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Effects of noise exposure on auditory brainstem response and speech-in-noise

tasks: a review of the literature

Colleen G. Le Prell

School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA

ABSTRACT

Objective: Short-term noise exposure that induces transient changes in thresholds has induced perman-
ent cochlear synaptopathy in multiple species. Here, the literature was reviewed to gain translational
insight into the relationships between noise exposure, ABR metrics, speech-in-noise performance and TTS
in humans.

Design: PubMed-based literature search, retrieval and review of full-text articles. Study Sample: Peer-
reviewed literature identified using PubMed search.

Results: Permanent occupational noise-induced hearing loss (NIHL) is frequently accompanied by abnor-
mal ABR amplitude and latency. In the absence of NIHL, there are mixed results for relationships between
noise exposure and ABR metrics. Interpretation of speech-in-noise deficits is difficult as both cochlear syn-
aptopathy and outer hair cell (OHC) loss can drive deficits. Reductions in Wave | amplitude during TTS
may reflect temporary OHC pathology rather than cochlear synaptopathy. Use of diverse protocols across
studies reduces the ability to compare outcomes across studies.

Conclusions: Longitudinal ABR and speech-in-noise data collected using consistent protocols are needed.
Although speech-in-noise testing may not reflect cochlear synaptopathy, speech-in-noise testing should
be completed as part of a comprehensive test battery to provide the objective measurement of
patient difficulty.

Abbreviations: ABR: auditory brainstem response; AP: action potential; BKB-SIN: Bamford-Kowal-Bench
Speech-in-Noise; CAP: compound action potential; CEOAE: click-evoked otoacoustic emission; CHABA:
Committee on Hearing, Bioacoustics, and Biomechanics; CRM: Coordinate Response Measure test; dB:
decibel; dBA: A-weighted decibel; dB HL: decibel hearing level; dB nHL: decibel hearing level relative to a
normal hearing population; dB S/B: decibel signal to babble ratio; dB SL: decibel sensation level (dB
above threshold); dB SPL: decibel sound pressure level; dB peSPL: decibel peak-equivalent sound pressure
level; DPOAE: distortion product otoacoustic emission; ECochG: Electrocochleography; EHF: extended high
frequency; FFR: frequency following response; HINT: Hearing in Noise Test; HPD: hearing protection
device; Hz: hertz; IHC: inner hair cell; kHz: kilohertz; LiSN-S: Listening in Spatialized Noise-Sentences High
Cue Condition; NEQ: noise exposure questionnaire; NIHL: noise-induced hearing loss; NIOSH: National
Institute on Occupational Safety and Health; NU-6: Northwestern University Auditory Test Number 6; OHC:
outer hair cell; OSHA: Occupational Safety and Health Administration; PTS: permanent threshold shift;
QuickSin: Quick Sentences in Noise; SNR: signal-to-noise ratio; SRT: speech recognition threshold; SSQ:
Speech, Spatial, and Qualities of Hearing Scale; STS: standard threshold shift; TEN(HL): threshold equalising
noise (specified as dB hearing level); TTS: temporary threshold shift; UTD: University of Texas at Dallas;
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Introduction

Exposure to loud sound has the potential to damage cells in the
inner ear. It has long been known that the outer hair cells
(OHCs) are particularly vulnerable to noise injury (Wang,
Hirose, and Liberman 2002; for review, see Hu 2012), as well as
other diverse insults such as occupational chemical exposure (for
review, see Morata and Johnson 2012) and ototoxic drugs
including aminoglycoside antibiotics and chemotherapeutics (for
review, see Campbell and Le Prell 2018). More recently, it has
become clear that the synapses connecting the inner hair cells
(IHCGs) to the auditory nerve dendrites are also vulnerable to loss
as a consequence of noise (for review, see Kujawa and Liberman

2015), aminoglycoside antibiotics (Hinojosa and Lerner, 1987)
and aging (Sergeyenko et al., 2013).

Hearing loss that occurs after exposure to loud sound may
recover, in which case it is a temporary threshold shift (TTS) or
the hearing loss may not resolve, in which case it is a permanent
threshold shift (PTS) (for review, see Ryan et al. 2016). The clas-
sic literature on human TTS includes the measurement of TTS
2minutes after the end of the noise exposure (TTS,) (Yates,
Ramsey, and Holland 1976; Stephenson and Wall 1984).
Threshold shifts at later times are a smaller, recovering, TTS (for
review, see Ward 1970; Melnick 1991). It is more difficult to cap-
ture TTS, in animal studies given the need to anaesthetise the
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animal prior to testing. In this review, TTS, is used to denote
classic 2-minute post-noise testing, and TTS without a specific
time notation attached refers to a recovering TTS assessed at a
longer post-noise time. A typical paradigm when using an ani-
mal model is to expose an awake animal to intense sound; post
exposure, sound-evoked auditory brainstem response (ABR)
thresholds are measured over the days and weeks after the noise
exposure. Distortion product otoacoustic emission (DPOAE)
thresholds may be monitored in place of or in combination with
ABR thresholds, or DPOAE amplitude may be monitored. At the
conclusion of the experiment, cochlear tissues are harvested and
the OHC and THC populations are counted.

One of the paradigms that has become increasingly common in
recent years is the use of a short-term (two to four hours) sound
exposure, with changes in both DPOAE and ABR thresholds and
amplitude measured approximately 24 hours after the exposure
and at one- to two-week intervals thereafter to monitor any per-
manent changes (Kujawa and Liberman 2006, 2009). Using such
paradigms, there is now an elegant and convincing documentation
of permanent auditory nerve synaptic pathology “hidden” behind
normal hair cell counts, with a parallel decrease in ABR Wave I
amplitude “hidden” behind normal threshold sensitivity. In this
context, hidden synapse loss refers to a loss of synapses that occurs
despite intact OHC and IHC populations - i.e. synapse loss cannot
be inferred from the conventional OHC and IHC counts (as these
cell counts are normal). The Wave I amplitude decreases have
been termed “hidden hearing loss” as threshold measurements, the
most common measurement of function, return to baseline, even
though the amplitude of Wave I is decreased. The use of the term
hidden hearing loss to specifically refer to decreased Wave I ampli-
tude was proposed by Schaette and McAlpine (2011). Since then,
this term has also sometimes been used within the literature to
refer to auditory dysfunction that is speculated to accompany the
cochlear synaptopathy and accompanying decreased Wave I amp-
litude (Kujawa & Liberman, 2015).

Taken together, after noise exposure resulting in TTS, but no
OHC loss and no PTS, permanent decreases in the number of
synaptic connections between the IHCs and auditory nerve fibres
resulting in decreased Wave I amplitude can be substantive, but
will go undetected and unreported based on conventional report-
ing that is limited to threshold measures and counts of IHCs
and OHCs. Fundamental to the interpretation of hidden hearing
loss, i.e. a cochlear synaptopathy-driven functional deficit, the
test battery must document that the middle ear conduction sys-
tem is intact, typically accomplished using tympanometry, and
there must be documentation that the OHC population has not
been compromised, in order to attribute any observed functional
deficits to the inferred “hidden” synapse loss.

Effects of noise on cochlear hair cells

Noise exposure can result in stereocilia damage or, in more severe
cases, mechanical trauma to the OHCs or the organ of Corti itself
(Henderson, Hamernik, and Sitler 1974; Henderson and
Hamernik 1986; Wang, Hirose, and Liberman 2002). Noise-
induced damage to the OHCs compromises threshold sensitivity;
the electromotile action of the OHC population provides up to
40dB of gain and the OHCs are therefore labelled the “cochlear
amplifier” (Dallos and Evans 1995; Dallos, Zheng, and Cheatham
2006; Ashmore et al. 2010). If the OHCs are damaged, the loss of
the cochlear amplifier will result in a reduced input to the IHCs.
The IHCs have typically been documented to be less vulnerable to
noise injury than the OHCs (Wang, Hirose, and Liberman 2002;

Chen and Fechter 2003); however, Mulders, Chin and Robertson
(2018) recently argued that noise-induced injury to the IHCs plays
a significant role in the Wave I amplitude reductions that are
labelled hidden hearing loss. OHC loss shows only a moderate cor-
relation with PTS, at least in part because OHCs may be present
(living) but impaired (Chen and Fechter 2003).

With respect to monitoring noise-induced damage to the
OHCs, a common strategy for monitoring OHC function is the
use of DPOAE tests. Not only are DPOAEs well known for use
identifying OHC damage due to cisplatin or aminoglycoside
treatments (for recent review, see Campbell and Le Prell 2018),
DPOAEs have shown high sensitivity to noise injury with deficits
in DPOAE amplitude reportedly associated with occupational
noise (Seixas et al. 2004; Korres et al. 2009; Seixas et al. 2012;
Boger, Sampaio, and Oliveira 2017), recreational music player
use (Santaolalla Montoya et al. 2008; Lee et al. 2014) and military
service (de Souza Chelminski Barreto et al. 2011). Observations
that noise-induced deficits in DPOAE and click-evoked otoa-
coustic emission (CEOAE) thresholds significantly exceeded
noise-induced TTS have been used to suggest that OAEs are a
more sensitive measure of noise injury than the audiogram itself
(Attias and Bresloff 1996). DPOAE amplitude decreases may
provide an early warning of pre-clinical damage and increased
vulnerability for hearing loss (Lapsley Miller et al. 2006; Lapsley
Miller and Marshall 2007). Despite their strengths and utility, it
must be remembered that normal DPOAEs can be recorded
even in the presence of OHC damage, and thus, normal
DPOAEs do not necessarily imply the OHC population is not
damaged (Subramaniam et al. 1994a, 1994b; Chen and Fechter
2003). Taken together, normal OAEs do not confirm the absence
of OHC pathology, but they provide reasonable assurance that
the cochlear amplifier is relatively intact.

