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ABSTRACT 

 Supervising Professor:  András Faragó 

 

 

Traffic engineering (TE) helps to use network resources more efficiently. Network operators use 

TE to obtain different objectives such as load balancing, congestion avoidance and average delay 

reduction. We approach the issue using optimization theory and a network design game model. 

Also routing methods for optimal distribution of traffic in data networks that can also provide 

quality of service (QoS) for users is one of the challenges in recent years’ research on next 

generation networks. The major QoS requirement in most cases is an upper bound on end-to-end 

path delay. In this dissertation, we address the problem of parallelizing some network algorithms 

on a practical distributed memory system. Also we use approximation approach for analyzing NP 

hard problems in networks. 
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CHAPTER 1  

INTRODUCTION 

In recent years, the use of the Internet as communication infrastructure for different 

telecommunication applications has been growing significantly. Because bandwidth is one of the 

most important requirements of these applications, network hardware should support bandwidth 

management techniques. In chapter 2 we will discuss linear optimization methods which can help 

Internet protocols work better. We use a duality theory to find a weight set that improve the routing 

protocols efficiencies. As a matter of fact, routing is the most important aspect of Internet Traffic 

Engineering. So, we focus on routing protocols and introduce a practical method that optimizes 

Link Metrics. Previous optimization methods suffer from practical issues but our method could be 

implemented with Routing Protocols that are based on shortest paths. Our simulation results show 

significant improvement on network efficiency. Also, we propose a network topology design 

approach that targets the reduction of structural congestion in a directed acyclic network. What we 

mean by structural congestion is that a node has much higher in-degree than out-degree in a 

directed network. We approach the issue using a network design game model.  In this model, we 

consider multiple sources and one destination. Each node is willing to connect to other nodes but 

it should pay the price of whole paths it uses to send traffic to the destination. The model yields a 

weight for each link. We show that if these weights are used to compute shortest paths, then a 

network topology is obtained with a low level of structural congestion. Routing methods for 

optimal distribution of traffic in data networks will be addressed in chapter 3. Recently several 

new services have become popular in the internet qualities of which depend on the end-to-end 

delay experienced by the packets in the network [1]. For an acceptable QoS it is required that the 
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end-to-end delay is kept under a threshold level. Providing QoS is not an easy task in datagram 

networks. In new generation networks, virtual circuit switched networks such as MPLS is used to 

provide a better framework to implement QoS. A new method will be introduced for traffic 

distribution in virtual circuit switched networks which can be implemented in real networks. In 

this method, the input traffic of each session is distributed among the possible paths, in a manner 

that the total system cost is minimized at the same time as the average cost for each path is kept 

bounded below a required threshold level. This method is scalable as its operation is per session. 

It is analytically proven in this article that this algorithm converges under the assumptions that are 

feasible in real networks. The simulation results approve the effectiveness of the algorithm. The 

results obtained from the simulation are in line with the results obtained from analytical resolution 

of the convex optimization problem. In chapter 4, in order to analyzing large scale networks, we 

will discuss distributed data storage and processing system called Spark. We will address the 

problem of parallelizing three famous network algorithms on a practical distributed memory 

system. The approach is based on the Spark framework and the GraphX API which is run on top 

of the Hadoop distributed file system. We develop three case studies in this framework: (1) 

computing the PageRank in a social network, (2) finding connected components in the graph 

representing the network, and (3) triangle counting. A key issue for the large-scale implementation 

is how to partition the whole task into parallel and independent tasks that run on different 

machines, such that we can reduce the communication and storage overhead in the distributed 

cluster. In the last chapter we mathematically analyze estimation methods for NP hard network 

problems. The Disjoint Connecting Paths problem, and its capacitated generalization, called 

Unsplittable Flow problem, play an important role in practical applications, such as 
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communication network design and routing. These problems are hard in general, but various 

polynomial-time approximations are known. Also, we consider the problem of estimating the 

measure of subsets in very large networks. 

The dissertation is organized in four main chapters. In the second chapter we study linear network 

optimization and proposed a practical method to leverage strong duality property of a linear 

programming. In the third chapter we study convex optimization problems and their application in 

network traffic engineering. We designed an algorithm which is guaranteed end to end delay for 

each session as well as minimizing average delay in the whole network. As networks topology 

become large, traditional methods for analyzing network structure become less efficient. To avoid 

that lack of efficiency we study a big data processing system using their graph API to processes 

large scale networks. We study and implement such a method in chapter four. In the last chapter 

we used approximation methods to solve two important network NP-hard problems. The first one 

is unsplittable flow problem and the second one is estimating the measure of subsets in very large 

networks. 
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CHAPTER 2  

OPTIMIZATION METHODS FOR NETWORK TRAFFIC ENGINEERING  

Traffic engineering helps to use network resources more efficiently. Network operators use TE to 

obtain different objectives such as load balancing, congestion avoidance and average delay 

reduction. Plane IP routing protocols such as OSPF, a popular intradomain routing protocol, are 

believed to be insufficient for TE. OSPF is based on the shortest path algorithm in which link 

weights are usually static value without considering network load. They can be set using the 

inverse proportional bandwidth capacity or certain value. However, Optimization theory helps 

network researchers and operators to analyze the network behavior more precisely. It is not a 

practical approach can be implemented in traditional protocol. This chapter address the feasibility 

requirements, a weight set can be extracted from optimization problem use as a link metric in 

OSPF. We show the routes that selected in OSPF with these metrics distribute the traffic closer to 

optimal situation than routes from OSPF with default metric. 

In recent years, the use of the Internet as communication infrastructure for different 

telecommunication applications has been growing significantly. Because bandwidth is one of the 

most important requirements of these applications, network hardware should support bandwidth 

management techniques. Traffic engineering (TE) is a bandwidth management technique that 

considers different objectives such as maximum throughput, minimum congestion and load 

balancing in the network. TE puts the traffic where network bandwidth is available. TE with the 

objective of load balancing can reduce maximum link utilization (MLU) and increase bandwidth 
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efficiency (BWE). Because considerable delay may occur at congested links, reduction of end to 

end delay can be achieved as a side result of load balancing.  

   Destination-based routing is not flexible for TE, and so it is highly susceptible to congestion. 

Because of this reason the concept of TE was developed mostly in MPLS-based networks [2] [3]. 

MPLS-based TE can optimize traffic distribution using dedicated label switch paths (LSP). The 

capability of explicit routing and arbitrary traffic splitting are the most important features of MPLS 

TE. But the MPLS has not been widely deploy Rapid increase in network traffic especially that of 

new applications which require QoS guarantees, has encouraged the network providers to apply 

IP-based TE with different objectives. The main idea of IP-based TE is to find a set of weights that 

optimizes a specific objective function. If the objective function is the total link cost, the constraint 

of equal cost multipath (ECMP) causes the problem to be NP hard [1]. Different near-optimal 

heuristic algorithms based on local search were proposed to solve this problem [1].  

   One approach for   analyzing the TE problem is formulating it with optimization theory 

problems. If we consider load-balancing as an objective of the optimization problem and consider 

the amount of traffic load on all links that belong to a specific session as the problem outcome, the 

solution of such problem is the path of each session that results in   minimum congestion. 

   Measurements in [4] indicate that bottlenecks of the Internet backbone are not only located 

between ASs but also, they exist in intradomain links. The popular intradomain routing protocol 

is OSPF. In this chapter, we present a formulation of the optimization problem that object to 

provide maximum load balancing. This objective function is useful in a situation that network 

entrance is random since increase the probability of new traffic admission.  In addition, we try to 

extract the OSPF metric from this problem and therefore reach the load balancing with OSPF 
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routing. These attempts result in a new definition such as equivalent weight set and equivalent 

constraints. In this chapter, we analyze the optimization problem from feasibility perspective and 

show that a set of link weights that can be embedded as a link metric in OSPF protocol results in 

optimal or near optimal load balancing. Our simulations show that this method improves 

bandwidth efficiency and reduces network congestion and also leads to a substantial reduction in 

the end to end delay. 

 

2.1 Problem Statement 

Different TE objectives lead to different objective functions of optimization problem. We consider 

load balancing as an objective of traffic engineering so the objective function of the optimization 

problem is to minimize MLU (maximum link utilization). Consider the linear optimization 

problem that is called first primal problem (PRIMAL_I) with the following notation. A connected 

graph G (N, A) is given. cij ∶ (i , j) ∈ A is a set of edge capacities   and (sk, dk)  is a set of source-

destination pairs for each session k ∈ K. Dk is the total amount of session k traffic. The amount of 

traffic in link (i, j) ∈ A that belongs to session k is Xij
k. So, the problem is: 

min MLU (1) 

∑ Xi,j
k

j:(i,j)∈A

− ∑ Xj,i
k

j:(j,i)∈A

= {
Di     i = source

            −Di      i = destination
o. w

 
(2) 

∑ Xi,j
k

k∈K

≤ Ci,jMLU 
(3) 

Xi,j≥0 (4) 

 

 

 

 

      (2-1) 
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Constraints (2-1-2) are flow conservation constraints that are derived from network topology. 

Constraint (2-1-3) ensure that link flows do not violate link capacity and (2-1-4) says that link 

flows are nonnegative. The PRIMAL_I solution specifies theXij
k, and so we have the optimal path 

with arbitrary splitting for all sessions that minimize MLU. Our objective is to find a practical 

method suited for IP networks that forces the traffic to go through a set of optimal paths. To achieve 

this goal, we should find a set of new link metrics such that all paths which are specified by 

PRIMAL_I problem can also be obtained by the shortest path algorithm in regard to the new 

metrics. It means that if 0k

ijX , then link (i, j) should be selected by session k according to the 

shortest path algorithm. Here we assume that the shortest path algorithm is OSPF that supports 

Equal-Cost Multi-Path (ECMP).  

The load balancing methods introduced in [3] is based on primal optimization problem. In this 

chapter, we consider the dual optimization problem (DUAL_II) which is obtained with respect to 

Lagrange Multipliers. In other word, we aim to distribute traffic by determining the links weight. 

And It will be shown that the Lagrange Multipliers comparable with constraint (2-1-3) can be 

interpreted as OSPF link metrics that satisfy the load balancing objective. 

Link metric in OSPF protocol must be an integer between 1 and 65535 but we will show in section 

IV that the Lagrange Multipliers that are obtains from the solution of DUAL_II problem and 

comparable with constraint (2-1-3), do not satisfy this range in general. So, the following definition 

gives us the choice of an alternative weight set. 

Definition 1: Two weights set  L

iiwW
1




 and  L

iiwW
1




 are equivalent with respect to a given 

graph ),( ANG with L links, if and only if the shortest paths between any arbitrary nodes in G  are 

the same considering any one of these two weight sets. 
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2.2 The Dual Problem 

Defining the Lagrange multiplayer  N

iip
1  comparable with constraint (2-1-2) and 

{wij}(i,j)∈A comparable with constraint (3), the Lagrange polynomial is: 

 

 

 

 

 

  






Aji

ij

Kk

k

ijij

Kk Ni Aijj

k

ji

Ajij

k

ijki
X

CXw

XXDpMLUWPMLUXL
k
ij

),(

).(:),(:
0

)(

)(),,,(

 

 

For more details can be referred to chapter 5 of [5]. To achieve the dual problem the following 

equation should be satisfied for each feasible X and MLU. 

MLU ≥ L(X, MLU, P, W)  

 

To satisfy (6) we must have: 0ijw . Now the function ),( PWg is defined as bellow: 

 

),,,(min),(
,

WPMLUXLPWg
MLUX

  

So, we have: 

)1(

)(min),(

),(

),(
,



  



 





Aji

ijij

Kk Aji

ijij

k

ij

k

i

k

i
MLUX

CwMLU

wppXDpPWg

 

Because ijw  and k

ijX  are positive values, we have: 
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














 



 

Aji

ijijijji

Kk Ni

ijijijji

k

i

k

i

wCorwpp

wCandwppDp

PWg

),(

1

1

),(  

The dual function is defined to maximize ),( PWg when all ijw  are positive values. Equation (2-

2) shows the DUAL_I problem that is the dual function of PRIMAL_I. 

max ∑ ptk
k Dk

k∈K

 (10) 

pi
k − pj

k ≤ wij (11) 

∑ Cijwij = 1

(i,j)∈A

 (12) 

psk
k = 0 (13) 

wij ≥ 0 (14) 

 

 

 

 

      (2-2) 

As the primal and dual problems are linear, strong duality holds and according to complementary 

slackness in KKT theorem if k

ijX̂  is optimal solution of PRIMAL_I and  k

ijij pw ˆ,ˆ
  

is the optimal 

solution of DUAL_I we have: 

   

0)ˆˆˆ.(ˆ  ij

k

j

k

i

k

ij wppX  (2-3) 

Equation (2-3) indicates that if session k  passes link ),( ji then ij

k

i

k

j wpp  . According to 

theorem 1 in [1] if  
Ajiijw

),(
ˆ is used as a link metric in a shortest path algorithm, all non-empty 

links ( 0k

ijX ) will be included among the selected paths by the shortest path algorithm procedure.  
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2.3 Practical Requirements 

   {wij}(i,j)∈A (weighs calculated from the DUAL_I) have to be equal to or greater than zero. But 

as we mentioned before OSPF link metrics cannot be zero. We show that there exists a weight set 

equivalent to {wij}(i,j)∈A  that can be obtained using the new optimization problem.  

Lemma 1: consider ),( ANG  with weight set {wij}(i,j)∈A and some scalars  N

ii 1
 corresponding to 

each link and node respectively. If we change the link weight to ijijij ww   , then the 

weight set  
Ajiijw

),(
and  

Ajiijw
),(

are equivalent weight sets with respect to ),( ANG . 

To achieve non-zero weight set we changed the weights of the links according to algorithm 1.  

Algorithm 1: 

Step 1: For each session Kk   assign the scalar set  N

i

k

i 1
 as follows:  

 If there exists at least one directed path to node i from source node of session k ( ks

), then k

i is equal to the length of the longest hop-count non-loopy path from ks to 

i. 

 Else k

i is equal to zero. 

Step 2: Assign the 
k

i
k
max as the final scalar i  

Step 3: If the 0 ij  then ijijij ww  
 
else 1 ijij ww . 

 

So according to lemma1 and algorithm 1, there exists an equivalent weight set to {wij}(i,j)∈A that 

all of them are greater or equal to one. Thus, we can assume 
ij

ijij HwC . . 
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Theorem 1: consider two optimization problems called DUAL_I and DUAL_II. 

 

DUAL_I: 

max ∑ ptk
k Dk

k∈K

 

pi
k − pj

k ≤ wij 

∑ Cijwij = 1

(i,j)∈A

 

psk
k = 0 

wij ≥ 0 

 

DUAL_II: 

max ∑ ptk
′kDk

k∈K

 

p′i
k − pj

′k ≤ w′ij 

∑ Cijw′ij = H

(i,j)∈A

 

psk
′k = 0 

w′ij ≥ 1 

 

If {ŵij}(i,j)∈Ais an optimal solution of DUAL_I and {w′̂ij}(i,j)∈A is an optimal solution of DUAL_II, 

the sets {ŵij}(i,j)∈A and {w′̂ij}(i,j)∈A are equivalent weight sets with respect to ),( ANG . 
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Proof: Consider the optimization problem PRIMAL_II. 

PRIMAL_II:  

max ∑ H. ptk
k Dk

k∈K

 

pi
k − pj

k ≤ wij 

∑ Cijwij = 1

(i,j)∈A

 

psk
k = 0 

wij ≥ 0 

 

It is clear that the ijX s which minimizes the objective function of the problem PRIMALL_II are 

the same as the ones which cause the problem PRIMALL_I to be optimized. 

The dual of PRIMAL_II is the DUAL_TEMP. 

 

DUAL_TEMP: 

max ∑ ptk
′kDk

k∈K

 

p′i
k − pj

′k ≤ w′ij 

∑ Cijw′ij = H

(i,j)∈A

 

psk
′k = 0 

w′ij ≥ 0 
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From complementary slackness theorem 

 

0)ˆˆˆ.(ˆ 
ij

k

j

k

i

k

ij wppX  

 

Since the optimal solutions of the PRIMAL_I and PRIMAL_II are the same, thus the weight sets 

{ŵij}(i,j)∈A and {w′̂ij}(i,j)∈Aare equivalent weight sets. The weight set {w′ij}(i,j)∈Ais the feasible set 

of the problem DUAL_TEMP and hold (15). Therefore, it is the optimal solution of this problem. 

So, we in this way, we were able to obtain optimal weights that do not include any link with weight 

0 by limiting the constraint  

wij ≥ 0 to w′ij ≥ 1 . This converts the problem DUAL_TEMP to DUAL_II. Figure 2-1 shows the 

flow chart of our method. 

 

 

 

 

 

 

 

 

 

Figure 2-1 Maximum Load Balancing Flow Chart 
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With ECMP routing a flow arriving at a node is split evenly over the links on the shortest paths 

from this node to the destination. It should be mentioned that arbitrary routing is not possible once 

ECMP in OSPF is used. So, in OSPF environment we can never obtain the optimal routing but we 

can get close to it as much as possible. 

Objective function that is used in [6] is  
 


Kk Aji

k

ijXrMLU
),(

min . The second term in this objective 

function cause to minimizes 
Aji

k

ijX
),(

 in addition to MLU . In this case, the weight set resulted 

from the dual function is  rwij   (where {wij}(i,j)∈A are Lagrange multipliers that correspond to 

the non-equal constraint). The routing algorithm that we use in this chapter is OSPF. This protocol 

splits the traffic equally among the available shortest paths, so we prefer traffic splitting as much 

as possible even if it passes through longer paths. As the constant r  in the second term prevents 

the flow to go through long paths we assume that 0r . 

 

2.4 Simulation Results 

In this section, we simulate the OSPF protocol with its default link metrics and with the metrics 

that are calculated using the optimization problem. 

Scenario I:  In first scenario the simulation platform is shown in figure 2-2.  

All links in this network are DS3 with 44.7 Mbps rate. We suppose FIFO as a queuing policy. 

