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DEMONSTRATION OF POC BIOSENSOR TOWARD CLINICAL 

TRANSLATION FOR PATIENT BED-SIDE MONITORING 

Ambalika Sanjeev Tanak, PhD 

The University of Texas at Dallas, 2021 

ABSTRACT 

Supervising Professor: Shalini Prasad 

The research presented in this dissertation focuses on developing and characterizing a 

multiplexed affinity based electrochemical biosensing device toward clinical translation. The 

goal of this work is to establish a portable POC device for early disease detection across diverse 

healthcare applications using low sample volume, rapid response time and usability amongst 

minimally trained individual relying on ASSURED (Affordable, Sensitive, Specific, User 

friendly, rapid, and Robust, Equipment free and Deliverable to end users) criteria. Primarily, 

we designed a robust, non-faradaic electrochemical affinity biosensing platform for the rapid 

assessment of parathyroid hormone (PTH) as a single biosensing system. Unique high density 

semiconducting nanostructured arrays on a flexible sensing surface were used to create the 

analytical nanobiosensor. The surface modification technique was specifically designed to 

improve the interaction of the nanostructure–biological interface to capture the desired PTH 

level in HS and plasma. This was followed by evaluating the analytical performance of the 

developed biosensor with clinical rigor. The assay validation results were compared with 

laboratory standard as reference with results that demonstrated comparable performance with 
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higher accuracy. Next, the scope of the biosensor was expanded to solve a clinically 

challenging problem of detecting host immune markers for life-threatening sepsis infection. 

Herein, we demonstrate a first-of-a-kind multiplexed POC biosensing device that 

simultaneously detects a panel of eight key immune response cytokine biomarkers in sample 

volume equivalent to two drops of plasma and whole blood within 5 minutes without sample 

dilution. Moreover, this work focuses on validating the developed biosensing device 

with LUMINEX standard reference method for clinical translation using nearly 200 patient 

samples. The DeTecT (Direct Electrochemical Technique Targeting) Sepsis biosensing device 

is surface engineered with specific capture probes that utilizes EIS to measure the capacitive 

impedance change reflecting binding interactions between the capture probe and target 

biomarker enabling multiplexed detection. Specificity of the biosensor was validated using 

cross-reactive studies, which displayed insignificant interference from non-specific 

biomarkers. The biosensor also displays stable and repeatable performance. The novelty 

presented in this research combines the effectiveness of choosing specific host immune 

response biomarkers for detection of sepsis combined with unique surface modification 

strategy coupled with EIS technique to enable efficient clinical decision-making process. This 

unique sensor technology would allow medical practitioners to facilitate targeted interventions 

for septic patients as a rapid prognostic approach, preventing complications arriving from 

sepsis.  
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CHAPTER 1 

INTRODUCTION 

Biosensors and POC diagnostic devices are already revolutionizing healthcare in one form or 

another. From 2021 to 2026, the biosensors market is estimated to increase at a CAGR of 7.5%, 

from a value of USD 25.5 billion in 2021 to USD 36.7 billion in 2026 [1]. The advent of 

nanotechnology-based biosensors, with significant technological breakthroughs in recent 

years, growing the use of glucose biosensors for diabetes management, surging demands for 

home-based POC devices due to COVID-19 pandemic, and growing government initiatives 

toward diagnostics are amongst the pivotal motivating factors in the biosensing market. 

Biosensing research demands an interdisciplinary approach that integrates several branches of 

study such as chemistry, biology, and engineering. A biosensor is a device that translates 

biological response into a measurable quantifiable signal. These biological elements are 

converted into different forms of outputs based on the type of physicochemical transducer. An 

ideal sensor is expected to have typical characteristics such as wide detection range, good 

sensitivity and selectivity, linearity, reproducibility, repeatability, and fast response time. 

Accordingly, much focus is attributed towards the design and development of biosensors which 

have a wide range of application, especially in the last decade. A typical biosensor consists of 

the following components: 

Analyte: A molecule of significance, that must be detected. In a biosensor designed to detect 

glucose, for instance, the analyte will be glucose. 

Bioreceptor: A bioreceptor is a molecule that recognizes the analyte precisely. Bioreceptors 

include enzymes, cells, aptamers, deoxyribonucleic acid (DNA) and antibodies. 
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Biorecognition is the process of signal production (in the form of light, heat, pH, charge or 

shift in mass etc) when a bioreceptor interacts with an analyte. 

Transducer: A transducer is device that transforms one form of energy into another. The 

responsibility of a transducer in a biosensing system is to convert the bio-recognition event 

into a quantifiable signal. For instance, converting biochemical interaction into an electric 

signal output.  

Electronics: This is the portion of the biosensor that process and presents the transduced 

signal. It consists of specialized electronic circuitry that performs signal conditioning functions 

such as amplification and digital signal conversion. The display device of the biosensor then 

quantifies the processed signals.  

Display: A user interpretation system, such as a computer, a portable mobile device or 

specialized screen. This component is often a combination of hardware and software that 

delivers user-friendly biosensing results. Depending on the application and the user 

requirement, the display can be numeric in terms of concentration, a range indicating low or 

high value or an image.  

1.1 Need for biosensor sand POC devices 

The need for faster results, user friendly test, and understanding infectious disease progression 

has been much appreciated with the advent of the current COVID-19 pandemic. While 

sensitive and specific assays such as blood culture, high-throughput immunoassays, 

polymerase chain reaction (PCR), and mass spectroscopy (MS) tests are available in central 

laboratories, they are often labor intensive, expensive, and reliant on sophisticated instruments 

and well-trained operators [2], [3]. Timely diagnosis with rapid treatment methodology has 
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been reported to improve the chances of preventing adverse complications, and thus, reduce 

mortality rate, particularly in infectious diseases[4]. For instance, in case of identifying the 

infected pathogen, traditional blood culture takes 1-3 days to increase bacterial concentration 

to the detectable limit for molecular diagnostic testing which could cause more harm in 

sensitive diseases like sepsis where rate of mortality is increased every hour the patient is 

undiagnosed. POC biosensors on the other hand offer an immediate on-site result, particularly 

in resource-constrained situations, allowing for timely and proper treatment, overcoming the 

existing shortcomings of laboratory-based tests[5], [6]. Patients may be able to self-test in the 

privacy of their own homes using POC tests. POC can also reduce costs associated with tests 

by making it convenient for healthcare providers as well as patients. Treatment can be 

implemented faster, thus providing opportunities to saving more lives. Having described the 

advantages of using POC biosensors within healthcare systems it is crucial to standardize the 

results including method of validation for consistency in results. This has given rise to the 

ASSURED criteria guided by the World Health Organization- which is Affordable, Sensitive, 

Specific, User friendly, rapid, and Robust, Equipment free and Deliverable to end users.  

Multiple factors are involved in designing an optimal POC sensor. The major aspect that 

governs the success of a POC sensor is the rapid response time. Traditional diagnosis is 

performed by sending the patient sample to a laboratory for tests. This not only requires large 

sample volumes, but also takes several hours to provide results. POC sensors offer provocative 

possibilities of providing instant results without the laboratory hustle. Use of POC biosensor 

near patient bedside offers more opportunities for personalized medicine and healthcare. POC 

diagnostic devices must enable low sample consumption, easily accessible body fluid, rapid 
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turn-around times, sensitive detection limits that are in accordance with clinical findings, low 

cost, portable and easy to use. Key aspects that dictate the success of a POC device is the ability 

for rapid detection. The possibility to conduct diagnostic tests easily and frequently opens up 

opportunities in clinical practice. POC innovations are even more essential in developing and 

resource limited environments where timely diagnosis tailored to patient requirements can be 

utilized to curb the spread of infectious diseases. Detection strategies involving the use of 

biomarkers have revolutionized the healthcare field. Complex diseases can be easily diagnosed 

by measuring multiple biomarkers simultaneously, with multiple analytes using least sample 

volume along with the biosensor being portable. 

1.2 Characteristics of POC biosensors 

Certain features are required while implementing the biosensor design use of POC biosensors for 

highly effective outcomes which are listed as follow: 

1.2.1 Selectivity 

While establishing a bioreceptor for a specific biosensor, selectivity is an important factor to 

consider. In a sample containing mixed species and undesired impurities, a bioreceptor may detect 

a certain target analyte biomolecule.  

1.2.2 Sensitivity 

Sensitivity can be defined as the minimum amount of analyte that can be detected correctly in a 

few steps and in low concentrations to confirm the presence of analyte traces within a given 

sample. 
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1.2.3 Linearity 

The accuracy of the measured result is assisted by linearity. The better the linearity, the more 

accurate detection of substrate concentration. 

1.2.4 Response time 

The time taken to display 95% of results is reported as the response time of the POC biosensor. 

1.2.5 Reproducibility 

Reproducibility is characterized as the precision (consistent results when the sample is 

measured multiple times) and accuracy (sensors capability to generate mean value closer to 

actual value when measured multiple times).  

1.2.6 Stability 

One of the key features of a biosensing device is stability of the biosensor. The degree of 

susceptibility to environmental perturbations within the biosensing device is referred to as 

stability. The affinity of the bioreceptor (binding capability to the bioreceptor) and the 

bioreceptor’s degradation with time are the two elements that affects stability of the biosensor.   

1.3 Innovation 

The novelty presented in this research combines the effectiveness of specific capture probe 

antibodies with EIS technique for detection of target analytes to enable clinically efficient 

decision-making process. To provide a complete patient profile on the diseased state, we have 

targeted key biomarkers that help diagnose sepsis accurately and detecting PTH for 

determining the success during parathyroidectomy (further discussed in chapter 2 and 3). The 
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innovation lies in designing an electrochemical POC sensing platform that can measure single 

molecule or a multiplexed system that is compatible for seven biomarkers to be detected 

simultaneously using single drop of fluid. The sensing platform of the biosensor is surface 

engineered to allow sensitive detection of specific target biomolecules using low volume of 

undiluted samples. Furthermore, our interdisciplinary approach of designing the POC 

biosensor allows label-free detection allowing wide range of application in the healthcare field 

of medicine. 

1.4 Overall Approach 

A Non-faradaic affinity biosensor is developed on surface engineered electrode surface. The 

immunoassay is constructed by a series of functionalization protocols that allows successful 

binding of the target analyte. The sensor surface is functionalized with dithiobis succinimidyl 

propionate (DSP) cross-linker that allows formation of a self-assembled monolayers using thiol 

chemistry. DSP is an amine-reactive cross-linker with NHS-ester reactive ends on either arm 

held by a disulfide bond. NHS esters react with primary amines of antibodies to form stable 

amide bonds. The capture probe antibody is covalently bound to the electrode surface which 

Figure 1.1. Schematic illustrating immunoassay building protocol for point of care biosensor 
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allows target immunoreaction to take place on the biosensing platform. Schematic shown in 

fig 1.1 illustrates the immunoassay building protocol that aids to capture the binding 

phenomenon occurring at the electrode interface using electrochemical signals to transduce 

and provide a measurable signal. EIS is used to measure the binding activity occurring at the 

sensor surface using a small AC input voltage.  

1.4.1 Electrochemical Impedance Spectroscopy (EIS) 

Electrochemical biosensors are used in POC applications owing to their excellent properties 

like rapid response time, capability to translate into a miniaturized device, low cost and high 

sensitivity [7], [8]. Electrochemical biosensors have electrodes that are functionalized with 

biological recognition element, selective to the target analyte. The electrodes translate 

biochemical reaction into electrical signals that quantify the concentration of the interacting 

analyte. Electrochemical biosensors have eliminated the need for sample preparation while 

delivering high performance in terms of selectivity, sensitivity, and dynamic range with rapid 

response time. Out of the many electrochemical techniques, EIS is a powerful technique, 

attributing to its sensitive detection of binding interactions at the electrode [9], [10]. EIS 

measures change in impedance owing to the binding interaction between target and capture 

probe at the electrode–solution interface upon perturbation by a small AC voltage typically 

less than 10 mV [11]. An important aspect to be considered while developing an 

electrochemical POC is the ability to achieve sensitivity. Sensitivity depends on several factors 

including geometry of the sensing material, the resolution of the sensor material, and the 

surface chemistry used to functionalize the bio-recognition component on the sensing surface. 
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1.5 Experimental approach 

1.5.1 Sensor design strategies for optimum sensing performance 

For an electrochemical biosensor, design consideration can help optimize the sensing performance 

in terms of stability. Maintaining constant potential difference between two points is crucial for 

the working of a potentiostat. In a three-electrode setup (working electrode, reference electrode 

and counter electrode), this is achieved between the working and the reference electrode. 

Positioning of the reference and working electrode is considered to minimize the voltage drop that 

manifests itself as an error while measuring the potential difference between the electrodes. To 

minimize the solution resistance of the biosensing system, the position of the electrodes can be 

altered. Additionally, the shape, size and ratio between the working electrode and reference 

electrode influences the measuring signal. The general design consideration is that the 

reference/counter electrode should be larger than the working electrode and positioned 

symmetrically to ensure constant current density and potential across the sensing area.  

 For the first application of determining PTH, we considered a three-electrode system on a flexible 

polyimide surface.  

This design consisted of two working electrodes, two counter electrodes and a single reference 

electrode. Surface area of Working Electrode: Counter Electrode: Reference Electrode was 1:1:4 

to ensure optimal binding response. The second application (sepsis) included a two-electrode 

system with a single reference and seven working electrodes as version 1 (DeTecT Sepsis device) 

of the sensor. This allowed multiplexed detecting capability to allow multimolecular detection. 

More advanced application demanding the need for detecting eight biomarkers required an 

advanced version of the sensor with sixteen independent working and reference electrodes printed 



 

9 

on a single printed circuit board (PCB) capable of multiplexed detection, labelled as DeTecT 

Sepsis 2.0 device.  

1.5.2 Surface modification strategies to achieve enhanced sensitivity 

One of the most effective approach to improve the performance characteristics of an 

electrochemical biosensor is using surface modification strategies. Semiconducting materials like 

zinc oxide (ZnO) offer remarkable functional and morphological properties that enhances 

sensitivity for transducing physicochemical changes with biomolecular binding in electrochemical 

biosensors [12] . ZnO’s high isoelectric point (IEP~9.5) enables stable immobilization of 

biomolecules with lower IEP through electrostatic interaction. This property of ZnO allows the 

biosensor to retain biological activity on its surface and facilitates bio functionality. Typically, 

biomolecules have reduced IEP as compared to ZnO at physiological pH which makes them 

negatively charged. Therefore, biomolecules can be readily immobilized on a positively charged 

ZnO through a strong electrostatic interaction. Furthermore, the chemical stability of ZnO plays a 

vital role in maintaining conducive environment for biomolecules in complex body fluids [13], 

[14]. Additionally, ZnO’s crystal structure and surface polarities can be fine-tuned to enhance the 

electrical transfer properties that makes it suitable for electrochemical biosensing. We adopted the 

most widely used surface modification strategies to optimize the sensing efficiency of the 

developed biosensor. A 100 nm thin film of ZnO was deposited on the electrodes using RF-

magnetron sputter tool. The ZnO deposited thin film on the electrode surface was characterized 

using Scanning electron microscope (SEM). Fig. 1.2 represents SEM image of the uniform 

deposition of ZnO thin film on the sensor platform with a thickness of 120±20 nm. 
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Figure 1.2. SEM image of the uniform deposition of ZnO thin film on the sensor platform 

 

Another commonly used strategy is to integrate ZnO nanostructures to achieve enhanced sensing 

performance. Incorporation of nanostructures at the electrode surface potentially increases the 

surface area for increased capture probe immobilization allowing enhanced target biomolecule 

interaction. Furthermore, nanostructures increase signal amplification; thereby, improving 

sensitivity, even with complex body fluid matrices. 

Figure 1.3 represents an SEM image of the hydrothermally grown ZnO nanostructures aligned 

vertically in a uniform manner due to pre deposited ZnO thin film. The average height of the 

hexagonally shaped rod like structure was measured to be 250 ± 20 nm with a diameter of 85 ± 10 

nm. The uniform growth distribution of nanostructures increases sensitivity of detection as it 

controls the mass transport and diffusion of the target analyte at the electrode–electrolyte interface. 