Documentation of DPOAE amplitude as a measure of OHC
integrity may be less important for inferences regarding cochlear
synaptopathy if neural function is measured using higher level
sound stimuli. At higher sound pressure levels, the OHCs do not
provide any significant cochlear gain. Studies by Ruggero and
Rich (1991), Fridberger et al. (2002), and Earl and Chertoff
(2012) provide evidence that compromised OHC function does
not significantly decrease the magnitude of auditory nerve output
in response to high-intensity stimuli (for additional discussion,
see Adelman, Weinberger, and Sohmer 2010). Thus, studies
including high-level stimuli sufficient to “bypass” the influence
of OHCs are less reliant on use of DPOAE data to confirm nor-
mal OHC function when attempting to make inferences about
the integrity of the auditory nerve pathway. In essence, if the
stimulus level used for ABR recordings is sufficiently intense to
stimulate THCs and trigger neural firing directly, the interpret-
ation of changes in ABR amplitude may be less complicated.
However, if higher-level sound is used as a stimulus, the medial
olivochlear (MOC) efferent reflex (Miller et al. 2005; Sun 2008;
Verschooten et al. 2017) and the middle ear reflex (Sun 2008)
may be stimulated, either of which can have the net effect of
reducing sound-driven auditory nerve discharge.

Pathological neural consequences of noise that
induces TTS

Detailed reviews of the literature on noise exposure, cochlear
synaptopathy and permanent auditory nerve pathology clearly
describe the potential for permanent pathology in the ascending
neural pathway in the absence of noise-induced PTS (for reviews,
see Plack, Barker and Prendergast 2014; Kujawa and Liberman



2015; Hickox et al. 2017; Kobel et al. 2017; Liberman 2017;
Liberman and Kujawa 2017; Barbee et al. 2018; Le Prell 2018).
Whereas loss of cochlear OHCs results in poorer sound detection
thresholds (hearing loss) (for review see Saunders et al. 1991), a
significant proportion of the IHC population can be lost without
comprising thresholds (Lobarinas, Salvi and Ding 2013). As
noted above, pathology that is limited to the IHCs, their synaptic
connections to the auditory nerve dendrites and the auditory
nerve itself have therefore been described as “hidden” as these
pathologies can occur in the absence of PTS (see Schaette and
McAlpine 2011). In rodent models, noise exposure that induces
a TTS of 40dB or greater (measured the day after the noise
exposure) has resulted in permanent auditory nerve injury in
multiple studies, even though complete post-noise threshold
recovery was observed.

Noise-induced cochlear synaptopathy has been observed
across diverse animal models including mice (Kujawa and
Liberman 2009; Wang and Ren 2012; Fernandez et al. 2015),
guinea pigs (Lin et al. 2011; Furman, Kujawa, and Liberman
2013), chinchillas (Hickman et al. 2018), rats (Altschuler et al.
2018) and nonhuman primates (Valero et al. 2017). These expo-
sures typically employ a short-term noise exposure, with rodent
subjects typically exposed to octave band noise for two-hours.
Across rodents, the two-hour duration sound exposure level
needed to induce cochlear synaptopathy has varied, with higher
sound levels needed in the guinea pig (106 dB SPL, see Lin et al.
2011) and rat (109dB SPL, see Lobarinas, Spankovich, and Le
Prell 2017) than in the mouse (100dB SPL, see Kujawa and
Liberman, 2009; Fernandez et al. 2015). In the absence of noise
exposure, age-related cochlear synaptopathy is also reliably
observed. This age-related pathology has been reported in mice
(Sergeyenko et al. 2013), rats (Mohrle et al. 2016) and gerbils
(Viana et al. 2015; Gleich, Semmler, and Strutz 2016). One sig-
nificant issue that has been identified long after recovery from
an earlier TTS is the long-term slowly progressive expansion of
synapse loss from the immediately damaged higher-frequency
regions (at 22.6 and 32kHz in the mouse cochlea) to the previ-
ously intact lower-frequency cochlear regions (at 5.6 and
11.3kHz in the mouse cochlea) (Fernandez et al. 2015). A
second significant issue is the slowly progressive loss of spiral
ganglion neurons, with the total observed loss exceeding the
otherwise expected age-related decline in spiral ganglion num-
bers (Kujawa and Liberman, 2006; Lin et al. 2011). Multiple
recent reviews of these pathological consequences are available
(Kujawa and Liberman 2015; Liberman and Kujawa, 2017),
including a recent review of the extent to which permanent audi-
tory nerve pathology can occur in parallel with cochlear hair cell
pathology (Hickox et al. 2017).

Based on the above results, it has been suggested that the
risks of TTS in humans exposed to intense sound may be greater
than previously assumed (Kujawa and Liberman, 2006; Kujawa
and Liberman, 2009). In addition, there has been fairly broad
speculation that hidden neuropathic damage (immediate cochlear
synaptopathy followed by slow spiral ganglion cell loss) could
explain the disproportionate difficulties experienced by some
individuals processing speech in noisy environments (Kujawa
and Liberman, 2009; Lin et al. 2011; Makary et al. 2011). The
relationships between TTS,, TTS recovery, auditory pathology
and supra-threshold functional deficits are a topic of significant
interest to scientists and clinicians, and there are concerns about
the implications for occupational injury to workers who may be
at risk for TTS (for additional discussion, see Kujawa and
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Liberman 2009; Kujawa 2014; Kujawa and Liberman 2015;
Liberman and Kujawa 2017).

Audiometric monitoring for occupational noise-induced
hearing loss

The federal noise regulations in the United States [i.e. 29 CFR
1910.95 enforced by the US Occupational Safety and Health
Administration (OSHA)] and national regulations in other coun-
tries include annual audiometric testing requirements so that the
development of NIHL can be detected and additional hearing
loss prevented. Even if a worker wears a hearing protection
device (HPD; typically earplugs or earmuffs), it is possible that
annual audiometric testing will reflect temporary changes in
hearing. Thus, if a new hearing loss is detected (relative to the
baseline audiogram on file for that worker), there will be typic-
ally be some effort to complete a retest either immediately or
after a noise-free interval to confirm the repeatability and/or per-
manence of the change.

Per 29 CFR 1904.10, hearing loss is required to be reported as
an occupational noise injury when 1) a standard threshold shift
(STS) is documented during annual audiometric testing (with
STS defined as a permanent threshold change averaging 10dB or
more at the frequencies of 2, 3 and 4kHz), 2) the average thresh-
old at the 2, 3 and 4kHz frequencies is 25dB HL or poorer, and
3) exposure in the workplace may have caused or contributed to
the hearing loss (OSHA 1983). Other agencies have provided dif-
ferent guidance in an effort to support earlier detection of NIHL.
For example, the US National Institute on Occupational Safety
and Health (NIOSH) advocates that a “significant threshold
shift” be defined as a 15-dB threshold shift at 0.5, 1, 2, 3, 4 or
6kHz, with an immediate retest used to confirm that the
observed shift is not a function of test-retest reliability (NIOSH
1998). With earlier detection, earlier intervention is possible,
with the goal of minimising additional hearing loss.

Although the OSHA regulations do not require testing at
8kHz or above, poorer high-frequency hearing has been reported
in workers exposed to occupational noise. Deficits have been
reported within the extended high-frequency (EHF) range of
10kHz and above in workers exposed to occupational noise
(Hallmo, Borchgrevink, and Mair 1995; Korres et al. 2008; Riga
et al. 2010; Mehrparvar et al. 2014), personal audio system device
users (Le Prell et al. 2013; Sulaiman, Husain, and Seluakumaran
2015; Kumar et al. 2017), those with a history of musical training
(Schmidt et al. 1994; Gongalves et al. 2013; Liberman et al.
2016), frequent concert goers (Grose, Buss, and Hall 2017), those
with acoustic trauma during military service (Balatsouras,
Homsioglou, and Danielidis 2005; Buchler, Kompis, and Hotz
2012) and individuals with higher lifetime noise exposure
(Prendergast et al. 2017a; Yeend et al. 2017). NIOSH recom-
mends testing through 8kHz. Inclusion of EHF frequencies
above 8kHz in monitoring programmes would require careful
consideration of the effects of age at EHF frequencies, as these
are significant (Stelmachowicz et al. 1989).

Although occupational noise reporting requirements are
largely intended to capture the rate of new PTS injuries at the 2,
3 and 4kHz frequencies (i.e. hearing loss meeting STS and other
criteria laid out in 29 CFR 1904.10), there have also been efforts
to understand and perhaps even regulate, noise injury based on
TTS. For example, the Committee on Hearing, Bioacoustics, and
Biomechanics (CHABA) proposed a limit for exposure to
impulse noise (gunfire) based on generation of a specific amount
of TTS, with the maximum allowable TTS defined as 10dB at
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1kHz and below, 15dB at 2kHz, or 20dB at 3kHz and above
(CHABA 1968, 1992). It has been suggested that these strategies
have the potential for application to occupational noise as well.
Specifically, Kryter et al. (1966) proposed that TTS, might serve
as a measure “that will correlate with the ability of a single-day’s
exposure to produce a noise-induced, permanent threshold shift
(NIPTS), if it is repeated on a near-daily basis, over a course of
about ten years”.

There are continued efforts to understand the extent to which
TTS is predictive for a later PTS (Fritze 1981; Moshammer et al.
2015; Chan, Ho, and Ryan 2016). One potential application of
this work is the screening of workers for TTS vulnerability to
identify those at increased risk of PTS; this was suggested by
Moshammer et al. (2015) based on their observation that work-
ers with a larger TTS, as measured at least 10 min after a stand-
ardised noise exposure, also developed greater PTS during long-
term follow-up (average follow-up time was 13 years, with testing
at 3-5-year intervals). Taken together, although the cumulative
effect of repeated daily occupational noise exposure on the audi-
tory nerve currently remains unknown, it is clear that noise-
induced cochlear synaptopathy has been observed in the absence
of PTS in multiple animal models. If cochlear synaptopathy was
to develop as a consequence of exposure to occupational noise,
neither the threshold-based STS strategies mandated by OSHA
nor the “red flag” early detection strategies recommended by
NIOSH would be sensitive to IHC injury, cochlear synaptopathy
or other hidden auditory nerve injuries (for additional discus-
sion, see Kujawa and Liberman, 2009; Kujawa 2014; Kujawa and
Liberman 2015; Liberman and Kujawa 2017). The translational
relevance of cochlear synaptopathy to noise-exposed workers is a
topic that remains actively under discussion (see Dobie and
Humes 2017; Murphy and Le Prell 2017). While much of the lit-
erature on occupational NIHL is limited to threshold deficits, a
number of studies include descriptions of ABR waveforms, per-
haps providing an opportunity for potential insights into under-
lying noise-induced pathology.