The session is a VOIP with GSM quality and the average bit rate is 40 Mbps. 
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Figure 2-2 Simulation Network Topology 

Node 1 is the source node and node 2 is the destination. 

Table 2-1 shows the solution of primal problem (Xij) which indicate the paths that minimize 

maximum utilization. Solution of DUAL_I problem is shown in Table 2-2 and Table 2-3 show the 

solution of DUAL_II problem. 

 

Table 2-1 Optimum flows 

 

 

 

 

 

 

 

 

 

X12 20 

X13 20 

X23 0 

X24 20 

X25 0 

X35 20 

X54 20 

4 

2 

1 

3 

5 
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Table 2-2 The Solution of DUAL_I 

 

 

 

 

 

 

 

 

 

Table 2-3 The Solution of DUAL_II 

 

 

 

 

 

 

 

 

 

w12 0.0056 

w13 0.0017 

w23 0 

w24 0.0056 

w25 0 

w35 0.0077 

w54 0.0017 

W12 2.0177 

W13 1.3567 

W23 1.0000 

W24 1.9823 

W25 1.0000 

W35 1.2843 

W54 1.3591 
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Table 2-2 shows that the optimum paths are 1->2->4 and     1->3->5. These paths can obtain in a 

shortest path algorithm regarding to the weights that show in table 2-2. Table 2-2 and Table 2-3 

are the equivalent weights with respect to the graph that shows in Figure 2-2. So, we use the 

suboptimal weigh set in table 2-3 instead of default OSPF link metrics. Figure 2-3 show that in 

recent method packet drop decrease significantly. 

In following scenarios the simulation platform is shown in Figure 2-4. We compare MLU, BWE 

(Bandwidth Efficiency), Number of Over Utilized Links, IP Traffic Dropped and IP Traffic 

Received for all scenarios. 

All links in our network are DS1 with 1.5 Mbps rate. We suppose FIFO as a queuing policy. All 

interfaces have a limited buffer size of 100 packets. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3 IP Traffic drop in default protocol and new method 
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Figure 2-4 Simulation Network Topology 

 

 

Scenario 2: In this scenario R1 is the traffic source and R13 is the traffic destination. Table 2-4 

and table 2-4 show the Suboptimal Link Weights that obtained by DUAL_II. 

Table 2-4 Solution of DUAL_II 

W1_2 56.84 W3_6 1.000 

W2_1 55.56 W6_3 1.000 

W1_3 1.000 W3_7 1.000 

W3_1 1.000 W7_3 1.000 

W1_4 1.000 W4_9 1.000 

W4_1 1.000 W9_4 1.000 

W2_5 1.000 W4_8 1.000 

W5_2 1.000 W8_4 1.000 
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W2_11 1.000 W5_12 1.000 

W11_2 1.000 W12_5 1.000 

W2_3 1.000 W6_11 1.000 

W3_2 1.000 W11_6 1.000 

W3_4 2.000 W6_10 1.000 

W4_3 1.000 W10_6 1.000 

W6_7 55.84 W10_13 1.000 

W7_6  1.000 W13_10 1.000 

W7_10 1.000 W10_14 1.000 

W10_7 1.000 W14_10 1.000 

W7_9 1.283 W11_12 1.000 

W9_7 1.000 W12_11 1.000 

W8_9 1.000 W11_13 1.000 

W9_8 1.000 W13_11 1.000 

W9_10 1.000 W12_13 1.000 

W10_9 1.000 W13_12 1.000 

W9_15 2.000 W13_14 1.000 

W15_9 1.000 W14_13 1.000 

W10_11 1.000 W14_15 1.000 

W11_10 1.000 W15_14 1.000 
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MLU in new method decreases from 91.3 percent to 36.3 percent and BWE increases from 7.6 

percent to 10 percent as shown in Table 2-5. 

Table 2-5 MLU and BWE values 

 Default 

Algorithm 

Suboptimal 

Algorithm 

MLU 91.3 36.3 

BWE 7.6 10 

 Number of 

Over Utilized 

Link 

0 0 

 

IP Traffic Dropped and IP traffic Received do not change in this scenario because there is no 

congestion. 
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Figure 2-5 Scenario2 IP Traffic Dropped 

 

 

 

 

 

 

 

 

 

 

Figure 2-6 Scenario2 IP Traffic Received 
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Scenario 2: in this scenario we have three source-destination pairs ),( 11 ds , ),( 22 ds , ),( 33 ds  that 

are originated from R1 to R13, R5 to R9 and R4 to R2 respectively. MLU in the new method 

decreases from 137 percent to 91.3. The Number of over-utilized links also decreases from eight 

links to two links. BWE increases from 26.6 percent to 31.4 percent, table 2-6. Figure 2-5 and 

Figure 2-6 show the comparison of IP Traffic Dropped and IP Traffic Received 

 

Table 2-6 MLU and BWE values 

 Default 

Algorithm 

Suboptimal 

Algorithm 

MLU 137 91.3 

BWE 29.6 31.4 

 Number of 

Over Utilized 

Link 

8 2 

 

In this chapter, we discus linear optimization methods which can helps Internet protocols work 

better. We use a duality theory to find a weight set that improve the routing protocols efficiencies. 

As a matter of fact, routing is the most important aspect of Internet Traffic Engineering. So, we 

focus on routing protocols and introduce a practical method that optimizes Link Metrics. Previous 

optimization methods suffer from practical issues but our method could be implemented with 
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Routing Protocols that based on shortest paths. Our simulation results show significant 

improvement on network efficiency [7]. 

 

2.5 Low Structural Congestion via Game Theory and Linear Programming 

We propose a network topology design approach that targets the reduction of structural congestion 

in a directed acyclic network. What we mean by structural congestion is that a node has much 

higher in-degree than out-degree in a directed network. We approach the issue using a network 

design game model.  In this model, we consider multiple sources and one destination. Each node 

is willing to connect to other nodes but it should pay the price of whole paths it uses to send traffic 

to the destination. The model yields a weight for each link. We show that if these weights are used 

to compute shortest paths, then a network topology is obtained with a low level of structural 

congestion.  

The proposed method has two phases. In Phase I, we solve a linear optimization problem in order 

to find the optimum link weights. In Phase II, each node optimizes its own individual objective 

function, which is based on the weights computed in Phase I. We show that there exists a Nash 

Equilibrium which is also the global optimum. In order to measure the penalty incurred by the 

selfish behavior of nodes, we use the concept called price of anarchy. Our results show that the 

price of anarchy is zero. 

Problem statement  

Communication network design methods and algorithms are approached with various types of 

design goals. Minimum vulnerability, fault tolerance and quality of services are often used in this 

context [8].  
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As network nodes become more intelligent, distributed algorithms become increasingly 

dominant. Although a centralized algorithm which optimizes the entire network configuration 

would maximize efficiency and utilization, it is not as stable as distributed algorithm. Stability in 

a network means that if some nodes fail, other nodes have the capability to reconfigure 

themselves and recover from the failure. This idea can lead to a decision making algorithm that 

is executed in each node separately to optimize the global benefit.  

One step further in this direction is when a node does not know the global benefit or does not 

care about it. In this situation a network involves selfish agents, making decisions to optimize 

their own benefit [9]. Social and biological networks are examples of such selfishly behaving 

agents that form a network.  Game theory is a useful tool to analyze and predict the behavior of 

this kind of networks. 

In this work, we study a directed acyclic network design game in the light of structural congestion 

consideration.  Each node in a network which has a high in-degree is a bottleneck. It is desirable 

to avoid such a structural bottleneck, as it can easily lead to traffic congestion. 

 Our main objective here is to show that there exists a well-defined utility function in which the 

selfish behavior of each node leads to a network topology with minimum structural congestion. To 

do that first we convert a minimum structural congestion problem into a shortest path routing 

problem, in which link weights are obtained as the output of a linear optimization task. Then we 

construct a utility function in order to encourage each node to use paths with minimum overlap. 

The path set forms a new network which has a minimal structural congestion. 

The rest of this chapter is organized as follows. After discussing related work in section II, we 

define the concept of structural congestion and optimization framework for analyzing network 
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topology in section III. In section IV we derive a condition in which selfish behavior of each 

node can lead to an optimum. Finally, conclusion is presented in section V.  

 

2.6 Related Work 

The design of various networks has been studied in sociology, natural sciences and engineering 

for a long time [10]. Optimization and graph theory was the most useful tool in this field, since 

Myerson introduced a new network design model using game theory for social and economic 

networks. After that, the concept of game theoretic models has been used in different 

communication networking contexts, such as routing , flow control and dynamic access control in 

wireless networks [11].  

Nash Equilibrium has been considered as a way to quantify the performance associated with selfish 

behavior of each player. Such equilibria are inefficient [11]. The lack of global control can lead to 

suboptimal network performance. The “price of anarchy” is a concept in game theory which 

measures the inefficiency of a system due to selfish behavior of each player.   

 A comprehensive study of game theory based communication network design is [8], which 

involves three important design considerations, namely the price of establishing a link, path delay, 

and path proneness to congestion. They showed that there exists an equilibrium point which is a 

global optimum. 

The cost function which they considered in [8] for each player in a network design game 

considering path congestion is: 
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)(maxmax)(
),(

k

in

G
vvlvVv

i vvC
kijk




  (2-4) 

In which )( k

in

G v is the input degree of a node kv in a graphG , and ),( ki vvl  denotes the path 

connecting iv  and kv . In this method, each node is required to connect to all other nodes and they 

show that a directed ring is both an optimum and equilibrium. 

 In this study, we focus on the structural congestion of the network. For our purposes, the network 

can be represented by a weighted directed acyclic graph. 

 

 

2.7 Structural Congestion 

A path in a network is a sequence of links, each link (except the first) having the same start node 

as the end node of the previous link in the sequence. Each link has a utilization factor, which we 

call Link Utilization (LU). If we view the network topology as a set of paths from a source to a 

destination, it contains several links which have different LU. A path’s proneness to congestion is 

depending on the maximum LU on the path from a source to a destination. Let us look at a node 

iv in the network, which is described using the graph ),( ENG . Let in

i and out

i be the input and 

output degree of iv . We define the Degree Ratio (DR) for each node as follow: 

Definition: The degree ratio of a node Ni is
out

i

in

i
iDR




 . 

Assuming all links have unit capacity, the quantity 
iDR shows the structural congestion at the node.  

High
iDR means node Ni is a bottleneck and can be a point of congestion. There is a direct 
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relationship between iDR in a network and the Maximum Link utilization (MLU) which is 

described in the following conjecture. 

Conjecture: A set of paths in a directed acyclic network which minimizes MLU, will form a new 

network which minimizes (at least approximately)  iDR  for all Ni and carries the same amount 

of traffic. 

Minimizing MLU means finding a set of paths between a source and a destination, such that these 

paths split the input traffic as much as possible and, at the same time, have a minimum overlap. 

First, we analyze the problem of minimizing MLU, because it is a linear optimization problem. 

Consider a directed acyclic graph ),( ENG which represents the network. EjiCij ),(: is a set of 

edge capacities and ),( kk ts is a set of source-destination pairs for each session Kk . The 

percentage of traffic on a link Eji ),( that belongs to session k is
k

ijX . With these notations, the 

formulation is [8]: 


















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

0

.

0

1

1

min

),(:),(:

ij

Kk

ij

k

ij

Eijj

k

ji

Ejij

k

ij

X

X

MLUCX

otherwise
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 Using duality theory, we can write the dual optimization problem as follows: 
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Because the primal and dual problems are both linear, strong duality holds and according to 

complementary slackness in the KKT theorem if k

ijX̂ is an optimal solution for the primal 

problem, and  k

ijij pw ˆ,ˆ  is an optimal solution for the dual, then we have: 

0)ˆˆˆ.(ˆ  ij

k

j

k

i

k

ij wppX  

This equation indicates that if session k  uses link Eji ),( then ij

k

i

k

j wpp  . According to the 

Duality Theorem, if 
Ejiijw

),(
ˆ is used as link metric in a shortest path algorithm, all non-empty 

links )0( k

ijX will be selected in a shortest path algorithm procedure. As a result if any shortest 

path algorithm uses  
Ejiijw

),(
ˆ as link weights we will have set of paths between a source and 

destination which has an important character. The path set splits the input traffic as much as 

possible through the network and at the same time has minimum number of overlap links. 

 A network topology with minimum structural congestion means that iDR  is close to one.  Let us 

consider a weighted directed acyclic graph which represents a network with only one source-

destination pair and the capacity of all links are 1. Weights are calculated on the basis of the dual 

optimization problem discussed above. If we run any shortest path algorithm over such a network 

we obtain a set of paths . If we delete any link Eji ),( which is not on a member of we will 
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have a new weighted acyclic graph which represents a new network. Based on the following 

theorem, the new network has minimum iDR . 

 

2.8 Network Design Model 

In this section, we study the performance of a non-cooperative network. This means, each node 

(player) tries to maximize its own benefit.  The network design goal is minimizing the structural 

congestion. Node iv gains i by connecting to any node in the network. So, each node tries to make 

a connection to as many nodes as possible. By connecting to each node, it must calculate the length 

of a path from itself to a destination. The gain a node can achieve by connecting to others minus 

the summed length of all paths heading to destination form the utility function of each node as 

follows. 

Node Utilization: 





Pp

ti

p

iiiG vvdSvu
WG

),()(
)(

  

Which iS is the number of output links in node iv and ),(
)( ti

p vvd
WG

is a distance between node iv and 

the destination using path Pp in the designed network using links weightW . 

The network utilization is the sum of all node utilization functions. 

Network Utilization: 

 





Ni

iGG vuU )(  

 



 

30 

Optimum solution for such a game happens when we have a maximum 



Ni

iGG vuU )( . But in 

order to find equilibrium point we need to analyze the selfish behavior of each node.  For that 

purpose, consider Figure. 2-7 as a part of a network. Node iv is deciding to stay on its current 

strategy (connection to other nodes) or deviate (drop a connection or make a new one) based on 

the maximum utilization function. 

 

 

 

 

 

 

 

 

 

Figure 2-7 Node Vi decision strategies 

Consider node iv in the network. It is already connected to nodes 1iv and 2iv . It should decide to 

connect to nodes 3iv and 4iv or not. The current topology is represented by the graph 1G , if it 

connect to 2iv the graph will be 2G and if it connect to both 1iv and 2iv  the graph will be 3G . 

Based on the weight system in the network the distance from nodes 1iv , 2iv , 3iv and 4iv  to 

destination are 1il , 2il , 3il  and 4il respectively. The utility of node iv is: 

v
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+1 

vi

+2 

vi
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vi
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)(2)( 22,11,1   iiiiiiiiG lwlwvu   

 

)(3)( 33,22,11,2   iiiiiiiiiiiG lwlwlwvu   

 

)

(4)(

44,

33,22,11,3









iii

iiiiiiiiiiiG

lw

lwlwlwvu 
 

 

Suppose that based on the weight system, links )1,( ii , )2,( ii and )3,( ii are on the shortest 

paths. So, we have: 

33,22,11,   iiiiiiiii

i

PSh lwlwlwl  

If we want that the selfish behavior of the node iv leads to optimum topology, then the following 

conditions must hold: 

)()( 21 iGiG vuvu   

)()( 32 iGiG vuvu   

So, we have: 

44,11,   iiiiiii lwlw   

If we consider i

PSh   as the length of a second shortest path from the node iv to the destination we 

have: 

lSh−P
i < αi < λSh−P

i  
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i

PShi

i

PShl     

This is the condition in which selfish behavior of each node in the network will lead to optimum 

topology with minimum structural congestion. Now the question is if there is any upper and lower 

bound for  in general. Using topological sorting theorem [12] we can find such a bound. Based 

on topological sorting theorem a directed acyclic graph can be represented in way that nodes index 

increase when they get closer to the destination and there is no link ),( nm if nm  . For example, 

a directed acyclic graph with 4 nodes after topological sorting is shown in figure 2-8.   

 

 

 

 

 

Figure 2-8 Topological Sorting 

After topological sorting, we suppose that node 1 is the source and node N is the destination. 

Now it is clear that after using weight set which is the solution of dual optimization problem in 

section III we have 1

  i

PSh

i

PSh ll . So, the lower bound for is 1

PShl  which is the shortest path from 

source to the destination. Also, we have 1

  i

PSh

i

PSh  . So, the upper bound for is: 

 NNNNNN

N

PSh www ,2,11,2

2 ,max 



   

 

So, we have: 

lSh−P
l < α < λSh−P

N−2  

V V

 

V V
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 Now consider the network in figure 2-7. The question is what is the upper and lower bound for

 in this network. Table I shows the optimal weights which calculate using dual optimization 

problem in section III.  

Table 2-7 Optimum Weights 

1221 wpp   1 

1331 wpp   1 

1441 wpp   2 

2332 wpp   3 

2442 wpp   1 

3443 wpp   1 

In this case upper and lower bound is: 

lSh−P
l = 2 

λSh−P
N−2 =4 

So 3  satisfies the condition.  After applying 3 in the node utility function, node 2v can 

improve its utility function by deviate from current strategy to the one which has no connection to 

node 3v . As a result, we have network with better structural congestion. Applying this method to 

all nodes the result would be a network topology with minimum structural congestion.  

In order to analyze the price of selfish behavior there is two important concepts which are price of 

stability and price of anarchy. The price of stability is the ratio between best objective function 
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value in equilibrium point and the optimum network utilization function. On the other hand, price 

of anarchy is the ratio between worse objective function value in the equilibrium and the optimum 

network utilization function [13]. In this section, we showed that price of stability is one and 

anarchy is free if each node applies the node utilization function. Otherwise price of anarchy is 

depending on and  
Ejiijw

),(
. 

Figure 2-9 shows how the optimization method provides inputs for our network design game.   

 

 

 

 

 

 

 

 

Figure 2-9 Algorithm Flowchart 

It is worth mentioning that the described method can be implemented in a network using 

distributed algorithms like the Bellman-Ford Algorithm [14]. It means that it is not necessary for 

each node to have information about the whole network. It is only needed to know the parameter

 , the weights of its outgoing links and the distance of its neighbors to the destination. Having 

this information is sufficient to find an optimum strategy.  