The nanostructured aspect of the sensor design allows the target confinement, thereby enhancing 

the signal response. 
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Figure 1.3. SEM image of uniform ZnO nanorods selectively grown on working electrode of the 

developed biosensor 

1.6 Objective 

The goal of this research is to develop a multiplexed affinity based electrochemical biosensing 

platform for small volume detection as a POC biosensor. The designed biosensor is envisioned 

to be a hand-held device for rapid detection of crucial biomarkers indicative of diseased health 

status using small volumes of complex biofluids like serum, plasma, and blood. A calibrated 

dose response will be developed to measure the accurate concentration of each biomolecule. 

Sensor performance metrics will be evaluated for specificity and further clinical validation will 

be performed. 

This work focuses on leveraging various parameters and aspects involved in developing a POC 

electrochemical sensing platform to demonstrate single and multi-analyte detection. In chapter 

2, we designed a robust POC platform to allow for sensitive and stable detection for a single 

biomarker. Leveraging the surface modification strategies, we applied this sensor platform to 

test for PTH as an application in detail. The sensor’s capability was tested for clinical 
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translation by evaluating several assay performances including the features listed in section 1.2 

in chapter 3. Chapter 4 introduces sepsis disease and the need to develop a multiplexed POC 

biosensing system.  

Once the sensor was characterized and validated for a single biomarker (PTH detection in 

chapter 2 and 3), the capability of the sensor was expanded to characterize and validate the 

performance of the biosensor to test multiple biomarkers in plasma for an intricate infectious 

disease such as sepsis in chapter 5. In-depth analysis using multi-cohort time points and clinical 

validation using patient samples from three geographic locations was established in chapter 6. 

Chapter 7 describes true clinical translational ability by validating and testing the developed 

POC biosensor in a complex biofluid such as whole blood. 
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CHAPTER 2 

POINT-OF-CARE BIOSENSOR FOR SINGLE MOLECULE DETECTION FOCUSING 

ON DETECTION OF PARATHROID HORMONE  

 

 

2.1 Prior publications 

Ambalika S. Tanak performed the experiments, data analysis, and wrote the manuscript. 

Ambalika S. Tanak, Dr. Shalini Prasad, Dr. Sriram Muthukumar, and Dr. Ibrahim A. Hashim 

co-designed the experiments, and co-wrote the manuscript. Dr. Ibrahim A. Hashim provided 

the patient samples. This manuscript was published in Bioelectronics in medicine journal in 

June 2019. This work describes the development and characterization of POC device for 

detection of affinity based PTH biosensor. The link to the article is 

https://www.futuremedicine.com/doi/full/10.2217/bem-2019-0011    

2.2 Abstract 

Novel electrochemical POC biosensing device for rapid assessment of PTH levels has been 

developed. The analytical nanobiosensor was designed by integrating unique high density 

semiconducting nanostructured arrays on a flexible sensing surface. Surface modification 

technique was tailored for enhancing the interaction of nanostructure-biological interface to 

capture the target PTH level. We demonstrate a rapid nanobiosensor to detect PTH in human 

serum (HS), plasma, and whole blood (WB) with a limit of detection (LOD) of 1 pg/mL and a 

clinically relevant dynamic range from 1 to 1000 pg/mL. This is the first demonstration of 

detecting PTH as a POC device devoid of sample pretreatment suitable in a surgical setting 

with high specificity to PTH. 

https://www.futuremedicine.com/doi/full/10.2217/bem-2019-0011
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2.3 Introduction  

Medical and surgical management of endocrine disorders relies on accurate and timely 

hormone measurements where technology plays central role in the patient outcome.  There are 

number of currently unmet technological needs resulting in hitherto unexplored opportunities 

for designing analytical biosensors as POC devices towards optimizing the medical and 

surgical interventions. PTH is a single chain 84 amino acids polypeptide secreted by the 

parathyroid gland. Its secretion is mainly regulated by extracellular ionized calcium level. In 

concert with vitamin D and other mediators, it is responsible for regulating body calcium 

homeostasis [15]. Measurement of circulating PTH levels aids in the investigation of 

parathyroid gland disorders as well as calcium level.  

 Primary hyperparathyroidism is the third most common endocrine disorder with its prevalence 

being one to seven cases per 1000 adults [16]–[19]. In primary hyperparathyroidism, 

development of benign tumors in one or more of the parathyroid glands causes excessive 

production of PTH leading to elevated circulating levels. Treatment for primary 

hyperparathyroidism involves surgical excision of the hyperfunctioning parathyroid gland. 

Successful resection of the tumor is evident by a 50% drop in peripheral PTH levels [20], [21]. 

In patients undergoing parathyroidectomy, intra-operative serial PTH measurements provide 

as a guide to successful resection.  

Measurement of intact PTH (1-84 amino acids) is complicated by the presence of several 

molecular forms of the hormone. Although few clinical assays are termed intact, they also 

detect the 7-84 fragment which accumulates in patients with renal dysfunction limiting such 

assays and interpretation[22]–[24]. It is, therefore, important that PTH assays are characterized 
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in terms of their specificity. During surgery, blood samples collected at pre-incision following 

anesthesia induction and at 5 - 20 minutes post resection are sent to testing laboratories for 

analysis. However, the current diagnostic immunoassay techniques may be time-consuming, 

expensive, require large sample volume, and skilled trained personnel as well [25]–[27].  

Additionally, sample transit time to the laboratory adds approximately 20-30 minutes to the 

analytical time which prolongs effective decision making. To overcome existing drawbacks, it 

is necessary to develop a sensitive, rapid, low sample volume assay. In this work, we describe 

the development of a novel POC biosensor intended as a guide to monitor PTH levels to 

improve effective clinical outcome in patient care.  

Electrochemical biosensors are used in POC applications owing to their excellent properties 

like rapid response time, capability to translate into a miniaturized device, low cost and high 

sensitivity [7], [8]. Out of the many electrochemical techniques, EIS is a powerful technique, 

attributing to its sensitive detection of binding interactions at the electrode [10], [28]. EIS 

measures change in impedance owing to the binding interaction between target and capture 

probe at the electrode-solution interface upon perturbation by a small AC voltage typically less 

than 10 mV [11]. One of the most effective approach to improve the performance 

characteristics of an electrochemical biosensor is using surface modification of the sensing 

electrode. Incorporation of nanostructures at the electrode surface potentially increases the 

surface area for increased capture probe immobilization allowing enhanced target biomolecule 

interaction. Furthermore, nanostructures increase signal amplification thereby, improving 

sensitivity even with complex body fluid matrices [29]. Amongst various nanostructures, metal 
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oxide nanostructures have successfully been used by fine-tuning their properties for achieving 

ultrasensitive detection of affinity-based biosensors [12], [30], [31]. 

Modulating the surface chemistry of the metal oxide nanostructures allows for the charges in 

the electrolyte solution to align along the nanostructures to enhance the charge transfer 

mechanism. Zinc Oxide (ZnO) is one such unique metal oxide semiconductor with exceptional 

properties including wide band gap (3.367 eV), non-toxic and large excitation binding energy 

(60 eV) [32]–[34]. Additionally, owing to its high adsorption capability due to its high 

isoelectric point (~9.5), chemical stability and good electrical conductivity makes it suitable 

for electrochemical biosensing applications [35], [36]. Chemical stability and biocompatible 

nature of ZnO nanostructures allows it to be interfaced with several chemical and biological 

fluids with varying pH levels [37]. Thus, leveraging the unique properties of ZnO 

nanostructures, we have developed a stable and sensitive electrochemical biosensing device 

for the detection of PTH.  

As previously discussed, the current PTH detection techniques require large sample volume 

and lack specificity, sensitivity, and quick response time. Hence, our focus is to overcome the 

technological gap in sensor development for PTH by designing a highly specific sensor for the 

clinically relevant diagnostic range as a POC device using ZnO nanostructures. The emphasis 

of this work contributes to the specificity aspect of the nanobiosensor towards validation of the 

target PTH molecule within complex human biofluids such as serum, plasma, and WB. Subtle 

biomolecular interactions occurring at the electrode-solution interface is captured by the 

powerful EIS technique to exemplify the target PTH concentration. In this work, for the first 

time, we demonstrate rapid and specific PTH screening as a POC device in undiluted HS, 
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plasma and WB using non-faradaic EIS towards real-time monitoring in a surgical 

environment using single drop sample (<40 µL). 

2.4 Materials and methods 

2.4.1 Chemicals and reagents 

Hydrothermal growth precursors- zinc nitrate hexahydrate (Zn (NO3)2·6H2O) and 

hexamethylenetetramine (HMTA) were obtained from Thermo Fisher Scientific (MA, USA) 

with 99.5% purity. Thiol cross-linker molecule DSP and its solvent dimethyl sulfoxide 

(DMSO) were procured from Thermo Fisher Scientific (MA, USA) along with SuperBlock 

(PBS) blocking buffer, used as a blocking agent. Monoclonal PTH antibody and recombinant 

PTH protein were obtained from Thermo Fisher Scientific (MA, USA). Phosphate buffered 

saline (PBS) was procured from Thermo Fisher Scientific (MA, USA) and was used to prepare 

aliquots of stock PTH antibody and target molecule concentrations. Pooled HS, for 

recombinant PTH dilutions, was purchased from Fisher scientific (MA, USA). Pooled plasma 

(lithium heparin) was procured from Innovative research (MI, USA). WB was purchased from 

Carter BloodCare (Bedford, TX) in EDTA-additive tubes. Hormones for cross-reactivity 

studies were Cortisol, obtained from Abcam (Cambridge, MA, USA), Parathyroid Hormone-

like related protein (PTHrp) and Adrenocorticotropic hormone (ACTH) were obtained from 

Fitzgerald Industries International (Acton, MA, USA). All dilutions were prepared in undiluted 

HS, plasma and blood for respective calibration dose response experiments. 
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2.4.2 Sensor assembly and measurement 

The sensor was fabricated using thin film fabrication technique on flexible polyimide substrate. 

The sensors were cleaned with acetone, isopropyl alcohol (IPA) and deionized water (DI) in 

an ultra-sonic bath and dried under nitrogen to remove any impurities from the surface. 

Selective deposition of a thin ZnO seed layer (30±20 nm) on a working electrode was 

performed using RF-Magnetron sputter technique. The seed layer acted as a site for nucleation 

of ZnO nanostructures growing in a uniform direction following hydrothermal growth 

technique. The precursors-(Zn (NO3)2·6H2O) and HMTA were dissolved in equal proportions 

in DI water with optimized parameters as described in the literature [38]. To confine the fluid 

onto to the sensing region, polydimethylsiloxane (PDMS) encapsulate was attached on the 

flexible sensor substrate using water resistant silicon adhesive.  

2.4.3 ATR-FTIR spectroscopy 

 ZnO functionalized surface was characterized using attenuated total reflectance Fourier 

transform infrared (ATIR-FTIR) spectroscopy using 6700 FTIR spectrometer. The 

spectrometer was equipped with a deuterated, triglycerine sulphate (DTGS) detector with a 

validation motor and a KBr window. VariGATR sampling stage was fitted with a 65° 

Germanium ATR crystal, holding the sample with a swivel clamp. Germanium crystal was 

used for characterization for its highest refractive index. FTIR samples were prepared by 

sputtering the glass slide with ZnO on a thin film of gold (Au). Prior to use, the sample glass 

slide was cleaned thoroughly with isopropyl alcohol and deionized water to remove any surface 

bound impurities. DSP functionalized ZnO samples was rinsed with DMSO, dried with 
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nitrogen and stored with desiccant beads until measurement. To characterize binding of PTH 

antibody, the DSP functionalized ZnO surface was washed with PBS and incubated with PTH 

antibody for two hours at room temperature. PTH antibody functionalized glass slide was dried 

with nitrogen prior measurement. Each FTIR Spectrum collected for the DSP functionalized 

ZnO sample and PTH antibody functionalized DSP represents the scan range between 400-

4000 cm-1 with an average of 256 scans at 4 cm-1 resolutions. 

2.4.4 Parathyroid hormone sensor calibration 

To achieve label-free affinity based biosensing, 40 uL of 10 mM DSP cross-linker molecule 

was incubated at room temperature for 90 min in the dark. DSP chemi-sorbs on the ZnO surface 

by forming a strong thiol bond at the electrode surface. The other end of DSP consists of N-

hydroxysuccinimide esters (NHS) active group which allows for interaction with primary 

amines of the target PTH antibody forming a covalent amide bond that results in the release of 

N-hydroxysuccinimide. The sensor was functionalized by dispensing 40 uL of 10 µg/mL 

highly specific α-PTH monoclonal antibody prepared in PBS and incubated for 2 hours at room 

temperature. The monoclonal antibody used is directed towards the N-terminal 1-34 amino 

acids, which is the active part of the molecule. It can also detect intact 1-84 PTH. To eliminate 

non-specific binding interactions, the unbound DSP vacant sites were blocked by incubating 

with SuperBlock for 15 minutes at room temperature. PBS was used to wash the sensor surface 

to remove excess remaining solution. Blank HS measurement was considered as baseline for 

further analysis. Aliquots of serially diluted PTH concentration in HS was added post blank 

measurement starting from lowest concentration (1 pg/mL) to highest (1000 pg/mL), with an 

incubation period of 15 minutes at room temperature for building the calibration dose response 
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curve. Excess fluid from the sensing region was removed by performing wash steps after each 

dose with the HS for the experiment. Identical protocol was followed for detection of PTH in 

plasma and WB. Dose response experiment for PTH in plasma was performed in the range 10 

- 400 pg/mL.  A sample volume of 40 uL was used consistently for all the experiments.  Gamry 

Reference potentiostat 600 (Gamry instruments, PA) was used to perform electrochemical 

measurements over a frequency range of 1 Hz to 1 MHz at 10 mV AC voltage. EIS is a 

powerful technique used to analyze and decouple complex electrochemical systems as it is 

sensitive to changes that occur at the electrode-solution interface that provide information on 

binding events [39]. All EIS experimental data is represented for n=3 replicates unless 

mentioned specifically. 

2.5 Results 

This work evaluates the performance of an affinity-based sensing platform for detection of 

PTH in pooled HS (HS), plasma and WB. DSP cross-linker was used to functionalize capture 

probe-PTH antibody on ZnO electrode surface. Binding of the PTH antibody with the target 

PTH analyte was quantified using EIS to capture physicochemical change at the electrode-

solution interface. This section focuses on (i) Electrode surface characterization towards 

establishing a functional surface suitable for PTH sensing through affinity capture mechanisms 

(ii) Baseline characterization of sensor platform to establish electrode stability (iii) 

Optimization of PTH antibody concentration and characterization of functionalized assay (iv) 

Evaluation of sensor performance through calibration dose response and (v) Translatability 

towards clinical applications. 
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2.5.1  Electrode surface characterization towards establishing a functional surface 

suitable for PTH sensing through affinity capture mechanisms  

Fig. 2.1 represents a schematic illustration of the immunoassay building process for the 

affinity-based nanobiosensor. An important characteristic of a biosensor is to establish a stable 

immunochemistry. Techniques including SEM, Energy Dispersive X-Ray Analysis (EDAX) 

and FTIR were used to characterize and validate the functional surface suitable for stable 

biosensing. The active sensing region on the sensor platform is a hybrid composite of 

nanotextured Au and nanostructured ZnO on a flexible polyimide substrate. Several 

researchers have shown the effective use of ZnO nanostructures which leverages enhanced 

sensitivity due to size-based matching with increased surface area particularly for biosensing 

[12], [40].  
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Figure 2.1. Schematic representation of the immunoassay building process for the PTH 

biosensor. DSP: Dithiobis succinimidyl propionate. 

