
ALGORITHMS FOR ROBUST DATA ANALYSIS

by

Baokun He

APPROVED BY SUPERVISORY COMMITTEE:

Haim Schweitzer, Chair

Farokh Bastani

Ding-Zhu Du

Weili Wu

Copyright c© 2020

Baokun He

All rights reserved

ALGORITHMS FOR ROBUST DATA ANALYSIS

by

BAOKUN HE, BS, MS

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

May 2020

ACKNOWLEDGMENTS

I would like to express my sincere gratitude and appreciation to my adviser, Dr. Haim

Schweitzer, for his guidance and continuous support for my PhD study. It has been a great

time working with him. He has been supportive and has given me the freedom to choose

whatever is best for my career. He has not only provided insightful discussion on the research

work but also has helped me improve my soft skills. I am so lucky to have him be my adviser.

I would like to thank Swair Shah, Crystal Maung, Ke Xu, Guihong Wan and Rong Jin for

their contributions in the joint work and all the fun time we have spent together.

Thanks to my parents for their support and infinite love. Thanks to my husband, Shiyang

Cheng, for cheering me up when I lost my confidence. I would not have made it without him.

Especially, I would like to give special thanks to my grandma, Fengzhen Shi. She taught

me the good habit of reading, taught me to be curious about new things, and taught me to

never stop learning.

February 2020

iv

ALGORITHMS FOR ROBUST DATA ANALYSIS

Baokun He, PhD
The University of Texas at Dallas, 2020

Supervising Professor: Haim Schweitzer, Chair

Data analysis plays an important role in making decisions, making predictions, and helping

business operate. Unfortunately, in many situations the data is not reliable and robust

analysis is needed to obtain stable results. This may be challenging when the data is high-

dimensional. Transforming high-dimensional data into low-dimensional data is an important

prior step in applications such as managing the data, performing efficient learning, retrieving

information, and other data analytics tasks.

Feature selection and feature extraction are two classical techniques to achieve dimensionality

reduction. Feature selection removes irrelevant and redundant features and keeps only the

most important ones. Unlike feature selection, feature extraction generates the features

as arbitrary functions of the data. They are typically more accurate than those obtained

by feature selection. But the extracted features are harder to interpret than the selected

features. Another disadvantage is that feature extraction is less robust than feature selection.

In this dissertation we describe algorithms and methods to improve the robustness of feature

selection and feature extraction.

We propose computing a hybrid low rank representation (HLR) of selected features and

extracted features. The robustness of the HLR model comes from the selected features, and

its accuracy comes from the extracted features. We develop an algorithm to solve this hybrid

problem optimally by combinatorial search. We propose optimal, sub-optimal, and greedy

v

variants of the algorithm to solve this hybrid problem. The sub-optimal and the greedy

variants come with the exact bounds on the representation accuracy.

Principal Component Analysis (PCA) is a widely used feature extraction algorithm. It is

known to be sensitive to outliers that reduce its robustness. Robust Principal Component

Analysis (RPCA), also known as Robust Subspace Recovery (RSR), is a classical approach

to improve the robustness of the PCA by identifying and removing outliers. We develop a

novel RPCA algorithm, which converts this problem into graph search. We show how to

solve the graph search problem optimally by applying heuristic search techniques from AI.

The results obtained by our algorithm are optimal in terms of accuracy. We also describe a

sub-optimal variant that runs much faster than the optimal variant and produces a solution

that is guaranteed to be near the optimal.

Outlier based RPCA removes outliers from the data and computes the principal components

of the remaining data. The centered variant requires the center of non-outliers, which is

unknown until after the outliers are determined. Not using an accurate center may lead

to the detection of wrong outliers. We propose a method that can be used to improve the

robustness of many currently known RPCA algorithms. Our method implicitly centers the

non-outliers; it is implemented by appending a bias value to each data element. It can be

used with “black box” RPCA algorithms since only their input needs to be augmented.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS . iv

ABSTRACT . v

LIST OF FIGURES . ix

LIST OF TABLES . xi

CHAPTER 1 INTRODUCTION . 1

1.1 Our Contributions . 2

1.2 Structure of The Dissertation . 3

CHAPTER 2 BACKGROUND . 4

2.1 Feature Selection . 5

2.2 Feature Extraction . 7

2.3 Hybrid Feature Selection and Feature Extraction 8

2.4 Principal Component Analysis . 9

2.4.1 Centered PCA and Uncentered PCA 11

2.5 Robust Principal Component Analysis . 13

2.5.1 Robustness and Outliers . 15

2.5.2 Two Variants . 16

CHAPTER 3 HYBRID FEATURE SELECTION AND FEATURE EXTRACTION 19

3.1 Problem being Addressed . 19

3.1.1 Our Results . 20

3.2 Hybrid Low Rank Representations . 21

3.2.1 Greedy HLR Is Not Optimal . 22

3.3 HLR by Heuristic Search . 23

3.3.1 The Subsets Graph . 24

3.3.2 The Heuristic Search Algorithm . 24

3.3.3 Heuristic Functions . 25

3.4 Unitarily Invariant Monotonic Functions . 27

3.5 The Three Variants of The Algorithm . 30

3.5.1 Proofs . 30

vii

3.5.2 A priori and a posteriori Bounds . 33

3.5.3 Using a posteriori Bound to Improve The Result 34

3.6 Relationship to Previous Work . 34

3.7 Experimental Results . 36

3.8 Concluding Remarks . 41

CHAPTER 4 ROBUST PRINCIPAL COMPONENT ANALYSIS VIA OUTLIERS 43

4.1 Problem Being Addressed . 43

4.2 Previous Approaches . 44

4.3 The Main Tools . 45

4.4 Our Approach . 47

4.4.1 The Subset Graph . 47

4.4.2 The A∗ Algorithm . 48

4.4.3 Heuristic Functions . 48

4.5 Optimality and Suboptimality Theorems . 50

4.6 Experimental Results . 55

4.7 Concluding Remarks . 62

CHAPTER 5 THE BIAS TRICK FOR CENTERING PCA 63

5.1 Problem Being Addressed . 63

5.1.1 Our Contributions . 65

5.2 Relationship to Previous Work . 65

5.3 The Bias Trick . 66

5.4 Correctness of The Bias Trick . 68

5.4.1 Estimating The Value of Bias . 72

5.5 Optimal Centered RPCA . 73

5.6 Experimental Results . 74

5.7 Concluding Remarks . 82

CHAPTER 6 CONCLUSIONS . 85

REFERENCES . 87

BIOGRAPHICAL SKETCH . 94

CURRICULUM VITAE

viii

LIST OF FIGURES

1.1 Feature Selection and Extraction . 2

2.1 The algorithm for optimal feature extraction . 7

2.2 The principal vectors of centered and uncentered PCA. The data is shown as blue
points with outliers. 12

2.3 Robust Principal Components of points with outliers in 2D 14

2.4 Example of RPCA for Background Subtraction 17

2.5 Outliers Detected by ROBPCA with r = 3 on Waving Tree Video 18

3.1 Example of the subsets graph . 24

3.2 The best-first search algorithm . 25

3.3 Optimistic Search Algorithm . 35

3.4 Running time of HLR on the dataset vehicle. x-axis shows r1 and r2=10 − r1.
Error criterion is the Schatten p-Norm with p=0.25. 37

4.1 The generic A∗ algorithm for column subsets 49

4.2 Run-time results on the dataset vehicle with r = 3. 55

4.3 A toy example of data consisting of 10 points, and the first principal component
is computed after optimally removing outliers. Data points are marked with an
“o”, and outliers with an “x”. 56

4.4 X is of shape 50×50. Each dataset has 15 outliers and rank of non-outlier points
is displayed above each graph. The sub-optimal algorithm uses ε = 10 for this
experiment. 60

4.5 Face Dataset 1. Results with r = 2 and k = 4 61

4.6 Face Dataset 1. Top: Results for r = 3 and k = 4, Bottom : Results for r = 3
and k = 6 . 61

4.7 Face Dataset 2 (top) and Dataset 3 (bottom). Successful run on face graphs/rpca
with r = 3. We use k = 3 in the top experiment and k = 5 in the bottom one. . 61

5.1 The direction of the dominant principal component for several PCA variants on
a simple dataset of 7 points with one outlier. The PCA directions are computed
from the entire data. The RPCA directions are computed from the 6 non-outliers.
The data: (7,3),(7,2),(7,1),(8,3),(8,2),(8,1),(1,4). 64

5.2 An illustration of the bias trick idea . 67

5.3 An approximation to the centered PCA of X is embedded within the uncentered
PCA of Xb. 68

ix

5.4 The Optimal Centering RPCA (COPT) Algorithm 74

5.5 Error of approximate eigenvalues for different range of γ on various datasets
from UC Irvine. Top two panels and bottom left panel: error of estimating all
eigenvalues. Bottom right panel: error of estimating top 10 eigenvalues. 75

5.6 The bias trick returns unstable results when the value of b > 107 77

5.7 Toy datasets for testing robust centered PCA algorithms. The three outliers in
the Tall-L dataset are points 1,2,3. The three outliers in the Short-L dataset are
points 1,2,3. The two outliers in the Trapezoid dataset are points 6,7. 78

5.8 Comparison of the location of outliers between initial centering and the bias
trick. The experiment is applying CoP algorithm on wine dataset with k = 13
and r = 2. 81

5.9 Positions of outliers selected by different RPCA algorithms on wine dataset with
k = 13, r = 2. Red points are the outliers. 83

x

LIST OF TABLES

2.1 Toy data . 6

3.1 Accuracy comparison under Nuclear norm and Spectral norm. The minimum
error is highlighted. 37

3.2 Error of HLR with r1 + r2 = 10 on vehicle dataset 38

3.3 Errors of the HLR . 39

3.4 Reduction in l0 and l1 entrywise norms with increased r1 40

3.5 Greedy HLR on TechTC01 data with relative bounds 41

3.6 Relative a posteriori bounds of the Greedy HLR with Optimistic Search Algo-
rithm on the TechTC01 dataset . 41

4.1 Reduction of average error with the increase in number of outliers 57

4.2 Accuracy and time for the optimal algorithm and the sub-optimal algorithm,
compared to Outlier Pursuit (Xu et al., 2010) and the Leverage Score method.
The time is measured in seconds, and the error is the normalized error. The
minimum error is highlighted. 59

5.1 Results of multiple RPCA algorithms on the toy datasets 79

5.2 Average reconstruction error of multiple RPCA algorithms on real datasets. . . 80

5.3 Error comparison among multiple RPCA algorithms. The smallest errors are
highlighted. Results of COPT are obtained by greedy variant with ε = 1 82

xi

CHAPTER 1

INTRODUCTION

High dimensional datasets are common in machine learning and statistical applications. The

“curse of dimensionality” phenomenon makes the analysis of high dimensional data challeng-

ing. Dimensionality reduction is a collection of techniques that is designed to overcome this

problem. Datasets can be labeled, unlabeled, or partially labeled; this leads to various

dimensionality reduction methods of supervised, unsupervised and semi-supervised. Typ-

ically, a labeled dataset contains a set of data which are marked as labels or classes. An

unlabeled dataset does not contain label or class information. Supervised dimensionality

reduction methods compute a feature subset to predict the label information. Unsupervised

dimensionality reduction methods exploit the pattern and structures of the data, such as

data distribution, data variance, and separability. In the semi-supervised cases the goal is

integrating a small amount of labeled data into unlabeled data as additional information to

improve the performance of an unsupervised method.

A feature space is composed of a set of feature vectors. Each feature vector is a vector

which represents the values of the feature over all samples. Feature selection and feature

extraction are two common techniques used in order to reduce the number of dimensions of

the feature space. Both of these techniques improve the training speed and generalization

properties of the models, see e.g., (Guyon and Elisseeff, 2003; Kuhn and Johnson, 2013). If

the reduced features come from the data itself, this process is called feature selection. As

shown in Figure 1.1 feature extraction is different from feature selection. Feature extraction

returns a set of features which are results of arbitrary functions of the data.

Compared to feature selection, feature extraction is more general and the arbitrary func-

tion may provide a better accuracy. But the feature space is problematic since there may be

no physical meaning for better readability and interpretation (Krızek, 2008). Additionally,

feature selection is more robust to the perturbation of values than feature extraction.

1

Feature Selection

F1

F2

...

Fn

F ′d

...

F ′1

Feature Extraction

F1

F2

...

Fn

f1(F1, . . . , Fn)

...

fd(F1, . . . , Fn)

F ′d

...

F ′1

Figure 1.1: Feature Selection and Extraction

From a statistical point of view the analysis is based on the observations of the data.

However, in many cases the data is not reliable. What we expected is a minor error in the

model or data should cause only small error or no effect to the final result. Unfortunately,

this is not always true. Thus, the “robust” procedure has been proposed (Huber, 2011). An

ideal robust estimator provides a good fit to the data when the data contains outliers, as

well as when the data is free of them (Maronna et al., 2019). To reduce the effect of outliers

there are many studies of robust feature selection and robust feature extraction. In this

dissertation we focus on unsupervised dimensionality reduction methods and how to achieve

a robust estimator.

1.1 Our Contributions

We formulate a problem combining feature selection and extraction. We refer to it as Hybrid

Low Rank (HLR) representation. It is easy to show that sequentially solving the selection

and extraction sub-problems cannot return an optimal HLR solution. The key to achieve

the optimal combination of selected features and extracted features is to obtain them simul-

taneously. We use a combinatorial graph search algorithm to solve this hybrid problem. To

our knowledge this is the first optimal algorithm to solve this problem. We provide a way

2

to speed up this algorithm but sacrifice some accuracy. We proceed to show how to obtain

bounds on how close the sub-optimal solution is to the optimal one.

Using the same combinatorial graph search framework we formulate outlier Robust Prin-

cipal Component Analysis (RPCA) problem and come up with another set of heuristic

functions which gets optimal outliers when the number of outliers is known. The results

obtained by our algorithm are optimal, and more accurate than the current state of the art.

This comes at the cost of running time, which is typically slower than the current state of

the art. To accelerate the algorithm we describe a variant of the algorithm that runs much

faster and produces a solution that is guaranteed to be near the optimal. We illustrate this

by experiments both on synthetic and real-life datasets. This optimal RPCA algorithm is

an uncentered RPCA which ignores the center of the data.

To keep the centering information and eliminate the effect of outliers on centering we

obtain an optimal centered RPCA algorithm by extending the optimal RPCA algorithm

with a “bias trick”. Best to our knowledge this is the first optimal centered RPCA algorithm

with respect to centering. It is proved that the bias trick can automatically get the center

of the data. This centered RPCA algorithm compares favorably to the current state of the

art methods in the experiments.

1.2 Structure of The Dissertation

In Chapter 2 we formally state feature selection and feature extraction problems and intro-

duce the hybrid feature selection and extraction problem. We also discuss PCA, RPCA,

robustness and outliers. Chapter 3 discusses the algorithm and analysis for the hybrid fea-

ture selection and extraction problem. Chapter 4 discusses our optimal uncentered RPCA

algorithm. In Chapter 5 the bias trick is introduced which can be used to improve many

RPCA algorithms, and our centered RPCA algorithm is discussed.

3

CHAPTER 2

BACKGROUND

There are many approaches of feature selection and extraction in unsupervised case. In

this chapter we formulate feature selection, feature extraction, and hybrid feature selection

and extraction problems. We lay emphasis on a widely used feature extraction method:

PCA. We discuss its relationship with Singular Value Decomposition (SVD) and Eigenvalue

Decomposition (ED). We discuss the impact of outlier on computing principal component

and how to reduce the impact to solve the RPCA problem.

The representation of data in terms of a small number of features is a fundamental tool in

data analysis. The compact representation allows for efficient manipulation, and may reveal

relations in the data that are harder to identify especially when there are billions features

in the datasets. We study the unsupervised case, where a typical criterion of quality for the

representation is the accuracy with which the data can be reconstructed from the compact

representation. Given a dataset X ∈ Rm×n with m data points and n features, both feature

selection and extraction are aiming to get a set of features V ∈ Rm×r with r ≤ n from X,

such that the reconstructed error from the set of features is minimized. As shown in (2.1),

the reconstruction is computed by X ≈ V A, where A is a r× n coefficients matrix and Θ is

a matrix norm.

min
V,A

Θ(X − V A) s.t. V ∈ Rm×r (2.1)

We note that the matrix V A is of rank r, so that X is approximated by a low rank matrix.

Conversely, any rank r matrix can be expressed as the product of V A, and thus gives a

compact representation in terms of r features.

To describe current and previous results we need the following notation. Let EFE, EFS

be the smallest errors obtainable by feature extraction and by feature selection respectively.

Consider an algorithm α that produces a selection S from the matrix X. Its error is given

4

by Eα(S,X) = minA Θ(X − SA). For such algorithm one can define:

pα(X) =
Eα(S,X)

EFE

, pα = max
X

pα(X)

Then the value of pα indicates the estimation quality in the worst-case (e.g., Boutsidis

(Boutsidis et al., 2009), Golub (Golub and Van-Loan, 2013)). The motivation behind this

definition is that for any algorithm α and a matrix X we have: 1 ≤ Eα(S,X)
EFE

≤ pα. Therefore,

small values of pα imply better worst-case performance. For example, Deshpande (Deshpande

and Rademacher, 2010) showed that for the Frobenius norm error in selecting r features

pα =
√
r + 1. With this notation we say that an algorithm α is optimal if Eα(S,X) is the

smallest possible, and it is worst-case optimal if its pα is the smallest possible.

2.1 Feature Selection

In feature selection the V in (2.1) are constrained to be a subset of columns of X. We denote

the subset as S such that a precise expression of the reconstructed error is:

min
S,A

Θ(X − SA)

s.t. S ⊂ X, and S ∈ Rm×r
(2.2)

The notation ⊂ is denoted as column subset. Since S is a column subset of X, feature selec-

tion is sometimes known as the Column Subset Selection Problem (CSSP). See, e.g. (Golub

and Van-Loan, 2013).

Consider the sample data in Table 2.1. The features include height in centimeter, height

in feet, age, and weight in pounds. The labels to be predicted are the Body Mass Index

(BMI) and the weight in kilograms. The matrix notation of the data is shown in (2.3),

where X is the data matrix, Y is the labels matrix.

X =


160 5.24 17 98

173 5.67 26 121

185 6.07 40 174

 , Y =


17.4 44.45

18.4 54.9

23 78.9

 (2.3)

5

Table 2.1: Toy data

Name Height (cm) Height (ft) Age Weight (lb) BMI Weight (kilos)
(feature) (feature) (feature) (feature) (label) (label)

Alexa 160 5.24 17 98 17.4 44.45
Cortana 173 5.67 26 121 18.4 54.9
Siri 185 6.07 40 174 23 78.9

The unsupervised feature selection attempts to select features from the data matrix with

no label information. In the toy example described above we would still have the second

“Height” feature as redundant, but in the unsupervised case the “Age” feature cannot be

discarded. Therefore, in this case we have the selection matrix as in (2.4) with zero approx-

imation error.

X =


160 5.24 17 98

173 5.67 26 121

185 6.07 40 174

 , S =


160 17 98

173 26 121

185 40 174

 (2.4)

Unsupervised feature selection formulated as CSSP has attracted a lot of attention, with

the first algorithm (pivoted QR) being developed more than 50 years ago (Businger and

Golub, 1965). (Boutsidis et al., 2009) points out the NP-hardness of CSSP is an open

problem. A further proof is given in (Çivril, 2014) which points out the CSSP is UG-

hard. Recently the problem was proved NP-hard (Shitov, 2017), and therefore there are

no optimal polynomial algorithms. There are, however, polynomial algorithms that are

worst-case optimal, and nontrivial optimal algorithms that run much faster than exhaustive

search.