 

Max 
Connection 

Network Design 
Game 

Opt Link Weights 

Min Max Link 
Utilization 

Min Structural 
Congestion  
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2.9 Simulation  

For the simulation, we consider a directed acyclic network with 20 nodes. All links have a capacity 

one and we consider node 1, 2 and 3 as a source of traffic and node 20 as the destination. Figure 

2-10 shows the network topology. Maximum degree ratio is 19 in this network.  Each node 

minimizes its own objective function based on optimum link weights and its desire to make more 

connection. 

 

Figure 2-10 Network Topology 

 

After solving the dual optimization problem, we have lSh−P
l = 4.3 and λSh−P

18 =14.5. Figure 2-11 

shows that no structural congestion is a result of choosing 5.143.4  , it means that 1iDR for 
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all Ni . As  deviates from the constraint each node is more willing to make a new connection 

and it leads to more structural congestion. For example, if we choose 20 degree ratio of nodes 

16 and 17 are high and they can be considered as a network bottleneck.  

 

 

 

 

 

 

 

 

 

Figure 2-11 Degree ratio for each node using different alpha 

This section investigates the question “how non-cooperative nodes in a network can create an 

efficient network?” We have studied the result of the selfish behavior of nodes, and compares it to 

the situation in which there is a central control unit in the network. Central control can force all 

nodes to use a predefined strategy in which the network utilization is optimum.  

Based on the discussion in section IV if we fix the benefit of establishing a new link for each node, 

 , in a way that satisfies the condition lSh−P
l < α < λSh−P

N−2 , the price of stability will be one and 

also the price of anarchy will be zero in this network design game [15] [16].  
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CHAPTER 3  

AN OPTIMAL TRAFFIC DISTRIBUTION METHOD SUPPORTING END-TO-END 

DELAY BOUND 

Routing methods for optimal distribution of traffic in data networks that can also provide quality 

of service (QoS) for users is one of the challenges in recent years’ research on next generation 

networks. The major QoS requirement in most cases is an upper bound on end-to-end path delay. 

In multipath virtual circuit switched networks each session distributes its traffic among a set of 

available paths. If all possible paths are considered available, then the source’s decision on its 

traffic distribution can be considered as routing. A model of the routing function as a mathematical 

problem which distributes the input traffic over possible paths for each session is proposed here. 

A distributed and iterative algorithm which will keep the average end-to-end delay for individual 

paths below a required bound is introduced. This algorithm minimizes the total average delay of 

all packets in the network. The convergence of the algorithm is illustrated [17].  

Computer networks have evolved into a new generation where a wide range of new services are 

provided to various network users. For many of these new services, such as VOIP, IPTV, Network 

Games, etc., it is not sufficient just to transfer the information to the destination, but for the users’ 

satisfaction it is necessary to guarantee their required QoS as well. In this manner, the new services 

with arbitrary QoS require ments can be deployed in the network. Providing the QoS must be 

achieved by utilizing the least possible resources of the network such that the network can be 

optimized in terms of resource utilization [18]. Network optimization algorithms determine traffic 

distribution for a given traffic demand so that the optimum re- source utilization can be achieved. 
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But the research results so far show that providing QoS in cases where routing is performed without 

paying attention to the QoS requirements is difficult. Therefore, considering the required QoS in 

the optimization algorithms and determining the routes accordingly is one of the challenges of the 

next generation networks.  

Recently several new services have become popular in the internet qualities of which depend on 

the end-to- end delay experienced by the packets in the network. For an acceptable QoS it is 

required that the end- to-end delay is kept under a threshold level. Providing QoS is not an easy 

task in datagram networks. In new generation networks, virtual circuit switched networks such as 

MPLS is used to provide a better framework to implement QoS. 

Most of the QoS provisioning algorithms in the literature exploit certain mechanisms to guarantee 

the delay for a given path. Nen Jin, et.al show that for providing QoS in a DiffServ network, the 

price per unit of traffic rate for each traffic class can be adjusted. They assume a given path for a 

user. The satisfaction of the user is modeled through a convex function of the traffic passing 

through that given path and the QoS level of the assigned traffic class. In [19] QoS is proposed to 

be provided by adjusting the capacity allocated to each DiffServ class. The QoS measure is the 

exact proportion of the average delay of two different traffic classes. Each user’s traffic is routed 

through a predetermined path and depending on the amount of traffic of each class, the traffic over 

this path experiences a delay which is considered as its cost. In [20] a dynamic method is used to 

adjust the users’ traffic rate in a manner that a minimum rate and a maximum delay threshold are 

guaranteed. A predetermined path used for routing the traffic and its rate is determined by solving 

a convex optimization problem which satisfies the user’s delay requirements. 
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Most of the articles that study the traffic distribution in virtual circuit switched networks assume a 

set of known paths for each source-destination pair. To simplify the problem, usually, a small set 

of paths is selected from all possible paths beforehand. In the articles that find routes based on 

QoS requirements, the QoS is mostly measured based on parameters. Each QoS parameter for a 

path is sum of the QoS parameters of its links. The links are modeled by an m-dimensional weight 

vector W = (w1, ..., wm) the components of which represent the QoS parameters of links. Paths 

with QoS parameters lower than the threshold levels will satisfy the required QoS and can be 

selected. In this manner, the QoS-based routing problem is modeled as a multi-constraint (optimal) 

problem. Since these problems are NP-hard, in most cases heuristic methods are adopted in solving 

them.  

Here the objective is to introduce a scalable method in terms of the number of sessions, in order to 

dis- tribute the network’s traffic over available paths in a virtual circuit switched network that 

would minimize the average delay for all packets as the total cost of the network, while 

guaranteeing a bounded end-to-end path delay as the users, QoS requirement. The proposed 

method in this article is based on the analysis of the traffic distribution problem with delay 

constraints. As a result, this problem is modeled as a constrained convex optimization problem 

and the routing algorithm is provided in accordance to the analytical solution of this problem.  

In Section 2 an analytical model for distributing traffic is introduced where the traffic distribution 

is modeled as a constrained convex optimization problem. In Section 3 the Lagrangian dual method 

is adopted for solving this problem. An algorithm that can be realized in a data network based on 

the dual method is proposed here. In Subsection 3.1 the implementation method of the proposed 
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algorithm in real networks is explained. In section 4 the simulation results are provided expressing 

that this proposed method con- verges and can achieve its objective in an effective manner. This 

article will be concluded in Section 5. The analysis of the proposed model is provided in the 

Appendix A.  

3.1 Traffic Distribution Model  

The objective in common for all the routing algorithms is to determine the appropriate paths for 

carrying the users’ traffic from source to destination. All or part of each user’s traffic is assigned 

to each selected path; therefore, a direct output of a routing algorithm is the amount of traffic 

allocated to each path. In fact, routing can be modeled as a mathematical problem which 

determines the distribution of all sessions’ traffic over the network graph.  

In this article source-destination pairs are assumed to be known and are presented by the set W. 

Each source-destination pair w 2 W is considered as a session and its average input traffic is 

presented by rw. A data network is modeled as a stationary and directed graph G(A, V ). The graph 

nodes, represented by set V model the network routers or gateways and graph links represented by 

set A, model the physical links between the routers. Some of the nodes of the graph are source or 

destination of the sessions in the network.  

A session path is a set of links that connects the source of the session to its destination. The set of 

the paths of each session is called Pw, Figure 3-1. Thus, the routing problem is similar to finding 

the distribution of each session’s traffic over its paths.  

The parameters and notations which are used in the rest of this article are introduced in the 
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following Nomenclature:  

• W: The set of all existing sessions, where NW shows the total number of these sessions  

• P : The set of available paths of all sessions w 2 W in G(A, V ),where NP shows the total 

number of these paths  

• Pw: The set of available paths of session w  

• rw: Average traffic rate of session w  

• xp: Traffic assigned to path p 2 P  

• X: A vector of NP components whose pth component is the assigned traffic to path p, xp  

• p: The lagrangian multiplier according to the delay constraint of path p  

• ⇤: A vector of NP components whose pth component is the p  

• thp: The threshold level of average delay of packets in path p  

• Th : A vector of NP components whose pth component is thp  

• fij : The flow crossing from link (i, j) of G(A, V )  

• hp(X): The cost function associated with path p  

• H(X): A vector of Np components whose pth component is hp(X)  
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• Dij (fij ): The cost function associated with link (i,j) 

 

Figure 3-1 A network graph with three sessions 

Based on the above definitions the following relations hold:  

𝑥𝑝 ≥ 0                 ∀𝑝 ∈ 𝑃   (1)    (1) 

∑ 𝑥𝑝 = 𝑟𝑤           ∀𝑤 ∈ 𝑊, ∀𝑝∈ 𝑃𝑤

𝑝∈𝑃𝑤

 (2) 

𝑓𝑖𝑗 = ∑ 𝑥𝑝                ∀(𝑖, 𝑗) ∈

𝑝|(𝑖,𝑗)

 (3) 

ℎ𝑝(𝑋) = ∑ 𝐷𝑖𝑗(𝑓𝑖𝑗)              ∀𝑝 ∈ 𝑃

(𝑖,𝑗)∈𝑝

 (4) 

 

 

 

 

        (3-1) 

 

If the average delay of the packets over a link is considered as the link’s cost function, Dij (fij ), 
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and the messages are delayed only by the links of the network, then (3-2) expresses the expected 

delay for all packets over the network [3]. Equation (3-2) indicates the average time that packets 

remain in the network and use network resources; thus, it can be considered as the overall system 

cost.  

𝐷 = ∑ 𝐷𝑖𝑗(𝑓𝑖𝑗)

(𝑖,𝑗)∈𝐴

 
(3-2) 

Even in a virtual circuit network minimizing (3-2) can be a good objective for traffic distribution 

since it can improve network resource utilization [21] [22]. In the virtual circuit switched networks, 

each session’s traffic is distributed among the available paths. By assuming a stable network and 

assuming that the traffic of the sessions is stationary, this problem is modeled and analyzed as the 

problem of distributing the average input traffic of each session rw , over the set of session’s paths 

Pw, which will result in the sessions’ path flows xp, for all sessions. Thus, fij, the total flow of link 

(i, j), can be expressed by the different path flows. As a result, fij equals the sum of all path flows 

traversing link (i, j), (3-1-3). Here each session represents a customer. The expectation of each 

customer from the network is defined based on the customer’s traffic’s delay tolerance. In this 

case, the customer will be satisfied if the average delay is bounded to a certain threshold. 

Therefore, considering the delay of each link as its cost is deemed to be appropriate. In this model, 

the sum of the cost function of the links which compose a path, is considered as the path cost, 

hp(X), which is equal to the sum of the costs of the path’s links  

(4). Considering (3-2) as the overall cost function of the network and (3-1-4) as the customer cost, 

the limitation of which is required by the customers, the routing in the network can be modeled as 
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Problem 1.  

Problem 1.  

min
𝑥

𝐷(𝑋) = ∑ 𝐷𝑖𝑗(∑ 𝑥𝑝
𝑝|𝑖𝑗∈𝑝

)

(𝑖,𝑗)∈𝐴

 
(1) 

∑ 𝑥𝑝 = 𝑟𝑤                ∀𝑤 ∈ 𝑊, ∀𝑝 ∈ 𝑃𝑤

𝑝∈𝑃𝑤

 
(2) 

𝑥𝑝 ≥ 0            ∀𝑝 ∈ 𝑃 (3) 

ℎ𝑝(𝑋) ≤ 𝑡ℎ𝑝           ∀𝑝 ∈ 𝑃 (4) 

 

 

 

       (3-3) 

 

In this problem, the path flows xp, are the variables. The objective function D(X) is considered as 

the overall system cost. The purpose of this problem is to find the distribution of the traffic among 

the available paths in order to minimize the overall system cost while the constraints (3-3-2) to (3-

3-4) are satisfied. Constraints (3-3-2) and (3-3-3) guarantee the acceptable allocation of the traffic 

over the session’s paths, and constraint (3-3-4) guarantees the delay limitation or users’ 

expectation. If constraint (3-3-4) is ignored, Problem 1 is converted to Problem 2.  

Since the cost functions hp(X) are convex, Problem 1 is a constrained convex optimization 

problem [5], which can be solved using any of the existing methods, such as Projected Gradient, 

Interior Point, etc. But here the objective is to find a solution that can also be implemented in real 

networks. In this regard, the Lagrange dual problem is formulated and solved. In other words, since 

Problem 1 is a convex optimization problem the duality theorem is adopted in solving it. The fact 

that strong duality holds is presented in Proposition 1. 
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Problem 2.  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝐷(𝑋) = ∑ 𝐷𝑖𝑗( ∑ 𝑥𝑝

𝑝|𝑖𝑗∈𝑝

)

(𝑖,𝑗)∈𝐴

 

∑ 𝑥𝑝 = 𝑟𝑤       ∀𝑤 ∈ 𝑊, ∀𝑝 ∈ 𝑃𝑤

𝑝∈𝑃𝑤

 

𝑥𝑝 ≥ 0             ∀𝑝 ∈ 𝑃 

 

 

     (3-4) 

 

3.2 Solving the Optimization Problem  

Usually the cost function Dij(fij) is expressed as a convex, non-decreasing, continuous and 

differentiable function; therefore, the path cost will have the above characteristics. Since the cost 

functions hp(X) are con- vex, Problem 1 is a constrained convex optimization problem [5], which 

can be solved using any of the existing methods, such as Projected Gradient, Interior Point, etc. 

But here the objective is to find a solution that can also be implemented in real networks. In this 

regard, the Lagrange dual problem is formulated and solved. In other words, since Problem 1 is a 

convex optimization problem the duality theorem is adopted in solving it. The fact that strong 

duality holds is presented in Proposition 1. Since there is a practical solution to solve Problem 2 

[15], the dual problem is described using the Lagrange multipliers related to (3-3-4). Thus the 

Lagrangian is (3-5) where only constraint (3-3-4) is relaxed by introducing Lagrange multiplier p 

for each path. The resultant partial dual function is Problem 3.  

𝐿(𝑥, Λ) = 𝐷(𝑋) + ∑ 𝜆𝑝. (ℎ𝑝(𝑋) − 𝑡ℎ𝑝)          ∀Λ ≥ 0

𝑝∈𝑃

 
   (3-5) 

Problem 3. 
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𝑞(Λ) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝐿(𝑥, Λ) 

∑ 𝑥𝑝 = 𝑟𝑤            ∀𝑤 ∈ 𝑊, ∀𝑝 ∈ 𝑃𝑤

𝑝∈𝑃𝑤

 

𝑥𝑝 ≥ 0             ∀𝑝 ∈ 𝑃 

 

(3-6) 

Considering Problem 3 as the dual function of Problem 1, the dual problem will be Problem 4.  

Problem 4. 

max 𝑞(Λ) 

𝜆𝑝 ≥ 0          ∀𝑝 ∈ 𝑃 

As mentioned in Proposition 2, the q(⇤) is a con- vex function which is not necessarily 

differentiable in general, but it is sub-differentiable at all points. There- fore, Problem 4 can be 

solved iteratively by adopting the sub-gradient method [22]. In this method, an initial value is 

given to variable , (0), and in each iteration according to (11) a new value is calculated which 

will be closer to the optimum value.  

Λk+1 = [Λk + αk. gk]+ (3-7) 

To calculate the new value of ⇤ in the kth iteration, first a sub-gradient of function -q() called -

gk is calculated at k, and then k+1 is calculated by using (3-7) where, k is a positive step size 

and ”+” denotes projection on the set R+. As result-4 indicates, in order to find a vector gk the 

traffic must be distributed based on Problem 3 solution according to  = k, denoted by X⇤(k). 

In this case, the deviation of the cost of a path from its threshold thp, is equal to the associated 
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component of gk, (3-8).  

gk = hp (X∗(Λk)) − thp  (3-8) 

Eventually, the iterative algorithm finds ⇤ which is the best solution for Problem 4. Obviously 

in this iteration the input traffic is distributed similar to that of the path flows which are the solution 

of Problem 3 for the amount of  = ⇤. Since the conditions for strong duality exists according 

to Proposition 1, this distribution will be the optimum solution of Problem 1 as well. In the 

following section the proposed algorithm is explained.  

Algorithm Steps:  

Step1: A feasible value is given to . Since in Problem 4 every  >= 0 is acceptable, the 0 =0 is 

used as the initial value. In this step, the initial value of qbest is 0.  

Step2: In iteration k, Problem 3 must be solved based on the value of k, leading to the optimum 

value q(k) and the optimum point X⇤(k). The components of this vector are represented by 

x⇤
p(k). In other words, a mechanism must be used to determine path flows, for the optimal 

routing problem when (3-9) is considered as the cost function of each link. There- fore the 

Lagrange multipliers can be interpreted as the bottleneck indicators of the paths.  

Dij
k = (1 + ∑ λp

k

p|ij∈p
) . Dij( ∑ xp

∗ (Λk))

p|ij∈p

 
        (3-9) 
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Step3: In iteration k with respect to the value of X ⇤ (k ) which is calculated in step2, the 

deviation of each path’s cost from the threshold level of the same path is calculated. Considering 

the Proposition 3, the negative of this value can be considered as the pth component of the sub-

gradient vector of q() at k or -gk. After calculating the deviation for all paths, the p value of  

for next iteration or k+1 can be calculated using (3-8).  

Step4: The value of qbest = max{qbest,q(k)}is calculated and k is increased by one. Then if the 

condition of ending the algorithm is met, the algorithm terminates, otherwise, it goes back to step2 

for next iteration.  

Condition of ending the algorithm: In a simple case, the condition which leads to the algorithm 

termination can be the maximum number of iterations (Figure 3-2).  

 

Figure 3-2 The flowchart of flow distribution algorithm 
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Matching the algorithm with real networks  

As mentioned before, the main objective of this article is to distribute the input traffic of a session 

over its known paths. A session can be equivalent of a source and destination pair in virtual circuit 

switched networks such as ATM and MPLS, or in general in any network that uses explicit routing 

or source routing. Even a certain DiffServ class traversing the same LSP in these networks can be 

considered as a session. In practice this proposed algorithm is implemented for each session 

iteratively and in parallel for all sessions.  

