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Abstract 

Humans and animals readily generalize previously learned knowledge to new situations. Determining similarity is 
critical for assigning category membership to a novel stimulus. We tested the hypothesis that category membership is 
initially encoded by the similarity of the activity pattern evoked by a novel stimulus to the patterns from known 
categories. We provide behavioral and neurophysiological evidence that activity patterns in primary auditory cortex 
contain sufficient information to explain behavioral categorization of novel speech sounds by rats. Our results 
suggest that category membership might be encoded by the similarity of the activity pattern evoked by a novel 
speech sound to the patterns evoked by known sounds. Categorization based on featureless pattern matching may 
represent a general neural mechanism for ensuring accurate generalization across sensory and cognitive systems. 

Citation: Engineer CT, Perez CA, Carraway RS, Chang KQ, Roland JL, et al. (2013) Similarity of Cortical Activity Patterns Predicts generalization
Behavior. PLoS ONE 8(10): e78607. doi:10.1371/journal.pone.0078607

Editor: Manuel S. Malmierca, University of Salamanca- Institute for Neuroscience of Castille and Leon and Medical School, Spain 

Received May 6, 2013; Accepted September 20, 2013; Published October 16, 2013 

Copyright: © 2013 Engineer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 

Funding: The project described was supported by Grant Numbers R01DC010433 and R15DC006624 from the National Institute on Deafness and other 
Communicative Disorders. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. 

Competing interests: The authors have declared that no competing interests exist. 

* E-mail: novitski@utdallas.edu 

Introduction 

When faced with a sensory stimulus that could indicate a 
predator, prey, or a mate, accurate generalization is critical for 
survival [1]. For example, vervet monkeys learn to emit 
different warning calls for each class of predator in their 
environment, and monkeys who hear these calls exhibit distinct 
behaviors that indicate they understand the category that each 
type of call represents [2]. Humans and animals possess the 
remarkable ability to quickly and accurately determine how 
similar any image, sound, or smell is to previously learned 
stimuli. 

The first step in categorizing a novel stimulus appears to be 
quantifying its similarity to known category members [3,4]. 
Many studies have documented the presence of a 
generalization gradient for stimuli varying along a single 
dimension. Pigeons trained to peck a colored light also respond 
to colors of similar wavelength [5]. Following conditioning to a 
tone, both humans and animals respond to tones of similar 
frequency and respond less as similarity decreases [6,7]. 
However, physical similarity does not always predict perceptual 
similarity even for stimuli that vary along a single dimension 
[8-10]. 

The similarity of real world stimuli is notoriously difficult to 
predict. The consonants /d/ and /t/ (as in “dad and “tad”) have 

different voice onset times, pitch contours, formant transition 
durations, formant onset frequencies, F1 cutbacks, and burst 
intensities [11]. Male and female voices have different pitches, 
levels of breathiness, formant frequencies, and formant 
amplitudes [12]. Any of these features is sufficient to 
distinguish between ambiguous sounds, but none of these 
features is necessary to identify the phoneme or gender 
[13-15]. The so-called “lack of invariance” problem in speech 
perception also occurs in face perception [16,17]. Dozens of 
physical differences, including pupil to pupil distance, chin 
shape, and nose length, can be used to distinguish between 
faces but no single feature or set of features is required. 
Modern face recognition algorithms use template matching 
because feature-based approaches failed to support robust 
recognition [18]. 

Commercial systems for speech and music recognition have 
also abandoned the use of feature-based approaches [19,20], 
but psychophysical and neurophysiological studies continue to 
focus on the representation of a small set of speech features 
[21-24]. In this study, we test the hypothesis that the similarity 
of activity patterns in sensory cortex supports effective speech 
sound categorization without the need to compute a set of 
particular acoustic features. Our study provides a direct 
demonstration that, like face recognition, featureless template 
matching accounts for speech categorization performance. 
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Materials and Methods 

Twenty-one rats were trained to categorize speech sounds 
by voicing or gender. We trained rats to press a lever in 
response to a single speech sound and refrain from lever 
pressing to a second speech sound. We then tested their ability 
to generalize to novel speech sounds. Half of the rats in our 
study were trained to categorize sounds based on speaker 
gender (female vs. male, Gender Task group), while the other 
half were trained to categorize speech sounds based on 
voicing (‘dad’ vs. ‘tad’, Voicing Task group). Behavioral 
performance on four generalization tasks was compared to 
multiunit activity recorded at 441 primary auditory cortex (A1) 
sites from eleven experimentally naïve rats and 903 A1 sites 
from twenty-one speech trained rats (female Sprague Dawley 
rats were obtained from Charles River Laboratories). Our 
datasets are freely available upon request. Behavioral training 
and A1 recording procedures are identical to our previous 
studies [25,26]. 

Ethics statement 
This study was performed in strict accordance with the 

recommendations in the Guide for the Care and Use of 
Laboratory Animals of the National Institutes of Health. The 
protocol was approved by The University of Texas at Dallas 
Institutional Animal Care and Use Committee (Protocol 
Number: 99-06). All surgery was performed under sodium 
pentobarbital anesthesia, and every effort was made to 
minimize suffering. 

Speech stimuli 
The stimulus set for these experiments was designed so that 

each sound can be categorized based on (1) the gender of the 
speaker or (2) the voicing of the initial dental consonants (/d/ 
vs. /t/). We used the voiced word ‘dad’ and the voiceless word 
‘tad’ spoken in isolation by 3 male and 3 female native English 
speakers (n = 12 sounds, Figure 1). The sound names were 
shortened in the figures; for example, ‘DM3’ refers to the sound 
‘dad’ spoken by the 3rd male speaker, ‘TF2’ refers to the sound 
‘tad’ spoken by the 2nd female speaker, and ‘D90’ refers to the 
sound ‘dad’ temporally compressed to 90% of the original 
stimulus length. As in our earlier studies using the same 
sounds, the speech sounds were shifted up by one octave 
using the STRAIGHT vocoder [27] in order to better match the 
rat hearing range [25,28-33]. The intensity of these sounds was 
adjusted so that the loudest 100 ms of the vowel was 60 dB 
SPL. Nine temporally compressed versions of ‘dad’ and ‘tad’ 
spoken by a single female speaker (female 1) were generated 
using the STRAIGHT vocoder (n = 18 sounds). These stimuli 
were compressed in increments of 10% down to 10% of the 
original stimulus length. A version of the female 1 ‘dad’ was 
also created using STRAIGHT with the pitch one octave lower 
for use during the discrimination training task prior to gender 
categorization. 

Behavioral training 
Our previous study demonstrated that rats can rapidly learn 

to discriminate English consonant pairs that differ only in their 

voicing, place, or manner of articulation [25]. In this study, we 
tested the ability of rats to categorize sets of 5, 6, 10, or 18 
novel sounds based on voicing or gender. 

The Voicing Task group (n = 6 rats) was trained for two 
weeks to press a lever in response to ‘dad’ and not to ‘tad’ 
spoken by female 1. After training, the rats were tested for their 
ability to correctly categorize eighteen temporally compressed 
versions of ‘dad’ and ‘tad’. For this go/no-go task, rats were 
rewarded for responding to any version of ‘dad’ and received a 
brief time out for false alarming to any version of ‘tad’. 
Following two weeks of testing on the temporal compression 
voicing task, the rats were tested for their ability to correctly 
generalize to ‘dad’ and ‘tad’ produced by five new talkers (2 
female and 3 male). 