Non-pathological TTS exposures

In studies in which rodent subjects have had a smaller TTS, i.e,
a maximum of 20-30-dB TTS 24-hour post-noise, measurable
synaptic pathology generally has not been documented (Hickox
and Liberman, 2014; Fernandez et al. 2015; Jensen et al. 2015).
Although it is appealing to infer that shorter or less intense
exposures that result in these smaller TTS deficits are “safe”
based on the lack of pathology in rodent models, the rodent
studies have not been designed to allow broad conclusions
regarding safety as they typically include only a single exposure.
Because human exposures are likely to be repeated, from a prac-
tical perspective, an exposure is only “safe” if it can be repeated
without injury emerging after subsequent exposures.

A small number of studies have combined repeated exposure
paradigms with synapse counts in animal models (Wang and
Ren 2012; Gannouni et al. 2015; Mannstrom, Kirkegaard, and
Ulfendahl 2015). However, none of these repeated exposure
paradigms were designed to provide insight into the effects of
daily exposure to occupational noise over extended periods of
time. Indeed, humans are likely to be exposed to intense sound
repeatedly across their lifespan regardless of whether sound
exposure is occupational, non-occupational or related to military
service. Because the experimental data do not address whether
repeated exposures, each resulting in a small, transient TTS, will
ultimately result in permanent auditory nerve pathology akin to

that associated with a single-larger TTS, the potential risk for
human populations is a topic of interest.

Human cochlear synaptopathy: direct measurements
and inferred pathology

The identification of noise-induced cochlear synaptopathy
requires cochlear histology; thus, there are very few studies in
which cochlear synaptopathy has been confirmed in humans.
There is one report in which progressive age-related cochlear
synaptopathy was suggested based on quantification of synapses
in five human temporal bones from donors ranging in age from
54 to 89years old (Viana et al. 2015). The observation of fewer
synaptic connections in human temporal bones from older
donors complements earlier reports describing age-related
decreases in myelinated nerve fibres. Felder and Schrott-Fischer
(1995), for example, reported an age-related loss of nerve fibres
in nine temporal bones from eight temporal bone donors; this
loss was in addition to the expected hair cell loss that was also
observed. These early observations were extended by Makary
et al. (2011), who documented selective age-related decreases in
human cochlear spiral ganglion cell survival, in the absence of
hair cell loss, in 100 temporal bones. The age-related neural and
synaptic pathologies observed in human temporal bones parallel
systematic observations of age-related cochlear synaptopathy in
mice have not been exposed to noise and do not have other risk
factors for hearing loss (Sergeyenko et al. 2013). The amplitude
of Wave I of the ABR is highly correlated with synapse loss in
mice (Sergeyenko et al. 2013). Thus, it is intriguing that age-
related declines in ABR waveform amplitude in humans are well
known from other human studies without histology components
(Konrad-Martin et al. 2012; Skoe et al. 2015).

Speech-in-noise tests: a role in diagnosis of cochlear
synaptopathy?

The role of IHC loss

The most commonly hypothesised functional effect of noise-
induced neuropathic damage is difficulty understanding speech
in noisy environments (Kujawa and Liberman 2009; Lin et al.
2011; Makary et al. 2011; see also the detailed discussions by
Plack, Barker, and Prendergast 2014; Plack et al. 2016;
Pienkowski 2017). Compelling evidence that selective loss of
IHCs compromises hearing in noise was provided using carbo-
platin-induced lesions of the chinchilla IHC population in com-
bination with a psychophysical tone in noise detection task
(Lobarinas, Salvi, and Ding 2016). Consistent with this, Vinay
and Moore (2007) interpreted elevated thresholds on the thresh-
old equalising noise (specified as dB hearing level) [TEN(HL)]
test as perhaps reflecting the loss of neural synchrony, as their
participants were previously diagnosed with auditory neuropathy.
During the TEN(HL) test, pure-tone targets are presented in
background noise, with the background noise spectrally shaped
to interfere with off-frequency listening (Moore et al. 2000;
Moore, Glasberg, and Stone 2004). In contrast to these observa-
tions, modelling of the effects of synapse loss on basic perceptual
tasks suggests that the effects of 50% loss of synapses would be
barely measurable - for example, a just-noticeable difference of
1dB is modelled to increase to 1.4dB with 50% loss of synapses
(Oxenham 2016). The recent detailed review by Carney (2018)
argues against a direct role for cochlear synaptopathy in the cod-
ing of moderate to high-level speech sounds, pointing instead to



interactions between cochlear gain (by OHCs) and IHC satur-
ation as well as central processing within the brainstem
and midbrain.

The role of OHC loss

Because damage to the OHC population is often observed in par-
allel with neural or synaptic pathologies (for detailed review, see
Hickox et al. 2017), the extent to which speech-in-noise test out-
comes (or more generically, signal-in-noise test outcomes) will
be influenced by OHC loss must be considered in parallel to
considerations of the effects of cochlear synaptopathy.
Measurements of auditory nerve discharge in response to vowel
sounds (in animal models) clearly indicates that impairment of
both the OHCs and the IHCs can contribute to degraded repre-
sentation of speech sounds by the auditory nerve (Bruce, Sachs
and Young 2003). There is also a fairly extensive literature that
suggests OHC damage may directly contribute to speech-in-noise
deficits (see, for example, Leger, Moore and Lorenzi 2012;
Summers et al. 2013; Hoben et al. 2017). Indirectly supporting a
role of the OHCs in perception of speech in noise, the MOC sys-
tem, which modulates the OHC response to sound, may aid
speech perception in noise (Kumar and Vanaja 2004).

Specifically probing the role of the OHCs, Lutman and
Saunders (1992) reported no reliable differences in click-evoked
OAEs when patients with complaints of difficulty understanding
speech in noise (diagnosed as obscure auditory dysfunction)
were compared to matched controls. As noted above, however, it
is possible to obtain normal OAEs even in the presence of OHC
damage, reducing confidence in assumptions that the OHC
population had not been subtly damaged in the patients with
obscure auditory dysfunction. Another possible approach is to
use statistical techniques to account for OAE amplitude. For
example, Ridley et al. (2018) assessed participants with diverse
noise exposure and diverse thresholds using the TEN(HL) test
and reported that deficits detecting tones in noise were greater
than expected after statistically adjusting for the expected effects
of threshold shift and OAE amplitude. Bramhall et al. (2015)
also used statistical techniques to account for multi-variate inter-
actions. They measured speech-in-noise using the Quick
Sentences in Noise (QuickSin) test in addition to measuring the
amplitude of Wave I of the ABR and found reduced ABR Wave
I amplitudes as a function of increasing age. ABR Wave I ampli-
tude was also associated with decreased performance on the
QuickSin, but only in combination with poorer pure-tone thresh-
olds. DPOAE data were not collected and the potential contribu-
tions of OHC loss are thus unknown.

The role of test difficulty

A major factor that must be taken into account in evaluating the
literature for evidence of performance deficits is the specific per-
ceptual task used in each investigation. A wide range of tests are
available (for review and discussion, see Le Prell and Brungart
2016; Le Prell and Lobarinas 2016). Across tests, as the difficulty
increases, performance of the participants decreases, and it is
increasingly likely that subtle deficits will emerge even in normal
hearing listeners when difficult listening tests are used (see
Wilson, McArdle, and Smith 2007b).

One of the tests specifically targeted to children is the
Bamford-Kowal-Bench Speech-in-Noise (BKB-SIN) test, in which
the BKB sentence lists (Bench, Kowal, and Bambford 1979) are
presented against four-talker babble with SNRs ranging from
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21dB SNR (easiest) to —-6dB SNR (hardest) (for review, see
Etymotic Research 2005; Schafer 2010). Sentence levels systemat-
ically decrease from 96 dB SPL to 90dB SPL, and the background
babble level increases by 3dB per sentence, making the test pro-
gressively harder with each additional sentence. A second com-
monly used sentence-based test is the Hearing in Noise Test
(HINT), which also uses the BKB sentence-based speech materi-
als, but with sentences presented at various sound levels in a
background of spectrally matched masking noise presented at a
fixed level of 72 dBA (Nilsson, Soli, and Sullivan 1994;
Vermiglio 2008). The QuickSin is also a sentence-based test,
with sentences presented at 70-dB HL, while the level of the four
talker babble background is adjusted from 15-dB SNR (easiest)
to 0-dB SNR (hardest) (Killion et al. 2004; McArdle and Wilson
2006). Finally, there are word-based tests, such as the Word in
Noise (WIN) test. During testing with the WIN, NU-6 words are
presented in multiple talker babble, with a female speaker against
a background babble that includes six competing female voices.
The babble is set at 80dB SPL, and the target word levels
decrease from 104 dB SPL (24 dB SNR) to 80dB SPL (0 dB SNR)
in 4-dB decrements, with five words per condition (Wilson,
Carnell, and Cleghorn 2007a; Wilson and McArdle 2007). There
are significant correlations with respect to performance across
tests (Wilson, McArdle, and Smith 2007b). Although highly cor-
related, listeners typically do better on the BKB-SIN and the
HINT (with sentences providing context) than the QuickSin or
the WIN (which do not provide context from sentences)
(Wilson, McArdle, and Smith 2007b). A suggested benefit of the
WIN over the QuickSin is the reduced reliance on memory, cog-
nition or other linguistic skills, as the participant repeats only
the target word, rather than working to recall multiple words per
sentence (Wilson, McArdle, and Smith 2007b).