Here each iteration of the algorithm is assumed to be performed in one time slot. At the end of a 

time slot, destination nodes calculate the deviation of the average delay for each path from the 

required delay bound. The bottleneck multiplier of the path is calculated based on its cost deviation 

and is sent to the source node. The average delay of packets in each iteration can be determined 

by the destination either using analytical modeling or just by measurement. In a case where the 

path delay is estimated by using measurement methods, based on the assumptions about the link 

cost in this article, this proposed algorithm will definitely converge according to the Proposition 

4. During each time slot the source nodes distribute the input traffic according to the optimal point 

of Problem 3. In each iteration, the Problem 3 is an optimal routing problem where the cost 

function of each link is defined by (13). This problem can be solved by one of the existing methods.  

Each time slot can be in the order of the end-to-end trip time in the network. The algorithm is 

scalable because it is implemented independently for each session. If the set of the paths for each 

session can be assumed to include all possible paths for the session based on the topology of the 

network, the algorithm will practically select the routes; therefore, a separate method for 
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determining the possible routes will not be necessary.  

3.3  Simulation  

The algorithm for two sessions is simulated over the network graph in Figure 3-3. The algorithm 

is executed independently for each session in an iterative and synchronized manner. All possible 

paths for session 1 are P1(14a), P2(14b) and P3(14c) and for session 2 are P4(14d), P5(14e) and 

P6(14f).  

 

In this simulation, the average delay of the links is modeled as (15) which is a convex, 

continuous, and differentiable function of its average traffic. In this equation, Cij is the capacity 

of the link (i, j) and Kij is a positive coefficient of the link. The domain of this function covers 

the traffic flows between 0 and Cij only and as the flow gets closer to Cij the delay increases 

exponentially. The function is undefined for values equal to or above Cij. The coefficient and 

capacity of the links of Figure 3-3 are proposed in Table 3-1.    

Dij(fij) =
(Kij ∗ fij

2)

(Cij − fij)
 

(3-10) 
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Table 3-1 Parameters of the Network links 

 

The constant input traffics are used in the simulation as the expected values of the sessions traffics 

in general. The average input traffic for each session is assumed to be 20 Mbps. In this simulation, 

the attempt is made to clarify two important points: to show that the iterative algorithm converges 

to the optimal point of Problem 1 and that this algorithm achieves its objective in limiting the end-

to-end delay of the paths in addition to minimizing the total network delay. Since the main 

objective of this proposed model is similar to the optimal routing problem, the Problem 2, the 

results of the proposed algorithm are compared with the Problem 2, for the above scenario.  

In the first step, the path flows for each session are calculated based on solving the optimal routing 

problem, the Problem 2, by applying CVX package in MATLAB. In this case, the end-to-end delay 

for each path as well as the expected delay of packets are calculated (see Table 3-2).  

In the second step, the path flows for each session are calculated based on the optimal routing 

problem with end-to-end delay constraint, Problem 1. The end-to-end delay bound for each path 

is assumed to be 76 units in this simulation. The path flows are calculated by solving Problem 1 
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applying CVX package in MATLAB (see Table 3-3).  

The total cost of the network in step 2 is slightly higher than the optimum total cost in step 1. Yet 

in step 1 the individual path cost, for paths 1 and 6, is beyond the end-to-end delay bound. This 

means that this proposed algorithm is able to limit the delay with a minimum increase in the total 

cost. Also it can be seen that based on the Complementary Slackness condition, xp of paths 1 and 

6 is decreased from the optimum values of step 1, down to a point that their average delays are 

decreased to the threshold level. As such, the optimum dual variable, DV, of these two paths is 

expected to be higher than zero while DV of the other paths expected to be zero. It can be 

interpreted that the marginal cost of the paths 1 and 6 should be lower compared to that of path 3 

for the calculated traffic.  

In the final step, the proposed algorithm is simulated through MATLAB. Here the step size is 

0.008. The simulation finishes after 1000 iterations. The final results of the algorithm are presented 

in Table 3-4. The stepwise results of the algorithm for Lagrange multipliers and two of the link 

flows as a sample are presented in Figure 3-4 and Figure 3-5.  

The results in Table 3-4 are the same as the results in Table 3-3. This means that the iterative 

algorithm con- verges to the same results of the centralized solution [23].  

Figure 3-4 shows that the path flows converge to the same results as the results of the case where 

the Problem 1 is solved in a central manner [24].  

Figure 3-5 shows that the Lagrangian multipliers of the distributed solution converge to the optimal 

dual variable values obtained from the centralized solution of the Problem 1.  
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3.4 Mathematical Analysis  

In this section, the analysis of the proposed algorithm is provided. First some parameters used in 

this section are defined  

• xp:FlowofthepathpthatisheldinAssumption1  

• H(X): Cost vector of all sessions with NP components where the pth component represents the 

cost of the pth path 

• A(X): Deviation vector with NP components where the pth component represents the deviation 

of the pth path from its threshold 

• Th: Threshold vector with NP components and the pth component represents the maximum 

delay bound of the path p 

• ⇤: Optimum solution of Problem 4 which is a vector with NP components 

• ⇤
p: The pth component of the optimum vector  which is the optimum Lagrange multiplier 

of the pth path. 

Result-1: Since the feasible set of the Problem 1 is not empty, this problem has at least one optimal 

point. Proposition 1. The optimum solution of Problem 4 is equal to the optimum solution of 

Problem 2.  
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Table 3-2 Simulation results of step 1 

 

 

Table 3-3 Simulation results of step 2 
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Table 3-4 Final results of Step3 for 1000 iterations and step size 0.008 

 

 

 

 

Figure 3-3 The flow of links per 200 iterations 
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Figure 3-4 The flow of links per 200 iterations 

 

 

Figure 3-5 The Lagrangian multipliers corresponding to paths per 200 iterations 
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Assumption 1. The value of rw’s is such that Problem 1 has at least one strictly feasible point, in 

other words (16) is held.  

∃X̅| ∑ x̅p = rw  and x̅p ≥ 0 and hp(X̅) < thp

p∈Pw

 

∀w ∈ W, ∀p ∈ Pw 

 

 

(3-11) 

Result-1: Since the feasible set of the Problem 1 is not empty, this problem has at least one optimal 

point. Proposition 1. The optimum solution of Problem 4 is equal to the optimum solution of 

Problem 2.  

Proof. Since Problem 2 is a convex optimization problem, if the Slater conditions apply then the 

strong duality will also apply. According to Assumption 1 the Slater condition is held; therefore, 

strong duality is held. 

Result-2: Assuming that the input traffic of sessions w meet (3-11), a strong duality exists and the 

optimum solution of Problem 4 is equal to the optimum solution of Problem 2.  

Result-3: Because of strong duality, (3-12) should hold for the optimum points of Problem 2 and 

Problem 4 as follow:  

λp
∗ . (hp(xp

∗ )) = 0 ≡ {
hp(xp

∗ ) −  thp < 0 =>  λp
∗ = 0

hp(xp
∗ ) −  thp = 0 =>  λp

∗ ≥ 0
 

(3-12) 

According to (3-12), at the optimum point of Problem 4, the Lagrange Multiplier of the paths with 
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lower costs than that of the threshold level is 0, and for the paths with Lagrange Multipliers greater 

than 0, the final traffic amount assigned to them will be such that the cost of these paths will be 

exactly equal to the threshold level. 

Proposition 2. A) The function -q() defined in Problem 4 is a convex function of .  

B) This function has sub-gradient at all of the points in its domain [25] [26].  

Proof. If  

𝐶 = {(𝑥1 … 𝑥2)| ∑ 𝑥𝑝 = 𝑟𝑤, 𝑥𝑝 ≥ 0 ∀𝑝 ∈ 𝑃𝑤

𝑝∈𝑃𝑤

} 

Then: 

 

−𝑞(Λ) =  max
𝑋∈𝐶

{−𝐿(𝑋, Λ)} 

A) q is a convex function: Defining vector A(X) and function b(X) by (3-13-1) and (3-13-2), 

L(X, ) can be considered as a linear function of  for a given value of vector X, as in (3-13-3)  

𝐴(𝑋) = 𝑇ℎ − 𝐻(𝑥) (1) 

𝑏(𝑋) = ∑ ℎ𝑝(𝑥𝑝)

𝑝∈𝑃

 
(2) 

−𝐿(𝑋, Λ) = ((𝐴(𝑋)𝑇 . Λ + b(X)) (3) 

 

 

              (3-13) 

Taking into account the definition given in (20) for function L(X, ), q() can be considered as 

the point-wise maximum of the family of linear functions at all points ⇤ according to (3-14); 
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therefore q() is a convex function.  

−𝑞(Λ)|Λ1 = max
𝑋∈𝐶

{(𝐴(𝑋)𝑇 . Λ + 𝑏(𝑋))|Λ1} (3-14) 

B) Function q() has sub-gradient at all points :  

The q() is differentiable at all points  where only one X , X ⇤ (), maximizes (3-14), i.e. at 

these values of ⇤, only one of the functions A(X)T .  + b(X)) is greater than the others; therefore, 

at these points, the sub-gradient of the function is unique and is equal to its gradient which is 

calculated through (3-15).  

𝜕 − 𝑞(Λ)

𝜕Λ
= ∇(−𝑞(Λ)) = 𝐴(𝑋∗(Λ)) = 𝑇ℎ − 𝐻(𝑋∗(Λ)) 

𝑋∗(Λ) = arg (max
𝑥∈𝐶

{𝐴(𝑋)𝑇 . Λ + 𝑏(𝑋)}) 

 

(3-15) 

The q() is not differentiable at the points  where (3-15) is at its maximum at some points. At 

these  some of the functions (A(X)T .  + b(X)) have the greatest value at the same time. In this 

case, although q() is not differentiable, it has sub-gradient which is calculated through (3-16).  

𝜕 − 𝑞(Λ)

𝜕Λ
= 𝐶𝑜𝑛𝑣𝑒𝑥ℎ𝑢𝑙𝑙 𝑥𝑖

{−𝐴(𝑋𝑖
∗(Λ))

𝑇
} 

𝑋∗(Λ) = arg (max
𝑋∈𝐶

{𝐴(𝑋)𝑇 . Λ + b(X)}) 

 

(3-16) 

According to Proposition 2, the function q() is the point-wise infimum of a family of affine 

functions (21); hence, it is concave and sub-differentiable at any point. 
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Figure 3-6 q () for one dimensional 

According to Proposition 2, the function q() is the point-wise infimum of a family of affine 

functions (21); hence, it is concave and sub-differentiable at any point. 

(Figure 3-6). In Proposition 3 an equation is provided to calculate one of the sub-gradient vectors 

of function - q() that can be used in the algorithm in figure 3-2. 

Proposition 3. At each point  (24) gives the sub- gradient of -q() at that point. 

Proof. According to (22,23) for a given b, each optimal solution of (21), Xi
⇤, A(Xi

⇤), is one of 

the sub-gradient vectors of -q() at point . According to (3-15), the optimum point of this 

equation  at point  can be obtained by solving problem 3 based on . 
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−𝑔(Λ̂) = (𝑇ℎ − 𝐻(𝑋∗)) ∈
𝜕𝑞(Λ)

𝜕Λ
|Λ̂ 

𝑋∗(Λ) = arg (max
𝑋∈𝐶

{𝐴(𝑋)𝑇 . Λ + b(X)}) 

 

(3-17) 

In other words, X⇤() is an optimal point of Problem 3 based on .  

Result-4: Considering (24) the number of components of vector g() is equal to the total number 

of paths of session w. The pth component of this vector is equal to the deviation of the cost of path 

p from its threshold level. In this equation, the path cost should be calculated when the traffic is 

the optimum solution of Problem 3 for vector  . To calculate the sub gradient vector at point , 

solving Problem 3 at vector  and finding its optimum solutions suffices. Following this, the cost 

of each path is calculated for this traffic and its deviation from the threshold level is considered as 

the component of the sub-gradient vector.  

Proposition 4. The algorithm introduced in Section 3 converges:  

Proof. As shown in Figure 3-2, this algorithm describes the steps of the sub-gradient method in 

solving Problem 4. According to the proof given in [21], if the value of the sub-gradient of function 

q() in all points has an upper bound such as G and if the distance from the initial point of the 

algorithm and the optimum point is less than R, the sub-gradient method converges [21]. To prove 

the convergence of the algorithm, first, an upper bound for the distance of the initial point of this 

algorithm and the optimum point is introduced, and then the upper bound for the value of the sub- 

gradient vector of function q() at all acceptable points is calculated.  

A) Upper bound for the distance between the initial point 0 and optimal point (*). 
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The initial point of the proposed algorithm in this article is 0 = 0. Assume a component p is 

infinite. Considering Assumption-1 the amount of L(X, ⇤) and also g(⇤) is -inf. The optimal 

value of Problem 3 will be -inf, while the optimal values of Problem 3 and Problem 1 were 

expected to be equal. Considering Assumption-1 the optimal value of Problem 1 is finite (a 

contradiction); therefore, all components of ⇤ are finite, hence     |⇤  - 0| is bounded. 

 B) The norm of the sub-gradient vector in all iterations is upper bounded:  

In iteration k, the component p of the sub-gradient vector is equal to the difference of  

hp (X ⇤ (k )) with thp . Considering Assumption-1, (X ⇤ (k )) is a finite vector and since the 

optimal value of Problem 1 is finite then hp (X ⇤ (k )) must be finite, hence, the norm of the 

vector is finite. Based on the maximum distance between the initial and the optimal points of the 

algorithm and the upper bound calculated for the sub-gradient at every step of the algorithm, the 

sub-gradient method for solving this problem will converge.  
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CHAPTER 4  

PARALLELIZING LARGE SCALE GRAPH ALGORITHMS USING THE APACHE 

SPARK DISTRIBUTED MEMORY SYSTEM 

The rapidly emerging area of Social Network Analysis is typically based on graph models. They 

include directed/undirected graphs, as well as a multitude of random graph representations that 

reflect the inherent randomness of social networks. A large number of parameters and metrics are 

derived from these graphs. Overall, this gives rise to two fundamental research/development 

directions: (1) advancements in models and algorithms, and (2) implementing the algorithms for 

huge real-life systems. The model and algorithm development part deals with finding the right 

graph models for various applications, along with algorithms to treat the associated tasks, as well 

as computing the appropriate parameters and metrics. In this chapter, we would like to focus on 

the second area: on implementing the algorithms for very large graphs. 

It is worth noting that the sheer size of real-life social networks leads to a type of hardness that the 

theoretical approaches rarely appreciate. This lies in the fact that even very simple algorithmic 

tasks can become hard if we want to execute them on huge graphs. For example, counting the 

triangles in a graph is a simple looking, yet important task; it plays a role in often used parameters, 

such as the clustering coefficient and the transitivity ratio. For smaller graphs, triangle counting 

can be carried out by a trivial polynomial-time algorithm: we can just exhaustively check all triples 

of nodes, and count how many of them are triangles. For a very large graph, however, this does 

not lead to a scalable approach. While various nontrivial improvements to this exhaustive search 

are known, they still face the scalability problem on huge graphs. 
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In this chapter, we address the problem of parallelizing three famous network algorithms on a 

practical distributed memory system. The approach is based on the Spark framework and the 

GraphX API which is runs on top of the Hadoop distributed file system. We develop three case 

studies in this framework: (1) computing the PageRank in a social network, (2) finding connected 

components in the graph representing the network, and (3) triangle counting. A key issue for the 

large-scale implementation is how to partition the whole task into parallel and independent tasks 

that run on different machines, such that we can reduce the communication and storage overhead 

in the distributed cluster. In our case studies four different partition strategies are introduced, they 

are called Canonical Random Vertex Cut, Edge Partition 1D, Edge Partition 2D, and Random 

Vertex Cut. All these partition strategies are based on Resilient Distributed Dataset (RDD) which 

is introduced in Apache Spark. RDD is a new representation of data which is stored in different 

physical location that can be recovered in a case of failure. RD. As a graph point of view, edges 

and vertices information can be stored as an RDD. Graph algorithms could be break into 

independent tasks which processing a corresponding partition of edges or vertices data. Apache 

Spark tries to keep graph RDD in memory as much as possible to speed up the processing. This 

new paradigm of graph processing is scalable and fault tolerant.  

 

4.1 Overview of Big Data Processing  

Spark is an open source, in-memory big data processing framework in a distributed environment. 

It started as a research program in 2009 and became an open source project in 2010. In 2014, it 

was released as an Apache incubator projec. 
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Spark is evolved from Hadoop MapReduce so it can be run on Hadoop cluster and data in the 

Hadoop distributed File System (HDFS). It supports a wide range of workloads, such as Machine 

Learning, Business Intelligence, streaming and batch processing. Spark was created to 

complement, rather than replace Hadoop. The Spark core is accompanied by a set of powerful, 

higher-level libraries which can be used in the same application. These libraries currently include 

SparkSQL, Spark Streaming, MLlib (for machine learning), and GraphX, as shown in Figure 4-1. 

 

 

Figure 4-1 Spark full stack 

 

In order to efficiently use the processing resources of a cluster, Spark needs a cluster resource 

manager.  Yet Another Resource Negotiator (YARN) is a Hadoop processing layer that contains a 

resource manager and a job scheduler. Yarn allows multiple applications to run on a single Hadoop 

Cluster. Figure 4-2 illustrates how Spark uses Yarn as a distributed resource manager. 
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Figure 4-2 Yet another resource manager 

   

Although Spark is designed for in-memory computation, it is capable of handling workloads larger 

than the cluster aggregate memory. Almost all the Spark built-in functions automatically split to 

local disks when the working data set does not fit in memory. In the next two section, we outline 

the difference between Spark and MapReduce, as well as the concept of Resilient Distributed 

Dataset (RDD) in Spark.   

4.2 Apache Spark Vs. Hadoop MapReduce  

Apache Spark improvements over Hadoop MapReduce are characterized by efficiency and 

usability, as shown in Figure 4-3. In order to improve efficiency, it offers in-memory computing 

capability, which can provide a fast running environment for applications that need to reuse and 

share data across computations. Having different languages with integrated APIs, such as Java, 

Scala, Python and R, improve Spark’s usability, as compared to MapReduce. 
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Figure 4-3 Apache Spark efficiency and usability 

Next, we explain the Hadoop Mapreduce with an example, and then discuss how Spark can 

improve the efficiency for implementing more complex algorithms.     