Numerical linear algebra studies focus on algorithms for minimizing the Spectral norm.

The deterministic algorithm with the best worst-case error can be found in (Gu and Eisenstat,

1996). A randomized algorithm with an improved worst-case accuracy for the Spectral

norm is described in (Boutsidis et al., 2009). The theoretical computer science community

produced worst-case optimal and near optimal randomized algorithms for the Frobenius

6

Input: the matrix X, the integer r.
Output: the r vectors v1, . . . , vr.

1 Compute the matrix B = XXT .
2 v1, . . . , vr are the top r eigenvectors of B.

Figure 2.1: The algorithm for optimal feature extraction

norm. These include, among others, (Deshpande et al., 2006; Guruswami and Sinop, 2012).

A worst-case optimal deterministic algorithm for the Frobenius norm is given in (Deshpande

and Rademacher, 2010; Guruswami and Sinop, 2012). The algebraic approach taken by

most researchers was shown effective in deriving worst-case optimal algorithms, but so far

has not produced optimal algorithms. Recent studies using classical AI tools of combinatorial

search were used to derive optimal and near optimal algorithms in the Frobenius norm. See

Arai (Arai et al., 2015, 2016).

2.2 Feature Extraction

Unlike feature selection, the columns of V returned by feature extraction has no constraint.

The well-known algorithm for optimal feature extraction is shown in Figure 2.1. See, e.g.,

(Jolliffe, 2002; Li et al., 2017). Applications of this algorithm include the technique of PCA,

which is arguably the most popular feature extraction technique. With recent advances in

numerical techniques for computing eigenvectors e.g., (Halko et al., 2011; Li et al., 2017)

the algorithm in Figure 2.1 can be implemented efficiently even for large amounts of data,

See, e.g., (Yu et al., 2017; Onuki and Tanaka, 2018). Among the topics of current research

are attempts to minimize the approximation error (2.1) in norms that are not unitarily

invariant. This turns out to be very challenging. In particular, minimizing the entry-wise l1

or l0 norms is expected to improve the robustness of the estimation, but unfortunately the

problem formulated in these norms turns out to be NP-hard. See, e.g., (Gillis and Vavasis,

7

2018; Song et al., 2017; Bringmann et al., 2017). For the more general case of entry-wise lp

norms see (Chierichetti et al., 2017).

2.3 Hybrid Feature Selection and Feature Extraction

Even though the approximation obtained by feature selection is worse than the approxima-

tion obtained by feature extraction, there are advantages of feature selection that make it

the preferred choice in many situations. For example: unlike feature extraction, the results

obtained by feature selection are easy to interpret in terms of the underlying data (Drineas

et al., 2008). Selected features generalize better than extracted features in machine learning

tasks (Guyon and Elisseeff, 2003). Functions computed from extracted features depend on

all the features and are typically more expensive to evaluate than functions computed from

few selected features. Feature selection retains the data sparsity. In the other hand, feature

extraction is easier to get the optimal solution than feature selection. Feature extraction has

a better approximation accuracy.

There are studies on combining feature selection and extraction to get the benefits from

both of the technologies. The problem is how approximate a dataset X with r1 selected

features and r2 extracted features to solve the following optimization problem:

min
S,V,A1,A2

Θ(X − SA1 − V A2)

s.t.


S ∈ Rm×r1 ;S ⊂ X

V ∈ Rm×r2

(2.5)

Clearly, being a generalization of feature selection and extraction, this problem is at least as

hard as feature selection which is known as NP-hard as we discussed in Section 2.1. It turns

out that solving this problem by solving the sub-problems of feature selection and extraction

one after the other does not return the optimal solution of this hybrid problem. In Chapter 3

we give an example of this. The solution to this problem in addition to being theoretically

8

interesting, problems related to it have surfaced in statistical literature. In (Kneip and Sarda,

2011; Wang, 2012) authors consider a factor analysis problem where the decomposition is into

two matrices of the similar form as in (2.5). The solution approach taken opts for performing

feature extraction followed by selection. But as we show in Chapter 3 this approach does

not lead to the optimal solution.

2.4 Principal Component Analysis

As we mentioned in Section 2.2, Principal Component Analysis (PCA) is arguably the most

widely used feature extraction technique. PCA solves a problem that fits a low-dimensional

subspace V ∈ Rr to a set of data points X ∈ Rm×n. The basis of the low-dimensional

subspace V is a set of orthonormal vectors {v1, · · · , vr}. And each vector maximizes the

variance of the data points in the direction of the low-dimensional subspace. The projection

A on the low-dimensional space can be computed from X ≈ V A. Thus, when the error of

the approximation is small, one can use the r dimensional vectors ai (ith column of A) as

representatives of the m dimensional vectors xi in the low-dimensional vector space spanned

by V . See (Jolliffe, 1986) for many applications of the PCA technique.

Mathematically, PCA can be formulated either as a statistic model or a geometric model.

A statistic model tries to learn the probability distribution of observed random data samples.

A geometric model learns the overall geometric shape of the dataset with deterministic

models such as subspaces, smooth manifolds, or topological spaces. The original formulation

of PCA (Pearson, 1901; Hotelling, 1933) is proposed as a statistic model more than a century

ago. Since there is an equivalence between statistic formulation and geometric formulation

of PCA, in this dissertation we focus on the geometric view and show the relation between

PCA and SVD.

From the geometrical view of PCA we find a subspace V ⊂ Rr of dimension r to embed

the data points X = {x1, x2, . . . , xn} (where xi ∈ Rm) such that the variance of the projected

9

data is maximized. Let V = {v1, v2, . . . , vr} be the matrix of orthonormal basis of this low-

dimensional subspace. Then the projection of point xi in this subspace is V V Txi. The

problem then can be written as:

max
V

n∑
i=1

‖V V Txi‖2

s.t. V TV = Ir

(2.6)

where Ir is an identity matrix with size r × r. We observe that ‖x‖2 = ‖x − V V Tx‖2 +

‖V V Tx‖2. As the data points are fixed so are their norms. So the problem in (2.6) is

equivalent to,

min
V

n∑
i=1

‖xi − V V Txi‖2

s.t. V TV = Ir

(2.7)

In the matrix form it can be rewritten as follows,

min
V
‖X − V V TX‖2F

s.t. V TV = Ir

(2.8)

where ‖ � ‖F is the Frobenius norm. Setting V TX = A we get the following formulation

min
V
‖X − V A‖2F

s.t. V TV = Ir

(2.9)

We observe that the geometric interpretation of PCA has the same form as the feature

extraction problem in (2.1) using Frobenius norm. The Eckart-Young-Mirsky theorem says

that SVD solves this problem optimally.

Theorem 2.1. Eckart-Young-Mirsky. Let Xr =
∑r

i=1 σiuiv
T
i be the truncated SVD of X

with σ1 ≥ σ2 ≥ . . . ≥ σr > 0. Then, for any rank-r matrix Y ,

‖X −Xr‖ ≤ ‖X − Y ‖

10

Eckart and Young gave a proof for this theorem for Frobenius norm (Eckart and Young,

1936). Mirsky gave a generalized proof which works for all unitary invariant matrix norms

(Mirsky, 1960). Theorem 2.1 shows that the best rank r approximation to a matrix is its

truncated SVD. If X = UΣV T is the SVD of X, then setting UrΣrV
T
r as the approximation

of X solves the problem in (2.7) (where Vr corresponds to the matrix formed by first r

columns of V). The desired V in (2.7) is the matrix of first r right singular vectors Vr of X.

2.4.1 Centered PCA and Uncentered PCA

In the formula of PCA we consider the dataset X with mean zero. This is known as the

centered PCA. In the computation of PCA this is achieved by subtracting the mean from the

dataset. There is an uncentered variant which skipped the preliminary step of subtracting

the mean from the dataset. And it has many applications like computer vision, climatology,

astronomy, ecology, chemistry, etc. (Jolliffe, 2002; Cadima and Jolliffe, 2009). The resulting

subspace of uncentered PCA is a lower dimensional subspace for embedding the uncentered

data. Uncentered and centered PCA are closely related. See (Cadima and Jolliffe, 2009)

for a discussion on uncentered PCA. The variant we address in Chapter 4 is the uncentered

variant. One can still subtract the mean and apply our algorithm on centered data but the

mean itself may be affected by outliers and a robust mean estimation should be used. In

Chapter 5 we give a solution to get the centered PCA with optimal mean when there are

outliers in the given dataset.

Figure 2.2 shows the centered PCA and uncentered PCA on an example dataset. In the

centered variant the first principal vector is in the direction that maximizes the data variance.

However, this is not the case in the uncentered PCA where one sometimes observes that the

first principal vector is in the direction of the mean µ. Details can be found in Section 5.4.

Let X = (x1, . . . , xn) be the matrix with m features. The uncentered PCA computes a

matrix V = (v1, . . . , vr) of r “principal vectors” where the column vector vj are mutually

11

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14
centered PCA
uncentered PCA
mean of the data

Figure 2.2: The principal vectors of centered and uncentered PCA. The data is shown as
blue points with outliers.

orthogonal m dimensional vectors. The matrix V is computed to minimize the error in (2.9).

It can be shown that the Euclidean error of the approximation in (2.9) is minimized for V

computed as the r dominant eigenvectors of the matrix of second moments B.

B = XXT =
∑
i

xix
T
i

≈ V ΣUTUΣTV T

= V Σ2V T

(2.10)

In the centered PCA case here one needs the mean µ of the dataset X. Each vector xi

can then be centered by mean subtraction: x̂i = xi − µ, and the matrix of second moments

of the centralized vectors is the covariance matrix C. The matrix V of r principal vectors is

12

computed as the r dominant eigenvectors of the covariance matrix.

C =
∑
i

(xi − µ)(xi − µ)T

≈ V ΣUTUΣTV T

= V Σ2V T

(2.11)

The V in centered PCA minimizes the error in (2.12), where 1 is a vector with size n whose

entries are all 1s.

min
V
‖X − µ1T − V A‖2F

s.t. V TV = Ir

(2.12)

2.5 Robust Principal Component Analysis

As we discussed in Section 2.4 PCA attempts to model data by a low-dimensional subspace

that captures the directions of maximum variance, but it is notoriously sensitive to corrupted

data. People are more interested in finding a robust subspace which is also known as robust

PCA (RPCA). The detection and removal of such corrupted data is a key component of

robust variants of PCA.

Consider as an example the case where m = 2 and r = 1. In this case the columns of the

2 × n matrix X can be visualized as 2-dimensional points, and the matrix V consists of a

single column vector that specifies a 2-dimensional direction. This is illustrated in Figure 2.3.

The red line is the classical PCA applying on the whole dataset. While the green line is

obtained by applying RPCA. RPCA identifies the outliers in the data and fits a line of all

the non-outliers. It is clear that RPCA has smaller approximation error of the non-outliers

than PCA.

To address RPCA problem some approaches propose modifications to the PCA error

function in order to minimize the influence of outliers. A common approach is to replace the

l2 norm in error with l1 norm (Maronna et al., 2018; Press et al., 2007). This is clearly less

13

Outliers

RPCA PCA

Figure 2.3: Robust Principal Components of points with outliers in 2D

effective than removing the outliers entirely where there is no influence of outliers on the

PCA. There are two broad approaches which try to estimate the robust covariance matrix

which can lead to robust principal components, M-estimator based approach (Maronna and

Yohai, 2004; Campbell, 1980) and Projection Pursuit based approach (Li and Chen, 1985;

Hubert et al., 2005). In these methods the computation does not remove the outliers but

iteratively finds the solution which minimizes the impact of the outliers. M-estimator based

methods are known to have problems dealing with high dimensional data (Maronna and

Yohai, 2004). Another approach to robust PCA is via convex relaxation. In (Xu et al., 2010;

Zhang et al., 2015) a convex relaxation of the RPCA problem is formulated and solved.

As this approach does not directly solve the exact problem but rather solves a surrogate

problem, it does not find the optimal solution to the original problem. It is also difficult

to determine what is the sub-optimality bound of the achieved solution. In Chapter 4 we

discuss our RPCA algorithm which gives optimal outliers and RPCA when the number of

outliers is known.

14

2.5.1 Robustness and Outliers

Generally speaking there are two kinds of robustness. One is qualitative robustness, the

other one is quantitative robustness (Huber, 2011; Daszykowski et al., 2007). The qualitative

robustness aims to express the differences between two studied distributions. When either

small changes in all of the observations or large changes in a few of them, the distribution

has small change. The similarity between two distributions can be measured by means of

the Prohorov distance (Daszykowski et al., 2007), Euclidean distance, etc. The quantitative

robustness is used for describing how greatly a small change in the observation changes the

estimator of distribution. This kind of robustness can be measured by breakdown point. The

breakdown point is the smallest fraction of bad observations that may cause an estimator to

take on arbitrarily large aberrant values. For example, the mean of a random variable has

a breakdown point 0, while the median has a breakdown point 0.5 which is the maximum

value of breakdown point. This means that the median is more robust than the mean.

There is no unanimous definition of outliers. In machine learning and statistics literature

outliers are interpreted as the data points which appear to be inconsistent with the remainder

of the dataset (Barnett and Lewis, 1974; Maronna et al., 2018). The interpretation of outliers

changes depending upon the application domain (Chandola et al., 2009). Generally speaking,

however, there are two kinds of outliers (Daszykowski et al., 2007). One is univariate.

The other is multivariate. The univariate outliers are usually noise, e.g., the result of an

experiment error. The multivariate outliers are harder to be distinguished than univariate

outliers. The multivariate outliers usually have another pattern rather than the rest of the

points. To identify multivariate outliers requires projection technique. In (Hubert et al.,

2005) the authors introduce three different types of outliers with respect to projection and

leverage score.

Hodge and Austin in (Hodge and Austin, 2004) provide a problem based classification of

outlier detection methods,

15

Type 1 where we have no prior knowledge of which are the outlier and non-outlier

data points. This is analogous to unsupervised learning.

Type 2 models both the outliers and the non-outlier data points, and requires pre-

labeled outlier and non-outlier points to learn the distribution or model for both. This

type is analogous to supervised learning.

Type 3 models only the non-outlier data points (or in some cases model just the

outliers). This is analogous to semi-supervised learning where some of the non-outlier

points are flagged a priori.

The work in (Chandola et al., 2009) provides a categorization of outlier detection meth-

ods based on the solution approach pursued. A class of outlier detection methods known

as spectral anomaly detection uses a lower dimensional embedding to detect outliers

under the assumption that in a low dimensional embedding of the data the outliers appear

significantly different from the non-outlier points. PCA is one of the tools used for outlier

detection (Jolliffe, 2011; Chandola et al., 2009). Outlier detection methods are called robust

if the existence of outliers in the data used to compute the model for the non-outlier points

does not distort this model in any way (Hodge and Austin, 2004; Rousseeuw and Leroy,

2005). As we saw in (2.7) the error of PCA is the sum of the l2 norms of the approximation

errors of individual data points the principal components are highly sensitive to outliers.

This sensitivity is illustrated in Figure 2.3.

2.5.2 Two Variants

Recent studies have considered many robust variants of the PCA technique. See (Bouwmans

et al., 2017) for a recent survey with nearly 500 references. There are two main camps:

sparse-corruption and column-corruption. In the first one the corrupted data is entry-wise

which is considered as a sparse matrix. As shown in (2.13) most studies set up the problem

16

(a) Original Image

=

(b) Low Rank Image

+

(c) Sparse Image

Figure 2.4: Example of RPCA for Background Subtraction

as that where the input dataset X is the sum of a low rank matrix L and a sparse matrix

S, and convert the problem into an optimization problem. See e.g. (Candès et al., 2011;

Chandrasekaran et al., 2011; Guo et al., 2014; Netrapalli et al., 2014; Peng et al., 2019).

X = L+ S (2.13)

The sparse-corruption variant of RPCA is widely use in computer vision such as subtract-

ing background, eliminating noise. Figure 2.4 shows a background subtraction example on

Waving Tree 1 dataset using a Non-Convex RPCA algorithm (Netrapalli et al., 2014).

Another group of RPCA is that the corruption is column of the data which is also coined

outlier-based RPCA. This variant of RPCA reduces the impact of the column outliers (data

points) in the dataset X. Let P,Q be the sets of non-outlier column indexes and outlier

column indexes in X respectively. XP and XQ are the corresponding non-outliers and outliers

in X. The outlier RPCA aims to get a robust low-dimensional subspace V of XP . In a

mathematical way the outlier-based RPCA minimizes the error in (2.14). Recall that Θ is a

matrix norm, V TV = Ir and µ is the mean of XP .

Θ(XP − µ1T − V A) (2.14)

1https://www.microsoft.com/en-us/download/details.aspx?id=54651

17

Figure 2.5: Outliers Detected by ROBPCA with r = 3 on Waving Tree Video

Figure 2.5 shows some of the frames from the Waving Tree dataset. Few frames where the

person is present are outliers. The images with the red frame are the outliers detected by

ROBPCA (Hubert et al., 2005) with respect to the first three principal vectors. In this

dissertation we are focusing on the second variant of RPCA which is that the input matrix

has column-corruption.

As shown in (2.14) the reconstruction error of column-corruption RPCA relates to the

mean estimator µ. When collecting samples from datasets, it is hard to distinguish whether

each sample is an outlier or not. In this case the RPCA is very sensitive to outliers be-

cause it minimizes the reconstruction error and few outliers with large errors dominate the

reconstruction error. There are many studies addressing this problem. See e.g. (Xu et al.,

2010, 2013; Hubert et al., 2005; Chen et al., 2016; Luo et al., 2016; Rahmani and Atia,

2017; Dong et al., 2019). The work in (Xu et al., 2010, 2013; Chen et al., 2016) considers the

dataset having zero mean and the mean does not change after removing outliers. The studies

in (Rahmani and Atia, 2017) use a coherence score to detect outliers and does not update

the mean. Other studies in (Luo et al., 2016; Hubert et al., 2005; Dong et al., 2019) do not

only get the robust low-dimension subspace but also achieve the robust mean estimator. In

Chapter 4 and Chapter 5 we will have further discussion on several algorithms.

18

CHAPTER 3

HYBRID FEATURE SELECTION AND FEATURE EXTRACTION

In Chapter 2 we introduce two classical approaches to dimensionality reduction: 1. Ap-

proximating the data with a small number of features that exist in the data (feature selec-

tion, FS). 2. Approximating the data with a small number of arbitrary features (feature

extraction, FE). In this chapter we study a generalization that approximates the data with

both selected and extracted features. We show that an optimal solution to this hybrid prob-

lem involves a combinatorial search, and cannot be trivially obtained even if one can solve

optimally the separate problems of selection and extraction. Our approach that gives op-

timal and approximate solutions uses a “best first” heuristic search. The algorithm comes

with both an a priori and an a posteriori optimality guarantee similar to those that can be

obtained for the classical weighted A* algorithm. Experimental results show the effectiveness

of the proposed approach. This work was done in collaboration with Swair Shah, Crystal

Maung, Guihong Wan and Gordon Arnold. The results were published in (Shah et al., 2018;

He et al., 2019)

3.1 Problem being Addressed

As discussed in Chapter 2 feature extraction and feature selection each have unique advan-

tages and disadvantages. A hybrid representation that includes both extracted and selected

features was previously proposed in (Kneip and Sarda, 2011) and (Wang, 2012). The main

idea is that feature extraction works well in situations where the features are highly corre-

lated, while feature selection works well in situations where the data is uncorrelated. There-

fore, these studies apply feature extraction to remove the correlated components and follow

it by feature selection. As we show this approach is not optimal.

