparse

rewards. In robotics applications, a sparser reward is more applicable than a denser reward,

as it is easier to maximize a sparser reward using a RL algorithm. For example, in the OpenAI

environment ”CartPole-v1”, a reward is provided to the agent when it can successfully keep

the pole upright and ends the episode when the pole falls. “FetchPickAndPlace-v1” provided

rewards when a robotic arm can pick a box and move it to its desired goal location, which

is randomly set at the start of training.

Since the goal of our RL agent is to perform loop closure, we designed the reward function

to give a reward whenever the agent performs a correct action and penalty for performing

an incorrect action. As discussed earlier in Section 3.3 and in (3.3), we have a fixed set

of loop closure locations in the environment. The locations of loop closure are primarily

the intersecting locations in the trajectory of the agent. Since we assume the map of the

environment is known to the agent, the locations the agent can visit in the map are also

known. The intersections of all possible trajectories of the agent in the simulated environment

can be estimated, and the pre-determined loop closure locations can include these intersecting

locations. However in our training, we have manually set the loop closure locations in the

environment. For example, in Figure 3.5a, the four corners of the middle wall were included

in the loop closure location.

We keep a history of the locations the agent has traversed over the full period of the

current episode. When the current location of the agent has already been visited, and it is

in the set of loop closure locations, then a loop closure is the correct action. When checking

for loop closure at time t, the location history from the start to previous time t− c is used,

as discussed in the loop closure problem formulation in Section 3.3. This is to prevent

immediate last positions becoming candidates for loop closure in the motion of agent. The

training episode is terminated, and a heavy penalty is given in the following cases

• If no loop closure is performed for more than four loop closure locations. This is

intended to provide heavy penalty for missing loop closure positions consecutively.
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• If loop closure is performed multiple times consecutively at no loop closure positions.

This is intended to stop performing loop closure repeatedly.

Given that the grid size of E is N ×M , then after every movement of the agent the

location history, ltij is updated,

ltij = lt−1ij + 1, if the agent at time t is at (i, j) of E.

We define a linear map function f(lij) : ltij → A, where A ∈ N and X is the set of predefined

loop closure locations, X ⊆ Y . The reward function is defined as

rt =


+100 at ∈ X &ltij > 0

+10 at = 0 & f(ltij) 6∈ X

−100 at 6= f(ltij) & f(ltij) ∈ X

.

Based on the locations of the loop closure, the reward for correct and incorrect action can

be sparse in the trajectory, meaning the loop closure actions are only encountered in a few

locations. To make sure the loop closure actions are included in the trajectory of the training,

we also perform an entropy maximization for including the loop closure actions. This will

be discussed in detail in the training procedure and experiments.

Figure 3.7 shows four loop closure position in E highlighted as grey block with numbers

indicating a correct loop closure action. When these position are visited again in the path

of the agent and it takes loop closure action, it receives positive reward.

3.6 Training Procedure

We have discussed earlier policy gradient methods to train on the loop closure environment.

We are using a modified version of the proximal policy optimization technique, as described in

section 3.4.5. The method is implemented using an actor-critic algorithm, where the policy is

the actor, and the critic is the value function that suggests the policy updates. We represent
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the policy with convolutional neural networks (CNNs) followed by a long short-term memory

(LSTM) cell. The CNNs extract features for the policy to take loop closure action, and the

LSTM module is added handle memory as the policy needs to store information about the

loop closure locations.

The actor-critic mode can be achieved in two different ways, based on network design

and the type of synchronization. We used a synchronized actor and critic mode, meaning all

the actors in the environment will finish their simulation before an update from the critic.

Both the actor (policy) and critic (value approximator) can be trained using a shared and

dual networks. In the shared network design, the output the network provides values for

both policies. On the other hand, it can follow a dual network design, where both actor and

critic have their own network. The design of a dual network is simple and much more stable

compared to the shared network.

Figure 3.8 shows the architectural overview of our network using dual network design.

The architecture is composed 3 convolutional layers and an LSTMCell. We have tested our

algorithm on different size grids, and we are reporting our results on 10 × 10, 15 × 15 and

a 84 × 84 size grid. The observations are generated with 84× 84 resolution. Since we have

variable sizes of grids, we up-sampled the observations to match the input resolution. A

larger grid size environment may require more layers in the architecture and different kernel

size. The training process uses a synchronous actor critic method. Multiple models of the

architecture shown in Figure 3.8 are employed in parallel to capture the data. A step by

step process of training with parallel actors is given by Algorithm 3.

The training was completed on 6 different simulated environments. For each different

environment, there were on at least 500 different episodes of training completed. For each

set of these episode, the agent started from a new position to allow exploration. The motion

of the robot was generated from random distributions using a different seed for each episode.