The Gender Task group (n = 5 rats) was trained to lever 
press in response to ‘dad’ spoken by female 1, but not to the 
same word when the pitch was shifted down by one octave (F0 

of 225 Hz) using the STRAIGHT vocoder. After two weeks of 
pitch discrimination training, the rats were tested for their ability 
to categorize gender using the novel ‘dad’ stimuli from three 
male and two female speakers. Rats were rewarded for 
pressing in response to ‘dad’ spoken by a female, but received 
a time out for pressing in response to ‘dad’ spoken by a male. 
Following two weeks of testing on the ‘dad’ gender task, the 
rats were tested for their ability to correctly categorize gender 
using the three male and three female ‘tad’ stimuli. Rats were 
rewarded for lever pressing in response to ‘tad’ spoken by a 
female, but received a time out for lever pressing in response 
to ‘tad’ spoken by a male. 

Training took place in double-walled booths that each 
contained a speaker (Optimus Bullet Horn Tweeter, Radio 
Shack), house light, and cage (8” length x 8” width x 8” height) 
with a lever and pellet dish. The pellet dispenser was mounted 
outside of the booth to minimize sound contamination. Rats 
received a 45 mg sugar pellet reward for pressing the lever in 
response to the target sounds, and received a time out where 
the house light was extinguished for a period of approximately 
6 seconds for pressing the lever in response to the non-target 
sounds. Rats were food deprived to provide task motivation. 
Additional food was provided as needed to keep rats between 
80% and 90% of their full feed weights. 

Rats were first trained to press the lever to receive a sugar 
pellet reward. Each time the rat was near the lever, the rat 
heard the target sound and received a 45 mg sugar pellet. 
Pellets were then given only if the rat was touching the lever, 
and eventually the rat began to press the lever independently. 
After each lever press, the rat heard the target sound and 
received a pellet reward. Once they reached the criteria of 
independently pressing the lever 100 times per session for two 
sessions, they advanced to the detection phase of training. 
During this phase, rats from all groups learned to press the 
lever after hearing the ‘dad’ speech stimulus spoken by female 
1. Rats started with an 8 second lever press window (hit 
window) after each sound presentation, and the hit window was 
decreased in 0.5 second increments every few sessions as 
performance increased, down to a hit window of 3 seconds. 
When rats reached the criteria of a d’ ≥ 1.5 for 10 sessions 
(average of 26 ± 2 sessions), they advanced to the 
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Figure 1. Spectrograms of each speech sound grouped by gender and voicing. Rows differ in voicing (top row is ‘dad’, 
bottom row is ‘tad’), while columns differ in gender (left three columns are female, right three columns are male). Frequency is 
represented on the y axis (0–35 kHz) and time on the x axis (-50 to 500 ms). Speech sounds were shifted one octave higher to 
accommodate the rat hearing range. 
doi: 10.1371/journal.pone.0078607.g001 

discrimination task. d’ is a measure based on signal detection 
theory of the discriminability of two sets of samples. From this 
phase on, rats performed each task for 20 sessions over 2 
weeks (2 one-hour training sessions per day). Six rats in the 
Voicing Task group trained on a ‘dad’ vs. ‘tad’ discrimination 
task for two weeks, followed by a ‘dad’ vs. ‘tad’ temporal 
compression categorization task for two weeks, followed by a 
‘dad’ vs. ‘tad’ multiple speaker categorization task for two 
weeks. Five rats in the Gender Task group trained on a ‘dad’ 
pitch discrimination task for two weeks, followed by a ‘dad’ 
gender categorization task for two weeks, followed by a ‘dad’ 
and ‘tad’ gender categorization task for two weeks. The final 
categorization task in each group used the exact same stimuli, 
‘dad’ and ‘tad’ spoken by multiple male and female speakers. 
The Voicing Task group was trained to categorize these stimuli 
based on voicing, while the Gender Task group was trained to 
categorize these stimuli based on gender. 

Anesthetized recordings 
We recorded multi-unit activity (n = 441) in the right primary 

auditory cortex of eleven experimentally naïve female Sprague-
Dawley rats in response to each of the 15 ‘dad’ and 15 ‘tad’ 
stimuli tested behaviorally. Multi-unit recordings were also 
collected in the right primary auditory cortex of five gender 
trained rats (n = 280 sites) and four voicing trained rats (n = 
168 sites). Rats were initially anesthetized with pentobarbital 
(50 mg kg-1), and received dilute pentobarbital (8 mg ml-1) as 
needed. Four Parylene-coated tungsten microelectrodes (1–2 
MΩ, FHC, Bowdoin, ME, United States) were used to record 
action potentials ~600 μm below the cortical surface. 
Recording sites were selected to evenly sample A1 without 
damaging the cortical surface vasculature. 

Each speech sound was presented 20 times (randomly 
interleaved with a 2 second interstimulus interval). To 
determine the characteristic frequency of each site, 25 ms 
tones were presented at 81 frequencies (1 to 32 kHz) and 16 
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intensities (0 to 75 dB). Stimulus generation, data acquisition, 
and spike sorting were performed with Tucker-Davis (Alachua, 
FL, United States) hardware (RP2.1 and RX5) and software 
(Brainware). Multi-units include action potentials from more 
than one nearby neuron. The University of Texas at Dallas 
Institutional Animal Care and Use Committee approved all 
protocols and recording procedures. 

Awake recordings 
We recorded multi-unit A1 responses (n = 65) in seventeen 

experimentally naive awake rats using chronically implanted 
microwire arrays, which were described in detail in previous 
publications [25,34]. Fourteen-channel microwire electrodes 
were implanted in the right primary auditory cortex using a 
custom-built mechanical insertion device to rapidly insert 
electrodes in layers 4/5 (depth ~600 µm) [34]. Recordings were 
made in response to the 12 ‘dad’ and ‘tad’ stimuli spoken by 3 
male and 3 female speakers, the 18 temporally compressed 
versions of ‘dad’ and ‘tad’, and the sound ‘dad’ spoken by 
female 1 with a low pitch (the non-target sound used for 
discrimination training prior to the gender categorization task). 
Awake rats were passively exposed to these speech sounds, 
and were not performing the categorization tasks. 

Data analysis 
Neurograms were constructed by arranging the responses 

from each of the A1 recording sites on the y axis from low 
characteristic frequency to high characteristic frequency sites. 
The neurogram response for each sound at each site is the 
average of 20 repeats of that sound played at that site. Neural 
similarity was computed using Euclidean distance. The 
Euclidean distance between any two activity patterns is the 
square root of the sum of the squared differences between the 
firing rates for each recording site. The onset response to each 
sound was defined as the 50 ms interval beginning when 
average neural activity across all sites exceeded the 
spontaneous firing rate by three standard deviations. 
Neurograms were temporally binned into a single 50 ms bin. 
The Euclidean distance was calculated between the activity 
pattern for a novel sound and both the activity pattern for the 
target sounds that the rats had previously trained on, and the 
activity pattern for the non-target sounds that the rats had 
previously trained on. For the initial gender ‘dad’ categorization 
task, the previously trained target and non-target template 
patterns were the response to the high pitch ‘dad’ and low pitch 
‘dad’, respectively. For the initial voicing compression task, the 
template patterns were the response to ‘dad’ and ‘tad’ spoken 
by female 1. For the second gender task, gender ‘tad’, the 
template target pattern was the average of the response to the 
target sounds heard on the previous task (3 female exemplars 
of ‘dad’), while the template non-target pattern was the average 
of the response to the non-target sounds heard on the previous 
task (3 male exemplars of ‘dad’). For the second voicing task, 
the template target pattern was the average of the response to 
the target sounds heard on the previous task (10 compressed 
versions of ‘dad’), while the template non-target pattern was 
the average of the response to the non-target sounds heard on 
the previous task (10 compressed versions of ‘tad’). For each 

