

TRAFFIC AND TOPOLOGY ENGINEERING IN NETWORKS:

ALGORITHMS, MODELS AND OPTIMIZATION

by

Ahmad Askarian

 APPROVED BY SUPERVISORY COMMITTEE:

 András Faragó, Chair

 Mehrdad Nourani

 Neeraj Mittal

 Farokh B. Bastani

Copyright 2017

Ahmad Askarian

All Rights Reserved

To my beloved Niloofar.

iv

TRAFFIC AND TOPOLOGY ENGINEERING IN NETWORKS:

ALGORITHMS, MODELS AND OPTIMIZATION

by

AHMAD ASKARIAN, MS

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

TELECOMMUNICATIONS ENGINEERING

THE UNIVERSITY OF TEXAS AT DALLAS

May 2017

v

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Professor Faragó for the continuous

support of my PhD study and related research, for his patience, motivation, and immense

knowledge. His guidance helped me in all the time of research and writing of this dissertation. I

could not have imagined having a better advisor and mentor for my PhD study.

March 2017

vi

TRAFFIC AND TOPOLOGY ENGINEERING IN NETWORKS:

ALGORITHMS, MODELS AND OPTIMIZATION

Ahmad Askarian, PhD

The University of Texas at Dallas, 2017

ABSTRACT

 Supervising Professor: András Faragó

Traffic engineering (TE) helps to use network resources more efficiently. Network operators use

TE to obtain different objectives such as load balancing, congestion avoidance and average delay

reduction. We approach the issue using optimization theory and a network design game model.

Also routing methods for optimal distribution of traffic in data networks that can also provide

quality of service (QoS) for users is one of the challenges in recent years’ research on next

generation networks. The major QoS requirement in most cases is an upper bound on end-to-end

path delay. In this dissertation, we address the problem of parallelizing some network algorithms

on a practical distributed memory system. Also we use approximation approach for analyzing NP

hard problems in networks.

http://dl.acm.org/author_page.cfm?id=81100358980&CFID=919909873&CFTOKEN=56087910

vii

TABLE OF CONTENTS

Acknowledgments... v

List of Tables ... ix

List of Figures ... x

CHAPTER 1 INTRODUCTION .. 1

CHAPTER 2 OPTIMIZATION METHODS FOR NETWORK TRAFFIC ENGINEERING 4

2.1 Problem Statement .. 6

2.2 The Dual Problem ... 8

2.3 Practical Requirements .. 10

2.4 Simulation Results... 14

2.5 Low Structural Congestion via Game Theory and Linear Programming 23

2.6 Related Work... 25

2.7 Structural Congestion .. 26

2.8 Network Design Model ... 29

2.9 Simulation ... 35

CHAPTER 3 AN OPTIMAL TRAFFIC DISTRIBUTION METHOD SUPPORTING END-

TO-END DELAY BOUND .. 37

3.1 Traffic Distribution Model .. 40

3.2 Solving the Optimization Problem .. 45

3.3 Simulation .. 50

3.4 Mathematical Analysis .. 53

CHAPTER 4 PARALLELIZING LARGE SCALE GRAPH ALGORITHMS USING THE

APACHE SPARK DISTRIBUTED MEMORY SYSTEM .. 63

4.1 Overview of Big Data Processing ... 64

4.2 Apache Spark Vs. Hadoop MapReduce .. 66

4.3 Resilient Distributed Dataset (RDD) .. 70

4.4 GraphX API for Spark... 72

4.5 Graph Partitioning in Spark... 73

4.6 Paper citation Network Example... 76

4.7 Finding PageRank in Social Network using Apache Spark .. 79

viii

4.8 Finding connected components using Apache Spark .. 81

4.9 Triangle counting using Apache Spark ... 83

4.10 Summery of distributed graph processing ... 86

CHAPTER 5 APPROXIMATION APPROACH FOR ANALYSING NETWORK

STRUCTURE ... 88

5.1 How Complex Networks Inspire New Avenues to Approximation – The Case of

Unsplittable Flows... 88

5.2 Problem statement. .. 88

5.3 Related work ... 90

5.4 A Simple Practical Approximation ... 92

5.5 Utilizing Network Structure to Accelerate Markov Chain Monte Carlo Algorithms 99

5.6 Aggregation in Markov Chains ... 103

5.7 Convergence Analysis ... 107

5.8 Numerical Demonstration ... 115

CHAPTER 6 CONCLUSION... 121

References ... 124

Biographical Sketch .. 128

Curriculum Vitae .. 129

ix

LIST OF TABLES

Table 2-1 Optimum flows ... 15

Table 2-2 The Solution of DUAL_I .. 16

Table 2-3 The Solution of DUAL_II .. 16

Table 2-4 Solution of DUAL_II ... 18

Table 2-5 MLU and BWE values ... 20

Table 2-6 MLU and BWE values ... 22

Table 2-7 Optimum Weights .. 33

Table 3-1 Parameters of the Network links .. 51

Table 3-2 Simulation results of step 1 .. 54

Table 3-3 Simulation results of step 2 .. 54

Table 3-4 Final results of Step3 for 1000 iterations and step size 0.008 55

Table 4-1 Slashdot social network statistics ... 85

x

LIST OF FIGURES

Figure 2-1 Maximum Load Balancing Flow Chart... 13

Figure 2-2 Simulation Network Topology .. 15

Figure 2-3 IP Traffic drop in default protocol and new method ... 17

Figure 2-4 Simulation Network Topology .. 18

Figure 2-5 Scenario2 IP Traffic Dropped ... 21

Figure 2-6 Scenario2 IP Traffic Received .. 21

Figure 2-7 Node Vi decision strategies ... 30

Figure 2-8 Topological Sorting ... 32

Figure 2-9 Algorithm Flowchart ... 34

Figure 2-10 Network Topology .. 35

Figure 2-11 Degree ratio for each node using different alpha .. 36

Figure 3-1 A network graph with three sessions .. 42

Figure 3-2 The flowchart of flow distribution algorithm.. 48

Figure 3-3 The flow of links per 200 iterations .. 55

Figure 3-4 The flow of links per 200 iterations .. 56

Figure 3-5 The Lagrangian multipliers corresponding to paths per 200 iterations 56

Figure 3-6 q () for one dimensional ... 60

Figure 4-1 Spark full stack .. 65

Figure 4-2 Yet another resource manager ... 66

Figure 4-3 Apache Spark efficiency and usability .. 67

Figure 4-4 Cities information.. 68

xi

Figure 4-5 Maximum temperature for each city ... 68

Figure 4-6 Maximum temperature for each city ... 68

Figure 4-7 Output of the reduce task .. 69

Figure 4-8 A Multi-Iteration algorithm in MapReduce .. 69

Figure 4-9 Multi-Iteration Algorithm in Spark ... 70

Figure 4-10 RDD transformation and action .. 71

Figure 4-11 Filter by age in an RDD .. 71

Figure 4-12 Word Count example, using Spark ... 72

Figure 4-13 Graph partitioning strategy ... 73

Figure 4-14 EdgePartition1D implementation .. 74

Figure 4-15 EdgePartition2D implementation .. 75

Figure 4-16 Random Vertex Cut implementation .. 75

Figure 4-17 Canonical Random Vertex Cut implementation ... 76

Figure 4-18 Text file containing the citation information .. 76

Figure 4-19 Loading a graph in Spark .. 77

Figure 4-20 inDegree and reduce in Graphx API ... 78

Figure 4-21 inDegrees method in GraphX producing key-value pairs ... 78

Figure 4-22 reduce (Function) method in GraphX producing a single key value pair 79

Figure 4-23 vertices in the paperCitationGraph.. 79

Figure 4-24 PageRank transformation that creates a new property graph 80

Figure 4-25 PageRank method in Spark using GraphX library .. 81

Figure 4-26 The most influential paper .. 81

xii

Figure 4-27 Finding connected components ... 82

Figure 4-28 Network construction based on RDD collections ... 82

Figure 4-29 Finding connected components ... 83

Figure 4-30 Triangle counting algorithm .. 84

Figure 4-31 Triangle Counting in Slashdot social network .. 86

Figure 5-1 Deviation from the stationary measure for many iterations 119

Figure 5-2 Very fast convergence to satisfy the error bound.. 120

1

CHAPTER 1

INTRODUCTION

In recent years, the use of the Internet as communication infrastructure for different

telecommunication applications has been growing significantly. Because bandwidth is one of the

most important requirements of these applications, network hardware should support bandwidth

management techniques. In chapter 2 we will discuss linear optimization methods which can help

Internet protocols work better. We use a duality theory to find a weight set that improve the routing

protocols efficiencies. As a matter of fact, routing is the most important aspect of Internet Traffic

Engineering. So, we focus on routing protocols and introduce a practical method that optimizes

Link Metrics. Previous optimization methods suffer from practical issues but our method could be

implemented with Routing Protocols that are based on shortest paths. Our simulation results show

significant improvement on network efficiency. Also, we propose a network topology design

approach that targets the reduction of structural congestion in a directed acyclic network. What we

mean by structural congestion is that a node has much higher in-degree than out-degree in a

directed network. We approach the issue using a network design game model. In this model, we

consider multiple sources and one destination. Each node is willing to connect to other nodes but

it should pay the price of whole paths it uses to send traffic to the destination. The model yields a

weight for each link. We show that if these weights are used to compute shortest paths, then a

network topology is obtained with a low level of structural congestion. Routing methods for

optimal distribution of traffic in data networks will be addressed in chapter 3. Recently several

new services have become popular in the internet qualities of which depend on the end-to-end

delay experienced by the packets in the network [1]. For an acceptable QoS it is required that the

2

end-to-end delay is kept under a threshold level. Providing QoS is not an easy task in datagram

networks. In new generation networks, virtual circuit switched networks such as MPLS is used to

provide a better framework to implement QoS. A new method will be introduced for traffic

distribution in virtual circuit switched networks which can be implemented in real networks. In

this method, the input traffic of each session is distributed among the possible paths, in a manner

that the total system cost is minimized at the same time as the average cost for each path is kept

bounded below a required threshold level. This method is scalable as its operation is per session.

It is analytically proven in this article that this algorithm converges under the assumptions that are

feasible in real networks. The simulation results approve the effectiveness of the algorithm. The

results obtained from the simulation are in line with the results obtained from analytical resolution

of the convex optimization problem. In chapter 4, in order to analyzing large scale networks, we

will discuss distributed data storage and processing system called Spark. We will address the

problem of parallelizing three famous network algorithms on a practical distributed memory

system. The approach is based on the Spark framework and the GraphX API which is run on top

of the Hadoop distributed file system. We develop three case studies in this framework: (1)

computing the PageRank in a social network, (2) finding connected components in the graph

representing the network, and (3) triangle counting. A key issue for the large-scale implementation

is how to partition the whole task into parallel and independent tasks that run on different

machines, such that we can reduce the communication and storage overhead in the distributed

cluster. In the last chapter we mathematically analyze estimation methods for NP hard network

problems. The Disjoint Connecting Paths problem, and its capacitated generalization, called

Unsplittable Flow problem, play an important role in practical applications, such as

3

communication network design and routing. These problems are hard in general, but various

polynomial-time approximations are known. Also, we consider the problem of estimating the

measure of subsets in very large networks.

The dissertation is organized in four main chapters. In the second chapter we study linear network

optimization and proposed a practical method to leverage strong duality property of a linear

programming. In the third chapter we study convex optimization problems and their application in

network traffic engineering. We designed an algorithm which is guaranteed end to end delay for

each session as well as minimizing average delay in the whole network. As networks topology

become large, traditional methods for analyzing network structure become less efficient. To avoid

that lack of efficiency we study a big data processing system using their graph API to processes

large scale networks. We study and implement such a method in chapter four. In the last chapter

we used approximation methods to solve two important network NP-hard problems. The first one

is unsplittable flow problem and the second one is estimating the measure of subsets in very large

networks.

4

CHAPTER 2

OPTIMIZATION METHODS FOR NETWORK TRAFFIC ENGINEERING

Traffic engineering helps to use network resources more efficiently. Network operators use TE to

obtain different objectives such as load balancing, congestion avoidance and average delay

reduction. Plane IP routing protocols such as OSPF, a popular intradomain routing protocol, are

believed to be insufficient for TE. OSPF is based on the shortest path algorithm in which link

weights are usually static value without considering network load. They can be set using the

inverse proportional bandwidth capacity or certain value. However, Optimization theory helps

network researchers and operators to analyze the network behavior more precisely. It is not a

practical approach can be implemented in traditional protocol. This chapter address the feasibility

requirements, a weight set can be extracted from optimization problem use as a link metric in

OSPF. We show the routes that selected in OSPF with these metrics distribute the traffic closer to

optimal situation than routes from OSPF with default metric.

In recent years, the use of the Internet as communication infrastructure for different

telecommunication applications has been growing significantly. Because bandwidth is one of the

most important requirements of these applications, network hardware should support bandwidth

management techniques. Traffic engineering (TE) is a bandwidth management technique that

considers different objectives such as maximum throughput, minimum congestion and load

balancing in the network. TE puts the traffic where network bandwidth is available. TE with the

objective of load balancing can reduce maximum link utilization (MLU) and increase bandwidth

5

efficiency (BWE). Because considerable delay may occur at congested links, reduction of end to

end delay can be achieved as a side result of load balancing.

 Destination-based routing is not flexible for TE, and so it is highly susceptible to congestion.

Because of this reason the concept of TE was developed mostly in MPLS-based networks [2] [3].

MPLS-based TE can optimize traffic distribution using dedicated label switch paths (LSP). The

capability of explicit routing and arbitrary traffic splitting are the most important features of MPLS

TE. But the MPLS has not been widely deploy Rapid increase in network traffic especially that of

new applications which require QoS guarantees, has encouraged the network providers to apply

IP-based TE with different objectives. The main idea of IP-based TE is to find a set of weights that

optimizes a specific objective function. If the objective function is the total link cost, the constraint

of equal cost multipath (ECMP) causes the problem to be NP hard [1]. Different near-optimal

heuristic algorithms based on local search were proposed to solve this problem [1].

 One approach for analyzing the TE problem is formulating it with optimization theory

problems. If we consider load-balancing as an objective of the optimization problem and consider

the amount of traffic load on all links that belong to a specific session as the problem outcome, the

solution of such problem is the path of each session that results in minimum congestion.

 Measurements in [4] indicate that bottlenecks of the Internet backbone are not only located

between ASs but also, they exist in intradomain links. The popular intradomain routing protocol

is OSPF. In this chapter, we present a formulation of the optimization problem that object to

provide maximum load balancing. This objective function is useful in a situation that network

entrance is random since increase the probability of new traffic admission. In addition, we try to

extract the OSPF metric from this problem and therefore reach the load balancing with OSPF

6

routing. These attempts result in a new definition such as equivalent weight set and equivalent

constraints. In this chapter, we analyze the optimization problem from feasibility perspective and

show that a set of link weights that can be embedded as a link metric in OSPF protocol results in

optimal or near optimal load balancing. Our simulations show that this method improves

bandwidth efficiency and reduces network congestion and also leads to a substantial reduction in

the end to end delay.

2.1 Problem Statement

Different TE objectives lead to different objective functions of optimization problem. We consider

load balancing as an objective of traffic engineering so the objective function of the optimization

problem is to minimize MLU (maximum link utilization). Consider the linear optimization

problem that is called first primal problem (PRIMAL_I) with the following notation. A connected

graph G (N, A) is given. cij ∶ (i , j) ∈ A is a set of edge capacities and (sk, dk) is a set of source-

destination pairs for each session k ∈ K. Dk is the total amount of session k traffic. The amount of

traffic in link (i, j) ∈ A that belongs to session k is Xij
k. So, the problem is:

min MLU (1)

∑ Xi,j
k

j:(i,j)∈A

− ∑ Xj,i
k

j:(j,i)∈A

= {
Di i = source

 −Di i = destination
o. w

(2)

∑ Xi,j
k

k∈K

≤ Ci,jMLU
(3)

Xi,j≥0 (4)

 (2-1)

7

Constraints (2-1-2) are flow conservation constraints that are derived from network topology.

Constraint (2-1-3) ensure that link flows do not violate link capacity and (2-1-4) says that link

flows are nonnegative. The PRIMAL_I solution specifies theXij
k, and so we have the optimal path

with arbitrary splitting for all sessions that minimize MLU. Our objective is to find a practical

method suited for IP networks that forces the traffic to go through a set of optimal paths. To achieve

this goal, we should find a set of new link metrics such that all paths which are specified by

PRIMAL_I problem can also be obtained by the shortest path algorithm in regard to the new

metrics. It means that if 0k

ijX , then link (i, j) should be selected by session k according to the

shortest path algorithm. Here we assume that the shortest path algorithm is OSPF that supports

Equal-Cost Multi-Path (ECMP).

The load balancing methods introduced in [3] is based on primal optimization problem. In this

chapter, we consider the dual optimization problem (DUAL_II) which is obtained with respect to

Lagrange Multipliers. In other word, we aim to distribute traffic by determining the links weight.

And It will be shown that the Lagrange Multipliers comparable with constraint (2-1-3) can be

interpreted as OSPF link metrics that satisfy the load balancing objective.

Link metric in OSPF protocol must be an integer between 1 and 65535 but we will show in section

IV that the Lagrange Multipliers that are obtains from the solution of DUAL_II problem and

comparable with constraint (2-1-3), do not satisfy this range in general. So, the following definition

gives us the choice of an alternative weight set.

Definition 1: Two weights set  L

iiwW
1




 and  L

iiwW
1




 are equivalent with respect to a given

graph),(ANG with L links, if and only if the shortest paths between any arbitrary nodes in G are

the same considering any one of these two weight sets.

8

2.2 The Dual Problem

Defining the Lagrange multiplayer  N

iip
1 comparable with constraint (2-1-2) and

{wij}(i,j)∈A comparable with constraint (3), the Lagrange polynomial is:

 

 

 

  






Aji

ij

Kk

k

ijij

Kk Ni Aijj

k

ji

Ajij

k

ijki
X

CXw

XXDpMLUWPMLUXL
k
ij

),(

).(:),(:
0

)(

)(),,,(

For more details can be referred to chapter 5 of [5]. To achieve the dual problem the following

equation should be satisfied for each feasible X and MLU.

MLU ≥ L(X, MLU, P, W)

To satisfy (6) we must have: 0ijw . Now the function),(PWg is defined as bellow:

),,,(min),(
,

WPMLUXLPWg
MLUX



So, we have:

)1(

)(min),(

),(

),(
,



  



 





Aji

ijij

Kk Aji

ijij

k

ij

k

i

k

i
MLUX

CwMLU

wppXDpPWg

Because ijw and k

ijX are positive values, we have:

9
















 



 

Aji

ijijijji

Kk Ni

ijijijji

k

i

k

i

wCorwpp

wCandwppDp

PWg

),(

1

1

),(

The dual function is defined to maximize),(PWg when all ijw are positive values. Equation (2-

2) shows the DUAL_I problem that is the dual function of PRIMAL_I.

max ∑ ptk
k Dk

k∈K

 (10)

pi
k − pj

k ≤ wij (11)

∑ Cijwij = 1

(i,j)∈A

 (12)

psk
k = 0 (13)

wij ≥ 0 (14)

 (2-2)

As the primal and dual problems are linear, strong duality holds and according to complementary

slackness in KKT theorem if k

ijX̂ is optimal solution of PRIMAL_I and  k

ijij pw ˆ,ˆ

is the optimal

solution of DUAL_I we have:

0)ˆˆˆ.(ˆ  ij

k

j

k

i

k

ij wppX (2-3)

Equation (2-3) indicates that if session k passes link),(ji then ij

k

i

k

j wpp  . According to

theorem 1 in [1] if  
Ajiijw

),(
ˆ is used as a link metric in a shortest path algorithm, all non-empty

links (0k

ijX) will be included among the selected paths by the shortest path algorithm procedure.

10

2.3 Practical Requirements

 {wij}(i,j)∈A (weighs calculated from the DUAL_I) have to be equal to or greater than zero. But

as we mentioned before OSPF link metrics cannot be zero. We show that there exists a weight set

equivalent to {wij}(i,j)∈A that can be obtained using the new optimization problem.