19

3.1.1 Our Results

In our model we fix both the number of selected features and the number of extracted

features, and attempt to perform selection and extraction to minimize the approximation

error in various norms. We show that the optimal combination of extraction and selection

cannot be obtained by separate optimal algorithms for selection and extraction and requires a

combinatorial search. To the best of our knowledge we are the first to make this observation.

The model we propose has r1 selected features and r2 extracted features. The approxi-

mation of X is given by:

X ≈ SA1 + V A2

error = min
S,V,A1,A2

Θ(X − SA1 − V A2)

s.t.


S ∈ Rm×r1 ;S ⊂ X

V ∈ Rm×r2

(3.1)

where S consists of r1 columns from X and the r2 columns of V are unconstrained. We refer

to the representation in (3.1) as the “Hybrid Low Rank”, or HLR. Our main result is an

algorithm that computes HLR for any unitarily invariant error criteria. Observe that the

HLR has simple feature extraction and simple feature selection as special cases.

The Algorithm.

An obvious approach to obtain a hybrid low rank representation is to start with the selection

of r1 features and follow it with the extraction of r2 features. Another alternative is to have

the order of selection and extraction reversed. However, it turns out (see Section 3.2.1) that

neither of these approaches is optimal. Instead, we propose to use variants of a “best first”

heuristic search to find optimal and near optimal HLR solutions.

The algorithm that we develop is based on the combinatorial approach to feature selection

described in Arai (Arai et al., 2016). The authors define a search graph for subsets, and use

20

variants of A* to find a solution. The key to their algorithm is the introduction of heuristic

functions that use eigenvalues. We show that the solution to the HLR can be found in a

similar way, but with different heuristic functions.

The Main Contributions.

• A heuristic search algorithm for computing optimal and near optimal hybrid low

rank (HLR).

• A priori and a posteriori bounds for these algorithms.

• Since feature selection is a special case of the HLR (r2 = 0), our HLR algorithm can

also be used for optimal feature selection in all unitarily invariant norms. In particular

this gives the first optimal feature selection algorithm for the spectral norm and for

the nuclear norm.

3.2 Hybrid Low Rank Representations

To simplify expressions related to matrices that are sometimes used as sets of columns we

use the following notation: For two matrices A,B with the same number of rows we write

A ⊂ B to indicate that the columns of A are a subset of the columns of B. We write |A|

for the number of columns in A, and [A|B] for the matrix consisting of the columns of A

followed by the columns of B.

21

Let Θ be an error criterion. We consider the following approximation errors:

EFE(X, r) = min
V,A

Θ(X − V A)

subject to |V | = r

EFS(X, r) = min
S,A

Θ(X − SA)

subject to S ⊂ X, |S| = r

EHLR(X, r1, r2) = min
S,A1,V,A2

Θ(X − SA1 − V A2)

subject to S ⊂ X, |S| = r1, |V | = r2

(3.2)

From (3.2) it easily follows that with r = r1 + r2 we have:

EFE(X, r) ≤ EHLR(X, r1, r2) ≤ EFS(X, r) (3.3)

Thus, one would expect the HLR to have some desired properties of feature selection com-

bined with some desired properties of feature extraction. For example, r1 of the HLR features

are easy to interpret (as in feature selection), and only r2 of them are hard to interpret (as

in feature extraction).

3.2.1 Greedy HLR Is Not Optimal

Suppose we are given a black box algorithm that computes optimal selection, and another

black box algorithm that computes optimal extraction. We show by example that one

cannot perform optimal selection followed by optimal extraction, or vice versa, to compute

the optimal HLR. Consider the following two matrices:

X1 =


100 0 1

0 1 100

0 100 50

 , X2 =


20 0 12

−5 0 100

10 30 0


The goal for both matrices is to optimally select one column (r1 = 1) and extract one

feature (r2 = 1). If optimal selection of one feature is applied to X1, the best selection

22

(in Frobenius norm) is Column 3 (the error is EFS(X1, 1)=133.9). Combining the selection

of Column 3 with an optimally extracted single feature reduces the error to 89.0. This,

however, is not optimal. The selection of Column 1 with one extracted feature reduces the

error to EHLR(X1, 1, 1)=77.4 which is optimal. This shows that optimal selection followed

by optimal extraction does not guarantee the optimal HLR.

Similarly, if optimal extraction of one feature is applied to X2 followed by optimal se-

lection, the error is reduced to 20.44. The selection in this case is Column 2. This is not

optimal since it is possible to extract a feature followed by the selection of Column 3 and

reduce the error to EHLR(X2, 1, 1)=18.8. This shows that optimal extraction followed by

optimal selection does not guarantee the optimal HLR.

3.3 HLR by Heuristic Search

A recent paper (Arai et al., 2016) has shown how to solve CSSP with the weighted A*

algorithm for the Frobenius norm. They create a graph of subsets and perform the search

on that graph. We use the same graph to convert the HLR into a graph search problem

and study the performance of graph search algorithms for this problem. We propose two

heuristics in a standard “best-first” setting. The first heuristic, that we call u, is an upper

bound on the optimal HLR value. As we show, selecting graph nodes according to u gives a

fast greedy algorithm.

The second heuristic, that we call f , is a lower bound on the optimal HLR value. We

prove that using f by itself gives an algorithm that is guaranteed to find the optimal solution.

Experimental results show that the algorithm runs much faster than exhaustive search (and

produces the same results).

We linearly combine f and u to create the following heuristic: f ′ = f + εu. This gives a

much faster algorithm than using f by itself. This is similar to the weighted A* approach,

23

{}

{x1} {x2} {x3}

{x1, x2} {x1, x3} {x2, x3}

{x1, x2, x3}

Figure 3.1: Example of the subsets graph

and we prove that the solution found by our algorithm comes with guaranteed bounds on

its accuracy.

3.3.1 The Subsets Graph

The subsets graph is created with nodes corresponding to column subsets. There is an edge

from subset Si to subset Sj if adding one column to Si creates Sj. The graph generated

for the matrix X = (x1, x2, x3) is shown in Figure 3.1. Even though a subset graph is not

a tree, it has two properties that are typically associated with trees. The first property is

that it has a root, corresponding to the empty subset. The second is that all paths leading

from the root to a node can be considered equivalent. For example, if the goal node {x1, x3}

is found, it is irrelevant if it is reached by the path {} → {x1} → {x1, x3} or by the path

{} → {x3} → {x1, x3}. This is similar to the case of a tree where the choice of path leading

to a node is irrelevant since there is a unique path leading from the root to any node.

3.3.2 The Heuristic Search Algorithm

The algorithm in Figure 3.2 performs the search for the optimal HLR. It is similar to the

standard “best-first” algorithm except for the following notable difference. The standard

graph search algorithm updates a node in the fringe if a better path to it is found (in Line 8

24

Input: X,r1,r2, and a heuristic function f ′(n).
Output: a subset S of selected columns.
Data Structures: Each node ni keeps the subset Si, and f ′i . Two global lists: the

fringe list L, and the closed nodes list C.
Initialization: Put an empty subset into L.

1 while L is nonempty do
2 Pick ni with the smallest f ′i from L. Ties are resolved in favor of the

larger |Si| (depth).
3 if Si contains r1 columns then
4 Stop and return Si as the solution subset.
5 else
6 Add ni to C.
7 for each child nj of ni do
8 if nj is not in C or L then
9 Compute f ′j from X, Sj, r1, and r2.

10 Put nj with its corresponding f ′j in L.

11 end

12 end

13 end

14 end

Figure 3.2: The best-first search algorithm

of the algorithm, when nj is in the fringe). In our algorithm there is no such update. As

explained in Section 3.3.1, all paths to the same subset are equivalent, and the value of the

node depends only on the subset and not on the path leading to the subset.

3.3.3 Heuristic Functions

The HLR is defined in terms of X, r1, r2. At each node ni the subset Si and its size ki = |Si|

are known. Recall that the error EHLR is the smallest error of approximating X by a selection

of r1 columns and the best possible additional r2 unconstrained vectors. We describe the

25

heuristic functions used to address this problem in (3.4).

EHLR(X, r1, r2) = min
S,A1,V,A2

Θ(X − SA1 − V A2)

subject to S ⊂ X, |S| = r1, |V | = r2

di = d(ni, r1, r2) = min
S,A1,V,A2

Θ(X − SA1 − V A2)

subject to Si ⊂ S ⊂ X, |S| = r1, |V | = r2

ui = u(ni, r2) = min
A1,V,A2

Θ(X − SiA1 − V A2)

subject to |V | = r2

fi = f(ni, r1, r2) = min
A1,V,A2

Θ(X − SiA1 − V A2)

subject to |V | = r1 + r2 − ki

(3.4)

The function di at node ni is defined as the smallest error of approximating X by a selection of

r1 columns that include Si and the best possible additional r2 unconstrained vectors. This is

the value at the best goal node below ni. The function ui at node ni is defined as the smallest

error of approximatingX by the selection Si and the best possible additional r2 unconstrained

vectors. The function fi at node ni is defined as the smallest error of approximating X by

the selection Si and the best possible additional r1 + r2 − ki unconstrained vectors, where

ki = |Si|.

Observe that EHLR and di cannot be calculated efficiently since the optimal selection S

is unknown. By contrast, ui and fi use only the partial selection available at the given node,

and as shown later can be computed efficiently. Clearly, the best heuristic choice for the

algorithm is f ′i = di. But since it cannot be efficiently calculated we consider other choices

using fi and ui. The motivation behind these choices is that both fi and ui can be viewed

as approximations of di, as shown in Proposition 3.1.

Proposition 3.1. For each node ni:

f(ni, r1, r2) ≤ d(ni, r1, r2) ≤ u(ni, r2)

26

and at a goal node (where ki=r1) the inequalities become equalities.

Proof. To see that fi ≤ di observe that both fi and di use the same number of vectors

(r1 + r2), and both use the ki vectors in Si. The rest of the vectors are unconstrained in fi

but partially constrained in di. This proves the left hand side inequality.

To see that di ≤ ui, let Si, V be the vector subsets that are used to calculate ui. The

minimum in the definition of di includes the subsets Si and V (and additional vectors). This

proves the right hand side inequality.

If ki = r1 then the definitions of fi and ui are identical. �

3.4 Unitarily Invariant Monotonic Functions

The FE, FS, and HLR were defined in (3.2) in terms of a general error criterion Θ. They

are used in Section 3.3 to compute the heuristic functions fi, ui. The computation of fi, ui

requires the solution of the following optimization problems: Given the matrices X and V

compute efficiently:

V = arg min
V,A

Θ(X − V A) subject to |V | = r2

A = arg min
A

Θ(X − V A)

(3.5)

These optimization problems cannot be easily solved for arbitrary matrix norms. For exam-

ple, if Θ is the l1 entrywise matrix norm then the problem is known to be NP-hard (Gillis

and Vavasis, 2018; Song et al., 2017). By contrast, as we point out here there is an efficient

solution for a large family of error criteria, which include many commonly used norms.

Unitarily invariant matrix norms do not change their values if the matrix is rotated.

Specifically, if Θ is a unitarily invariant norm then Θ(E) = Θ(UEV T) for any matrix E and

orthogonal matrices U, V . It can be shown that a unitarily invariant norm can always be ex-

pressed as a monotonically non-decreasing function of its singular values. See e.g., (Marshall

et al., 2011).

27

Thus, we have the following relation:

Θ(A) = θ(σ1, . . . , σm)

where A ∈ Rm×n, σ1 ≥ σ2 . . . ≥ σm are its singular values, and θ is monotonically increasing

in all its arguments. We observe that the opposite is not true. There are monotonically

increasing functions θ that do not correspond to norms. Here is a list of common error

criteria and their description in terms of the function θ:

Spectral: θ = σ1,

Frobenius: θ = (
∑m

j=1 σ
2
j)

1/2,

Nuclear: θ =
∑m

j=1 σj,

Schatten: θ = (
∑m

j=1 σ
p
j)

1/p for p > 0

Clearly, these are all monotonically increasing functions. However, the Schatten p-norms

are not matrix norms for 0 < p < 1. See, e.g., (Tao, 2012). Also observe that both the

Frobenius and the Nuclear norms are special cases of the Schatten p-norm but the Spectral

norm is not.

Definition 3.1 (Unitarily Invariant Monotonic). A matrix function Θ is called unitarily

invariant monotonic if:

1. Θ(E) = θ(σ1, . . . , σm), where σi are E singular values.

2. θ is nondecreasing in all of its arguments.

We are interested in unitarily invariant monotonic functions because of the properties

given in Theorem 3.1.

Theorem 3.1. Suppose Θ(E) is unitarily invariant monotonic. Let X ∈ Rm×n,V ∈ Rm×r,

A ∈ Rr×n be three matrices. Then:

1. If X and V are known then A = V +X minimizes Θ(X − V A), where V + is the pseudo-

inverse of V .

28

2. If X is known then the matrix V consisting of the r eigenvectors corresponding to the

largest eigenvalues of XXT minimizes Θ(X − V A).

Proof. Part 1 appears in the proof of Theorem B.7 in (Marshall et al., 2011). When Θ is a

unitarily invariant norm Part 2 is the celebrated Eckart and Young theorem (Marshall et al.,

2011). The extension to monotonic functions that are not norms is less well known. A proof

can be found in Part b of Theorem 3.2 in (Mathar and Meyer, 1993). �

Efficiently Computing fi and ui

Recall that:

fi = f(ni, r1, r2) = min
A1,A2,|V |=r1+r2−ki

Θ(X − SiA1 − V A2)

where X and Si are known. When Θ is unitarily invariant monotonic function the following

procedure can be used to calculate fi.

1. Compute A1 = arg minA1 Θ(X − SiA1). A1 = S+
i X.

2. Compute X1 = X − SiA1.

3. Compute V = arg min|V |=r1+r2−ki Θ(X1 − V A2) where ki = |Si|. The desired V is the

top r1 + r2 − ki eigenvectors of X1X
T
1 .

4. Compute A2 = arg minA2 Θ(X1 − V A2). A2 = V TX1.

5. Compute fi = Θ(X1 − V A2) from the singular values of X1 − V A2.

The calculation of ui is essentially the same, where the only difference is the number of

eigenvectors that are needed in Step 3.

The expensive part of the above procedure is the calculation of the eigenvectors (in Step 3)

and singular values (in Step 5). These eigenvectors and singular values can be computed

efficiently by observing the following. The eigensystem to be solved for the children of a

29

parent node (in Line 9 of the algorithm in Figure 3.2) is a rank-one update of the eigensystem

calculated for the parent node. This can be implemented with specialized fast eigenvalue

routines (Golub, 1973; Borges and Gragg, 1993).

3.5 The Three Variants of The Algorithm

Proposition 3.1 shows that the optimal heuristic di is “sandwiched” between fi and ui. We

consider three different options for running the algorithm. The first is the choice f ′i = ui,

the second is the choice f ′i = fi, and the third takes f ′i between fi and ui. Specifically, for

the third choice we observe that taking f ′i = (1− β)fi + βui with 0 ≤ β ≤ 1 is equivalent to

taking f ′i = fi + εui with ε = 1−β
β

, ε ≥ 0.

The Greedy HLR algorithm: f ′
i = ui.

We prove in Theorem 3.2 that using f ′i=ui gives a greedy algorithm that examines exactly

r1 nodes before terminating with a solution.

The Optimal HLR algorithm: f ′
i = fi.

We prove in Theorem 3.3 using f ′i=fi gives an algorithm that is guaranteed to find the

optimal solution.

The Suboptimal HLR algorithm: f ′
i = fi + εui.

We prove in Theorem 3.4 that using f ′i=fi+εui guarantees a solution “close” to the optimum.

Bounds on the distance between the optimum and the solution can be calculated a priori

before the algorithm is executed, and a posteriori , after the algorithm terminates.

3.5.1 Proofs

Theorem 3.2. With the choice f ′i = ui, the algorithm terminates after examining r1 nodes.

30

Theorem 3.3. With the choice f ′i = fi, the algorithm terminates with an optimal solution.

The optimal solution error is EHLR(X, r1, r2).

Theorem 3.4. Let n∗ be an optimal solution node for the HLR. Let e∗ = EHLR(X, r1, r2) be

the error at n∗. Suppose the algorithm is using f ′i = fi + εui, with ε ≥ 0. Let n∗∗ be the goal

node found by the algorithm. Let e∗∗ be the error at n∗∗, and f∗∗ be the value of f at n∗∗. Let

umax be the largest value of u in the nodes remaining at the Fringe list after the goal node is

reached. Then:

e∗∗ ≤ e∗ + ε(umax − f∗∗) (3.6)

Lemma 3.1. fi is monotonically increasing along any path.

Proof. Suppose nj is a child of ni, so that Sj = [Si|x], where x is the added column. We

need to show:

f(nj, r1, r2) = min
|Vj |=r1+r2−ki−1

min
A

Θ(X − [Si|x|Vj]A)

≥ min
|Vi|=r1+r2−ki

min
A

([Si|Vi]A)

= f(ni, r1, r2)

This follows because the minimum on the right hand side has one unconstrained vector that

is constrained on the left hand side. �

Lemma 3.2. The value of ui is monotonically decreasing along any path.

Proof. We need to show that if nj is the child of ni then uj ≤ ui. From the definition

in (3.4) the right hand side reduces the error with the subset Si while the left hand side

reduces the error with the subset Sj, which includes Si and one additional column. Clearly,

the additional column can only reduce the error. �

Lemma 3.3. Consider the choice f ′i = ui. Let ni be the node picked at Line 2 of the

algorithm. Let nj be a child of ni. The following two properties hold:

31

a. The depth |Sj| of nj is larger than the depth of all other nodes currently in the fringe.

b. The next node to be picked is a child of ni.

Proof. The proof is by induction. Property a. follows trivially from Property b.. To prove

Property b. observe that from Lemma 3.2, ui is monotonically decreasing (non-increasing)

along any path. Therefore, the f ′ values of the children of ni will be no greater than the f ′

values of all the nodes currently in the fringe. Property a. guarantees that the tie breaker

will always be decided in favor of a child, so that the child of ni will be selected next. �

Lemma 3.4. Suppose Theorem 3.4 is false. Then for any node nz on the path from the root

to n∗ the following condition holds: f ′z < f ′∗∗.

Proof. The falsehood of Theorem 3.4 can be written as follows: e∗∗ > e∗+ε(umax−e∗∗). Since

both n∗ and n∗∗ are goal nodes Proposition 3.1 implies: e∗∗ = f∗∗ = u∗∗ and e∗ = f∗ = u∗.

Using this and some algebra it can be shown that an equivalent falsehood condition is:

f∗∗ > f∗ + ε
1+ε

(umax − f∗). The lemma can now be proved as follows:

f ′∗∗ = f∗∗ + εu∗∗ = (1 + ε)f∗∗ (c1)

> (1 + ε)f∗ + ε(umax − f∗) = f∗ + εumax (c2)

≥ fz + εumax ≥ fz + εuz = f ′z (c3)

c1 : from the definition of f ′. c2 : from the equivalent falsehood assumption. c3 : from

Lemma 3.1 f∗ > fz. �

Proof of Theorem 3.2:

Proof. The proof follows trivially from Lemma 3.3. �

Proof of Theorem 3.3:

Proof. The proof follows as a corollary of Theorem 3.4 with ε = 0. �

32

Proof of Theorem 3.4:

Proof. If the theorem is false then from Lemma 3.4 it follows that all nodes on the path from

the root to n∗ have smaller f ′i values than f ′∗∗. Since at any given time at least one of them

is in the fringe list, they should all be selected before n∗∗ is selected. But this means that

n∗ is selected as the solution and not n∗∗. �

3.5.2 A priori and a posteriori Bounds

Both the Greedy HLR and the Suboptimal HLR are not guaranteed to produce the optimal

solution. We proceed to show how to obtain bounds on how close their solution is to the

optimal. We call a bound a priori if it can be calculated before the run of the algorithm

and a posteriori if it can only be calculated after the run of the algorithm.