 

Fig. 2.2 (A) represents an SEM image of the hydrothermally grown ZnO nanostructures 

aligned vertically in a uniform manner due to pre-seeded ZnO thin film. The average height of 

the hexagonally shaped rod like structure was measured to be 250±20 nm with a diameter of 

85±10 nm. The uniform growth distribution of nanostructures increases sensitivity of detection 

as it controls the mass transport and diffusion of the target analyte (PTH) at the electrode-

electrolyte interface [41]. Fig. 2.2 (B) represents EDAX spectra of the electrode sensing 

interface shown in the SEM micrograph. The elemental identification of the sensor region is 

represented with energy level of 8.6 keV corresponding to K shell of ZnO and 9.72 Kev 

corresponding to L-shell of Au which confirms presence of both ZnO and Au on the electrode 

substrate. 
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Fig. 2.2 (C) represents ATR-FTIR spectra of the ZnO modified sensor surface between 1200 

cm-1and 1900 cm-1. The results in Fig. 2.2 (C) (i) displays the spectra for the ZnO 

nanostructure functionalized with DSP crosslinker through thiol chemistry, providing binding 

sites for antibody immobilization. The first part of the spectrum indicates the presence of 

symmetric carbonyl stretch of NHS ester in DSP, confirmed by the peak observed at 1785 cm-

1 [42]. The peak observed at 1316 cm-1 indicates symmetric C-N-C stretch of DSP. The peak 

at 1653 cm-1 is observed due to stretching vibration of C=O. Peak observed at 1743 cm-1 

indicates free carboxylic acid present in DSP. These results confirm binding of DSP cross-

linked with ZnO functionalized surface. In Fig 2.2 (C)(ii) disappearance of the peak at 1743 

cm-1 demonstrates cleaving of NHS ester by breaking C-O bond in DSP where the primary 

amine of PTH antibody is bound through the process of aminolysis [43]. Stability of the 

antibody conjugation to DSP was confirmed by the shift in peak 1654 cm-1. These results 

confirm that PTH antibody was bound to DSP functionalized ZnO surface allowing for target 

PTH sensing through affinity capture mechanism. 
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Figure 2.2. (A) SEM image of uniform ZnO nanorods selectively grown on working electrode 

of the developed biosensor (B) EDAX spectra of the biosensing platform. (C)(i) ATR-FTIR 

spectra of DSP functionalized ZnO surface (ii) ATR-FTIR spectra of PTH antibody 

immobilized on DSP. DSP: Dithiobis succinimidyl propionate; PTH: Parathyroid hormone. 

2.5.2 Baseline Characterization of Sensor Platform to Establish Electrode Stability 

Establishing a stable electrochemical baseline is essential for obtaining robust performance 

during biosensing. Hence, baseline characterization for the ZnO nanostructured 

electrochemical sensor was performed using open circuit potential (OCP) and single frequency 

EIS in the presence of three matrices: PBS, HS, and WB for this study. OCP refers to the 

potential difference between working and reference electrode in the absence of an input 

current. This was measured at 10 mV for 1200 s. For PBS buffer, steady state OCP was 
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measured at -0.02 V, whereas for HS it was at -0.82 V and for WB it was -0.04 V as seen in 

Fig. 2.3 (A). Negative potential indicates thermodynamic stability where the electrode does 

not take part in oxidation. Additionally, the presence of ZnO semiconducting material at the 

electrode interface, induces a negative potential due to variation in charge carrier density [44]. 

Furthermore, the shift in potential is attributed to the polarities of the constituents of the buffer 

matrix. In the case of PBS, the presence of the phosphate ions is the key driver for slightly 

negative potential. An increase in potential is observed in HS to compensate for the highly 

resistive protein constituents present. The presence of anti-coagulant (Ethylene Diamine 

Triacetic Acid) in WB minimizes the resistive effects of red blood cells (RBCs) and protein 

constituents hence, its potential is relatively close to zero at -0.04 V. On addition of a given 

buffer matrix, the potential reaches a steady state within 1200s. OCP response indicates 

whether the electrode material is in equilibrium with the electrolyte. A stable OCP response 

implies that equilibrium has reached between electrode surface and the added buffer (PBS, HS, 

and WB). Hence, these results indicate the stability of the sensing electrodes in the presence 

of PBS, HS and WB. Fig. 2.3 (B) represents single frequency EIS at 100 Hz to demonstrate 

electrochemical characterization of the sensor over time for the given buffer matrix.  Frequency 

of 100 Hz was selected to gain maximum signal response.  Single frequency EIS is used to 

follow changes in electrochemical response against time. A steady-state Zmod impedance 

(modulus of real and imaginary components of impedance) of 5.7 kΩ was obtained for PBS, 

whereas 6 kΩ was measured for HS. The impedance value was stable at ~9 kΩ over 1200 s for 

WB.  Steady electrochemical response for all the measured buffer matrices indicates stability 

of the sensor for biosensing on the ZnO nanostructured surface. Furthermore, these baseline 
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characterization experiments were performed to understand the inherent nature of the 

electrode-electrolyte behavior in the absence of target PTH analyte. 

 

Figure 2.3.(A) Electrochemical characterization of sensing platform by measuring open circuit 

potential with PBS, HS and WB. (B) Single frequency EIS measurement for PBS, HS and WB. 

(C) Antibody saturation study on DSP functionalized surface. (D) Impedance response for 

baseline assay characterization of the immunoassay. DSP: Dithiobis succinimidyl propionate; 

PBS: Phosphate-buffered saline; PTH: Parathyroid hormone.  

2.5.3 Optimization of PTH antibody concentration and characterization of functionalized 

assay 

Antibody saturation study was performed to evaluate the optimal concentration of the antibody 

required to completely saturate the DSP functionalized ZnO surface. It is essential to saturate 

the DSP functionalized binding sites to minimize non-specific binding and maximize signal to 
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noise ratio [45]. The sensor was dosed with increasing antibody concentration starting from 

0.1-100 µg/mL. Prior to introducing PTH antibody onto the sensor surface, blank PBS 

measurement post-DSP functionalization was considered as baseline for analysis. Change in 

impedance from baseline was measured for each concentration and a dose dependent trend was 

observed, until the sensor reached saturation as seen in Fig. 2.3 (C). The change in impedance 

was similar at 10 and 100 µg/mL. This further indicates that any concentration above or equal 

to 10 µg/mL was sufficient to saturate the available binding sites at the electrode surface. This 

is because no significant change was observed after 10 µg/mL even with increasing 

concentrations of antibody until 100 µg/mL. Therefore, 10 µg/mL was chosen as the optimal 

concentration required to saturate DSP-functionalized sensor surface.  

Fig. 2.3 (D) represents the impedance response for each step of the immunoassay 

functionalization on the sensing platform. Prior to any surface functionalization, blank PBS 

buffer impedance was 5.7 kΩ. The conducting ions present in PBS contribute to this impedance 

value. Post functionalization with DSP linker, the impedance response increased to 37 kΩ. The 

increase in impedance is attributed to the resistive nature of DSP dissolved in an inorganic 

solvent DMSO. Furthermore, DSP contains thiol functional group that binds to the vacant Zn 

site, thus forming a Zn-S bond, indicating conjugation on the sensor surface [47].  When PTH 

antibody is introduced on the sensor platform, the primary amine of the PTH antibody binds 

to NHS ester of DSP resulting in decrease in impedance to 4.1 kΩ. Confirmation of the 

antibody conjugation was validated by performing three PBS washes post antibody 

immobilization and measurements were taken. No significance was observed between PBS 
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washes, thereby indicating successful chemical conjugation of PTH antibody onto the DSP 

functionalized electrode surface [46]). 

Post-antibody immobilization, further decrease in impedance was measured as superblock was 

used to block unbound DSP linker sites. The signal contribution of non-specific binding was 

also minimized by blocking the vacant DSP sites [48]. The impedance response at each step 

validates the successful functionalization of the immunoassay. Impedance response can further 

be validated using the simplified Randles circuit [46]. 

2.5.4 Sensor performance evaluation through calibration response for PTH in HS, 

plasma, and whole blood 

The affinity-based sensor performance was evaluated using non-faradaic EIS for the detection 

of PTH in HS, plasma and WB. Non-faradaic EIS is an effective technique to capture binding 

phenomenon occurring at the electrode-solution interface. An electrical double layer (EDL) is 

formed when a charged electrode surface comes in contact with an electrolyte. Thickness of 

the EDL (or dielectric permittivity) at the electrode/solution interface is modulated due to 

binding of the target analyte with the capture probe (PTH antibody) and a capacitive change is 

induced [49], [50]. This is observed typically in the lower frequency regime <1 kHz [51], [52]. 

Similarly, when the PTH spiked in HS (or plasma and WB) interacts with the antibody 

functionalized ZnO semiconducting electrode, it results in modulation of charges within the 

EDL that contribute towards change in impedance. Fig. 2.4 (A) represents Nyquist plot of real 

impedance versus imaginary impedance over a frequency range of 1 Hz- 1 MHz for target PTH 

concentrations from 1 -1000 pg/mL spiked in HS. The region closer to the origin in the graph 
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represent the impedance in high frequency regime (1 MHz) while the region further away from 

the origin represent impedance from low frequency regime (1 Hz). 

 

Figure 2.4. EIS response for detecting PTH in various buffers. Nyquist plots representing dose 

dependent change in impedance indicating binding activity in (A) Human Serum (C) Plasma 

and (E) Whole blood. Calibration dose response represented as percentage change in 

impedance for PTH spiked in (B) human serum (D) plasma and (F) whole blood. PTH: 

Parathyroid hormone. 

 

PTH dose concentrations was introduced serially starting from lowest concentration (1 pg/mL) 

to the highest concentration (1000 pg/mL) on the PTH antibody functionalized electrode 

surface. The concentration range was chosen based on physiological range of clinical 

relevance. Binding events of PTH was characterized based on the changes measured in the 

output impedance response. The first part of the Nyquist in the high frequency region signifies 

solution resistance (Rsol) which refers to the resistance offered by the bulk ionic contents in 

HS. The second part of the Nyquist in the low frequency region resembles a large incomplete 

semi-circle indicative of a typical non-faradaic system. Typically, the relationship between 
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impedance and Cdl can be represented as 1/(2π×f×(impedance)). A decrease in imaginary part 

of impedance (Zimg) is observed with increasing PTH concentrations. This decrease in 

impedance was quantitatively observed as a function of binding of PTH capture probe and 

target PTH complex at the electrode interface which results in increased double layer 

capacitance (Cdl) caused due to charge perturbation within the EDL, typically observed in the 

low frequency regime. This can further be observed as a shift of incomplete semicircle towards 

the right in the Nyquist plot of Fig. 2.4 (A) where with increasing dose concentration, the 

impedance decreases. Furthermore, increase in Cdl is further verified by capacitive phase angle 

modulations between -60° to -80° in frequency region between 1 Hz to 100 Hz represented in 

supplementary Fig. 3 [46]. Maximum signal was observed at 100 Hz and hence, 100 Hz was 

chosen to represent all PTH analyzed data. Similar dose dependent behavior was observed for 

plasma and WB as seen in Fig. 2.4 (C) & (E). 

Calibration dose response (CDR) for PTH in HS, plasma and WB is represented in Fig. 2.4 

(B), (D) and (F) respectively as change in impedance response from baseline. The CDR curve 

is plotted as percent change in impedance for varying PTH concentrations, represented using 

the equation: 

% change in 𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 =
(𝑍𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝑍𝑑𝑜𝑠𝑒)

(𝑍𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 )
× 100 

The percentage change in impedance varied from 27% (±5) to 75% (±13) for the PTH 

concentration range of 1 pg/mL to 1000 pg/mL in HS as shown in Fig 2.4 (B). Specific signal 

threshold (SST) also called as the noise threshold was calculated to be 22%. The smallest 

detectable concentration above the SST is the LOqD. The LOD for PTH in HS was found to 
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be 1 pg/mL with a linear dynamic range of 1- 1000 pg/mL. A coefficient of determination R2 

= 0.97 was obtained for PTH spiked in HS. 

Similarly, sensor performance metrics for PTH in plasma is represented as percent change in 

impedance from baseline as seen in Fig. 2.4 (D). The change in impedance varied from 19% 

(±4) to 48% (±3) for varying PTH concentrations spiked in plasma. SST was calculated to be 

13% and signal was established well above the noise threshold. The LOD for PTH in plasma 

was 10 pg/mL with a linear dynamic range of 10-400 pg/mL. A R2 value of 0.99 was obtained 

for PTH spiked in plasma. To show proof-of-feasibility towards clinical translation, 

performance of the nanobiosensor was also evaluated in WB. Fig. 2.4 (F) represents CDR of 

the sensor for PTH spiked in WB.  A total change in impedance of 30% was obtained from 

baseline for PTH ranging from 10 -1000 pg/mL.  SST was obtained to be 8% with the LOD 

being 10 pg/mL for PTH spiked in WB.  An R2 value of 0.99 was obtained for PTH spiked in 

WB. The sensor performance metrics computed for PTH calibration in HS, plasma and WB is 

shown in supplementary Table S2 [46]. 

As observed from these results, a dose dependent increase in impedance change is indicative 

of binding of target PTH to the antibody immobilized surface within the electrical double layer. 

Charge distribution at the EDL is perturbed due to this binding phenomenon, which is reflected 

in Zimg of EIS response. These impedance changes can be attributed as double layer 

capacitance modulation since the phase angle is capacitive in the low frequency region (1-500 

Hz) as shown in bode phase plot (supplementary Fig. S3 [46]). 

 This impedance behavior is comparable across all the three biological sample matrices, 

thereby retaining the performance metric of the nanobiosensor. The LOD of HS is 1 pg/mL 
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and 10 pg/mL for plasma and WB. We hypothesize the LOD for plasma & WB is pushed to 

10 pg/mL due to the interference of anti-coagulants. However, this does not limit the sensing 

performance as the reported LOD for all three buffers is in agreement with Clinical and 

Laboratory Standards Institute (CLSI) guidelines [53]. Supplementary table S1 [46] compares 

the present work with other biosensors for the detection of PTH. It is observed that 

incorporating ZnO modified nanostructures on the sensing electrode surface enhances the 

sensing metrics of the target PTH biomolecule.      

The ability of a biosensor to detect specific signal response is crucial in validating its reliable 

performance. Once the sensitivity metrics of the nanobiosensor was characterized, the sensor 

was challenged to test for specificity. This was evaluated by testing the PTH capture probe 

immobilized sensor surface against reactive non-specific molecules such as cortisol, PTHrp 

and ACTH spiked in HS at a very high concentration of 1000 pg/mL. These hormones were 

chosen for their anatomical and clinical implications. High cortisol and ACTH levels increase 

as a part of the body’s response to surgical trauma, whereas PTHrp is elevated in patients with 

malignancy associated hypercalcemia and for its structural homology with PTH. The 

impedance response of the non-specific cross-reactive molecules was compared with dose 

response of PTH as represented in Fig. 2.5 (A). The starting impedance value (baseline) for 

specific (PTH) and non-specific (PTHrp, ACTH and Cortsiol) biomolecules was about 

~4278±200 Ω. The percent impedance for all the tested biomolecules were calculated with 

respect to this baseline impedance value.  Cortisol showed a maximum change of 25% while 

ACTH showed a maximum change of 19%. Impedance response for PTHrp was measured to 

be 31%. The structural similarity of   PTHrp to the PTH biomolecule could contribute towards 
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a slightly high signal. However, even with such high concentration of the cross-reacting 

molecules, the maximum change in impedance was less than impedance change for specific 

PTH molecule with 10 pg/mL (low concentration). The impedance change measured for all 

the non-specific biomolecules was about 18-31%. Whereas the specific PTH signal associated 

with binding caused a significant change in impedance of 45-75%. Therefore, the impedance 

change caused due to the non-specific molecules (ACTHT, PTHrp and Cortisol) is much lower 

than the specific PTH. Since, the starting baseline impedances are in the similar range for both 

specific and non-specific molecules, the percent impedance change has been used as a 

quantifiable metric. Furthermore, it can be observed that the impedance response for the non-

specific biomolecule is below the noise threshold. While for specific PTH signal (≥10 pg/mL) 

is well above the calculated noise threshold. Therefore, the impedance change caused due to 

the non-specific biomolecules is insignificant as compared to specific PTH signal. This 

confirms, the developed sensor platform is specific to target PTH molecule and can be detected 

reliably in complex biological medium using non-faradaic EIS with minimum interference 

from other non-specific biomolecules tested in this study. 
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Figure 2.5. (A) Selectivity of biosensor evaluated with cross-reactivity study represented as 

percentage change in impedance. Calibration dose response for PTH indicated on the x-axis 

(A=10 pg/mL, B= 100 pg/mL, C=400 pg/mL and D= 1000 pg/mL). Cross reactivity tested on 

PTH immobilized surface for E= Cortisol, F=PTHrp and G=ACTH. Each at 1000 pg/mL 

concentration (B) Sensor recovery measured for four PTH samples spiked in Human Serum 

(C) Table indicating percentage recovery for PTH in Human Serum. ACTH: 

Adrenocorticotropic hormone; PTH: Parathyroid hormone. 