Lemma 1: consider),(ANG with weight set {wij}(i,j)∈A and some scalars  N

ii 1
 corresponding to

each link and node respectively. If we change the link weight to ijijij ww   , then the

weight set  
Ajiijw

),(
and  

Ajiijw
),(

are equivalent weight sets with respect to),(ANG .

To achieve non-zero weight set we changed the weights of the links according to algorithm 1.

Algorithm 1:

Step 1: For each session Kk  assign the scalar set  N

i

k

i 1
 as follows:

 If there exists at least one directed path to node i from source node of session k (ks

), then k

i is equal to the length of the longest hop-count non-loopy path from ks to

i.

 Else k

i is equal to zero.

Step 2: Assign the
k

i
k
max as the final scalar i

Step 3: If the 0 ij  then ijijij ww  

else 1 ijij ww .

So according to lemma1 and algorithm 1, there exists an equivalent weight set to {wij}(i,j)∈A that

all of them are greater or equal to one. Thus, we can assume 
ij

ijij HwC . .

11

Theorem 1: consider two optimization problems called DUAL_I and DUAL_II.

DUAL_I:

max ∑ ptk
k Dk

k∈K

pi
k − pj

k ≤ wij

∑ Cijwij = 1

(i,j)∈A

psk
k = 0

wij ≥ 0

DUAL_II:

max ∑ ptk
′kDk

k∈K

p′i
k − pj

′k ≤ w′ij

∑ Cijw′ij = H

(i,j)∈A

psk
′k = 0

w′ij ≥ 1

If {ŵij}(i,j)∈Ais an optimal solution of DUAL_I and {w′̂ij}(i,j)∈A is an optimal solution of DUAL_II,

the sets {ŵij}(i,j)∈A and {w′̂ij}(i,j)∈A are equivalent weight sets with respect to),(ANG .

12

Proof: Consider the optimization problem PRIMAL_II.

PRIMAL_II:

max ∑ H. ptk
k Dk

k∈K

pi
k − pj

k ≤ wij

∑ Cijwij = 1

(i,j)∈A

psk
k = 0

wij ≥ 0

It is clear that the ijX s which minimizes the objective function of the problem PRIMALL_II are

the same as the ones which cause the problem PRIMALL_I to be optimized.

The dual of PRIMAL_II is the DUAL_TEMP.

DUAL_TEMP:

max ∑ ptk
′kDk

k∈K

p′i
k − pj

′k ≤ w′ij

∑ Cijw′ij = H

(i,j)∈A

psk
′k = 0

w′ij ≥ 0

13

From complementary slackness theorem

0)ˆˆˆ.(ˆ 
ij

k

j

k

i

k

ij wppX

Since the optimal solutions of the PRIMAL_I and PRIMAL_II are the same, thus the weight sets

{ŵij}(i,j)∈A and {w′̂ij}(i,j)∈Aare equivalent weight sets. The weight set {w′ij}(i,j)∈Ais the feasible set

of the problem DUAL_TEMP and hold (15). Therefore, it is the optimal solution of this problem.

So, we in this way, we were able to obtain optimal weights that do not include any link with weight

0 by limiting the constraint

wij ≥ 0 to w′ij ≥ 1 . This converts the problem DUAL_TEMP to DUAL_II. Figure 2-1 shows the

flow chart of our method.

Figure 2-1 Maximum Load Balancing Flow Chart

Optimization

Problem

(DUAL_II)

Shortest Path

Routing

(OSPF)

Links' Weight

Each Session

Demands ()

Network Topology

(Link Connectivity &)

14

With ECMP routing a flow arriving at a node is split evenly over the links on the shortest paths

from this node to the destination. It should be mentioned that arbitrary routing is not possible once

ECMP in OSPF is used. So, in OSPF environment we can never obtain the optimal routing but we

can get close to it as much as possible.

Objective function that is used in [6] is  
 


Kk Aji

k

ijXrMLU
),(

min . The second term in this objective

function cause to minimizes 
Aji

k

ijX
),(

 in addition to MLU . In this case, the weight set resulted

from the dual function is  rwij  (where {wij}(i,j)∈A are Lagrange multipliers that correspond to

the non-equal constraint). The routing algorithm that we use in this chapter is OSPF. This protocol

splits the traffic equally among the available shortest paths, so we prefer traffic splitting as much

as possible even if it passes through longer paths. As the constant r in the second term prevents

the flow to go through long paths we assume that 0r .

2.4 Simulation Results

In this section, we simulate the OSPF protocol with its default link metrics and with the metrics

that are calculated using the optimization problem.

Scenario I: In first scenario the simulation platform is shown in figure 2-2.

All links in this network are DS3 with 44.7 Mbps rate. We suppose FIFO as a queuing policy.

The session is a VOIP with GSM quality and the average bit rate is 40 Mbps.

15

Figure 2-2 Simulation Network Topology

Node 1 is the source node and node 2 is the destination.

Table 2-1 shows the solution of primal problem (Xij) which indicate the paths that minimize

maximum utilization. Solution of DUAL_I problem is shown in Table 2-2 and Table 2-3 show the

solution of DUAL_II problem.

Table 2-1 Optimum flows

X12 20

X13 20

X23 0

X24 20

X25 0

X35 20

X54 20

4

2

1

3

5

16

Table 2-2 The Solution of DUAL_I

Table 2-3 The Solution of DUAL_II

w12 0.0056

w13 0.0017

w23 0

w24 0.0056

w25 0

w35 0.0077

w54 0.0017

W12 2.0177

W13 1.3567

W23 1.0000

W24 1.9823

W25 1.0000

W35 1.2843

W54 1.3591

17

Table 2-2 shows that the optimum paths are 1->2->4 and 1->3->5. These paths can obtain in a

shortest path algorithm regarding to the weights that show in table 2-2. Table 2-2 and Table 2-3

are the equivalent weights with respect to the graph that shows in Figure 2-2. So, we use the

suboptimal weigh set in table 2-3 instead of default OSPF link metrics. Figure 2-3 show that in

recent method packet drop decrease significantly.

In following scenarios the simulation platform is shown in Figure 2-4. We compare MLU, BWE

(Bandwidth Efficiency), Number of Over Utilized Links, IP Traffic Dropped and IP Traffic

Received for all scenarios.

All links in our network are DS1 with 1.5 Mbps rate. We suppose FIFO as a queuing policy. All

interfaces have a limited buffer size of 100 packets.

Figure 2-3 IP Traffic drop in default protocol and new method

18

Figure 2-4 Simulation Network Topology

Scenario 2: In this scenario R1 is the traffic source and R13 is the traffic destination. Table 2-4

and table 2-4 show the Suboptimal Link Weights that obtained by DUAL_II.

Table 2-4 Solution of DUAL_II

W1_2 56.84 W3_6 1.000

W2_1 55.56 W6_3 1.000

W1_3 1.000 W3_7 1.000

W3_1 1.000 W7_3 1.000

W1_4 1.000 W4_9 1.000

W4_1 1.000 W9_4 1.000

W2_5 1.000 W4_8 1.000

W5_2 1.000 W8_4 1.000

19

W2_11 1.000 W5_12 1.000

W11_2 1.000 W12_5 1.000

W2_3 1.000 W6_11 1.000

W3_2 1.000 W11_6 1.000

W3_4 2.000 W6_10 1.000

W4_3 1.000 W10_6 1.000

W6_7 55.84 W10_13 1.000

W7_6 1.000 W13_10 1.000

W7_10 1.000 W10_14 1.000

W10_7 1.000 W14_10 1.000

W7_9 1.283 W11_12 1.000

W9_7 1.000 W12_11 1.000

W8_9 1.000 W11_13 1.000

W9_8 1.000 W13_11 1.000

W9_10 1.000 W12_13 1.000

W10_9 1.000 W13_12 1.000

W9_15 2.000 W13_14 1.000

W15_9 1.000 W14_13 1.000

W10_11 1.000 W14_15 1.000

W11_10 1.000 W15_14 1.000

20

MLU in new method decreases from 91.3 percent to 36.3 percent and BWE increases from 7.6

percent to 10 percent as shown in Table 2-5.

Table 2-5 MLU and BWE values

 Default

Algorithm

Suboptimal

Algorithm

MLU 91.3 36.3

BWE 7.6 10

 Number of

Over Utilized

Link

0 0

IP Traffic Dropped and IP traffic Received do not change in this scenario because there is no

congestion.

21

Figure 2-5 Scenario2 IP Traffic Dropped

Figure 2-6 Scenario2 IP Traffic Received

22

Scenario 2: in this scenario we have three source-destination pairs),(11 ds ,),(22 ds ,),(33 ds that

are originated from R1 to R13, R5 to R9 and R4 to R2 respectively. MLU in the new method

decreases from 137 percent to 91.3. The Number of over-utilized links also decreases from eight

links to two links. BWE increases from 26.6 percent to 31.4 percent, table 2-6. Figure 2-5 and

Figure 2-6 show the comparison of IP Traffic Dropped and IP Traffic Received

Table 2-6 MLU and BWE values

 Default

Algorithm

Suboptimal

Algorithm

MLU 137 91.3

BWE 29.6 31.4

 Number of

Over Utilized

Link

8 2

In this chapter, we discus linear optimization methods which can helps Internet protocols work

better. We use a duality theory to find a weight set that improve the routing protocols efficiencies.

As a matter of fact, routing is the most important aspect of Internet Traffic Engineering. So, we

focus on routing protocols and introduce a practical method that optimizes Link Metrics. Previous

optimization methods suffer from practical issues but our method could be implemented with

23

Routing Protocols that based on shortest paths. Our simulation results show significant

improvement on network efficiency [7].

2.5 Low Structural Congestion via Game Theory and Linear Programming

We propose a network topology design approach that targets the reduction of structural congestion

in a directed acyclic network. What we mean by structural congestion is that a node has much

higher in-degree than out-degree in a directed network. We approach the issue using a network

design game model. In this model, we consider multiple sources and one destination. Each node

is willing to connect to other nodes but it should pay the price of whole paths it uses to send traffic

to the destination. The model yields a weight for each link. We show that if these weights are used

to compute shortest paths, then a network topology is obtained with a low level of structural

congestion.

The proposed method has two phases. In Phase I, we solve a linear optimization problem in order

to find the optimum link weights. In Phase II, each node optimizes its own individual objective

function, which is based on the weights computed in Phase I. We show that there exists a Nash

Equilibrium which is also the global optimum. In order to measure the penalty incurred by the

selfish behavior of nodes, we use the concept called price of anarchy. Our results show that the

price of anarchy is zero.

Problem statement

Communication network design methods and algorithms are approached with various types of

design goals. Minimum vulnerability, fault tolerance and quality of services are often used in this

context [8].

24

As network nodes become more intelligent, distributed algorithms become increasingly

dominant. Although a centralized algorithm which optimizes the entire network configuration

would maximize efficiency and utilization, it is not as stable as distributed algorithm. Stability in

a network means that if some nodes fail, other nodes have the capability to reconfigure

themselves and recover from the failure. This idea can lead to a decision making algorithm that

is executed in each node separately to optimize the global benefit.

One step further in this direction is when a node does not know the global benefit or does not

care about it. In this situation a network involves selfish agents, making decisions to optimize

their own benefit [9]. Social and biological networks are examples of such selfishly behaving

agents that form a network. Game theory is a useful tool to analyze and predict the behavior of

this kind of networks.

In this work, we study a directed acyclic network design game in the light of structural congestion

consideration. Each node in a network which has a high in-degree is a bottleneck. It is desirable

to avoid such a structural bottleneck, as it can easily lead to traffic congestion.

 Our main objective here is to show that there exists a well-defined utility function in which the

selfish behavior of each node leads to a network topology with minimum structural congestion. To

do that first we convert a minimum structural congestion problem into a shortest path routing

problem, in which link weights are obtained as the output of a linear optimization task. Then we

construct a utility function in order to encourage each node to use paths with minimum overlap.

The path set forms a new network which has a minimal structural congestion.

The rest of this chapter is organized as follows. After discussing related work in section II, we

define the concept of structural congestion and optimization framework for analyzing network

25

topology in section III. In section IV we derive a condition in which selfish behavior of each

node can lead to an optimum. Finally, conclusion is presented in section V.

2.6 Related Work

The design of various networks has been studied in sociology, natural sciences and engineering

for a long time [10]. Optimization and graph theory was the most useful tool in this field, since

Myerson introduced a new network design model using game theory for social and economic

networks. After that, the concept of game theoretic models has been used in different

communication networking contexts, such as routing , flow control and dynamic access control in

wireless networks [11].

Nash Equilibrium has been considered as a way to quantify the performance associated with selfish

behavior of each player. Such equilibria are inefficient [11]. The lack of global control can lead to

suboptimal network performance. The “price of anarchy” is a concept in game theory which

measures the inefficiency of a system due to selfish behavior of each player.

 A comprehensive study of game theory based communication network design is [8], which

involves three important design considerations, namely the price of establishing a link, path delay,

and path proneness to congestion. They showed that there exists an equilibrium point which is a

global optimum.

The cost function which they considered in [8] for each player in a network design game

considering path congestion is:

26

)(maxmax)(
),(

k

in

G
vvlvVv

i vvC
kijk




 (2-4)

In which)(k

in

G v is the input degree of a node kv in a graphG , and),(ki vvl denotes the path

connecting iv and kv . In this method, each node is required to connect to all other nodes and they

show that a directed ring is both an optimum and equilibrium.

 In this study, we focus on the structural congestion of the network. For our purposes, the network

can be represented by a weighted directed acyclic graph.

2.7 Structural Congestion

A path in a network is a sequence of links, each link (except the first) having the same start node

as the end node of the previous link in the sequence. Each link has a utilization factor, which we

call Link Utilization (LU). If we view the network topology as a set of paths from a source to a

destination, it contains several links which have different LU. A path’s proneness to congestion is

depending on the maximum LU on the path from a source to a destination. Let us look at a node

iv in the network, which is described using the graph),(ENG . Let in

i and out

i be the input and

output degree of iv . We define the Degree Ratio (DR) for each node as follow:

Definition: The degree ratio of a node Ni is
out

i

in

i
iDR




 .

Assuming all links have unit capacity, the quantity
iDR shows the structural congestion at the node.

High
iDR means node Ni is a bottleneck and can be a point of congestion. There is a direct

27

relationship between iDR in a network and the Maximum Link utilization (MLU) which is

described in the following conjecture.

Conjecture: A set of paths in a directed acyclic network which minimizes MLU, will form a new

network which minimizes (at least approximately) iDR for all Ni and carries the same amount

of traffic.

Minimizing MLU means finding a set of paths between a source and a destination, such that these

paths split the input traffic as much as possible and, at the same time, have a minimum overlap.

First, we analyze the problem of minimizing MLU, because it is a linear optimization problem.

Consider a directed acyclic graph),(ENG which represents the network. EjiCij ),(: is a set of

edge capacities and),(kk ts is a set of source-destination pairs for each session Kk . The

percentage of traffic on a link Eji ),(that belongs to session k is
k

ijX . With these notations, the

formulation is [8]:





























0

.

0

1

1

min

),(:),(:

ij

Kk

ij

k

ij

Eijj

k

ji

Ejij

k

ij

X

X

MLUCX

otherwise

Ti

Si

XX

MLU

 Using duality theory, we can write the dual optimization problem as follows:

28

0

1

max

),(

,













ij

k

s

ij

k

j

k

i

Eji

ijij

Kk

k

t
WP

w

p

wpp

wC

p

k

k

Because the primal and dual problems are both linear, strong duality holds and according to

complementary slackness in the KKT theorem if k

ijX̂ is an optimal solution for the primal

problem, and  k

ijij pw ˆ,ˆ is an optimal solution for the dual, then we have:

0)ˆˆˆ.(ˆ  ij

k

j

k

i

k

ij wppX

This equation indicates that if session k uses link Eji ),(then ij

k

i

k

j wpp  . According to the

Duality Theorem, if 
Ejiijw

),(
ˆ is used as link metric in a shortest path algorithm, all non-empty

links)0(k

ijX will be selected in a shortest path algorithm procedure. As a result if any shortest

path algorithm uses  
Ejiijw

),(
ˆ as link weights we will have set of paths between a source and

destination which has an important character. The path set splits the input traffic as much as

possible through the network and at the same time has minimum number of overlap links.

 A network topology with minimum structural congestion means that iDR is close to one. Let us

consider a weighted directed acyclic graph which represents a network with only one source-

destination pair and the capacity of all links are 1. Weights are calculated on the basis of the dual

optimization problem discussed above. If we run any shortest path algorithm over such a network

we obtain a set of paths . If we delete any link Eji ),(which is not on a member of we will

29

have a new weighted acyclic graph which represents a new network. Based on the following

theorem, the new network has minimum iDR .

2.8 Network Design Model

In this section, we study the performance of a non-cooperative network. This means, each node

(player) tries to maximize its own benefit. The network design goal is minimizing the structural

congestion. Node iv gains i by connecting to any node in the network. So, each node tries to make

a connection to as many nodes as possible. By connecting to each node, it must calculate the length

of a path from itself to a destination. The gain a node can achieve by connecting to others minus

the summed length of all paths heading to destination form the utility function of each node as

follows.

Node Utilization:





Pp

ti

p

iiiG vvdSvu
WG

),()(
)(



Which iS is the number of output links in node iv and),(
)(ti

p vvd
WG

is a distance between node iv and

the destination using path Pp in the designed network using links weightW .

The network utilization is the sum of all node utilization functions.

Network Utilization:





Ni

iGG vuU)(

30

Optimum solution for such a game happens when we have a maximum 



Ni

iGG vuU)(. But in

order to find equilibrium point we need to analyze the selfish behavior of each node. For that

purpose, consider Figure. 2-7 as a part of a network. Node iv is deciding to stay on its current

strategy (connection to other nodes) or deviate (drop a connection or make a new one) based on

the maximum utilization function.

Figure 2-7 Node Vi decision strategies

Consider node iv in the network. It is already connected to nodes 1iv and 2iv . It should decide to

connect to nodes 3iv and 4iv or not. The current topology is represented by the graph 1G , if it

connect to 2iv the graph will be 2G and if it connect to both 1iv and 2iv the graph will be 3G .

Based on the weight system in the network the distance from nodes 1iv , 2iv , 3iv and 4iv to

destination are 1il , 2il , 3il and 4il respectively. The utility of node iv is:

v

vi

+1

vi

+2

vi

+3

vi

+4

vi

31

)(2)(22,11,1   iiiiiiiiG lwlwvu 

)(3)(33,22,11,2   iiiiiiiiiiiG lwlwlwvu 

)

(4)(

44,

33,22,11,3









iii

iiiiiiiiiiiG

lw

lwlwlwvu 

Suppose that based on the weight system, links)1,(ii ,)2,(ii and)3,(ii are on the shortest

paths. So, we have:

33,22,11,   iiiiiiiii

i

PSh lwlwlwl

If we want that the selfish behavior of the node iv leads to optimum topology, then the following

conditions must hold:

)()(21 iGiG vuvu 

)()(32 iGiG vuvu 

So, we have:

44,11,   iiiiiii lwlw 

If we consider i

PSh as the length of a second shortest path from the node iv to the destination we

have:

lSh−P
i < αi < λSh−P

i

32

i

PShi

i

PShl   

This is the condition in which selfish behavior of each node in the network will lead to optimum

topology with minimum structural congestion. Now the question is if there is any upper and lower

bound for  in general. Using topological sorting theorem [12] we can find such a bound. Based

on topological sorting theorem a directed acyclic graph can be represented in way that nodes index

increase when they get closer to the destination and there is no link),(nm if nm  . For example,

a directed acyclic graph with 4 nodes after topological sorting is shown in figure 2-8.

Figure 2-8 Topological Sorting

After topological sorting, we suppose that node 1 is the source and node N is the destination.

Now it is clear that after using weight set which is the solution of dual optimization problem in

section III we have 1

  i

PSh

i

PSh ll . So, the lower bound for is 1

PShl  which is the shortest path from

source to the destination. Also, we have 1

  i

PSh

i

PSh  . So, the upper bound for is:

 NNNNNN

N

PSh www ,2,11,2

2 ,max 



 

So, we have:

lSh−P
l < α < λSh−P

N−2

V V

V V

33

 Now consider the network in figure 2-7. The question is what is the upper and lower bound for

 in this network. Table I shows the optimal weights which calculate using dual optimization

problem in section III.