MapReduce is a programming model, and an associated implementation, which allows massive 

scalable data processing across hundreds or thousands of servers. MapReduce refers to two 

separate and distinct tasks, needed for big data processing. The first one is the map task, which 

converts a set of data to another set of data called tuples (key/value pairs). The reduce task takes 

the map output and combines those data tuples into smaller sets of tuples. In the MapReduce 

processing model the reduce task always runs after the map task. A simple MapReduce example 

is as follows. 

Let say we have five data sets, each of them contains two columns that represent a city and the 

temperature in that city (Figure 4-4). 
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Figure 4-4 Cities information 

The goal is to find the maximum temperature for each city. In MapReduce, we split the task into 

five map tasks. Results from one mapper task are illustrated in Figure 4-5. 

 

      

  Figure 4-5 Maximum temperature for each city 

 

We can assume other mapper tasks create the intermediate results which are shown in Figure 4-6. 

 

 

Figure 4-6 Maximum temperature for each city 

Reduce tasks will combine input and output results for each city (Figure 4-7). 
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Figure 4-7 Output of the reduce task 

Some applications, such as implementing large scale graph algorithms in a social network, are 

more complex than just one path of Map and Reduce. They require multiple operations over a 

same data sets. In MapReduce no sharing data across time stamps or iteration is available . Let’s 

take a look at the PageRank example in MapReduce which requires multiple iteration, see Figure 

4-8. 

 

 

 

Figure 4-8 A Multi-Iteration algorithm in MapReduce 

 

The algorithm starts with data in HDFS and then does one step on MapReduce (iteration 1). Then 

to share the data with the next step it has to write it back into HDFS again. After that, in the next 

iterations of PageRank, the data must be loaded back, and the algorithm is continued.  

Spark has a computation model in which after each iteration the data will be stored in memory, 

and it is available to be processed in the next steps as illustrated in Figure 4-9.    

 

 

 

 Iteratin1  Iteratin2 

Input Data 

HDFS HDFS 
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Figure 4-9 Multi-Iteration Algorithm in Spark 

In Spark, instead of thinking in terms of map and reduce functions, we think in terms of distributed 

data sets. This is what essentially distinguishes Spark from Hadoop Mapreduce. The data 

abstraction in Spark is called Resilient Distributed Dataset (RDD), consisting of parallel 

collections of Scala objects. In the next section, RDD is explained in more details.    

  

4.3 Resilient Distributed Dataset (RDD) 

RDD is a logical reference of a dataset which is paralleled among many processors in the cluster. 

RDD is resilient, meaning that if data in memory is lost, then it can be recovered. It is distributed, 

which means processing across the cluster, and the dataset can come from a file, or be created by 

a program. Basically, RDD is a fundamental unit of data in Spark, forming an immutable dataset. 

It contains two different operations, called Transformation and Action. Transformation creates a 

new RDD based on an existing one, while Action returns a value from an RDD. Figure 4-10 

illustrates Transformation and Action for an existing RDD. 

RDD Transformation includes parts called filter, map, union, and others. Actions includes reduce, 

collect, count, etc. The main advantage of RDDs is that they are simple and well understood, 

because they deal with concrete classes, providing a familiar object-oriented programming style 

with compile-time type-safety. 

 Iteratin1  Iteratin2 

Input Data 

Mem
ory 

Mem
ory 
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Figure 4-10 RDD transformation and action 

For example, given an RDD containing instances of Person we can filter by age by referencing the 

age attribute of each Person object as illustrated in Figure 4-11. 

 

 

Figure 4-11 Filter by age in an RDD 

The transformations are only computed when an action requires a result to be returned. In this 

example, when an action like count is called, we will be returned the Persons objects belonging to 

persons older than 21.  

Pair RDD is a special form of RDD, in which each element must have a key-value pair (two 

element tuple). Pair RDD is important because of the traditional map-reduce algorithms for parallel 

processing which is based on key and value pairs. Figure 4-12 shows the word count example 

which is implemented using pair RDD in Spark. First step is creating an RDD based on input data 

then split the RDD based on the words space. After having an RDD corresponding to each word, 
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a pair RDD can be created with the word as the key and number one as the value. Then reducing 

the pair RDDs based on the key returns the word count. 

 

Figure 4-12 Word Count example, using Spark 

4.4 GraphX API for Spark 

Graph-based algorithms are becoming very important for solving numerous problems in data-

intensive applications, including search engines, recommendation systems, financial analysis, and 

many others. As these problems grow in scale, computational and memory requirements of the 

processing algorithms rapidly become a bottleneck. To avoid such a bottleneck, parallel computing 

resources are required. Graphx is a new component in Apache Spark for graph parallel processing, 
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which extends the Spark RDD by introducing the concept of Property Graph. The Property Graph 

is a directed multigraph, that is, a directed graph with potentially multiple parallel edges sharing 

the same end vertices. There also properties attached to each vertex and edge. GraphX is a native 

property graph processor. It allows all vertices and edges to have their own properties.  

 

4.5 Graph Partitioning in Spark 

Graph partitioning algorithms are designed to minimize communication and balance the 

computation among multiple processors. Partitioning the graph data and balancing the 

computation on a distributed cluster of machines is a common approach to scale-out computations 

for large scale input graph data. Iterative computations on input graph data, for instance the 

PageRank systems, are well known use cases for graph partitioning. The quality of graph 

partitioning depends on balancing the processing load across machines and minimizing the 

communication cost inside the cluster. There are two main approaches for partitioning a graph 

among different machines. They are called vertex cut and edge cut. Graphx implements the vertex 

cut approach to ensure one edge is assigned to one partition. In this case one vertex can be shared 

across partitions. This strategy moves the network communication from edges to vertices. In order 

to ensure vertices are partitioned in a most efficient way for a particular algorithm, Graphx 

provides a number of strategies, which are illustrated in Figure 4-13.  

 

 

Figure 4-13 Graph partitioning strategy 



 

74 

The choice between the partition strategies is based upon the algorithm and the graph structure. 

The strategy called EdgePartition1D ensures that all edges with the same source are partitioned 

together, so the edges that belong to a particular partition have the same source. For applications, 

such as counting the outgoing edges which the operation aggregated to the source, each partition 

has all the data needed on an individual machine. In this case the network traffic among different 

machines is minimized. On the other hand, for graphs with power-law structure, a few partitions 

may receive a significant proportion of the total number of edges.  Figure 4-14 shows the 

EdgePartition1D source code in Scala.  

 

  

Figure 4-14 EdgePartition1D implementation 

 

A large number called mixingPrime is used to balance the partitions. EdgePartition2D uses both 

source vertices and destination vertices to calculate partitions. Figure 4-15 shows the source code 

for EdgePartition2D. 

The RandomVertex Cut strategy splits the graph based on both source and destination vertices, 

which can help to create a more balanced partition. This strategy may affect the runtime 

performance due to the increase in the amount of network communication 
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Figure 4-15 EdgePartition2D implementation 

The RandomVertex Cut strategy splits the graph based on both source and destination vertices, 

which can help to create a more balanced partition. This strategy may affect the runtime 

performance due to the increase in the amount of network communication. In this case even the 

edge that connects the same pair of nodes may be spread among two machines based on the 

direction of the edge. Figure 4-16 illustrates the source code of Random Vertex Cut.  

 

 

Figure 4-16 Random Vertex Cut implementation 

The strategy Canonical Random Vertex Cut partitions the edges regardless to the direction, so 

the edges sharing both a source and a destination will be partitioned together.  Figure 4-17 shows 

the source code for this partitioning strategy.  

In the next section we show an example, which is based on a property graph in a paper citation 

network (see http://snap.stanford.edu/data/cit-HepTh.html). The network is created from the 

publication information available for ArXiv High Energy Physics Theory category. 
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Figure 4-17 Canonical Random Vertex Cut implementation 

In the next section we show an example, which is based on a property graph in a paper citation 

network (see http://snap.stanford.edu/data/cit-HepTh.html). The network is created from the 

publication information available for ArXiv High Energy Physics Theory category.  

 

4.6 Paper citation Network Example 

The first few lines in the text file containing all the citation information is shown in Figure 4-18. 

After the comment lines, which begin with #, each line represents one edge of the graph. For 

example, the first edge starts from a vertex identified by 1001 to another one identified by 9304045.    

Each vertex is keyed by a unique 64-bit long identifier (VertexID). 

 

Figure 4-18 Text file containing the citation information 
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Similarly, edges have corresponding source and destination vertex identifiers. In the context of a 

paper citation network, the second paper in the older one being cited by the newer paper. This 

format of a text file is recognized by GraphX. The next step is the creation of the RDD, based on 

the edges and vertices data. For this purpose, SparkContext should be constructed. Figure 4-19 

shows the source code for loading the graph data, and creates an immutable value called 

paperCitationGraph.  

 

 

Figure 4-19 Loading a graph in Spark 

GraphLoader is an object in GraphX library which contains a method called edgeListFile. This can 

load a graph from a text file in edge-list format and it uses two methods. The first one is 

SparkContext (sc) and the second one is the file that contains the graph property information.  Now 

the graph is ready to be processed in a distributed environment. Finding the most-referenced paper 

is a well-known problem in a paper citation network. The following steps, as illustrated in Figure 

4-20, can find such a paper in a distributed way using Spark/Graphx library by calling inDegree 

and reduce methods.  
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Figure 4-20 inDegree and reduce in Graphx API 

In the first step, an RDD of vertexID and in-degree pairs proceeds from the inDegree method. 

Figure 4-21 shows the details.  

 

 

Figure 4-21 inDegrees method in GraphX producing key-value pairs 

  

In the second step, each RDD uses a reduce method which takes a function as an input.  The 

function receives two elements from the RDD and returns a single value. The function would be 

called repeatedly on pairs of elements (RDD) from the reduce method, until only a single value is 

left.  The single value is returned from the reduce method in step 2. Figure 4-22 illustrates the 

second step. 

The PageRank algorithm can be used to measure the influence of vertices in any social network, 

although originally it was developed to support Google search. We are using the same data set as 

the previous section. First let us see how vertices data look like, figure 4-23. 
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Figure 4-22 reduce (Function) method in GraphX producing a single key value pair 

The result is: Paper ID 9711200 was cited by 2414 other papers, making it the most cited paper.  

 

4.7 Finding PageRank in Social Network using Apache Spark 

The PageRank algorithm can be used to measure the influence of vertices in any social network, 

although originally it was developed to support Google search. We are using the same data set as 

the previous section. First let us see how vertices data look like, figure 4-23. 

 

  

Figure 4-23 vertices in the paperCitationGraph 

As illustrated in Figure 4-23, all vertices are key-value pairs, where key is the vertex ID and the 

value is 1. In GraphX all vertices and edges have their own properties, and the arising graph is 

called property graph. In the considered case the value 1 is the property for all vertices, which is 
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attached to them by the GraphLoader.edgeListFile() method. Now in order to calculate the rank of 

each vertex, we have to change each vertex property to match the corresponding PageRank. The 

idea of immutable data set implies that the graph property does not change. So, a new property 

graph must be created to express the PageRank property. This is a key Spark concept, the existing 

RDDs (in this case graph structure) are not updated. Instead, a transformation takes place on an 

existing RDD to create a new RDD. Figure 4-24 illustrates two graph properties before and after 

applying the PageRank method (transformation). 

 

 

    

 

Figure 4-24 PageRank transformation that creates a new property graph 

 

PageRank is a link analysis algorithm that outputs a probability distribution, which can be used to 

represent the likelihood of a page being referenced. So the new graph has a property of type 

Double. The code for PageRank calculation in the paper citation network is shown in Figure 4-25. 
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Figure 4-25 PageRank method in Spark using GraphX library 

The next step is to run the reduce method with an appropriate function to find the vertex with the 

highest PageRank, see Figure 4-26. 

 

  

Figure 4-26 The most influential paper 

Finally, we get the result that, according to the PageRank algorithm, paper ID 9207016 is the 

most influential one.  

 

4.8 Finding connected components using Apache Spark 

A connected component of a graph is a set of vertices such that every vertex is reachable from 

every other vertex.  Connected component can identify isolated members in social networks, and 

can also approximate clusters. Figure 4-27 shows an example of connected components in a graph.  
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Figure 4-27 Finding connected components 

 

Figure 4-28 illustrates the network construction, based on RDD collections (vertices and edges). 

 

Figure 4-28 Network construction based on RDD collections 

Using the code provided in Figure 4-29 allows the detection of connected components in the 

network above. 
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Figure 4-29 Finding connected components 

4.9 Triangle counting using Apache Spark    

Counting the number of triangles in a large graph is frequently used in complex network analysis 

such as spam detection and uncovering hidden structures in link recommendation. A triangle 

consists of three vertices that all connected with edges. A social network which contains more 

triangles usually has tighter connections. The TriangleCount method in spark counts triangles 

passing through each vertex using the following steps. 

 

Step 1: Find the set of neighbors for each vertex. 

Step 2: For each edge find the intersection of the sets and send the count to both vertices 

Step 3: Find the sum at each vertex and divide by two since each triangle is counted twice. 

Figure 4-30 below illustrates the process.  

In order to use the TriangleCount method in Spark, the graph has to meet two requirements. First, 

the graph has to be partitioned by one of the partition strategy options, described in Section 3-1. 

Second, if there are any duplicate edges, they have to point in the same direction. To ensure the 

latter requirement, all edges must be in canonical order, pointing from the lower-numbered vertex 

ID to the higher numbered vertex ID.  
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Let us consider the Slashdot social network to find the number of triangles in a large scale network. 

Slashdot is a technology news related website which has a specific user community. The website 

features user-submitted and editor-evaluated current, primarily consisting of technology related 

news. In 2002 Slashdot introduced the Slashdot Zoo feature which allows users to tag each other 

as friends or foes. The network contains friend/foe links between the users.  The network was 

recorded in November 2008. Table 4-1 shows the data set statistics. 

 

 

 

 

Figure 4-30 Triangle counting algorithm 
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Table 4-1 Slashdot social network statistics 

Number of Nodes 77360 

Number of Edges 905468 

Nodes in largest WCC 77360 (1.000) 

Edges in largest WCC 905468 (1.000) 

Nodes in largest SCC 70355 (0.909) 

Edges in largest SCC 888662 (0.981) 

Average clustering coefficient 0.0555 

Number of triangles 551724 

Fraction of closed triangles 0.008184 

Diameter (longest shortest path) 10 

90-percentile effective diameter 4.7 

   

Figure 4-31 shows the steps including the source code for counting number of triangles in the 

Slashdot social network.  

As shown in the figure above, the number of triangles are 1352001, 61376, 10865, 3935, 1384, 

786 and 658 for each of seven subgraphs ((0 to 6).map), respectively, in the social network.  
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4.10 Summery of distributed graph processing   

In this chapter we introduced Apache Spark as a replacement for Hadoop Mapreduce.  Efficiency 

of Spark, as a result of in-memory processing, makes it a popular big data processing engine. It 

also has high usability, due to different programming language APIs. 

 

Figure 4-31 . Triangle Counting in Slashdot social network 

 

There is a large collection of algorithms that cannot be implemented using only one iteration of 

Map and Reduce functions. Notably, graph processing algorithms fall in this category. Apache 
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Spark improves efficiency of implementing such algorithms using in-memory processing. 

Essentially, after one iteration of Map and Reduce, the results are ready, and available in memory 

for the next iteration. Spark can be 100 times faster than Hadoop Mapreduce for machine learning 

algorithms, such logistic regression [6]. A fundamental processing unit in Spark is RDD, instead 

of one path of Map and Reduce functions. RDD is an immutable distributed data set across the 

cluster which is resilient to data storage failure. Data processing algorithms can be implemented 

using transformations and actions on each RDD. Transformations will create series of RDDs. As 

a result of immutability, each one of them can be recalculated from the previous one.  

Graphx is a new component in Spark for implementing graph algorithms in a distributed 

environment. Graphx extends the Spark RDD by introducing a new graph abstraction in terms of 

a distributed dataset, attached to vertices and edges. In this chapter three important social network 

algorithms have been introduced using Graphx library in Apache Spark. The first one is finding 

PageRank in a social network, the second one is finding connected components, and the last but 

not least is the triangle counting algorithm. In all the three applications, we have illustrated the 

steps via appropriate examples [27].  
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CHAPTER 5  

APPROXIMATION APPROACH FOR ANALYSING NETWORK STRUCTURE 

5.1 How Complex Networks Inspire New Avenues to Approximation – The Case of 

Unsplittable Flows  

The Disjoint Connecting Paths problem, and its capacitated generalization, called Unsplittable 

Flow problem, play an important role in practical applications, such as communication network 

design and routing. These problems are hard in general, but various polynomial-time 

approximations are known. Nevertheless, the approximations tend to be rather complicated, often 

rendering them impractical in large, complex networks. Therefore, our goal is to present a solution 

that provides a simple, efficient algorithm for the unsplittable flow problem in large directed 

graphs. The simplicity is achieved by sacrificing a small part of the solution space. This also 

represents a novel paradigm of approximation: rather than giving up finding an exact solution, we 

restrict the solution space to a subset that is the most important for applications, and exclude those 

that are marginal in some sense. Specifically, the sacrificed part (i.e., the marginal instances) only 

contains scenarios where some edges are very close to saturation. Therefore, the excluded part is 

not significant, since the almost saturated solutions are typically undesired in practical 

applications, such as network design [28].  

 

5.2 Problem statement. 

The Disjoint Connecting Paths problem is the following decision task. Input: a set of node pairs 

(𝑠1, 𝑡1), . . . , (𝑠𝑘, 𝑡𝑘) in a graph. Task: Find edge disjoint paths 𝑃1, . . . , 𝑃𝑘, such that 𝑃𝑖 connects 
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si with ti for each i.  