Summary

The data generally suggest that damage to the OHCs and dam-
age to the IHCs both have the potential to compromise speech-
in-noise performance. To attribute deficits to cochlear synaptop-
athy, it is therefore necessary to exclude potential OHC path-
ology that could contribute to deficits on the speech-in-noise
test, or otherwise correct for OHC dysfunction using statistical
techniques. Caution is warranted as experimenters should assure
deficits are related to poorer perceptual ability and not memory
or cognition deficits. Taken together, the utility of speech-in-
noise deficits as part of the differential diagnosis of the site of
lesion within the organ of Corti remains questionable. As stated
by Liberman and Kujawa (2017), this area of research is in its
infancy, but is crucial to the translation of findings to humans.

Purpose of the current review

As outlined above, there is significant interest in the potential
strategies for diagnosis of cochlear synaptopathy in human
patients, and a need to define the risk factors for cochlear syn-
aptopathy in humans. The issue of noise-induced cochlear syn-
aptopathy has been discussed in the context of a public health
issue, based on suggestions that much of the population is at
risk given the prevalence of many common non-occupational
leisure noise exposures (Jensen et al. 2015; Liberman 2015). The
issue of noise-induced cochlear synaptopathy has also been dis-
cussed as a potential occupational health issue, in that the cur-
rent noise regulations define a threshold-based monitoring
approach that will not be sensitive for diagnosing cochlear
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synaptopathy (Kujawa and Liberman 2009; Kujawa and
Liberman 2015; Liberman and Kujawa 2017). Multiple research
laboratories around the world have therefore initiated efforts to
identify evidence that is consistent with cochlear synaptopathy
and any accompanying supra-threshold deficits, with different
electrophysiological tests and different functional tasks being
used across laboratories and scientific teams (see data tables,
below). The purpose of the summary tables provided in this
review is to provide detailed information on study protocols and
results within four specific topic areas: 1) the relationship
between occupational noise exposure and ABR metrics, 2) the
relationship between non-occupational noise exposure and ABR
metrics, 3) the relationship between noise exposure history and
speech-in-noise performance and 4) the relationship between
noise exposure, TTS and ABR metrics.

Methods

Multiple PubMed literature searches were completed using
diverse combinations of search terms including for example ABR
and occupational noise, evoked potential and occupational noise,
ABR and noise-induced hearing loss, evoked potential and
noise-induced hearing loss, hidden hearing loss, cochlea and syn-
aptopathy, noise-induced hearing loss and speech in noise, occu-
pational noise and speech in noise, temporary threshold shift
and hearing, temporary threshold shift and ABR, temporary
threshold shift and evoked potential, temporary threshold shift
and speech in noise, etc. PubMed is a free resource, developed
and maintained by the National Center for Biotechnology
Information at the National Library of Medicine. With more
than 28 million citations available across thousands of journals,
it provides a comprehensive search tool for articles dated back to
at least 1966, with less consistent inclusion of references prior to
that time. Although chapters, proceedings and government
reports will not be identified via PubMed, peer-reviewed litera-
ture can be readily identified.

The author reviewed the resulting article title lists for rele-
vance and carefully read abstracts of potentially relevant articles
to determine whether the study included human participants
with a history of noise exposure and then to confirm that the
design included either sound-evoked auditory nerve response
measurement (ABR or CAP) or a speech-in-noise test. All
articles that appeared to be relevant were downloaded from the
University of Texas at Dallas (UTD) library or requested through
the UTD Inter-Library Loan service if the full-text was not avail-
able through the UTD library. Articles written in any language
other than English were excluded from the full-text review. In
addition to the PubMed search strategy, all full-text articles were
reviewed for references to other published data relevant to the
current review. Initial PubMed searches were completed in May
of 2018; an additional search for new publications was completed
in September 2018.

Noise exposure history was only grossly defined in the major-
ity of the studies identified; in those cases where sound exposure
levels or duration were provided by the authors, this information
has been included in the data table. Although it would be helpful
if noise exposures were characterised as short term/long term,
continuous/intermittent/impulsive, single/repeated, with sound
levels and sound spectra provided, very little information was
provided in any of the retrieved studies discussed below.
Variability in the accuracy of the noise exposure categorizations,
including the accuracy of recall during the collection of self-re-
ported noise exposure data, may contribute to differences in

results across studies. Variable use of HPDs over the course of
an occupational career, or across non-occupational events and
activities, has the potential to influence deficits; reporting of
HPD use is sporadic across reports, and even in those cases
where HPD use was reported, it is not known if HPDs were
used correctly or consistently.

Results

Relationship between occupational noise exposure and
ABR metrics

A summary of the studies reporting ABR data for diverse noise-
exposed worker populations is provided in Table 1. The most
common test paradigm included the placement of electrodes on
the forehead and mastoid and use of alternating polarity click
stimuli. Stimulus presentation rates were variable, ranging from
10.3/sec to 71/sec. For the subset of studies reporting the total
number of presentations averaged into the final response, 1024
and 2048 were most commonly reported. Only a small number
of studies reported replication of the waveforms to assure repeat-
ability. There was no consistent reporting convention for sound
levels used during testing with five sound level measurement
protocols (dB HL, dB nHL, dB SL, dB peSPL and dB SPL) used
in the 13 reports listed in Table 1. As per Hall (1992, see
Chapter 4: Effect of stimulus factors), the most common conven-
tion within a clinical setting is to report stimulus levels in dB
nHL (dB relative to normal hearing population), but all five
stimulus measurement strategies are appropriate. For typical click
stimulus conditions (0.1 msec click presented at rate of 10-20/
sec), a 0dB nHL click would correspond to click levels of 36.4-
dB peak SPL and 29.9dB SPL (Hall 1992). If those conversion
factors are applied to the sound levels listed in Table 1, then
sound levels across studies were on the order of 70dB nHL
(Almadori et al. 1988; Chen, Chiang, and Chen 1992; Donaldson
and Ruth, 1996; Thakur, Anand, and Banerjee 2004), 75dB nHL
(Attias and Pratt, 1984; Konrad-Martin et al. 2012), 80 dB nHL
(Samelli et al. 2012; Karawani et al. 2015; Pushpalatha and
Konadath, 2016) or 90 dB nHL (Attias et al. 1996; Noorhassim,
Kaga, and Nishimura 1996; Xu et al. 1998).

Across studies, there were multiple reports that the latency
for Waves I, III, and/or V were delayed in workers exposed to
noise, with a smaller number of studies measuring or reporting
the amplitude for Waves I, IIT or V. One exception to this pat-
tern of results was observed for the professional musicians
assessed by Samelli et al. (2012), with no significant deficits in
ABR Waves I, III or V detected in professional musicians with
or without hearing loss. A small number of additional studies
assessed ABR metrics in military populations with a significant
noise exposure history, but the effects of noise could not be
readily extracted. First, a study by Attias et al. (1996), assessing
the relationships between ABR amplitude and tinnitus, did not
include a noise-free control group. Second, a study by Konrad-
Martin et al. (2012), assessing the relationships between ABR
amplitude and aging, reported that noise exposure was included
in the statistical model, but the effects of noise were not specific-
ally reported or discussed.

Although prolonged ABR waveform latencies were commonly
reported across studies, most of these studies also reported that
the noise-exposed worker cohorts had significant hearing loss.
The presence of a permanent NIHL suggests OHC pathology
accompanied any neuropathic change that might potentially be
inferred from the ABR latency increases and other atypical ABR
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Speech in
Noise Testing
Not included

ABR amplitude and latency
Clicks: Wave-IIl amplitude smaller and

latency delayed, Wave-V amplitude

reduced.
delayed; wave-V amplitude decreased

and CE-chirps; 11.1/sec, 80 dB HL

responses (ASSR) were able to
Chirps: Waves |, Ill, V latencies

be obtained.
Forehead and mastoid electrodes; clicks

OAE
amplitude
Not included

Hearing Threshold
All hearing thresholds
within 25dB HL

5-10 years, or >10 years

Noise Exposure/Noise Survey
>85dB(A) for 0-5 years,

Occupational noise exposure

Participants
years, exposed to occupa-
tional noise; 20 control

20M individuals ages 20-45

Konadath (2016)

Table 1. Continued.
Pushpalatha and

Author
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results listed in Table 1. Decreased DPOAE amplitude is well
documented in noise-exposed populations (Seixas et al., 2004;
Korres et al. 2009; Seixas et al. 2012; Boger, Sampaio, and
Oliveira 2017). As seen in Table 1, many of the studies employ-
ing ABR metrics to assess potential effects of occupational noise
exposures did not include the parallel collection of DPOAE data,
complicating the interpretation of the observed changes in ABR
amplitude and latency.

The clinical utility of DPOAEs was not generally recognised
prior to the 1990s (Lonsbury-Martin and Martin, 1990), and
thus, it is not surprising that DPOAEs were not conducted at
least in the earlier studies listed within Table 1. Nonetheless,
with stimulus levels of 70-100dB nHL (i.e., approx 100-130dB
SPL), the studies listed in Table 1 presumably used stimuli that
were sufficiently intense to stimulate IHCs and trigger neural fir-
ing directly via the passive mechanics of the basilar membrane.
At these sound levels, the passive mechanics of the cochlea dom-
inate after the active process has saturated (see models and dis-
cussion in Johnstone, Patuzzi, and Yates 1986), and thus one
might speculate that neural pathology contributed to delayed
ABR latencies and reduced ABR amplitudes, even if permanent
threshold deficits were caused by undocumented OHC loss.
Although speculative, this interpretation is consistent with the
conclusion by Hickox et al. (2017) that OHC loss and cochlear
synaptopathy are likely to occur in parallel. Given this interpret-
ation of potential neural pathology in workers exposed to occu-
pational noise, pre-clinical research in animal models should
directly assess the potential for synapse loss with lower level
repeated exposures modelled after occupational noise.
Longitudinal studies of workers would also be helpful in deter-
mining effects of noise on the auditory nerve in workers exposed
to occupational noise. Variation in vulnerability to NIHL is con-
siderable in humans (see for example the 10th versus the 90th
percentiles in International Standard Organization 2013) and
variability is also well documented in animal models (Maison
and Liberman 2000).