Table 2-7 Optimum Weights

1221 wpp  1

1331 wpp  1

1441 wpp  2

2332 wpp  3

2442 wpp  1

3443 wpp  1

In this case upper and lower bound is:

lSh−P
l = 2

λSh−P
N−2 =4

So 3 satisfies the condition. After applying 3 in the node utility function, node 2v can

improve its utility function by deviate from current strategy to the one which has no connection to

node 3v . As a result, we have network with better structural congestion. Applying this method to

all nodes the result would be a network topology with minimum structural congestion.

In order to analyze the price of selfish behavior there is two important concepts which are price of

stability and price of anarchy. The price of stability is the ratio between best objective function

34

value in equilibrium point and the optimum network utilization function. On the other hand, price

of anarchy is the ratio between worse objective function value in the equilibrium and the optimum

network utilization function [13]. In this section, we showed that price of stability is one and

anarchy is free if each node applies the node utilization function. Otherwise price of anarchy is

depending on and  
Ejiijw

),(
.

Figure 2-9 shows how the optimization method provides inputs for our network design game.

Figure 2-9 Algorithm Flowchart

It is worth mentioning that the described method can be implemented in a network using

distributed algorithms like the Bellman-Ford Algorithm [14]. It means that it is not necessary for

each node to have information about the whole network. It is only needed to know the parameter

 , the weights of its outgoing links and the distance of its neighbors to the destination. Having

this information is sufficient to find an optimum strategy.

Max
Connection

Network Design
Game

Opt Link Weights

Min Max Link
Utilization

Min Structural
Congestion

35

2.9 Simulation

For the simulation, we consider a directed acyclic network with 20 nodes. All links have a capacity

one and we consider node 1, 2 and 3 as a source of traffic and node 20 as the destination. Figure

2-10 shows the network topology. Maximum degree ratio is 19 in this network. Each node

minimizes its own objective function based on optimum link weights and its desire to make more

connection.

Figure 2-10 Network Topology

After solving the dual optimization problem, we have lSh−P
l = 4.3 and λSh−P

18 =14.5. Figure 2-11

shows that no structural congestion is a result of choosing 5.143.4  , it means that 1iDR for

36

all Ni . As  deviates from the constraint each node is more willing to make a new connection

and it leads to more structural congestion. For example, if we choose 20 degree ratio of nodes

16 and 17 are high and they can be considered as a network bottleneck.

Figure 2-11 Degree ratio for each node using different alpha

This section investigates the question “how non-cooperative nodes in a network can create an

efficient network?” We have studied the result of the selfish behavior of nodes, and compares it to

the situation in which there is a central control unit in the network. Central control can force all

nodes to use a predefined strategy in which the network utilization is optimum.

Based on the discussion in section IV if we fix the benefit of establishing a new link for each node,

 , in a way that satisfies the condition lSh−P
l < α < λSh−P

N−2 , the price of stability will be one and

also the price of anarchy will be zero in this network design game [15] [16].

37

CHAPTER 3

AN OPTIMAL TRAFFIC DISTRIBUTION METHOD SUPPORTING END-TO-END

DELAY BOUND

Routing methods for optimal distribution of traffic in data networks that can also provide quality

of service (QoS) for users is one of the challenges in recent years’ research on next generation

networks. The major QoS requirement in most cases is an upper bound on end-to-end path delay.

In multipath virtual circuit switched networks each session distributes its traffic among a set of

available paths. If all possible paths are considered available, then the source’s decision on its

traffic distribution can be considered as routing. A model of the routing function as a mathematical

problem which distributes the input traffic over possible paths for each session is proposed here.

A distributed and iterative algorithm which will keep the average end-to-end delay for individual

paths below a required bound is introduced. This algorithm minimizes the total average delay of

all packets in the network. The convergence of the algorithm is illustrated [17].

Computer networks have evolved into a new generation where a wide range of new services are

provided to various network users. For many of these new services, such as VOIP, IPTV, Network

Games, etc., it is not sufficient just to transfer the information to the destination, but for the users’

satisfaction it is necessary to guarantee their required QoS as well. In this manner, the new services

with arbitrary QoS require ments can be deployed in the network. Providing the QoS must be

achieved by utilizing the least possible resources of the network such that the network can be

optimized in terms of resource utilization [18]. Network optimization algorithms determine traffic

distribution for a given traffic demand so that the optimum re- source utilization can be achieved.

38

But the research results so far show that providing QoS in cases where routing is performed without

paying attention to the QoS requirements is difficult. Therefore, considering the required QoS in

the optimization algorithms and determining the routes accordingly is one of the challenges of the

next generation networks.

Recently several new services have become popular in the internet qualities of which depend on

the end-to- end delay experienced by the packets in the network. For an acceptable QoS it is

required that the end- to-end delay is kept under a threshold level. Providing QoS is not an easy

task in datagram networks. In new generation networks, virtual circuit switched networks such as

MPLS is used to provide a better framework to implement QoS.

Most of the QoS provisioning algorithms in the literature exploit certain mechanisms to guarantee

the delay for a given path. Nen Jin, et.al show that for providing QoS in a DiffServ network, the

price per unit of traffic rate for each traffic class can be adjusted. They assume a given path for a

user. The satisfaction of the user is modeled through a convex function of the traffic passing

through that given path and the QoS level of the assigned traffic class. In [19] QoS is proposed to

be provided by adjusting the capacity allocated to each DiffServ class. The QoS measure is the

exact proportion of the average delay of two different traffic classes. Each user’s traffic is routed

through a predetermined path and depending on the amount of traffic of each class, the traffic over

this path experiences a delay which is considered as its cost. In [20] a dynamic method is used to

adjust the users’ traffic rate in a manner that a minimum rate and a maximum delay threshold are

guaranteed. A predetermined path used for routing the traffic and its rate is determined by solving

a convex optimization problem which satisfies the user’s delay requirements.

39

Most of the articles that study the traffic distribution in virtual circuit switched networks assume a

set of known paths for each source-destination pair. To simplify the problem, usually, a small set

of paths is selected from all possible paths beforehand. In the articles that find routes based on

QoS requirements, the QoS is mostly measured based on parameters. Each QoS parameter for a

path is sum of the QoS parameters of its links. The links are modeled by an m-dimensional weight

vector W = (w1, ..., wm) the components of which represent the QoS parameters of links. Paths

with QoS parameters lower than the threshold levels will satisfy the required QoS and can be

selected. In this manner, the QoS-based routing problem is modeled as a multi-constraint (optimal)

problem. Since these problems are NP-hard, in most cases heuristic methods are adopted in solving

them.

Here the objective is to introduce a scalable method in terms of the number of sessions, in order to

dis- tribute the network’s traffic over available paths in a virtual circuit switched network that

would minimize the average delay for all packets as the total cost of the network, while

guaranteeing a bounded end-to-end path delay as the users, QoS requirement. The proposed

method in this article is based on the analysis of the traffic distribution problem with delay

constraints. As a result, this problem is modeled as a constrained convex optimization problem

and the routing algorithm is provided in accordance to the analytical solution of this problem.

In Section 2 an analytical model for distributing traffic is introduced where the traffic distribution

is modeled as a constrained convex optimization problem. In Section 3 the Lagrangian dual method

is adopted for solving this problem. An algorithm that can be realized in a data network based on

the dual method is proposed here. In Subsection 3.1 the implementation method of the proposed

40

algorithm in real networks is explained. In section 4 the simulation results are provided expressing

that this proposed method con- verges and can achieve its objective in an effective manner. This

article will be concluded in Section 5. The analysis of the proposed model is provided in the

Appendix A.

3.1 Traffic Distribution Model

The objective in common for all the routing algorithms is to determine the appropriate paths for

carrying the users’ traffic from source to destination. All or part of each user’s traffic is assigned

to each selected path; therefore, a direct output of a routing algorithm is the amount of traffic

allocated to each path. In fact, routing can be modeled as a mathematical problem which

determines the distribution of all sessions’ traffic over the network graph.

In this article source-destination pairs are assumed to be known and are presented by the set W.

Each source-destination pair w 2 W is considered as a session and its average input traffic is

presented by rw. A data network is modeled as a stationary and directed graph G(A, V). The graph

nodes, represented by set V model the network routers or gateways and graph links represented by

set A, model the physical links between the routers. Some of the nodes of the graph are source or

destination of the sessions in the network.

A session path is a set of links that connects the source of the session to its destination. The set of

the paths of each session is called Pw, Figure 3-1. Thus, the routing problem is similar to finding

the distribution of each session’s traffic over its paths.

The parameters and notations which are used in the rest of this article are introduced in the

41

following Nomenclature:

• W: The set of all existing sessions, where NW shows the total number of these sessions

• P : The set of available paths of all sessions w 2 W in G(A, V),where NP shows the total

number of these paths

• Pw: The set of available paths of session w

• rw: Average traffic rate of session w

• xp: Traffic assigned to path p 2 P

• X: A vector of NP components whose pth component is the assigned traffic to path p, xp

• p: The lagrangian multiplier according to the delay constraint of path p

• ⇤: A vector of NP components whose pth component is the p

• thp: The threshold level of average delay of packets in path p

• Th : A vector of NP components whose pth component is thp

• fij : The flow crossing from link (i, j) of G(A, V)

• hp(X): The cost function associated with path p

• H(X): A vector of Np components whose pth component is hp(X)

42

• Dij (fij): The cost function associated with link (i,j)

Figure 3-1 A network graph with three sessions

Based on the above definitions the following relations hold:

𝑥𝑝 ≥ 0 ∀𝑝 ∈ 𝑃 (1) (1)

∑ 𝑥𝑝 = 𝑟𝑤 ∀𝑤 ∈ 𝑊, ∀𝑝∈ 𝑃𝑤

𝑝∈𝑃𝑤

 (2)

𝑓𝑖𝑗 = ∑ 𝑥𝑝 ∀(𝑖, 𝑗) ∈

𝑝|(𝑖,𝑗)

 (3)

ℎ𝑝(𝑋) = ∑ 𝐷𝑖𝑗(𝑓𝑖𝑗) ∀𝑝 ∈ 𝑃

(𝑖,𝑗)∈𝑝

 (4)

 (3-1)

If the average delay of the packets over a link is considered as the link’s cost function, Dij (fij),

43

and the messages are delayed only by the links of the network, then (3-2) expresses the expected

delay for all packets over the network [3]. Equation (3-2) indicates the average time that packets

remain in the network and use network resources; thus, it can be considered as the overall system

cost.

𝐷 = ∑ 𝐷𝑖𝑗(𝑓𝑖𝑗)

(𝑖,𝑗)∈𝐴

(3-2)

Even in a virtual circuit network minimizing (3-2) can be a good objective for traffic distribution

since it can improve network resource utilization [21] [22]. In the virtual circuit switched networks,

each session’s traffic is distributed among the available paths. By assuming a stable network and

assuming that the traffic of the sessions is stationary, this problem is modeled and analyzed as the

problem of distributing the average input traffic of each session rw , over the set of session’s paths

Pw, which will result in the sessions’ path flows xp, for all sessions. Thus, fij, the total flow of link

(i, j), can be expressed by the different path flows. As a result, fij equals the sum of all path flows

traversing link (i, j), (3-1-3). Here each session represents a customer. The expectation of each

customer from the network is defined based on the customer’s traffic’s delay tolerance. In this

case, the customer will be satisfied if the average delay is bounded to a certain threshold.

Therefore, considering the delay of each link as its cost is deemed to be appropriate. In this model,

the sum of the cost function of the links which compose a path, is considered as the path cost,

hp(X), which is equal to the sum of the costs of the path’s links

(4). Considering (3-2) as the overall cost function of the network and (3-1-4) as the customer cost,

the limitation of which is required by the customers, the routing in the network can be modeled as

44

Problem 1.

Problem 1.

min
𝑥

𝐷(𝑋) = ∑ 𝐷𝑖𝑗(∑ 𝑥𝑝
𝑝|𝑖𝑗∈𝑝

)

(𝑖,𝑗)∈𝐴

(1)

∑ 𝑥𝑝 = 𝑟𝑤 ∀𝑤 ∈ 𝑊, ∀𝑝 ∈ 𝑃𝑤

𝑝∈𝑃𝑤

(2)

𝑥𝑝 ≥ 0 ∀𝑝 ∈ 𝑃 (3)

ℎ𝑝(𝑋) ≤ 𝑡ℎ𝑝 ∀𝑝 ∈ 𝑃 (4)

 (3-3)

In this problem, the path flows xp, are the variables. The objective function D(X) is considered as

the overall system cost. The purpose of this problem is to find the distribution of the traffic among

the available paths in order to minimize the overall system cost while the constraints (3-3-2) to (3-

3-4) are satisfied. Constraints (3-3-2) and (3-3-3) guarantee the acceptable allocation of the traffic

over the session’s paths, and constraint (3-3-4) guarantees the delay limitation or users’

expectation. If constraint (3-3-4) is ignored, Problem 1 is converted to Problem 2.

Since the cost functions hp(X) are convex, Problem 1 is a constrained convex optimization

problem [5], which can be solved using any of the existing methods, such as Projected Gradient,

Interior Point, etc. But here the objective is to find a solution that can also be implemented in real

networks. In this regard, the Lagrange dual problem is formulated and solved. In other words, since

Problem 1 is a convex optimization problem the duality theorem is adopted in solving it. The fact

that strong duality holds is presented in Proposition 1.

45

Problem 2.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝐷(𝑋) = ∑ 𝐷𝑖𝑗(∑ 𝑥𝑝

𝑝|𝑖𝑗∈𝑝

)

(𝑖,𝑗)∈𝐴

∑ 𝑥𝑝 = 𝑟𝑤 ∀𝑤 ∈ 𝑊, ∀𝑝 ∈ 𝑃𝑤

𝑝∈𝑃𝑤

𝑥𝑝 ≥ 0 ∀𝑝 ∈ 𝑃

 (3-4)

3.2 Solving the Optimization Problem

Usually the cost function Dij(fij) is expressed as a convex, non-decreasing, continuous and

differentiable function; therefore, the path cost will have the above characteristics. Since the cost

functions hp(X) are con- vex, Problem 1 is a constrained convex optimization problem [5], which

can be solved using any of the existing methods, such as Projected Gradient, Interior Point, etc.

But here the objective is to find a solution that can also be implemented in real networks. In this

regard, the Lagrange dual problem is formulated and solved. In other words, since Problem 1 is a

convex optimization problem the duality theorem is adopted in solving it. The fact that strong

duality holds is presented in Proposition 1. Since there is a practical solution to solve Problem 2

[15], the dual problem is described using the Lagrange multipliers related to (3-3-4). Thus the

Lagrangian is (3-5) where only constraint (3-3-4) is relaxed by introducing Lagrange multiplier p

for each path. The resultant partial dual function is Problem 3.

𝐿(𝑥, Λ) = 𝐷(𝑋) + ∑ 𝜆𝑝. (ℎ𝑝(𝑋) − 𝑡ℎ𝑝) ∀Λ ≥ 0

𝑝∈𝑃

 (3-5)

Problem 3.

46

𝑞(Λ) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝐿(𝑥, Λ)

∑ 𝑥𝑝 = 𝑟𝑤 ∀𝑤 ∈ 𝑊, ∀𝑝 ∈ 𝑃𝑤

𝑝∈𝑃𝑤

𝑥𝑝 ≥ 0 ∀𝑝 ∈ 𝑃

(3-6)

Considering Problem 3 as the dual function of Problem 1, the dual problem will be Problem 4.

Problem 4.

max 𝑞(Λ)

𝜆𝑝 ≥ 0 ∀𝑝 ∈ 𝑃

As mentioned in Proposition 2, the q(⇤) is a con- vex function which is not necessarily

differentiable in general, but it is sub-differentiable at all points. There- fore, Problem 4 can be

solved iteratively by adopting the sub-gradient method [22]. In this method, an initial value is

given to variable , (0), and in each iteration according to (11) a new value is calculated which

will be closer to the optimum value.

Λk+1 = [Λk + αk. gk]+ (3-7)

To calculate the new value of ⇤ in the kth iteration, first a sub-gradient of function -q() called -

gk is calculated at k, and then k+1 is calculated by using (3-7) where, k is a positive step size

and ”+” denotes projection on the set R+. As result-4 indicates, in order to find a vector gk the

traffic must be distributed based on Problem 3 solution according to  = k, denoted by X⇤(k).

In this case, the deviation of the cost of a path from its threshold thp, is equal to the associated

47

component of gk, (3-8). 

gk = hp (X∗(Λk)) − thp (3-8)

Eventually, the iterative algorithm finds ⇤ which is the best solution for Problem 4. Obviously

in this iteration the input traffic is distributed similar to that of the path flows which are the solution

of Problem 3 for the amount of  = ⇤. Since the conditions for strong duality exists according

to Proposition 1, this distribution will be the optimum solution of Problem 1 as well. In the

following section the proposed algorithm is explained.

Algorithm Steps:

Step1: A feasible value is given to . Since in Problem 4 every  >= 0 is acceptable, the 0 =0 is

used as the initial value. In this step, the initial value of qbest is 0.

Step2: In iteration k, Problem 3 must be solved based on the value of k, leading to the optimum

value q(k) and the optimum point X⇤(k). The components of this vector are represented by

x⇤
p(k). In other words, a mechanism must be used to determine path flows, for the optimal

routing problem when (3-9) is considered as the cost function of each link. There- fore the

Lagrange multipliers can be interpreted as the bottleneck indicators of the paths.

Dij
k = (1 + ∑ λp

k

p|ij∈p
) . Dij(∑ xp

∗ (Λk))

p|ij∈p

 (3-9)

48

Step3: In iteration k with respect to the value of X ⇤ (k) which is calculated in step2, the

deviation of each path’s cost from the threshold level of the same path is calculated. Considering

the Proposition 3, the negative of this value can be considered as the pth component of the sub-

gradient vector of q() at k or -gk. After calculating the deviation for all paths, the p value of 

for next iteration or k+1 can be calculated using (3-8).

Step4: The value of qbest = max{qbest,q(k)}is calculated and k is increased by one. Then if the

condition of ending the algorithm is met, the algorithm terminates, otherwise, it goes back to step2

for next iteration.

Condition of ending the algorithm: In a simple case, the condition which leads to the algorithm

termination can be the maximum number of iterations (Figure 3-2).

Figure 3-2 The flowchart of flow distribution algorithm

49

Matching the algorithm with real networks

As mentioned before, the main objective of this article is to distribute the input traffic of a session

over its known paths. A session can be equivalent of a source and destination pair in virtual circuit

switched networks such as ATM and MPLS, or in general in any network that uses explicit routing

or source routing. Even a certain DiffServ class traversing the same LSP in these networks can be

considered as a session. In practice this proposed algorithm is implemented for each session

iteratively and in parallel for all sessions.

Here each iteration of the algorithm is assumed to be performed in one time slot. At the end of a

time slot, destination nodes calculate the deviation of the average delay for each path from the

required delay bound. The bottleneck multiplier of the path is calculated based on its cost deviation

and is sent to the source node. The average delay of packets in each iteration can be determined

by the destination either using analytical modeling or just by measurement. In a case where the

path delay is estimated by using measurement methods, based on the assumptions about the link

cost in this article, this proposed algorithm will definitely converge according to the Proposition

4. During each time slot the source nodes distribute the input traffic according to the optimal point

of Problem 3. In each iteration, the Problem 3 is an optimal routing problem where the cost

function of each link is defined by (13). This problem can be solved by one of the existing methods.

Each time slot can be in the order of the end-to-end trip time in the network. The algorithm is

scalable because it is implemented independently for each session. If the set of the paths for each

session can be assumed to include all possible paths for the session based on the topology of the

network, the algorithm will practically select the routes; therefore, a separate method for

50

determining the possible routes will not be necessary.

3.3 Simulation

The algorithm for two sessions is simulated over the network graph in Figure 3-3. The algorithm

is executed independently for each session in an iterative and synchronized manner. All possible

paths for session 1 are P1(14a), P2(14b) and P3(14c) and for session 2 are P4(14d), P5(14e) and

P6(14f).

In this simulation, the average delay of the links is modeled as (15) which is a convex,

continuous, and differentiable function of its average traffic. In this equation, Cij is the capacity

of the link (i, j) and Kij is a positive coefficient of the link. The domain of this function covers

the traffic flows between 0 and Cij only and as the flow gets closer to Cij the delay increases

exponentially. The function is undefined for values equal to or above Cij. The coefficient and

capacity of the links of Figure 3-3 are proposed in Table 3-1.