This is one of the classical NP-complete problems that appears already at the sources of NP-

completes theory, among the original problems of Karp. It remains NP-complete both for directed 

and undirected graphs, as well as for the edge disjoint and vertex disjoint paths version. The 

corresponding natural optimization problem, when we are looking for the maximum number of 

terminator pairs that can be connected by disjoint paths is NP-hard.  

There is also a capacitated version of the Disjoint Connecting Paths problem, also known as the 

Unsplittable Flow problem. In this task, a flow demand value is given for each origin- destination 

pair (si, ti), as well as a capacity value is known for each edge. The requirement is to find a system 

of paths, connecting the respective source-destination pairs, such that the capacity constraint of 

each edge is obeyed, i.e., the sum of the flows of paths that traverse the edge cannot be more than 

the capacity of the edge. The name Unsplittable Flow expresses the requirement that between each 

source-destination pair the flow must follow a single route, it cannot split. Note that here the 

disjointness of the paths themselves is not required a priori, but can be enforced by the capacity 

constraints. The Unsplittable Flow problem is important in communication network design and 

routing applications.  

In this chapter, after reviewing some existing results, we show that the Unsplittable Flow problem, 

which is NP-complete, becomes efficiently solvable by a relatively simple algorithm if we impose 

a mild and practically well justifiable restriction on the instance.  
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5.3 Related work 

Considerable work was done on the Disjoint Connecting Paths problem, since its first appearance 

as an NP-complete problem in [14].  

One direction of research deals with finding the “heart” of the difficulty: which are the simplest 

restricted cases that still remain NP-complete (Or NP-hard if the optimization version is 

considered, where we look for the maximum number of connecting paths, allowing that possibly 

not all source-destination pairs will be connected). [29] proves, motivated by VLSI layout design, 

that the problem remains NP-complete even for graphs as regular as a two-dimensional mesh. If 

we restrict ourselves to undirected planar graphs with each vertex having degree at most three, the 

problem also remains NP- complete, as proven by Middendorf and Pfeiffer [30]. The optimization 

version remains NP- hard for trees with parallel edges, although there the decision problem is 

already solvable in polynomial time.  

The restriction that we only allow paths which connect each source node with a dedicated target 

is essential. If this is relaxed and we are satisfied with edge disjoint paths that connect each source 

si with some of destinations tj but not necessarily with ti, then the problem becomes solvable with 

classical network flow techniques. Thus, the prescribed matching of sources and destinations 

causes a dramatic change in the problem complexity. Interestingly, it becomes already NP-

complete if we require that just one of the sources is connected to a dedicated destination, the rest 

is relaxed as above [31].  

Another group of results produces polynomial time algorithmic solutions for finding the paths, 

possibly using randomization, in special classes of graphs. For example, Middendorf and Pfeiffer 
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[30] proves the following. Let us represent the terminator pairs by demand edges. These are 

additional edges that connect a source with its destination. If this extended graph is embeddable in 

the plane such that the demand edges lie in a bounded number of faces of the original graph, then 

the problem is solvable in polynomial time. (The faces are the planar regions bordered by the 

curves that represent the edges in the planar embedding, i.e., in drawing the graph in the plane). 

Thus, this special case requires that, beyond the planarity of the extended graph, the terminators 

are concentrated in a constant number of regions (independent of the graph size), rather than 

spreading over the graph.  

A deep theoretical result, due to Robertson and Seymour [32], is that for general graphs the 

problem can be solved in polynomial time if the number k of paths to be found is constant (i.e. 

cannot grow with the size of the graph). Broder, Frieze, Suen and Upfal [33] consider the case of 

random graphs and provide a randomized algorithm that, under some technical conditions, finds a 

solution with high probability in time O(nm2) for a graph of n vertices and m edges.  

Another line of research aims at finding approximations to the optimization version. An algorithm 

is said to be an f(n)-approximation if it can connect a subset of the terminator pairs by disjoint 

paths such that this subset is at most f(n) times smaller than the optimum in a graph of n vertices. 

For example, in this terminology a 2-approximation algorithm always reaches at least the half of 

the optimum, or an O(logn)-approximation reaches at least a c/ log n fraction of the optimum, for 

n > n0 with some constants c, n0.  

Various approximations have been presented in the literature. For example, Garg, Vazi- rani and 

Yannakakis [34] provide a 2-approximation for trees with parallel edges. Aumann and Rabani [35] 
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gives an O(log n)-approximation for the 2-dimensional mesh. Kleinberg and Tardos [36] present 

an O(log n)-approximation for a larger subclass of planar graphs, they call “nearly Eulerian, 

uniformly high-diameter planar graphs” (the rather technical definition is omitted here). For the 

general case an approximation factor of min {√𝑚, 𝑚/𝑜𝑝𝑡}  =  𝑂(√𝑚) is known to be achievable 

, where m is the number of edges and opt is the optimum, i.e., the maximum number of disjoint 

connecting paths between the source- destination pairs. Similar bounds apply for the Unsplittable 

Flow problem, as well. Bounds have been also found in terms of special (less trivial) graph 

parameters. 

5.4 A Simple Practical Approximation  

The various above referenced solutions are rather complicated, which is certainly not helpful for 

practical applications, in particular in large, complex networks. Our approach for providing a 

simple solution to the unsplittable flow problem based on the following idea. We “cut down” a 

small part of the solution space by slightly reducing the edge capacities. In other words, we exclude 

solutions that are close to saturating some edge, as explained below.  

Let 𝑉𝑖 be the given flow demand of the 𝑖𝑡ℎ 
connecting path. We normalize these demands such 

that 𝑉𝑖 <=  1 for every i. Let 𝐶𝑗 be the capacity of edge j. The graph is assumed directed and the 

edges are numbered from 1 through m. Recall that a feasible solution of the problem is a set of 

connecting (directed) paths that satisfy the edge capacity constraints, that is, on each edge j the 

sum of the 𝑉𝑖 values of those paths that traverse the edge does not exceed 𝐶𝑗. As mentioned earlier, 

deciding whether a feasible solution exist at all is a di cult (NP-complete) problem.  

On the other hand, not all feasible solutions are equally good from the practical viewpoint. For 
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example, if a route system in a network saturates or nearly saturates some links, then it is not 

preferable because it is close to being overloaded. For this reason, let us assign a parameter  

0 <  𝜌j < 1 to each edge j, such that 𝜌j  will act as a “safety margin” for the edge. More precisely, 

let us call a feasible solution a safe solution with parameters 𝜌j , j = 1, . . . , m, where m is the 

number of edges, if it uses at most 𝐶𝑗̃ =  𝜌𝑗𝐶𝑗 capacity on edge j.  

Now, the interesting thing is that if we restrict ourselves to only those cases when a safe solution 

exists, then the hard algorithmic problem becomes solvable by a relatively simple randomized 

algorithm. With very high probability the algorithm finds a solution in polynomial time, whenever 

there exists a safe solution.  

The price is that we exclude those cases when a feasible solution still possibly exists, but there is 

no safe solution. This means, in these cases all feasible solutions are undesirable, in the sense that 

they make some edges nearly saturated. In these marginal cases the algorithm may find no solution 

at all. This approach constitutes a new avenue to approximation, in the sense that instead of giving 

up finding an exact solution, we rather restrict the search space to a (slightly) smaller one. When, 

however, the algorithm finds any solution, then it is an exact (not just approximate) solution.  

Now let us choose the safety margin 𝜌j   for a graph of m edges as 

𝜌𝑗 = 1 − (𝑒 − 1)√
𝑙𝑛 2𝑚

𝐶𝑗
≈ 1 − 1.71√

𝑙𝑛 2𝑚

𝐶𝑗
 (5-1) 
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Where 𝑙𝑛 denotes the natural logarithm loge. Note that 𝑗 tends to 1 with growing𝐶𝑗, even if the 

graph also grows, but Cj grows faster than the logarithm of the graph size, which is very reasonable 

(note that doubling the number of edges will increase the natural logarithm by less than 1). For 

example, if in a graph each edge capacity is 1000 units, measured in relative units, such that the 

maximum path flow demand is 1, and the graph has 200 edges, then 𝜌 ≈ 0,97.  

Now we outline how the algorithm works. To make it even closer to practical applications, we also 

assume that cost factors are assigned to the edges and we are looking for a feasible solution with 

small cost, where the cost incurred on an edge is proportional with the demand routed through it.  

Algorithm  

Step 1 Initialization  

Compute the 𝐶𝑗̃ =  𝜌𝑗𝐶𝑗 values with 𝜌𝑗set according to (5-1).  

Step 2 Flow relaxation  

Solve the continuous minimum cost multicommodity flow relaxation of the problem, using the 

𝐶𝑗̃capacities. This can be done by standard linear programming. In case the flow problem has no 

solution then declare “no safe solution exists” and STOP.  

Step 3 Randomized Rounding via Random Walk  

For each source-destination pair ui, vi find a path via the following randomized rounding 

procedure. Start at the source and take the next node such that it is drawn randomly among the 



 

95 

successor neighbors of the source, with probabilities proportional to the ith commodity flow values 

on the edges from ui to the successor neighbors in the directed graph. Continue this in a similar 

way: at each node choose the next one among its successor neighbors randomly, with probabilities 

that are proportional to the 𝑖𝑡ℎ commodity flow values. Finally, upon arrival at 𝑣𝑖, we store the 

found (𝑢𝑖, 𝑣𝑖) path.  

Step 4 Feasibility Check and Repetition  

Having found a system of paths in the previous steps, check whether it is a feasible solution. If so, 

then STOP, else repeat from Step 2.If after repeating r times (r is a fixed parameter) none of the 

runs are successful then declare “No solution is found” and STOP.  

It is clear from the above informal description that the algorithm has practically feasible 

complexity, since the most complex part of it is solving a multicommodity flow problem that can 

be done by linear programming. It is repeated r times where r is a parameter, chosen by us. The 

main property of the algorithm is shown in the following theorem.  

Theorem 1: If a safe solution exists, the algorithm finds a feasible solution with probability at least 

1 − 2
 𝑟 

Proof. Since a safe solution is also a feasible solution of the multicommodity flow relaxation, 

therefore, if there is no flow solution in Step 2, then no safe solution can exist either.  

Step 3 transforms the flow solution into paths. To see that they are indeed paths, observe that 

looping cannot occur in the randomized branching procedure, because if a circle arises on the way, 
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that would mean a circle with all positive flow values for a given commodity, which could be 

canceled from the flow of that commodity, thus contradicting to the minimum cost property of the 

flow. Furthermore, since looping cannot occur, we must reach the destination via the procedure in 

at most n steps, where n is the number of nodes.  

Now a key observation is that if we build the paths with the described randomization between the 

𝑖𝑡ℎ source-destination pair, then the expected value of the load that is put on any given edge by 

these paths will be exactly the value of the 𝑖𝑡ℎ commodity flow on the link. This follows from the 

fact that the branching probabilities are flow-proportional.  

From the above we know that the total expected load of an edge, arising from the randomly chosen 

paths, is equal to the total flow value on the edge. What we have to bound is the deviation of the 

actual load from this expected value. Let Fj be the flow (=expected load) on edge j. This arises in 

the randomized procedure as  

𝐹𝑗 = 𝐸(∑ 𝑉𝑖𝑋𝑖)

𝑖

 

where Xi is a random variable that takes the value 1 if the ith path contributes to the edge load, 

otherwise it is 0. The construction implies that these random variables are independent. Now 

consider the random variable  

𝜓𝑗 = ∑ 𝑉𝑖𝑋𝑖

𝑖

 

We have 𝜓𝑗 =  𝐹𝑗 . The probability that 𝜓𝑗 deviates form its expected value by more than a factor 
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of can be bounded by the tail inequality found in [10]:  

𝑃𝑟(𝜓𝑗 > (1 + 𝛿)𝐹𝑗) < (
𝑒𝛿

(1 + 𝛿)(1+𝛿)
)

𝐹𝑗

 

It can be calculated from this [10] that if we want to guarantee that the bound does not exceed a 

given value 𝜖 > 0, then it is sufficient to satisfy  

𝛿 ≤ (𝑒 − 1)√
l𝑛 (

1
𝜖)

𝐹𝑗
 

Let us choose 𝜖 = 1/2𝑚. Then we have 

𝑃𝑟 (𝜓𝑗 > (1 + (𝑒 − 1)√
𝑙𝑛 2𝑚

𝐹𝑗
) 𝐹𝑗) <

1

2𝑚
 

Since the bound that we do not want to exceed is the edge capacity𝐶𝑗, therefore, if  

𝐶𝑗 ≥ (1 + (𝑒 − 1)√
𝑙𝑛 2𝑚

𝐹𝑗
) 𝐹𝑗                   (5-2) 

 

is satisfied, then we have  

𝑃𝑟(𝜓𝑗 > 𝐶𝑗) <
1

2𝑚
 

If this holds for all edges, that yields  
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𝑃𝑟(∃𝑗: 𝜓𝑗 > 𝐶𝑗) ≤ ∑ 𝑃𝑟(𝜓𝑗 > 𝐶𝑗)

𝑚

𝑗=1

 

< 𝑚
1

2𝑚
 

=
1

2
 

Thus, the probability that the found path system is not feasible is less than 1/2. Repeating the 

procedure r times with independent randomness, the probability that none of the trials provide a 

feasible solution is bounded by 1/2r, that is, the failure probability becomes very small, already for 

moderate values of r.  

Finally, expressing Fj form (5-2) we obtain 

𝐹𝑗 ≤ 𝐶𝑗 (1 − (𝑒 − 1)√
𝑙𝑛 2𝑚

𝐶𝑗
) = 𝜌𝑗𝐶𝑗 

which shows that the safety margin is correctly chosen, thus completing the proof.  

We have presented a simple, efficient solution for the NP-complete Unsplittable Flow problem in 

directed graphs. The simplicity and efficiency is achieved by sacrificing a small part of the solution 

space. The sacrificed part only contains scenarios where some edges are very close to saturation. 

Therefore, the loss is not significant, since the almost saturated solutions are typically undesired 

in practical applications, such as network design. The approach constitutes a new avenue to 

approximation, in the sense that instead of giving up finding an exact solution, we rather restrict 
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the search space to a (slightly) smaller one. When, however, the algorithm finds any solution, 

which happens with high probability, then it is an exact (not just approximate) solution.  

5.5  Utilizing Network Structure to Accelerate Markov Chain Monte Carlo Algorithms 

We consider the problem of estimating the measure of subsets in very large networks. A prime 

tool for this purpose is the Markov Chain Monte Carlo (MCMC) algorithm. This algorithm, 

while extremely useful in many cases, still often suffers from the drawback of very slow 

convergence. We show that in a special, but important case, it is possible to obtain significantly 

better bounds on the convergence rate. This special case is when the huge state space can be 

aggregated into a smaller number of clusters, in which the states behave approximately the same 

way (but their behavior still may not be identical). A Markov chain with this structure is 

called quasi-lumpable. This property allows the aggregation of states (nodes) into clusters. Our 

main contribution is a rigorously proved bound on the rate at which the aggregated state 

distribution approaches its limit in quasi-lumpable Markov chains. We also demonstrate 

numerically that in certain cases this can indeed lead to a significantly accelerated way of 

estimating the measure of subsets. The result can be a useful tool in the analysis of complex 

networks, whenever they have a clustering that aggregates nodes with similar (but not 

necessarily identical) behavior [37]. 

The Markov Chain Monte Carlo (MCMC) method is one of the most frequently used algorithms 

to solve hard counting, sampling and optimization problems. This is relevant for many areas, 

including complex networks, physics, communication systems, computational biology, 

optimization, data mining, big data analysis, forecast problems, prediction tasks, and 
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innumerable others. The success and influence of the method is shown by the fact that it has 

been selected as one of the top 10 of all algorithms in the 20th century. 

The MCMC algorithm also plays an important role in large, complex networks. In this chapter, 

we consider the following regularly occurring application of the MCMC method:  

Consider a very large graph G, with node set S, and let A⊆S be a subset of the nodes. We would 

like to estimate the relative size of A, that is, the goal is to obtain a good estimate of the value 

 𝑝 =
|𝐴|

|𝑆|
 

(5-3) 

More generally, if a random walk is considered on the graph, with stationary distribution π, then 

we would like to estimate π(A), the stationary probability of being in A. In the special case 

when π is the uniform distribution, we get back the formula (5-3). 

If we can take random samples from S, according to the stationary distribution, then an obvious 

estimate with good properties is the relative frequency of the event that the sample falls in  A. 

Unfortunately, in most nontrivial cases of interest, this sampling task is not feasible. The reason 

is that often the large set S is defined implicitly. Examples are the set of all cliques in a graph, 

or the set of all feasible solutions to an optimization problem, and many others. No efficient 

general method is known to sample uniformly at random from such complex sets.  

An important application in telecommunication networks is to estimate blocking probabilities. 

More generally, if we have a large system, with an enormous state space, we may want to 

estimate that the actual state falls in a specific subset. For example, if the state space consists 

of all possible load values of the network links, which leads to a state space of astronomical 

size, we may want to know what the probability is that at most k links are overloaded, for some 

value of k. 
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At this point, the MCMC does a very good service. If we define a Markov chain in which the 

states are the elements of Sand the transitions are based on simple local operations, then we can 

very often obtain a Markov chain with uniform, or some other simple stationary distribution 

over S. Then, if we run this chain long enough so that it gets close to the stationary distribution, 

then the state where we stop the chain will be a good approximation of a random sample over S, 

distributed according to the stationary distribution. Then by repeating the process sufficiently 

many times, and by counting the relative frequency that the random sample falls in A, we can 

get a good estimate of the probability measure of A. 

The key difficulty is, however, that we should run the chain long enough to get sufficiently 

close to the stationary distribution. This time is often referred to as mixing time. If the mixing 

time grows only polynomially with the size of the problem, e.g. with the size of the graph, then 

we say that the chain is rapidly mixing. Unfortunately, in many cases of interest the mixing 

time grows exponentially with the problem parameters, so in many important cases the Markov 

chain is mixing very slowly. 