This makes sure the policy has different observations in the episodes to learn and does not

over-fit on certain set of features.
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Figure 3.8: Architecture Overview of the policy
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Algorithm 3 Training Procedure for the Loop Closure RL Policy

1: Initialize policy and value function parameters, θ and φ accordingly at random,

2: Initialize loop closure grid environment,E with predefined set of loop closure locations,

3: for actor, k = 1, 2, ...., N do

4: for t = 1 to b1 < T < b2 do

5: obtain a state from E, st

6: take an action, at ∼ πθ(a|s),

7: obtain next state, st+1 corresponding reward, rt

8: check entropy using (3.18)

9: end for

10: compute reward to-go, R̂t =
∑T

t′=t r(st′ , at′ , st′+1)

11: compute advantage estimate for the trajectory, Ât using υπφ

12: end for

13: compute gradient using (3.16) and update the policy πθ via stochastic gradient ascent

using Adam [46]

14: find value function parameters by minimizing the following error,
∑N

k=0

∑T
t=0(υφ(st) −

R̂t)
2

15: update φ and θ

In the simulated environment, we discussed that the actions for loop closure are sparsely

populated. The loop closure scenario occurs when the agent has returned to a position it

has visited earlier. However, in the simulated environment there is a large number of steps

taken before a correct loop closure action has occurred. In our case, the agent has to return

to a position after a certain period of time (this is to avoid frequent loop closures), and the

location also has to be a pre-determined loop closure location. Figure 3.9 shows how the

percentage of possible loop closure actions varies with pre-determined loop closure locations

and the size of the grid. It shows that for different grid size environment from 20 × 20 to

80× 80, and varying the pre-determined loop closure locations from 10% to 25% of the total
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Figure 3.9: The percentage of possible loop closures in the trajectory of different grid size
environment. It shows how the percentage of loop closures changes as we increase grid size
and number of loop closure locations increase.

size of the environment. The percentage of loop closures to the total steps taken for the

same trajectory remains below 10%. So it is evident from the figure that as the size of E

increases, there is less chance of observing loop closure action in the trajectory.

In scenarios where most of the actions are no loop closure, if we use a fixed-length

trajectory we run risk of missing loop closure actions from the sampled trajectory. In this

case, our policy will only learn to perform a no loop closure action correctly and may never

learn any loop closure detection. To solve this, we use an entropy optimization on the loop

closure action distribution to make sure the loop closure actions are included in the trajectory

of the episodes used for training.

We use a variable-length trajectory for each actor. If the previous entropy of actions of

a sampled trajectory is H(Tr1) and the current entropy is H(Tr2), then we optimize based
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on the size of the sample as

maximize
n

H(Tr1(n))−H(Tr2(n))

subject to b1 < n < b2

(3.20)

where, b1 and b1 are the minimum and maximum batch size for a trajectory. b2 is determined

based on the hardware the training is running. This way, we capture trajectories of the agent

with loop closure actions while maintaining the sample batch size in between a range.

3.7 Experiments and Results

We tested the algorithm with 6 different simulated environments shown in Figure 3.5. Since

the loop closure positions need to be fixed in our process, we choose several positions in

each of the environments before the training started. We will describe the results using two

evaluation processes. First, we showcase the learning or reward curve for the algorithm. We

consider the average reward per episode in the training as the score metric. This result is

demonstrated as a reward score against all the episodes involved in the training. Second,

after a training has converged for an environment we evaluate it again to obtain the accuracy

of loop closure actions in the environment.

First, we performed analysis on the entropy of the samples and how it affects the training

of a policy in DRL. Figure 3.10a and 3.10b shows a reward curve for a trained policy without

any entropy maximization of the samples. In Figure 3.10a, the reward for the agent never

turns positive, and it converges to a value that indicates that it only learn to perform no

loop closure action. We increased the batch size so entropy will be increased as more actions

are included in the trajectory. The reward curve for this is shown in Figure 3.10b, which

is evidence of the policy again failing to achieve satisfactory reward and convergence over

time. Finally we demonstrate again this same setup with entropy maximization in Figure

3.10c. The reward curve does achieve positive reward where the previous two methods failed.
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(a) Batch Size 512 (b) Batch Size 2048

(c) Entropy Dependent Batch Size

Figure 3.10: Reward curves with different sample sizes: The top left image is with a small
sample size of of 512 and the top right is with a larger sample size 2048. The bottom image
with sample size determined by the entropy maximization step.
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These reward curve results shows the effect of sample efficiency for RL. By using entropy,

we are able to find samples that can help the RL algorithm to learn faster.