Relationship between non-occupational noise exposure and
ABR metrics

Table 2 summarises methods and results from studies assessing
potential cochlear synaptopathy in human participants using
ABR Wave I amplitude as a metric. Whereas studies of cochlear
synaptopathy in rodent models have typically relied on short-
term noise exposure paradigms that induce a large TTS lasting at
least 24 hours, many of the sounds that human populations are
commonly exposed to are likely to induce a smaller and shorter
duration TTS. Changes in hearing in those attending concerts or
clubs are commonly on the order of 10 dB immediately after the
event (Opperman et al. 2006; Derebery et al. 2012; Ramakers
et al. 2016). Moreover, threshold recovery is likely to be com-
plete within 24 hours of the event for most attendees (Grinn
et al. 2017). Concerns about the hazards of the repetition of such
exposure, in combination with other intense sound encountered
on a regular basis, led Liberman (2015) to suggest that the coch-
lear synaptopathy observed in animals “raises questions about
the risks of routine exposure to loud music at concerts and clubs
and via personal listening devices”. Similarly, Jensen et al. (2015)
pointed to the increasing sales of portable listening devices and
similarly suggested a population of at-risk adolescents based on
the use of such devices. As per Table 2, this has resulted in a
number of relatively more recent investigations focussing on
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participants with less noise exposure, better hearing thresholds
and intact DPOAE function.

Consistent with the results summarised in Table 1, the most
common test paradigm involves placement of electrodes on the
forehead and mastoid and use of alternating polarity click stim-
uli, although the use of foil-wrapped “TipTrode” ear canal elec-
trodes is increasingly common and a number of studies now
include tone bursts in addition to click stimuli. The total number
of presentations averaged into the final response was highly vari-
able across studies, with stimulus averaging ranging from 500
(Grinn et al. 2017) to 12,500 (Valderrama et al. 2018). As dis-
cussed by Valderrama et al. (2018), averaging across larger num-
bers of stimulus presentations improves data quality, with
improved signal to noise ratios (SNR) for waveforms. According
to Hall (1992), the most robust improvement in SNR is obtained
over the initial 1000 sweeps (from the start of averaging to the
completion of 1000 sweeps), with lessor improvement from 1000
to 2000 sweeps. However, near threshold, as many as 4000
sweeps may be necessary to accurately distinguish small neural
responses from the noise floor (for discussion see Chapter 5,
Effect of acquisition factors, in Hall 1992).

Stimulus rates were also highly variable. Although most stud-
ies used either 11/sec or 27/sec rates, Skoe and Tufts (2018)
assessed responses with stimulus presentation rates ranging from
3.4/sec to 91.24/sec. For click rates of 3.1 to 21.1/sec, AP ampli-
tude and latency should be relatively constant, but amplitude
progressively decreases and latency progressively increases as
click rates increase from 31.1 to 91.1/sec (Hall 1992; for illustra-
tion of these changes, see his Figure 4-21). Effects of click rate
on ABR Wave I amplitude and latency are similar; responses are
generally equivalent when click rates are below 20/sec but as
click rates increase, amplitude and latency progressively change
for Waves I, III and V (Hall, 1992; for illustration of these
changes, see his Figure 4-22).

As shown in Table 2, there have been mixed results across
studies assessing potential relationships between non-occupa-
tional noise exposure and ABR Wave I amplitude. Several studies
assessing this phenomena obtained results that were consistent
with synaptic and/or auditory nerve pathology based on observa-
tions of decreased ABR Wave I amplitude as a function of noise
exposure (Stamper and Johnson, 2015a; Bramhall et al. 2017;
Valderrama et al. 2018). The decreased Wave I amplitudes
observed by Stamper and Johnson (2015a) were generally attrib-
uted to recreational noise, which was estimated based on self-
reported exposure in the past 12-months. The decreased Wave I
amplitudes observed by Valderrama et al. (2018) were observed
in association with increasing lifetime noise exposure, which
accrues both as a function of leisure and work-related activities,
although the relationship was no longer statistically significant if
a single outlier was removed from the analysis. In contrast, the
decreased Wave I amplitudes reported by Bramhall et al. (2017)
were generally attributed to recreational firearm use (civilians) or
service-related firearm use (military personnel), with participants
distributed into four discrete groups based on use of firearms
and exposure to other intense sound.

In addition to reports of associations between Wave I ampli-
tude and historic noise exposure, data expressed as normalised
evoked potential metrics (such as the SP/AP ratio, and ABR
Wave V/I ratio) have been interpreted as reflecting potential
noise-induced cochlear synaptopathy and/or auditory nerve path-
ology (Liberman et al. 2016; Grose, Buss, and Hall 2017). The
decreased SP/AP ratios observed by Liberman et al. (2016) were
generally attributed to musical rehearsals and performance

associated with enrolment in a music conservatory, whereas the
decreased Wave V/I ratios reported by Grose, Buss, and Hall
(2017) were specifically attributed to frequent concert attendance
(which was one component of the enrolment criteria). In another
recent study with normal hearing participants, the latency of the
ABR waveforms was delayed even though amplitude did not
appear to have been affected by previous noise exposure (Skoe
and Tufts 2018); participants in this investigation were distrib-
uted within low-noise and high-noise groups based on the results
of one-week of body worn dosimetry data collection.

In contrast to these positive results, a number of other studies
have not found evidence of decreased ABR Wave I amplitude or
changes in latency as a function of either lifetime noise exposure
or the previous 12-month exposure period. In studies completed
by Spankovich et al. (2017), Fulbright et al. (2017), Grinn et al.
(2017) and, most recently, Ridley et al. (2018), noise exposure
was estimated following Stamper and Johnson (2015a), with
noise exposure over the previous 12 months surveyed using the
Noise Exposure Questionnaire (NEQ) and changes from previous
years queried. No relationships between noise exposure and
Wave I amplitude were detected in any of these studies. A com-
prehensive series of studies completed at the University of
Manchester used detailed interview data to calculate a single
comprehensive lifetime noise score (Guest et al. 2017;
Prendergast et al. 2017; Prendergast, Millman et al.,2017b; Guest
et al. 2018; Prendergast et al. 2018). No relationships between
noise exposure and Wave I amplitude were detected in any of
these studies. As part of the comprehensive analysis by
Prendergast et al. (2017a), it was noted that initial observations
suggested that ABR wave V latency increased with increasing
noise exposure (for the 80dB peSPL click) and that frequency
following response (FFR) signal-to-noise ratios decreased as a
function of noise exposure (in males but not females), but nei-
ther of these correlations remained significant after controlling
for the effects of age. Given observations of age-related synaptop-
athy in the absence of noise exposure, it is critical to adjust for
age when samples with a wide age range are recruited. As per
Table 2, most studies have recruited participants in their
20’s-30’s, with a smaller number of studies enrolling participants
in their 40’s or 50’s.

Relationship between noise exposure and speech-in-noise
performance

The most commonly hypothesised functional effect of noise-
induced neuropathic damage is difficulty understanding speech
in noisy environments (Kujawa and Liberman 2009; Lin et al.
2011; Makary et al. 2011; see also the detailed discussions by
Plack, Barker, and Prendergast 2014; Plack et al. 2016; Le Prell
and Clavier 2017; Pienkowski 2017; Le Prell 2018). Table 3 there-
fore includes a summary of studies that have assessed the rela-
tionships between speech-in-noise and noise exposure history.
Although some of these studies included ABR assessments (and
those studies are therefore repeated from Table 2), the collection
of ABR data was not required for inclusion in Table 3. The lit-
erature search strategy for Table 3 was specifically based on
speech-in-noise deficits analysed as a function of noise exposure
history. If other signal-in-noise tests were completed in parallel
with speech-in-noise tests, those results are also listed in Table 3.
However, a systematic search and review of outcomes across all
articles reporting signal-in-noise outcomes were outside the
scope of the current review and studies that included signal-in-
noise tests, but not speech-in-noise tests, are not included here.
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To be included in Table 3, normal (or near normal) hearing
for participants was required. Certainly, there are a number of
studies in which workers with permanent NIHL have poorer
word-in-noise test outcomes (Smoorenburg 1992; Leensen, de
Laat, and Dreschler 2011; Leensen et al. 2011; Jansen et al.
2014). Some of these deficits are related to audibility of the test
signals, although even after correcting for audibility, deficits are
often detected (for discussion, see Le Prell and Brungart 2016).
Table 3 specifically illustrates the various patterns of deficits that
have been reported in worker populations with small (i.e.,
5-10dB) deficits relative to controls (Alvord 1983; Kujala et al.
2004; Kumar, Ameenudin, and Sangamanatha 2012; Hope,
Luxon, and Bamiou 2013), and other populations with nor-
mal hearing.

The studies by Fulbright et al. (2017), Grinn et al. (2017), Le
Prell et al. (2018) and Brambhall, Konrad-Martin, and McMillan
(2018) used the relatively difficult WIN test (described above).
There were no relationships between WIN threshold and noise
exposure history (Fulbright et al. 2017; Grinn et al. 2017; Le Prell
et al. 2018) or WIN threshold and Wave I amplitude (Bramhall,
Konrad-Martin, and McMillan 2018). In the studies by Yeend
et al. (2017) and Valderrama et al. (2018), the Listening in
Spatialized Noise — Sentences High Cue Condition (LiSN-S) was
used. During the LiSN-S test, two-talker masker noise is presented
at 61dB SPL 90 degrees relative to the listener, and the target
speech is delivered at 68dB SPL, 0 degrees relative to the listener.
Neither study reported relationships between LiSN-S performance
and noise history, although Valderrama et al. (2018) did report
that longer ABR interpeak latencies and reduced central gain (less
growth of Wave-V amplitude relative to Wave-I amplitude) was
associated with poorer performance on this test. As part of a com-
prehensive test battery, Yeend et al. (2017) also completed the
National Acoustic Laboratories Dynamic Conversations Test
(NAL-DCT), a temporal fine structure task, the TEN test, and an
amplitude modulation test. There was no evidence that noise
exposure history was associated with auditory processing ability
on any of these tests.