What we are interested in is whether it is possible to speed up the running time. It is clear that 

if we want to estimate the size of any possible subset, then we really need to get close to the 

stationary distribution, since only this distribution can guarantee that the probability of the 

random state falling in the set is really the relative size of the set. On the other hand, if we only 

want to estimate the relative size of a specific subset A, then it is enough for us if we reach a 

distribution in which the measure of A is close to the stationary measure, but this does not have 

to hold for every other set. In other words, if πtdenotes the state distribution after t steps and π is 

the stationary distribution, then we want to choose t such that |𝜋𝑡(𝐴) − 𝜋(𝐴)| is small, but the 
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same does not have to hold for all other sets. This makes it possible to reduce the required value 

of t, that is, to speed up the algorithm. In this chapter we investigate under what conditions it is 

possible to obtain such a speed-up. 

The main result is that the structure of the chain, that is, the network structure, can significantly 

help, if it has some special properties. Specifically, if the Markov chain is close to a so 

called lumpable chain, then remarkable speedup is possible. In other words, in this case we can 

indeed capitalize on the particular network structure to accelerate the method. Below we 

informally explain what the concept of lumpability means. The formal definition will follow in 

the next section. 

The concept of lumpability stems from the following observation: it is very useful if the state 

space can be partitionedsuch that the states belonging to the same partition class “behave the 

same way,” in the sense defined formally in the next section. This is the concept of lumpability. 

Informally speaking, it means that some sets of states can be lumped together (aggregated) and 

replaced by a single state, thus obtaining a Markov chain which has a much smaller state space, 

but its essential behavior is the same as the original. 

In some cases, the lumpability of the Markov chain can have a very significant effect on the 

efficiency of the model. A practical example is discussed in [38], where the authors present a 

fast algorithm to compute the PageRank vector, which is an important part of search engine 

algorithms in the World Wide Web. The PageRank vector can be interpreted as the stationary 

distribution of a Markov chain. This chain has a huge state space, yielding excessive 

computation times. This Markov chain, however, is lumpable. Making use of the lumpability, 
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the computation time can be reduced to as low as 20% of the original, according to the 

experiments presented in [38]. 

Unfortunately, it happens relatively rarely that the Markov chain satisfies the definition of 

lumpability exactly. This motivates the concept of quasi-lumpability. Informally, a Markov 

chain is quasi-lumpable if its transition matrix is obtainable by a small perturbation from a 

matrix that exactly satisfies the lumpability condition (see the formal definition in the next 

section). 

In this chapter we are interested in the following problem, which is often encountered in 

applications: how long do we have to run the Markov chain if we want to get close to the 

stationary distribution within a prescribed error? While the general question is widely discussed 

in the literature, we focus here on a less researched special case: how much gain can the 

convergence speed enjoy, if we can capitalize on the special structure of quasi-lumpability. 

 

5.6 Aggregation in Markov Chains 

We assume the reader is familiar with the basic concepts of Markov chains. We adopt the 

notation that a Markov chain M is given by a set S of states and by a transition probability 

matrix P, so we write𝑀 = (𝑆, 𝑃). This notation does not include the initial distribution, because 

it is assumed arbitrary. 

Let us first define the concept lumpability of a Markov chain. Informally, as mentioned in the 

Introduction, a chain is lumpable if its states can be aggregated into larger subsets of  S, such 

that the aggregated (lumped) chain remains a Markov chain with respect to the set-transition 

probabilities (i.e., it preserves the property that the future depends on the past only through the 
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present). Note that this is generally not preserved by any partition of the state space. Let us 

introduce now the formal definition. 

Definition 1.   

(Lumpability of Markov chain) Let 𝑀 = (𝑆, 𝑃) be a Markov chain. Let 𝑄 = {𝐴1, … , 𝐴𝑚} be a 

partition of S. The chain M is called lumpable with respect to the partition Q if for any initial 

distribution, the relationship 

𝑃𝑟( 𝑋𝑡 ∈ 𝐴𝑗 ∣∣ 𝑋𝑡 − 1 ∈ 𝐴𝑖1, … , 𝑋𝑡 − 𝑘 ∈ 𝐴𝑖𝑘 ) 

= 𝑃𝑟(𝑋𝑡 ∈ 𝐴𝑗|𝑋𝑡 − 1 ∈ 𝐴𝑖1)    

        (5-4) 

 

 

holds for any 𝑡, 𝑘, 𝑗, 𝑖1, … , 𝑖𝑘, whenever these conditional probabilities are defined (i.e., the 

conditions occur with positive probability). If the chain is lumpable, then the state set of the 

lumped chain is Q and its state transition probabilities are defined by 

 

𝑝𝑖𝑗 = 𝑃𝑟(𝑋𝑡 ∈ 𝐴𝑗|𝑋𝑡 − 1 ∈ 𝐴𝑖)             (5-5) 

 

Checking whether a Markov chain is lumbable would be hard to do directly from the definition. 

That is why it is useful to have the following characterization, which is fundamental result on 

the lumpability of Markov chains. For simple description, we use the notation 𝑝(𝑥, 𝐴) to denote 

the probability that the chain moves into a set 𝐴 ⊆ 𝑆 in the next step, given that currently it is 

in the state 𝑥 ∈ 𝑆. Note that x itself may or may not be in A [31]. 

Theorem 1.  (Necessary and sufficient condition for lumpability) A Markov chain 𝑀 = (𝑆, 𝑃) is 

lumpable with respect to a partition 𝑄 = {𝐴1, … , 𝐴𝑚} of S if and only if for any i,j the value 
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of 𝑝(𝑥, 𝐴𝑗) is the same for every x∈Ai. These common values define the transition 

probabilities 𝑝ˆ(𝐴𝑖, 𝐴𝑗) for the lumped chain, which is a Markov chain with state set Q and state 

transition probabilities 

𝑝ˆ(𝐴𝑖, 𝐴𝑗) = 𝑝(𝑥, 𝐴𝑗) = 𝑃𝑟(𝑋𝑡 ∈ 𝐴𝑗|𝑋𝑡 − 1 ∈ 𝐴𝑖) 

where x is any state in 𝐴𝑖. 

Informally, the condition means that a move from a set 𝐴𝑖 ∈ 𝑄 to another set 𝐴𝑗 ∈ 𝑄 happens 

with probability 𝑝(𝑥, 𝐴𝑗), no matter which 𝑥 ∈ 𝐴𝑖 is chosen. That is, any 𝑥 ∈ 𝐴𝑖 has the 

property that the probability of moving from this x to the set Aj in the next step is the same for 

every 𝑥 ∈ 𝐴𝑖. The sets 𝐴𝑖, 𝐴𝑗 are partition classes of Q. We also allow 𝑖 = 𝑗, so they may 

coincide. 

Whenever our Markov chain is lumpable, we can reduce the number of states by the above 

aggregation, and it is usually advantageous for faster convergence (a specific bound will be 

proven in Section 3). 

It is worth noting that lumpability is a rather special property, and one has to be quite lucky to 

encounter a real-life Markov chain that actually has this property. Sometimes it happens (see, 

e.g., the example in the Introduction about PageRank computation), but it is not very common. 

Therefore, let us now relax the concept of lumpability to broaden the family of the considered 

Markov chains. The extended condition, as explained below, is called quasi-lumbability. 

Informally, a Markov chain is called quasi-lumpable or ϵ-quasi-lumpable or simply ϵ-

lumpable, if it may not be perfectly lumpable, but it is “not too far" from that. This “ϵ-closeness" 

is defined in [10,11] in a way that the transition matrix can be decomposed as 𝑃 = 𝑃− + 𝑃𝜖. 

Here 𝑃− is a component-wise non-negative lower bound for the original transition matrix P, 

http://www.mdpi.com/1999-4893/9/3/50/htm#sec3-algorithms-09-00050
http://www.mdpi.com/1999-4893/9/3/50/htm#B10-algorithms-09-00050
http://www.mdpi.com/1999-4893/9/3/50/htm#B11-algorithms-09-00050
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such that 𝑃− satisfies the necessary and sufficient condition of Theorem 1. The other matrix, 𝑃𝜖, 

represents a perturbation. It is an arbitrary non-negative matrix in which each entry is bounded 

by ϵ. This definition is not very easy to visualize, therefore, we use the following simpler but 

equivalent definition. 

Definition 2.  (ϵ-lumpability) Let 𝜖 ≥ 0. A Markov chain 𝑀 = (𝑆, 𝑃) is called ϵ-lumpable with 

respect to a partition 𝑄 = {𝐴1, … , 𝐴𝑚} of S if 

|𝑝(𝑥, 𝐴𝑗) − 𝑝(𝑦, 𝐴𝑗)| ≤ 𝜖 

holds for any 𝑥, 𝑦 ∈ 𝐴𝑖 and for any 𝑖, 𝑗 ∈ {1, … , 𝑚}. 

Note that if we take 𝜖 = 0, then we get back the ordinary concept of lumpability. Thus, quasi-

lumpability is indeed a relaxation of the original concept. It can also be interpreted in the 

following way. If 𝜖 > 0, then the original definition of lumpability may not hold. This means, 

the aggregated process may not remain Markov. i.e., it does not satisfy (2). On the other hand, 

if ϵ is small, then the aggregated process will be, in a sense, “close" to being Markov, that is, to 

satisfying (2). 

What we are interested in is the convergence analysis of quasi-lumpable Markov chains, 

typically for a small value of ϵ. For the analysis we need to introduce another definition. 

 

Definition 3.  (Lower and upper transition matrices) Let 𝑀 = (𝑆, 𝑃) be a Markov chain which 

is ϵ-lumpable with respect to a partition 𝑄 = {𝐴1, … , 𝐴𝑚}. The lower and upper transition 

matrices 𝐿 = [𝑙𝑖𝑗] and 𝑈 = [𝑢𝑖𝑗] are defined as 𝑚 × 𝑚 matrices with entries 

 

𝑙𝑖𝑗 =  𝑚𝑖𝑛
𝑥∈𝐴𝑖

𝑝(𝑥, 𝐴𝑗)     𝑎𝑛𝑑    𝑢𝑖𝑗 = 𝑚𝑎𝑥
𝑥∈𝐴𝑖

𝑝(𝑥, 𝐴𝑗) 

http://www.mdpi.com/1999-4893/9/3/50/htm#FD2-algorithms-09-00050
http://www.mdpi.com/1999-4893/9/3/50/htm#FD2-algorithms-09-00050
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respectively, for 𝑖, 𝑗 = 1, … , 𝑚. 

Note that it always holds (component-wise) that 𝐿 ≤ 𝑈. If the chain is lumpable, then these 

matrices coincide, so then 𝐿 = 𝑈 = 𝑃̃, where 𝑃̃ is the transition matrix of the lumped chain. If 

the chain is ϵ-lumpable, then L and U differ at most by ϵ in each entry. 

Generally, L and U are not necessarily stochastic matrices (A vector is called stochastic if 

each coordinate is non-negative and their sum is 1. A matrix is called stochastic if each row 

vector of it is stochastic.), as their rows may not sum up to 1. 

 

5.7 Convergence Analysis 

An important concept in Markov chain convergence analysis is the ergodic coefficient, see, e.g., 

[12]. It is also called coefficient of ergodicity. 

Definition 4.  (Ergodic coefficient) Let 𝑃 = [𝑝𝑖𝑗] be an 𝑛 × 𝑛 matrix. Its ergodic coefficient is 

defined as 

𝜌(𝑃) =  
1

2
𝑚𝑎𝑥

𝑖,𝑗
∑|𝑝𝑖𝑘 − 𝑝𝑗𝑘|

𝑛

𝑘=1

 

The ergodic coefficient is essentially the largest L1 distance that occurs between different row 

vectors of the matrix P. That is, in a sense, it captures how diverse are the row vectors of the 

matrix. The 1/2 factor is only for normalization purposes. For stochastic matrices two important 

properties of the ergodic coefficient are the following: 

(i) 0 ≤ 𝜌(𝑃) ≤ 1 

(ii) 𝜌(𝐴𝐵) ≤ 𝜌(𝐴)𝜌(𝐵) 

http://www.mdpi.com/1999-4893/9/3/50/htm#B12-algorithms-09-00050
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The importance of the ergodic coefficient lies in its relationship to the convergence rate of the 

Markov chain. It is well known that the convergence rate is determined by the second largest 

eigenvalue of the transition matrix (that is, the eigenvalue which has the largest absolute value 

less than 1), If this eigenvalue is denoted by 𝜆1, then the convergence to the stationary 

distribution happens at a rate of 𝑂(𝜆𝑖
𝑡), where t is the number of steps. It is also known [12] that 

the ergodic coefficient is always an upper bound on this eigenvalue, it satisfies  𝜆1≤ 𝜌(𝑃) ≤ 1. 

Therefore, the distance to the stationary distribution is also bounded by 𝑂(𝜌(𝑃)𝑡). Thus, the 

smaller is the ergodic coefficient, the faster convergence we can expect. Of course, it only 

provides any useful bound if 𝜌(𝑃) < 1. If 𝜌(𝑃) = 1 happens to be the case, then it does not 

directly provide a useful bound on the convergence rate, since then 𝜌(𝑃)t remains 1. In this 

situation, a possible way out is considering the k-step transition matrix 𝑃𝑘 for some constant 

integer k. If k is large enough, then we can certainly achieve 𝜌(𝑃𝑘) < 1, since it is known [39] 

that 𝑙𝑖𝑚
𝑘→∞

𝜌(𝑃𝑘) = 0. 

Now we are ready to present our main result, which is a bound on how fast will an ϵ-lumpable 

Markov chain converge to its stationary distribution on the sets that are in the partition, which 

is used in defining the ϵ-lumpability of the chain. We are going to discuss the applicability of 

the result in the next section. 

Theorem 2.   

Let 𝜖 ≥ 0 and 𝑀 = (S, 𝑃) be an irreducible, aperiodic Markov chain with stationary distribution 

π. Assume the chain is ϵ-lumpable with respect to a partition 𝑄 = {𝐴1, … , 𝐴𝑚} of S. Let ρ be 

any upper bound on the ergodic coefficient of the lower transition matrix L (Definition 3), that 

is, 𝜌(𝐿) ≤ 𝜌. Let π0 be any initial probability distribution on S, such that 𝑃(𝑋𝑡 ∈ 𝐴𝑖) > 0 holds 

http://www.mdpi.com/1999-4893/9/3/50/htm#B12-algorithms-09-00050


 

109 

for any i, and 𝑡 = 0,1,2, …, whenever the chain starts from 𝜋0 Then for every 𝑡 ≥ 1 the 

following estimation holds: 

∑|𝜋𝑡(𝐴𝑖) − 𝜋(𝐴𝑖)| ≤ 2 (𝜌 +
𝜖𝑚

2
)

𝑡

+  𝜖𝑚
1 − (𝜌 +

𝜖𝑚
2 )

2

1 − 𝜌 − 𝜖𝑚/2

𝑚

𝑖=1

 

 

assuming 𝜌 + 𝜖𝑚/2 < 1. 

Remark: Recall that the parameter ϵ quantifies how much the Markov chain deviates from the 

ideal lumpable case, see Definition 2. In the extreme case, when 𝜖 = 1, every Markov chain 

satisfies the definition. This places an“upward pressure” on ϵ: the larger it is, the broader is the 

class of Markov chains to which ϵ-lumpability applies. On the other hand, a downward pressure 

is put on ϵ by Theorem 2: the convergence bound is only meaningful, if 𝜌 + 𝜖𝑚/2 < 1 holds. 

This inequality can be checked for any particular ϵ, since it is assumed that ρ and m are known 

parameters. Furthermore, the smaller is ϵ, the faster is the convergence. Therefore, the best 

value of ϵ is the smallest value which still satisfies Definition 2 for the considered state partition 

[40]. 

For the proof of Theorem 2 we need a lemma about stochastic vectors and matrices: 

Lemma 1. Let x, y be n-dimensional stochastic vectors and B1, … , Bk;   C1, … , Ck be n ×

n stochastic matrices. If ρ(Bi) ≤ ρ0 and ρ(Ci) ≤ ρ0 for all i, 1 ≤ i ≤ k, then 

 

∥ xB1 … Bk − yC1 … Ck ∥≤ ρ0
k‖x − y‖ +  (∑ ρ0

j

k−1

j=0

) E 
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where E = maxi ∥ Bi − Ci ∥ The vector norm used is the L1-norm ‖x‖ = ∑ |xi|
n
i=1 and the matrix 

norm is 

 

‖A‖ = max
z≠0

‖zA‖

‖z‖
= max

i
∑|aij|

n

j=1

 

 

for any n × n real matrix A = [aij]. 

Lemma 1 can be proved via induction on k. Now, armed with the lemma, we can prove our 

theorem. 

Proof of Theorem 2.  Let π0 be an initial state distribution of the Markov chain M, let πt be the 

corresponding distribution after t steps and π = lim
t→∞

πt be the (unique) stationary distribution 

of M. For a set A ⊆ S of states the usual notations πt(A) = P(Xt ∈ A), π(A) = lim
t→∞

πt(A) are 

adopted. 

Using the sets A1, … , Am of the partition Q, let us define the stochastic vectors 

π̃t = (πt(A1), … , πt(Am)) (5-6) 

for t = 0,1,2, … and the m × m stochastic matrices    

π̃t = (πt(A1), … , πt(Am)) (5-7) 

for t = 1,2, …. Let us call them aggregated state distribution vectors and aggregated transition 

matrices, respectively. Note that although the entries in (4) involve only events of the 

form {Xt ∈ Ak}, they may also depend on the detailed state distribution within these sets, which 

is in turn determined by the initial distribution π0. In other words, if two different initial 

distributions give rise to the same probabilities for the events {Xt ∈ Ak} for some t, they may 
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still result in different conditional probabilities of the form P(Xt + 1 ∈ Aj|Xt ∈ Ai), since the 

chain is not assumed lumpable in the ordinary sense. This is why the 

notations P˜t(π0),p(π0)t(i, j) are used. Also note that the conditional probabilities are well 

defined for any initial distribution allowed by the assumptions of the lemma, since then P(Xt ∈

Ai) > 0. 

For any fixed t the events{Xt ∈ Ai}, i = 1, … , m, are mutually exclusive with total probability 1, 

therefore, by the law of total probability, 

P(Xt + 1 ∈ Aj) =  ∑ P(Xt + 1 ∈ Aj|Xt ∈ Ai)P(Xt ∈ Ai), j = 1, … , m

m

i=1

 

holds. This implies  π̃t+1 = π̃tP̃t(π0) , from which 

π̃t = π̃0P̃1(π0) … P̃t(π0) (5-8) 

follows. 