novel sound, the distance to the target pattern was subtracted 
from the distance to the non-target pattern, so that responses 
with positive values are more similar to the target pattern, while 
responses with negative values are more similar to the non-
target pattern. Pearson's correlation coefficient was used to 
examine the relationship between neural similarity and 
generalization performance on the first day of each of the 
categorization tasks. Our measure of neural similarity is not 
dependent on the Euclidean distance measure. Neural 
similarity quantified using City Block distance and Minkowski 
distance also significantly predicts generalization behavior on 
all four tasks. To test the importance of spectral precision, 
neural recordings from 441 A1 sites were binned into subsets 
containing 1, 2, 3, 4, 5, 7, 9, 10, 15, 20, 25, 55, 110, 220, or 
441 sites (441, 220, 147, 110, 88, 63, 49, 44, 29, 22, 17, 8, 4, 
2, or 1 bins, respectively). Each bin contained sites tuned to a 
specific range of frequencies. For example, when the data 
were divided into four bins, the frequency ranges were 1-6, 
6-10, 10-15, and 15-31 kHz. 

Results 

Rats categorize novel speech sounds by speaker 
gender and voicing 

Rats accurately generalized to novel sounds after training to 
discriminate a single sound from each of two distinct 
categories. The Gender Task group of rats (n = 5) was first 
trained to discriminate the word ‘dad’ with a high pitch from the 
word ‘dad’ with a low pitch. Following pitch training, the rats 
were tested on their ability to categorize the gender of novel 
‘dad’ sounds spoken by different male and female speakers. 
Rats were able to perform the task well above chance on the 
first day of testing (d’ = 1.32 ± 0.3 mean ± se, 83 ± 4% lever 
press to female vs. 37 ± 10% lever press to male, p = 0.008, 
Figure 2a). Following two weeks of training on the ‘dad’ 
categorization task, the rats were then tested for their ability to 
generalize to novel ‘tad’ stimuli spoken by the same three male 
and three female speakers. The Gender Task rats were able to 
categorize the novel sounds by gender on the first day of 
testing (80 ± 8% lever press to female sounds vs. 22 ± 3% 
lever press to male sounds, d’ = 1.76 ± 0.2, p = 0.001, Figure 
2b). These results demonstrate that pitch trained rats were able 
to accurately categorize speech sounds by gender while 
ignoring differences in speaker and voicing. 

Another group of rats (Voicing Task, n = 6) was trained to 
categorize the same sounds but was required to categorize by 
voicing while ignoring gender (Figure 1). The Voicing Task 
group initially learned to discriminate the word ‘dad’ from the 
word ‘tad’, spoken by a single female speaker. These rats were 
then tested for their ability to categorize these sounds when 
temporally compressed to create a set of 9 novel ‘dad’ sounds 
and 9 novel ‘tad’ sounds (with durations 10 - 90% of the 
original length). The Voicing Task rats were able to generalize 
to these new stimuli, and accurately categorized 16 of the 18 
novel temporally compressed sounds on the first day of training 
(86 ± 2% lever press to ‘dad’ vs. 34 ± 7% lever press to ‘tad’, d’ 
= 1.53 ± 0.2, p = 0.00002, Figure 2c). This same group of rats 
was next tested for their ability to generalize to novel ‘dad’ and 
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Figure 2. Generalization performance for the gender and voicing categorization tasks. (a) Gender Task rats successfully 
generalized from the pitch discrimination task, and accurately pressed the lever more often in response to novel female ‘dad’ 
sounds than novel male ‘dad’ sounds on the first day of testing. Red symbols represent target sounds, blue symbols represent non-
target sounds, and black symbols represent target or non-target sounds from the previous task. Circle symbols indicate ‘dad’ stimuli, 
while triangle symbols indicate ‘tad’ stimuli. Error bars indicate s.e.m. across rats. The solid line indicates average percent lever 
press to silent catch trials, with s.e.m. indicated by the dotted lines. (b) Gender Task rats successfully generalized from the gender 
‘dad’ categorization task, and accurately pressed the lever more often in response to novel female ‘tad’ sounds than novel male ‘tad’ 
sounds on the first day of testing. The sounds presented in subplot d are identical. (c) Voicing Task rats successfully generalized 
from the voicing discrimination task, and accurately pressed the lever more often in response to novel temporally compressed ‘dad’ 
than novel temporally compressed ‘tad’. (d) Voicing Task rats successfully generalized from the voicing temporal compression 
categorization task, and accurately pressed the lever more often in response to ‘dad’ spoken by multiple novel speakers than ‘tad’ 
spoken by multiple novel speakers. 
doi: 10.1371/journal.pone.0078607.g002 

‘tad’ stimuli spoken by three male and two female speakers. to generalize to novel stimuli while ignoring significant variation 
This set of sounds was identical to the sounds presented to the in stimulus duration, speaker, or gender. 
Gender Task rats for their second generalization task. Voicing We analyzed the first trial behavioral response to each new 
Task rats accurately categorized the novel sounds by voicing sound for each of the four tasks to confirm that categorization 
on the first day of testing (83 ± 6% lever press to ‘dad’ vs. 38 ± behavior recorded on the first day was indeed due to 
6% lever press to ‘tad’, d’ = 1.38 ± 0.1, p = 0.00008, Figure 2d). generalization rather than rapid learning. For the first 
These results demonstrate that voicing trained rats were able presentation of each sound, rats pressed the lever consistently 
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 more often in response to sounds in the target category 
compared to sounds in the non-target category (average of 
72±4% target lever press vs. 44±6% non-target lever press, p = 
0.0005). These results confirm that rats are able to accurately 
categorize novel sounds based on experience with as few as 
one member of each category. 

Simple acoustic features cannot fully explain gender 
and voicing categorization by rats 

Historically, speech scientists concluded that each speech 
category is defined by a set of acoustic features such as pitch, 
formant frequencies, or voice onset time [35,36]. We measured 
multiple acoustic features for each of the trained sounds (Table 
1), and our results confirm that these features are correlated 
with generalization performance in rats. The pitch (fundamental 
frequency, F0), first formant peak and second formant peak of 
each sound are positively correlated with categorization as a 
female sound by rats (F0: R2 = 0.73, p = 0.0004; F1: R2 = 0.41, 
p = 0.03; F2: R2 = 0.35, p = 0.04, for both gender tasks). These 
cues are also correlated with gender judgments by humans 
[36,37]. 

Multiple acoustic features are correlated with generalization 
performance in the Voicing Task rats. Voice onset time (VOT) 
and burst duration (the duration of the stop consonant release 
burst) are both correlated with categorization as an unvoiced 
consonant by rats (VOT R2 = 0.6, p = 0.0001 voicing 
compression task; VOT R2 = 0.75, p = 0.0002 voicing multiple 
speaker task; Burst duration R2 = 0.46, p = 0.001 voicing 
compression task; Burst duration R2 = 0.67, p = 0.001 voicing 
multiple speaker task; Table 1). These acoustic cues also 
predict voicing categorization in humans [35,36]. Previous 
literature, however, demonstrates that simple acoustic 
parameters, such VOT and pitch, cannot explain speech 
perception, especially in difficult listening conditions. Studies in 
humans and rats have clearly demonstrated that behavioral 
performance is preserved when background noise or 
degradation by noise vocoder are used to eliminate VOT, 
formant, and pitch cues [15,30,31,38,39]. 