Consider a run of a nonoptimal algorithm producing the nonoptimal value of f∗∗, while

the optimal value is f∗. The value of f∗∗ can be bounded as follows:

f∗∗ ≤ f∗ +B, B ≥ f∗∗ − f∗

We refer to the value of B as a bound, where a smaller B indicates a better bound, and

B = 0 implies an optimal solution.

The a posteriori bounds that we describe require the examination of the fringe list after

the run of the algorithm. In particular we compute the following two values from the fringe

list:

fmin = min
ni∈F

fi, umax = max
ni∈F

ui

In addition, the a posteriori bounds use the value f∗∗ at the (nonoptimal) goal node.

From Lemma 3.1 it follows that f∗ ≥ fmin, so that B1 = f∗∗ − fmin is an a posteriori

bound for all variants of the algorithm.

33

Greedy HLR

Greedy HLR has the following a priori bound: B2 = uroot − froot. This bound follows from

Proposition 3.1. The only a posteriori bound of Greedy HLR is B1.

Suboptimal HLR

Suboptimal HLR has the following a priori bound: B3 = εuroot. This bound follows from

Theorem 3.4 and Lemma 3.2 by observing that:

ε(umax − f∗∗) ≤ εuroot

Suboptimal HLR has two a posteriori bounds: B1 and B4 = ε(umax − f∗∗). Clearly, its

effective bound is the minimum of the two.

3.5.3 Using a posteriori Bound to Improve The Result

A paper by Thayer and Ruml (Thayer and Ruml, 2008) shows how to use the a posteriori

bounds to improve the output of the classic weighted A* algorithm. The idea is to run

the weighted A* algorithm to convergence, and then identify the node in the fringe list that

affects the bound the most. That node is then expanded, its children are added to the fringe,

and the weighted A* algorithm continues with the new fringe. Typically, a single iteration of

this algorithm would either improve goal node or improve the a posteriori bound. Figure 3.3

describes the algorithm in detail.

3.6 Relationship to Previous Work

In this section we discuss the relationship between the algorithm presented here and classical

work on the weighted A* algorithm. We also compare our work to the results of (Arai et al.,

2016).

34

Input: X,r1,r2, ε, T .
Output: a subset S of selected columns.

1 Start with an empty fringe F and a Closed list C.
2 for t = 1, . . . , T do
3 Run either the Greedy HLR or the Suboptimal HLR to convergence, using F

and C.
4 Go over the fringe F , identify the nodes nb1 and nb4, and compute the values of

B1, B4.
nb1 = arg min

ni∈F
fi, nb4 = arg max

ni∈F
ui

5 if B1 < B4 then
6 Expand nb1.
7 else
8 Expand nb4.
9 end

10 end

Figure 3.3: Optimistic Search Algorithm

There are many similarities between our model and the classical weighted A* graph search

algorithm, see e.g. (Pearl, 1984). The most important one is introduction of the heuristic

function f with the following three key properties: 1. f is a lower bound on the true value at

the goal. 2. f is monotonically increasing. 3. At a goal node the value of f is the value that

one attempts to minimize. Although a heuristic function is also introduced in the classical

theory of (weighted) A* search, its definition is entirely different. On the other hand, there

is no function in our setting that corresponds naturally to the functions g (distance from the

root) or h (heuristic) in the classical theory. Similarly, there is no natural function in the

classical theory that corresponds to the function u in our setting.

The similarity in the properties of f makes our suboptimality proofs similar to the classi-

cal proofs of weighted A* suboptimality , see e.g. (Pearl, 1984). However, since the heuristic

functions used here are different from those used in graph search, one cannot use the classical

proofs “as is” and apply them to our case. In particular, our Lemma 3.1 has a corresponding

lemma in the classical theory, and our proof idea of Lemma 3.4 is similar (but not identical)

35

to the classical theory. However, there is no correspondence to our Proposition 3.1 (right

hand side), Lemma 3.2, and Theorem 3.2. The bound obtained in Theorem 3.4 is also dif-

ferent. The result for the classical weighted A* algorithms are in terms of a relative bound,

while the guarantees in our case are in terms of an additive bound. Still, the similarity

between the approaches enables us to map ideas that were developed in the classical theory

to our setting. We demonstrated this with the Optimistic Search Algorithm that can be

applied almost verbatim in our case. (The only difference is the exact formulas for the a

posteriori bounds.)

Our work is motivated by the study described in Arai (Arai et al., 2016). The main

difference is that our results are for the HLR, and do not use any norm specific assumptions.

By contrast, the Arai proofs are for the CSSP which is a special case of the HLR, and they

make use of the Frobenius norm assumption.

3.7 Experimental Results

Running Time

Figure 3.4 shows running-time on the dataset vehicle. The left panel shows that the algorithm

with f ′i = fi is significantly faster than exhaustive search. The right panel shows that using

fi + ui runs much faster than fi.

Optimal Feature Selection

As discussed in Section 3.1.1 feature selection is a special case of the HLR. Our algorithm

is the first nontrivial algorithm for optimal feature selection for unitarily invariant error

criteria besides Frobenius. The results for various norms are shown in Table 3.1. We do not

include the results when algorithms run more than five minutes. They are compared with

two algorithms. The column ARSS shows results obtained by the algorithm of Zhu (Zhu

36

0 2 4 6 8 10

0

1,000

2,000

3,000

4,000

r1

T
im

e
(S

ec
on

d
s)

Exhaustive
f ′ = f

0 2 4 6 8 10

0

1

2

3

4

5

6

7

r1

T
im

e
(S

ec
on

d
s)

f ′ = f
f ′ = f + u

Figure 3.4: Running time of HLR on the dataset vehicle. x-axis shows r1 and r2=10 − r1.
Error criterion is the Schatten p-Norm with p=0.25.

Table 3.1: Accuracy comparison under Nuclear norm and Spectral norm. The minimum
error is highlighted.

Error
r1 f ′ = f

f ′ = f ′ = f ′ =
f ′ = u

f ′ = u
ARSS GE

Criterion f + 0.2u f + 0.4u f + 0.8u a priori a posteriori
vehicle dataset (m = 846 , n = 18)

Nuclear 5 1399.20 1402.64 1569.49 1569.49 1569.49 24490.7 270.83 3465.75 -
Spectral 5 247.58 326.12 326.12 326.12 326.12 19600.32 82.66 - 248.58
Nuclear 10 466.85 520.18 520.18 520.18 520.18 25371.7 105.55 1682.16 -
Spectral 10 112.19 138.80 144.99 144.99 148.60 19744.0 48.85 - 131.68

spectf dataset (m = 267 , n = 45)
Nuclear 5 3814.14 3814.14 3816.69 3817.42 3821.42 8334.75 435.57 4598.65 -
Spectral 5 252.69 257.91 290.60 290.60 280.45 6841.58 78.09 - 348.24
Nuclear 15 - - 2297.04 2292.79 2292.79 9850.00 457.51 3091.28 -
Spectral 15 - 152.12 151.83 165.41 183.42 6938.17 82.43 - 154.62

libras dataset (m = 360 , n = 90)
Nuclear 4 68.44 68.53 68.53 68.48 71.55 135.88 11.03 91.79 -
Spectral 4 8.558 9.954 9.954 9.954 13.182 84.62 4.80 - 11.863
Nuclear 30 - 6.134 6.185 6.322 6.322 189.90 1.89 8.235 -
Spectral 30 - 0.343 0.351 0.351 0.712 92.80 0.50 - 0.4211

et al., 2015). Their algorithm cannot be used to compute the Spectral norm, so we use the

algorithms of Gu and Eisenstat (Gu and Eisenstat, 1996) instead.

37

Table 3.2: Error of HLR with r1 + r2 = 10 on vehicle dataset

r1 r2
Schatten
(p = 0.5)

Nuclear Frobenius Spectral

0 10 2987.72 414.46 169.57 99.75
2 8 2993.18 415.43 170.04 99.77
4 6 3014.01 418.66 171.52 100.38
6 4 3066.94 426.56 174.85 101.94
8 2 3138.24 437.36 178.44 102.51

10 0 3362.84 466.85 189.81 112.19

Comparison to Feature Selection and Extraction

Table 3.2 shows the accuracy comparison among the PCA, the HLR and the CSSP using

f ′ = f with different norm. In all cases we pick a total of r1+r2 = 10 columns to approximate

the dataset X. One extreme is the case {r1 = 0, r2 = 10}, which corresponds to the PCA,

and the other extreme {r1 = 10, r2 = 0}, is the CSSP. We can see that the PCA (feature

extraction) gives the most accurate approximation of the data. The CSSP (feature selection)

gives the least accurate results. The error of HLR is between those obtained by PCA and

CSSP. This is a further example shown that by tuning the parameters r1 and r2 we can

control the accuracy and robustness of the algorithm.

In Section 3.2.1 we show a simple example that an optimal combination of selected

features and extracted features cannot be solved by sequentially obtained one and the other.

Table 3.3 illustrates that the HLR cannot be solved by first performing the selection and

then follow it by the PCA on two real datasets.

Minimizing Entry-wise l0 and l1 Norms

As discussed in Section 2.2 a current topic of interest is the computation of low rank rep-

resentation minimizing entrywise l0 and l1 norms. We found experimentally that feature

selection typically gives lower errors for entry-wise l0 and l1 norms than feature extraction,

38

Table 3.3: Errors of the HLR

Error Criterion r1 r2 Optimal HLR Optimal CSSP followed by PCA
vehicle dataset (m = 846 , n = 18)

Schatten (p = 0.5) 4 6 3.014E2 3.191E2
Nuclear 4 6 4.187E2 4.438E2

Frobenius 4 6 1.715E2 1.780E2
Spectral 4 6 1.004E2 1.028E2

Schatten (p = 0.5) 6 4 3.067E2 3.217E2
Nuclear 6 4 4.266E2 4.531E2

Frobenius 6 4 1.748E2 1.848E2
Spectral 6 4 1.019E2 1.095E2

Schatten (p = 0.5) 6 6 1.258E2 1.329E2
Nuclear 6 6 2.292E2 2.476E2

Frobenius 6 6 1.063E2 1.138E2
Spectral 6 6 7.085E1 7.317E1

spectf dataset (m = 267 , n = 45)
Schatten (p = 0.5) 2 3 1.268E3 1.299E3

Nuclear 2 3 3.443E3 3.547E3
Frobenius 2 3 6.261E2 6.528E2

Spectral 2 3 2.035E2 2.348E2
Schatten (p = 0.5) 3 2 1.295E3 1.318E3

Nuclear 3 2 3.523E3 3.670E3
Frobenius 3 2 6.433E2 6.841E2

Spectral 3 2 2.070E2 2.717E2
Schatten (p = 0.5) 3 3 1.183E3 1.201E3

Nuclear 3 3 3.280E3 3.399E3
Frobenius 3 3 5.994E2 6.283E2

Spectral 3 3 1.918E2 2.338E2

though feature extraction performs better in terms of the unitarily invariant norm used as

the error criterion. The hybrid low rank approach allows us to balance this trade-off, reduc-

ing the unitarily invariant norm while at the same time reducing the error in the l0 and/or

l1 norms. Table 3.4 shows that for a fixed r, increasing r1 indeed reduces the entry-wise l0

and l1 norms.

39

Table 3.4: Reduction in l0 and l1 entrywise norms with increased r1

Norm r1 r l0 error l1 error

spectf dataset (m = 267 , n = 45)

Nuclear
1 30 0.693 1.16
3 30 0.671 1.15
5 30 0.647 1.13

p = 0.25
1 30 0.691 1.16
3 30 0.675 1.16
5 30 0.649 1.14

vehicle dataset (m = 846 , n = 18)

Frobenius
1 10 0.562 0.92
5 10 0.472 0.831
9 10 0.342 0.71

p = 0.4
1 10 0.562 0.92
5 10 0.465 0.819
9 10 0.342 0.71

Experiments with Big Sparse Data.

We describe experiments with the Greedy HLR algorithm applied to the TechTC dataset.

The matrix size in this case is 163× 29261. This means that the algorithm selection is from

29261 features. Exhaustive search algorithms are clearly not practical in this case. (For

example, there are approximately 10288 subsets of selecting 100 features out of 29261, which

is significantly more than the number of atoms in the universe.) The results are shown in

Table 3.5. The value of the bounds is given as the ratio between the bounds and the errors

at the goal node.

Experiments with The Optimistic Search Algorithm

We do experiments with the Optimistic Search Algorithm, as discussed in Section 3.5.3. The

results are shown in Table 3.6. Observe that the solution error does not change, but the

relative error bound is being reduced (slightly) with additional iterations.

40

Table 3.5: Greedy HLR on TechTC01 data with relative bounds

r1 Bound r2 = 0 r2 = 5 r2 = 10

100
a priori 530.37 122.62 100.46

a posteriori 0.19 0.15 0.13
solution error 21354.43 15511.81 11278.12

120
a priori 1606.61 430.05 391.93

a posteriori 0.24 0.16 0.12
solution error 7056.89 4445.01 2909.46

140
a priori 9410.57 4065.81 9779.79

a posteriori 0.28 0.17 0.07
solution error 1205.26 470.98 116.84

Table 3.6: Relative a posteriori bounds of the Greedy HLR with Optimistic Search Algorithm
on the TechTC01 dataset

r1 : r2
Iterations

solution error
1 10 100

42:0 0.09173 0.09171 0.09156 273585.83
42:5 0.06124 0.06122 0.06105 214917.10

42:10 0.04434 0.04434 0.04416 170169.98
5:0 0.04592 0.04528 0.03664 2.02e6
5:5 0.01126 0.01033 0.00854 1.16e6

5:10 0.00388 0.00385 0.00299 8.25e5

3.8 Concluding Remarks

This chapter introduces the “Hybrid Low Rank” (HLR) representation of a matrix as a low

rank matrix representation that uses both selected features and extracted features. It was

shown that an optimal HLR representation cannot be obtained by first selecting features

and then extracting features, or vice versa. Instead, it requires a combinatorial search.

An algorithm that uses the “best-first” heuristic search approach was described. Three

variants, optimal, suboptimal and greedy, were listed, all with the same overall structure but

each using different heuristics. A priori and a posteriori bounds are provided for suboptimal

41

and greedy variants. These two bounds show how close the results are to the optimal solution.

We also shows how to use the a posteriori bound to improve the final output results.

The algorithm works with any unitarily invariant norm. By setting the extraction feature

number to zero, the algorithm can be used to select the optimal features. This is the first

optimal feature selection algorithm for the spectral norm and the nuclear norm.

42

CHAPTER 4

ROBUST PRINCIPAL COMPONENT ANALYSIS VIA OUTLIERS 1

In Chapter 2 we discussed PCA, RPCA and the impact of outliers on RPCA. In this chapter

we formulate RPCA problem in the same framework of heuristic search which is introduced

in Chapter 3. Our formulation of Robust PCA gives a natural definition of outliers for PCA.

We provide an optimal algorithm and a range of other faster variants with suboptimality

guarantees. We compare it with the popular convex relaxation formulation. This work was

done in collaboration with Swair Shah, Baokun He and Crystal Maung. The results were

published in (Shah et al., 2017).

4.1 Problem Being Addressed

We consider the following optimization problem. The input is the matrix X of size m × n,

a number k ≤ n of outliers, and the desired number r of principal components. The output

is the index subset P such that |P | = n − k, an orthogonal matrix V of size m × r, and a

matrix A of size r × (n− k). The output is computed to minimize the following error:

e(P, V,A) = ‖XP − V A‖2F (4.1)

In the above equation XP is the matrix consisting of the columns of X with index values in

P . Thus, the error in (4.1) evaluates how well the low dimensional model fits the non-outlier

columns. The error is not affected by how accurate the model fits outlier vectors. It is

easy to see that when Q, the set of k outlier columns is known, the values of P, V.A that

1 c©2017 IEEE. Portions adapted, with permission, from Shah, Swair, Baokun He, Crystal Maung, and
Haim Schweitzer. “Computing Robust Principal Components by A* Search.” In 2017 IEEE 29th Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI), pp. 1042-1049. IEEE, 2017.

43

minimize (4.1) can be easily calculated as follows:

P (Q) = {1, . . . , n} \ Q (P is the complement of Q)

V (Q) is the matrix of the r principal components of XP (Q).

A(Q) = arg min
A
‖XP (Q) − V (Q)A‖2F = V +XP

(4.2)

where V + is the pseudoinverse of V . This shows that the error in (4.1) is a function of Q:

e(Q) = e(P (Q), V (Q), A(Q)) (4.3)

Therefore, in this variant of robust PCA the challenge is to identify the outlier columns.

Since there are
(
n
k

)
possible choices of k column subsets, the exhaustive search approach

of evaluating the errors of all such subsets and then selecting the subset with the smallest

error is unacceptably slow. To the best of our knowledge this research is the first to propose

an algorithm that is guaranteed to find the optimal solution to this problem, and runs

significantly faster than exhaustive search.

4.2 Previous Approaches

Instead of removing the outliers, some robust estimation approaches attempt to minimize

their influence on the predicted model. For example, in a line fitting task such as the one

shown in Figure 2.3 one may attempt to evaluate the error in terms of absolute deviations

(the l1 norm) instead of squared deviations (the l2 norm) as implied by the Frobenius norm

that we use. See, e.g., (Maronna et al., 2006; Press et al., 2007).

A different technique of identifying outliers is based on “leverage scores”. Let X = V ΣUT

be the Singular Value Decomposition (SVD) of the matrix X. Then U is an n ×m matrix

with orthonormal columns. Let u1, . . . , uk be the columns of U corresponding to the largest

singular values. Define the leverage score of Column i as:

leverage score(i) =
k∑
j=1

(uj(i))
2 for i = 1, . . . , n (4.4)

44

It is known that outlier columns have high leverage scores, so that the k largest leverage

score values identify k outliers. See, e.g., (Hoaglin and Welsch, 1978; Chatterjee and Hadi,

1986).

Another approach to outlier detection for computing robust PCA is the Outlier Pursuit

algorithm. It uses a relaxation of the optimization problem in (4.1) that leads to a convex

optimization problem. See references (Xu et al., 2010; Zhang et al., 2015) for additional

details. An experimental comparison between the outlier pursuit method and our approach

is described in Section 4.6.

A recent approach to outlier detection for robust PCA is the “Coherence Pursuit”, de-

scribed in Reference (Rahmani and Atia, 2017). It is a very fast method that can be applied

effectively to large datasets. Unfortunately, what they consider to be outliers is different

from what is considered an outlier in previous work. They ignore vector lengths and their

measure of coherence is related to the average Cosine of the angle between a vector and all

other vectors. As such, their accuracy results cannot be compared with ours or the other

methods reviewed here.

4.3 The Main Tools

Our algorithms are based on the classical A∗ algorithm with heuristics that require an efficient

computation of eigenvalues. These tools are reviewed in this section.

A∗ algorithms for searching graphs.

A∗ search is a well known heuristic search algorithm for graphs. See, e.g., (Hart et al., 1968;

Pearl, 1984; Russell and Norvig, 2010). In its standard formulation the algorithm computes

a path between two given nodes, guided by a heuristic function hi that can be computed at

each node ni. The algorithm expands nodes according to a criterion fi, which is computed

45

from hi by the following formula:

fi = gi + hi

In the above formula gi is the distance between the initial node and ni, and the heuristic

function hi is problem specific. The optimality of A∗ depends on the particular properties

of hi. Consistency (see references above for the definition) of hi guarantees optimality in

a fast variant where each graph node is visited at most once. The weaker condition of

admissibility (see references above for the definition) is sufficient to guarantee optimality in

a slower variant that may visit the same node multiple times.