Dij(fij) =
(Kij ∗ fij

2)

(Cij − fij)

(3-10)

51

Table 3-1 Parameters of the Network links

The constant input traffics are used in the simulation as the expected values of the sessions traffics

in general. The average input traffic for each session is assumed to be 20 Mbps. In this simulation,

the attempt is made to clarify two important points: to show that the iterative algorithm converges

to the optimal point of Problem 1 and that this algorithm achieves its objective in limiting the end-

to-end delay of the paths in addition to minimizing the total network delay. Since the main

objective of this proposed model is similar to the optimal routing problem, the Problem 2, the

results of the proposed algorithm are compared with the Problem 2, for the above scenario.

In the first step, the path flows for each session are calculated based on solving the optimal routing

problem, the Problem 2, by applying CVX package in MATLAB. In this case, the end-to-end delay

for each path as well as the expected delay of packets are calculated (see Table 3-2).

In the second step, the path flows for each session are calculated based on the optimal routing

problem with end-to-end delay constraint, Problem 1. The end-to-end delay bound for each path

is assumed to be 76 units in this simulation. The path flows are calculated by solving Problem 1

52

applying CVX package in MATLAB (see Table 3-3).

The total cost of the network in step 2 is slightly higher than the optimum total cost in step 1. Yet

in step 1 the individual path cost, for paths 1 and 6, is beyond the end-to-end delay bound. This

means that this proposed algorithm is able to limit the delay with a minimum increase in the total

cost. Also it can be seen that based on the Complementary Slackness condition, xp of paths 1 and

6 is decreased from the optimum values of step 1, down to a point that their average delays are

decreased to the threshold level. As such, the optimum dual variable, DV, of these two paths is

expected to be higher than zero while DV of the other paths expected to be zero. It can be

interpreted that the marginal cost of the paths 1 and 6 should be lower compared to that of path 3

for the calculated traffic.

In the final step, the proposed algorithm is simulated through MATLAB. Here the step size is

0.008. The simulation finishes after 1000 iterations. The final results of the algorithm are presented

in Table 3-4. The stepwise results of the algorithm for Lagrange multipliers and two of the link

flows as a sample are presented in Figure 3-4 and Figure 3-5.

The results in Table 3-4 are the same as the results in Table 3-3. This means that the iterative

algorithm con- verges to the same results of the centralized solution [23].

Figure 3-4 shows that the path flows converge to the same results as the results of the case where

the Problem 1 is solved in a central manner [24].

Figure 3-5 shows that the Lagrangian multipliers of the distributed solution converge to the optimal

dual variable values obtained from the centralized solution of the Problem 1.

53

3.4 Mathematical Analysis

In this section, the analysis of the proposed algorithm is provided. First some parameters used in

this section are defined

• xp:FlowofthepathpthatisheldinAssumption1

• H(X): Cost vector of all sessions with NP components where the pth component represents the

cost of the pth path

• A(X): Deviation vector with NP components where the pth component represents the deviation

of the pth path from its threshold

• Th: Threshold vector with NP components and the pth component represents the maximum

delay bound of the path p

• ⇤: Optimum solution of Problem 4 which is a vector with NP components

• ⇤
p: The pth component of the optimum vector  which is the optimum Lagrange multiplier

of the pth path.

Result-1: Since the feasible set of the Problem 1 is not empty, this problem has at least one optimal

point. Proposition 1. The optimum solution of Problem 4 is equal to the optimum solution of

Problem 2.

54

Table 3-2 Simulation results of step 1

Table 3-3 Simulation results of step 2

55

Table 3-4 Final results of Step3 for 1000 iterations and step size 0.008

Figure 3-3 The flow of links per 200 iterations

56

Figure 3-4 The flow of links per 200 iterations

Figure 3-5 The Lagrangian multipliers corresponding to paths per 200 iterations

57

Assumption 1. The value of rw’s is such that Problem 1 has at least one strictly feasible point, in

other words (16) is held.

∃X̅| ∑ x̅p = rw and x̅p ≥ 0 and hp(X̅) < thp

p∈Pw

∀w ∈ W, ∀p ∈ Pw

(3-11)

Result-1: Since the feasible set of the Problem 1 is not empty, this problem has at least one optimal

point. Proposition 1. The optimum solution of Problem 4 is equal to the optimum solution of

Problem 2.

Proof. Since Problem 2 is a convex optimization problem, if the Slater conditions apply then the

strong duality will also apply. According to Assumption 1 the Slater condition is held; therefore,

strong duality is held.

Result-2: Assuming that the input traffic of sessions w meet (3-11), a strong duality exists and the

optimum solution of Problem 4 is equal to the optimum solution of Problem 2.

Result-3: Because of strong duality, (3-12) should hold for the optimum points of Problem 2 and

Problem 4 as follow:

λp
∗ . (hp(xp

∗)) = 0 ≡ {
hp(xp

∗) − thp < 0 => λp
∗ = 0

hp(xp
∗) − thp = 0 => λp

∗ ≥ 0

(3-12)

According to (3-12), at the optimum point of Problem 4, the Lagrange Multiplier of the paths with

58

lower costs than that of the threshold level is 0, and for the paths with Lagrange Multipliers greater

than 0, the final traffic amount assigned to them will be such that the cost of these paths will be

exactly equal to the threshold level.

Proposition 2. A) The function -q() defined in Problem 4 is a convex function of .

B) This function has sub-gradient at all of the points in its domain [25] [26].

Proof. If

𝐶 = {(𝑥1 … 𝑥2)| ∑ 𝑥𝑝 = 𝑟𝑤, 𝑥𝑝 ≥ 0 ∀𝑝 ∈ 𝑃𝑤

𝑝∈𝑃𝑤

}

Then:

−𝑞(Λ) = max
𝑋∈𝐶

{−𝐿(𝑋, Λ)}

A) q is a convex function: Defining vector A(X) and function b(X) by (3-13-1) and (3-13-2),

L(X, ) can be considered as a linear function of  for a given value of vector X, as in (3-13-3)

𝐴(𝑋) = 𝑇ℎ − 𝐻(𝑥) (1)

𝑏(𝑋) = ∑ ℎ𝑝(𝑥𝑝)

𝑝∈𝑃

(2)

−𝐿(𝑋, Λ) = ((𝐴(𝑋)𝑇 . Λ + b(X)) (3)

 (3-13)

Taking into account the definition given in (20) for function L(X, ), q() can be considered as

the point-wise maximum of the family of linear functions at all points ⇤ according to (3-14);

59

therefore q() is a convex function.

−𝑞(Λ)|Λ1 = max
𝑋∈𝐶

{(𝐴(𝑋)𝑇 . Λ + 𝑏(𝑋))|Λ1} (3-14)

B) Function q() has sub-gradient at all points :

The q() is differentiable at all points  where only one X , X ⇤ (), maximizes (3-14), i.e. at

these values of ⇤, only one of the functions A(X)T .  + b(X)) is greater than the others; therefore,

at these points, the sub-gradient of the function is unique and is equal to its gradient which is

calculated through (3-15).

𝜕 − 𝑞(Λ)

𝜕Λ
= ∇(−𝑞(Λ)) = 𝐴(𝑋∗(Λ)) = 𝑇ℎ − 𝐻(𝑋∗(Λ))

𝑋∗(Λ) = arg (max
𝑥∈𝐶

{𝐴(𝑋)𝑇 . Λ + 𝑏(𝑋)})

(3-15)

The q() is not differentiable at the points  where (3-15) is at its maximum at some points. At

these  some of the functions (A(X)T .  + b(X)) have the greatest value at the same time. In this

case, although q() is not differentiable, it has sub-gradient which is calculated through (3-16).

𝜕 − 𝑞(Λ)

𝜕Λ
= 𝐶𝑜𝑛𝑣𝑒𝑥ℎ𝑢𝑙𝑙 𝑥𝑖

{−𝐴(𝑋𝑖
∗(Λ))

𝑇
}

𝑋∗(Λ) = arg (max
𝑋∈𝐶

{𝐴(𝑋)𝑇 . Λ + b(X)})

(3-16)

According to Proposition 2, the function q() is the point-wise infimum of a family of affine

functions (21); hence, it is concave and sub-differentiable at any point.

60

Figure 3-6 q () for one dimensional

According to Proposition 2, the function q() is the point-wise infimum of a family of affine

functions (21); hence, it is concave and sub-differentiable at any point.

(Figure 3-6). In Proposition 3 an equation is provided to calculate one of the sub-gradient vectors

of function - q() that can be used in the algorithm in figure 3-2.

Proposition 3. At each point  (24) gives the sub- gradient of -q() at that point.

Proof. According to (22,23) for a given b, each optimal solution of (21), Xi
⇤, A(Xi

⇤), is one of

the sub-gradient vectors of -q() at point . According to (3-15), the optimum point of this

equation at point  can be obtained by solving problem 3 based on .

61

−𝑔(Λ̂) = (𝑇ℎ − 𝐻(𝑋∗)) ∈
𝜕𝑞(Λ)

𝜕Λ
|Λ̂

𝑋∗(Λ) = arg (max
𝑋∈𝐶

{𝐴(𝑋)𝑇 . Λ + b(X)})

(3-17)

In other words, X⇤() is an optimal point of Problem 3 based on .

Result-4: Considering (24) the number of components of vector g() is equal to the total number

of paths of session w. The pth component of this vector is equal to the deviation of the cost of path

p from its threshold level. In this equation, the path cost should be calculated when the traffic is

the optimum solution of Problem 3 for vector  . To calculate the sub gradient vector at point ,

solving Problem 3 at vector  and finding its optimum solutions suffices. Following this, the cost

of each path is calculated for this traffic and its deviation from the threshold level is considered as

the component of the sub-gradient vector.

Proposition 4. The algorithm introduced in Section 3 converges:

Proof. As shown in Figure 3-2, this algorithm describes the steps of the sub-gradient method in

solving Problem 4. According to the proof given in [21], if the value of the sub-gradient of function

q() in all points has an upper bound such as G and if the distance from the initial point of the

algorithm and the optimum point is less than R, the sub-gradient method converges [21]. To prove

the convergence of the algorithm, first, an upper bound for the distance of the initial point of this

algorithm and the optimum point is introduced, and then the upper bound for the value of the sub-

gradient vector of function q() at all acceptable points is calculated.

A) Upper bound for the distance between the initial point 0 and optimal point (*).

62

The initial point of the proposed algorithm in this article is 0 = 0. Assume a component p is

infinite. Considering Assumption-1 the amount of L(X, ⇤) and also g(⇤) is -inf. The optimal

value of Problem 3 will be -inf, while the optimal values of Problem 3 and Problem 1 were

expected to be equal. Considering Assumption-1 the optimal value of Problem 1 is finite (a

contradiction); therefore, all components of ⇤ are finite, hence |⇤ - 0| is bounded.

 B) The norm of the sub-gradient vector in all iterations is upper bounded:

In iteration k, the component p of the sub-gradient vector is equal to the difference of

hp (X ⇤ (k)) with thp . Considering Assumption-1, (X ⇤ (k)) is a finite vector and since the

optimal value of Problem 1 is finite then hp (X ⇤ (k)) must be finite, hence, the norm of the

vector is finite. Based on the maximum distance between the initial and the optimal points of the

algorithm and the upper bound calculated for the sub-gradient at every step of the algorithm, the

sub-gradient method for solving this problem will converge.

63

CHAPTER 4

PARALLELIZING LARGE SCALE GRAPH ALGORITHMS USING THE APACHE

SPARK DISTRIBUTED MEMORY SYSTEM

The rapidly emerging area of Social Network Analysis is typically based on graph models. They

include directed/undirected graphs, as well as a multitude of random graph representations that

reflect the inherent randomness of social networks. A large number of parameters and metrics are

derived from these graphs. Overall, this gives rise to two fundamental research/development

directions: (1) advancements in models and algorithms, and (2) implementing the algorithms for

huge real-life systems. The model and algorithm development part deals with finding the right

graph models for various applications, along with algorithms to treat the associated tasks, as well

as computing the appropriate parameters and metrics. In this chapter, we would like to focus on

the second area: on implementing the algorithms for very large graphs.

It is worth noting that the sheer size of real-life social networks leads to a type of hardness that the

theoretical approaches rarely appreciate. This lies in the fact that even very simple algorithmic

tasks can become hard if we want to execute them on huge graphs. For example, counting the

triangles in a graph is a simple looking, yet important task; it plays a role in often used parameters,

such as the clustering coefficient and the transitivity ratio. For smaller graphs, triangle counting

can be carried out by a trivial polynomial-time algorithm: we can just exhaustively check all triples

of nodes, and count how many of them are triangles. For a very large graph, however, this does

not lead to a scalable approach. While various nontrivial improvements to this exhaustive search

are known, they still face the scalability problem on huge graphs.

64

In this chapter, we address the problem of parallelizing three famous network algorithms on a

practical distributed memory system. The approach is based on the Spark framework and the

GraphX API which is runs on top of the Hadoop distributed file system. We develop three case

studies in this framework: (1) computing the PageRank in a social network, (2) finding connected

components in the graph representing the network, and (3) triangle counting. A key issue for the

large-scale implementation is how to partition the whole task into parallel and independent tasks

that run on different machines, such that we can reduce the communication and storage overhead

in the distributed cluster. In our case studies four different partition strategies are introduced, they

are called Canonical Random Vertex Cut, Edge Partition 1D, Edge Partition 2D, and Random

Vertex Cut. All these partition strategies are based on Resilient Distributed Dataset (RDD) which

is introduced in Apache Spark. RDD is a new representation of data which is stored in different

physical location that can be recovered in a case of failure. RD. As a graph point of view, edges

and vertices information can be stored as an RDD. Graph algorithms could be break into

independent tasks which processing a corresponding partition of edges or vertices data. Apache

Spark tries to keep graph RDD in memory as much as possible to speed up the processing. This

new paradigm of graph processing is scalable and fault tolerant.

4.1 Overview of Big Data Processing

Spark is an open source, in-memory big data processing framework in a distributed environment.

It started as a research program in 2009 and became an open source project in 2010. In 2014, it

was released as an Apache incubator projec.

65

Spark is evolved from Hadoop MapReduce so it can be run on Hadoop cluster and data in the

Hadoop distributed File System (HDFS). It supports a wide range of workloads, such as Machine

Learning, Business Intelligence, streaming and batch processing. Spark was created to

complement, rather than replace Hadoop. The Spark core is accompanied by a set of powerful,

higher-level libraries which can be used in the same application. These libraries currently include

SparkSQL, Spark Streaming, MLlib (for machine learning), and GraphX, as shown in Figure 4-1.

Figure 4-1 Spark full stack

In order to efficiently use the processing resources of a cluster, Spark needs a cluster resource

manager. Yet Another Resource Negotiator (YARN) is a Hadoop processing layer that contains a

resource manager and a job scheduler. Yarn allows multiple applications to run on a single Hadoop

Cluster. Figure 4-2 illustrates how Spark uses Yarn as a distributed resource manager.

66

Figure 4-2 Yet another resource manager

Although Spark is designed for in-memory computation, it is capable of handling workloads larger

than the cluster aggregate memory. Almost all the Spark built-in functions automatically split to

local disks when the working data set does not fit in memory. In the next two section, we outline

the difference between Spark and MapReduce, as well as the concept of Resilient Distributed

Dataset (RDD) in Spark.

4.2 Apache Spark Vs. Hadoop MapReduce

Apache Spark improvements over Hadoop MapReduce are characterized by efficiency and

usability, as shown in Figure 4-3. In order to improve efficiency, it offers in-memory computing

capability, which can provide a fast running environment for applications that need to reuse and

share data across computations. Having different languages with integrated APIs, such as Java,

Scala, Python and R, improve Spark’s usability, as compared to MapReduce.

67

Figure 4-3 Apache Spark efficiency and usability

Next, we explain the Hadoop Mapreduce with an example, and then discuss how Spark can

improve the efficiency for implementing more complex algorithms.

MapReduce is a programming model, and an associated implementation, which allows massive

scalable data processing across hundreds or thousands of servers. MapReduce refers to two

separate and distinct tasks, needed for big data processing. The first one is the map task, which

converts a set of data to another set of data called tuples (key/value pairs). The reduce task takes

the map output and combines those data tuples into smaller sets of tuples. In the MapReduce

processing model the reduce task always runs after the map task. A simple MapReduce example

is as follows.

Let say we have five data sets, each of them contains two columns that represent a city and the

temperature in that city (Figure 4-4).

68

Figure 4-4 Cities information

The goal is to find the maximum temperature for each city. In MapReduce, we split the task into

five map tasks. Results from one mapper task are illustrated in Figure 4-5.

 Figure 4-5 Maximum temperature for each city

We can assume other mapper tasks create the intermediate results which are shown in Figure 4-6.

Figure 4-6 Maximum temperature for each city

Reduce tasks will combine input and output results for each city (Figure 4-7).

69

Figure 4-7 Output of the reduce task

Some applications, such as implementing large scale graph algorithms in a social network, are

more complex than just one path of Map and Reduce. They require multiple operations over a

same data sets. In MapReduce no sharing data across time stamps or iteration is available . Let’s

take a look at the PageRank example in MapReduce which requires multiple iteration, see Figure

4-8.

Figure 4-8 A Multi-Iteration algorithm in MapReduce

The algorithm starts with data in HDFS and then does one step on MapReduce (iteration 1). Then

to share the data with the next step it has to write it back into HDFS again. After that, in the next

iterations of PageRank, the data must be loaded back, and the algorithm is continued.

Spark has a computation model in which after each iteration the data will be stored in memory,

and it is available to be processed in the next steps as illustrated in Figure 4-9.

 Iteratin1 Iteratin2

Input Data

HDFS HDFS

70

Figure 4-9 Multi-Iteration Algorithm in Spark

In Spark, instead of thinking in terms of map and reduce functions, we think in terms of distributed

data sets. This is what essentially distinguishes Spark from Hadoop Mapreduce. The data

abstraction in Spark is called Resilient Distributed Dataset (RDD), consisting of parallel

collections of Scala objects. In the next section, RDD is explained in more details.

4.3 Resilient Distributed Dataset (RDD)

RDD is a logical reference of a dataset which is paralleled among many processors in the cluster.

RDD is resilient, meaning that if data in memory is lost, then it can be recovered. It is distributed,

which means processing across the cluster, and the dataset can come from a file, or be created by

a program. Basically, RDD is a fundamental unit of data in Spark, forming an immutable dataset.

It contains two different operations, called Transformation and Action. Transformation creates a

new RDD based on an existing one, while Action returns a value from an RDD. Figure 4-10

illustrates Transformation and Action for an existing RDD.

RDD Transformation includes parts called filter, map, union, and others. Actions includes reduce,

collect, count, etc. The main advantage of RDDs is that they are simple and well understood,

because they deal with concrete classes, providing a familiar object-oriented programming style

with compile-time type-safety.

 Iteratin1 Iteratin2

Input Data

Mem
ory

Mem
ory

71

Figure 4-10 RDD transformation and action

For example, given an RDD containing instances of Person we can filter by age by referencing the

age attribute of each Person object as illustrated in Figure 4-11.

Figure 4-11 Filter by age in an RDD

The transformations are only computed when an action requires a result to be returned. In this

example, when an action like count is called, we will be returned the Persons objects belonging to

persons older than 21.

Pair RDD is a special form of RDD, in which each element must have a key-value pair (two

element tuple). Pair RDD is important because of the traditional map-reduce algorithms for parallel

processing which is based on key and value pairs. Figure 4-12 shows the word count example

which is implemented using pair RDD in Spark. First step is creating an RDD based on input data

then split the RDD based on the words space. After having an RDD corresponding to each word,

72

a pair RDD can be created with the word as the key and number one as the value. Then reducing

the pair RDDs based on the key returns the word count.

Figure 4-12 Word Count example, using Spark

4.4 GraphX API for Spark

Graph-based algorithms are becoming very important for solving numerous problems in data-

intensive applications, including search engines, recommendation systems, financial analysis, and

many others. As these problems grow in scale, computational and memory requirements of the

processing algorithms rapidly become a bottleneck. To avoid such a bottleneck, parallel computing

resources are required. Graphx is a new component in Apache Spark for graph parallel processing,

73

which extends the Spark RDD by introducing the concept of Property Graph. The Property Graph

is a directed multigraph, that is, a directed graph with potentially multiple parallel edges sharing

the same end vertices. There also properties attached to each vertex and edge. GraphX is a native

property graph processor. It allows all vertices and edges to have their own properties.