We demonstrate again the rewards curve for all six environment. Figure 3.11 shows the

reward curve in the training on the six environment. Each time, reward starts negative as

the parameters are random, but over time the policy is able to learn and achieve positive

reward. It can seen from the reward curve that as more loop closure locations are added in

the environment the longer period it takes for the algorithm to train. Sequence 6 showed

a drop in the reward after reaching a convergence. Since the environment starts every new

episode from a random position, the agent may have explored new observations that it was

not trained on, resulting in incorrect actions and negative reward. It was able learn based

on those actions and quickly reach convergence again. It is evident from all the rewards that

the agent has learned to perform loop closure as required by the environment, and policy

has reached convergence.

The Table 3.1 summarizes the results on the six simulated environment from a trained

policy. The accuracy metric is based on the following formula,

Accuracy =
Number of correct loop closure action in trajectory

Number of loop closure actions in the trajectory
.

The policy is trained on each of the environments and after the policy has converged, we

run the trained policy on each of the environment again to gather the loop closure accuracy

results. In this step, we start the agent at a different point in the environment and run the

simulation until all the loop closure locations has been tested. The movement of the agent is

random in the environment, and the test environment does not terminate as it would in the

training period. This step is completed for 20 times for each of the environments to obtain

the loop closure results. On average, we are able to perform loop closure with 80% accuracy

in all the environments. The cases of missed loop closure is due to observations that do

not contain enough information to perform loop closure action. Also, the policy provides
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(a) Sequence 1 (b) Sequence 2

(c) Sequence 3 (d) Sequence 4

(e) Sequence 5 (f) Sequence 6

Figure 3.11: This figure shows the reward curves for the six environments we trained our RL
policy.
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Table 3.1: Loop closure detection statistics in the simulated environment

Sequence
Number of loop

closure
locations

Precision and
Recall of loop

closure
detection

sequence 1{10× 10} 2 77.8/63.5
sequence 2{10× 10} 4 78.2/71.2
sequence 3{10× 10} 5 82.5/63.1
sequence 4{10× 10} 8 85.6/68.7
sequence 5{15× 15} 14 76.4/64.4
sequence 6{84× 84} 20 83.1/70.6

a probability of loop closure actions that has to be more than threshold to be considered

a loop closure. This is on par with existing loop closure methods based on probabilistic

frameworks. The accuracy of most loop closure methods discussed in Section 1.3.1 lie in the

range 80% to 90%. Angeli et al [2] demonstrated correct loop closure accuracy 80% using

visual features and histogram information. FabMap [20] showed a loop closure precision of

85% to 90% with recall range from 65% to 50%.

3.7.1 Comparisons

We compare results of our loop closure detection algorithm with other existing popular algo-

rithms. Angeli et al. [2] demonstrated loop closure with a bag-of-words method and reported

loop closure results as “%TP”, i.e. the percentage of loop closures correctly detected. Table

3.2 shows the statistics on their own captured sequence at indoor and outdoor environments.

“SIFT + H” indicates SIFT features are used in combination with histograms.

Cummins et al. [20] proposed FAB-MAP and showed loop closure detection on two

datasets with precision and recall statistics. The two datasets are City Centre and New

College Dataset. Both datasets are based on outdoor environments and were captured from

a robot driving few kilometers. Figure 3.12 shows the precision and recall curve on these

datasets. They are able to achieve 80% precision with 52% recall on City Centre and 87%
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Table 3.2: Loop closure detection result statistics of proposed method by Angeli et al. [2]

Sequence %TP
Indoor SIFT + H 80

Outdoor SIFT + H 71

Figure 3.12: FAB-MAP [20] Precision-Recall curves for the City Centre and New College
datasets

precision with 68% recall on New College. Increasing the precision any higher decreases the

recall. 100% precision rate is demonstrated with a low recall rate of less than 50%.

In comparison, our proposed method on average demonstrated 80% precision with 67%

recall on our simulated environment. This shows our proposed method is on par with the

existing loop closure detection algorithms. Although our experiments are completed on

simulated environments and the comparisons mentioned here are tested on real environment,

our method can be extended to real world environments by combining our classified object
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localization process. We discuss the process of translating real world environments in our

simulated grid world in the next section.

3.8 Simulated Environment to Real World Transformation

So far in this chapter, we have demonstrated a simulated environment for loop closure

scenarios. In the previous chapter, we demonstrated a process for the localization of classified

objects in the environment. We now demonstrate how these two methods can be combined

to transform the simulated environment to real world application.

Recently, semi-autonomous driving has been demonstrated using simulated environments.

There exist several simulation software packages that mimic real-world environments using

advanced graphics. Alexey et al. [25] introduced CARLA to support the development,

training, and validation of level 3 to 4 autonomous driving. This simulation generates data

close to what a driver would have seen while driving. Zoox, a leading autonomous driving

start-up company, demonstrated their toolbox where sensor data is captured from the real

world and then these data get translated into their simulated environment. This simulated

environment is partially built beforehand, and others are generated from real-time data. In

this simulated environment, the autonomous actions are taken based on the translated data.