Our behavioral results suggest that the rats do not use a 
single acoustic feature to accurately categorize sounds by 
voicing or gender. The behavioral results were inconsistent 
with the prediction that rats use pitch (fundamental frequency, 
F0) to discriminate female from male speakers. Rats reliably 
categorized ‘tad’ spoken by one of the male speakers (TM1) as 
a sound spoken by a female even though the pitch was 117 
Hz. If the rats categorized the sound based on pitch, they 
would have been expected to respond as if it was one of the 
male sounds (F0: 114, 116, 111, 118, & 108 Hz) and not as if it 
was one of the female sounds (F0: 225, 241, 205, 236, 260, & 
196 Hz). 

The behavioral results were inconsistent with the prediction 
that rats use VOT to discriminate ‘dad’ from ‘tad’. Previous 
studies have shown that humans and rodents categorize 
sounds as voiced when they have a VOT of less than 35 ms 
[9]. After our rats were trained to lever press to ‘dad’ (VOT = 19 
ms) and not to ‘tad’ (VOT = 79 ms), the rats were tested on 
versions of these sounds that were temporally compressed 
such that their VOTs were shortened to 10 to 90% of their initial 

Neural Similarity Predicts Generalization Behavior 

Table 1. Values for the acoustic cues F0, F1, F2, VOT, and 
burst duration for each sound. 

Sound F0 (Hz) F1 (Hz) F2 (Hz) VOT (msec) Burst duration (msec) 
DF1 225 846 2286 19 11.9 

DF2 241 908 1921 32 16.9 

DF3 205 995 1970 23 14.3 

DM1 114 751 1748 9 6.5 

DM2 116 753 1816 12 7.1 

DM3 111 798 1760 7 3.9 

TF1 236 957 1984 79 35.7 

TF2 260 950 1918 128 66.2 

TF3 196 917 1820 106 28.6 

TM1 117 757 1709 49 26.6 

TM2 118 798 1774 43 10.4 

TM3 108 850 1808 76 10.4 

D90 225 846 2286 17.1 10.7 

D80 225 846 2286 15.2 10.7 

D70 225 846 2286 13.3 9.9 

D60 225 846 2286 11.4 8.9 

D50 225 846 2286 9.5 7.1 

D40 225 846 2286 7.6 6.3 

D30 225 846 2286 5.7 6.6 

D20 225 846 2286 3.8 4.2 

D10 225 846 2286 1.9 3.6 

T90 236 957 1984 71.1 33.1 

T80 236 957 1984 63.2 25.9 

T70 236 957 1984 55.3 24.9 

T60 236 957 1984 47.4 18.8 

T50 236 957 1984 39.5 14.1 

T40 236 957 1984 31.6 14.3 

T30 236 957 1984 23.7 11 

T20 236 957 1984 15.8 8.2 

T10 236 957 1984 7.9 5.3 

The acoustic cues pitch (F0), formant frequencies F1 and F2, VOT, and burst 
duration were quantified for each sound using Praat [96] and WaveSurfer [97] 
software. Please note that the values of F0, F1, and F2 that the rats heard were 
twice the values listed in the table, while VOT and burst duration were unaffected. 
doi: 10.1371/journal.pone.0078607.t001 

durations (i.e. 2 to 71 ms, see Table 1). Rats accurately 
rejected compressed forms of ‘tad’ even when the VOT was 
much lower than 35 ms (T20 – T40 in Table 1). Importantly, the 
rats continued to accurately reject compressed ‘tad’ sounds 
even when the VOT was below the value for the trained target 
‘dad’ sound (19 ms). These behavioral responses occurred on 
the first presentation of these novel sounds, which proves that 
the categorical boundary was not shifted by experience. If the 
rats categorized the sounds based on a single acoustic feature, 
it would be expected that they would respond (i.e. lever press) 
to any stimulus with a VOT less than 20 ms. However, the rats 
failed to respond to the ‘tad’ with a VOT of 16 ms (because it 
was compressed to 20% of the original duration). The fact that 
the rats continued to reliably press to the 19 ms ‘dad’ 
demonstrates that they do not categorize the sounds based on 
a simple measure of acoustic similarity, such as VOT. 
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The single acoustic features analyzed here (for example, F0 
or VOT) cannot fully explain the response errors; however, 
combinations of acoustic features may have the potential of 
accounting for the behavioral results [40]. Based on our 
previous findings that the similarity of speech evoked 
spatiotemporal activity patterns was correlated with 
discrimination ability [25,26,30,31], we predicted that neural 
similarity would be able to explain generalization behavior. 
Neural similarity provides a single, biologically plausible 
method to explain speech sound categorization without the 
need to propose multiple specialized features for each speech 
contrast. 

Neural activity pattern similarity explains gender and 
voicing categorization 

We predicted that rats would compare the neural pattern of 
activity evoked by each novel sound with stored templates of 
the target and non-target sounds. Rats made generalization 
errors more often for some sounds than others, and these 
errors were well explained by comparing the activity pattern for 
those sounds with the template patterns. For each task, neural 
similarity was calculated between the activity pattern for a 
novel sound and the average activity patterns for the target and 
non-target sounds from the previous task (Figure 3, Figure S1, 
and Methods). For the first gender generalization task, rats had 
previously been trained to discriminate the word ‘dad’ with a 
high pitch from the word ‘dad’ with a low pitch. Since the rats 
only had experience with the two ‘dad’ sounds, the stored 
target template for the first gender generalization task was the 
activity pattern in response to the word ‘dad’ with a high pitch, 
and the stored non-target template was the activity pattern in 
response to the word ‘dad’ with a low pitch. For the second 
gender generalization task, the rats had experience with ‘dad’ 
spoken by 3 female speakers and 3 male speakers. The stored 
target template for the second gender generalization task was 
the average activity pattern in response to ‘dad’ spoken by the 
3 female speakers, while the stored non-target template was 
the average activity pattern in response to ‘dad’ spoken by the 
3 male speakers. 

The pattern of generalization errors on the gender tasks was 
well explained by the similarity of the activity patterns evoked 
by each of the novel sounds to the patterns evoked by each of 
the trained sounds. As we predicted, rats were most likely to 
make generalization errors in response to the novel sounds 
which evoked neural activity patterns that were intermediate 
between the patterns evoked by the target and non-target 
sounds. We used a Euclidean distance metric to quantify the 
similarity of primary auditory cortex responses. Response 
patterns consisted of the onset response from 441 multiunit A1 
sites from 11 anesthetized experimentally naive rats. As 
predicted, neural similarity between the novel sound and the 
trained sounds was strongly correlated with generalization 
performance for both gender generalization tasks (R2 = 0.92, p
= 0.009 novel ‘dad’ sounds; R2 = 0.94, p = 0.001 novel ‘tad’ 
sounds, Figures 3 & 4a,b). These findings support our 
hypothesis that neural similarity provides a biologically 
plausible metric of perceptual similarity. 