4.5 Graph Partitioning in Spark

Graph partitioning algorithms are designed to minimize communication and balance the

computation among multiple processors. Partitioning the graph data and balancing the

computation on a distributed cluster of machines is a common approach to scale-out computations

for large scale input graph data. Iterative computations on input graph data, for instance the

PageRank systems, are well known use cases for graph partitioning. The quality of graph

partitioning depends on balancing the processing load across machines and minimizing the

communication cost inside the cluster. There are two main approaches for partitioning a graph

among different machines. They are called vertex cut and edge cut. Graphx implements the vertex

cut approach to ensure one edge is assigned to one partition. In this case one vertex can be shared

across partitions. This strategy moves the network communication from edges to vertices. In order

to ensure vertices are partitioned in a most efficient way for a particular algorithm, Graphx

provides a number of strategies, which are illustrated in Figure 4-13.

Figure 4-13 Graph partitioning strategy

74

The choice between the partition strategies is based upon the algorithm and the graph structure.

The strategy called EdgePartition1D ensures that all edges with the same source are partitioned

together, so the edges that belong to a particular partition have the same source. For applications,

such as counting the outgoing edges which the operation aggregated to the source, each partition

has all the data needed on an individual machine. In this case the network traffic among different

machines is minimized. On the other hand, for graphs with power-law structure, a few partitions

may receive a significant proportion of the total number of edges. Figure 4-14 shows the

EdgePartition1D source code in Scala.

Figure 4-14 EdgePartition1D implementation

A large number called mixingPrime is used to balance the partitions. EdgePartition2D uses both

source vertices and destination vertices to calculate partitions. Figure 4-15 shows the source code

for EdgePartition2D.

The RandomVertex Cut strategy splits the graph based on both source and destination vertices,

which can help to create a more balanced partition. This strategy may affect the runtime

performance due to the increase in the amount of network communication

75

Figure 4-15 EdgePartition2D implementation

The RandomVertex Cut strategy splits the graph based on both source and destination vertices,

which can help to create a more balanced partition. This strategy may affect the runtime

performance due to the increase in the amount of network communication. In this case even the

edge that connects the same pair of nodes may be spread among two machines based on the

direction of the edge. Figure 4-16 illustrates the source code of Random Vertex Cut.

Figure 4-16 Random Vertex Cut implementation

The strategy Canonical Random Vertex Cut partitions the edges regardless to the direction, so

the edges sharing both a source and a destination will be partitioned together. Figure 4-17 shows

the source code for this partitioning strategy.

In the next section we show an example, which is based on a property graph in a paper citation

network (see http://snap.stanford.edu/data/cit-HepTh.html). The network is created from the

publication information available for ArXiv High Energy Physics Theory category.

76

Figure 4-17 Canonical Random Vertex Cut implementation

In the next section we show an example, which is based on a property graph in a paper citation

network (see http://snap.stanford.edu/data/cit-HepTh.html). The network is created from the

publication information available for ArXiv High Energy Physics Theory category.

4.6 Paper citation Network Example

The first few lines in the text file containing all the citation information is shown in Figure 4-18.

After the comment lines, which begin with #, each line represents one edge of the graph. For

example, the first edge starts from a vertex identified by 1001 to another one identified by 9304045.

Each vertex is keyed by a unique 64-bit long identifier (VertexID).

Figure 4-18 Text file containing the citation information

77

Similarly, edges have corresponding source and destination vertex identifiers. In the context of a

paper citation network, the second paper in the older one being cited by the newer paper. This

format of a text file is recognized by GraphX. The next step is the creation of the RDD, based on

the edges and vertices data. For this purpose, SparkContext should be constructed. Figure 4-19

shows the source code for loading the graph data, and creates an immutable value called

paperCitationGraph.

Figure 4-19 Loading a graph in Spark

GraphLoader is an object in GraphX library which contains a method called edgeListFile. This can

load a graph from a text file in edge-list format and it uses two methods. The first one is

SparkContext (sc) and the second one is the file that contains the graph property information. Now

the graph is ready to be processed in a distributed environment. Finding the most-referenced paper

is a well-known problem in a paper citation network. The following steps, as illustrated in Figure

4-20, can find such a paper in a distributed way using Spark/Graphx library by calling inDegree

and reduce methods.

78

Figure 4-20 inDegree and reduce in Graphx API

In the first step, an RDD of vertexID and in-degree pairs proceeds from the inDegree method.

Figure 4-21 shows the details.

Figure 4-21 inDegrees method in GraphX producing key-value pairs

In the second step, each RDD uses a reduce method which takes a function as an input. The

function receives two elements from the RDD and returns a single value. The function would be

called repeatedly on pairs of elements (RDD) from the reduce method, until only a single value is

left. The single value is returned from the reduce method in step 2. Figure 4-22 illustrates the

second step.

The PageRank algorithm can be used to measure the influence of vertices in any social network,

although originally it was developed to support Google search. We are using the same data set as

the previous section. First let us see how vertices data look like, figure 4-23.

79

Figure 4-22 reduce (Function) method in GraphX producing a single key value pair

The result is: Paper ID 9711200 was cited by 2414 other papers, making it the most cited paper.

4.7 Finding PageRank in Social Network using Apache Spark

The PageRank algorithm can be used to measure the influence of vertices in any social network,

although originally it was developed to support Google search. We are using the same data set as

the previous section. First let us see how vertices data look like, figure 4-23.

Figure 4-23 vertices in the paperCitationGraph

As illustrated in Figure 4-23, all vertices are key-value pairs, where key is the vertex ID and the

value is 1. In GraphX all vertices and edges have their own properties, and the arising graph is

called property graph. In the considered case the value 1 is the property for all vertices, which is

80

attached to them by the GraphLoader.edgeListFile() method. Now in order to calculate the rank of

each vertex, we have to change each vertex property to match the corresponding PageRank. The

idea of immutable data set implies that the graph property does not change. So, a new property

graph must be created to express the PageRank property. This is a key Spark concept, the existing

RDDs (in this case graph structure) are not updated. Instead, a transformation takes place on an

existing RDD to create a new RDD. Figure 4-24 illustrates two graph properties before and after

applying the PageRank method (transformation).

Figure 4-24 PageRank transformation that creates a new property graph

PageRank is a link analysis algorithm that outputs a probability distribution, which can be used to

represent the likelihood of a page being referenced. So the new graph has a property of type

Double. The code for PageRank calculation in the paper citation network is shown in Figure 4-25.

81

Figure 4-25 PageRank method in Spark using GraphX library

The next step is to run the reduce method with an appropriate function to find the vertex with the

highest PageRank, see Figure 4-26.

Figure 4-26 The most influential paper

Finally, we get the result that, according to the PageRank algorithm, paper ID 9207016 is the

most influential one.

4.8 Finding connected components using Apache Spark

A connected component of a graph is a set of vertices such that every vertex is reachable from

every other vertex. Connected component can identify isolated members in social networks, and

can also approximate clusters. Figure 4-27 shows an example of connected components in a graph.

82

Figure 4-27 Finding connected components

Figure 4-28 illustrates the network construction, based on RDD collections (vertices and edges).

Figure 4-28 Network construction based on RDD collections

Using the code provided in Figure 4-29 allows the detection of connected components in the

network above.

83

Figure 4-29 Finding connected components

4.9 Triangle counting using Apache Spark

Counting the number of triangles in a large graph is frequently used in complex network analysis

such as spam detection and uncovering hidden structures in link recommendation. A triangle

consists of three vertices that all connected with edges. A social network which contains more

triangles usually has tighter connections. The TriangleCount method in spark counts triangles

passing through each vertex using the following steps.

Step 1: Find the set of neighbors for each vertex.

Step 2: For each edge find the intersection of the sets and send the count to both vertices

Step 3: Find the sum at each vertex and divide by two since each triangle is counted twice.

Figure 4-30 below illustrates the process.

In order to use the TriangleCount method in Spark, the graph has to meet two requirements. First,

the graph has to be partitioned by one of the partition strategy options, described in Section 3-1.

Second, if there are any duplicate edges, they have to point in the same direction. To ensure the

latter requirement, all edges must be in canonical order, pointing from the lower-numbered vertex

ID to the higher numbered vertex ID.

84

Let us consider the Slashdot social network to find the number of triangles in a large scale network.

Slashdot is a technology news related website which has a specific user community. The website

features user-submitted and editor-evaluated current, primarily consisting of technology related

news. In 2002 Slashdot introduced the Slashdot Zoo feature which allows users to tag each other

as friends or foes. The network contains friend/foe links between the users. The network was

recorded in November 2008. Table 4-1 shows the data set statistics.

Figure 4-30 Triangle counting algorithm

85

Table 4-1 Slashdot social network statistics

Number of Nodes 77360

Number of Edges 905468

Nodes in largest WCC 77360 (1.000)

Edges in largest WCC 905468 (1.000)

Nodes in largest SCC 70355 (0.909)

Edges in largest SCC 888662 (0.981)

Average clustering coefficient 0.0555

Number of triangles 551724

Fraction of closed triangles 0.008184

Diameter (longest shortest path) 10

90-percentile effective diameter 4.7

Figure 4-31 shows the steps including the source code for counting number of triangles in the

Slashdot social network.

As shown in the figure above, the number of triangles are 1352001, 61376, 10865, 3935, 1384,

786 and 658 for each of seven subgraphs ((0 to 6).map), respectively, in the social network.

86

4.10 Summery of distributed graph processing

In this chapter we introduced Apache Spark as a replacement for Hadoop Mapreduce. Efficiency

of Spark, as a result of in-memory processing, makes it a popular big data processing engine. It

also has high usability, due to different programming language APIs.

Figure 4-31 . Triangle Counting in Slashdot social network

There is a large collection of algorithms that cannot be implemented using only one iteration of

Map and Reduce functions. Notably, graph processing algorithms fall in this category. Apache

87

Spark improves efficiency of implementing such algorithms using in-memory processing.

Essentially, after one iteration of Map and Reduce, the results are ready, and available in memory

for the next iteration. Spark can be 100 times faster than Hadoop Mapreduce for machine learning

algorithms, such logistic regression [6]. A fundamental processing unit in Spark is RDD, instead

of one path of Map and Reduce functions. RDD is an immutable distributed data set across the

cluster which is resilient to data storage failure. Data processing algorithms can be implemented

using transformations and actions on each RDD. Transformations will create series of RDDs. As

a result of immutability, each one of them can be recalculated from the previous one.

Graphx is a new component in Spark for implementing graph algorithms in a distributed

environment. Graphx extends the Spark RDD by introducing a new graph abstraction in terms of

a distributed dataset, attached to vertices and edges. In this chapter three important social network

algorithms have been introduced using Graphx library in Apache Spark. The first one is finding

PageRank in a social network, the second one is finding connected components, and the last but

not least is the triangle counting algorithm. In all the three applications, we have illustrated the

steps via appropriate examples [27].

88

CHAPTER 5

APPROXIMATION APPROACH FOR ANALYSING NETWORK STRUCTURE

5.1 How Complex Networks Inspire New Avenues to Approximation – The Case of

Unsplittable Flows

The Disjoint Connecting Paths problem, and its capacitated generalization, called Unsplittable

Flow problem, play an important role in practical applications, such as communication network

design and routing. These problems are hard in general, but various polynomial-time

approximations are known. Nevertheless, the approximations tend to be rather complicated, often

rendering them impractical in large, complex networks. Therefore, our goal is to present a solution

that provides a simple, efficient algorithm for the unsplittable flow problem in large directed

graphs. The simplicity is achieved by sacrificing a small part of the solution space. This also

represents a novel paradigm of approximation: rather than giving up finding an exact solution, we

restrict the solution space to a subset that is the most important for applications, and exclude those

that are marginal in some sense. Specifically, the sacrificed part (i.e., the marginal instances) only

contains scenarios where some edges are very close to saturation. Therefore, the excluded part is

not significant, since the almost saturated solutions are typically undesired in practical

applications, such as network design [28].

5.2 Problem statement.

The Disjoint Connecting Paths problem is the following decision task. Input: a set of node pairs

(𝑠1, 𝑡1), . . . , (𝑠𝑘, 𝑡𝑘) in a graph. Task: Find edge disjoint paths 𝑃1, . . . , 𝑃𝑘, such that 𝑃𝑖 connects

89

si with ti for each i.

This is one of the classical NP-complete problems that appears already at the sources of NP-

completes theory, among the original problems of Karp. It remains NP-complete both for directed

and undirected graphs, as well as for the edge disjoint and vertex disjoint paths version. The

corresponding natural optimization problem, when we are looking for the maximum number of

terminator pairs that can be connected by disjoint paths is NP-hard.

There is also a capacitated version of the Disjoint Connecting Paths problem, also known as the

Unsplittable Flow problem. In this task, a flow demand value is given for each origin- destination

pair (si, ti), as well as a capacity value is known for each edge. The requirement is to find a system

of paths, connecting the respective source-destination pairs, such that the capacity constraint of

each edge is obeyed, i.e., the sum of the flows of paths that traverse the edge cannot be more than

the capacity of the edge. The name Unsplittable Flow expresses the requirement that between each

source-destination pair the flow must follow a single route, it cannot split. Note that here the

disjointness of the paths themselves is not required a priori, but can be enforced by the capacity

constraints. The Unsplittable Flow problem is important in communication network design and

routing applications.

In this chapter, after reviewing some existing results, we show that the Unsplittable Flow problem,

which is NP-complete, becomes efficiently solvable by a relatively simple algorithm if we impose

a mild and practically well justifiable restriction on the instance.

90

5.3 Related work

Considerable work was done on the Disjoint Connecting Paths problem, since its first appearance

as an NP-complete problem in [14].

One direction of research deals with finding the “heart” of the difficulty: which are the simplest

restricted cases that still remain NP-complete (Or NP-hard if the optimization version is

considered, where we look for the maximum number of connecting paths, allowing that possibly

not all source-destination pairs will be connected). [29] proves, motivated by VLSI layout design,

that the problem remains NP-complete even for graphs as regular as a two-dimensional mesh. If

we restrict ourselves to undirected planar graphs with each vertex having degree at most three, the

problem also remains NP- complete, as proven by Middendorf and Pfeiffer [30]. The optimization

version remains NP- hard for trees with parallel edges, although there the decision problem is

already solvable in polynomial time.

The restriction that we only allow paths which connect each source node with a dedicated target

is essential. If this is relaxed and we are satisfied with edge disjoint paths that connect each source

si with some of destinations tj but not necessarily with ti, then the problem becomes solvable with

classical network flow techniques. Thus, the prescribed matching of sources and destinations

causes a dramatic change in the problem complexity. Interestingly, it becomes already NP-

complete if we require that just one of the sources is connected to a dedicated destination, the rest

is relaxed as above [31].

Another group of results produces polynomial time algorithmic solutions for finding the paths,

possibly using randomization, in special classes of graphs. For example, Middendorf and Pfeiffer

91

[30] proves the following. Let us represent the terminator pairs by demand edges. These are

additional edges that connect a source with its destination. If this extended graph is embeddable in

the plane such that the demand edges lie in a bounded number of faces of the original graph, then

the problem is solvable in polynomial time. (The faces are the planar regions bordered by the

curves that represent the edges in the planar embedding, i.e., in drawing the graph in the plane).

Thus, this special case requires that, beyond the planarity of the extended graph, the terminators

are concentrated in a constant number of regions (independent of the graph size), rather than

spreading over the graph.

A deep theoretical result, due to Robertson and Seymour [32], is that for general graphs the

problem can be solved in polynomial time if the number k of paths to be found is constant (i.e.

cannot grow with the size of the graph). Broder, Frieze, Suen and Upfal [33] consider the case of

random graphs and provide a randomized algorithm that, under some technical conditions, finds a

solution with high probability in time O(nm2) for a graph of n vertices and m edges.

Another line of research aims at finding approximations to the optimization version. An algorithm

is said to be an f(n)-approximation if it can connect a subset of the terminator pairs by disjoint

paths such that this subset is at most f(n) times smaller than the optimum in a graph of n vertices.

For example, in this terminology a 2-approximation algorithm always reaches at least the half of

the optimum, or an O(logn)-approximation reaches at least a c/ log n fraction of the optimum, for

n > n0 with some constants c, n0.

Various approximations have been presented in the literature. For example, Garg, Vazi- rani and

Yannakakis [34] provide a 2-approximation for trees with parallel edges. Aumann and Rabani [35]

92

gives an O(log n)-approximation for the 2-dimensional mesh. Kleinberg and Tardos [36] present

an O(log n)-approximation for a larger subclass of planar graphs, they call “nearly Eulerian,

uniformly high-diameter planar graphs” (the rather technical definition is omitted here). For the

general case an approximation factor of min {√𝑚, 𝑚/𝑜𝑝𝑡} = 𝑂(√𝑚) is known to be achievable

, where m is the number of edges and opt is the optimum, i.e., the maximum number of disjoint

connecting paths between the source- destination pairs. Similar bounds apply for the Unsplittable

Flow problem, as well. Bounds have been also found in terms of special (less trivial) graph

parameters.

5.4 A Simple Practical Approximation

The various above referenced solutions are rather complicated, which is certainly not helpful for

practical applications, in particular in large, complex networks. Our approach for providing a

simple solution to the unsplittable flow problem based on the following idea. We “cut down” a

small part of the solution space by slightly reducing the edge capacities. In other words, we exclude

solutions that are close to saturating some edge, as explained below.

Let 𝑉𝑖 be the given flow demand of the 𝑖𝑡ℎ
connecting path. We normalize these demands such

that 𝑉𝑖 <= 1 for every i. Let 𝐶𝑗 be the capacity of edge j. The graph is assumed directed and the

edges are numbered from 1 through m. Recall that a feasible solution of the problem is a set of

connecting (directed) paths that satisfy the edge capacity constraints, that is, on each edge j the

sum of the 𝑉𝑖 values of those paths that traverse the edge does not exceed 𝐶𝑗. As mentioned earlier,

deciding whether a feasible solution exist at all is a di cult (NP-complete) problem.

On the other hand, not all feasible solutions are equally good from the practical viewpoint. For

93

example, if a route system in a network saturates or nearly saturates some links, then it is not

preferable because it is close to being overloaded. For this reason, let us assign a parameter

0 < 𝜌j < 1 to each edge j, such that 𝜌j will act as a “safety margin” for the edge. More precisely,

let us call a feasible solution a safe solution with parameters 𝜌j , j = 1, . . . , m, where m is the

number of edges, if it uses at most 𝐶𝑗̃ = 𝜌𝑗𝐶𝑗 capacity on edge j.

Now, the interesting thing is that if we restrict ourselves to only those cases when a safe solution

exists, then the hard algorithmic problem becomes solvable by a relatively simple randomized

algorithm. With very high probability the algorithm finds a solution in polynomial time, whenever

there exists a safe solution.

The price is that we exclude those cases when a feasible solution still possibly exists, but there is

no safe solution. This means, in these cases all feasible solutions are undesirable, in the sense that

they make some edges nearly saturated. In these marginal cases the algorithm may find no solution

at all. This approach constitutes a new avenue to approximation, in the sense that instead of giving

up finding an exact solution, we rather restrict the search space to a (slightly) smaller one. When,

however, the algorithm finds any solution, then it is an exact (not just approximate) solution.

Now let us choose the safety margin 𝜌j for a graph of m edges as

𝜌𝑗 = 1 − (𝑒 − 1)√
𝑙𝑛 2𝑚

𝐶𝑗
≈ 1 − 1.71√

𝑙𝑛 2𝑚

𝐶𝑗
 (5-1)

94

Where 𝑙𝑛 denotes the natural logarithm loge. Note that 𝑗 tends to 1 with growing𝐶𝑗, even if the

graph also grows, but Cj grows faster than the logarithm of the graph size, which is very reasonable

(note that doubling the number of edges will increase the natural logarithm by less than 1). For

example, if in a graph each edge capacity is 1000 units, measured in relative units, such that the

maximum path flow demand is 1, and the graph has 200 edges, then 𝜌 ≈ 0,97.