Weighted A∗ algorithms for searching graphs.

The only difference between the A∗ algorithm and the weighted A∗ algorithm is a slightly

different method of combining the heuristics. Specifically, the algorithm expands nodes

according to a criterion f ′i which is given by the following formula:

f ′i = fi + εhi = gi + (1 + ε)hi

For ε > 0 the weighted A∗ algorithm is not guaranteed to find an optimal solution, but it

typically runs significantly faster than the A∗ algorithm. It is guaranteed to find a solution

within (1 + ε) of the optimum. See, e.g., (Pearl, 1984).

Rank-one update eigenvalue calculations.

The heuristic evaluations in our algorithms use eigenvalues. Let X0 be an m × k matrix,

and let X1 be an m× (k− 1) matrix, constructed by removing the single column x from X0.

Suppose we are given the eigenvalues and the eigenvectors of the matrix B0 = X0X
T
0 . The

heuristics in our algorithms require efficient calculations of the eigenvalues of B1 = X1X
T
1 =

B0 − xxT .

46

This rank-one update problem has attracted a lot of attention. It was shown in (Golub,

1973) that the eigenvalues of B1 are roots of a “secular” equation that can be constructed

from the eigenvalues and the eigenvectors of B0 and x. Studies of efficient numeric procedures

for computing the roots of the secular equation include (Bini and Robol, 2014; Bunch et al.,

1978; Melman, 1998; Borges and Gragg, 1993). In our experiments we use the Gragg method,

as described in (Melman, 1998; Borges and Gragg, 1993).

4.4 Our Approach

As shown in Equation (4.3) it is possible to assign an error value to each column subset of

X by considering that subset to be the outliers. We use the similar frame to the one used

in Chapter 3. The main idea is to consider a graph that describes the relationship between

these subsets, and then perform a graph search for a subset of size k that has the smallest

error. The subset graph that we create is the same as the one used in (Arai et al., 2015,

2016). The search techniques that we propose are also similar to those described in these

studies. Specifically, we use a variant of the A∗ algorithm to compute the optimal solution,

and a variant of the weighted A∗ algorithm to compute a solution with guaranteed bounds

on sub-optimality. The main difference between these previous studies and the current work

is the heuristics that are being used. We propose heuristic functions that are specifically

designed to compute the outliers, and provide proofs of optimality and sub-optimality for

the algorithms that use these heuristic functions.

4.4.1 The Subset Graph

We use the column subset graph described in Figure 3.1 of Chapter 3 again. The only

difference is that in this case the nodes in the graph contain subsets of data points instead

of subsets of features. There is an edge from Subset Qi to Subset Qj if adding a single data

point to Qi creates Qj. Even though a subset graph is not a tree, it has two properties that

47

are typically associated with trees. The first property is that it has a root, corresponding

to the empty subset. The second is that all paths leading from the root to a node can be

considered equivalent. For example, if the goal node {x1, x3} is found, it is irrelevant if it

is reached by the path {} → {x1} → {x1, x3} or by the path {} → {x3} → {x1, x3}. This

is similar to the case of a tree where the choice of path leading to a node is irrelevant since

there is a unique path leading from the root to any node.

4.4.2 The A∗ Algorithm

The algorithm in Figure 4.1 performs search for column subsets. It is a generic version of

the A∗ algorithm that uses a closed nodes list (and thus visits each node at most once).

The algorithm maintains two lists: the list L contains nodes to be examined, and the list C

contains nodes which are marked as closed and do not need to be visited again. As we show

in Section 4.4.3, by properly defining the function f ′ the algorithm finds the desired outliers.

4.4.3 Heuristic Functions

In this section we describe the heuristic functions that are needed by the A∗ algorithm in

order to compute the outliers. In typical usage of A∗ it is enough to define the function hi

and then combine it with gi to construct fi. In our case there is no obvious choice for gi and

hi. Instead, we provide a definition for gi and fi without using hi. Since our definition of

the heuristic functions is nonstandard, the optimality of the algorithm does not follow from

the known theory and must be proved explicitly.

Recall that at the node i of the graph there is a column subset Qi of ki columns. We

proceed to define the values of fi and gi. To simplify notation we write |M | for the number

48

Input: X,k,r. Output: a column subset Q.
Each node ni has a subset Qi of size ki. The algorithm maintains two lists: the
fringe list L, and the closed nodes list C.
Initialization: Put a node with an empty subset into L.

1 while L is nonempty do
2 Pick ni with the smallest f ′i from L.
3 if ki = k then
4 Stop and return ni with Qi as the solution subset.
5 else
6 Add ni to C.
7 for each child nj of ni do
8 if nj is not in C or L then
9 Compute f ′j and put nj in L.

10 end

11 end

12 end

13 end

Figure 4.1: The generic A∗ algorithm for column subsets

of columns of a matrix M . Define:

Pi = {1, . . . , n} \ Qi (Pi is the complement of Qi)

gi = min
V,A
‖XPi − V A‖2F , subject to |V | = r

fi = min
U,A
‖XPi − UA‖2F , subject to |U | = r + k − ki

(4.5)

In the above equation XPi is the matrix created from the columns of X in the subset Pi.

Using these definitions the value of f ′i is defined as:

f ′i = fi + εgi, ε ≥ 0 (4.6)

Clearly, the definition of the functions fi and gi in Equation (4.5) is different from the

definition of these functions in the classical A∗. We point out the properties that these

functions share with the fi, gi that are used in the classical A∗ algorithm. These properties

motivate our notation. The proof of these properties is given in Section 4.5.

49

• fi is monotonically increasing along any path.

• If fi is used as f ′i in the algorithm, the optimal (minimum error) solution is found.

• Defining f ′i as in (4.6) and selecting nodes with the smallest f ′i gives a solution with

performance guarantees.

• At a goal node fi = gi.

There is, however, a major difference between our definition of gi and the way it is defined

in the classical theory of A∗ search. With the classical definition of gi as the distance from

the root to ni, the value of gi is monotonically increasing along any path. By contrast, we

will show that the value of gi in our algorithm is monotonically decreasing along any path.

This also affects the values of f ′i that are used for the weighted A∗. In the classical theory

these values are monotonically increasing along any path, but in our case they are neither

monotonically increasing nor monotonically decreasing. We proceed to show that using f ′i

as defined in (4.6) guarantees sub-optimality. The optimality result for f will follow as the

special case when ε = 0.

4.5 Optimality and Suboptimality Theorems

We begin with the suboptimality proof for the case in which f ′ is used with ε ≥ 0. The

optimality proof is obtained as a simple corollary when setting ε to 0.

Theorem 4.1. The Suboptimality Theorem: Let n∗ be an optimal solution node with the

corresponding values: Q∗, P ∗, V ∗, A∗, that minimize the error in (4.3). Suppose the algorithm

in Figure 4.1 terminates at a node n∗∗ with the corresponding values: Q∗∗, P ∗∗, V ∗∗, A∗∗.

Then:

‖XP ∗∗ − V ∗∗A∗∗‖2F ≤ ‖XP ∗ − V ∗A∗‖2F + εgmax (4.7)

where gmax = maxi gi, the value of g at the root (initial) node.

50

The proof will be given in terms of Lemma 4.4 stated below. Lemma 4.2 and Lemma 4.3

are used in the proof of Lemma 4.4. Lemma 4.1 is used in the proof of Lemma 4.2. In the

proofs we use the following notation. We write |M | for the number of columns of a matrix

M , and [M |x] for the matrix formed by appending a column x to the matrix M .

Lemma 4.1. Let [X|x] be the matrix formed by appending a column x to the matrix X,

and let [U |u] be the matrix formed by appending a column u to the matrix U . Then for any

column vector x, and any t ≥ 0:

min
A,|U |=t

‖X − UA‖2F ≥ min
A′,u,|U |=t

‖[X|x]− [U |u]A′‖2F

Proof. Let A1, U1 be the minimizers of the left hand side. Consider the assignment of val-

ues to the right hand side that does not necessarily minimizes it: U = U1, u = x, and

A′ =

A1 0

0 1

. Then manipulating the right hand side we get:

min
A′,u,|U |=t

‖[X|x]− [U |u]A′‖2F

≤ ‖[X|x]− [U1|x]A′‖2F

= ‖[X|x]− [U1A1|x]‖2F

= ‖[X − U1A1‖2F

= min
A,|U |=t

‖X − UA‖2F

�

Lemma 4.2. fi is monotonically increasing along any path.

Proof. We need to show that if nj is the child of ni then fj ≥ fi. Plugging in the definition

of fi as given in (4.5) we need to show:

min
A,|U |=r+k−kj

‖XPj − UA‖2F ≥ min
A′,|U ′|=r+k−ki

‖XPi − U ′A′‖2F

51

Since nj is the child of ni the following two properties hold: kj = ki + 1, and [XPj |x] = XPi ,

where x is a column of X. Therefore, we need to prove:

min
A,|U |=r+k−ki−1

‖XPj − UA‖2F ≥ min
A′,|U ′|=r+k−ki

‖[XPj |x]− U ′A′‖2F

= min
A′,u,|U |=r+k−ki−1

‖[XPj |x]− [U |u]A′‖2F

This follows from Lemma 4.1 with t = r + k − ki − 1. �

Lemma 4.3. For every goal node ni the following holds: gi = fi.

Proof. At a goal node ki = k, and the lemma follows trivially from (4.5). �

Lemma 4.4. Suppose Theorem 4.1 is false. Then for any node nz on the path from the root

to n∗ the following condition holds: f ′z < f ′∗∗.

Proof. The assumption that the theorem is false can be written as g∗∗ > g∗ + εgmax. The

claim can now be proved by the following chain of equalities / inequalities.

f ′∗∗ = f∗∗ + εg∗∗ = g∗∗ + εg∗∗ (from Lemma 4.3)

> g∗ + εgmax + εg∗∗ (from the assumption)

= f∗ + εgmax + εg∗∗ (from Lemma 4.3)

≥ fz + εgmax (from Lemma 4.2)

≥ fz + εgz

= f ′z

�

Proof of The Suboptimality Theorem

Proof. If the theorem is false then from Lemma 4.4 it follows that all nodes on the path from

the root to n∗ have smaller f ′ values than f ′∗∗. Since at any given time at least one of them

is in the fringe list, they should all be selected before n∗∗ is selected. But this means that

n∗ is selected as the solution and not n∗∗. �

52

Clearly, The Suboptimality Theorem implies that running the algorithm with ε = 0

produces an optimal solution. We state this result as “the optimality theorem.”

Theorem 4.2. The Optimality Theorem: Let n∗ be an optimal solution node with the cor-

responding values Q∗, P ∗, V ∗, A∗ that minimize the error in (4.3). Suppose the algorithm

in Figure 4.1 is applied with ε = 0 and the algorithm terminates at a node n∗∗ with the

corresponding values Q∗∗, P ∗∗, V ∗∗, A∗∗. Then:

‖XP ∗∗ − V ∗∗A∗∗‖2F = ‖XP ∗ − V ∗A∗‖2F

We proceed to prove some additional results about gi. They motivate a variant of our

algorithm in which we take f ′i = gi, or, equivalently, when the value of ε in Equation (4.6)

approaches infinity.

Lemma 4.5. The value of gi is monotonically decreasing along any path.

Proof. We need to show that if nj is the child of ni then gj ≤ gi. Plugging in the definition

of gi as given in (4.5) we need to show:

min
A,|V |=r

‖XPj − V A‖2F ≤ min
A′,|V ′|=r

‖XPi − V ′A′‖2F = min
A′,|V ′|=r

‖[XPj |x]− V ′A′‖2F

where x is the column removed from XPi to obtain XPj . The claim follows from the fact

that the right hand side is the error in estimating the same matrix that appears in the left

hand side plus an additional column vector. �

Theorem 4.3. The Dual Bound Theorem: Let di be the value of the best goal node below

ni. Then:

1. fi ≤ di ≤ gi for every i:

2. At every goal node: fi = di = gi.

Proof. 1 follows from Lemma 4.2 and Lemma 4.5. 2 follows from 1 and Lemma 4.3. �

53

Running time.

The running time of the algorithm depends heavily on the calculation of the heuristic values

fi, gi, as defined in (4.5). In this section we show that the computation involves estimating

sums of eigenvalues, and can be done efficiently for the problem at hand. Recall that the

function fi is defined as follows:

fi = min
U,A
‖XPi − UA‖2F , subject to |U | = r + k − ki

Without loss of generality we can assume that U is an orthogonal matrix, which gives the

following formula for the minimizer: A = UTXPi . With the definition Bi = XPiX
T
Pi

, and

exploiting the relationship between the Frobenius norm and the trace operator one can derive

the following expression:

fi = trace{(XPi − UUTXPi)(XPi − UUTXPi)
T}

= trace{Bi} − trace{UTBiU}

These traces can be expressed in terms of the eigenvalues of Bi:

trace{Bi} =
m∑
t=1

λt, trace{UTBiU} =

r+k−ki∑
t=1

λt

Therefore:

fi =
m∑

t=r+k−ki+1

λt

The most expensive computation step of the algorithm is in Line 9, where the function f ′j

needs to be computed for all the children of ni. This requires computing eigenvalues of many

matrices of the form: Bj = XPjX
T
Pj

= Bi− xjxTj where xj is a column of X. As discussed in

Section 4.3 this can be done efficiently using rank-one update algorithms.

54

0 2 4 6 8

0

200

400

600

800

k

T
im

e
(S

ec
on

d
s)

Exhaustive
ε = 0

ε = 0.5
ε = 5

0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

k

T
im

e
(S

ec
on

d
s)

ε = 0
ε = 0.5
ε = 5

Figure 4.2: Run-time results on the dataset vehicle with r = 3.

4.6 Experimental Results

This section describes experimental results with our RPCA algorithms. The experiments

were performed on various datasets and compared with results obtained with two competi-

tors: the Outlier Pursuit algorithm as described in references (Xu et al., 2010; Zhang et al.,

2015), and the Leverage Score algorithm as described in references (Hoaglin and Welsch,

1978; Chatterjee and Hadi, 1986). The code for the Outlier Pursuit algorithm was obtained

from the authors. The data we use includes a simple toy example, datasets from the UCI

Machine Learning repository (Frank and Asuncion, 2010), datasets of facial images taken

from the Yale Face Database (Georghiades et al., 1997), and synthetic datasets where the

number of outliers is known.

Running Time

Figure 4.2 shows running-time on the dataset vehicle. The left panel shows that the algorithm

with f ′i = fi (optimal variant) is significantly faster than exhaustive search. The right panel

shows that using fi + εgi runs much faster than fi.

55

0 outliers (k = 0, r = 1) 1 outlier (k = 1, r = 1) 2 outliers (k = 2, r = 1)

3 outliers (k = 3, r = 1) 4 outliers (k = 4, r = 1) 5 outliers (k = 5, r = 1)

6 outliers (k = 6, r = 1) 7 outliers (k = 7, r = 1) 8 outliers (k = 8, r = 1)

Figure 4.3: A toy example of data consisting of 10 points, and the first principal component
is computed after optimally removing outliers. Data points are marked with an “o”, and
outliers with an “x”.

A Toy Example

The first experiment that we describe is a toy example consisting of 10 points. It is intended

to show that optimally identifying outliers involves combinatorial search, since each point

may sometimes be considered an outlier depending on the total number of outlier points.

The results are shown in Figure 4.3. The data consists of 10 points which roughly show

a line from the top left to the bottom right, and another line from the bottom left to the

top right. As shown, without outlier removal, or even with the removal of one outlier, the

principal component direction is some average between the two directions. The removal

of 2,3,4,5 outliers allows the algorithm to determine the top-left to bottom-right direction

as the principal component direction, since it has more points that the bottom-left to top-

right direction. However, with 6 outliers the algorithm determines the principal component

56

Table 4.1: Reduction of average error with the increase in number of outliers

lung cancer dataset (m = 27 n = 57)
k Ae(k) for r = 2 Ae(k) for r = 3

0 (baseline) 15.438 13.217
1 15.133 12.828
2 14.845 12.455
4 14.213 11.736
6 13.580 10.982
8 12.836 10.081

direction to be the bottom-left to top-right direction, since the points in that direction fit

a line very accurately. Further increasing the number of outliers gives different choices. In

particular, when only two non-outlier points are left the principal component approximation

error is 0.

Effectiveness

As discussed in Section 4.1 robust PCA improves the model accuracy for the non-outlier

points. The experiment described in this section demonstrates this on a real dataset from

the UCI repository. Table 4.1 shows the error averaged over non-outlier points as a function

of k, the number of outliers. The average error Ae(k) was computed with the following

formula:

Ae(r, k) = min
A,|V |=r

‖XP − V A‖2F
(n− k)

where the columns of XP are the n− k non-outlier points.

The results in Table 4.1 were computed with the optimal algorithm (ε = 0). The values

of Ae(k) for r = 2 and r = 3 are shown for various values of k. The first row for k = 0

corresponds to the baseline error, when none of the outliers are removed. Clearly, Ae(k) is

reduced with the increase in k, giving an improved principal components data model.

57

Accuracy and Speed Comparison

In the experiment described in this subsection we investigate the effect of ε on the running

time and on the accuracy of our algorithms. These results are compared to the results

obtained by the Outlier Pursuit and the Leverage Score methods. The Outlier Pursuit

algorithm takes as input the data matrixX and a parameter λ, see the discussion in Reference

(Xu et al., 2010). It returns two matrices L and C, where the left singular vectors of L form

the underlying subspace for non-outlier points and the columns of C contain the outliers.

As described in Reference (Xu et al., 2010) we take the columns of C with the k largest l2

norms as the outliers. The error that we report is the normalized error computed by:

normalized error = min
A,|V |=r

‖XP − V A‖2F
‖X‖2F

(4.8)

where the columns of XP are the n−k non-outlier columns. The time is measured in seconds.

When the algorithm running time exceeds 100 seconds we terminate the run and indicate it

by a “−” in Table 4.2.

As shown in the table the optimal algorithm (ε = 0) always has the least error, but

it takes more time to run than the other algorithms. For example, on the dataset vehicle

with the parameters k = 10, r = 5, Outlier Pursuit gets a result that is 5 times worse than

the optimal result. However, the Outlier Pursuit algorithm takes 0.65 seconds, while our

algorithm with optimal setting (ε = 0) takes 9.07 seconds to produce the optimal solution.