Generalization errors were well explained by comparing the 
neural response pattern evoked by each of the novel sounds to 
the patterns evoked by the trained sounds. For example, during 
the second gender task, rats frequently incorrectly pressed the 
lever for the ‘tad’ spoken by male 1 (TM1, Figure 4b). Based 
solely on the acoustic feature pitch, the rats should have 
responded as though the sound was male instead of female 
(see Acoustic features section above). This error is well 
explained using neural similarity, where the sound more closely 
resembles the female template compared to the male template 
(Figure 4b). By examining the neurogram for this sound (Figure 
3), it is clear that the sound evokes a strong high frequency 
response, which makes the response more closely resemble 
the female sounds (which also evoke a strong high frequency 
response) compared to the other male sounds (which evoke a 
weak high frequency response). 

The pattern of generalization errors on the voicing tasks was 
well explained by the similarity of the activity patterns evoked 
by each of the novel sounds to the patterns evoked by each of 
the trained sounds. As we predicted, neural similarity between 
the novel sound and the trained sounds was correlated with 
generalization performance for both voicing generalization 
tasks (R2 = 0.82, p < 0.0001 voicing compression task; R2 = 
0.76, p = 0.0009 voicing multiple speaker task, Figures 3 & 
4c,d). As seen for the gender tasks, generalization errors on 
the voicing tasks were well explained by the neural responses. 
Rats frequently incorrectly responded to the most compressed 
versions of ‘tad’ as though they were ‘dad’ (Figure 4c). The 
generalization errors to the most compressed versions of ‘tad’ 
can be explained by neural responses but are not well 
explained by the acoustic feature voice onset time. Results 
from the Voicing Task group confirm our hypothesis that novel 
speech sounds are assigned to the speech category whose 
members generate an average activity pattern that most 
closely resembles the activity pattern evoked by the novel 
sound. This finding is consistent with earlier predictions that 
have never been tested. In the natural world, humans and 
animals generally have experience with more than one 
exemplar per category. The similarity-based prototype model 
proposes that a category prototype is the most typical member 
of the category [41]. An extension of this model proposes that 
instead of category prototypes being the best examples from 
their categories, prototypes are an abstraction composed of the 
average category member [42]. As we predicted, rats with 
previous categorization experience appear to store templates 
of the target and non-target sounds based on the average 
neural responses evoked by the sounds they have 
experienced, and compare the pattern of activity evoked by 
each novel sound in the new task to these stored average 
templates. 

Generalization performance is not well correlated with 
spectrogram similarity 

For each task, spectrogram similarity was calculated 
between the power spectrum for a novel sound and the 
average power spectrums for the target and non-target sounds 
from the previous task. The Euclidean distances between the 
spectrograms of the speech onsets (45 ms) were only 

PLOS ONE | www.plosone.org 7 October 2013 | Volume 8 | Issue 10 | e78607 



  
  

   
 

    

 

Neural Similarity Predicts Generalization Behavior 

Figure 3. Neurograms depicting the onset response of rat A1 neurons to speech sounds. Multi-unit data was collected from 
441 recording sites in eleven anesthetized experimentally naïve adult rats. Average post-stimulus time histograms (PSTH) derived 
from twenty repeats were ordered by the characteristic frequency (kHz) of each recording site (y axis). Time is represented on the x
axis (-5 to 50 ms). The firing rate of each site is represented in grayscale, where black indicates 450 spikes/s. For comparison, the 
mean population PSTH evoked by each sound is plotted above the corresponding neurogram. To facilitate comparison between the 
naïve and trained responses, the mean PSTH y axis is set to 450 Hz for all neurogram figures. For naïve rats, ‘tad’ female #3 
evokes the maximum peak firing rate (351 Hz) across the twelve sounds. As in Figure 1, rows differ in voicing (top row is ‘dad’, 
bottom row is ‘tad’), while columns differ in gender (left three columns are female, right three columns are male). 
doi: 10.1371/journal.pone.0078607.g003 

moderately correlated with behavior (R2 = 0.35, p = 0.01 
voicing compression task; R2 = 0.43, p = 0.04 voicing multiple 
speaker task; R2 = 0.47, p = 0.20 gender ‘dad’ task; R2 = 0.13, 
p = 0.48 gender ‘tad’ task; Figure 5). The first 45 ms of the 
spectrograms were used to match the 50 ms neural analysis 
window, excluding 5 ms to account for minimum neural delay. 
A similar pattern of correlation was observed across a wide 
range of analysis windows. Analysis of the onset power 
spectrum alone is not able to accurately predict generalization 
behavior for the four tasks because spectral analysis is only 

influenced by spectral energy and does not take into account 
the temporal characteristics of the acoustic energy or the 
neural response properties. Thus, it is perhaps not surprising 
that neural analysis more accurately predicts behavior. 

Responses from trained rats are correlated with 
generalization performance 

Previous studies have documented primary sensory cortex 
plasticity following categorization training [43]. We tested 
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Figure 4. Neural correlates of generalization performance for the gender and voicing categorization tasks. (a) The 
normalized Euclidean distance (neural similarity) between the response pattern for each novel sound and the response pattern for 
each of the two template sounds is correlated with generalization performance on the gender ‘dad’ task. Positive values are more 
similar to the target template, while negative values are more similar to the non-target template. Target sounds are red, and non-
target sounds are blue. The sound name abbreviation is printed next to each data point, see Methods. Solid lines indicate the best 
linear fit. (b) The neural similarity between each novel sound and the template sounds is correlated with generalization performance 
on the gender ‘tad’ task. (c) The neural similarity between the response pattern for each novel sound and the response pattern for 
each of the two template sounds is correlated with generalization performance on the voicing temporal compression categorization 
task. (d) The neural similarity between each novel sound and the template sounds is correlated with generalization performance on 
the voicing multiple speaker task. 
doi: 10.1371/journal.pone.0078607.g004 

whether voicing and gender categorization training led to long first day d’ = 1.55 ± 0.09). Several studies have suggested that 
lasting changes in A1 responses and if so, whether these enhanced neural responses are responsible for improved 
changes would be expected to improve categorization. After categorization [43-45]. The response strength to the trained 
two weeks of training, performance on each task was sounds (i.e. ‘dad’ and ‘tad’ spoken by female and male 
significantly better than first day performance (two-way speakers) in both trained groups did not increase compared to 
ANOVA, F1,39 = 10.31, p = 0.0026). Across all tasks, rats naïve controls (2.5 ± 0.2 spikes in trained rats vs. 2.5 ± 0.2 
categorized the speech sounds 34% more accurately on the spikes in naïve rats, p = 0.97). The response strength to 
last day compared to the first day (last day d’ = 2.08 ± 0.27 vs. untrained speech sounds (‘pad’, ‘kad’, ‘zad’, ‘wad’, ‘had’) was 
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Figure 5. Spectrogram correlates of generalization performance for the gender and voicing categorization tasks. (a) The 
Euclidean distance (spectral similarity) between the spectrogram for each novel sound and the spectrogram for each of the two 
template sounds is weakly correlated with generalization performance on the gender ‘dad’ task. Positive values are more similar to 
the target template, while negative values are more similar to the non-target template. The sound name abbreviation is printed next 
to each data point, see Methods. Solid lines indicate the best linear fit. (b) The spectral similarity between each novel sound and the 
template sounds is weakly correlated with generalization performance on the gender ‘tad’ task. (c) The spectral similarity between 
the spectrogram for each novel sound and the spectrogram for each of the two template sounds is weakly correlated with 
generalization performance on the voicing temporal compression categorization task. (d) The spectral similarity between each novel 
sound and the template sounds is weakly correlated with generalization performance on the voicing multiple speaker task. 
doi: 10.1371/journal.pone.0078607.g005 

also not increased in trained rats compared to naïve control 
rats (1.9 ± 0.3 spikes in trained rats vs. 1.7 ± 0.2 spikes in 
naïve rats, p = 0.53), but the response strength to tones was 
decreased in trained rats (2.1 ± 0.1 spikes in trained rats vs. 3 
± 0.3 spikes in naïve rats, p = 0.005). The onset latency to the 
trained sounds in both trained groups did not change compared 
to naïve controls (11.1 ± 0.7 ms in trained rats vs. 11.5 ± 0.6 
ms in naïve rats, p = 0.64). 