2.5.5 Sensor performance evaluation towards translating for clinical application  

To establish efficacy and proof of feasibility towards clinical translation as a POC device, the 

nanobiosensor was evaluated for (i) sensor recovery analysis and (ii) patient plasma sample 

evaluation. Four random concentrations were spiked in HS and the results were compared with 

the previously established calibration curve. Results in Fig. 2.5 (B) demonstrates the sensor 

recovery rate between 89- 108%. The recovery of each sample is similar to the added 

concentration of PTH in HS. This confirms the ability of the biosensor to reliably determine 

PTH in HS samples. 
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After establishing accuracy of the nanobiosensor, four unknown patient plasma samples were 

tested to validate the performance of the sensor against Roche-lab standard PTH analyzer. 

Unknown patient samples were dispensed directly on the functionalized sensor without 

dilution and concentrations were determined from the developed calibration curve. Regression 

analysis was used to correlate the concentrations reported by both nanobiosensor and the Roche 

analyzer. As represented in Fig. 2.6 (A), a linear relationship between nanobiosensor and 

Roche analyzer was obtained, with the regression equation being y=0.0763x+31.96. The 

coefficient of determination, R2= 0.99 was achieved for the regression analysis. Additionally, 

Bland-Altman analysis was performed to evaluate the agreement between the nanobiosensor 

and the Roche analyzer in determining the PTH concentration in patient samples. Fig. 2.6 (B) 

shows the percentage mean difference between Roche analyzer and the nanobiosensor vs mean 

concentrations of Roche analyzer and nanobiosensor. In a Bland-Altman plot, the two test 

methods are said to be in good agreement when the mean difference for the measured samples 

lie within ±1.96 SD. The mean bias value of 1.736 % or 11.4 pg/mL indicates no significant 

difference between the two test methods. The mean difference at lower concentrations (~30 

pg/mL) varied by ~14% while the mean difference at higher concentrations (~ 365 pg/mL) was 

~5%. The range of mean difference values between the two methods obtained for various 

concentrations are in acceptable range as per Clinical and Laboratory Standards Institute 

(CLSI) guidelines [53]. As observed in the plot, all measurements except one data point lie 

within ±1.96 SD of the mean bias. This confirms that the developed nanobiosensor is 

comparable with and in good agreement with the standard Roche analyzer. Fig. 2.6 (C) 

summarizes the PTH concentrations obtained from Roche analyzer and the nanobiosensor for 
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the patient samples. It is observed that the concentrations are similar between the two methods 

with a coefficient of variation (CV) ≤10 % between the two methods, thereby confirming the 

ability of the nanobiosensor to reliably detect patient samples comparable to that of the current 

lab standard.  

These preliminary results demonstrate comparable performance of the nanobiosensor to the 

lab standard Roche analyzer. The advantage of the nanobiosensor is that it uses a single drop 

of sample (<40 µL) without any pretreatment and has a response measurement time of 5min 

as compared to larger samples volume (>200 ul), pre-analytical sample processing and 

analytical time of 20 minutes for the clinical laboratory based PTH analyzer. 

 

Figure 2.6. (A) Regression analysis representing comparison of Roche and developed 

biosensor for PTH detection using four patient samples (B) Comparison of Roche and 

developed biosensor using Bland-Altman analysis for four patient samples (C) Table 

summarizing measured values of PTH concentrations obtained from Roche analyzer and the 

nanobiosensor for the patient samples. PTH: Parathyroid hormone. 
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2.6 Discussion 

The current methods to detect PTH include chemiluminescence, electrochemiluminescence, 

time resolved florescence assays, and ELISA based assays. However, these laboratory-based 

methods require large sample volume, sample preprocessing, and are time consuming. To over 

these short-comings, we have engineered a robust sensing platform by leveraging the 

properties of nanostructured ZnO in combination with non-faradaic impedance spectroscopy 

for developing a rapid, low-sample POC affinity-based PTH biosensor.  

Bimolecular detection has been revolutionized using nano-engineered biosensors allowing for 

highly selective and sensitive detection. Smart engineering techniques permit nanomaterial 

functionalities to be optimized by designing distinctive features that are significantly different 

from their inherent bulk properties. Nanoscale aspect allows distinct biomolecular interactions 

to unwind due to size-based matching. Furthermore, surface modification with nanostructures 

provides an opportunity to fine-tune the performance characteristics thereby eliminating non-

specific interaction, and bio-fouling. Thus, improving the signal to noise ratio.  

ZnO has exceptional properties that makes it an ideal semiconducting material for biosensing 

application. ZnO has a high isoelectric point (IEP) of ~9.5 inducing pH stability at the interface, 

thereby, creating a conducive environment for biomolecules in any biological fluids.  

ZnO nanostructures facilitate enhanced charge transfer mechanism coupled with steady state 

diffusion. Here in, confinement of PTH molecule on ZnO nanorods prevents steric hindrance. 

This facilitates charge buildup at the ZnO interface and thus, enhances the signal response. 

Additionally, mass transport and diffusion of the PTH biomolecule from the bulk solution to 

the electrode substrate determines the sensitivity of the electrochemical detection system. ZnO 
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nanostructures with uniform height and density are grown in a highly ordered crystalline 

orientation as represented in Fig.2.2 (A). This surface modification increases the effective 

surface area suitable for active functionalization of specific capture probes that enhances 

sensitivity.  

 ZnO nanorods were selectively functionalized with highly specific PTH capture probes via a 

thiol based cross-linker for achieving specific signal response. This strategy reduces signal 

response from any non-specific physi-adsorption on the nanoengineered biosensing platform. 

Considering the physico-chemical properties of ZnO nanostructures for electrochemical 

biosensing, when an electric field is applied, distribution of charges occurs at the ZnO-solution 

interface to form an electrical double layer. Typically, the binding interactions between the 

capture probe and target analyte occur within the EDL. The target PTH- capture probe antibody 

interaction results in subtle changes within the EDL that can be reliably captured using non-

faradaic EIS. The modulation of the EDL interface captured by impedance change using EIS 

is typically modeled as a Randles equivalent circuit (Supplementary Fig. S2 [46]) which is a 

combination of capacitive and resistive elements. 

Non-faradaic EIS is an effective technique that can characterize and differentiate target binding 

interactions at the surface from bulk solution. Bulk resistance offered by the buffer is 

represented as the solution resistance (Rs) in the Randles circuit. Due to nanoscale aspect of 

the sensor, the bulk solution resistance does not have any effect on the electrochemical 

response at the ZnO electrode- buffer interface. Using non-faradaic EIS, the modulation of the 

electrical double layer due to binding interactions are captured as a change in the double layer 

capacitance (Cdl).  These binding interactions result in an accumulation of charge at the 



 

39 

interface. The Cdl increases with increase in dose concentrations of the target PTH. 

Additionally, non-faradaic EIS can capture subtle binding interactions through impedance 

changes, making it highly sensitive without the need of any sample pretreatment for complex 

biofluids such as plasma and WB. Furthermore, it is label-free technique that can directly 

quantify the target PTH concentrations without the use of a redox label. The combination of 

non-faradaic EIS and ZnO nanostructures can be extremely effective in developing highly 

specific POC biosensing systems as demonstrated in Fig.2.4 A. This study is the first 

demonstration of a single drop, label free POC device for specific detection of PTH 

biomolecule that can aid in surgical screening. The validation of the developed PTH sensor 

system with Roche lab standard analyzer on a 5 patient samples demonstrates promising results 

for translation as a POC device for clinical utility. 

2.7 Conclusion 

This is the first study to our knowledge for detecting PTH as a POC device devoid of sample 

pretreatment potentially suitable in a surgical setting for reducing delays during surgery hence, 

improving patient care. We have demonstrated reliable detection of PTH in undiluted HS, 

plasma and WB using non-faradaic electrochemical biosensing platform. EIS captures binding 

phenomenon between PTH antibody-target complex at the electrode- solution interface. In 

comparison to previously reported PTH biosensors [54], [55], the developed sensor 

demonstrates better performance metrics with LOD of 1 pg/mL in a clinically relevant dynamic 

range of 1- 1000 pg/mL. Enhanced sensor metrics was achieved by leveraging the unique ZnO 

nanostructure properties. Selectivity and specificity of the nanobiosensor was validated by 

evaluating cross-reactive response to cortisol, PTHrp and ACTH. The sensor exhibits 97% 
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recovery for spiked samples and an R2 value of 0.99 when validated with patient samples using 

a clinical laboratory-based analyzer. Further clinical validation with more patient samples is 

underway to determine the feasibility of the device for a clinical setting. The novelty of the 

engineered nanobiosensor is its unique combination of incorporating ZnO nanostructures 

specifically tailored for detecting target PTH molecule with non-faradaic EIS to directly 

measure in body fluids with a turnaround time of less than 5min using single drop sample 

volume. 

2.8 Future Perspective 

The developed POC nanobiosensor unveils the potential as an effective detection modality 

during parathyroidectomy surgeries. The response time of the developed nanobiosensor is less 

than 5 min and requires no sample pre-processing. This would significantly reduce the pre-

analytical delays caused due to sample transport and preparation as compared to the current 

central laboratory techniques, enabling it for effective clinical implementation. The results 

demonstrated in this work provide foundation for future work towards translation in a clinical 

setting. Further studies with additional patient samples with different clinical scenarios (e.g., 

Renal dysfunction) in continuation to this work is underway for an in-depth validation towards 

clinical utility. Furthermore, the intended future purpose of the assay is to examine relative 

changes in serial samples over a short period of time which may ameliorate unforeseen cross-

reactivities. 
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CHAPTER 3 

CLINICAL VALIDATION OF PARATHYROID HORMONE 

 

 

3.1 Prior publication 

Ambalika S. Tanak performed experiments, carried data analysis and data interpretations, and 

wrote the manuscript. Ambalika S. Tanak, Dr. Shalini Prasad, Dr. Sriram Muthukumar and Dr. 

Ibrahim A. Hashim co-designed the experiments, and co-wrote the manuscript. Dr. Ibrahim A. 

Hashim provided the patient samples and provided guidance on experimental designs for assay 

validation.  

This manuscript was published in Scientific Reports Journal in November 2020. The primary 

goal of this work was to clinically validate the performance of the developed sensor using 

patient samples for smooth clinical translation. This article is reproduced here by the 

permission of the Nature Publishing Group. Link to the paper: https://doi.org/10.1038/s41598-

020-75856-2    

3.2 Abstract 

Measuring the PTH levels assists in the investigation and management of patients with 

parathyroid disorders. Rapid PTH monitoring is a valid tool for accurate assessment 

intraoperatively. Rapid Electro-Analytical Device (READ) is a POC device that uses 

impedance change between target and capture probe to assess the PTH concentration in 

undiluted patient plasma samples. The aim of this work focuses on evaluating the analytical 

performance of READ platform to Roche analyzer as a prospective clinical validation method. 

The CV for intra-assay imprecision was <5% and inter-assay imprecision CV was <10% for 

high (942 pg/mL) and low (38.2 pg/mL) PTH concentration. Functional sensitivity defined at 

https://doi.org/10.1038/s41598-020-75856-2
https://doi.org/10.1038/s41598-020-75856-2
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15% CV was 1.9 pg/mL. Results obtained from READ platform correlated well (r=0.99) with 

commercially available clinical laboratory method (Roche Diagnostics) to measure PTH 

concentrations with a turn-around time of less than 15 min. Furthermore, the mean bias of 7.6 

pg/mL determined by Bland-Altman analysis, showed good agreement between the two 

methods. We envision such a sensing system would allow medical practitioners to facilitate 

targeted interventions, thereby, offering an immediate prognostic approach as the cornerstone 

to delivering successful treatment for patients suffering from primary hyperparathyroidism. 

3.3 Introduction 

PTH measurement is essential for the assessment and management of patients with parathyroid 

gland dysfunction with primary hyperparathyroidism (PHPT), being the third most common 

endocrine disorder [56]. While most primary hyper parathyroid patients have a single abnormal 

gland up to 20% of patients will either have multiple adenomas or hyperplasia of all four glands 

[57].  Surgery is the only curative treatment for PHPT, [58]. PHPT surgical procedures can be 

challenging and carries ambiguity regarding the presence or absence of the disease in a single 

or multiple hyperplastic glands [59]. 

Several imaging techniques provide information about the location of the adenoma as a pre-

operative study prior surgery but may not be sensitive to detect multiglandular hyperplasia 

[60]. Measurement of circulating PTH levels additionally aids in the investigation of calcium 

disorders [61]. PTH is a single chain 84 amino acids polypeptide produced by the parathyroid 

gland and in concert with vitamin D and other mediators is responsible for regulating body 

calcium homeostasis [62], [63]. In addition to diagnosis and management, PTH measurement 

is essential to guide surgical interventions where due to its short half-life (1-3 minutes) an 
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intraoperative decline in circulating levels indicates successful surgical resection of a 

hyperfunctioning adenoma [64]. Laboratory-based assays at best take up to 60 minutes to 

deliver results from the time sample is received in the central laboratory [25] . During this time, 

the patient is kept in the operating room while the surgeon waits for results [65]. Additionally, 

in patients with failed initial surgery, surgical selective thyroid venous catheterization is 

performed, and resection surgery is repeated several weeks later once laboratory PTH result is 

available. This highlights the need for a rapid and reliable technique to measure PTH which 

facilitates point of surgery testing (POST). In addition to the rapid turnaround time, the device 

must afford specificity for PTH since, the measurement of PTH is complicated by the presence 

of several molecular forms of the hormone. The intact form being 1-84 amino acids, a mid-

molecular form (7-84 amino acid), and a N-truncated form. 

 Although some assays are termed intact, they also detect the 7-84 fragment, which 

accumulates in patients with renal dysfunction and thus limits such assays and interpretation. 

Our previous work established reliable PTH detection in undiluted HS, plasma and WB with a 

rapid response time [66]. The physicochemical properties of the READ sensor platform 

captures specific target PTH interaction using EIS as the detection modality. EIS has been 

incorporated in many POC sensor applications owing to its label-free approach with the least 

procedural complexity to acquire results [9], [67]–[70]. A major advantage of using EIS 

technique is its ability to capture subtle electrochemical changes by optimizing input 

parameters. Impedance sensing has already paved its way into clinical entourage such as blood 

impedance analysis [71], electrical impedance topography [72]  and electrical impedance 

myography [73]. 



 

44 

This work focuses on expanding the previously established scope of research for its use as a 

clinical utility by validating its results with a standard laboratory analyzer (Roche diagnostic) 

with 40 patient samples [46]. Our aim is to allow surgeons along with their surgical staff to 

conduct dynamic PTH measurements during resection of the hyperfunctioning gland procedure 

without the need for a laboratory technician in a convenient and effective manner to facilitate 

improved patient outcome. 

3.4 Materials and Methods 

3.4.1 Analytical Validation 

Chemicals & Reagents 

DSP was procured for Pierce Biotechnology. DMSO solvent, PBS, SuperBlock along with 

specific PTH antibody and antigen was obtained from Thermo fisher Scientific. Cortisol for 

cross reactivity study was procured from Abcam, whereas PTHrp and ACTH were obtained 

from Fitzgerald Industries. 

Sample collection and preparation 

Leftover, de-identified discard samples (heparinized plasma) (n=40) were obtained 

from Clements University Hospital (CUH) and Parkland Memorial Hospital (PMH) from 

patients being investigated for thyroid dysfunction and undergoing parathyroid surgery 

between September 2018 & July 2019. The study design and experimental protocols were 

approved by the University of Texas Southwestern Medical Center Institution Review Board 

(IRB) number 2020-0373 under which, the requirement for patient consent was waived. All 

the methods were carried out in accordance with clinical guidelines and regulations. The 

samples were stored at -20°C until further use. Samples did not undergo >2 freeze/thaw cycles 
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prior measurement. PTH levels were measured using both Roche diagnostic Cobas analyzer 

(reference standard) and READ platform.  

Rapid Electro-Analytical Device (READ) 

The READ POC platform includes a disposable sensor mounted on a handheld electronic 

reader as explained in detail previously from our group [74]. The sensor surface comprises of 

a zinc oxide semiconducting layer deposited onto gold electrodes. Fluid confinement on the 

sensing platform was achieved by fabricating a waterproof silicone barrier using Loctite clear 

silicone sealant along boundaries of the sensor platform. The assay protocol followed was 

similar to our previous [46]. Briefly, immunoassay was built on the sensing surface by 

functionalizing 40 µL of 10 mM DSP (which is a thiol crosslinker) incubated for 90 min in 

dark at room temperature. Specific monoclonal PTH antibody and antigen (Thermo fisher) was 

used to build the calibration curve for the sensor. 40 µL of 10 µg/mL PTH antibody was 

incubated for 120 min at room temperature. Post antibody immobilization, the sensor was 

incubated with SuperBlock for 15 min to avoid nonspecific binding interaction. PBS wash was 

used to remove the unbound molecules and baseline measurement was taken. The sensor was 

functionalized in the same manner until this assay step followed by the validation experiments 

as explained in the following sections. READ platform measures the impedance change at the 

electrode-solution interface when the target PTH binds to immobilized capture antibody by 

EIS technique when a small input voltage (10mV) is applied to the electrode surface. 