Now we outline how the algorithm works. To make it even closer to practical applications, we also

assume that cost factors are assigned to the edges and we are looking for a feasible solution with

small cost, where the cost incurred on an edge is proportional with the demand routed through it.

Algorithm

Step 1 Initialization

Compute the 𝐶𝑗̃ = 𝜌𝑗𝐶𝑗 values with 𝜌𝑗set according to (5-1).

Step 2 Flow relaxation

Solve the continuous minimum cost multicommodity flow relaxation of the problem, using the

𝐶𝑗̃capacities. This can be done by standard linear programming. In case the flow problem has no

solution then declare “no safe solution exists” and STOP.

Step 3 Randomized Rounding via Random Walk

For each source-destination pair ui, vi find a path via the following randomized rounding

procedure. Start at the source and take the next node such that it is drawn randomly among the

95

successor neighbors of the source, with probabilities proportional to the ith commodity flow values

on the edges from ui to the successor neighbors in the directed graph. Continue this in a similar

way: at each node choose the next one among its successor neighbors randomly, with probabilities

that are proportional to the 𝑖𝑡ℎ commodity flow values. Finally, upon arrival at 𝑣𝑖, we store the

found (𝑢𝑖, 𝑣𝑖) path.

Step 4 Feasibility Check and Repetition

Having found a system of paths in the previous steps, check whether it is a feasible solution. If so,

then STOP, else repeat from Step 2.If after repeating r times (r is a fixed parameter) none of the

runs are successful then declare “No solution is found” and STOP.

It is clear from the above informal description that the algorithm has practically feasible

complexity, since the most complex part of it is solving a multicommodity flow problem that can

be done by linear programming. It is repeated r times where r is a parameter, chosen by us. The

main property of the algorithm is shown in the following theorem.

Theorem 1: If a safe solution exists, the algorithm finds a feasible solution with probability at least

1 − 2
 𝑟

Proof. Since a safe solution is also a feasible solution of the multicommodity flow relaxation,

therefore, if there is no flow solution in Step 2, then no safe solution can exist either.

Step 3 transforms the flow solution into paths. To see that they are indeed paths, observe that

looping cannot occur in the randomized branching procedure, because if a circle arises on the way,

96

that would mean a circle with all positive flow values for a given commodity, which could be

canceled from the flow of that commodity, thus contradicting to the minimum cost property of the

flow. Furthermore, since looping cannot occur, we must reach the destination via the procedure in

at most n steps, where n is the number of nodes.

Now a key observation is that if we build the paths with the described randomization between the

𝑖𝑡ℎ source-destination pair, then the expected value of the load that is put on any given edge by

these paths will be exactly the value of the 𝑖𝑡ℎ commodity flow on the link. This follows from the

fact that the branching probabilities are flow-proportional.

From the above we know that the total expected load of an edge, arising from the randomly chosen

paths, is equal to the total flow value on the edge. What we have to bound is the deviation of the

actual load from this expected value. Let Fj be the flow (=expected load) on edge j. This arises in

the randomized procedure as

𝐹𝑗 = 𝐸(∑ 𝑉𝑖𝑋𝑖)

𝑖

where Xi is a random variable that takes the value 1 if the ith path contributes to the edge load,

otherwise it is 0. The construction implies that these random variables are independent. Now

consider the random variable

𝜓𝑗 = ∑ 𝑉𝑖𝑋𝑖

𝑖

We have 𝜓𝑗 = 𝐹𝑗 . The probability that 𝜓𝑗 deviates form its expected value by more than a factor

97

of can be bounded by the tail inequality found in [10]:

𝑃𝑟(𝜓𝑗 > (1 + 𝛿)𝐹𝑗) < (
𝑒𝛿

(1 + 𝛿)(1+𝛿)
)

𝐹𝑗

It can be calculated from this [10] that if we want to guarantee that the bound does not exceed a

given value 𝜖 > 0, then it is sufficient to satisfy

𝛿 ≤ (𝑒 − 1)√
l𝑛 (

1
𝜖)

𝐹𝑗

Let us choose 𝜖 = 1/2𝑚. Then we have

𝑃𝑟 (𝜓𝑗 > (1 + (𝑒 − 1)√
𝑙𝑛 2𝑚

𝐹𝑗
) 𝐹𝑗) <

1

2𝑚

Since the bound that we do not want to exceed is the edge capacity𝐶𝑗, therefore, if

𝐶𝑗 ≥ (1 + (𝑒 − 1)√
𝑙𝑛 2𝑚

𝐹𝑗
) 𝐹𝑗 (5-2)

is satisfied, then we have

𝑃𝑟(𝜓𝑗 > 𝐶𝑗) <
1

2𝑚

If this holds for all edges, that yields

98

𝑃𝑟(∃𝑗: 𝜓𝑗 > 𝐶𝑗) ≤ ∑ 𝑃𝑟(𝜓𝑗 > 𝐶𝑗)

𝑚

𝑗=1

< 𝑚
1

2𝑚

=
1

2

Thus, the probability that the found path system is not feasible is less than 1/2. Repeating the

procedure r times with independent randomness, the probability that none of the trials provide a

feasible solution is bounded by 1/2r, that is, the failure probability becomes very small, already for

moderate values of r.

Finally, expressing Fj form (5-2) we obtain

𝐹𝑗 ≤ 𝐶𝑗 (1 − (𝑒 − 1)√
𝑙𝑛 2𝑚

𝐶𝑗
) = 𝜌𝑗𝐶𝑗

which shows that the safety margin is correctly chosen, thus completing the proof.

We have presented a simple, efficient solution for the NP-complete Unsplittable Flow problem in

directed graphs. The simplicity and efficiency is achieved by sacrificing a small part of the solution

space. The sacrificed part only contains scenarios where some edges are very close to saturation.

Therefore, the loss is not significant, since the almost saturated solutions are typically undesired

in practical applications, such as network design. The approach constitutes a new avenue to

approximation, in the sense that instead of giving up finding an exact solution, we rather restrict

99

the search space to a (slightly) smaller one. When, however, the algorithm finds any solution,

which happens with high probability, then it is an exact (not just approximate) solution.

5.5 Utilizing Network Structure to Accelerate Markov Chain Monte Carlo Algorithms

We consider the problem of estimating the measure of subsets in very large networks. A prime

tool for this purpose is the Markov Chain Monte Carlo (MCMC) algorithm. This algorithm,

while extremely useful in many cases, still often suffers from the drawback of very slow

convergence. We show that in a special, but important case, it is possible to obtain significantly

better bounds on the convergence rate. This special case is when the huge state space can be

aggregated into a smaller number of clusters, in which the states behave approximately the same

way (but their behavior still may not be identical). A Markov chain with this structure is

called quasi-lumpable. This property allows the aggregation of states (nodes) into clusters. Our

main contribution is a rigorously proved bound on the rate at which the aggregated state

distribution approaches its limit in quasi-lumpable Markov chains. We also demonstrate

numerically that in certain cases this can indeed lead to a significantly accelerated way of

estimating the measure of subsets. The result can be a useful tool in the analysis of complex

networks, whenever they have a clustering that aggregates nodes with similar (but not

necessarily identical) behavior [37].

The Markov Chain Monte Carlo (MCMC) method is one of the most frequently used algorithms

to solve hard counting, sampling and optimization problems. This is relevant for many areas,

including complex networks, physics, communication systems, computational biology,

optimization, data mining, big data analysis, forecast problems, prediction tasks, and

100

innumerable others. The success and influence of the method is shown by the fact that it has

been selected as one of the top 10 of all algorithms in the 20th century.

The MCMC algorithm also plays an important role in large, complex networks. In this chapter,

we consider the following regularly occurring application of the MCMC method:

Consider a very large graph G, with node set S, and let A⊆S be a subset of the nodes. We would

like to estimate the relative size of A, that is, the goal is to obtain a good estimate of the value

 𝑝 =
|𝐴|

|𝑆|

(5-3)

More generally, if a random walk is considered on the graph, with stationary distribution π, then

we would like to estimate π(A), the stationary probability of being in A. In the special case

when π is the uniform distribution, we get back the formula (5-3).

If we can take random samples from S, according to the stationary distribution, then an obvious

estimate with good properties is the relative frequency of the event that the sample falls in A.

Unfortunately, in most nontrivial cases of interest, this sampling task is not feasible. The reason

is that often the large set S is defined implicitly. Examples are the set of all cliques in a graph,

or the set of all feasible solutions to an optimization problem, and many others. No efficient

general method is known to sample uniformly at random from such complex sets.

An important application in telecommunication networks is to estimate blocking probabilities.

More generally, if we have a large system, with an enormous state space, we may want to

estimate that the actual state falls in a specific subset. For example, if the state space consists

of all possible load values of the network links, which leads to a state space of astronomical

size, we may want to know what the probability is that at most k links are overloaded, for some

value of k.

101

At this point, the MCMC does a very good service. If we define a Markov chain in which the

states are the elements of Sand the transitions are based on simple local operations, then we can

very often obtain a Markov chain with uniform, or some other simple stationary distribution

over S. Then, if we run this chain long enough so that it gets close to the stationary distribution,

then the state where we stop the chain will be a good approximation of a random sample over S,

distributed according to the stationary distribution. Then by repeating the process sufficiently

many times, and by counting the relative frequency that the random sample falls in A, we can

get a good estimate of the probability measure of A.

The key difficulty is, however, that we should run the chain long enough to get sufficiently

close to the stationary distribution. This time is often referred to as mixing time. If the mixing

time grows only polynomially with the size of the problem, e.g. with the size of the graph, then

we say that the chain is rapidly mixing. Unfortunately, in many cases of interest the mixing

time grows exponentially with the problem parameters, so in many important cases the Markov

chain is mixing very slowly.

What we are interested in is whether it is possible to speed up the running time. It is clear that

if we want to estimate the size of any possible subset, then we really need to get close to the

stationary distribution, since only this distribution can guarantee that the probability of the

random state falling in the set is really the relative size of the set. On the other hand, if we only

want to estimate the relative size of a specific subset A, then it is enough for us if we reach a

distribution in which the measure of A is close to the stationary measure, but this does not have

to hold for every other set. In other words, if πtdenotes the state distribution after t steps and π is

the stationary distribution, then we want to choose t such that |𝜋𝑡(𝐴) − 𝜋(𝐴)| is small, but the

102

same does not have to hold for all other sets. This makes it possible to reduce the required value

of t, that is, to speed up the algorithm. In this chapter we investigate under what conditions it is

possible to obtain such a speed-up.

The main result is that the structure of the chain, that is, the network structure, can significantly

help, if it has some special properties. Specifically, if the Markov chain is close to a so

called lumpable chain, then remarkable speedup is possible. In other words, in this case we can

indeed capitalize on the particular network structure to accelerate the method. Below we

informally explain what the concept of lumpability means. The formal definition will follow in

the next section.

The concept of lumpability stems from the following observation: it is very useful if the state

space can be partitionedsuch that the states belonging to the same partition class “behave the

same way,” in the sense defined formally in the next section. This is the concept of lumpability.

Informally speaking, it means that some sets of states can be lumped together (aggregated) and

replaced by a single state, thus obtaining a Markov chain which has a much smaller state space,

but its essential behavior is the same as the original.

In some cases, the lumpability of the Markov chain can have a very significant effect on the

efficiency of the model. A practical example is discussed in [38], where the authors present a

fast algorithm to compute the PageRank vector, which is an important part of search engine

algorithms in the World Wide Web. The PageRank vector can be interpreted as the stationary

distribution of a Markov chain. This chain has a huge state space, yielding excessive

computation times. This Markov chain, however, is lumpable. Making use of the lumpability,

103

the computation time can be reduced to as low as 20% of the original, according to the

experiments presented in [38].

Unfortunately, it happens relatively rarely that the Markov chain satisfies the definition of

lumpability exactly. This motivates the concept of quasi-lumpability. Informally, a Markov

chain is quasi-lumpable if its transition matrix is obtainable by a small perturbation from a

matrix that exactly satisfies the lumpability condition (see the formal definition in the next

section).

In this chapter we are interested in the following problem, which is often encountered in

applications: how long do we have to run the Markov chain if we want to get close to the

stationary distribution within a prescribed error? While the general question is widely discussed

in the literature, we focus here on a less researched special case: how much gain can the

convergence speed enjoy, if we can capitalize on the special structure of quasi-lumpability.

5.6 Aggregation in Markov Chains

We assume the reader is familiar with the basic concepts of Markov chains. We adopt the

notation that a Markov chain M is given by a set S of states and by a transition probability

matrix P, so we write𝑀 = (𝑆, 𝑃). This notation does not include the initial distribution, because

it is assumed arbitrary.

Let us first define the concept lumpability of a Markov chain. Informally, as mentioned in the

Introduction, a chain is lumpable if its states can be aggregated into larger subsets of S, such

that the aggregated (lumped) chain remains a Markov chain with respect to the set-transition

probabilities (i.e., it preserves the property that the future depends on the past only through the

104

present). Note that this is generally not preserved by any partition of the state space. Let us

introduce now the formal definition.

Definition 1.

(Lumpability of Markov chain) Let 𝑀 = (𝑆, 𝑃) be a Markov chain. Let 𝑄 = {𝐴1, … , 𝐴𝑚} be a

partition of S. The chain M is called lumpable with respect to the partition Q if for any initial

distribution, the relationship

𝑃𝑟(𝑋𝑡 ∈ 𝐴𝑗 ∣∣ 𝑋𝑡 − 1 ∈ 𝐴𝑖1, … , 𝑋𝑡 − 𝑘 ∈ 𝐴𝑖𝑘)

= 𝑃𝑟(𝑋𝑡 ∈ 𝐴𝑗|𝑋𝑡 − 1 ∈ 𝐴𝑖1)

 (5-4)

holds for any 𝑡, 𝑘, 𝑗, 𝑖1, … , 𝑖𝑘, whenever these conditional probabilities are defined (i.e., the

conditions occur with positive probability). If the chain is lumpable, then the state set of the

lumped chain is Q and its state transition probabilities are defined by

𝑝𝑖𝑗 = 𝑃𝑟(𝑋𝑡 ∈ 𝐴𝑗|𝑋𝑡 − 1 ∈ 𝐴𝑖) (5-5)

Checking whether a Markov chain is lumbable would be hard to do directly from the definition.

That is why it is useful to have the following characterization, which is fundamental result on

the lumpability of Markov chains. For simple description, we use the notation 𝑝(𝑥, 𝐴) to denote

the probability that the chain moves into a set 𝐴 ⊆ 𝑆 in the next step, given that currently it is

in the state 𝑥 ∈ 𝑆. Note that x itself may or may not be in A [31].

Theorem 1. (Necessary and sufficient condition for lumpability) A Markov chain 𝑀 = (𝑆, 𝑃) is

lumpable with respect to a partition 𝑄 = {𝐴1, … , 𝐴𝑚} of S if and only if for any i,j the value

105

of 𝑝(𝑥, 𝐴𝑗) is the same for every x∈Ai. These common values define the transition

probabilities 𝑝ˆ(𝐴𝑖, 𝐴𝑗) for the lumped chain, which is a Markov chain with state set Q and state

transition probabilities

𝑝ˆ(𝐴𝑖, 𝐴𝑗) = 𝑝(𝑥, 𝐴𝑗) = 𝑃𝑟(𝑋𝑡 ∈ 𝐴𝑗|𝑋𝑡 − 1 ∈ 𝐴𝑖)

where x is any state in 𝐴𝑖.

Informally, the condition means that a move from a set 𝐴𝑖 ∈ 𝑄 to another set 𝐴𝑗 ∈ 𝑄 happens

with probability 𝑝(𝑥, 𝐴𝑗), no matter which 𝑥 ∈ 𝐴𝑖 is chosen. That is, any 𝑥 ∈ 𝐴𝑖 has the

property that the probability of moving from this x to the set Aj in the next step is the same for

every 𝑥 ∈ 𝐴𝑖. The sets 𝐴𝑖, 𝐴𝑗 are partition classes of Q. We also allow 𝑖 = 𝑗, so they may

coincide.

Whenever our Markov chain is lumpable, we can reduce the number of states by the above

aggregation, and it is usually advantageous for faster convergence (a specific bound will be

proven in Section 3).

It is worth noting that lumpability is a rather special property, and one has to be quite lucky to

encounter a real-life Markov chain that actually has this property. Sometimes it happens (see,

e.g., the example in the Introduction about PageRank computation), but it is not very common.

Therefore, let us now relax the concept of lumpability to broaden the family of the considered

Markov chains. The extended condition, as explained below, is called quasi-lumbability.

Informally, a Markov chain is called quasi-lumpable or ϵ-quasi-lumpable or simply ϵ-

lumpable, if it may not be perfectly lumpable, but it is “not too far" from that. This “ϵ-closeness"

is defined in [10,11] in a way that the transition matrix can be decomposed as 𝑃 = 𝑃− + 𝑃𝜖.

Here 𝑃− is a component-wise non-negative lower bound for the original transition matrix P,

http://www.mdpi.com/1999-4893/9/3/50/htm#sec3-algorithms-09-00050
http://www.mdpi.com/1999-4893/9/3/50/htm#B10-algorithms-09-00050
http://www.mdpi.com/1999-4893/9/3/50/htm#B11-algorithms-09-00050

106

such that 𝑃− satisfies the necessary and sufficient condition of Theorem 1. The other matrix, 𝑃𝜖,

represents a perturbation. It is an arbitrary non-negative matrix in which each entry is bounded

by ϵ. This definition is not very easy to visualize, therefore, we use the following simpler but

equivalent definition.

Definition 2. (ϵ-lumpability) Let 𝜖 ≥ 0. A Markov chain 𝑀 = (𝑆, 𝑃) is called ϵ-lumpable with

respect to a partition 𝑄 = {𝐴1, … , 𝐴𝑚} of S if

|𝑝(𝑥, 𝐴𝑗) − 𝑝(𝑦, 𝐴𝑗)| ≤ 𝜖

holds for any 𝑥, 𝑦 ∈ 𝐴𝑖 and for any 𝑖, 𝑗 ∈ {1, … , 𝑚}.

Note that if we take 𝜖 = 0, then we get back the ordinary concept of lumpability. Thus, quasi-

lumpability is indeed a relaxation of the original concept. It can also be interpreted in the

following way. If 𝜖 > 0, then the original definition of lumpability may not hold. This means,

the aggregated process may not remain Markov. i.e., it does not satisfy (2). On the other hand,

if ϵ is small, then the aggregated process will be, in a sense, “close" to being Markov, that is, to

satisfying (2).

What we are interested in is the convergence analysis of quasi-lumpable Markov chains,

typically for a small value of ϵ. For the analysis we need to introduce another definition.

Definition 3. (Lower and upper transition matrices) Let 𝑀 = (𝑆, 𝑃) be a Markov chain which

is ϵ-lumpable with respect to a partition 𝑄 = {𝐴1, … , 𝐴𝑚}. The lower and upper transition

matrices 𝐿 = [𝑙𝑖𝑗] and 𝑈 = [𝑢𝑖𝑗] are defined as 𝑚 × 𝑚 matrices with entries

𝑙𝑖𝑗 = 𝑚𝑖𝑛
𝑥∈𝐴𝑖

𝑝(𝑥, 𝐴𝑗) 𝑎𝑛𝑑 𝑢𝑖𝑗 = 𝑚𝑎𝑥
𝑥∈𝐴𝑖

𝑝(𝑥, 𝐴𝑗)

http://www.mdpi.com/1999-4893/9/3/50/htm#FD2-algorithms-09-00050
http://www.mdpi.com/1999-4893/9/3/50/htm#FD2-algorithms-09-00050

107

respectively, for 𝑖, 𝑗 = 1, … , 𝑚.

Note that it always holds (component-wise) that 𝐿 ≤ 𝑈. If the chain is lumpable, then these

matrices coincide, so then 𝐿 = 𝑈 = 𝑃̃, where 𝑃̃ is the transition matrix of the lumped chain. If

the chain is ϵ-lumpable, then L and U differ at most by ϵ in each entry.

Generally, L and U are not necessarily stochastic matrices (A vector is called stochastic if

each coordinate is non-negative and their sum is 1. A matrix is called stochastic if each row

vector of it is stochastic.), as their rows may not sum up to 1.

5.7 Convergence Analysis

An important concept in Markov chain convergence analysis is the ergodic coefficient, see, e.g.,

[12]. It is also called coefficient of ergodicity.