Figure 3.13 shows such cases where data from the real world is used to generate a simulated

environment.

We intend to generate a similar scenario. A real-world dataset is first translated to a

simulated grid environment. Then, we train our RL-agent on it to learn to perform loop

closure. Later, once we have a trained policy, we can translate the real world data to the

simulated environment and perform loop closure using the trained policy. Figure 3.14a shows

our results using the object localization process on one of the TUM dataset, and Figure 3.14b

shows the same map built using our simulated environment with 40× 40 grid size.
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Figure 3.13: This figure shows a demonstration from the Zoox autonmous driving platform.
It shows the data from a real world environment translated to a prebuilt map, and current
detected object used to update the map.

(a) Results from Chapter 2 on a TUM sequence (b) Simulated grid on the map of TUM sequence

Figure 3.14: A result of our object localization result on left image. The locations of the
localized objects are translated to the simulated grid environment on the right image. Each
object is represented with a different color block.
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3.9 Conclusion

We presented a solution to the loop closure problem in SLAM using deep reinforcement

learning. We showed the formulation of loop closure can be accommodated with certain

assumptions. A simulated environment was demonstrated to train loop closure with fea-

tures and walls. We also showed how this simulated environment can be designed similarly

to an indoor environment. We provided a detailed procedure for training the simulated

environment. An entropy issue was encountered with action distribution in the sampling

of trajectory, and we provided a solution by maximizing entropy of action by varying the

sampling of the trajectory. We demonstrated our results on several simulated environments

with reward curve and statistics about the success rate of LC. The results indicate that we

were successful in detecting loop closure locations in varied simulated environments. Our

method demonstrates a novel solution to loop closure that does not require image storage,

rather it requires a graphical model of the environment.
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CHAPTER 4

SUMMARY AND CONCLUSION

Localization and mapping of an environment is an important autonomous robotics task.

Traditional mapping processes include only sensor data in the accrued map. Additional in-

formation about the environment can be obtained through further processing, such as object

detection and classification. The general robotics mapping and localization process, SLAM

does not incorporate these information in the map. In this dissertation, we demonstrated a

process to include classified objects in the mapping and localization process. The existence

of the objects are obtained using a pre-trained CNN module. One of the major challenge in

this process is data association. We provide a solution to this using a non-parametric sta-

tistical method, the Mann Whitney U-test. This process requires the corresponding depth

data of the classified objects. We also added a depth estimation process to handle large

motion in the association process. Later, these classified and associated objects are localized

in the map using an unsupervised clustering process. Experiments were completed on public

and our own dataset to demonstrate results. We demonstrated that the classified objects

can be localized within the map with 50% IoU with the ground truth location. The met-

ric showed our strong accuracy in localizing existing objects in the map. Our results and

process showed how traditional map building process can leverage the object classification

module to fuse semantic information. These additional information can help extend a robot

to explore environment with much more detailed information and help perform other task

such as finding a class of object in a unknown environment. Currently, the location of the

classified object is added to the map. In the future, the extracted information about the

classified objects can be incorporated in the SLAM graph model as a node with constraints.

Another problem we discussed in this dissertation is loop closure. We discussed how loop

closure is generally performed using visual features and proposed a different solution to loop

closure through reinforcement learning. We demonstrated our solution using a simulated
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environment. The simulated environment is a grid-based, two-dimensional representation of

a map. It includes elements such as feature blocks and walls to maintain a similarity to an

indoor environment. The environment can be generated in various sizes with different com-

bination of features and walls. In this simulation, the RL agent received rewards for correctly

detecting loop closure and optimizing over these accumulated rewards in the environment

the agent learned to perform loop closure at different locations. We also provided a solution

to inefficient sampling of data in training. Sampling data with a fixed length can miss the

actions. We introduced entropy maximization to sample data at the desired actions intended

for training. Our tests on several different simulations have shown the agent has learned to

perform loop closure at the required locations. Our training method can achieve convergence

with different simulated environments and perform loop closure with 80% accuracy on all

the test environments. Our future goal is to extend the current work on loop closure to real

world environment. Both contributions proposed in this dissertation can be combined into

a single process to perform object localization and then use localization information to help

loop closure detection.
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[15] Civera, J., D. D. Gálvez-López, L. Riazuelo, J. D. Tardós, and J. Montiel (2011, Sept).
Towards semantic slam using a monocular camera. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pp. 1277–1284.

[16] Clemente, L. A., A. J. Davison, I. D. Reid, J. Neira, and J. D. Tardós. Mapping large
loops with a single hand-held camera.
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