While these results show that categorization training does 
not enhance auditory cortex response strength, it does not rule 

out that plasticity plays a role in generalization performance. To 
determine if auditory cortex plasticity enhanced the distinction 
between sounds from different categories, we compared the 
correlation between neural similarity and generalization 
performance using neural responses collected from voicing and 
gender trained rats (Figure S2). If auditory cortex plasticity is 
required in order to accurately predict performance, we would 
have expected a stronger correlation between neural similarity 
and generalization performance using neural responses 
collected from trained compared to naïve rats. The neural 
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similarity between the novel sound and template sound 
responses collected in trained rats predicted generalization 
performance on both gender categorization tasks (R2 = 0.91, p
= 0.01, gender ‘dad’ task; R2 = 0.96, p = 0.0006, gender ‘tad’ 
task; Figure S3a,b) and both voicing categorization tasks (R2 = 
0.71, p < 0.0001, voicing compression task; R2 = 0.58, p = 
0.01, voicing multiple speaker task; Figure S3c,d). Neural 
similarity was highly correlated with generalization performance 
on each of the four tasks whether the neural responses were 
recorded in naïve or trained rats (naïve average R2 = 0.86, p < 
0.01; trained average R2 = 0.79, p < 0.02). This result is 
consistent with earlier reports that speech sounds evoke 
distinct neural patterns before training begins [25,26,30,31,46]. 
The average Euclidean distance between stimuli from different 
categories was not increased in trained rats compared to naïve 
rats (p > 0.05). Our observation suggests that changes in A1 
are not responsible for improved performance (see Text S1). 
Previous studies have detailed the complexity of training-
induced plasticity, which is dependent on both the auditory field 
and the time course of training. Birds trained to discriminate 
songs have shown either an increase or a decrease in the 
response strength to familiar songs compared to unfamiliar 
songs depending on the auditory field [44,47]. Earlier studies 
have also reported improved categorization in the absence of 
plasticity in primary sensory cortex [48-52]. Training induced 
map plasticity in A1 can later return to a normal topography 
without negatively impacting behavioral performance [49,53]. 
Improved performance may result from changes in higher 
cortical fields, such as the superior temporal gyrus or prefrontal 
cortex, that exhibit categorical responses to speech sounds 
[54-57]. 

Analysis of categorization by different neural 
subpopulations 

The patterns of neural activity evoked by each of the sounds 
suggest that gender differences are encoded in the onset 
response of high frequency neurons, while voicing differences 
are encoded in the onset response of low frequency neurons 
(Figures 3, 6 and S4). For the gender tasks, sounds spoken by 
a female evoked 207% more spikes than sounds spoken by a 
male in high frequency neurons between 16 and 32 kHz (p < 
0.0001, Figure 6a,b), but there was no significant difference in 
the firing rate in low frequency neurons between 1 and 2 kHz (p
= 0.66). In contrast to gender firing differences, ‘dad’ sounds 
evoked 302% more spikes than ‘tad’ sounds in low frequency 
neurons between 1 and 2 kHz (p < 0.0001, Figure 6c,d), but 
there was a much smaller difference in the firing rate in high 
frequency neurons between 16 and 32 kHz (16% fewer spikes, 
p = 0.05). This finding contrasts with earlier reports suggesting 
that voicing is encoded in the temporal interval between two 
activity peaks [22], and pitch is encoded in low frequency 
neurons [21]. Our results suggest that the spatial activity 
pattern can be used to accurately categorize these speech 
sounds. 

The temporal activity pattern also contains information that 
can be used to accurately categorize the sounds by voicing or 
gender. For the gender tasks, sounds spoken by a female 
evoked 45% more spikes than sounds spoken by a male in 

neurons responding to a tone faster than 10 ms (< 0.0001, 
Figure 7a,b and Figure S5), but there was no significant 
difference in the firing rate in neurons responding slower than 
13 ms. In contrast to gender firing differences, ‘dad’ sounds 
evoked 28% more spikes than ‘tad’ sounds in neurons 
responding to a tone slower than 13 ms (p = 0.001, Figure 7c,d 
and Figure S5), but there was no significant difference in the 
firing rate in neurons responding faster than 10 ms. Our results 
suggest that both the spatial and the temporal activity pattern 
can be used to accurately categorize these speech sounds. 

There are many potential methods to compute the similarity 
between neural response patterns that accurately predict 
generalization performance. Neural similarity was highly 
correlated with generalization performance for all four tasks 
whether Euclidean, City Block, or Minkowski distance metrics 
were used (R2 > 0.73, p < 0.03). The correlation remains high if 
the window used to quantify the neural response ends 30 to 
120 ms after sound onset (R2 > 0.51, p < 0.03, Figure S6a and 
Figure S7). Neural similarity is only correlated with 
generalization performance when the onset response is 
included in the analysis window (p < 0.05, Figure S6b). This 
finding is consistent with classic studies showing speech 
sounds can be accurately categorized using only the initial few 
tens of milliseconds [58,59]. Although our initial analyses 
considered the neural responses of each A1 recording site 
separately, to determine the amount of spectral precision that 
is necessary, we divided sites into bins that were tuned to 
specific characteristic frequency ranges. The correlation 
between generalization performance and neural similarity 
remains high even if the sites are binned by characteristic 
frequency into as few as two bins (R2 > 0.61, p < 0.01) [30]. 
The consistency of our results across a wide range of 
parameters supports our hypothesis that the similarity to 
previously learned patterns is used to categorize novel stimuli. 
These results are consistent with recent imaging results that 
even neural metrics with poor spatial and temporal precision 
can be well correlated with categorization performance [60,61]. 