The suboptimal algorithms are much faster than the optimal algorithm, and typically

achieve an error close to the optimal. This error is typically much better than the result

of Outlier Pursuit. For example, for the dataset vehicle with k = 10, r = 2, the Outlier

Pursuit result has twice the error of the suboptimal algorithm with ε = 2. For this case

the suboptimal algorithm runs three times faster than Outlier Pursuit. In most of the cases

that we have investigated the suboptimal algorithms beat Outlier Pursuit in terms of both

accuracy and speed. We observe that the Leverage Score method is by far the fastest, as

58

Table 4.2: Accuracy and time for the optimal algorithm and the sub-optimal algorithm,
compared to Outlier Pursuit (Xu et al., 2010) and the Leverage Score method. The time is
measured in seconds, and the error is the normalized error. The minimum error is highlighted.

k r
Optimal / time Sub-optimal

ε = 2 / time
Sub-optimal
ε = 5 / time

Sub-optimal
ε = 10 / time

Outlier
Pursuit / time

Leverage Score
Method / time

vehicle dataset (n = 18, m = 846)
5 2 5.790E-04 / 1.01 5.910E-04 / 0.22 5.812E-04 / 0.22 5.790E-04 / 0.22 8.098E-04 / 0.65 8.230E-04 / 0.01
5 3 3.121E-04 / 0.69 3.442E-04 / 0.22 3.493E-04 / 0.22 3.493E-04 / 0.22 5.604E-04 / 0.64 5.871E-04 / 0.01

10 2 1.227E-04 / 30.83 1.227E-04 / 0.34 1.227E-04 / 0.23 1.227E-04 / 0.23 2.602E-04 / 0.65 4.138E-04 / 0.01
10 3 5.820E-05 / 20.91 5.820E-05 / 0.24 5.820E-05 / 0.23 5.820E-05 / 0.23 1.332E-04 / 0.65 2.506E-04 / 0.01
5 5 9.842E-05 / 0.36 9.842E-05 / 0.21 9.842E-05 / 0.22 9.842E-05 / 0.22 2.379E-04 / 0.64 2.509E-04 / 0.01

10 5 8.550E-06 / 9.07 8.735E-06 / 0.22 8.735E-06 / 0.22 8.735E-06 / 0.22 4.898E-05 / 0.65 7.723E-05 / 0.01
spectf dataset (n = 45, m = 267)

3 2 1.042E-02 / 2.33 1.042E-02 / 0.53 1.042E-02 / 0.26 1.042E-02 / 0.25 1.042E-02 / 0.64 1.125E-02 / 0.01
4 2 9.996E-03 / 84.01 9.996E-03 / 0.77 9.996E-03 / 0.26 9.996E-03 / 0.26 1.013E-02 / 0.66 1.096E-02 / 0.01

10 3 - 6.128E-03 / 0.31 6.113E-03 / 0.28 6.113E-03 / 0.29 6.171E-03 / 0.65 7.340E-03 / 0.01
15 3 - 4.768E-03 / 0.31 4.768E-03 / 0.30 4.768E-03 / 0.31 4.806E-03 / 0.65 6.201E-03 / 0.01
15 10 - 1.734E-03 / 0.32 1.734E-03 / 0.32 1.713E-03 / 0.33 1.841E-03 / 0.65 2.239E-03 / 0.01
20 10 - 1.125E-03 / 0.34 1.116E-03 / 0.34 1.116E-03 / 0.34 1.150E-03 / 0.64 1.626E-03 / 0.01

libras dataset (n = 90, m = 360)
4 3 - - 4.011E-02 / 93.76 4.011E-02 / 0.83 4.166E-02 / 6.16 4.292E-02 / 0.01

10 3 - - 3.189E-02 / 1.28 3.189E-02 / 0.92 3.550E-02 / 6.27 3.995E-02 / 0.01
10 4 - - 2.033E-02 / 47.23 2.033E-02 / 0.92 2.198E-02 / 6.22 2.411E-02 / 0.01
15 4 - - - 1.770E-02 / 1.02 2.009E-02 / 6.24 2.150E-02 / 0.01
15 10 - - 1.471E-03 / 1.06 1.471E-03 / 0.98 1.769E-03 / 6.18 2.390E-03 / 0.01
20 10 - - 1.060E-03 / 1.11 1.060E-03 / 1.11 1.469E-03 / 6.51 2.166E-03 / 0.01

it only requires one singular value decomposition. However, it typically has worse accuracy

when compared to the other algorithms.

Experiments with Synthetic Dataset

In this experiment we use synthetic data generated with known parameters. We follow the

procedure described in Reference (Xu et al., 2010) to generate datasets with a specified rank

for the non-outlier points and a specified number of outliers. In all cases we took the number

of outliers to be 15. The experiments compare the performance of our suboptimal algorithm

with ε = 10 to the performance of the Outlier Pursuit algorithm. The reported error is the

normalized error as defined in Equation (4.8). The results are shown in Fig 4.4.

The results show that our suboptimal algorithm always finds the right outliers, and

its error is always below the error of Outlier Pursuit. The advantage in accuracy of the

suboptimal algorithm over the Outlier Pursuit is minimal when the data can be described

59

5 10 15 20

0

2

4

6

·10−2
rank = 2

5 10 15 20

0

1

2

3

4

5
·10−2

rank = 4

5 10 15 20

0

0.5

1

1.5

·10−2
rank = 8

subopt-A∗

OR-PCA

5 10 15 20

0

0.5

1

1.5

·10−2
rank = 10

5 10 15 20

0

0.5

1

1.5

2

2.5

·10−2
rank = 12

5 10 15 20

0.5

1

1.5

2

2.5

3

·10−2
rank = 14

N
or

m
al

iz
ed

E
rr

or

Parameter k

Figure 4.4: X is of shape 50×50. Each dataset has 15 outliers and rank of non-outlier points
is displayed above each graph. The sub-optimal algorithm uses ε = 10 for this experiment.

by a very low rank matrix, but becomes very significant when the data requires higher rank

matrices. In all these experiments the suboptimal algorithm also had a significant running

time advantage over the Outlier Pursuit. It ran at least three times faster than Outlier

Pursuit in all the experiments.

Results on Datasets of Facial Images

The fourth experiment was performed on a dataset of image faces. The underlying assump-

tion is that images of different orientations of the same person lie on a low dimensional sub-

space. Similarly, images of the same lie approximately on a low dimensional space (Murase

and Nayar, 1995; Turk and Pentland, 1991). We use the Yale Face Database (Georghiades

et al., 1997) to create 3 datasets, each with 12 face pictures. Out of those the non-outlier

60

Figure 4.5: Face Dataset 1. Results with r = 2 and k = 4 .

Figure 4.6: Face Dataset 1. Top: Results for r = 3 and k = 4, Bottom : Results for r = 3
and k = 6

Figure 4.7: Face Dataset 2 (top) and Dataset 3 (bottom). Successful run on face graphs/rpca
with r = 3. We use k = 3 in the top experiment and k = 5 in the bottom one.

columns are pictures of the same person under different poses, illumination and sometimes

with and without glasses. The outlier pictures are pictures of other individuals. The task

in this case is to detect the pictures of the different individuals as outliers. We use our

algorithms with different values of k and r and show that we successfully detect the outliers.

The results are displayed in Fig 4.5, Fig 4.6, and Fig 4.7. Images with red borders are

outliers detected by our algorithm, and the rest of the images are used to form the robust

61

principal components. Fig 4.5 shows the result on first dataset with r = 2, k = 4. We

observe that our algorithm finds all the outliers. Fig 4.7 shows the successful detection of

outliers on Dataset 2 (top) and on Dataset 3 (bottom) with the parameters r = 3, k = 3 and

r = 3, k = 5 respectively. Note that the bottom image of Fig 4.7 has 4 outliers, and setting

k = 5 picks outliers, thus even with overshooting the value of k does successfully recover the

subspace underlying non-outlier points. This can also be seen in Fig 4.6. In the top image

for k = 4, r = 3 we can see that two images out of four detected images are not outliers.

Thus, we can still recover the linear subspace of non-outliers by overshooting parameter k.

Setting k = 6 gives the result in the bottom image of Fig 4.6.

4.7 Concluding Remarks

Outlier RPCA is an important problem in data analytics and machine learning. We take

a combinatorial approach to this problem and pose Outlier RPCA as a search problem on

a graph representing the subsets of columns of the data matrix. We use the classical A∗

algorithm to find the column subset of outliers of a given data matrix.

The A∗ heuristic search approach finds the optimal solution while evaluating significantly

fewer subsets than exhaustive search. For example, if exhaustive search is attempted to select

4 columns from the libras dataset, we estimate the running time to be about one month.

This is solved in about five minutes using our optimal algorithm. The sub-optimal algorithm

works much faster than the optimal algorithm and still manages to get much better accuracy

than the current state of the art.

62

CHAPTER 5

THE BIAS TRICK FOR CENTERING PCA

In Section 2.5 we show that the PCA model is heavily influenced by outliers. There are many

studies that compute robust principal components, attempting to avoid the effect of outliers.

See e.g. (Zhang et al., 2015; Xu et al., 2010; Shah et al., 2017; Xu et al., 2013; Rahmani

and Atia, 2017; Hubert and Engelen, 2004) and recently survey papers (Lerman and Maunu,

2018). We refer to these algorithms as RPCA algorithms. However, there appears to be a

problem of all the RPCA algorithms we are familiar with: the way in which the data center

is computed. The center to be used by RPCA should not be influenced by the (unknown)

outliers. Current outlier based RPCA algorithms ignore centering the data or use heuristic

methods to update the center of non-outliers. In this chapter we show an approach, “bias

trick”, that automatically centers the non-outliers. The bias trick appends a large bias value

to each data element and unifies the uncentered and centered PCA variants. Due to the

automatic centering property of the bias trick, converting an uncentered RPCA algorithm

to a centered RPCA algorithm with the bias method is straightforward and does not require

any code change to the algorithm itself. Using this bias trick we obtain the first RPCA

algorithm that is optimal with respect to centering.

5.1 Problem Being Addressed

As we discussed in Section 2.4.1 there is little difference between the uncentered PCA and the

centered PCA from a computational point of view. Since in most situations the data can be

easily centered, most of the recently published fast algorithms for computing PCA ignore the

centering of the data. See, e.g., (Li et al., 2017; Halko et al., 2011). However, the situation

is very different for algorithms that attempt to compute an RPCA by identifying some data

points as outliers to be removed. Figure 5.1 shows different variants on a simple dataset.

63

x

y

•

•

•

•

•

•

• outlier

×

uncentered RPCA

ce
n
te

re
d

R
P

C
A

×

uncentered PCA

centered PCA

Figure 5.1: The direction of the dominant principal component for several PCA variants
on a simple dataset of 7 points with one outlier. The PCA directions are computed from
the entire data. The RPCA directions are computed from the 6 non-outliers. The data:
(7,3),(7,2),(7,1),(8,3),(8,2),(8,1),(1,4).

The data consists of 7 points, and the direction of the dominant principal component of

each variant is shown as an arrow. We can see that the single outlier has a huge effect on

the centered variants, and a much smaller effect on the uncentered variants. The problem

is that the centering should be applied only to the non-outliers, but they are unknown. Let

X = (x1, . . . , xn) be the matrix with m dimensional columns. Let P,Q be the sets of non-

outlier column indexes and outlier column indexes in X respectively. More precisely, the

approximation error of RPCA in (2.14) can be written in Frobenius norm as shown in (5.1).

ERPCA =
1

|XP |

n∑
i

||(xi − µP)− V V T (xi − µP)||2, xi ∈ XP (5.1)

where µP is the mean of non-outlier points XP , |XP | is the number of non-outlier data points

in XP .

Some previously proposed robust PCA algorithms perform initial centering of the data,

but do not update the center based on the outliers. These include (Zhang et al., 2015; Xu

et al., 2010; Shah et al., 2017). Other algorithms such as (Xu et al., 2013; Rahmani and

Atia, 2017) do not explicitly center the data. The first assumes a probability distribution

of the mean, and the second considers only directions of vectors which makes centering

64

unnecessary. Other algorithms such as (Hubert and Engelen, 2004) handle the centering as

part of the algorithm, but not optimally. This review of the current state of the art suggests

that optimal centering in RPCA is not fully solved.

5.1.1 Our Contributions

We propose a general method, the bias trick, which can be used to convert any algorithm that

computes uncentered PCA into an algorithm that computes centered PCA with a “sufficient

large” bias value. Details are shown in Section 5.3. Furthermore, the bias trick reduces the

centered RPCA algorithm to uncentered RPCA algorithm. Once the bias is appended to the

algorithm input, the outliers computed by the uncentered algorithm are those corresponding

to centered RPCA. Therefore, this conversion retains favorable properties of the uncentered

algorithm such as accuracy, sparsity, and efficiency.

Using the bias trick with the algorithm from Chapter 4 that computes optimal uncentered

RPCA gives the first optimal centered RPCA algorithm. We implemented this algorithm

and describe some experimental results, clearly showing improved performance over all com-

petitors.

5.2 Relationship to Previous Work

The bias trick unifies uncentered PCA and centered PCA. Similar transformations are used

to unify algorithms in other fields. In computer graphics one manipulates 2D points such as

p = (x, y). The rotation of p can be expressed as matrix multiplication but it is not possible

to do the same for translation. Going to homogeneous coordinates by mapping each point p

into the 3D vector ph = (x, y, 1) unifies translation and rotation, since it can be shown that

both 2D translation and rotation can be expressed as 3×3 matrix multiplications of ph. See,

e.g., (Hughes et al., 2013).

65

Another example is from the study of neural networks. The standard “perceptron”

can be viewed as a linear threshold unit with zero threshold, or, alternatively, with an

unknown threshold value that must be learned. These two cases lead to two different training

algorithms, but they can be unified by appending a constant bias of 1 to each data point.

See, e.g., (Minsky and Papert, 1988).

The bias method that we describe is similar but not identical to these examples. In

our case the appended bias must be large, in the sense that the approximation of the cen-

tered PCA of X is improved when the bias value is increased. We show that this gives a

practical algorithm, since “reasonably large” bias values will give “sufficiently accurate” ap-

proximations. This statement is quantified in Section 5.4. To the best of our knowledge the

observation that appending bias to the data unifies centered and uncentered PCA is new.

While applying it is straightforward, our correctness proof as given in the appendix is quite

elaborate.

5.3 The Bias Trick

Adding a large bias value to each data point transfers the data from r dimension into r + 1

dimension. Figure 5.2 illustrates transferring a two dimensional data (on lower plane) to

three dimension (on higher plane).

Let PCA() be an uncentered PCA algorithm. It gets as input the matrix X of size m×n

and the number k of desired principal vectors. It returns the principal vectors as the matrix

V of size m× k, and k eigenvalues. To apply the bias trick and obtain the centered PCA we

do the following:

1. Select a large value b. (See Section 5.4.)

2. Add b as an additional coordinate to each column of X, creating a new matrix Xb of size

(m+ 1)× n.

66

x
y

z (x, y, b)

(x, y, 0)

bias

Figure 5.2: An illustration of the bias trick idea

3. Run PCA() on Xb to compute k + 1 eigenvectors and eigenvalues. Each eigenvector is of

size (m+ 1).

4. Let λb1 . . . , λ
b
k+1 be the eigenvalues computed in Step 3. Then the k eigenvalues of the

centered PCA are approximately λb2 . . . λ
b
k+1.

5. Let ub1 . . . , u
b
k+1 be the eigenvectors computed in Step 3. Let vj be the jth eigenvector of

the centered PCA. It is given approximately by the top m values of the ubk+1.

Figure 5.3 shows a simple example illustrating the bias trick, where the data is given by

the matrix X, and we assume no outliers. The goal is to compute the centered PCA of X. We

can center the data by subtracting the mean from each column first, producing the matrix

Xc, and then computes the eigenvectors and eigenvalues of XcX
T
c . The principal vectors

computed in this way are the columns of the matrix Vc, and the corresponding eigenvalues

are λc. Instead of removing mean from each data point, We can use the bias trick by append

the bias value of 100 to each column of X, producing Xb. Its uncentered PCA is Vb, with

the corresponding eigenvalues λb. It is clear that an accurate approximation (Vc and λC) of

the centered PCA is embedded within Vb and λb.

67

X : data Xc : centered data Xb : data & bias1 2 3
3 0 0

 −1 0 1
2 −1 −1




1 2 3
3 0 0

100 100 100



Vc=

(
−0.4718 −0.8816
0.8816 −0.4718

)
λc=

(
7.6055
0.3944

)

Vb=

0.01999 -0.4718 -0.8814
0.0099 0.8816 -0.4717
0.9997 0.0006 0.0223

 λb=

 30015
7.6055
0.3942


Figure 5.3: An approximation to the centered PCA of X is embedded within the uncentered
PCA of Xb.

Clearly, the bias trick is not an improvement over the standard centered PCA algorithm.

It is more costly and less accurate. However, it has the advantage that it also works for

centered RPCA where it does not require advanced knowledge of the outliers. Applying the

bias trick for computing centered RPCA can be achieved by using RPCA() instead of PCA(),

where RPCA() is any uncentered RPCA algorithm.

5.4 Correctness of The Bias Trick

In this section we prove the correctness of the bias trick. An important part can be traced

back to (Cadima and Jolliffe, 2009). In that paper they prove the following result (as a

corollary to their Theorem 2).

Theorem 5.1. Theorem: (Cadima and Jolliffe): Let B be the matrix of second moments

of the uncentered data, let µ be the data mean, and let C be the covariance matrix. If one

of the eigenvectors of B is µ/‖µ‖ then all other eigenvector/eigenvalue pairs of B are also

eigenvector/eigenvalue pairs of C.

68

Notation

Let X = (x1 . . . xn) be the data matrix, let µ = 1
n

∑
i xi be the data mean. The second

moments matrix is given by:

B =
1

n

∑
i

xix
T
i (5.2)

The covariance matrix is given by:

C =
1

n

∑
i

(xi − µ)(xi − µ)T (5.3)

Let λi, ui be the eigenvalue/eigenvector pairs of C.

Create Xb = (xb1, . . . , x
b
n) by adding a large bias b for each vector:

xbi =

xi
b

 (5.4)

Xb is (m+ 1)× n. The column mean of Xb is:

µb =

µ
b

 . (5.5)

The corresponding (m+ 1)× (m+ 1) matrix of second moments is:

Bb =
1

n

n∑
i

xbi(x
b
i)
T =

 B bµ

bµT b2

 (5.6)

and the corresponding covariance matrix is:

Cb =
1

n

n∑
i

(xbi − µb)(xbi − µb)T =

C 0

0 0

 (5.7)

Let λbi , u
b
i be the eigenvalue/eigenvector pairs of Bb.

Define: vi
wi

 = ubi (5.8)

69

where vi is an m-vector and wi is a scalar. The bias trick is useful since (as proved here)

ui ≈ vi+1 and λi ≈ λbi+1. Thus, the centered eigenvectors and eigenvalues are obtained from

the uncentered and “biased” eigenvectors and eigenvalues.

To analyze the bias trick we need the notion of “approximation for sufficiently large

values of the bias b”. It is defined as follows:

Definition 5.1. We write p ≈ q if for any ε > 0 there is bε such that (p − q)2 < ε for all

b > bε. When p, q are vectors the squared error is replaced with squared norm, etc. We also

say “p approximates q” if p ≈ q.

Lemma 5.1. For a sufficiently large value of b:

Part 1. w1 ≈
b√

b2 + ‖µ‖2

Part 2. v1 ≈
µ√

b2 + ‖µ‖2

Proof. From the Courant Fischer theorem (Golub and Van-Loan, 2013) the vector v1 and

the scalar w1 minimize the following error:

E(v1, w1) = min
ai

∑
i

‖

xi
b

− ai
v1
w1

 ‖2
= min

ai

∑
i

‖xi − aiv1‖2 + (b− aiw1)
2

(5.9)

For sufficiently large value of b the rightmost term dominates the error and it is minimized

by ai = b
w1

. Substituting this in (5.9) gives:

E(v1, w1) =
∑
i

‖xi −
b

w1

v1‖2 (5.10)

Since v1 and w1 form an eigenvector they must satisfy:

|v1|2 + w2
1 = 1

70

To minimize E(v1, w1) subject to this constraint we use the method of Lagrange multipliers.