One of the most carefully controlled investigations to date is
that of Guest et al. (2018). They recruited individuals self-report-
ing deficits perceiving speech in noise, verified deficits using the
Coordinate Response Measure (CRM) test and assessed relation-
ships between both self-reported and verified speech-in-noise defi-
cits and ABR Wave-I amplitude, as well as lifetime noise exposure
history, with no statistically significant relationships detected.
During the CRM test, participants must listen for a colour and
number in the presence of 80 dB SPL background noise. Masker
noise is delivered via two speakers each at 60 degrees relative to
the listener, and the target speech is delivered at 0 degrees relative
to the listener, with the level varied in 2-dB increments to deter-
mine threshold. The CRM test was also used by Prendergast,
Millman et al. (2017). No differences were detected on the CRM
test, or a variety of other tests including the digit triplet test, dur-
ing which three spoken digits with varied sound levels are pre-
sented sequentially in background noise at 40 or 80dB SPL.
Frequency difference limens, intensity difference limens, interaural
phase difference discrimination, amplitude modulation detection
thresholds, localisation and musical consonance task were also
assessed, with no statistically significant findings although some
weak trends were noted on some measures.

Grose et al. (2017) used the BKB sentences with the target
words filtered from 1-2kHz or 3000-6000 kHz and correspond-
ing speech-shaped noise with an equivalent spectral envelope as
a masking stimulus. The filtered speech was presented at 60 and
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80dB SPL, and the level of the background babble varied in 2 dB
steps to determine threshold. No differences in performance on
the BKB sentences were detected when those with a history of
frequent concert attendance (defined as at least 25 concerts
within the past year, and at least 40 within the past two years)
were compared to those with minimal concert attendance. Other
psychoacoustic tests completed as part of the study by Grose
et al. (2017) included temporal modulation detection, spectral
modulation detection and sensitivity to interaural phase, with no
relationships with concert attendance detected.

In contrast to these largely negative findings, Liberman et al.
(2016) reported poorer speech-in-noise performance in partici-
pants with more noise exposure using a difficult custom task,
including the identification of NU-6 words at 35 dB HL at an
SNR of 0dB or 5dB, with or without digital time compression
(45% or 65% of original duration), and with 0.3-sec reverber-
ation added. Participants in that study had poorer hearing at fre-
quencies above 8kHz and a larger SP/AP ratio, which was
driven by decreased SP amplitude in the higher-noise partici-
pants (Liberman et al. 2016). Given these results, it seems pos-
sible that studies using the most difficult listening tasks may
show greater sensitivity for detection of the relationships of
interest. For example, the study of deficits on an envelope-proc-
essing task in a group exposed to concert noise revealed poorer
performance in concert-goers than controls, but only when the
tests were conducted at levels below 20 dB SL; there were no def-
icits detected when the listening test was performed at higher
sound sensation levels (Stone, Moore, and Greenish 2008).
Consistent with the hypothesis that only the most difficult tests
will reveal deficits, there was limited evidence for changes in
function on a signal-in-noise test when rats were tested in diffi-
cult listening conditions before TTS was induced and after
thresholds had recovered to baseline (Lobarinas, Spankovich, and
Le Prell 2017). Functional changes were only induced in those
cases in which TTS was robust (40-50dB, 24-hour post-noise),
and listening in noise deficits were only observed at the subset of
frequencies at which a permanent noise-induced decrease in
ABR Wave I amplitude was measured. Moreover, deficits were
measured only in the most difficult SNR conditions.

The studies included in Table 3 include quantitative speech-
in-noise tests; efforts to assess self-reported difficulty hearing in
noise have also been used, both in an effort to understand the
prevalence of this clinical complaint (Gilliver et al. 2017) and in
efforts to recruit participant populations with deficits (Guest
et al. 2018). Statistically significant associations between exposure
to noise and self-reported hearing difficulty were detected in a
large epidemiological analysis, suggesting potential utility for
qualitative metrics (Spankovich et al. 2018). One survey that has
been used to explore potential relationships between ABR Wave
I amplitude and perceived difficulties in noise is the Speech,
Spatial, and Qualities of Hearing Scale (SSQ), developed by
Gatehouse and Noble (2004) and used by Yeend et al. (2017)
and Prendergast, Millman et al. (2017). The SSQ qualitatively
assesses perceived hearing difficulty in settings ranging from
ideal listening conditions (one-on-one conversation in quiet lis-
tening conditions) to difficult listening conditions (group conver-
sations in noisy environments). Neither Yeend et al. (2017) nor
Prendergast, Millman et al. (2017) found statistically significant
relationships between lifetime noise exposure and overall SSQ
scores. Efforts to validate self-reported difficulty using the SSQ
against quantitative speech-in-noise test measures have had lim-
ited success (Banh, Singh, and Pichora-Fuller 2012; Fredriksson
et al. 2016). Taken together, at this time, there is no “gold
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standard” for either qualitative speech-in-noise surveys or quan-
titative speech-in-noise testing (for discussion, see Le Prell and
Lobarinas 2015; Le Prell and Brungart 2016; Le Prell and Clavier
2017; Le Prell 2018).

Relationship between short-term noise exposure resulting in
TTS and ABR amplitude change

In contrast to the studies described in Tables 1-3, in which noise
exposure was assessed retrospectively, creating the opportunity for
errors in subject recall to confound results, there are a small num-
ber of studies in which temporary changes in ABR Wave-I ampli-
tude have been documented in humans after controlled noise
exposures. These studies are described in Table 4. Unfortunately,
there have been virtually no efforts to document changes in OHC
function using OAEs in these TTS studies (with the exception of
Grinn et al. 2017, who found no reliable deficits in either OAE or
ABR-Wave-I amplitude at the one-day post-noise test), preventing
any insight into whether compromised OHC function contributed
to the observed changes in sound-evoked ABR. Similarly, there
has been virtually no effort to identify potential supra-threshold
deficits in any of these TTS studies; supra-threshold deficits could
include tinnitus, hyperacusis, listening in noise deficits, temporal
processing deficits, localisation errors or other auditory processing
deficits. Because cochlear synaptopathy, when observed in ani-
mals, is both immediate and permanent, it seems unlikely that
any of the studies listed in Table 4 provide evidence of a tempor-
ary cochlear synaptopathy, as all changes in evoked potential met-
rics fully recovered. Temporary injury to the OHCs during the
period of post-noise deficits is the more parsimonious interpret-
ation based on well-documented recovery of the OHC population
after mild or moderate noise exposures.

The data from Lichtenhan and Chertoff (2008) are particu-
larly notable here given the unique design of their study (i.e.
experimentally controlled/standardised noise bandwidth to
induce TTS in humans) and their detailed description of noise-
induced changes in the sound-evoked compound action potential
(CAP). Here, the CAP provided a measurement of the sound-
evoked auditory nerve response using tympanic electrodes rather
than the more distal electrode placements used during ABR tests.
Lichtenhan and Chertoff (2008) reported that CAP amplitude in
response to high-level sound stimuli was less impacted by TTS
than when induced by lower-level sound stimuli. They inferred
that at the lower stimulus levels, at which healthy OHCs ampli-
fied the cochlear response prior to noise exposure, post-noise
CAP deficits were potentially a consequence of OHC trauma. In
contrast, for CAP responses to the higher stimulus levels outside
the range at which cochlear amplification occurs, noise-induced
CAP deficits were not observed; post-noise CAP amplitude was
equivalent to pre-noise baseline measures at the higher sound
levels. Level-dependent analyses such as this are potentially help-
ful in distinguishing potential OHC pathology from potential
IHC, synapse or auditory nerve pathology.

Discussion

Relationships between occupational noise and ABR metrics
(Table 1)

The studies listed in Table 1 clearly demonstrate that deficits in
the amplitude and latency of ABR Wave I have been detected in
a variety of studies enrolling workers exposed to occupational
noise as participants. The lack of DPOAE data precludes the

distinguishing of effects of OHC loss and cochlear synaptopathy
or progressive loss of spiral ganglion cells. However, detection of
deficits at higher stimulus levels, at which the passive mechanics
of the cochlea dominate after the active process has saturated,
allows speculation that neural pathology contributed to delayed
ABR latencies and reduced ABR amplitudes, even if permanent
threshold deficits were caused by undocumented OHC loss.
There is an urgent need for research in animal models using
exposures that model occupational noise injury and assess the
potential for synapse loss with lower-level repeated exposures.
Within subjects, ABR waveforms are highly reliable (Grinn et al.
2017; Prendergast et al. 2018), and longitudinal studies of work-
ers are needed.

Relationships between non-occupational noise and ABR
metrics (Table 2)

Table 2 documents a small number of studies that have revealed
associations between noise exposure and deficits in the amplitude
and latency of ABR Wave I (Stamper and Johnson, 2015b;
Brambhall et al. 2017; Valderrama et al. 2018) or other related met-
rics (Liberman 2015; Grose, Buss and Hall 2017). However, a
number of studies treating noise exposure as a continuous vari-
able, rather than dichotomising subjects into groups, failed to find
any relationships between noise history and Wave I amplitude
(Fulbright et al. 2017; Grinn et al. 2017; Prendergast et al. 2017a;
Spankovich et al. 2017). Taken together, it seems likely that out-
comes in studies such as these are highly dependent on both the
specific protocols and the noise exposure of the enrolled partici-
pants. A major unknown is the role of high frequency loss, at fre-
quencies above 8 kHz, in the above results, as hearing loss at the
higher frequencies was consistently observed across studies.