Neural similarity accurately predicts generalization 
performance using both awake and anesthetized neural 
responses. The correlation between neural similarity and 
generalization performance using neural responses from 
experimentally naïve awake rats was strong for the gender 
‘dad’ task (R2 = 0.89, p = 0.02), the voicing temporal 
compression task (R2 = 0.61, p = 0.0001), the gender ‘tad’ task 
(R2 = 0.78, p = 0.02), and the voicing multiple speaker task (R2 

= 0.44, p = 0.04). This result strengthens our finding in 
experimentally naïve anesthetized rats that auditory cortex 
plasticity is not required to predict generalization performance. 
Using both anesthetized and awake responses, we examined 
how large of a neural population must be sampled to accurately 
estimate neural similarity and generalization performance. 
Given the great diversity of response properties in A1 [62], we 
expected that a large sample size might be necessary. We 
randomly selected groups of 1, 2, 5, 10, 20, 50, 100, 200, 300, 
or 441 anesthetized A1 sites and randomly selected groups of 
1, 2, 5, 10, 20, 30, 35, 50, 60, or 65 awake A1 sites to 
determine the minimum population size required in order to 
predict generalization. We found that the correlation between 
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Figure 6. Peak firing rate differences in high and low frequency neurons for gender and voicing distinctions. Peak firing 
rate for target and non-target sounds differs in high frequency neurons for gender distinctions, and differs in low frequency neurons 
for voicing distinctions. (a) For the gender task using ‘dad’ stimuli, target female ‘dad’ sounds evoke a larger response in high 
frequency neurons compared to non-target male ‘dad’ sounds. Each of the 441 A1 recording sites from experimentally naïve rats 
were binned by characteristic frequency into one of five bins each spanning one octave. Error bars indicate s.e.m. across each of 
the sounds. (b) For the gender task using ‘tad’ stimuli, target female ‘tad’ sounds evoke a larger response in high frequency neurons 
compared to non-target male ‘tad’ sounds. (c) For the voicing temporal compression task, target ‘dad’ sounds evoke a larger 
response in low frequency neurons compared to non-target ‘tad’ sounds. (d) For the voicing multiple speaker task, target ‘dad’ 
sounds evoke a larger response in low frequency neurons compared to non-target ‘tad’ sounds. 
doi: 10.1371/journal.pone.0078607.g006 

neural similarity and generalization performance becomes 
significant when more than 20 randomly selected multi-unit 
clusters were used to estimate each neural activity pattern and 
asymptotes at approximately 100 (p < 0.05, Figure 8). 

Neural similarity was not better correlated with generalization 
behavior when A1 neurons were selected to maximize the 
difference in the evoked responses. Selecting subpopulations 
also did not reduce the number of A1 sites needed to generate 
a significant correlation. For example, when A1 sites with low 
frequency tuning (< 8 kHz, Figure 6) and long latency (>13 ms, 
Figure 7) were used to compute neural similarity and compared 
with performance on the voicing task, approximately the same 

number of sites were required to generate a similar correlation 
coefficient compared to neural similarity based on a randomly 
selected set of A1 sites. The consequence was the same when 
subpopulations were used that generated the maximum 
response difference for the gender task (i.e. high frequencies 
and short latencies). These results confirm earlier observations 
that population responses most accurately reflect behavioral 
ability [25,63]. There is now strong evidence that the degree of 
abstraction increases with distance from the receptor surface 
(e.g. cochlea) and that categorization is the result of neural 
processing distributed across many brain regions [64]. 
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Figure 7. Peak firing rate differences in fast and slow latency neurons for gender and voicing distinctions. Peak firing rate 
for target and non-target sounds differs in fast neurons for gender distinctions, and differs in slow neurons for voicing distinctions. 
(a) For the gender task using ‘dad’ stimuli, target female ‘dad’ sounds evoke a larger response in fast neurons that respond to tones 
in less than 10 ms compared to non-target male ‘dad’ sounds. Each of the 441 A1 recording sites from experimentally naïve rats 
were binned by onset latency into one of five bins each spanning one millisecond. Error bars indicate s.e.m. across each of the 
sounds. (b) For the gender task using ‘tad’ stimuli, target female ‘tad’ sounds evoke a larger response in fast neurons compared to 
non-target male ‘tad’ sounds. (c) For the voicing temporal compression task, target ‘dad’ sounds evoke a larger response in slow 
neurons that respond to tone slower than 13 ms compared to non-target ‘tad’ sounds. (d) For the voicing multiple speaker task, 
target ‘dad’ sounds evoke a larger response in slow neurons compared to non-target ‘tad’ sounds. 
doi: 10.1371/journal.pone.0078607.g007 

Discussion 

We tested the hypothesis that the similarity between neural 
activity patterns predicts speech sound generalization without 
the need to compute multiple acoustic features. Speech 
sounds are widely believed to be categorized based on the 
integration of dozens of acoustic features. At least sixteen 
features have been proposed to contribute to differences in 
voicing, including voice onset time, pitch contour, burst 
intensity, and F1 cutback [11]. Separate sets of acoustic 
features can be used to distinguish between speech sounds 
differing in gender, place of articulation, vowel, or frication 
[12,37,65-69]. While any of these features is sufficient to 
categorize a speech sound, no particular acoustic difference is 
required to accurately categorize a sound [13,14]. Our results 
from four voicing or gender speech categorization tasks 
suggest that template matching in the brain can account for the 

classic “lack of invariance” of speech perception without 
requiring storage and analysis of the relationship between a 
large number of discrete features. Our study failed to find 
evidence of neurons tuned exclusively to one acoustic feature 
of speech sound (i.e. VOT or pitch). This result is consistent 
with a recent study demonstrating that responses in auditory 
cortex neurons can be influenced by multiple acoustic features 
of speech sounds [70]. 

The behavioral and physiological results from our study 
confirm and extend findings from earlier studies [40]. Our 
observation that rats trained to discriminate sounds based on 
voicing or gender can accurately categorize novel sounds even 
on the first presentation confirms previous studies showing that 
animals can categorize sounds based on voicing or gender 
differences [9,51,71]. The neural responses collected in this 
study are similar to earlier reports of speech sound responses 
in humans and animals [22,51,72,73]. 
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Figure 8. Average percent of variance explained across the four generalization tasks using awake and anesthetized 
responses. Percent of variance explained (R2) increases as the population size increases. Neural similarity using the onset activity 
pattern from individual anesthetized (black line) or awake (gray line) multi-unit sites was best correlated with behavior when more 
than 20 sites were used. Error bars indicate s.e.m. across the four tasks. 
doi: 10.1371/journal.pone.0078607.g008 

Our demonstration that speech perception can be explained 
without explicit extraction of specialized acoustic features 
closely parallels recent advances in face processing which no 
longer relies on the computation of features such as pupil to 
pupil distance, nose length, or chin shape. Instead it appears 
that biological systems and more effective artificial systems 
represent the visual input as activity among a large diverse set 
of broadly tuned filters and categorize novel inputs based on 
their similarity to stored templates. Importantly, there is no 
need to extract any particular features. Recent software 
applications use a similar featureless template-based method 
to allow for identification of millions of songs based on poor 
quality versions sung, whistled, hummed, or played by 
amateurs [19,20,74]. 

Our results are consistent with other studies of category 
formation in other modalities [57,75-80]. Previous studies have 

shown that there is a gradual transformation of sensory 
information to a category decision through the ascending 
somatosensory, visual, and auditory pathways [75,76,81]. The 
earlier stages of sensory processing are driven by physical 
properties. Responses in primary sensory cortex are more 
abstract and are often shaped by multiple feature combinations 
[82-85]. Higher cortical fields are shaped by behavioral 
requirements and neurons become more sensitive to the 
meaning of stimuli and less sensitive to changes in physical 
characteristics that are irrelevant to category membership. 
Neurons in prefrontal cortex exhibit strong category selectivity 
and likely contribute to the behavioral response (i.e. motor 
output) [8,76,86,87]. 

Speech responses in inferior colliculus are strongly 
influenced by physical features, while responses in A1 are 
more abstract [28,60,79]. Responses in higher auditory fields 
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follow different processing streams that extract different 
features from speech [32,53,81,88-90]. For example, anterior 
auditory field is responsible for categorization based on 
temporal properties and posterior auditory field is responsible 
for categorization based on spatial location [88]. Macaques 
trained to discriminate between human speech sounds have 
neurons in the superior temporal gyrus and prefrontal cortex 
that respond categorically to the trained sounds [56,57]. 
Prefrontal neurons (but not the superior temporal gyrus 
neurons) are modulated by the monkeys' behavioral 
responses, which confirms that speech categories result from 
the gradual transformation of acoustic information across 
multiple brain regions. 