We next show that for any t = 1,2, … the matrix P̃t(π0)falls between the lower and upper 

transition matrices, i.e., L ≤ P̃t(π0) ≤ M holds. Let us use short notations for certain events: for 

any i = 1, … , m and for a fixed t ≥ 1 set Hi = {Xt ∈ Ai},  H′i = {Xt + 1 ∈ Ai}, and for x ∈

S let Ex = {Xt = x}. Then Ex ∩ Ey = ∅ holds for any x ≠ y and  ∑ Exx∈S  = 1. Applying the 

definition of conditional probability and the law of total probability, noting that P(Hi) > 0 is 

provided by the assumptions of the lemma, we get 

pt
(x0)

(i, j) = P(Hj
′|Hi) =

P(H′j ∩ Hi)

P(Hi)
 

 
=

∑ P(H′j ∩ Hi ∩ Ex)x∈S

P(Hi)
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=

∑ ((Hj
′|Hi ∩ Ex)P(Hi ∩ Ex))x∈S

P(Hi)
 

 
= ∑ P(H′j|Hi ∩ Ex)

x∈S

P(H′j ∩ Hi)

P(Hi)
 

 = ∑ P(H′j|Hi ∩ Ex)
x∈S

P(Ex|Hi) 

 

Whenever x ∉ Ai we have P(Ex|Hi) = P(Xt = x|Xt ∈ Ai) = 0. Therefore, it is enough to take 

the summation over Ai, instead of the entire S. For x ∈ Ai, however, Hi ∩ Ex = {Xt ∈ Ai} ∩

{Xt = x} = {Xt = x} holds, so we obtain 

pt
(π0)

(i, j)=  ∑ P(Xt + 1 ∈ Aj|Xt = x)P(Xt = x|Xt ∈ Ai)

x∈Ai

 

Thus, pt
(π0)

(i, j) is a weighted average of the P(Xt + 1 ∈ Aj|Xt = x) probabilities. The weights 

are P(Xt = x|Xt ∈ Ai) so they are non-negative and sum up to 1. Further, 

lij ≤ P(Xt + 1 ∈ Aj|Xt = x) ≤ uij 

must hold, since lij,uij are defined as the minimum and maximum values, respectively, of 

 

p(x, Aj) = P(Xt + 1 ∈ Aj|Xt = x) 

over x∈Ai. Since the weighted average must fall between the minimum and the maximum, 

therefore, we have 

lij ≤ pt
(x0)

(i, j) ≤ uij 
(5-9) 

that is, 

L ≤ P̃t(π0) ≤ M (5-10) 
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for any t ≥ 1 and for any initial distribution π0 allowed by the conditions of the Theorem. 

Let us now start the chain from an initial distribution π0 that satisfies the conditions of the 

Theorem. We are going to compare the arising aggregated state distribution vectors (3) with the 

ones resulting from starting the chain from the stationary distribution π. Note that, due to the 

assumed irreducibility of the original chain, π(x) > 0 for all x ∈ S, so π is also a possible initial 

distribution that satisfies the conditions P(Xt ∈ Ai) > 0. 

When the chain is started from the stationary distribution π, then, according to (5), the 

aggregated state distribution vector at time t is π̃ P̃1(π). …  . P̃1(π) where π̃ is given as  

π̃t = π̃tP̃t(π0) … P̃t(π0). On the other hand, P(Xt ∈ Ai) remains the same for all t ≥ 0 if the 

chain starts from the stationary distribution. Therefore, we have 

π̃ P̃1(π). …  . P̃1(π) =  π̃ = (π(A1), … , (Am)) (5-11) 

When the chain starts from π0, then we obtain the aggregated state distribution vector 

π̃t = π̃tP̃t(π0) … P̃t(π0) (5-12) 

after t steps. Now we can apply Lemma 1 for the comparison of (5-11) and (5-12). The roles 

for the quantities in Lemma 1 are assigned as x = π̃0, y = π̃t,  k = t,  n = m, and, for every τ =

1, … , k, Bt = P̃t(π0) Ct = P̃t(π). To find the value of ρ0 recall that by (5-10) we have 

L ≤ P̃t(π) ≤ M and L ≤ P̃t(π0) ≤ M. Since any entry of U exceeds the corresponding entry 

of L at most by ϵ, therefore, by the definition of the ergodic coefficient, ρ(P̃t(π0))  ≤ ρ +
ϵm

2
 

and ρ(P̃t(π))  ≤ ρ +
ϵm

2
hold, where ρ is the upper bound on ρ(L). Thus, we can take ρ0 = ρ +

ϵm

2
. With these role assignments we obtain from Lemma 1 

‖π̃0P̃1(π0) … P̃t(π0) − π̃P̃1(π) … P̃t(π)‖ ≤ (ρ +
ϵm

2
)

t

‖π̃0 − π̃‖ + E 
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where E =  ‖Pr(πt) − Pr(π)‖r
max  and the norms are as in Lemma 1. Taking (5-11) and (5-12) 

into account yields 

‖π̃0 − π̃‖ = ∑|πt(Ai) − π(Ai)| ≤ (ρ +
ϵm

2
)

2

‖π̃0 − π̃‖ + E ∑ (ρ +
ϵm

2
)

k
t−1

k=0

m

i=1

 (5-13) 

 

Thus, it only remains to estimate ‖π̃0 − π̃‖and E. Given thatπ̃0  , π̃  are both stochastic vectors, 

we have ‖π̃0 − π̃‖ ≤ ‖π̃0‖ + ‖π̃‖ ≤ 2. Further, 

E =  ‖Pr(πt) − Pr(π)‖ =  max
r

max
i

∑ |Pr
(x0)

(i, j) − Pr
(π)

(i, j)|

m

j=1

≤ ϵmr
max  

since (6) holds for any considered π̃0 (including π), and, by the definition of ϵ-lumpability, uij −

lij ≤ ϵ. Substituting the estimations into (10), we obtain 

∑|πt(Ai) − π(Ai)| ≤ 2 (ρ +
ϵm

2
)

2

+ ϵm ∑ (ρ +
ϵm

2
)

2

=  2 (ρ +
ϵm

2
)

2

+  ϵm
1 − (ρ +

ϵm
2 )

2

1 − ρ − ϵm/2

t−1

k=0

m

i=1

 

proving the Theorem. ☐ 

If the chain happens to be exactly lumpable, then we get a “cleaner" result. Let  π̃t be the state 

distribution of the lumped chain after t steps and let π̃ be its stationary distribution. For concise 

description let us apply a frequently used distance concept among probability distributions. 

If p, q are two discrete probability distributions on the same set S, then their total variation 

distance DTV(p, q) is defined as 

DTV(p, q) ≤
1

2
∑|p(x) − q(x)|

x∈S
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It is well known that 0 ≤ DTV(p, q) ≤ 1 holds for any two probability distributions. It is also 

clear from the definition of the ergodic coefficient that it is the same as the maximum total 

variation distance occurring between any two row vectors of the transition matrix.  

Note that exact lumpability is the special case of ϵ-lumpability with ϵ = 0. Therefore, we 

immediately obtain the following corollary. 

 

Corollary 1.  If the Markov chain in Theorem 2 is exactly lumpable, then in the lumped chain 

for any t = 0,1,2, … the following holds: 

DTV(π̃t, π̃) ≤ ρt 

where ρ = ρ(P̃)  is the ergodic coefficient of the transition matrix P̃ of the lumped chain. 

Proof.  Take the special case ϵ = 0 in Theorem 2. ☐ 

 

5.8 Numerical Demonstration 

Let us consider the following situation. Let M be a Markov chain with state space S. Assume 

we want to estimate the stationary measure π(A) of a subset A ⊆ S. A practical example of such 

a situation is to estimate the probability that there is at most k blocked links, for some 

constant k, in a large communication network. Here the state space is the set  S of all possible 

states of all the links. The state of a link is the current traffic load of the link, and it is blocked 

if the load is equal to the link capacity, so it cannot accept more traffic. Within this state space 

the considered subset A is the subset of states in which among all links at most k are blocked. 

Therefore, the relevant partition of S is {A, S − A}. This is motivated by real-world application, 

since the number of blocked links critically affects network performance. When considering the 
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loss of traffic due to blocking, the models of these networks are often called loss networks. For 

detailed background information on loss networks [31]. Of course, we can also consider other 

events in the network. For example, at most a given percentage of traffic is blocked, without 

specifying how many links are involved in the blocking. 

In many cases we are unable to directly compute π(A). This task frequently has enormous 

complexity, for the theoretical background. Then a natural way to obtain an estimation 

of π(A) is simulation. That is, we run the chain from some initial state, stop it after  t steps and 

check out whether the stopping state is in A or not. Repeating this experiment a large enough 

number of times, the relative frequency of ending up in A will give a good estimation of the 

measure of πt(A). If tis chosen such that πt is close enough to the stationary distribution π for 

any initial state, then we also obtain a good estimation for π(A). This is the core idea of the 

Markov Chain Monte Carlo approach. 

Unfortunately, Markov chains with large state space often converge extremely slowly. 

Therefore, we may not get close enough to π after a reasonable number of steps. In such a case 

our result can do a good service, at least when the chain satisfies some special requirements. As 

an example, let us consider the following case. First we examine it using our bounds, then we 

also study it through numerical experiments. 

Assume the set A ⊆ S has the property that its elements behave similarly in the following sense: 

for any state x ∈ A the probability to move out of A in the next step, given that the current state 

is x, is approximately the same. Similarly, if x ∉ A, then moving into A in the next step from 

the given x has approximately the same probability for any x ∉ A. To make this assumption 

formal, assume there are values p0, q0, ϵ, such that the following conditions hold: 
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(A) If x ∈ A then p0 ≤ p(x, A¯) ≤ p0 + ϵ where A¯ = S − A. This means, the smallest 

probability of moving out of Afrom any state in x∈A is at least p0, and the largest such 

probability is at most p0 + ϵ. 

(B) If x ∈ A¯ then q0 ≤ p(x, A) ≤ q0 + ϵ. Similarly to the first case, this means that the 

smallest probability of moving into A from any state in x ∉ A is at least q0, and the 

largest such probability is at mostq0 + ϵ . (We choose ϵ such that it can serve for this 

purpose in both directions.) 

(C) To avoid degenerated cases, we require that the numbers p0, q0, ϵ satisify p0 + ϵ <

1, q0 + ϵ < 1 and 0 < p0 + q0 < 1. The other state transition probabilities 

(within A and A¯) can be completely arbitrary, assuming, of course, that at any state the 

outgoing probabilities must sum up to 1. 

Let us now apply our main result, Theorem 2, for this situation. The parameters will be as 

follows: m, the number of sets in the partition, is 2, since the partition is (A, A¯). The 

matrices L,U become the following: 

L = [
1 − p0 − ϵ p0

q0 1 − q0 − ϵ
]       U = [

1 − p0 p0 + ϵ
q0 + ϵ 1 − q0

]    

where the distributions π˜t,π˜ are over the sets of the partition (A, A¯), not on the original state 

space. Note that in our case we actually haveDTV(π̃t, π̃) = |πt(A) − π(A)| due to the fact 

that   |πt(A) − π(A)| =  |πt(A¯) − π(A¯)|. Therefore, we obtain the estimation directly for the 

set A: 
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|πt(A) − π(A)| ≤ (1 − p0 − q0)t + ϵ
1 − (1 − p0 − q0)t

p0 + q0
 

(5-14) 

 

If p0+q0 is not extremely small, then the term (1 − p0 − q0)twill quickly vanish, as it 

approaches 0 at an exponential rate. Therefore, after a reasonably small number of steps, we 

reach a distribution πt from any initial state, such that approximately the following bound is 

satisfied: 

|πt(A) − π(A)| ≤
ϵ

p0 + q0
 

(4-15) 

 

It is quite interesting to note that neither the precise estimation (5-14), nor its approximate 

version (5-15) depend on the size of the state space. 

Now we demonstrate via numerical results that the obtained bounds indeed hold. Moreover, 

they are achievable after a small number of Markov chain steps, that is, with fast convergence. 

We simulated the example with the following parameters: n=100 states, p0 = q0 = 0.25, 

and ϵ=0.1. The set A was a randomly chosen subset of 50 states. The transition probabilities 

were also chosen randomly, with the restriction that together with the other parameters they had 

to satisfy conditions (A), (B), (C). 

Figure 5-1 shows the relative frequency of visiting A, as function of the number of Markov 

chain steps. It is well detectable that the chain converges quite slowly. Even after many 

iterations the deviation from the stationary probability π(A) does not visibly tend to 0. On the 

other hand, it indeed stays within our error bound:  

http://www.mdpi.com/1999-4893/9/3/50/htm#fig_body_display_algorithms-09-00050-f001
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|πt(A) − π(A)| ≤
ϵ

p0 +  q0
=  

0.1

0.25 + 0.25
 = 2 × 0.1 

 

as promised. Having observed this, it is natural to ask, how soon can we reach this region that 

is, how many steps are needed to satisfy the bound? This is shown in Figure 5-2. We can see 

that after only 10 iterations, the error bound is already satisfied. Note that this is very fast 

convergence, since the number of steps to get within the bound was as little as 10% of the 

number of states. 

 

Figure 5-1 Deviation from the stationary measure for many iterations 

http://www.mdpi.com/1999-4893/9/3/50/htm#fig_body_display_algorithms-09-00050-f002
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Figure 5-2 Very fast convergence to satisfy the error bound 

 

We have analyzed the convergence rate of quasi-lumpable Markov Chains. This represents the 

case when the large state space can be aggregated into a smaller number of clusters, in which 

the states behave approximately the same way. Our main contribution is a bound on the rate at 

which the aggregated state distribution approaches its limit in such chains. We have also 

demonstrated that in certain cases this can lead to a significantly accelerated convergence to an 

approximate estimation of the measure of subsets. The result can serve as a useful tool in the 

analysis of complex networks, when they have a clustering that approximately satisfies the 

conditions lumpability. 
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CHAPTER 6  

CONCLUSION 

In this dissertation, we first discus linear optimization methods which can helps Internet protocols 

work more efficiently. We use a duality theory to find a weight set that improve the routing 

protocols efficiencies. As a matter of fact, routing is the most important aspect of Internet Traffic 

Engineering. So, we focus on routing protocols and introduce a practical method that optimizes 

link metrics. Previous optimization methods suffer from practical issues but our method could be 

implemented with Routing Protocols that based on shortest paths. Our simulation results show 

significant improvement on network efficiency. Second, a new method is introduced for traffic 

distribution in virtual circuit switched networks which can be implemented in real networks. In 

this method, the input traffic of each session is distributed among the possible paths, in a manner 

that the total system cost is minimized at the same time as the average cost for each path is kept 

bounded below a required threshold level. This method is scalable as its operation is per session. 

It is analytically proven in this article that this algorithm converges under the assumptions that are 

feasible in real networks. The simulation results approve the effectiveness of the algorithm. The 

results obtained from the simulation are in line with the results obtained from analytical resolution 

of the convex optimization problem. We also investigates the question “how non-cooperative 

nodes in a network can create an efficient network?” We have studied the result of the selfish 

behavior of nodes, and compares it to the situation in which there is a central control unit in the 

network. Central control can force all nodes to use a predefined strategy in which the network 

utilization is optimum.  
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In chapter 4 we study Big Data solution for analyzing large scale networks. We introduced Apache 

Spark as a replacement for Hadoop MapReduce.  Efficiency of Spark, as a result of in-memory 

processing, makes it a popular big data processing engine. It also has high usability, due to different 

programming language APIs. There is a large collection of algorithms that cannot be implemented 

using only one iteration of Map and Reduce functions. Notably, graph processing algorithms fall 

in this category. Apache Spark improves efficiency of implementing such algorithms using in-

memory processing. Essentially, after one iteration of Map and Reduce, the results are ready, and 

available in memory for the next iteration. Spark can be 100 times faster than Hadoop MapReduce 

for machine learning algorithms, such logistic regression. A fundamental processing unit in Spark 

is RDD, instead of one path of Map and Reduce functions. RDD is an immutable distributed data 

set across the cluster which is resilient to data storage failure. Data processing algorithms can be 

implemented using transformations and actions on each RDD. Transformations will create series 

of RDDs. As a result of immutability, each one of them can be recalculated from the previous one. 

Graphx is a new component in Spark for implementing graph algorithms in a distributed 

environment. Graphx extends the Spark RDD by introducing a new graph abstraction in terms of 

a distributed dataset, attached to vertices and edges. In this chapter three important social network 

algorithms have been introduced using Graphx library in Apache Spark. The first one is finding 

PageRank in a social network, the second one is finding connected components, and the last but 

not least is the triangle counting algorithm. In all the three applications, we have illustrated the 

steps via appropriate examples.  

In the last chapter we study approximation approach for analyzing network structure. We 

investigate unsplittable flow problems and introduce a novel practical approximation. The 
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simplicity and efficiency is achieved by sacrificing a small part of the solution space. The 

sacrificed part only contains scenarios where some edges are very close to saturation. Therefore, 

the loss is not significant, since the almost saturated solutions are typically undesired in practical 

applications, such as network design. The approach constitutes a new avenue to approximation, in 

the sense that instead of giving up finding an exact solution, we rather restrict the search space to 

a (slightly) smaller one. When, however, the algorithm finds any solution, which happens with 

high probability, then it is an exact (not just approximate) solution.  

At the end we have analyzed the convergence rate of quasi-lumpable Markov Chains. This 

represents the case when the large state space can be aggregated into a smaller number of 

clusters, in which the states behave approximately the same way. Our main contribution is a 

bound on the rate at which the aggregated state distribution approaches its limit in such chains. 

We have also demonstrated that in certain cases this can lead to a significantly accelerated 

convergence to an approximate estimation of the measure of subsets. The result can serve as a 

useful tool in the analysis of complex networks, when they have a clustering that approximately 

satisfies the conditions lumpability. 
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