The Lagrangian is:

L(v1, w1, α) =
∑
i

‖xi −
b

w1

v1‖2 + α(|v1|2 + w2
1 − 1) (5.11)

Taking derivatives of (5.11) with respect to v1 and equating to 0 gives:

(−b/w1)(nµ−
nb

w1

v1) + 2αv1 = 0 (5.12)

Therefore, the vectors v1 and µ are linearly dependent v1 = tµ. Substituting this in the

constraint and solving for t we get:

t =

√
1− w2

1

|µ|

So that:

v1 ≈
√

1− w2
1

|µ|
µ (5.13)

To prove Part 1 we take derivatives of (5.11) with respect to w1 and equate to 0. This gives:

2bnvT1 µ/w
2
1 − 2nb2|v1|2/w3

1 + 2αw1 = 0 (5.14)

For sufficiently large b the right most term can be ignored. After multiplying by w3
1 and

simplifying this gives:

w1v
T
1 µ ≈ b|v1|2 (5.15)

Substituting the value of v1 from (5.13) we get the following equation in w1:

w1‖µ‖ ≈ b
√

1− w2
1 (5.16)

Solving this equation for w1 gives the formula in Part 1. Substituting the Part 1 expression

for w1 in (5.13) and simplifying gives the formula in Part 2. �

71

Theorem 5.2. For a sufficiently large value of b let λbi , u
b
i be an eigenvalue/eigenvector pair

of Bb, with i > 1. Suppose ubi is partitioned as follows: ubi =

vi
wi

. Then wi ≈ 0 and λi, vi

are approximately eigenvalue/eigenvector pairs of C.

Proof. From Lemma 5.1 it follows thatv1
b

 ≈ µb
‖µb‖

(5.17)

Since this approximately satisfies the condition of the Cadima and Jolliffe theorem stated

above it follows that all other eigenvector/eigenvalue pairs of Bb are also approximately

eigenvector/eigenvalue pairs of Cb. Let z be the m+1 vector:

z =

z1
z2

 (5.18)

where z1 is an m-vector and z2 is a scalar. From (5.7) it follows that

Cbz =

Cz1
0

 (5.19)

Therefore, if Cbz = λz then z2 = 0 and Cz1 = λz1. �

5.4.1 Estimating The Value of Bias

The proof of Lemma 5.1 requires that the eigenvector ub1 =

v1
w1

 corresponds to the

largest eigenvalue of Bb. As shown, the other eigenvalues of Bb are the same as those of

Cb. Therefore, we should have λ(Bb) > λ(Cb), where λ(Bb) is the largest eigenvalue of Bb

and λ(Cb) is the largest eigenvalue of Cb. Indeed, the proof of Lemma 5.1 shows that this is

guaranteed for sufficiently large b, but we can derive a more accurate condition.

72

Lemma 5.2. If vT1 µ≥0 and ‖X‖F ≤ w1b then λ(Bb) > λ(Cb).

Proof. Using ub1 =

v1
w1

 and (5.6) we have:

λ(Bb) = ub1
T
Bbu

b
1 = vT1 Bv1 + w2

1b
2 + 2w1bv

T
1 µ (5.20)

Dropping the positive first term and the non-negative third term and using the assumptions

of Lemma 5.2 gives:

λ(Bb) > w2
1b

2 ≥ ‖X‖2F (5.21)

The relations that we have are: ‖X‖2F ≥ ‖Xc‖2F , ‖Xc‖2F ≥ λ(Bc), and λ(Bc) = λ(C). The

first two are straightforward. In the third λ(C) is the largest eigenvalue of C. From the

proof of Theorem 5.2 we have λ(C) = λ(Cb). Concatenating these relations gives the desired

result λ(Bb) > λ(Cb). �

The first condition in Lemma 5.2 is likely to hold since according to Lemma 5.1 v1, µ

approach the same direction for large b. Therefore, we should select b ≥ 1
w1
‖X‖F = γ‖X‖F ,

which suggests that b should be measured in units of ‖X‖F .

5.5 Optimal Centered RPCA

Except for computing the centered PCA, one useful application of the bias trick is com-

puting the outlier based centered RPCA model of a given data because the bias trick can

automatically get the center of the non-outliers. We extend the algorithm in Figure 4.1 with

the bias trick to get an optimal centered RPCA algorithm. To the best of our knowledge

this is the first centered algorithm with guaranteed optimality. We refer to this algorithm as

COPT that is described in Figure 5.4. The COPT algorithm in Figure 5.4 returns k outliers

with respect to r principal vectors. The heuristic f ′i is the same as in (4.5).

73

Input: X, k, r + 1, b. Output: a outlier indexes subset Q.
Each node ni has a subset Qi of size ki.
The algorithm maintains two lists: the fringe list L, and the closed nodes list C.
Initialization:
For each xi in X expand it with an extra value b.
Put a node with an empty subset into L.

1 while L is nonempty do
2 Pick ni with the smallest f ′i from L.
3 if ki = k then
4 Stop and return ni with Qi as the solution subset.
5 else
6 Add ni to C.
7 for each child nj of ni do
8 if nj is not in C or L then
9 Compute f ′j and put nj in L.

10 end

11 end

12 end

13 end

Figure 5.4: The Optimal Centering RPCA (COPT) Algorithm

5.6 Experimental Results

We do experiments with datasets from the UCI repository. In the first experiment we learn

the effect of the bias value and give a practical value of γ = 10 (b = 10‖X‖F) of the bias

trick. We run all the experiments with γ = 10.

We show that the bias trick simplifies the centered RPCA algorithm to the uncentered

RPCA algorithm. Results are shown on both toy datasets and real datasets.

We show our COPT algorithm returns smaller errors than other current state-of-the-art

RPCA algorithms. A clear illustration is shown to demonstrate that our COPT algorithm

returns more meaningful outliers than others.

74

0 20 40 60

0

1

2

3

4

·10−3

γ

N
or

m
al

iz
ed

E
rr

or

wine 13× 178
iris 4× 150
wdbc 30× 569
glass 9× 214
ionosphere 34× 351
madelon 500× 4400
gom 68× 1059

10 12 14 16 18 20

0

1

2

3

4

·10−5

γ

N
or

m
al

iz
ed

E
rr

or

20 30 40 50 60 70

0.0

0.5

1.0

1.5

2.0

2.5

3.0

·10−4

γ

N
or

m
al

iz
ed

E
rr

or

20 30 40 50 60 70

0.0

0.2

0.4

0.6

0.8

1.0

1.2
·10−5

γ

N
or

m
al

iz
ed

E
rr

or

Figure 5.5: Error of approximate eigenvalues for different range of γ on various datasets
from UC Irvine. Top two panels and bottom left panel: error of estimating all eigenvalues.
Bottom right panel: error of estimating top 10 eigenvalues.

Effects of Different Bias Values

To determine the practicality of the bias method we study experimentally the relationship

between γ and the accuracy. Clearly, selecting the bias value b too big may result in round

off errors that reduce the accuracy.

Figure 5.5 shows the error of computing the eigenvalues as a function of γ on various

datasets from UC Irvine repository. The datasets vary in size from the smallest Iris of size

4 × 150, to the largest Madelon of size 500 × 4400. The normalized error was computed

75

as follows:

Normalized error =

∑
i |λi − λ̃i|∑

i λi
(5.22)

Based on these (and other) experiments shown in Figure 5.5 we recommend γ in the range

[10, 20], which typically gives relative errors in the range [10−10, 10−5]. The experiments

described in Figure 5.5 show a decline in accuracy for increased γ only for the 500 × 4400

Madelon dataset. Still, the bias method does not break down and the only effect is a slight

decrease in accuracy. In most cases we only use the first few eigenpairs. The bottom right

panel in Figure 5.5 shows the normalized error of the first 10 eigenvalues. We can see for

the large dataset Madelon the result is more stable. Our experiments show that using the

standard Python software round off errors occur for b > 107. See Figure 5.6, it shows when

b > 107 the results are not stable.

Combining the constraint b < 107 with our recommendation of selecting b = 10‖X‖F

gives the following bound on the dataset: ‖X‖F < 106. The bias trick can still be used with

matrices of this (and bigger) although it may not be possible to obtain very high accuracy.

If one wishes to apply the bias method for larger datasets then there are several alternatives:

1. Scale the dataset. 2. Use higher accuracy eigen-decomposition routines. 3. Compute

only the top few eigenpairs.

The Bias Trick with RPCA Algorithms

In this section we use the bias trick in conjunction with an RPCA algorithm viewed as a

black box. Results are shown on both toy datasets and real datasets. Some algorithms were

implemented by us, and for others we use the code made available by the authors. The

algorithms are:

EU The “Exhaustive Uncentered” algorithm examines all non-outlier subsets of a specified

size. The uncentered PCA error is computed for each subset, and the one with the

76

0 0.2 0.4 0.6 0.8 1
·107

0

2

4

6

8

·10−3

b

N
or

m
al

iz
ed

E
rr

or
iris

0 0.5 1 1.5
·107

0

0.5

1

1.5

2

·10−5

b

N
or

m
al

iz
ed

E
rr

or

wine

0 0.5 1 1.5 2 2.5 3
·107

0

0.2

0.4

0.6

0.8

1

1.2

·10−5

b

N
or

m
al

iz
ed

E
rr

or

wdbc

0 0.2 0.4 0.6 0.8 1
·107

0

0.5

1

1.5

2

·10−5

b

N
or

m
al

iz
ed

E
rr

or

madelon

Figure 5.6: The bias trick returns unstable results when the value of b > 107

smallest error is returned. This computes optimal uncentered PCA but has exponential

running time. (our implementation)

EC The “Exhaustive Centered” algorithm is identical to the EU, except that the centered

PCA error is computed for each subset. This computes the optimal centered PCA but

has exponential running time. (our implementation)

IU The “Iterative Uncentered” algorithm implements a “k-means” style iteration which it-

erates between outliers and principal vectors of uncentered PCA. (our implementation)

77

•1•2•3•4
•5
•6
•7
•8
•9
•10
•11
•12
•13
•14
•15
•16
•17
•18

•1•2•3•4
•5
•6
•7
•8

•1•2•3•4•5

•6 •7

Tall-L Short-L Trapezoid

Figure 5.7: Toy datasets for testing robust centered PCA algorithms. The three outliers
in the Tall-L dataset are points 1,2,3. The three outliers in the Short-L dataset are points
1,2,3. The two outliers in the Trapezoid dataset are points 6,7.

IC The “Iterative Centered” algorithm implements a “k-means” style iteration. The algo-

rithm iterates between outliers and principal vectors of centered PCA. (our implemen-

tation)

HR-PCA The “High-dimensional Robust PCA” algorithm is from (Xu et al., 2013). (im-

plementation from the authors)

CoP The “Coherence Pursuit” algorithm is from (Rahmani and Atia, 2017). (implementa-

tion from the authors)

Outlier-Pursuit The “Outlier Pursuit” algorithm is from (Xu et al., 2010). It does not take

the number of outliers as input but computes it as part of the output. (implementation

from the authors)

RobPCA The “ Robust PCA” algorithm is from (Hubert and Engelen, 2004). (part of R

software)

Toy Datasets

We created three toy datasets with two dimensional points as shown in Figure 5.7. The

challenge is to compute the first principal component of centered RPCA for the specified

78

Table 5.1: Results of multiple RPCA algorithms on the toy datasets

bias Tall-L Short-L Trapezoid

EU
n 1,2,4 X – 1,4,5 7 1,5 7

y 1,2,3 3 1,2,3 3 6,7 3

EC
n 1,2,3 3 1,2,3 3 6,7 3

y n/a n/a n/a

IU
n 1,2,4 7 1,4,5 7 1,5 7

y 1,2,3 3 1,4,5 7 1,5 7

IC
n 1,2,3 3 1,4,5 7 1,5 7

y n/a n/a n/a

HR-PCA
n 18,16,4 7 1,6,8 7 6,7 3

y 2,17,18 7 3,6,7 7 7,3 7

CoP
n 1,9,10 7 1,4,5 7 1,5 7

y 1,2,4 X – 1,4,8 7 1,5 7

Outlier-Pursuit
n 1,2 X – 1 7 none 7

y 1,2,3 3 1,8,4 7 1,5,6,7 X –

RobPCA
n 1,2,3 3 1,2 X – 6,7 3

y n/a n/a n/a

number of outliers. In all three cases the optimal solution has zero error. The easiest case

is Tall-L (3 outliers), where centered PCA is similar to the optimal robust centered PCA.

The Short-L dataset (3 outliers) is harder, since centered PCA does not give results similar

to the optimal robust centered PCA. The Trapezoid dataset (2 outliers) is the hardest, as

centered PCA is orthogonal to the optimal robust centered PCA.

The outliers computed by the various RPCA algorithms are shown in Table 5.1. To

compute the outliers without the bias method we first center each dataset and then apply

the algorithms with the rank parameter r=1, and the specified number of outliers. To

compute the outliers with the bias method we append a bias to the data and then apply the

algorithms with the rank parameter r=2, and the specified number of outliers.

We mark the optimal result with 3, near optimal with X – , and the others with 7. Some

algorithms (EC, IC, RobPCA) center the data internally. This replaces the bias value with

0, and the bias method has no effect on the output (marked as n/a in the table). The result

79

Table 5.2: Average reconstruction error of multiple RPCA algorithms on real datasets.

bias iris wine glass wdbc ionosphere gom
k : r 11:1 13:2 7:4 25:3 8:3 15:4

HR-PCA
n 0.3393 17.2651 0.3173 95.6762 4.4468 35.8607
y 0.3461 16.6891 0.3237 99.9206 4.4506 36.1500

CoP
n 0.3108 15.7866 0.1444 94.8265 4.2332 36.1052
y 0.2585 13.0729 0.1861 74.9326 3.9871 33.8523

Outlier-Pursuit
n 0.2777 17.8383 0.1550 80.9527 3.9956 34.0282
y 0.3407 17.6753 0.1550 81.3805 3.9956 34.0689

of EC is guaranteed to be optimal centered RPCA. When we apply EU on the bias input the

optimal uncentered algorithm becomes optimal centered RPCA algorithm. Improvements

were obtained for EU, IU, CoP, and Outlier-Pursuit(cannot specify the number of outliers).

Only the results of HR-PCA became worse since its output is randomized and the results

change in consecutive runs.

Real Datasets

The average reconstruction errors computed by the various RPCA algorithms on real datasets

are shown in Table 5.2. Same as the experiments on toy datasets, to compute the outliers

without the bias method we first center each dataset and then apply the algorithms with

the rank parameter r, and the specified number of outliers. To compute the outliers with

the bias method we append a bias to the data and then apply the algorithms with the rank

parameter r + 1, and the specified number of outliers.

Since some algorithms (EC, IC, RobPCA) center the data internally, we do not show the

comparison here. Clear improvements were obtained for CoP. Almost all the cases CoP gets

gains. The results of HR-PCA and Outlier-Pursuit are almost the same with and without

bias. As we mentioned the HR-PCA randomly selects outliers and the results change in

consecutive runs. Outlier-Pursuit decides the rank r and the number of outliers k internally.

80

−400−200 0 200 400 600 800 1,000

−10

−5

0

5 174

168

173

68

39

155

78

166

136

158

4

21

167

PC1

P
C

3

(a) Only CoP, Erpca = 15.7866

−400−200 0 200 400 600 800 1,000

−10

−5

0

5

10
73

59

158

157

121127

159

39 1

177
166

78

87

PC1

P
C

3

(b) CoP with the bias trick, Erpca = 13.0729

Figure 5.8: Comparison of the location of outliers between initial centering and the bias
trick. The experiment is applying CoP algorithm on wine dataset with k = 13 and r = 2.

Figure 5.8 shows that using the bias trick the algorithm CoP returns more meaningful

outliers. Thirteen outliers were selected based on the first two principal vectors. The location

of all the points in Figure 5.8 on the plane defined by the first and third principal vectors.

The left panel is the location of outliers returned only by applying CoP algorithm. The right

panel shows the location of outliers returned by applying CoP with the bias trick. It is clear

that the outliers returned by applying the bias trick with CoP are further away from the

plane composed by the first two eigenvectors (the horizontal line) than those returned by

only applying CoP algorithm.

Optimal Centered RPCA

Tables 5.3 show reconstruction errors for different RPCA algorithms, using code provided

by the authors. The errors are computed as shown in (5.1). We can see even we apply the

greedy variant our COPT algorithm returns smaller errors in most cases.

Figures 5.9 compares the results of our COPT algorithm to the results of the other RPCA

algorithms. Thirteen outliers were selected based on the first two principal vectors on Wine

81

Table 5.3: Error comparison among multiple RPCA algorithms. The smallest errors are
highlighted. Results of COPT are obtained by greedy variant with ε = 1

iris wine glass wdbc ionosphere gom
k : r 11:1 13:2 7:4 25:3 8:3 15:4

COPT 0.2581 12.9881 0.2026 73.3576 3.9871 33.7604
HR-PCA 0.3393 17.2651 0.3173 95.6762 4.4468 35.8607

CoP 0.3108 15.7866 0.1444 94.8265 4.2332 36.1052
Outlier Pursuit 0.2777 17.8383 0.1550 80.9527 3.9956 34.0282

RobPCA 0.2581 13.6969 0.2537 90.7395 4.2453 35.5978

dataset. All the non-outlier points lie on the plane composed by the first two vectors.

Meaningful outliers should be as far away as possible from this plane. The figure shows

the location of all the points on the plane defined by the first and third principal vectors

(computed by only non-outlier points). The horizontal lines represent the plane composed

by the first two principal vectors. It clearly shows the outliers returned by COPT at the

margins of the distribution, see Figure 5.9a. By contrast, in Figure 5.9b to Figure 5.9e the

outliers are not the ones furthest away. This is a further evidence that our COPT compares

favorably to the other RPCA algorithms.

5.7 Concluding Remarks

Outlier based robust principal component analysis (PCA) removes outliers from the data

and computes the principal components of the remaining data. This asks for getting center

only of the non-outlier points. But it is hard to achieve since the outliers are unknown. In

this chapter we show a bias trick which appends a large bias value to each data element and

unifies the centered and the uncentered PCA variants.

Furthermore the bias trick simplifies the centered RPCA problem to the uncentered

RPCA problem. Given an algorithm, a dataset, the desired number of principal components

r, and the number of outliers k, the bias method does not apply the algorithm directly to

82

−400−200 0 200 400 600 800 1,000

−10

−5

0

5

10
73

59

158

157

121127

159

177
166

1

169

39

151

PC1

P
C

3

(a) COPT algorithm: ERPCA = 12.9881.

−400−200 0 200 400 600 800 1,000

−10

−5

0

5 174

168

173

68

39

155

78

166

136

158

4

21

167

PC1

P
C

3

(b) CoP: ERPCA = 17.2651.

−400−200 0 200 400 600 800 1,000

−10

−5

0

5 30

105

97

7

49

55
10

108

31

125

177

115

18

PC1

P
C

3

(c) HR-PCA: ERPCA = 15.7866.

−400−200 0 200 400 600 800 1,000

−10

−5

0

5

18

14

31

10

3

5

53
12
15

6

727

30

PC1

P
C

3

(d) Outlier-Pursuit: ERPCA = 17.8383.

−400−200 0 200 400 600 800 1,000

−10

−5

0

5

10

1

18

39

59

69

73

78

95

96

121127

157

158

PC1

P
C

3

(e) RobPCA: ERPCA = 13.6969.

Figure 5.9: Positions of outliers selected by different RPCA algorithms on wine dataset with
k = 13, r = 2. Red points are the outliers.

83

the data. Instead, a large (bias) value is added to each data element and the algorithm

is applied to compute r+1 principal components. The algorithm identifies outliers in the

modified data. The RPCA is obtained by computing centered PCA of the non-outliers.

However, this does not guarantee to return the optimal centered RPCA and outliers with

respect to center. By combining the bias trick and the algorithm from Chapter 4 we get

the first optimal centered RPCA algorithm. From the experimental results we can see the

sub-optimal variant of our algorithm still manages to get smaller error than the current state

of the art.