We do not believe that categorization takes place in A1. Our 
results are consistent with earlier theoretical studies showing 
that categorical responses can be created from the activity 
patterns observed in sensory cortex [54,91-93]. For example, a 
biologically plausible model of A1 neurons can categorize 
speech sounds and correctly generalize to novel stimuli [54]. 
These theoretical studies combined with our neurophysiology 
study suggest a potential biological mechanism for 
generalization, which has been described as “the most 
fundamental problem confronting learning theory” [94]. 

Based on our observation that neural similarity can 
accurately predict categorization on four auditory generalization 
tasks, we propose that speech sound generalization results 
from assigning novel stimuli to the category of stimuli that 
evokes the most similar activity pattern. Animal studies provide 
the opportunity to carefully control the sensory experience of 
the subjects and to precisely manipulate neural function. 
Artificial stimuli produced by the Klatt speech synthesizer could 
be used to explore the co-variation between the acoustic 
features which were not varied systematically in this study [12]. 
It would be interesting to determine how well neural similarity 
predicts generalization behavior 1) in the face of greater 
variability among stimuli from the same category, 2) for 
categories of stimuli involving multiple modalities, and 3) for 
more abstract cognitive categories. It would also be interesting 
to relate behavioral reaction time and neural similarity by using 
nose poke withdrawal to more accurately measure reaction 
time. Patterned optogenetic stimulation could be used to 
directly test whether the activity patterns observed in our study 
are sufficient for speech sound categorization [95]. 
Simultaneous multichannel recordings in awake behaving 
animals would make it possible to relate neural correlation 
patterns to behavior. Recording, lesion and microstimulation 
experiments in A1 and higher regions are needed to further 
evaluate our hypothesis that neural response similarity is 
responsible for the remarkable ability of humans and animals to 
rapidly and accurately generalize from small training sets. 

Supporting Information 

Figure S1. Neural similarity between two novel sounds 
and the trained target and trained non-target. Multi-unit data 
was collected from 441 recording sites (x axis) in eleven 
anesthetized rats and is ordered by the characteristic 
frequency (kHz) of each recording site. The number of spikes 

fired in response to each sound during the first 50 ms of the 
response is represented on the y axis. (a) The response to the 
known target sound (red, ‘dad’ spoken by female #1) and (b) 
known non-target sound (blue, ‘tad’ spoken by female #1). (c) 
The response to a novel ‘dad’ sound and a novel ‘tad’ sound 
(d). Both sounds were spoken by female #1 and temporally 
compressed by 50%. (e-h) The response pattern difference 
between the novel ‘dad’ sound and the target (e) and non-
target sounds (f), and the novel ‘tad’ sound and the target (g) 
and non-target sounds (h). The difference between the novel 
‘dad’ and the target (e, 309) was smaller than the difference 
between the novel ‘dad’ and the non-target (f, 536), indicating 
that the novel ‘dad’ and the target are more similar. The 
difference between the novel ‘tad’ and the non-target (h, 267) 
was smaller than the difference between the novel ‘tad’ and the 
target (g, 535), indicating that the novel ‘tad’ and the non-target 
are more similar. 
(PDF) 

Figure S2. Neurograms depicting the onset response of 
gender trained and voicing trained rat A1 neurons. (a) 
Multi-unit data was collected from 280 recording sites in five 
anesthetized gender trained rats. Average post-stimulus time 
histograms (PSTH) derived from twenty repeats were ordered 
by the characteristic frequency (kHz) of each recording site (y
axis). Time is represented on the x axis (-5 to 50 ms). The firing 
rate of each site is represented in grayscale, where black 
indicates 450 spikes/s. For comparison, the mean population 
PSTH evoked by each sound is plotted above the 
corresponding neurogram. To facilitate comparison between 
the naïve and trained responses, the mean PSTH y axis is set 
to 450 Hz for all neurogram figures. For gender trained rats, 
‘tad’ female #3 evokes the maximum peak firing rate (330 Hz) 
across the twelve sounds. As in Figure 1, rows differ in voicing 
(top row is ‘dad’, bottom row is ‘tad’), while columns differ in 
gender (left three columns are female, right three columns are 
male). (b) Neurograms depicting the onset response of voicing 
trained rat A1 neurons to each of the twelve sounds shown in 
Figure 1. Multi-unit data was collected from 168 recording sites 
in four anesthetized voicing trained rats. For voicing trained 
rats, ‘tad’ female #2 evokes the maximum peak firing rate (414 
Hz) across the twelve sounds. 
(PDF) 

Figure S3. Neural correlates of generalization 
performance using neural responses from gender and 
voicing trained rats. (a) The normalized Euclidean distance 
(neural similarity) between the response pattern for each novel 
sound and the response pattern for each of the two template 
sounds is correlated with generalization performance on the 
gender ‘dad’ task. Positive values are more similar to the target 
template, while negative values are more similar to the non-
target template. Red symbols represent target sounds and blue 
symbols represent non-target sounds. Circle symbols indicate 
‘dad’ stimuli, while triangle symbols indicate ‘tad’ stimuli. The 
sound name abbreviation is printed next to each data point, 
see Methods. Solid lines indicate the best linear fit. (b) The 
neural similarity between each novel sound and the template 

PLOS ONE | www.plosone.org 15 October 2013 | Volume 8 | Issue 10 | e78607 



  
 

  
 

  

  

 

  

  

Neural Similarity Predicts Generalization Behavior 

sounds is correlated with generalization performance on the 
gender ‘tad’ task. (c) The neural similarity between each novel 
sound and the template sounds is correlated with 
generalization performance on the voicing temporal 
compression task. (d) The neural similarity between each novel 
sound and the template sounds is correlated with 
generalization performance on the voicing multiple speaker 
task. 
(PDF) 

Figure S4. Peak firing rate differences in high and low 
frequency neurons for gender and voicing distinctions. (a) 
For the gender task using ‘dad’ stimuli, target female ‘dad’ 
sounds (red line) evoke a larger response in high frequency 
neurons compared to non-target male ‘dad’ sounds (blue line). 
Each of the 280 A1 recording sites from gender trained rats 
were binned by characteristic frequency into one of five bins 
each spanning one octave. Error bars indicate s.e.m. across 
each of the sounds. (b) For the gender task using ‘tad’ stimuli, 
target female ‘tad’ sounds evoke a larger response in high 
frequency neurons compared to non-target male ‘tad’ sounds. 
(c) For the voicing temporal compression task, target ‘dad’ 
sounds evoke a larger response in low frequency neurons 
compared to non-target ‘tad’ sounds. Each of the 168 A1 
recording sites from voicing trained rats were binned by 
characteristic frequency into one of five bins each spanning 
one octave. (d) For the voicing multiple speaker task, target 
‘dad’ sounds evoke a larger response in low frequency neurons 
compared to non-target ‘tad’ sounds. 
(PDF) 

Figure S5. The percentage of sites responding at different 
onset latencies. Each of the 441 A1 recording sites from 
experimentally naïve rats were binned by onset latency in 
response to tones. Sites were binned into one of five bins: sites 
responding faster than 10 ms, between 10 - 11 ms, 11- 12 ms, 
12- 13 ms, or slower than 13 ms. 
(PDF) 
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