Assay Performance characteristics 

READ platform performance was assessed with laboratory-based analyzer for functional 

sensitivity, accuracy, precision, specificity, interference, and correlation as follows: 
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Functional Sensitivity: 

Sensitivity was determined following serial dilution of a patient sample with PTH 

concentration of 493 pg/mL. Doubling dilutions were prepared using pooled plasma as a 

diluent. Samples were measured in triplicate. Functional sensitivity was determined as the 

lowest PTH concentration that can be measured with an imprecision of less than 20%.  

Accuracy: 

Recovery experiments were conducted to determine the accuracy of the assay. Plasma sample 

procured from innovative research was spiked with PTH concentrations at 50, 250, 500 and 

1000 pg/mL. Prepared samples were measured in triplicates.  

Precision: 

Inter-assay and intra-assay imprecision for READ platform for the PTH analyte in plasma was 

evaluated using low (38.2pg/mL) and high (942 pg/mL) levels. Each level was analyzed in 

duplicates with READ platform for a total of 5 days, with a total of 20 samples. Intra-assay, 

Inter-assay and total imprecision was calculated to identify READ platform precision.  

Specificity: 

Effect of interferants in plasma was performed to measure specificity of READ platform. 

Cross-reactive mixture includes cortisol, PTHrp, and ACTH spiked in plasma with varying 

concentrations in three different ranges (i) low (200 pg/mL per molecule) represented as D in 

fig 3.7 B, (ii) medium (400 pg/mL per molecule) represented as E in fig 3.7 B and (iii) high 

(1000 pg/mL per molecule) represented as F in fig 3.7 B. A schematic representation has been 

included for better visualization in Fig 3.7 B. 
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3.4.2 Statistical analysis 

The data was analyzed and graphed using GraphPad Prism 7(GraphPad Software, Inc.) and 

Origin. Statistical analysis includes correlation, linear regression, and Bland-Altman analysis. 

3.5 Results 

A use case scenario is illustrated as a schematic diagram in fig 3.1. Top half of the figure 

represents the current method used during parathyroidectomy surgery where significant time 

is expended in sample transit and receiving results to confirm PTH levels determining 

successful operation. The proposed method specified in the lower half of fig 3.1 reveals an 

enhanced technique that would assist surgeons to determine complete removal of 

hyperfunctioning parathyroid tissue from the patient during surgery by assessing PTH 

concentration within 15 minutes using READ platform.  

We had previously demonstrated reliable detection of PTH in undiluted HS, plasma, and WB 

as a point of care biosensor using EIS. Binding interaction between the target PTH and specific 

capture probe causes change in impedance occurring at the sensor’s electrode interface. The 

dose dependent change in impedance quantifies the amount of PTH bound to the specific 

capture probe. Results demonstrated in the previous work provide foundation for the current 

work to enable effective validation for clinical implementation. This work extends the scope 

of READ platform to be established for clinical application. 
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Figure 3.1. Schematic illustration of use case scenario during parathyroidectomy 

demonstrating ease of use with READ (represented in lower half) as a point of surgery 

testing (POST) device. Figure created with BioRender.com 

 

Figure 3.2. Schematic representation of the Immunoassay built on READ platform.  

 

 Fig 3.2 illustrates the schematic representation of the immunoassay developed on READ 

sensor platform using thiol crosslinker chemistry followed by conjugating specific monoclonal 
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PTH antibody. Calibrated dose response was established for READ platform with varying PTH 

doses spiked in human plasma.  

 

Figure 3.3. A) Varying PTH concentration (Low, medium & high) spiked in plasma samples 

plotted against measured PTH concentration. B) Recovery analysis for READ platform 

Fig 3.3 A represents the dose response of PTH across a wide dynamic range from 10 pg/mL to 

1000 pg/mL in human plasma samples. Non-overlapping interquartile ranges for each 

concentration in the box plots portrays the accuracy of the recovered concentrations with 

respect to its spiked concentrations, indicating minimum variation among replicates. Analysis 

of variance (ANOVA) showed statistically significant differences between means across low, 

medium and high concentrations with p value <0.0001 and an R squared of 0.9940. Recovery 

percentage for each PTH concentration can be seen in figure 3.3 B across 6 replicates. PTH 

concentration recovery ranged from 100-112%, with an average recovery of 104.7% ± 4.1, 

which lies within the acceptable recovery range (80-120% of the expected concentration) as 

per the Clinical laboratory Standards Institute [75] (CLSI). Furthermore, highest CV 

percentage achieved was 11.7 %, plotted for each PTH concentration revealed good precision 

with minimal variation among replicates for READ platform which can be seen in 
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supplementary figure 1 [76]. Spike and recovered concentrations for PTH have been tabulated 

in supplementary table 1 [76]. Recovery analysis confirms the ability of READ platform to 

reliably measure multiple PTH concentrations in spiked plasma samples. READ platform 

demonstrated a LOD of 1 pg/mL with a clinically relevant dynamic range of 1-1000 pg/mL as 

previous established in our work [46]. The major focus of this study is to analytically validate 

the performance of READ platform with the Roche lab analyzer. With that reliable READ 

sensor performance established, analytical validation was evaluated by following the design of 

experiments illustrated in fig 3.4 for accuracy and reliability to be useful for effective clinical 

decision making. 

 

Figure 3.4. Flow chart describing the design of experiment. 
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3.5.1 Analytical Validation 

Method Comparison  

The primary goal of method validation is to ensure accuracy of READ platform for the reported 

results. To clinically validate the performance of READ, PTH concentration was measured in 

40 patient samples using Roche analyzer (laboratory standard) and READ platform covering 

a range from 1 pg/mL to 1050 pg/mL, as represented in fig 3.5 A. Correlation along with linear 

regression analysis for patient plasma samples compared by the two methods had an intercept 

of 0.0209, 95% confidence interval (CI), 0.91 to 1.007; slope of 0.96, 95% CI, -15.74 ,15.79 

and a Pearson’s r of 0.99. Correlation analysis quantified the degree to which PTH measured 

by both methods were related with a linear relationship. High correlation does not necessarily 

imply a good agreement between the two methods, thus, Bland-Altman analysis was 

performed, as seen in fig 3.5 B. In this residual method, difference between two paired 

measurements was plotted against mean of the two methods. The resulting graph was a scatter 

plot with x axis represented as the measured mean PTH concentration, while y axis showed 

difference between the PTH measured using Roche analyzer and READ platform. The bias 

indicated how series of measurements agreed with the comparative measuring technique. The 

mean bias between Roche analyzer and READ platform was 7.6 pg/mL. All the sample points 

were well within the 95% CI (±1.96 SD) except for 4 points. Bland-Altman analysis confirmed 

overall agreement between the Roche analyzer and the developed READ platform. 
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Figure 3.5. A) Reference method (Roche analyzer) compared with Test method (READ 

platform) using 40 patient plasma samples with a Pearson’s r= 0.99. B) Bland-Altman plot 

compares PTH measured by Roche analyzer and READ platform for 40 patient plasma 

samples. Orange solid line represents mean bias of 7.6 pg/mL. 1.96 SD is represented as green 

dotted lines computed at 88.07 pg/mL and -72.77 pg/mL respectively. 

Imprecision 

Precision was determined by assessing multiple measurements with two patient samples (low 

and high) within the same day and across 5 days. Precision for READ platform was established 

in terms of repeatability (intra-assay imprecision) and reproducibility (inter-assay 

imprecision). The intra-assay and inter-assay imprecision represented as CV for READ was 

3% and 8 % for low PTH level (38.2 pg/mL) whereas intra-assay and inter-assay imprecision 

CV for high PTH level (942 pg/mL) was 3% and 10.5% respectively, as seen in table 3.1. The 

CV for both low and high level of PTH samples lie well within the clinical standard practice 

(<20%) as per the Clinical and laboratory standards institute guidelines [77], [78]. 

Table 3.1. representing the inter-assay and intra-assay variability as measured by READ 

platform. 

Sample Reported 

Concentration 

(pg/mL) 

Intra-assay 

CV% 

Inter-assay 

CV% 

Low 38.3 3% 8% 

High 942 3% 10% 
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Functional Sensitivity 

Functional sensitivity determines the lowest concentration representing clinical usefulness for 

a given assay. In this work, the functional sensitivity for PTH was defined at 15% CV with a 

concentration of 1.9 pg/mL as seen in the precision profile represented in fig 3.6 A. A CV of 

20% is widely accepted for being clinically useful according to CLIA requirements [79]. 

Consequently, a LOD of 1.9 pg/mL was achieved for the PTH assay when measured by READ 

platform. The outcomes of the pre-clinical validations suggest the ability of READ platform 

to identify low PTH concentrations directly from undiluted patient blood plasma samples, as a 

POST device with results acquired under 15 minutes of sampling time. 

 

Figure 3.6. A) Functional sensitivity of READ platform. CV defined at 15% and was 1.96 

pg/mL. B) Dilution linearity across 5 PTH concentrations were analyzed with an R2 of 0.99 

measured with the READ platform. 

 

Linearity 

Linearity of the READ platform was assessed to evaluate the accuracy across PTH working 

range. Linearity of READ platform was achieved when measured PTH results were directly 

proportional to the PTH concentration in the test analyte. Furthermore, READ platform 
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demonstrated a linear response for the concentrations tested from 50 pg/mL to 1000 pg/mL as 

shown in fig 3.6 B with an r2=0.99. 

Repeatability 

Repeatability study evaluated the closeness of agreement with multiple measures obtained with 

READ platform. Fig 3.7 A demonstrates the repeatability performance of READ sensor 

platform by measuring five patient samples across the quantifiable detection range with 13 

measurements performed under similar conditions. The repeatability (%CV) for READ 

platform with patient samples ranged from 11.7 % to 2.6 % for 50 pg/mL and 1000 pg/mL of 

PTH patient concentration in plasma respectively. This showed that results obtained using 

READ platform were reliable and repeatable. 
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Figure 3.7. A) Repeatability of READ validated across 13 measurements for 5 patient plasma 

sample. B) Specificity of READ platform where A represents low (10 pg/mL) concentration 

of PTH, B represents high (1000 pg/mL) concentration of PTH, C represents blank plasma. D, 

E and F represents cross-reactive mixture of cortisol, Parathyroid hormone related protein 

(PTHrp) and Adrenocorticotropic hormone (ACTH) biomolecules in low (200pg/mL per 

molecule), medium (400 pg/mL per molecule) and high (1000 pg/mL per molecule) 

concentrations respectively. Dotted line represents signal threshold. The pictographic 

representation of cross-reactive mixtures vials is created in BioRender.com. 
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Interference 

To evaluate selectivity of READ platform towards PTH in the presence of common cross-

reacting biomolecules, interreference study was conducted with highest concentration of non-

specific molecules like Cortisol, ACTH, and PTHrp. The interference measured from varying 

non-specific molecules showed no significance when compared with specific PTH dose 

response. Fig 3.7 B displays specific PTH signal response (A and B) and non-specific response 

(C, D, E and F) as percentage change in impedance. Specific PTH signal response for the 

median value as seen in bar A contributes to 43% which is approximately ~1.6 times greater 

than the non-specific response seen in the highest concentration (1000 pg/mL) of the cross-

reactive mixture in F that accounts for 26% impedance change. Furthermore, all the remaining 

cross-reactive mixtures (C, D, E and F) of varying concentrations lie well within the 

established signal threshold as indicated by the dotted line and hence can be considered as 

noise. READ platform was able to significantly distinguish specific PTH concentration from 

cross-reacting molecules of cortisol, PTHrp and ACTH despite being spiked with high 

concentration of 1000 pg/mL each. 

3.6 Discussion 

The utility of intraoperative PTH has significantly improved outcomes, although the success 

of surgical interventions depends on the surgeon’s experience. Typically, during 

parathyroidectomy, peripheral blood samples collected prior to incision, at incision and 5, 10 

and 15-minutes post incision where a 50% decline in PTH indicates successful adenoma 

resection. Conventionally, results for samples sent to the clinical laboratory are not usually 

available before all samples are collected and often take up to 60 minutes from the initial 



 

57 

collection. During this time the patient is on the operating table and surgical team awaiting the 

outcome of the PTH tests. Therefore, availability of PTH results at the point of surgery with a 

rapid turn-around time for each sample collection will allow surgeons to make immediate 

informed decisions. This technology has the potential of significantly reducing surgery and 

anesthesia exposure times. Additionally, a reliable method of PTH measurement is key for the 

detection of patients with hyperparathyroidism along with successive follow-up monitoring of 

medical interventions. READ platform fits perfectly in the clinical workflow to allow surgeons 

to make decisions regarding the success of the surgery using low sample volume without 

waiting for time consuming results from the laboratory. Therefore, READ platform is designed 

to report rapid, accurate, and sensitive PTH results addressing the shifting needs and trends of 

parathyroid surgery in a clinically feasible manner. With an intention to aid surgeons in making 

rapid informed decisions, an electrochemical READ platform to measure PTH was developed 

and validated with clinical rigor. This work evinces the importance of determining 

concordance between laboratory obtained values to READ platform measurements. Moreover, 

some of the major advantages of READ platform over existing laboratory techniques are as 

follows (i) READ platform’s small form factor diminishes the need for large operational space 

and reduces storage requirement. (ii) Portable feature of READ platform enhances efficiency 

as testing can be conducted flexibly at bedside or near the location of patient care. (ii) READ 

platform eliminates the need for complicated assay preparation steps prior to testing compared 

to the Roche analyzer making it a lean process (iii) READ platform provides rapid test results 

with the propensity to expedite clinical decision-making process (iv) As most POC testing with 
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READ platform can be initiated at patient bedside and conducted quickly, the potential for 

sample deterioration can be reduced drastically. 

PTH levels from 40 patient samples were compared between READ platform and 

commercially available reference standard (Roche analyzer). The READ platform 

demonstrated good correlation (r=0.99) with Roche analyzer than the previously reported study 

(r=0.93) [80]. Bland Altman analysis showed a good overall agreement between the two 

methods with a mean bias of 7.6 pg/mL. PTH assays for clinical use have to offer wide dynamic 

range to encompass the entire physiological range. For instance, PTH levels rise above ~500 

pg/mL during hyperfunctioning adenoma while post-surgical excision of the hyperfunctioning 

gland, PTH levels may drop upto ~ 20 pg/mL. The READ platform demonstrates a wide 

dynamic range from 1-1000 pg/mL which accommodates the diverse PTH levels across 

patients. Additionally, an important consideration when measuring PTH is the presence of 

cross-reacting fragments and other hormones with molecular similarities [81]. Successful PTH 

assay should possess least cross reactivity to minimize the chances of false positive results. 

Previous studies have shown variability amongst several commercially available PTH assays 

that demonstrated varying outcomes [82], [83]. This can be attributed to the presence of 

varying PTH fragments and the presence of structurally similar molecules such as PTHrp in 

circulation. Predominantly, the liver metabolizes and cleaves most of the (1-84) PTH between 

amino acid 33 and 36 [84]. Once PTH is metabolized, only the quiescent C-terminal segment 

of PTH (cPTH), consisting of 35 to 84 amino acids, are released back into circulation [85]. 

Since, the kidney is responsible to clear the inactive cPTH, patients with kidney dysfunction 

have elevated cPTH fragments [86], [87]. This may result in inaccurate results for assays that 
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detect (1-84) PTH. Biological activity is retained by the N-terminal products of PTH 

metabolism which comprises of first 34 amino acids. To minimize interference from other PTH 

fragments, we used a highly specific monoclonal antibody directed against the 1-34 bioactive 

fragment of the PTH molecule. The capture probe functionalized on READ platform is specific 

to the first 34 amino acid sequence on the amino-terminal end of PTH molecule and does not 

react with amino-truncated fragments. Furthermore, READ platform was evaluated for 

interference with PTHrp, Cortisol and ACTH that either have similar structural homology or 

they are likely to be significantly elevated intraoperatively. The assay showed no cross 

reactivity (Fig 3.7 B) with PTHrp nor ACTH, or cortisol. The assay can be linearly operated 

from 50 pg/mL to 500 pg/mL. Additionally, high degree of precision was achieved to facilitate 

reliable treatment following tumor resection. Imprecision studies confirmed the reproducibility 

of the assay with a variability (%CV) <10.5%. This level of precision facilitates reliable 

detection to capture the decline within high PTH levels intraoperatively post tumor resection. 