Definition 4. (Ergodic coefficient) Let 𝑃 = [𝑝𝑖𝑗] be an 𝑛 × 𝑛 matrix. Its ergodic coefficient is

defined as

𝜌(𝑃) =
1

2
𝑚𝑎𝑥

𝑖,𝑗
∑|𝑝𝑖𝑘 − 𝑝𝑗𝑘|

𝑛

𝑘=1

The ergodic coefficient is essentially the largest L1 distance that occurs between different row

vectors of the matrix P. That is, in a sense, it captures how diverse are the row vectors of the

matrix. The 1/2 factor is only for normalization purposes. For stochastic matrices two important

properties of the ergodic coefficient are the following:

(i) 0 ≤ 𝜌(𝑃) ≤ 1

(ii) 𝜌(𝐴𝐵) ≤ 𝜌(𝐴)𝜌(𝐵)

http://www.mdpi.com/1999-4893/9/3/50/htm#B12-algorithms-09-00050

108

The importance of the ergodic coefficient lies in its relationship to the convergence rate of the

Markov chain. It is well known that the convergence rate is determined by the second largest

eigenvalue of the transition matrix (that is, the eigenvalue which has the largest absolute value

less than 1), If this eigenvalue is denoted by 𝜆1, then the convergence to the stationary

distribution happens at a rate of 𝑂(𝜆𝑖
𝑡), where t is the number of steps. It is also known [12] that

the ergodic coefficient is always an upper bound on this eigenvalue, it satisfies 𝜆1≤ 𝜌(𝑃) ≤ 1.

Therefore, the distance to the stationary distribution is also bounded by 𝑂(𝜌(𝑃)𝑡). Thus, the

smaller is the ergodic coefficient, the faster convergence we can expect. Of course, it only

provides any useful bound if 𝜌(𝑃) < 1. If 𝜌(𝑃) = 1 happens to be the case, then it does not

directly provide a useful bound on the convergence rate, since then 𝜌(𝑃)t remains 1. In this

situation, a possible way out is considering the k-step transition matrix 𝑃𝑘 for some constant

integer k. If k is large enough, then we can certainly achieve 𝜌(𝑃𝑘) < 1, since it is known [39]

that 𝑙𝑖𝑚
𝑘→∞

𝜌(𝑃𝑘) = 0.

Now we are ready to present our main result, which is a bound on how fast will an ϵ-lumpable

Markov chain converge to its stationary distribution on the sets that are in the partition, which

is used in defining the ϵ-lumpability of the chain. We are going to discuss the applicability of

the result in the next section.

Theorem 2.

Let 𝜖 ≥ 0 and 𝑀 = (S, 𝑃) be an irreducible, aperiodic Markov chain with stationary distribution

π. Assume the chain is ϵ-lumpable with respect to a partition 𝑄 = {𝐴1, … , 𝐴𝑚} of S. Let ρ be

any upper bound on the ergodic coefficient of the lower transition matrix L (Definition 3), that

is, 𝜌(𝐿) ≤ 𝜌. Let π0 be any initial probability distribution on S, such that 𝑃(𝑋𝑡 ∈ 𝐴𝑖) > 0 holds

http://www.mdpi.com/1999-4893/9/3/50/htm#B12-algorithms-09-00050

109

for any i, and 𝑡 = 0,1,2, …, whenever the chain starts from 𝜋0 Then for every 𝑡 ≥ 1 the

following estimation holds:

∑|𝜋𝑡(𝐴𝑖) − 𝜋(𝐴𝑖)| ≤ 2 (𝜌 +
𝜖𝑚

2
)

𝑡

+ 𝜖𝑚
1 − (𝜌 +

𝜖𝑚
2)

2

1 − 𝜌 − 𝜖𝑚/2

𝑚

𝑖=1

assuming 𝜌 + 𝜖𝑚/2 < 1.

Remark: Recall that the parameter ϵ quantifies how much the Markov chain deviates from the

ideal lumpable case, see Definition 2. In the extreme case, when 𝜖 = 1, every Markov chain

satisfies the definition. This places an“upward pressure” on ϵ: the larger it is, the broader is the

class of Markov chains to which ϵ-lumpability applies. On the other hand, a downward pressure

is put on ϵ by Theorem 2: the convergence bound is only meaningful, if 𝜌 + 𝜖𝑚/2 < 1 holds.

This inequality can be checked for any particular ϵ, since it is assumed that ρ and m are known

parameters. Furthermore, the smaller is ϵ, the faster is the convergence. Therefore, the best

value of ϵ is the smallest value which still satisfies Definition 2 for the considered state partition

[40].

For the proof of Theorem 2 we need a lemma about stochastic vectors and matrices:

Lemma 1. Let x, y be n-dimensional stochastic vectors and B1, … , Bk; C1, … , Ck be n ×

n stochastic matrices. If ρ(Bi) ≤ ρ0 and ρ(Ci) ≤ ρ0 for all i, 1 ≤ i ≤ k, then

∥ xB1 … Bk − yC1 … Ck ∥≤ ρ0
k‖x − y‖ + (∑ ρ0

j

k−1

j=0

) E

110

where E = maxi ∥ Bi − Ci ∥ The vector norm used is the L1-norm ‖x‖ = ∑ |xi|
n
i=1 and the matrix

norm is

‖A‖ = max
z≠0

‖zA‖

‖z‖
= max

i
∑|aij|

n

j=1

for any n × n real matrix A = [aij].

Lemma 1 can be proved via induction on k. Now, armed with the lemma, we can prove our

theorem.

Proof of Theorem 2. Let π0 be an initial state distribution of the Markov chain M, let πt be the

corresponding distribution after t steps and π = lim
t→∞

πt be the (unique) stationary distribution

of M. For a set A ⊆ S of states the usual notations πt(A) = P(Xt ∈ A), π(A) = lim
t→∞

πt(A) are

adopted.

Using the sets A1, … , Am of the partition Q, let us define the stochastic vectors

π̃t = (πt(A1), … , πt(Am)) (5-6)

for t = 0,1,2, … and the m × m stochastic matrices

π̃t = (πt(A1), … , πt(Am)) (5-7)

for t = 1,2, …. Let us call them aggregated state distribution vectors and aggregated transition

matrices, respectively. Note that although the entries in (4) involve only events of the

form {Xt ∈ Ak}, they may also depend on the detailed state distribution within these sets, which

is in turn determined by the initial distribution π0. In other words, if two different initial

distributions give rise to the same probabilities for the events {Xt ∈ Ak} for some t, they may

111

still result in different conditional probabilities of the form P(Xt + 1 ∈ Aj|Xt ∈ Ai), since the

chain is not assumed lumpable in the ordinary sense. This is why the

notations P˜t(π0),p(π0)t(i, j) are used. Also note that the conditional probabilities are well

defined for any initial distribution allowed by the assumptions of the lemma, since then P(Xt ∈

Ai) > 0.

For any fixed t the events{Xt ∈ Ai}, i = 1, … , m, are mutually exclusive with total probability 1,

therefore, by the law of total probability,

P(Xt + 1 ∈ Aj) = ∑ P(Xt + 1 ∈ Aj|Xt ∈ Ai)P(Xt ∈ Ai), j = 1, … , m

m

i=1

holds. This implies π̃t+1 = π̃tP̃t(π0) , from which

π̃t = π̃0P̃1(π0) … P̃t(π0) (5-8)

follows.

We next show that for any t = 1,2, … the matrix P̃t(π0)falls between the lower and upper

transition matrices, i.e., L ≤ P̃t(π0) ≤ M holds. Let us use short notations for certain events: for

any i = 1, … , m and for a fixed t ≥ 1 set Hi = {Xt ∈ Ai}, H′i = {Xt + 1 ∈ Ai}, and for x ∈

S let Ex = {Xt = x}. Then Ex ∩ Ey = ∅ holds for any x ≠ y and ∑ Exx∈S = 1. Applying the

definition of conditional probability and the law of total probability, noting that P(Hi) > 0 is

provided by the assumptions of the lemma, we get

pt
(x0)

(i, j) = P(Hj
′|Hi) =

P(H′j ∩ Hi)

P(Hi)

=

∑ P(H′j ∩ Hi ∩ Ex)x∈S

P(Hi)

112

=

∑ ((Hj
′|Hi ∩ Ex)P(Hi ∩ Ex))x∈S

P(Hi)

= ∑ P(H′j|Hi ∩ Ex)

x∈S

P(H′j ∩ Hi)

P(Hi)

 = ∑ P(H′j|Hi ∩ Ex)
x∈S

P(Ex|Hi)

Whenever x ∉ Ai we have P(Ex|Hi) = P(Xt = x|Xt ∈ Ai) = 0. Therefore, it is enough to take

the summation over Ai, instead of the entire S. For x ∈ Ai, however, Hi ∩ Ex = {Xt ∈ Ai} ∩

{Xt = x} = {Xt = x} holds, so we obtain

pt
(π0)

(i, j)= ∑ P(Xt + 1 ∈ Aj|Xt = x)P(Xt = x|Xt ∈ Ai)

x∈Ai

Thus, pt
(π0)

(i, j) is a weighted average of the P(Xt + 1 ∈ Aj|Xt = x) probabilities. The weights

are P(Xt = x|Xt ∈ Ai) so they are non-negative and sum up to 1. Further,

lij ≤ P(Xt + 1 ∈ Aj|Xt = x) ≤ uij

must hold, since lij,uij are defined as the minimum and maximum values, respectively, of

p(x, Aj) = P(Xt + 1 ∈ Aj|Xt = x)

over x∈Ai. Since the weighted average must fall between the minimum and the maximum,

therefore, we have

lij ≤ pt
(x0)

(i, j) ≤ uij
(5-9)

that is,

L ≤ P̃t(π0) ≤ M (5-10)

113

for any t ≥ 1 and for any initial distribution π0 allowed by the conditions of the Theorem.

Let us now start the chain from an initial distribution π0 that satisfies the conditions of the

Theorem. We are going to compare the arising aggregated state distribution vectors (3) with the

ones resulting from starting the chain from the stationary distribution π. Note that, due to the

assumed irreducibility of the original chain, π(x) > 0 for all x ∈ S, so π is also a possible initial

distribution that satisfies the conditions P(Xt ∈ Ai) > 0.

When the chain is started from the stationary distribution π, then, according to (5), the

aggregated state distribution vector at time t is π̃ P̃1(π). … . P̃1(π) where π̃ is given as

π̃t = π̃tP̃t(π0) … P̃t(π0). On the other hand, P(Xt ∈ Ai) remains the same for all t ≥ 0 if the

chain starts from the stationary distribution. Therefore, we have

π̃ P̃1(π). … . P̃1(π) = π̃ = (π(A1), … , (Am)) (5-11)

When the chain starts from π0, then we obtain the aggregated state distribution vector

π̃t = π̃tP̃t(π0) … P̃t(π0) (5-12)

after t steps. Now we can apply Lemma 1 for the comparison of (5-11) and (5-12). The roles

for the quantities in Lemma 1 are assigned as x = π̃0, y = π̃t, k = t, n = m, and, for every τ =

1, … , k, Bt = P̃t(π0) Ct = P̃t(π). To find the value of ρ0 recall that by (5-10) we have

L ≤ P̃t(π) ≤ M and L ≤ P̃t(π0) ≤ M. Since any entry of U exceeds the corresponding entry

of L at most by ϵ, therefore, by the definition of the ergodic coefficient, ρ(P̃t(π0)) ≤ ρ +
ϵm

2

and ρ(P̃t(π)) ≤ ρ +
ϵm

2
hold, where ρ is the upper bound on ρ(L). Thus, we can take ρ0 = ρ +

ϵm

2
. With these role assignments we obtain from Lemma 1

‖π̃0P̃1(π0) … P̃t(π0) − π̃P̃1(π) … P̃t(π)‖ ≤ (ρ +
ϵm

2
)

t

‖π̃0 − π̃‖ + E

114

where E = ‖Pr(πt) − Pr(π)‖r
max and the norms are as in Lemma 1. Taking (5-11) and (5-12)

into account yields

‖π̃0 − π̃‖ = ∑|πt(Ai) − π(Ai)| ≤ (ρ +
ϵm

2
)

2

‖π̃0 − π̃‖ + E ∑ (ρ +
ϵm

2
)

k
t−1

k=0

m

i=1

 (5-13)

Thus, it only remains to estimate ‖π̃0 − π̃‖and E. Given thatπ̃0 , π̃ are both stochastic vectors,

we have ‖π̃0 − π̃‖ ≤ ‖π̃0‖ + ‖π̃‖ ≤ 2. Further,

E = ‖Pr(πt) − Pr(π)‖ = max
r

max
i

∑ |Pr
(x0)

(i, j) − Pr
(π)

(i, j)|

m

j=1

≤ ϵmr
max

since (6) holds for any considered π̃0 (including π), and, by the definition of ϵ-lumpability, uij −

lij ≤ ϵ. Substituting the estimations into (10), we obtain

∑|πt(Ai) − π(Ai)| ≤ 2 (ρ +
ϵm

2
)

2

+ ϵm ∑ (ρ +
ϵm

2
)

2

= 2 (ρ +
ϵm

2
)

2

+ ϵm
1 − (ρ +

ϵm
2)

2

1 − ρ − ϵm/2

t−1

k=0

m

i=1

proving the Theorem. ☐

If the chain happens to be exactly lumpable, then we get a “cleaner" result. Let π̃t be the state

distribution of the lumped chain after t steps and let π̃ be its stationary distribution. For concise

description let us apply a frequently used distance concept among probability distributions.

If p, q are two discrete probability distributions on the same set S, then their total variation

distance DTV(p, q) is defined as

DTV(p, q) ≤
1

2
∑|p(x) − q(x)|

x∈S

115

It is well known that 0 ≤ DTV(p, q) ≤ 1 holds for any two probability distributions. It is also

clear from the definition of the ergodic coefficient that it is the same as the maximum total

variation distance occurring between any two row vectors of the transition matrix.

Note that exact lumpability is the special case of ϵ-lumpability with ϵ = 0. Therefore, we

immediately obtain the following corollary.

Corollary 1. If the Markov chain in Theorem 2 is exactly lumpable, then in the lumped chain

for any t = 0,1,2, … the following holds:

DTV(π̃t, π̃) ≤ ρt

where ρ = ρ(P̃) is the ergodic coefficient of the transition matrix P̃ of the lumped chain.

Proof. Take the special case ϵ = 0 in Theorem 2. ☐

5.8 Numerical Demonstration

Let us consider the following situation. Let M be a Markov chain with state space S. Assume

we want to estimate the stationary measure π(A) of a subset A ⊆ S. A practical example of such

a situation is to estimate the probability that there is at most k blocked links, for some

constant k, in a large communication network. Here the state space is the set S of all possible

states of all the links. The state of a link is the current traffic load of the link, and it is blocked

if the load is equal to the link capacity, so it cannot accept more traffic. Within this state space

the considered subset A is the subset of states in which among all links at most k are blocked.

Therefore, the relevant partition of S is {A, S − A}. This is motivated by real-world application,

since the number of blocked links critically affects network performance. When considering the

116

loss of traffic due to blocking, the models of these networks are often called loss networks. For

detailed background information on loss networks [31]. Of course, we can also consider other

events in the network. For example, at most a given percentage of traffic is blocked, without

specifying how many links are involved in the blocking.

In many cases we are unable to directly compute π(A). This task frequently has enormous

complexity, for the theoretical background. Then a natural way to obtain an estimation

of π(A) is simulation. That is, we run the chain from some initial state, stop it after t steps and

check out whether the stopping state is in A or not. Repeating this experiment a large enough

number of times, the relative frequency of ending up in A will give a good estimation of the

measure of πt(A). If tis chosen such that πt is close enough to the stationary distribution π for

any initial state, then we also obtain a good estimation for π(A). This is the core idea of the

Markov Chain Monte Carlo approach.

Unfortunately, Markov chains with large state space often converge extremely slowly.

Therefore, we may not get close enough to π after a reasonable number of steps. In such a case

our result can do a good service, at least when the chain satisfies some special requirements. As

an example, let us consider the following case. First we examine it using our bounds, then we

also study it through numerical experiments.

Assume the set A ⊆ S has the property that its elements behave similarly in the following sense:

for any state x ∈ A the probability to move out of A in the next step, given that the current state

is x, is approximately the same. Similarly, if x ∉ A, then moving into A in the next step from

the given x has approximately the same probability for any x ∉ A. To make this assumption

formal, assume there are values p0, q0, ϵ, such that the following conditions hold:

117

(A) If x ∈ A then p0 ≤ p(x, A¯) ≤ p0 + ϵ where A¯ = S − A. This means, the smallest

probability of moving out of Afrom any state in x∈A is at least p0, and the largest such

probability is at most p0 + ϵ.

(B) If x ∈ A¯ then q0 ≤ p(x, A) ≤ q0 + ϵ. Similarly to the first case, this means that the

smallest probability of moving into A from any state in x ∉ A is at least q0, and the

largest such probability is at mostq0 + ϵ . (We choose ϵ such that it can serve for this

purpose in both directions.)

(C) To avoid degenerated cases, we require that the numbers p0, q0, ϵ satisify p0 + ϵ <

1, q0 + ϵ < 1 and 0 < p0 + q0 < 1. The other state transition probabilities

(within A and A¯) can be completely arbitrary, assuming, of course, that at any state the

outgoing probabilities must sum up to 1.

Let us now apply our main result, Theorem 2, for this situation. The parameters will be as

follows: m, the number of sets in the partition, is 2, since the partition is (A, A¯). The

matrices L,U become the following:

L = [
1 − p0 − ϵ p0

q0 1 − q0 − ϵ
] U = [

1 − p0 p0 + ϵ
q0 + ϵ 1 − q0

]

where the distributions π˜t,π˜ are over the sets of the partition (A, A¯), not on the original state

space. Note that in our case we actually haveDTV(π̃t, π̃) = |πt(A) − π(A)| due to the fact

that |πt(A) − π(A)| = |πt(A¯) − π(A¯)|. Therefore, we obtain the estimation directly for the

set A:

118

|πt(A) − π(A)| ≤ (1 − p0 − q0)t + ϵ
1 − (1 − p0 − q0)t

p0 + q0

(5-14)

If p0+q0 is not extremely small, then the term (1 − p0 − q0)twill quickly vanish, as it

approaches 0 at an exponential rate. Therefore, after a reasonably small number of steps, we

reach a distribution πt from any initial state, such that approximately the following bound is

satisfied:

|πt(A) − π(A)| ≤
ϵ

p0 + q0

(4-15)

It is quite interesting to note that neither the precise estimation (5-14), nor its approximate

version (5-15) depend on the size of the state space.

Now we demonstrate via numerical results that the obtained bounds indeed hold. Moreover,

they are achievable after a small number of Markov chain steps, that is, with fast convergence.

We simulated the example with the following parameters: n=100 states, p0 = q0 = 0.25,

and ϵ=0.1. The set A was a randomly chosen subset of 50 states. The transition probabilities

were also chosen randomly, with the restriction that together with the other parameters they had

to satisfy conditions (A), (B), (C).

Figure 5-1 shows the relative frequency of visiting A, as function of the number of Markov

chain steps. It is well detectable that the chain converges quite slowly. Even after many

iterations the deviation from the stationary probability π(A) does not visibly tend to 0. On the

other hand, it indeed stays within our error bound:

http://www.mdpi.com/1999-4893/9/3/50/htm#fig_body_display_algorithms-09-00050-f001

119

|πt(A) − π(A)| ≤
ϵ

p0 + q0
=

0.1

0.25 + 0.25
 = 2 × 0.1

as promised. Having observed this, it is natural to ask, how soon can we reach this region that

is, how many steps are needed to satisfy the bound? This is shown in Figure 5-2. We can see

that after only 10 iterations, the error bound is already satisfied. Note that this is very fast

convergence, since the number of steps to get within the bound was as little as 10% of the

number of states.

Figure 5-1 Deviation from the stationary measure for many iterations

http://www.mdpi.com/1999-4893/9/3/50/htm#fig_body_display_algorithms-09-00050-f002

120

Figure 5-2 Very fast convergence to satisfy the error bound

We have analyzed the convergence rate of quasi-lumpable Markov Chains. This represents the

case when the large state space can be aggregated into a smaller number of clusters, in which

the states behave approximately the same way. Our main contribution is a bound on the rate at

which the aggregated state distribution approaches its limit in such chains. We have also

demonstrated that in certain cases this can lead to a significantly accelerated convergence to an

approximate estimation of the measure of subsets. The result can serve as a useful tool in the

analysis of complex networks, when they have a clustering that approximately satisfies the

conditions lumpability.