Relationships between noise exposure and speech-in-noise
metrics (Table 3)

The studies listed in Table 3 were highly variable with respect to
outcomes. Several studies enrolling workers exposed to occupa-
tional noise, who had not yet developed significant hearing loss,
revealed differences between the noise-exposed workers and con-
trols (Alvord 1983; Kujala et al. 2004; Kumar, Ameenudin, and
Sangamanatha 2012; Hope, Luxon, and Bamiou 2013). A study
employing an extremely difficult speech in noise test revealed
deficits associated with musical training (Liberman 2015),
whereas a second study comparing frequent concert goers to
those rarely attending concerts found no differences in speech in
noise function (Grose, Buss, and Hall 2017). As in Table 2, a
number of studies treating noise exposure as a continuous vari-
able failed to find any relationships between noise history and
outcomes on speech in noise tests (Fulbright et al. 2017; Grinn
et al. 2017; Prendergast, Millman et al. 2017; Yeend et al. 2017;
Valderrama et al. 2018). It is likely that outcomes in studies such
as these are highly dependent on both the specific protocols and
the noise exposure of the enrolled participants.

Short-term noise, TTS and ABR amplitude change in humans
(Table 4)

The studies listed in Table 4 are important in that the noise
insults were clearly defined and constant across participants,
eliminating the significant unknowns associated with subject
recall. If the short-term noise exposure paradigms used in these



studies revealed permanent changes in ABR Wave I or associate
metrics, in the absence of changes in OAEs, cochlear synaptop-
athy would be suggested. Most studies did not include OAEs;
however, none of these studies revealed permanent changes in
ABR Wave I or associated metrics, suggesting cochlear synaptop-
athy was unlikely. Those results are not surprising, as none of
the studies listed in Table 4 resulted in the larger and longer last-
ing TTS deficits that have been associated with cochlear synapt-
opathy in animal models. In animal studies in which cochlear
synaptopathy has been documented, the pathology has been both
immediate and permanent.

It seems reasonable to speculate that the temporary changes
in ABR Wave-I amplitude reported in Table 4 could reflect tem-
porary decreases in OHC gain, while OHCs recover from revers-
ible injuries. TTS studies completed using a music player model
revealed decreases in DPOAE amplitude that paralleled changes
in threshold sensitivity, with recovery of DPOAE amplitude and
audiometric thresholds proceeding in parallel across the post-
music test times (Le Prell et al. 2012; Le Prell et al. 2016).
Alternatively, the temporary changes reported in Table 4 may
reflect a reversible auditory nerve dendritic swelling in the
absence of synapse loss. Swelling of the auditory nerve dendrites
under the IHCs has been shown to be reversible after infusion of
excitotoxic substances such as AMPA and kainite (Pujol et al.
1990; Puel et al. 1994, 1995). Recovery of both auditory nerve
dendrite swelling and AP (or ABR Wave-I) amplitude is also
observed after noise exposure (Puel et al. 1998; Yamasoba et al.
2005). Recovery of the swelling and regained growth of ABR
amplitude, with complete return to baseline, is observed even
when swelling is induced for extended periods during chronic
infusion of excitotoxic substances such as AMPA (Le Prell et al.
2004). In other words, excitotoxicity induced by noise or chemi-
cals (AMPA, kainite) presumably has not resulted in permanent
cochlear synaptopathy as the amplitude of the auditory nerve
evoked responses returns to baseline. Taken together, additional
research combining ABR and OAE protocols will be necessary to
understand the likely pathology associated with TTS in humans
participating in studies such as those in Table 4.

Additional comments on the differential diagnosis of
cochlear synaptopathy

Given that a confirmed diagnosis of cochlear synaptopathy
requires post-mortem histological analysis, there has been and
will continue to be significant interest in the development of an
in vivo test battery that would allow cochlear synaptopathy to be
correctly inferred based on patterns of results across tests. To
identify selective cochlear synaptopathy (a loss of synapses in the
absence of middle ear and OHC pathology), the test battery
must document that the middle ear conduction system is intact,
typically accomplished using tympanometry, and there must be
documentation that the OHC population has not been compro-
mised. If cochlear synaptopathy occurs in parallel with OHC
loss, diagnosis will be more difficult. These issues are of signifi-
cant interest not only scientifically, to improve research design,
but also to audiologists and otolaryngologists (Lin 2016; Hall
2017) who commonly report interest in cochlear synaptopathy as
it relates to patient complaints and patient care. Given the var-
iety of test batteries and test protocols being used across research
studies, what can be inferred at this time, regarding clinical and
scientific best practices?

As a starting point for patient care, the Joint Audiology
Committee on Clinical Practice Algorithms and Statements is
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helpful (American Speech Language Hearing Association 1999);
this committee included representatives from the American
Speech-Language-Hearing Association (ASHA), the American
Academy of Audiology (AAA) and the Department of Veterans
Affairs (VA). With the caveat that the components of the assess-
ment are dictated by patient need and may vary across patients,
the following examination components have been identified: his-
tory, appropriate physical examination (eg otoscopy), cerumen
management, air conduction pure-tone thresholds with appropri-
ate masking, bone conduction pure-tone thresholds with appro-
priate masking, speech thresholds with appropriate masking,
speech recognition measures with appropriate masking, acoustic
immittance (tympanometry/acoustic reflex thresholds), acoustic
reflex decay, rehabilitative needs assessment, communication
inventory, otoacoustic emissions, high-frequency audiometry and
either speech or pure-tone Stenger.

For differential diagnosis of cochlear synaptopathy, a careful
patient history, otoscopy, and tympanometry, will be the basic
starting point, to gain insight into patient risk factors, and the
health and function of the outer and middle ear conductive sys-
tem. Pure-tone air and bone conduction are also warranted, to
determine the extent to which patient complaints are related to
audibility issues, which may be appropriate to resolve with amp-
lification. Completion of both air and bone testing will provide
insight into conductive and sensorineural components of any
observed hearing loss and guide recommendations. Pure-tone
testing should include EHF audiometry given the reliable obser-
vation of high-frequency hearing deficits in association with
Wave I amplitude deficits.

Speech detection thresholds can be measured as part of a con-
ventional clinical test battery for the purpose of validating pure-
tone threshold measurements (“cross-check principle”) and word
recognition in quiet can be considered, but these tests likely are
not critical for differential diagnosis of cochlear synaptopathy.
Word recognition scores are a supra-threshold test, commonly
completed at 40 dB above the SRT, to determine the patient’s
best possible performance in easy listening conditions. Speech
recognition thresholds (SRT) can also be measured; this test uses
spondee words, which have two syllables pronounced with equal
emphasis (“toothbrush”). The SRT is the minimum signal level
at which the listener can correctly identify 50% of the speech
material presented (Plomp and Mimpen 1979).

OAE tests

Over the course of this review, there has been significant discus-
sion of the use of OAEs to assess the health of the OHCs. Given
that the amplitude of these emissions varies across a 40-dB range
even within normal hearing listeners, screening is not adequate;
a diagnostic protocol should be used. As new equipment allow-
ing higher frequencies to be routinely tested becomes available,
testing through 12kHz has begun to be incorporated into
research protocols and should be considered as part of both
research and clinical test batteries in order to gain insight into
the health of the basal cochlea. With a baseline established,
changes in cochlear health over time can be monitored (assum-
ing patients have intact hearing and/or intact DPOAEs at these
higher frequencies; if responses are absent at baseline, tests do
not need to be repeated). In research studies where data are con-
sidered at the group level, rather than on an individual basis,
protocols using multivariate statistical analyses in an effort to
control for differences in DPOAE strength should be considered
(following Brambhall et al. 2017; Bramhall, Konrad-Martin, and
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Table 4. Continued.

Author

Speech in Noise Testing

ABR amplitude and latency
Not included

OAE amplitude
Not included

Hearing Threshold
TTS 30-60 sec post-noise

Noise Exposure/Noise Survey

Participants

Custom TM electrode, forehead, and ipsi-

=27 exposed to 115dB SPL

N

39 normal hearing par-

Lichtenhan and

lateral ear lobe; alternating polarity
clicks; 11.1/sec, 75-125 dB peSPL; CAP

at lower SPLs more affected than CAP
at higher SPLs; modelling suggests
fewer responding neurons and less

ranged from 10-30dB at

narrow band noise centred at
2kHz for 15 min; n =6 unex-

posed controls

ticipants ages 20 to
38 yrs: 25dB HL or

better

Chertoff (2008)

4kHz in all but one sub-

ject; that subject improved

by 5 dB post-exposure

from 0.25-8 kHz

synchronous response at lower SPLs

post-noise
Tiptrode ear canal electrodes placed in

Words in Noise (WIN) test

DPOAE from 1-

No statistically significant

Prospective monitoring of

32 participants (13M,

Grinn et al. (2017)

used; Babble is fixed at

both ears and electrodes placed at

8 kHz with
F1 =55/

relationships between

changes in function the day
after a loud event and one-
week later. Noise dose was

19F) from 21-27
years old with

80dB SPL and speech
level is adjusted from

high and low forehead; alternate polar-
ity clicks and 2, 3, and 4 kHz tone

noise dose and threshold
shift the day after the

45dB
SPL: No statis-
tically signifi-
cant relation-

F2

thresholds <25dB
HL from 0.25-8kHz

24.dB SNR to 0dB SNR
in 4dB steps to deter-

mine 50% correct
speech reception

threshold.

bursts; 11.7/sec, 70, 80, 90 and 99 dB

nHL, 500 repetitions with replication.

event from .25 to 8 kHz;
most noise-induced TTS

had recovered.

calculated based on SLM app

data and duration
of exposure.

No systematic changes in ABR Wave-|

amplitude were observed the day after

the recreational noise exposure.

ships between
noise dose
and DPOAE
changes the
day after

Temporary deficits on

the WIN were observed

with increasing deficits

as noise dose

the event.

increased. Performance
returned to baseline

one week post noise.