The developed READ platform demonstrates rapid results (<15 minutes), a feature that is 

important when being used intraoperatively. READ does not require any sample dilution 

thereby, reducing sample processing and handling time. READ is a simple-to-use, handheld 

electrochemical sensing platform that makes it suitable for intra-operative use. It also allows 

for immediate further exploration of the resection site if the PTH results did not decline 

appropriately. 

In conclusion, the developed READ platform for the measurement of PTH was evaluated for 

clinical utility. The wide dynamic range detection capability of READ to report significantly 

elevated PTH levels seen in patients suspected of hyperparathyroidism can be categorized as 
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candidates for parathyroid surgery. READ also exhibited good precision across the 

measurement range and had good accuracy performance which can help to capture low PTH 

levels post-surgical excision as an effective POST device. Developing rapid POST devices is 

not aimed to replace clinical laboratory services but supplement them. 
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CHAPTER 4 

SEPSIS 

 

 

4.1 Prior publication 

Ambalika S.Tanak,  Badrinath Jagannath and Yashaswee Tamrakar  performed literature 

review, performed experiments and wrote the manuscript. Dr. Sriram Muthukuma rand Dr. 

Shalini Prasad reviewed and modified the manuscript.  

This work was published in Analytica Chimica Acta X in October 2019. Parts of the manuscript 

has been used in this chapter with appropriate permission form Elesevier. This chapter will 

discuss the background on sepsis and the need for developing POC device for detection of 

sepsis. The link to this journal article is https://doi.org/10.1016/j.acax.2019.100029  

4.2 Introduction to sepsis 

Infectious disorders in human have been described in the medical records dating all the way 

back to 1000 BC, and pathogenic infection remains the major risk factor of illness and death 

even today[88]. Sepsis has been known in some form or another in the early years, when it was 

initially characterized as decomposition of blood and tissues which was indicated by arrival of 

fever by the Islamic philosopher known as Avicenna. Due to its complicated pathophysiology, 

sepsis and its treatments have perplexed experts for almost 3000 years, as documented in 

ancient literature. Previously, it was thought that the predominant source of infection was the 

gut microbiota[89]. With advanced research findings, Pseudomonas sp. which colonizes and 

develops infection especially in the respiratory tracts, was identified to be the most linked 

infection with sepsis[90]. We now know that sepsis is a disease that is remarkably diverse in 

both its etiology and progression. For instance, sepsis can be triggered by a variety of 

https://doi.org/10.1016/j.acax.2019.100029
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organisms, including bacteria, parasites, and fungi. Astonishingly, an invading pathogen is not 

apparent in around a third of the patients which may include trauma or burn patients that do 

not have the pathogen in their blood but showed indication of sepsis [91]. Finally, in 1992, 

during a consensus conference in Chicago, physicians were made to reconsider the diagnostic 

criteria for sepsis, as a result of such discrepancies[92]. The new sepsis guidelines revealed 

that infection was not exclusive to bacteria, and the new term was designated as System 

inflammatory response syndrome (SIRS). Even though the clinical diagnostic criteria were 

revised from time-to-time, one key element of sepsis captivated researcher’s interest and 

remained consistent: the prevalence of inflammation throughout sepsis.  

4.3 Sepsis epidemiology 

Globally, sepsis is still one of the leading causes of morbidity and mortality. The overall burden 

of the disease is projected to be more than 50 million cases each year [93] and more as indicated 

in chapter 5,6 and 7. In the last two decades, sepsis has become more common not just in 

underdeveloped countries, but also in the United States and other Western countries [94]. 

Sepsis affects 2% of all hospitalizations in affluent nations, and the condition is significantly 

worse in underdeveloped countries with an occurrence of 6-30% for all ICU patients [95]. 

Although increased awareness, early detection and proper antibiotic supportive treatment have 

improved outcomes of sepsis, fatality rates remain high. This is because the improved sepsis 

outcomes are presumably attributed in part to volume change from the increased number of 

cases reported [95]. Based on the source of infection, features of the pathogen affected, such 

as microbial count and virulence, along with immune status of the host such as underlying 

health state, age, genetic composition and medication, patients with sepsis can have a wide 
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range of clinical symptoms [96]. High body temperature or hypothermia, increased heart rate, 

hyperventilation, leukocytosis, low blood pressure, and impaired mental status are some of 

common symptoms [97]. However, these symptoms can be minimal in very young, elderly, or 

immunocompromised individuals.  

 The most prominent infection that causes sepsis is pneumonia accounting for half of all the 

cases. Intraabdominal and urinary tract infections are the next most common sources of 

infection. According to new findings, the initial site of infection affects the risk of mortality, 

with intraabdominal infections holding the greatest risk and urinary tract infection with the 

lowest risk for in-hospital fatality post sepsis [98]. Although the crucial factor in sepsis may 

be the pathogen that causes the infection, no microorganisms can be grown from any region 

within the body in 30% of all septic incidences[99].   

4.4 Sepsis pathophysiology and role of inflammation 

Sepsis is primarily an inflammatory disease triggered by the immune system of the host. The 

initiation of pattern recognition receptors (PRP) during early stages of sepsis promotes the 

innate immune response. Pathogen -associated molecular patterns (PAMPs) and/or damage-

associated molecular pattern (DAMPs) such as mitochondria produced from damaged tissues, 

can both evoke the receptor response[100], [101]. Poorly regulated hyperinflammation can 

cause a variety of symptoms in the early stages of sepsis, including disseminated intravascular 

coagulation (DIC) and subsequent multi-organ dysfunction syndrome (MODS), inflammation-

coagulation caused by abnormal platelet activation, peripheral vasodilation resulting in low 

blood pressure, hypoperfusion of the kidney, and renal failure[102], [103]. As a result, sepsis 
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is a complicated disease characterized by endocrine dysfunction, coagulopathy, neurological 

dysfunction, all of which are mediated by epigenetic inflammation. 

Inflammatory response is a critical stage in signaling the immune system to the presence of 

infection, enabling the host’s white blood cells to find and kill the pathogen promptly. This is 

usually well-controlled, with inflammation subsiding once the infection has been cleared, and 

the host’s white blood cells returning to normal levels. Severe inflammation and immune cell 

proliferation are prevented when equilibrium is maintained, and the immune system prepares 

itself for appropriate strategies to respond to future infections.  

Most infections can be combated by the immune system when it is working properly, with only 

a slight degree of inflammation emerging before the pathogens are eliminated from the body. 

The effective management of cytokines is essential, for overcoming most infections quickly 

with minimal impairment to the host. During sepsis, this normal response is altered 

substantially resulting in a cytokine storm triggered by the overstimulation of the innate and 

adaptive immune activity as cytokines play a crucial role in triggering and amplifying both 

innate and adaptive immune response in the host.  

4.5 Need for effective identification and management of sepsis  

Over the last decade, despite significant medical advancements in prevention, diagnosis, and 

treatment, infectious diseases remain amongst the top three causes of death worldwide 

according to the World Health Organization (WHO). For sepsis, every hour of delayed 

treatment increases the rate of mortality by 8% [104]. Timely diagnosis with rapid treatment 

methodology has been reported to improve the chances of preventing adverse complications, 

and thus, reduce mortality rate  [105]. The clinical appearance of an infectious disease mirrors 
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the interaction between the host and the microorganism [106]. An effective method to scan for 

infection is by monitoring biomarkers responsible for host immune response, which unveils 

the severity of sepsis. However, relying on a single biomarker to determine sepsis can lead to 

misdiagnosis, as sepsis is a result of multiple complication of an infection[107]. In response to 

an infection, the body releases multiple triggers, which impairs regular blood flow and leads 

to blood clots and leaky blood vessels. This deprives the organ from necessary nutrients and 

results in organ damage. In severe cases, blood pressure drops drastically, heart weakens and 

patient spirals into septic shock. The patient requires immediate and accurate diagnosis at this 

crucial stage. An approach for successful prognosis includes integrating a combination of an 

early and a late onset biomarker for achieving a patient’s comprehensive sepsis profile. 
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CHAPTER 5 

MULTIPLEXED CYTOKINE DETECTION USING ELECTROCHEMICAL POC  

SENSING DEVICE TOWARDS RAPID SEPSIS ENDOTYPING 

 

 

5.1 Prior publication  

Ambalika S. Tanak, Dr. Sriram Muthukumar, and Dr. Prasad co-designed the study. All three 

contributed towards experimental design, data interpretation, and wrote the manuscript. 

Ambalika S.Tanak performed experiments, fabricated the sensors, and performed data 

analysis. Subramaniam Krishnan, Kevin L.Schully, and Danielle V. Clark provided patient 

sample resources, reviewed and edited the manuscript. Published in Biosensors and 

Bioelectronics journal in October 2020, this article focuses on demonstrating simultaneous 

detection of five host response biomarkers in plasma for detection of sepsis. The link to the 

journal article is https://doi.org/10.1016/j.bios.2020.112726. 

5.2 Abstract 

The implementation of endotype-driven effective intervention strategies is now considered as 

an essential component for sepsis management. Rapid screening and frequent monitoring of 

immune responses are critical for evidence-based informed decisions in the early hours of 

patient arrival. Current technologies focus on pathogen identification that lacks rapid testing 

of the patient immune response, impeding clinicians from providing appropriate sepsis 

treatment. Herein, we demonstrate a first-of-its-kind novel POC device that uses a unique 

approach by directly monitoring a panel of five cytokine biomarkers (IL-6, IL-8, IL-10, TRAIL 

& IP-10), that is attributed as a sign of the body's host immune response to sepsis. The 

https://doi.org/10.1016/j.bios.2020.112726
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developed POC device encompasses a disposable sensor cartridge attached to an 

electrochemical reader. High sensitivity is achieved owing to the unique sensor design with an 

array of nanofilm semiconducting/metal electrode interface that is functionalized with specific 

capture probes to measure target biomarkers simultaneously using non-faradaic EIS. The 

sensor has a detection limit of ~1 pg/mL and provides results in less than 5 minutes from a 

single drop of an undiluted plasma sample. Furthermore, the sensor demonstrates an excellent 

correlation (Pearson's r>0.90) with the reference method for a total n= 40 clinical samples, and 

the sensor's performance is ~30 times faster compared to the standard reference technique. We 

have demonstrated the sensor's effectiveness to enhance diagnosis with a mechanistic 

biomarker-guided approach which can be helpful towards disease endotypying for effective 

clinical management of sepsis at the patient bedside. 

5.3 Introduction 

Endotypes are biological subtypes characterized by distinct pathophysiological functions, 

described by specific biomarkers. The interpretation and verification of sepsis endotypes can 

save lives, by encouraging early identification of patient groups for accurate therapy. Sepsis 

endotyping enables physicians to provide critical care and precision medicine as it showcases 

the patient’s immune and treatment response to sepsis. Thus, there has been a promising 

transition from predicting the outcome to pathobiology driven understanding of host response 

heterogeneity to sepsis, leveraging innovative high-performance translational techniques and 

analytical methods to identify distinct biomarker subgroups of the host response. Medical 

communities have further acknowledged the value of biological markers as they continue to 

enhance sepsis diagnosis, which allows the classification of patients within the specific clinical 
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category [108], [109]. Sepsis is recognized as a global health crisis affecting more than 49 

million people every year[110]. It is a life-threatening condition that represents the systemic 

immunological reaction of the body to an infectious incident that leads to death [111]. It is well 

known that sepsis-related fatality is not directly caused by the invading pathogen; rather, the 

clinical complexity is triggered by the dysregulated host immune response that leads to 

multiple organ dysfunction [112]. The pathogen or the causative agent triggering sepsis may 

differ the host’s immune response being a key indicator in assessing fatality and the need for 

complex medical treatments. Ultimately, the combination of pathogen load, infection site, and 

host susceptibility leads to clinical presentation and course of the disease. Sepsis may be caused 

by any form of infection; the most common cause is a bacterial infection (pneumonia or urinary 

tract infection) that affects the body and triggers bacterial sepsis. Whereas, viral sepsis is 

caused by a viral infection (flu), and more cases of viral sepsis are triggered by COVID-19, 

which has caused a pandemic in 2020. Additionally, recent studies have reported mortality in 

COVID-19 patients triggered by sepsis, especially for elderly patients with pre-existing 

chronic illness [113]–[116]. 

Currently, rapid diagnostics exist mainly for pathogen identification, such as those highlighted 

in supplementary (table S1[117]) while a traditional clinical workflow is illustrated in Fig 

5.1A. Briefly, technologies such as SeptiFast (Roche) identifies multiple pathogens in six 

hours, HYPLEX (BAG) relies on the Polymerase chain reaction (PCR) technique to recognize 

relevant pathogens within three hours, and the Film Array device (BioFire) requires an hour 

for pathogen detection. These commercially available and those in development focus solely 

on detecting sepsis based on the pathogen. However, it is crucial to understand the nature of 
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sepsis and its form of representation in the patient by tracking the host immune response. As 

sepsis initiates, both pro-inflammatory and anti-inflammatory mechanisms start promptly with 

a predominant initial hyper-inflammatory phase, as shown in Fig 5.1B. In most of the cases, 

the innate immune response destroys the invading pathogen, but occasionally the pathogen 

prevails, and the host response may become unbalanced and destructive. The increased 

production of cytokines and chemokines is attributed to the severity and prevalence in sepsis, 

implying that a chain of unregulated inflammation has initiated displaying signs of both 

excessive inflammations as well as immune suppression, the severity of which varies from 

patient to patient. This perplexing phenomenon of the host immune response has been thought 

to be a race to the death between the invading microbes and the host immune response. The 

pathogens seek and benefit by suppressing various facets of host immunity, according to 

Hotchkiss and coworkers [90]. Therefore, monitoring cytokine biomarkers can assist in clinical 

decision-making and forecast sepsis-related outcomes to treatments [91]. For instance, 

measuring the cytokines levels near-patient at different time points would help in administering 

specific types of drugs, where immunosuppressants may be prescribed early in the disease 

etiology addressing the hyperimmune state of the patient and immunomodulators at a later 

stage in conjunction with antimicrobial therapy. Hence, it is critical to additionally track 

immune response imbalance triggered by inflammatory & anti-inflammatory cytokine immune 

response to channelize appropriate treatment strategy. As a POC treatment option, to date, no 

molecular host biomarker panel is available which makes an informed decision on the specific 

intervention based on the diagnosis of the immune response or the ability to detect 

improvements in the status of patients with sepsis[92], [93]. This gives rise to a major 
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diagnostic gap in near-patient testing capabilities. To address this technological gap this work 

demonstrates first-of-a-kind near-patient testing ‘DETecT Sepsis’ (Direct Electrochemical 

Technique Targeting Sepsis) sensor, which directly measures a panel of five host immune 

biomarkers in <5 minutes to guide the physician with active feedback on patient immune status 

for better therapeutic administration. DETecT sepsis sensor enables a mechanistic approach 

for sepsis stratification by leveraging the use of endotypes as defined by specific biomarkers 

to classify based on pathophysiological process rather than the clinical representation of sepsis 

which is a step towards precision medicine. Electrochemical sensing modality in conjunction 

with affinity-based capture probes, specifically quantifies levels of pro- and anti-inflammatory 

biomarkers (IL-6, IL-8, IL-10, TRAIL, and IP-10) using minimally acquired blood plasma 

samples. 
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Figure 5.1.a) Illustration of the current clinical timeline vs. DETecT Sepsis approach as rapid 

near-patient testing for disease severity screening based on biomarker levels. Image is created 

with Biorender.com b) Hyper-inflammatory and Immunosuppressed phase of Sepsis 

hypothesis c) Proof of feasibility towards establishing evidence-based clinical management 

approach using n=40 patient samples. 