121

CHAPTER 6

CONCLUSION

In this dissertation, we first discus linear optimization methods which can helps Internet protocols

work more efficiently. We use a duality theory to find a weight set that improve the routing

protocols efficiencies. As a matter of fact, routing is the most important aspect of Internet Traffic

Engineering. So, we focus on routing protocols and introduce a practical method that optimizes

link metrics. Previous optimization methods suffer from practical issues but our method could be

implemented with Routing Protocols that based on shortest paths. Our simulation results show

significant improvement on network efficiency. Second, a new method is introduced for traffic

distribution in virtual circuit switched networks which can be implemented in real networks. In

this method, the input traffic of each session is distributed among the possible paths, in a manner

that the total system cost is minimized at the same time as the average cost for each path is kept

bounded below a required threshold level. This method is scalable as its operation is per session.

It is analytically proven in this article that this algorithm converges under the assumptions that are

feasible in real networks. The simulation results approve the effectiveness of the algorithm. The

results obtained from the simulation are in line with the results obtained from analytical resolution

of the convex optimization problem. We also investigates the question “how non-cooperative

nodes in a network can create an efficient network?” We have studied the result of the selfish

behavior of nodes, and compares it to the situation in which there is a central control unit in the

network. Central control can force all nodes to use a predefined strategy in which the network

utilization is optimum.

122

In chapter 4 we study Big Data solution for analyzing large scale networks. We introduced Apache

Spark as a replacement for Hadoop MapReduce. Efficiency of Spark, as a result of in-memory

processing, makes it a popular big data processing engine. It also has high usability, due to different

programming language APIs. There is a large collection of algorithms that cannot be implemented

using only one iteration of Map and Reduce functions. Notably, graph processing algorithms fall

in this category. Apache Spark improves efficiency of implementing such algorithms using in-

memory processing. Essentially, after one iteration of Map and Reduce, the results are ready, and

available in memory for the next iteration. Spark can be 100 times faster than Hadoop MapReduce

for machine learning algorithms, such logistic regression. A fundamental processing unit in Spark

is RDD, instead of one path of Map and Reduce functions. RDD is an immutable distributed data

set across the cluster which is resilient to data storage failure. Data processing algorithms can be

implemented using transformations and actions on each RDD. Transformations will create series

of RDDs. As a result of immutability, each one of them can be recalculated from the previous one.

Graphx is a new component in Spark for implementing graph algorithms in a distributed

environment. Graphx extends the Spark RDD by introducing a new graph abstraction in terms of

a distributed dataset, attached to vertices and edges. In this chapter three important social network

algorithms have been introduced using Graphx library in Apache Spark. The first one is finding

PageRank in a social network, the second one is finding connected components, and the last but

not least is the triangle counting algorithm. In all the three applications, we have illustrated the

steps via appropriate examples.

In the last chapter we study approximation approach for analyzing network structure. We

investigate unsplittable flow problems and introduce a novel practical approximation. The

123

simplicity and efficiency is achieved by sacrificing a small part of the solution space. The

sacrificed part only contains scenarios where some edges are very close to saturation. Therefore,

the loss is not significant, since the almost saturated solutions are typically undesired in practical

applications, such as network design. The approach constitutes a new avenue to approximation, in

the sense that instead of giving up finding an exact solution, we rather restrict the search space to

a (slightly) smaller one. When, however, the algorithm finds any solution, which happens with

high probability, then it is an exact (not just approximate) solution.

At the end we have analyzed the convergence rate of quasi-lumpable Markov Chains. This

represents the case when the large state space can be aggregated into a smaller number of

clusters, in which the states behave approximately the same way. Our main contribution is a

bound on the rate at which the aggregated state distribution approaches its limit in such chains.

We have also demonstrated that in certain cases this can lead to a significantly accelerated

convergence to an approximate estimation of the measure of subsets. The result can serve as a

useful tool in the analysis of complex networks, when they have a clustering that approximately

satisfies the conditions lumpability.

124

REFERENCES

[1] Bernard Fortz and Mikkel Thorup, "Internet Traffic Engineering by Optimising OSPF

Weights," in Nineteenth annual joint conference of the IEEE computer and

communications societies. Proceedings. IEEE, 2000.

[2] Awduche, Macolm, Agogbua, O'Dell, McManus, "Requirements for Traffic Engineering

Over MPLS," Internet Society, 1999.

[3] Awduche, "MPLS and traffic engineering in IP networks," IEEE communications, pp. 42-

47, 1999.

[4] Ningning Hu, Li Erran Li, Zhuoqing Morley Mao, Peter Steenkiste, Jia Wang, "Locating

Internet Bottlenecks: Algorithms, Measure-ments and Implications," in ACM SIGCOMM,

2004.

[5] Stephen Boyd and Lieven Vandedenberghe, Convex Optimization, Cambridge University

Press, 2004.

[6] Yufei Wang, Zheng Wang, and Leah Zhang, "Internet Traffic Engineering without Full

Mesh Overlaying," INFOCOM, 2001.

[7] Touraj Shabanian, Massoud Reza hashemi, Ahmad Askarian "Maximum Load Balancing

with Optimized Link Metrics," Journal of Software Engineering and Applications, vol.

5.12, p. 14, 2013.

[8] Amir Nahir, Ariel Orda, and Ari Freund, "Topology Design of Communication Networks:

A Game-Theoric Perspective," IEEE/ACM TRANSACTIONS ON NETWORKING, pp. 405-

414, 2014.

[9] Zuyuan Fang and B. Bensaou, "Fair bandwidth sharing algorithms based on game theory

frameworks for wireless ad-hoc networks," INFOCOM, 2004.

[10] Zhu Ji and Ray Liu, "Cognitive Radios for Dynamic Spectrum Access- Dynamic Spectrum

Sharing: A Game Theoretical Overview," IEEE Communications, pp. 88-94, 2007.

[11] G. Debreu, "A Social Equilibrium Existence Theorem," in Proceedings of the National

Academy of Sciences of the United States of America, 1952.

[12] Y.L. Varol and Doron Rotem, "An algorithm to generate all topological sorting

arrangements," The Computer Journal, pp. 83-84, 1981.

[13] Frank H. Page Jr. and Myrna Wooders, "Strategic basins of attraction, the path dominance

core, and network formation games," Games and Economic Behavior, pp. 462-487, 2009.

[14] Baruch Awerbuch, Amotz Bar-Noy, and Madan Gopal, "Approximate Distributed

Bellman-Ford Algorithm," IEEE TRANSACTIONS ON COMMUNICATIONS, pp. 2515-

2517, 1994.

[15] Ahmad Askarian, Andras Farago, "Designing Networks with Low Structural Congestion

via Game Theory and Linear Programming," Transactions on Networks and

Communications, vol. 3.1, p. 01, 2015.

125

[16] Touraj Shabanian, Ahmad Askarian, Massoud Reza hashemi, "Practical approach for

traffic engineering with suboptimal OSPF routing," in Electrical Engineering (ICEE), 2011

19th Iranian Conference on. IEEE, 2011.

[17] Touraj Shabanian, Massoud Reza hashemi, Ahmad Askarian, Behnaz Omoomi, "An

Optimal Traffic Distribution Method Supporting End-to-End Delay Bound," Journal of

Computing and Security, vol. 1, p. 1, 2014.

[18] Dimitris Fotakis, Spyros Kontogiannis, Elias Koutsoupias, Marios Mavronicolas, Paul

Spirakis, "The structure and complexity of Nash equilibria for a selfish routing game,"

Theoretical Computer Science, pp. 3305-3326, 2009.

[19] Seung Yeob Nam, Sunggon Kim, and Dan Keun Sung, "Measurement-based admission

control at edge routers," IEEE/ACM Transactions on Networking, p. 410–423, 2008.

[20] K. W. Ross, Multiservice Loss Models for Broadband Telecommunication Networks,

1995.

[21] D. P. Bertsekas, Network Optimization:, Athena Scientific, 1998.

[22] D. P. Bertsekas, Nonlinear programming, Athena Scientific, 1999.

[23] Mehrdad Heydarzadeh, Mehrdad Nourani, Sarah Ostadabbas, "In-bed posture classification

using deep autoencoders," in Engineering in Medicine and Biology Society (EMBC), 2016

IEEE 38th Annual International Conference of the. IEEE, 2016.

[24] Mehrad Heydarzadeh, "Gear fault diagnosis using discrete wavelet transform and deep

neural networks," in Industrial Electronics Society, IECON 2016-42nd Annual Conference

of the IEEE, 2016.

[25] Mehrdad Heydarzadeh, " An augmented reality platform for CABG surgery," in

Biomedical Circuits and Systems Conference (BioCAS), 2015.

[26] Mehrdad Heydarzadeh, "Gearbox Fault Diagnosis Using Power Spectral Analysis," in

Signal Processing Systems (SiPS), 2016.

[27] Florian Bourse, Marc Lelarge, and Milan Vojnovic, "Balanced Graph Edge Partition," in

20th ACM SIGKDD international conference on Knowledge discovery and data mining,

New York, USA, 2014.

[28] Ahmad Askarian, Andras Farago, "Approximate State Aggregation in Markov Chain

Monte Carlo Algorithms," Technical Report UTDCS-19-16, Dept. of Computer Science,

The Univ. of Texas at Dallas, 2016.

[29] Mark Kramer, "The complexity of wire-routing and finding minimum area layouts for

arbitrary VLSI circuits," Elsevier , 1984.

[30] Frank Pfeiffer, "On the complexity of the disjoint paths problem," springer, 1990.

[31] Andras Farago, "Speeeding Up Markov Chain Monte Carlo Algorithm," in International

Conference on Foundations of Computer Science, Las Vegas, NV, USA, 2006.

[32] N. R. Seymour, "Graph Minors .XIII. The Disjoint Paths Problem," Journal of

Combinatorial Theory, Series B, 1995.

[33] A. Z. Broder, "Optimal Construction of Edge-Disjoint Paths in Random Regular Graphs,"

SIAM Journal on Computing 28.2, 1998.

126

[34] Naveen Garg, "Primal-dual approximation algorithms for integral flow and multicut in

trees," Algorithmica 18, no. 1, 1997.

[35] Yanatan Aumann, "An O (log k) approximate min-cut max-flow theorem and

approximation algorithm," SIAM Journal on Computing 27, no. 1 , 1998.

[36] David Kempe, "Maximizing the spread of influence through a social network," In

Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery

and data mining, 2003.

[37] Ahmad Askarian, Andras Farago, "Utilizing Network Structure to Accelerate Markov

Chain Monte Carlo Algorithms," Algorithms, vol. 9.3, p. 50, 2016.

[38] F. P. Kelly, "Loss networks," The annals of applied probability, 1991.

[39] Geraham Louth, "Computational complexity of loss networks," Theoretical Computer

Science 125, no. 1 , 1994.

[40] Mehrad Heydarzadeh, "A two-stage fault detection and isolation platform for industrial

systems using residual evaluation," IEEE Transactions on Instrumentation and

Measurement, vol. 65.10, pp. 2424-2432, 2016.

[41] Youngseok Lee, Biswanath Mukherej, "Traffic Engineering in Next-Generation Optical

Networks," IEEE Communications, pp. 16-33, 2004.

[42] Marija Antic, Natasa Maksic, Petar Knezevic, and Aleksandra Smiljanic, "Two Phase Load

balance Routing using OSPF," IEEE Journal on selected areas in Communications, pp.

2088-2096, 2010.

[43] Matthew O. Jackson and Alison Watts, "On the formation of interaction networks in social

coordination games," Games and Economic Behavior, pp. 265-291, 2002.

[44] Robert Aumann and Roger Myerson, "Endogenous Formation of Links Between Players

and of Coalitions: An Application of the Shapley Value," Networks and Groups, pp. 207-

220, 2003.

[45] T. Roughgarden, "Selfish routing and the price of anarchy," Cambridge, 2005.

[46] Elias Koutsoupias, Christos Papadimitriou, "Worst-case equilibria," Compuer Scienceview,

pp. 65-69, 2009.

[47] Ning Wang, Kin-Hon Ho, George Pavlou, and Michael P. Howarth, "An overview of

routing optimization for internet traffic engineering," IEEE Communications Surveys &

Tutorials, 2008.

[48] Xavier Masip-Bruin, Marcelo Yannuzzi, Jordi Domingo-Pascual, Alexandre Fonte, Marılia

Curado, Edmundo Monteiro, Fernando Kuipers, Piet Mieghem, Stefano Avallone, Giorgio

Ventre,Pedro Aranda, Matthias Hollick, Ralf Steinmetz, Luigi Iannone, Keve Salamatian,

"Research challenges in QoS routing," Computer Communications, pp. 563-581, 2006.

[49] Neda Moghim, Seyed Mostafa Safavi, and Massoud Reza Hashemi, "Performance

evaluation of a new end-point admission control algorithm in ngn with improved network

utilization," International Journal of Innovative Computing, Information and Control,

2010.

127

[50] Xavi Masip-Bruin, Marcelo Yannuzzi, René Serral-Gracià, Jordi Domingo-Pascual, José

Enríquez-Gabeiras and María Ángeles Callejo, Michel Diaz, Florin Racaru, Giovanni Stea,

Enzo Mingozzi, Andrzej Beben, Wojciech Burakowski, Edmundo Monteiro,and Luís

Cordei, "The EuQoS System: A Solution for QoS," IEEE Communications, pp. 96-103,

2007.

[51] Mohamed E. M. Saad, Alberto Leon-Garcia, and Wei Yu, "Optimal network rate allocation

under end-to-end quality-of-service requirements," IEEE Transactions on Network and

Service Management, pp. 40-49, 2007.

[52] A. Farago, "On the Convergence Rate of Quasi Lumpable Markov Chains.," in

Proceedings of the 3rd European Performance Engineering Workshop, Budapest,

Hungary, 2006.

[53] Srikanth Kandula, Dina Katabi, Bruce S. Davie, and Anna Charny, "Walking the tightrope:

responsive yet stable traffic engineering," in SIGCOMM, 2005.

[54] Wojciech Burakowski, Andrzej Beben, Halina Tarasiuk, Jaroslaw Sliwinski, Robert

Janowski, Jordi Mongay Batalla, and Piotr Krawiec, "Provision of end-to-end qos in

heterogeneous multi-domain networks," annals of telecommunications, p. 559–577, 2008.

[55] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney, "Community

Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-

Defined Clusters," Internet Mathematics, pp. 271-276, 2009.

[56] Mihail N. Kolountzakis, Gary L. Miller, Richard Peng, and Charalampos E. Tsourakakis,

"Efficient Triangle Counting in Large Graphs via Degree-based Vertex Partitioning,"

Internet Mathematics, pp. 161-185, 2012.

128

BIOGRAPHICAL SKETCH

Ahmad Askarian Received the Bachelor degree in electrical engineering from the Shahed

University, Tehran, Iran, in 2008 and the M.E. degree from the Isfahan University of Technology

(IUT), Isfahan, Iran, in 2010. He is currently pursuing the doctoral degree at The University of

Texas at Dallas (UTD). Since 2012, he is a research assistant in the Scalable Network Engineering

Techniques Laboratory, UTD, Dallas, US.

His research interest includes network optimization, graph theory and distributed processing

systems.

129

CURRICULUM VITAE

Ahmad Askarian May 20, 1984

Last update on March 2, 2017

 ahmad.askarian@gmail.com +1 469 236 7573 www.linkedin.com/in/ahmadaskarian

 Experience

 State Farm Dallas, Texas

 Big Data Engineer June ’15 – present

Data ingestion from RDBMS into HDFS and HBase. We designed and implemented

a data stream-ing pipeline using Apache Kafka, Apache Flume, and Spark

Streaming. Kafka producer and Flume interceptor have been written in Java and

Spark Streaming in Scala.
Accounting system modernization. In this project we designed and implemented
Apache Spark ap-plication to manage all financial transactions and create an online
view using Apache Hive/Impala and HiveContext available in SparkSQL.
Designed and implement a machine learning model for automating financial
auditing. In this project we used Apache Spark/MLlib, H2O and Microsoft/Mobius
(using C#).
On-line fraud detection system for credit card transaction. In this project, using

decision tree library in Spark Streaming, we implement near real time data analysis

and incremental update of the machine learning model. Lambda Architecture is

leveraged for this effort.
Data format conversion to Apache Avro and Parquet. In a distributed processing

system, data serialization and movement between independent executors are a key

for having high performance. In this regards, we convert high volume of CSV and

XML file into Avro and Parquet.
Scheduling different Hadoop applications using Apache oozie rest API. We
developed an oozie work-flow, which contains Spark, Java, FS and notification
actions and acontroller using Python scripts.

.
 UTDallas Computer Science Department Dallas, Texas

Research Assistant Sep ’12 – May ’15
MCMC approach for finding maximal clique in a social network. In this project we
used

Graphx/Scala to implement a probabilistic estimation algorithm for community
detection.
Convergence rate analysis of quasi-lumpable Markov Chains. In this project we
study large state space, which could be aggregated into a smaller number of clusters,
in which the states behave approximately the same. The simulation is implemented

mailto:ahmad.askarian@gmail.com
http://www.linkedin.com/in/ahmadaskarian
http://cs.utdallas.edu/

130

using Python
.

Skills

Machine Learning (Spark/MLlib, TensorFlow), Functional Programming (Certified Scala

Developer), Object Oriented Programming (Java, Python, C#), Hadoop Ecosystem and scalable

data management systems (HDFS API, Yarn API, Oozie Rest API, Flume, Hive, Impala, Pig)

Education

 University of Texas at Dallas

Richardson,

Texas

PhD in Telecommunications Engineering 2012 – 2017

Focused on Algorithm and Machine Learning

Isfahan University of Technology Isfahan, Iran

Master of Science in Electrical Engineering 2009 – 2011

Shahed University Tehran, Iran

Bachelor Degree Electrical Engineering 2004 – 2009

List of publication

1. A. Askarian, R. Xu, and A. Farago, "Approximate State Aggregation in Markov

Chain Monte Carlo Algorithms," Technical Report UTDCS-19-16, Dept. of

Computer Science, The Univ. of Texas at Dallas, Dec. 2016.

2. A. Askarian, R. Xu, and A. Farago, "Finding Unsaturated Solutions of the

Unsplittable Flow Problem Efficiently," Technical Report UTDCS-20-16,

Dept. of Computer Science, The Univ. of Texas at Dallas, Dec. 2016.

3. A. Askarian, R. Xu, and A. Farago, "Scalable Application of the Apache

Spark Distributed Memory System for Graph Algorithms,"

Technical Report UTDCS-22-16, Dept. of Computer Science, The Univ. of

Texas at Dallas, Dec. 2016.

4. Askarian, Ahmad, and Andras Farago. "Designing Networks with Low

Structural Congestion via Game Theory and Linear

Programming." Transactions on Networks and Communications 3, no. 1

(2015): 01.

5. Shabanian, Touraj, Massoud Reza Hashemi, and Ahmad Askarian. "Maximum

Load Balancing with Optimized Link Metrics." Journal of Software

Engineering and Applications 5, no. 12 (2013): 14.

6. Askarian, Ahmad, and Andras Farago. "Designing Networks with Low

Structural Congestion via Game Theory and Linear

Programming." Transactions on Networks and Communications 3, no. 1

http://cs.utdallas.edu/

131

(2015): 01.

7. Askarian, Ahmad, Rupei Xu, and András Faragó. "Utilizing Network Structure

to Accelerate Markov Chain Monte Carlo Algorithms." Algorithms 9, no. 3

(2016): 50.

8. Shabanian, Touraj, Massoud Reza Hashemi, Ahmad Askarian, and Behnaz

Omoomi. "An Optimal Traffic Distribution Method Supporting End-to-End

Delay Bound." Journal of Computing and Security 1, no. 1 (2014).

9. Shabanian, Touraj, Ahmad Askarian, and MasoudReza Hashemi. "Practical

approach for traffic engineering with suboptimal OSPF routing." In Electrical

Engineering (ICEE), 2011 19th Iranian Conference on, pp. 1-5. IEEE, 2011.