84

CHAPTER 6

CONCLUSIONS

The work presented in this dissertation addresses three main problems. The three problems

aim to do unsupervised robust data analysis. The first problem is the unsupervised hybrid

feature selection and feature extraction. This is an NP-hard problem as the sub-problem

of feature selection is NP-hard in the unsupervised case. We show that its not possible to

solve this problem by sequentially combining the solutions to feature selection and feature

extraction. We provide a heuristic search approach to simultaneously find a given number

of optimal selected features and a fixed number of best extracted features. Based on our

knowledge this is the first optimal algorithm of the hybrid expression. We also provide faster

variants to this algorithm and provide bounds on the suboptimality. In additional we show

how to use the suboptimality bounds to improve the results. This work gives an opportunity

to balance the robustness and accuracy by tuning the number of selected features and the

number of extracted features.

The second problem is the outlier RPCA. We discussed how this problem is very im-

portant not just because PCA tends to be very sensitive to outliers but also due to the

fact that PCA itself is used as a technique to identify outliers. Thus PCA itself should be

robust to the presence of outliers. We provide an optimal solution and faster variants with

suboptimality bounds for the outlier robust PCA problem. One can control the trade-off

between suboptimality and speed by controlling a parameter of the suboptimal algorithm.

We compared it to the popular convex relaxation approach and showed better accuracy of

the solution obtained by our algorithm. This approach also combines two very different areas

of artificial intelligence research, namely A* search and PCA.

The third problem is a further study on the outlier RPCA. We discussed the importance

of proper centering in RPCA. The center of RPCA should be only computed from the non-

outliers. But this is hard because the outliers are unknown. We provide a method called

85

“bias trick” which can unify uncentered PCA and centered PCA. The bias trick asks for

appending a large bias value to each data point. From the theorems and experiments we give

a practical value to the bias. The bias trick can be used to compute centered RPCA since it

automatically computes the center of the non-outliers. Given an RPCA algorithm, a dataset,

the desired number of principal vectors r and the number of outliers k, appending the bias

value to each data point and applying the algorithm to compute r+1 principal vectors. The

RPCA algorithm identifies outliers in the modified data and obtains the centered PCA of the

outliers. Based on the bias trick we give the first optimal centered RPCA algorithm (COPT).

We compared it to the current state-of-the-art RPCA algorithms and showed smaller errors

of the solution obtained by our algorithm.

86

REFERENCES

Arai, H., C. Maung, and H. Schweitzer (2015). Optimal column subset selection by A-
Star search. In Proceedings of the 29th National Conference on Artificial Intelligence
(AAAI’15), pp. 1079–1085. AAAI Press.

Arai, H., C. Maung, K. Xu, and H. Schweitzer (2016). Unsupervised feature selection by
heuristic search with provable bounds on suboptimality. In Proceedings of the 30th National
Conference on Artificial Intelligence (AAAI’16), pp. 666–672. AAAI Press.

Barnett, V. and T. Lewis (1974). Outliers in statistical data. Wiley.

Bini, D. A. and L. Robol (2014). Solving secular and polynomial equations: A multiprecision
algorithm. Journal of Computational and Applied Mathematics 272, 276–292.

Borges, C. F. and W. B. Gragg (1993). A parallel divide and conquer algorithm for the
generalized real symmetric definite tridiagonal eigenproblem. In L. Reichel, A. Ruttan,
and R. S. Varga (Eds.), Numerical Linear Algebra nad Scientific Computing, de Gruyter,
Berlin, pp. 11–29.

Boutsidis, C., M. W. Mahoney, and P. Drineas (2009). An improved approximation algorithm
for the column subset selection problem. In SODA, pp. 968–977.

Bouwmans, T., A. Sobral, S. Javed, S. K. Jung, and E. Zahzah (2017). Decomposition into
low-rank plus additive matrices for background/foreground separation: A review for a
comparative evaluation with a large-scale dataset. Computer Science Review 23, 1–71.

Bringmann, K., P. Kolev, and D. P. Woodruff (2017). Approximation algorithms for `0-low
rank approximation. In NIPS’17. Curran Associates, Inc.

Bunch, J. R., C. P. Nielsen, and D. C. Sorensen (1978). Rank-one modification of the
symmetric eigenproblem. Numer. Math. 31, 31–48.

Businger, P. and G. H. Golub (1965). Linear least squares solutions by Householder trans-
formations. Numer. Math. 7, 269–276.

Cadima, J. and I. Jolliffe (2009). On relationships between uncentred and column-centred
principal component analysis. Pakistan Journal of Statistics 25 (4), 473–503.

Campbell, N. A. (1980). Robust procedures in multivariate analysis i: Robust covariance
estimation. Applied statistics , 231–237.

Candès, E. J., X. Li, Y. Ma, and J. Wright (2011). Robust principal component analysis?
Journal of the ACM (JACM) 58 (3), 11.

87

Chandola, V., A. Banerjee, and V. Kumar (2009). Anomaly detection: A survey. ACM
computing surveys (CSUR) 41 (3), 15.

Chandrasekaran, V., S. Sanghavi, P. A. Parrilo, and A. S. Willsky (2011). Rank-sparsity
incoherence for matrix decomposition. SIAM Journal on Optimization 21 (2), 572–596.

Chatterjee, S. and A. S. Hadi (1986). Influential observations, high leverage points, and
outliers in linear regression. Statistical Science 1 (3), 379–393.

Chen, Y., H. Xu, C. Caramanis, and S. Sanghavi (2016). Matrix completion with column
manipulation: Near-optimal sample-robustness-rank tradeoffs. IEEE Transactions on In-
formation Theory 62 (1), 503–526.

Chierichetti, F., S. Gollapudi, R. Kumar, S. Lattanzi, R. Panigrahy, and D. P. Woodruff
(2017). Algorithms for `p low-rank approximation. In Proceedings of the 34th International
Conference on Machine Learning, Volume 70, pp. 806–814. PMLR.

Çivril, A. (2014). Column subset selection problem is ug-hard. Journal of Computer and
System Sciences 80 (4), 849–859.

Daszykowski, M., K. Kaczmarek, Y. Vander Heyden, and B. Walczak (2007). Robust statis-
tics in data analysis – a review: Basic concepts. Chemometrics and intelligent laboratory
systems 85 (2), 203–219.

Deshpande, A. and L. Rademacher (2010). Efficient volume sampling for row/column subset
selection. In FOCS, pp. 329–338. IEEE Computer Society Press.

Deshpande, A., L. Rademacher, S. Vempala, and G. Wang (2006). Matrix approximation
and projective clustering via volume sampling. Theory of Computing 2 (12), 225–247.

Dong, Y., S. Hopkins, and J. Li (2019). Quantum entropy scoring for fast robust mean
estimation and improved outlier detection. In Advances in Neural Information Processing
Systems, pp. 6065–6075.

Drineas, P., M. Mahoney, and S. Muthukrishnan (2008). Relative-error CUR matrix decom-
positions. SIAM Journal on Matrix Analysis and Applications 30 (2), 844–881.

Eckart, C. and G. Young (1936). The approximation of one matrix by another of lower rank.
Psychometrika 1 (3), 211–218.

Frank, A. and A. Asuncion (2010). UCI machine learning repository.

Georghiades, A., P. N. Belhumeur, and D. J. Kriegman (1997). Yale face database.

Gillis, N. and S. A. Vavasis (2018). On the complexity of robust pca and l1-norm low-rank
matrix approximation. Mathematics of Operations Research 43 (4), 1072–1084.

88

Golub, G. H. (1973). Some modified matrix eigenvalue problems. SIAM Review 15 (2),
318–334.

Golub, G. H. and C. F. Van-Loan (2013). Matrix Computations (Fourth ed.). Johns Hopkins
University Press.

Gu, M. and S. C. Eisenstat (1996). Efficient algorithms for computing a strong rank-revealing
QR factorization. SIAM J. Computing 17 (4), 848–869.

Guo, H., C. Qiu, and N. Vaswani (2014). An online algorithm for separating sparse and
low-dimensional signal sequences from their sum. IEEE Transactions on Signal Process-
ing 62 (16), 4284–4297.

Guruswami, V. and A. K. Sinop (2012). Optimal column-based low-rank matrix reconstruc-
tion. In Y. Rabani (Ed.), Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pp. 1207–1214.
SIAM.

Guyon, I. and A. Elisseeff (2003). An introduction to variable and feature selection. Journal
of Machine Learning Research 3, 1157–1182.

Halko, N., P. G. Martinsson, and J. A. Tropp (2011). Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Re-
view 53 (2), 217–288.

Hart, P. E., N. Nilsson, and B. Raphael (1968). A formal basis for the heurisitc determination
of minimal cost paths. IEEE Transactions on Systems Science and Cybernetics 4 (2), 100–
107.

He, B., S. Shah, G. A. Crystal Maung, G. Wan, and H. Schweitzer (2019). Heuristic search
algorithm for dimensionality reduction optimally combining feature selection and feature
extraction. In Thirty-Third AAAI Conference on Artificial Intelligence.

Hoaglin, D. C. and R. E. Welsch (1978). The hat matrix in regression and anova. The
American Statistician 32 (1), 17–22.

Hodge, V. and J. Austin (2004). A survey of outlier detection methodologies. Artificial
intelligence review 22 (2), 85–126.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components.
Journal of educational psychology 24 (6), 417.

Huber, P. J. (2011). Robust statistics. Springer.

Hubert, M. and S. Engelen (2004). Robust PCA and classification in biosciences. Bioinfor-
matics 20 (11), 1728–1736.

89

Hubert, M., P. J. Rousseeuw, and K. Vanden Branden (2005). Robpca: a new approach to
robust principal component analysis. Technometrics 47 (1), 64–79.

Hughes, J. F., S. K. Feiner, J. D. Foley, K. Akeley, M. McGuire, A. v. Dam, and D. F. Sklar
(2013). Computer graphics: principles and practice. Addison-Wesley.

Jolliffe, I. (2011). Principal component analysis. In International encyclopedia of statistical
science, pp. 1094–1096. Springer.

Jolliffe, I. T. (1986). Principal Component Analysis. Springer-Verlag.

Jolliffe, I. T. (2002). Principal Component Analysis (second ed.). Springer-Verlag.

Kneip, A. and P. Sarda (2011). Factor models and variable selection in high-dimensional
regression analysis. The Annals of Statistics 39 (5), 2410–2447.

Krızek, P. (2008). Feature selection: stability, algorithms, and evaluation. Ph. D. thesis,
PhD thesis, Czech Technical University in Prague, 2008. 6, 14, 36, 67, 93.

Kuhn, M. and K. Johnson (2013). Applied predictive modeling, Volume 26. Springer.

Lerman, G. and T. Maunu (2018). An overview of robust subspace recovery. Proceedings of
the IEEE 106 (8), 1380–1410.

Li, G. and Z. Chen (1985). Projection-pursuit approach to robust dispersion matrices and
principal components: primary theory and monte carlo. Journal of the American Statistical
Association 80 (391), 759–766.

Li, H., G. C. Linderman, A. Szlam, K. P. Stanton, Y. Kluger, and M. Tygert (2017). Al-
gorithm 971: An implementation of a randomized algorithm for principal component
analysis. ACM Transactions on Mathematical Software 43 (3), 28:1–28:14.

Luo, M., F. Nie, X. Chang, Y. Yang, A. Hauptmann, and Q. Zheng (2016). Avoiding
optimal mean robust pca/2dpca with non-greedy l1-norm maximization. In Proceedings
of International Joint Conference on Artificial Intelligence, pp. 1802–1808.

Maronna, R., D. Martin, and V. Yohai (2006). Robust Statistics: Theory and Methods.
Hoboken, NJ: Wiley.

Maronna, R. A., R. D. Martin, V. J. Yohai, and M. Salibián-Barrera (2018). Robust statistics:
theory and methods (with R). Wiley.

Maronna, R. A., R. D. Martin, V. J. Yohai, and M. Salibián-Barrera (2019). Robust statistics:
theory and methods (with R). John Wiley & Sons.

90

Maronna, R. A. and V. J. Yohai (2004). Robust estimation of multivariate location and
scatter. Encyclopedia of Statistical Sciences 11.

Marshall, A. W., I. Olkin, and B. C. Arnold (2011). Inequalities: Theory of Majorization
and Its Applications (Second ed.). Springer.

Mathar, R. and R. Meyer (1993). Preorderings, monotone functions, and best rank r ap-
proximations with applications to classical MDS. Journal of Statistical Planning and
Inference 37, 291–305.

Melman, A. (1998). Analysis of third-order methods for secular equations. Mathematics of
Computation 67 (221), 271–286.

Minsky, M. and S. Papert (1988). Perceptrons. In Neurocomputing: foundations of research,
pp. 157–169. MIT Press.

Mirsky, L. (1960). Symmetric gauge functions and unitarily invariant norms. The quarterly
journal of mathematics 11 (1), 50–59.

Murase, H. and S. Nayar (1995). Visual learning and recognition of 3D objects from appear-
ance. International Journal of Computer Vision 14, 5 – 24.

Netrapalli, P., U. Niranjan, S. Sanghavi, A. Anandkumar, and P. Jain (2014). Non-convex
robust pca. In Advances in Neural Information Processing Systems, pp. 1107–1115.

Onuki, M. and Y. Tanaka (2018). Svd for very large matrices: An approach with polar
decomposition and polynomial approximation. In 2018 IEEE International Conference on
Data Mining Workshops (ICDMW), pp. 954–963. IEEE.

Pearl, J. (1984). Heuristics : intelligent search strategies for computer. Reading, Mas-
sachusetts: Addison-Wesley.

Pearson, K. (1901). Liii. on lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2 (11),
559–572.

Peng, C., C. Chen, Z. Kang, J. Li, and Q. Cheng (2019). Res-pca: A scalable approach to
recovering low-rank matrices. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 7317–7325.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (2007). Numerical
recipes 3rd edition: The art of scientific computing. Cambridge university press.

Rahmani, M. and G. K. Atia (2017). Coherence pursuit: Fast, simple, and robust principal
component analysis. IEEE Transactions on Signal Processing 65 (23), 6260–6275.

91

Rousseeuw, P. J. and A. M. Leroy (2005). Robust regression and outlier detection, Volume
589. John wiley & sons.

Russell, S. and P. Norvig (2010). Artificial Intelligence - A Modern Approach. Pearson
Education.

Shah, S., B. He, C. Maung, and H. Schweitzer (2017). Computing robust principal compo-
nents by a* search. In 2017 IEEE 29th International Conference on Tools with Artificial
Intelligence (ICTAI), pp. 1042–1049.

Shah, S., B. He, K. Xu, C. Maung, and H. Schweitzer (2018). Solving generalized column
subset selection with heuristic search. In Thirty-Second AAAI Conference on Artificial
Intelligence.

Shitov, Y. (2017). Column subset selection is np-complete. arXiv e-print
(arXiv:1701.02764[math.CO]).

Song, Z., D. P. Woodruff, and P. Zhong (2017). Low rank approximation with entrywise
`1-norm error. In STOC’17, New York, NY, USA, pp. 688–701. ACM.

Tao, T. (2012). Topics in Random Matrix Theory, Volume 132 of Graduate studies in
mathematics. American Mathematical Society.

Thayer, J. T. and W. Ruml (2008). Faster than weighted a*: An optimistic approach to
bounded suboptimal search. In Proceedings of the Eighteenth International Conference on
International Conference on Automated Planning and Scheduling, ICAPS’08, pp. 355–362.
AAAI Press.

Turk, M. A. and A. P. Pentland (1991). Face recognition using eigenfaces. In Proceedings.
1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pp. 586–591. IEEE.

Wang, H. (2012). Factor profiled sure independence screening. Biometrika 99 (1), 15–28.

Xu, H., C. Caramanis, and S. Mannor (2013). Outlier-robust pca: The high-dimensional
case. IEEE Transactions on Information Theory 59 (1), 546–572.

Xu, H., C. Caramanis, and S. Sanghavi (2010). Robust pca via outlier pursuit. In Advances
in Neural Information Processing Systems, pp. 2496–2504.

Yu, W., Y. Gu, J. Li, S. Liu, and Y. Li (2017). Single-pass pca of large high-dimensional
data. arXiv preprint arXiv:1704.07669 .

Zhang, H., Z. Lin, C. Zhang, and E. Y. Chang (2015). Exact recoverability of robust pca via
outlier pursuit with tight recovery bounds. In Proceedings of the 29th AAAI Conference
on Artificial Intelligence, pp. 3143–3149. AAAI Press.

92

Zhu, F., B. Fan, X. Zhu, Y. Wang, S. Xiang, and C. Pan (2015). 10,000+ times accelerated
robust subset selection. In Twenty-Ninth AAAI Conference on Artificial Intelligence, pp.
3217–3223.

93

BIOGRAPHICAL SKETCH

Baokun He was born in Hulunbuir, China. She went to Harbin Institute of Technology in

2005. She joined the Computer Science Department at The University of Texas at Dallas as

a graduate student in 2015. She has been working on her PhD with Dr. Haim Schweitzer

since 2017. Her main research interests are machine learning and statistics. She interned at

Amazon in Seattle in the summer of 2018 and interned at Facebook in Seattle in the summer

of 2019. She started to work as a research scientist at Facebook in February 2020.

94

CURRICULUM VITAE

Baokun He
February 5, 2020

Contact Information:

Department of Computer Science
The University of Texas at Dallas
800 W. Campbell Rd.
Richardson, TX 75080-3021, U.S.A.

Educational History:

B.S., Optoelectronic Information Engineering, Harbin Institute of Technology, 2009
M.S., Optical Engineering, China Academy of Space Technology, 2012
M.S., Computer Science, University of Texas at Dallas, 2019
Ph.D., Computer Science, University of Texas at Dallas, 2020

Algorithms for Robust Data Analysis
Ph.D. Dissertation
Computer Science Department, University of Texas at Dallas
Advisors: Dr. Haim Schweitzer

Employment History:

Research Scientist, Facebook Inc., Februray 2020 – Present
Software Engineer Intern for Machine Learning, Facebook Inc., May 2019 – August 2019
Research Scientist Intern, Amazon, May 2018 – August 2018

Publications:

• A Bias Trick for Centered Robust Principal Component Analysis, AAAI 2020

• Heuristic Search Algorithm for Dimensionality Reduction Optimally Combining Fea-
ture Selection and Feature Extraction, AAAI 2019

• Solving Generalized Column Subset Selection with Heuristic Search, AAAI 2018

• Computing Robust Principal Components by A* Search, IJAIT Vol.27 No. 07, 2018

• Computing Robust Principal Components by A* Search, ICTAI 2017

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Our Contributions
	Structure of The Dissertation

	Background
	Feature Selection
	Feature Extraction
	Hybrid Feature Selection and Feature Extraction
	Principal Component Analysis
	Centered PCA and Uncentered PCA

	Robust Principal Component Analysis
	Robustness and Outliers
	Two Variants

	Hybrid Feature Selection and Feature Extraction
	Problem being Addressed
	Our Results

	Hybrid Low Rank Representations
	Greedy HLR Is Not Optimal

	HLR by Heuristic Search
	The Subsets Graph
	The Heuristic Search Algorithm
	Heuristic Functions

	Unitarily Invariant Monotonic Functions
	The Three Variants of The Algorithm
	Proofs
	A priori and a posteriori Bounds
	Using a posteriori Bound to Improve The Result

	Relationship to Previous Work
	Experimental Results
	Concluding Remarks

	Robust Principal Component Analysis via Outliers
	Problem Being Addressed
	Previous Approaches
	The Main Tools
	Our Approach
	The Subset Graph
	The Algorithm
	Heuristic Functions

	Optimality and Suboptimality Theorems
	Experimental Results
	Concluding Remarks

	The Bias Trick for Centering PCA
	Problem Being Addressed
	Our Contributions

	Relationship to Previous Work
	The Bias Trick
	Correctness of The Bias Trick
	Estimating The Value of Bias

	Optimal Centered RPCA
	Experimental Results
	Concluding Remarks

	Conclusions
	References
	Biographical Sketch
	Curriculum Vitae