Fig 5.1 a illustrates the current clinical workflow, and fig 5.1b represents the opportunity the 

developed sensor offers for detecting sepsis and tracking the host immune response allowing 

evidence-based clinical management (fig 5.1c). Our point-of-treatment technology allows 

rapid detection of multiple host-immune response sepsis cytokine biomarkers with ease of 

sample handling coupled with low sample volume (~40 μL) to facilitate near-patient bedside 
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monitoring towards enabling biomarker-guided patient stratification, endotyping, and 

improving treatment response within the critical golden hour post sepsis detection. The 

advantages of the DETecT Sepsis sensor over existing POC tests are: (i) direct hassle-free 

measurement from a single drop of undiluted blood plasma; (ii) allows sepsis stratification 

based on the body’s hyper and hypo immune response; (iii) specifically surface engineered 

sensor design facilitates high sensitivity and specificity; (iv) portable hand-held format enables 

multi-measure capabilities at near-patient testing. Such a POC-testing device would allow 

clinicians to make an evidence-based decision on immune-modulating treatments customized 

to the patient’s inflammatory response within the “golden hour” as illustrated in Fig 5.1c. 

5.4 Materials and Methods 

5.4.1 Experimental design 

DETecT Sepsis sensor uses EnLiSense’s READ platform for the detection of sepsis. The 

sensor was designed to allow simultaneous detection of cytokine biomarker panel using 

minimal sample fluid (<40 uL) in human blood plasma. Sensor performance metrics 

(sensitivity, specificity, dynamic range, detection limit, precision, and accuracy) were tested 

for IL-6, IL-8, IL-10, TRAIL & IP-10 in plasma. DETect Sepsis sensor was further validated 

for clinical translation by testing 20 patient samples tested positive for sepsis at the time of 

admission compared to the 20 healthy cohorts. The performance of the developed sensor was 

compared with the Luminex standard as a reference method. 
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5.4.2 Reagents 

DSP and the DMSO solvent were purchased from Thermo fisher scientific (USA) along with 

the PBS and SuperBlock. The antibodies and their specific antigens for IL-6, IL-8, IL-10, 

TRAIL, and IP-10 were purchased from Abcam. Pooled human plasma was obtained from 

Innovative Research, Inc. (USA) for sensor characteristic studies. Plasma from sepsis patients 

was obtained from the Austere-environments Consortium for Enhanced Sepsis Outcomes 

(ACESO), a consortium consisting of US Government, non-profit, academic, and industry 

partners. All the stock proteins and patient samples were stored at -20°C or according to their 

storage conditions until further use. None of the proteins underwent more than 3 freeze-thaw 

cycles to avoid denaturing of the proteins. The antibodies were diluted in PBS to bring them 

to their optimized concentration while their respective antigens were spiked in pooled human 

plasma in varying concentrations to perform calibrated response curves for each target 

biomarker.    

5.4.3 Direct Electrochemical Technique Targeting Sepsis sensor on EnLiSense’s READ 

platform 

The DETecT (Direct Electrochemical Technique Targeting Sepsis) sensor uses EnLiSense’s 

READ platform that comprises of the following: (1) A disposable, single-use sensor cartridge 

with an array of sensing electrodes that are individually configured to detect multiple 

biomarkers simultaneously from the sample specimen in real-time. (2) A handheld, palm-sized 

form-factor electronic reader onto which the sensor is mounted, which transduces the electrical 

outputs resulting from the sample specimen to other electronic devices/data server through a 
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software interface (configurable to support both wired and wireless communication). The 

subtle changes between antibody-antigen affinity interaction result in an electrochemical 

impedance signal response. Briefly, the detection mechanism is based on non-faradaic EIS. 

Herein, a small input voltage (10 mV) is applied to the sensor over a frequency range and the 

resulting impedance response is measured by the portable electronic device. The functioning 

of the electronic reader has been previously demonstrated elsewhere by our group [74]. EIS is 

a powerful technique that captures subtle interaction at the functionalized electrode surface. 

When a sample is introduced on the electrode surface and the electrode is polarized, the 

rearrangement of charges occurs at the electrode-solution interface. This results in a local built-

up of excessive ions of opposite charge. The extent to which the exponential charge built-up 

decays form the electrical double layer (or double-layer capacitance). The target analyte binds 

to the specific capture probe antibody within this double layer leveraging the antibody-antigen 

affinity mechanism across each working electrode and impedance is measured [37], [94], [95]. 

Advantages of non-faradaic EIS over faradaic method includes (i) label-free technique that can 

directly measure the subtle binding interactions without the need for a redox label for the 

measuring impedance response, thus, making non-faradaic EIS considerably more compatible 

in POC applications (ii) non-faradaic impedance measurement eliminates the need for a DC 

potential; thus, it does not denature the biomolecules immobilized on the sensing electrode 

surface. The sensing layer was surface engineered through a standard sputter fabrication 

technique using RF magnetron to deposit a 200 nm thickness of semiconducting thin film on 

the gold electrodes. Before deposition, a solvent cleaning strategy was applied where the 

surface was thoroughly cleaned with isopropyl alcohol (IPA), acetone, and DI water to 
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eliminate any impurities. Modulating the metal oxide layer's surface chemistry helps to 

improve the rearrangement of charges near the electrode-solution interface. Furthermore, Zinc 

oxide semiconductor has unique properties, including a large bandgap (3.367 eV), is non-toxic, 

and has high excitation binding energy (60 eV) that helps increase overall sensitivity. 

Additionally, due to its high adsorption capability owing to its high isoelectric point (∼9.5), 

chemical stability and good electrical conductivity enhance its use for sensitive 

electrochemical biosensing applications [95]. Nanoscale dimensions of the semiconducting 

thin film allow size-based matching to the target analyte, which effectively increases surface 

area to volume ratio. Additionally, the structural morphology of the nanofilm offers selective 

biomolecular binding for the functionalized capture probes. With the increase in the surface-

to-volume ratio, the surface structures of nanofilms can significantly modulate the charge 

carrier densities within the material and increase band bending [96], [97]. Previously, our 

group has experimentally demonstrated a three-fold increase in sensitivity for the nanofilm as 

compared to planar nontextured microelectrodes [98]. Thus, leveraging the unique properties 

of the ZnO nanofilm surface engineered layer, we have demonstrated sensitive electrochemical 

biosensing for the detection of multiplexed biomarkers. 

5.4.4 Immunoassay development 

The sensor surface was immobilized with 10mM DSP dissolved in DMSO and incubated in 

the dark at room temperature. Specific capture antibodies (IL-6, IL-8, IL-10, TRAIL, and IP-

10, 10 µg/mL each) were individually functionalized on each working electrode of the sensors. 

Superblock was used to hydrolyze unbound linker sites to avoid non-specific interaction. A 

calibrated response was established for each of the pentaplex biomarkers against varying dose 
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concentrations spiked in pooled human plasma. Data were represented as a percentage change 

in impedance with respect to baseline (plasma blank without the target biomarkers), using the 

equation S1 (supplementary information [117]). Cross-reactive study was tested by preparing 

a cocktail of non-specific biomolecules in low (10 pg/mL) and high concentrations (1000 

pg/mL) with the absence of the target biomarker. Individual response for the cross-reacting 

molecules was measured for each sensor functionalized with the target capture antibody. To 

test the specificity of the sensor in the presence of interfering biomarkers, the target 

biomolecule was spiked to the previously prepared cocktail solution, and the response was 

measured for each of the pentaplex biomarkers. All the data represented is measured from n=3 

replicates. The LOD described as the lowest measured concentration was calculated as 3 times 

SD of blank plasma.  

5.4.5 Patient sample acquisition 

Plasma samples were collected under written informed consent as part of an ongoing 

observational trial of sepsis in resource-limited settings conducted by ACESO [99], [100].  

Briefly, patients presenting to the emergency department of a participating hospital with at 

least two SIRS features and a suspected infection (SEPSIS-2 criteria) were eligible for 

enrollment. For this work, plasma samples collected 24 hours after enrollment from sepsis 

patients were used. Samples were provided stripped of all identifiers by ACESO to Biomedical 

Microdevices and Nanotechnology Laboratory, UT Dallas following the Material Transfer 

Agreement (MTA), approved by the Institutional Review Board (IRB# 19MRO151) at the 

University of Texas at Dallas. The samples were stored at -20°C immediately on arrival until 

further use and did not undergo more than two freeze-thaw cycles. 
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5.4.6  Statistical Analysis 

Statistical analysis was performed using GraphPad Prism Software (GraphPad Software Inc., 

La Jolla, CA). ns: non-significant, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. Data 

represented as mean ±SEM for n=3 replicates unless stated otherwise. One-way analysis of 

variance (ANOVA) was used for the comparison between three or more groups. T-test was 

used to compare significance for specific signal against non-specific interferons in the cross-

reactive study. Differences between healthy and septic cohort were assessed using non-

parametric (unpaired Mann-Whitney tests). 

5.5 Results 

5.5.1 DETecT Sepsis sensor evaluation for multiplexed quantification of immune 

biomarkers 

There is an immense unmet need for a rapid diagnostic to enable patient stratification in sepsis 

towards effective disease management. Therefore, the POC-tests should be highly sensitive 

with a wide dynamic range for a panel of host response biomarkers, that can be leveraged for 

assessing the patient’s immune state towards stratification and disease management. Based on 

the wide body of scientific literature, and clinical evidence, our approach was to target a 

combination of pro and anti-inflammatory cytokines in conjunction with cell apoptosis 

monitoring protein. Therefore, we selected IL-6, IL-8, IP-10, IL-10, and TRAIL for this study 

as the levels of these biomarkers provide a composite snapshot into a patient’s immune 

response state towards establishing disease severity and mortality risk in the patient. TRAIL 

and IP-10 were included for discriminating between the viral and bacterial loadings on the host 
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[101]. DETecT sensor device was calibrated for each of the pentaplex biomarker panels in 

pooled human plasma (control set with no infections). Herein, varying dose concentrations 

were measured for specific analytes to establish a calibrated dose-response on the multiplexed 

affinity capture probe functionalized sensor array. Signal impedance response between 

antibody and the target analyte was captured using EIS and represented as a percentage change 

in impedance with respect to the baseline (described in the methods section) in pooled plasma 

as shown in fig 5.2(a-e). 

Figure 5.2. (a-e) Calibrated dose-response for IL-6, IL-8, IL-10, TRAIL, and IP-10 in pooled 

human blood plasma with a clinically relevant dynamic range. (f-j) The cross-reactive study 

demonstrating the specificity of DETecT Sepsis sensor for each of the target biomarker. A; 

Low concentration of non-specific biomarker mixture, B; High Concentration of non-specific 

biomarker mixture, C; Target marker along with a low concentration of non-specific biomarker 

mixture, D; Target marker along with a high concentration of non-specific biomarker mixture. 

A dose-dependent increasing trend in impedance signal response was observed for all the 

biomarkers. The dynamic range for each biomarker was aimed to capture the healthy as well 

as a diseased state within the physiologically relevant range of clinical samples. IL-6 

demonstrated a wide dynamic range of 0.01 pg/mL to 10 ng/mL with a LOD of 0.1 pg/mL in 

spiked plasma samples (fig 5.2b). The box plots for each biomarker display no overlapping 
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inter-quartile ranges with a minimum variation for each concentration, indicating good 

repeatability with the least variance. The signal impedance response is reflective of the affinity 

binding mechanism between the specific capture probe and the target analyte that indicates the 

biomarker concentration in pooled plasma. The unique multiplexed sensor design coupled with 

specific surface functionalization augments the signal response and has previously been 

described elsewhere [95], [102]. IL-8 demonstrated a dynamic range of 0.1 pg/mL to 5 ng/mL 

with a detection limit of 0.1 pg/mL (Fig 5.2c). IL-6 and IL-8 are known to be major mediators 

of an inflammatory response, and their levels elevate in patients with sepsis, which act as key 

indicators during the development of severe sepsis. Similarly, the dynamic range for IL-10 was 

observed to be from 0.1 pg/mL to 1 ng/mL (Fig 5.2d) with an LOD of 1 pg/mL in pooled 

plasma. IL-10 belongs to the group of immunoregulatory molecules called anti-inflammatory 

cytokines that prevents the body from the adverse effects of excess inflammatory immune 

reactions. The key risk factor for sepsis severity and the fatal outcome is the chronic 

overproduction of IL-10, which indicates patients with sepsis are in a deep immunosuppression 

state [103]. Data in fig 5.2e shows the dynamic range of TRAIL from 1pg/mL to 1 ng/mL with 

a detection limit of 1 pg/mL whereas IP-10 displayed a dynamic range of 1 pg/mL to 2 ng/mL 

(Fig 5.2f) respectively. Additionally, each biomarker demonstrated a statically significant 

difference between concentrations as determined by one-way ANOVA with 95% confidence 

intervals (table S2 [117]). The developed DETecT sepsis sensor demonstrated sensitive 

detection for biomarkers below normal threshold levels as well as the dynamic ranges extended 

beyond elevated levels predicted in disease states. The surface engineered semi-conducting 
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nanofilm allows sensitive detection by potentially increasing the surface to volume ratio, 

allowing plenty of biomolecules to be immobilized onto the electrode surface.  

After establishing a sensitive and robust calibration response, the selectivity and specificity of 

the DETecT Sepsis sensor on EnLiSense’s READ platform were evaluated. Every analyte was 

tested with a series of non-specific markers, starting with the lowest concentration of the cross-

reacting molecule, followed by the highest concentration as seen in Fig 5.2 (f-j). Selectivity of 

the biosensor is extremely important while testing actual clinical samples where the 

concentrations of the analyte can be much lower than that of the non-specific molecule. Thus, 

to mimic realistic scenarios, the sensor was additionally tested with a cocktail mixture of low 

and high non-specific molecules along with the target analyte spiked plasma sample to validate 

sensor device platform specificity. Non-specific biomarkers (represented as bar’s A and B) in 

fig 5.2 (f-j) showed less than 10 % reactivity compared to the specific response of the target 

biomarker. Additionally, despite the presence of varying concentrations of cross-reacting 

molecules (represented as bar C and D in fig 5.2 (f-j) along with the target biomarker, the 

developed sensor demonstrated similar results (100% reactivity) to that of the specific 

individual analyte. DETecT sepsis sensor’s capability to bind to the functionalized antibody 

selectively is attributed to the surface-functionalized highly specific monoclonal antibody 

combined with the effect of blocking buffer. By blocking the active functional groups on the 

electrode surface, the blocking buffer (superblock) prevents non-specific binding and can help 

stabilize the biomolecule attached to the electrode surface, thereby increasing the specificity 

of the biosensor [104]. Specificity is a vital sensor metric to reduce false-positive results and 

provide accurate detection capability with increased resolution in distinguishing disease state. 
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Overall, the data confirmed the developed DETEecT sepsis sensor demonstrated high 

sensitivity coupled with specific and selective response despite the presence of non-specific 

biomolecules for the multiplexed cytokine biomarker panel in plasma using EIS as the 

detection technique. 

5.5.2 Evaluating DETecT Sepsis sensor performance for repeatability, reproducibility 

stability, and accuracy in pooled human blood plasma 

Repeatability, reproducibility, accuracy, and stability are the main considerations that need to 

be assessed while evaluating the sensing platform's effectiveness. The coefficient of variation 

(%CV) was calculated for all the study biomarkers as a measure to assess the dispersion within 

each reported concentration from n=10 sensors, as shown in Fig 5.3 (a-e). Generally, lower 

concentration tends to show higher variability and the developed sensor demonstrates the CV 

range between 3-16%. The results displayed in fig 5.3 (a-e) exhibit a CV < 20%   which is 

clinically accepted as per the guidelines set by the Clinical and Laboratory Standards Institute 

(CLSI), thereby demonstrating the repeatability of DETecT sepsis sensor within a wide 

dynamic range [105]. Fig 5.3 (f-j) demonstrates the reproducibility of the electrochemical 

response for 12 identical sensors with an average concentration indicated by the dotted line for 

each target analyte. The relative standard deviation (RSD) across all twelve sensors was ~ 10%. 

The value of RSD indicates good reproducibility and repeatability of the DETecT Sepsis sensor 

platform. 
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Figure 5.3. (a-e) CV plot examining the precision of DETecT Sepsis sensor for IL-6, IL-8, IL-

10, TRAIL and IP-10 in pooled plasma. The dotted line at 20% represents the acceptable limit 

according to CLSI guidelines (f-j) Repeatability and reproducibility of DETecT sepsis sensor 

across 12 sensors for IL-6, IL-8, IL-10, TRAIL and IP-10 in pooled plasma respectively. The 

dotted line represents average concentration across 12 replicates. 