INTERNATIONAL JOURNAL OF AUDIOLOGY e S25

McMillan 2018). Such protocols are of significant interest as
DPOAE amplitude can vary across a wide range even within a
highly homogeneous normal-hearing population. For example,
Le Prell et al. (2018) recently documented DPOAE amplitudes
over a 30-dB range within a primarily female, Caucasian sample
of young adults. Limiting the already homogeneous sample to
just those participants with thresholds of 10dB HL or better, DP
amplitude still ranges from 0dB SNR (responses indistinguish-
able from the noise floor) to as much as 40 dB above the noise
floor, with the majority of the data ranging from 10dB SNR to
30dB SNR (see Figure 2 in the report by Le Prell 2018, for
illustration).

Middle ear reflex tests

Although there is not yet sufficient evidence to advocate middle
ear reflex testing for the purpose of diagnosing cochlear synapt-
opathy, testing should be considered as part of the comprehen-
sive battery. The comparison of ipsilateral and contralateral
evoked responses from the two ears has long provided not only
a cross-check of the audiogram, but also insight into potential
conductive, cochlear and retro-cochlear pathologies (Jerger,
Jerger, and Hall 1979; Prasher and Cohen 1993; Neary et al.
1996). New wideband acoustic immittance devices increase the
speed and power of such tests (Schairer et al. 2013). With respect
to the differential diagnosis of cochlear synaptopathy, the ampli-
tude of the middle ear muscle reflex has been successfully associ-
ated with cochlear synaptopathy in mouse models (Valero,
Hancock and Liberman 2016; Valero et al. 2018). Middle ear
muscle reflexes are weak, or absent, in a subset of the population
(Flamme et al. 2017; McGregor et al. 2018), leading several
investigators to suggest that noise exposure resulting in cochlear
synaptopathic injury could provide one explanation for individ-
ual variability in human participants (Wojtczak, Beim, and
Oxenham 2017; McGregor et al. 2018). There is also the thought
that the amount of energy reaching the cochlea is a function of
the wide band reflectance or admittance. If more energy is reach-
ing the cochlea, then there is a greater risk of exposure.
Consistent with these suggestions, reflex decay has been associ-
ated with speech recognition impairment and hearing loss in
noise exposed workers (Duarte et al. 2015). As additional data
begin to emerge in humans, it will be important to carefully con-
sider the interpretation of any detected correlations. It is not
only clear that noise exposure can compromise middle ear reflex
amplitude (Valero, Hancock, and Liberman 2016; Valero et al.
2018), but also that a more robust middle ear reflex more effect-
ively reduces the transmission of noise to the inner ear
(Karlovich et al. 1977; Borg, Nilsson, and Engstrom 1983). Based
on those data, the acoustic reflex has been suggested to directly
mediate vulnerability to TTS, (Karlovich et al. 1977) as well as
permanent NIHL (Borg, Nilsson, and Engstrom 1983) in noise-
exposed patients and populations.

ABR and other evoked potentials

A major unknown at this time is the specific sound-evoked
potentials that might be used during differential diagnosis of
cochlear synaptopathy. There is a strong correlation between
cochlear synaptopathy and the amplitude of Wave-I of the ABR
in rodent ears in which OHC function is intact (Sergeyenko
et al. 2013), but human patients and participants have diverse
risk factors for OHC loss and the OHC population may be dam-
aged. Although the amplitude of Wave-I of the ABR serves as
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the gold standard within animal models, this has not been
accepted as best practice for either human research studies or
clinical test batteries used by those attempting differential diag-
nosis of patients. In addition to ABR protocol differences, differ-
ences in the specific populations and methods used to estimate
previous noise exposure almost certainly contribute to the mixed
outcomes across humans studies.

A number of alternative evoked potential metrics continue to
be evaluated for potential use in human test batteries. Wave-V of
the ABR, for example, has been suggested as a metric for coch-
lear synaptopathy in humans, with the specific measures utilised
to date including measurement of ABR Wave-V latency
(Verhulst et al. 2016; Skoe and Tufts 2018), ABR Wave-V latency
during masking noise (Mehraei et al. 2016), and ABR Wave-V
latency changes during forward masking (Mehraei et al. 2017).
Although there have been reports in which the amplitude of
ABR Wave-I relative to the amplitude of ABR Wave-V shows
deficits (Verhulst et al. 2016; Grose, Buss, and Hall 2017), any
Wave-I reliability issues presumably also impact this measure.
However, it is worth note that Prendergast et al. (2018) carefully
measured test-retest reliability for Waves I and V, and the SP,
and found that the amplitudes of Waves I and V were highly
reliable within subjects, whereas SP amplitude was less reliable.
Several investigators have normalised the amplitude of the AP
relative to the amplitude of the SP (i.e. SP/AP ratio) (Nam and
Won, 2004; Liberman et al. 2016; Ridley et al. 2018); if the SP is
not reliable, this metric will be less useful. Other evoked poten-
tial assessments considered to date include the FFR (Prendergast
et al. 2017a), and the envelope following response (EFR)
(Bharadwaj et al. 2015; Shaheen et al. 2015; Grose, Buss, and
Hall, 2017; Guest et al. 2017; Paul, Bruce, and Roberts 2017;
Guest et al. 2018), although statistically significant differences
have not been detected either as a function of lifetime noise
exposure (Prendergast et al. 2017a) or frequent concert/musical
event attendance (Grose, Buss, and Hall 2017).

Speech in noise tests

A final consideration is the use and interpretation of speech in
noise tests both in research studies and in patient care.
Recommendations for speech in noise testing were long ago pro-
vided by Carhart and Tillman (1970), and these tests continue to
be widely advocated as a metric that better captures real-world
patient complaints regarding difficulties understanding speech in
noisy backgrounds (Soli 2008; Wilson 2011; Vermiglio et al.
2012; Brungart, Sheffield, and Kubli 2014). As argued above,
speech in noise deficits can emerge with either OHC loss or ITHC
loss/auditory nerve dys-sychrony. Thus, speech in noise deficits
are not confirmatory for cochlear synaptopathy. However,
regardless of whether speech in noise difficulties are ultimately
determined to be caused by OHC pathology, cochlear synaptop-
athy or some combination of cumulative pathological changes in
the inner ear, the patient’s complaints should be assessed, and
the only way to quantify their difficulty is to complete speech in
noise testing. With a baseline in hand, increasing deficits can be
detected, and, equally important, benefits of amplification or
rehabilitation can be documented. It is important that efforts
continue with respect to better understanding the relationships
between noise exposure and auditory dysfunction in difficult lis-
tening environments. The identification of specific functional
impairments as a consequence of noise exposure, emerging prior
to permanent threshold shift, has the potential to guide new evi-
dence-based screening and monitoring strategies regardless of

whether the specific functional deficits are a consequence of
OHC loss or cochlear synaptopathy.

Conclusions and challenges to the field

New data from animal subjects exposed to chronic noise through
daily exposure paradigms are urgently needed as occupational
exposure is composed of lower daily doses repeated on a daily
basis over weeks, months and years. The extent to which synap-
tic pathology, OHC loss or mixed pathologies, will be induced
by these chronic exposure histories is not known, as this condi-
tion has not been tested in animal studies (for discussion, see
Dobie and Humes 2017; Murphy and Le Prell 2017). Non-occu-
pational noise history generally has not been associated with
decreasing ABR Wave I amplitude (Fulbright et al. 2017; Grinn
et al. 2017; Prendergast et al. 2017a; Spankovich et al. 2017),
although repeated exposure to loud music (Liberman et al. 2016;
Grose, Buss, and Hall 2017) and exposure to firearm discharge
(Brambhall et al. 2017) appear to be associated with changes in
auditory nerve discharge in human participants. Although ABR
amplitude in humans is more variable than that observed in
rodents, ABR Wave-I amplitude appears to have high test-retest
reliability (Prendergast et al. 2018) and it can be reliably moni-
tored longitudinally within subjects for potential changes over
time (Grinn et al. 2017). Longitudinal data are urgently needed
to understand the potential for reduction of human ABR Wave-I
amplitude or other derived measures as a function of aging or
noise exposure. Diverse subject populations are needed, to fully
characterise where risk begins, and how risk grows, with differ-
ent real-world exposures and diverse real-world risk factors.
Although the time, cost, equipment and training necessary for
the collection of ABR data make it unlikely that such monitoring
could readily be adopted as a monitoring tool across hearing loss
prevention programmes (for discussion, see Skoe and Tufts
2018), such data have the potential to significantly contribute to
our understanding of the mechanisms of noise injury. Speech in
noise data is also urgently needed. Scientific documentation of
deficits as a consequence of noise exposure is a necessary precur-
sor for evidence-based suggestions for updated testing require-
ments. In addition to continued efforts to understand the extent
to which noise exposure history affects speech in noise under-
standing, the relationships between noise exposure and high-fre-
quency hearing loss should also continue to be explored.

A final caveat and call for research involves the need to assess
the potential for spontaneous recovery of synapses. Although this
generally has not been documented in pre-clinical noise-induced
cochlear synaptopathy models using rodents as subjects, there
are a small number of studies reporting recovery of the synaptic
ribbons over a one-month period following noise exposure (Liu
et al. 2012; Shi, Liu, He, et al. 2013; Shi, Liu, Wang et al. 2015).
As discussed by Liberman and Kujawa (2017), additional
research will be necessary to reconcile the differences in results
across studies. If cochlear synaptopathy is ultimately determined
to be reversible, the potential for temporary cochlear synapto-
pathic damage will be difficult, if not impossible, to distinguish
from temporary OHC damage and temporary excitotoxic swel-
ling. Finally, regardless of whether cochlear synaptopathy is
induced by noise, or a function of aging, new research is neces-
sary to fully identify mechanisms associated with drug-induced
regeneration of synapses (Wan et al. 2014; Wan and Corfas
2015; Suzuki, Corfas, and Liberman 2016). These observations of
synaptogenesis raise hope that a “cure” could be available, if
human cochlear synaptopathy becomes possible to diagnose



using test Dbatteries elements such as those

described here.
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