Next, DETecT Sepsis sensor performance was tested for its accuracy by the spike and recovery 

study. Known concentrations (actual) spiked in triplicate correlated with an R2 value of 0.99 

with the measured concentration calculated based on the previously established calibration 

curve. Fig 5.4 (a-e) demonstrates reliable detection of actual spiked concentration across all 

five target biomarkers. The recovery percentage was then calculated along with the accuracy 

of the sensor as represented in fig 5.4 (f-j). As observed from the results, the percent recovery 

was between ~89-110% for IL-6, IL-8, IL-10 TRAIL, and IP-10, which lies well within the 

acceptable range for assay validation according to CLSI standards [106]. Once the accuracy 

was established, the operational stability of DETecT Sepsis sensor was tested for up to five 

weeks (35 days) with the sensors stored in 4°C. 1 pg/mL concentration for TRAIL and IP-10 

was measured thrice (n=3). No significant change in response was observed for TRAIL with 

only a 3% loss of signal at the end of five weeks, as seen in supplementary Fig S1 [117]. 

Similarly, a loss of only 5% of the signal response was seen at the end of five weeks specific 

to IP-10 as seen in supplementary Fig S2 [117]. In summary, both TRAIL and IP-10 retained 
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95-97% of its original activity post five weeks of storage in 4°C, indicating excellent 

operational stability. To our knowledge, this is the first demonstration of a pentaplex biomarker 

sensor that allows simultaneous quantification of pro-and anti-inflammatory biomarkers with 

a single drop of plasma sample with reliable sensor performance metrics.  

Figure 5.4.(a-e) Actual and measured concentration in pooled plasma represented as 

correlation plots using the DETecT sepsis sensor. (f-j) Repeatable and reliable sensing 

capability highlighting the high recovery rate and accuracy of the developed sensing platform.  

5.5.3 Validating DETecT Sepsis sensor with clinical patient samples 

Clinical translation for the multiplexed POCT technologies requires validation with patient 

samples. For this study, 20 septic patient plasma samples along with 20 controls (non-septic) 

healthy plasma samples (Table S3 [117]) were evaluated using the DETecT Sepsis sensor and 

Luminex as the reference standard. The onset of sepsis was confirmed at 24 hr time point from 

the hospital. All the 40 samples were tested for IL-6, IL-8, IL-10, TRAIL, and IP-10 using the 

developed sensor device. Concentrations measured using the sensor correlated well with a 

Pearson’s r ≥ 0.90 for all the five test biomarkers as seen in Fig 5.5 (a-e). Fig 5.5 (f-j) represents 

the DETecT Sepsis sensor’s capability to distinguish healthy vs. sepsis patient cohorts for IL-

6, IL-8 IL-10, TRAIL, and IP-10. We observed that levels of IL-6, IL-8, IL-10, TRAIL, and 
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IP-10 of the healthy cohort were significantly different from the Septic cohort as confirmed 

using Mann-Whitney U statistical analysis test. Mean plasma IL-6 levels for the septic cohort 

were 44.05±74.32 pg/mL as compared to 2.2±0.83 pg/mL of the healthy cohort. IL-8 levels 

for the healthy cohort were all below 2.44±0.88 pg/mL while mean levels in the septic cohort 

were around 11.65±16.16 pg/mL. Similarly, for anti-inflammatory IL-10 biomarkers, the mean 

level established for the healthy cohort was 2.17±0.84 pg/mL and septic patients' mean levels 

were 15.47±18.18 pg/mL. As seen in Fig 5.5d, TRAIL levels were significantly lower in septic 

patients with a mean value of 27.62±18.62 pg/mL as compared to the healthy cohort mean 

levels of 47.69±18.74 pg/mL. Studies have shown to correlate lower levels of TRAIL to poor 

patient outcomes, thus indicating the overall severity of illness [107], [108]. Mean healthy 

concentrations for IP-10 were 45.27±34.57 pg/mL whereas septic sample mean levels were 

measured to be 397.3±572.5 pg/mL. The DETecT Sepsis method was also able to distinguish 

all the five biomarkers in healthy and septic patient samples with good statistical significance 

of p<0.001 (Table S4 [117]). 

Figure 5.5. (a-e) Correlation between the Reference method (Luminex) and DETecT sepsis 

sensor platform obtained by analyzing n= 40 patient blood plasma samples with a Pearson’s r ≥ 

0.90 for IL-6, IL-8, IL-10, TRAIL, and IP-10 biomarkers. (f-j) DETecT Sepsis sensors 



 

85 

capability to distinguish healthy significantly vs. sepsis patient cohorts for IL-6, IL-8 IL-10, 

TRAIL and IP-10.  Note: **p < 0.01, ***P < 0.001, ****P < 0.0001. 

5.6 Discussion 

Patients with sepsis can be stratified based on evaluating specific immunological response 

patterns by a promising approach of cytokine profiling [109], [110]. Research has been 

proposed that a combination of biomarkers may yield better results, as no single biomarker 

exhibits an accuracy of 100% to predict a reliable outcome. Accordingly, in this work, we 

developed a unique strategy targeting a combination of five pro and anti-inflammatory 

cytokine biomarkers to rapidly detect sepsis using the DETecT Sepsis sensor to assess the 

patient’s host response useful in a clinical setting. The empirical research approach adopted 

for this work was based on the evolving knowledge of host response to infection during sepsis. 

It is well-identified that sepsis fatality is not specifically induced by infectious microorganisms 

or pathogens; instead, the subsequent pathological outcome is triggered by dysregulation of 

the host immune response with a combination of pro and anti-inflammatory processes, 

contributing to multiple organ failure. DETecT Sepsis sensor provides a descriptive 

understanding of the host immune response with the pentaplex biomarker strategy enabling 

patient stratification to predict timely evidence on the arc of sepsis. The sensitive and specific 

aspect combined with a wide dynamic range of the DETecT sensor device platform allows 

sepsis stratification to differentiate the patient state enabling appropriate therapeutic 

interventions. 

The combination of pro and anti-inflammatory markers (IL-6, IL-8, and IL-10) reveals host 

immune response during the early stages of sepsis whereas TRAIL and IP-10 provide 

information to differentiate between bacterial or viral sources of infection. Each biomarker 



 

86 

provides key information based on the specific pathophysiology. Timing of cytokines release 

and the symbiosis between pro- and anti-inflammatory agents determines the degree of 

infection, and their excessive production can be associated with deleterious effects. A clinical 

investigation detected a high concentration of cytokines in plasma of critically ill patients 

affected with COVID-19, suggesting that cytokine storm was associated with the severity of 

the disease as well[111]. Cytokine mediators are elevated in both pediatric and adult patients 

and are responsible for illicit symptoms including fever, hypotension, and production of acute-

phase proteins [112], [113]. They are likely to be prognostic as primary regulators during the 

early stage of sepsis [114], [115]. Additionally, elevated IL-6 and IL-8 levels are linked with 

early 48 hours and 28-day mortality in sepsis patients  [116]. Moreover, IL-8 is a known 

mediator of the inflammatory response which plays a major role in neutrophil activation. Our 

results are in agreement with previous research which illustrated the increase of IL-6 and IL-8 

during the first 24 hours of hospital admission as compared to the healthy cohort [116]–[118], 

thus, demonstrating the role of cytokines biomarkers in identifying sepsis prognosis at an early 

stage. The role of anti-inflammatory biomarker IL-10 during sepsis is complicated as it 

depends on the time of intervention of either being protective or destructive to the host. 

Overproduction of IL-10 in septic patients is an indicator of severity and fatal outcome as the 

body spirals in a state of immunoparalysis. Therefore, IL-10 in the DETecT pentaplex panel 

acts as an indicator of immune suppression, and thereby reflects the severity of the patient's 

condition for sepsis-induced immunosuppression. Since the patient samples tested were 

collected at a 24-hour time point, the IL-10 levels were not as significant compared to the 

healthy cohort, thereby indicating an early stage of sepsis. Our results demonstrating the down-



 

87 

regulated TRAIL profile support the hypothesis that TRAIL participates in sepsis by 

controlling inflammatory cell apoptosis and promotes inflammation resolution [119]. The 

presence of TRAIL and IP-10 has been independently used to differentiate viral from bacterial 

infection[120]–[122]. Moreover, the hypothesis that TRAIL participates in sepsis by 

controlling inflammatory cell apoptosis and promotes inflammation resolution [119]. Broadly, 

each selected biomarker demonstrates key elements in activating immune response during 

sepsis. The approach of multiplexed cytokine profiling would enable rapid sepsis endotyping 

based on biomarker levels using the DETecT Sepsis sensing platform. Physicians can actively 

monitor patient status for better prognosis and provide enhanced therapeutic interventions, 

with multiple measures at patient bedside. 

Clinical management of sepsis can be divided into three phases: (i) patient screening; (ii) 

patient stratification based on evidence-based clinical management and response to treatment 

therapies; and (iii) prognostic monitoring. As discussed earlier, much effort has been utilized 

in the first and third phases, while very little progress has been reported with patient 

stratification methods. Existing methodology lacks the potential to deliver rapid POC results 

deprived of demanding post-processing to facilitate adequate diagnosis strategies for septic 

patients. To date, very little work has been done on enabling multiplexed biomarker detection 

at POC-testing allowing timely treatment. Moreover, transitioning these findings into a 

clinically feasible test requires a rapid, convenient method that can resolve the lengthy testing 

process (1-8 hours) while providing accurate results. The developed self-integrated sensing 

device improvements over existing techniques include (i) direct patient sample measurement 

without the need for sample preparation or dilution (ii) low sample volume utilization (~40 
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µL) of blood plasma in a portable hand-held format, that could be used to collect data over 

multiple time points with (iii) rapid results achieved within ~5 mins (iv) simultaneous 

multiplexed detection of cytokine panel biomarkers, for classifying patients depending on the 

levels reflecting severity of illness (v) Sensitive, selective, specific and stable biosensing 

response enhances the reliability of the detecting mechanism. 

Many researchers have leveraged the use of IL-6, IL-8, IL-10, TRAIL, and IP-10 individually, 

but to our knowledge, this work is the first demonstration of a simultaneous pentaplex 

biomarker panel for early sepsis diagnosis and monitoring using low sample volume (< 40 µL) 

achievable rapidly. DETecT Sepsis sensor can be used effectively in the emergency department 

for early sepsis screening, or it can be used to monitor sepsis prognosis for patients as a bedside 

monitoring device. Biomarkers linked with sepsis are attributed to the complex immune 

response pathways, therefore rapid multiplexed detection would enable early therapeutic 

intervention and improve patient outcomes. Additionally, the sample-to-detection time, 

measured for all five biomarkers from time of sampling until sensor readout, was ~5 mins, 

which is >30 times faster than the standard reference method (~5 hours). The repeatable and 

reproducible results demonstrated by the DETecT Sepsis sensor shows evidence of an accurate 

and reliable electrochemical biosensing mechanism. When tested against common interferants, 

the specific sensing capability for the developed pentaplex sensor was not affected. Moreover, 

the sensor displayed a stable response for over five weeks. To our knowledge, no multiplex 

point-of-treatment device is available for sepsis detection for near-patient testing without 

sample dilution with rapid response time. Our data shows the first demonstration of a truly 

novel multiplexed platform capable of monitoring host response using pentaplex biomarkers 
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for sepsis detection that would enable patient stratification and sepsis endotypying. This rapid 

sample-to-result detection capability demonstrated by the DETecT Sepsis sensor establishes it 

as a value-added POC testing approach in hospitals and emergency departments towards risk 

stratification of sepsis severity and responses to treatment. 

5.7 Conclusion 

In summary, DETecT Sepsis device platform provides the first proof of concept for rapid 

diagnostic screening of sepsis leveraging a host immune response biomarker pane. The 

developed sensor showed comparable results to the reference standard as shown with Pearson’s 

r>0.97 for all the five biomarkers. However, the developed DETecT sepsis sensor achieved 

quicker response time with lesser completed assay procedure, leveraging a combination of 

unique surface engineered sensing strategy coupled with an affinity biosensing principle. The 

results of this research demonstrate a robust, sensitive, specific, and stable performance by the 

DETecT Sepsis sensor which is highly expected from a POC device. Moreover, it possesses 

three major advantages over current detection methodology. Firstly, a specific affinity-based 

transduction mechanism allows the simultaneous detection of IL-6, IL-8, IL-10, TRAIL, and 

IP-10. Multiplexed detection capability will help provide a precise molecular fingerprint of 

every patient encouraging initiatives towards precision medicine. Secondly, rapid response 

time offered by the DETecT sensor enables faster decision-making for physicians to operate 

within the “golden hour” and initiate required treatment thus, avoiding the dynamic sequence 

of irreversible organ failure and subsequent death caused due to delayed response time. Finally, 

small form factor and ease in handling allow flexibility in using the device in a versatile 

environment (in an emergency department, or for bed-side monitoring) while ultra-low sample 
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volume (< 40 µL) encourages physicians to collect multiple measurements within a day to 

monitor patients host immune response and assess the severity of sepsis. The study was limited 

to a small sample size of septic patients. However, these observations have several implications 

for research to integrate different host immune response biomarkers with self-integrated POC 

devices for a better patient outcome. We are currently in the process of expanding our 

multiplexed capabilities and investigating sepsis pathophysiology via a larger patient cohort. 

In conclusion, this work has pioneered a potential solution to the current sepsis dilemma, by 

providing host response strategy to address complexity, shifting the paradigm of the on-going 

sepsis diagnostic approach.  
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CHAPTER 6 

MULTICOHORT TIMECOURSE ANALYSIS AND CLINICAL INVESTIGATION OF 

PATIENTS WITH SEPSIS USING DETECT SEPSIS DEVICE 2.0  
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Striegel provided patient sample resources, reviewed and edited the manuscript. This work is 

submitted to Cell reports medicine and currently under review.  

6.1 Abstract 

Disease progression of sepsis has been perceived as a multifaceted phenomenon, considering 

the temporal host inflammatory response within individuals which requires early diagnosis. 

Herein, we present a multicohort analysis through temporal inflammatory biomarker profiling 

using DETecT sepsis device that measures and quantify cytokines (IL-6, IL-8, IL-10), 

chemokines (TRAIL, IP-10), and well-established inflammatory biomarkers (PCT, CRP) with 

a sample turnaround time of <5 mins in small volume (<40 uL) patient plasma samples. The 

DETecT device positively correlated (r>0.97) with the Luminex reference standard during 

clinical evaluation for a total of 124 patient samples. Low mean bias for all the biomarkers in 

Bland- Altman analysis indicated good agreement between standard LUMINEX method and 

the developed DEecT sepsis device. We used the combinatorial power of rapidly measuring a 
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panel of seven biomarkers, paired with a machine learning model, to effectively predict patient 

outcome when given two time points in the early stages of sepsis. The device could predict 

patient mortality and recovery with over 92% accuracy by applying decision tree analysis. We 

envision this work would facilitate personalized treatment based on biomarker stratification to 

represent exactly where the patient belongs within the sepsis continuum. Measurable empirical 

data with a fast turnaround time would facilitate the DETecT sepsis device as a potential 

enabling technology that can play a crucial role in understanding sepsis prognosis and be 

leveraged for personalized therapeutics anywhere. 

6.2 Introduction 

Disease management is crucial for specific diseases to improve patient outcomes  [151]. One 

such disease that needs continuous attention is sepsis. Sepsis is an intricate, heterogeneous 

condition that is often misdiagnosed with severe health repercussions [141]. Sepsis is 

characterized by a dysfunctional host immune response comprising inter-woven immune 

responses, including pro-inflammatory, anti-inflammatory, immunosuppressing, and other 

complex components that impact all types of immune cells and their compartments. Therefore, 

mitigation of potential sepsis and research on precise and prompt detection may decrease 

mortality risk while improving patient outcomes.  

Disease management for sepsis has been effectively broken down into six stages (awareness, 

prediction, diagnosis, prognosis, treatment, and recovery). Much attention and focus are given 

to the three initial stages of sepsis management  [152], [153] (awareness, prediction, and 

diagnosis [154], [155].  Therefore, it is critical to understand the course of the disease and 

provide gateways to prevent the disease from progressing into a later stage with a fatal 
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outcome. Many gold standard techniques include pathogen-driven approaches for disease 

identification [156]. However, it is believed that sepsis is not solely driven by the pathogen-

elicited inflammatory response but by a dysregulated host immune response with a 

combination of pro-inflammatory and anti-inflammatory processes that correspond to multiple 

organ failure [94], [118]. Despite this, many current technologies are heavily focused on a 

time-consuming pathogen-driven approach, and delayed results could prove detrimental to the 

patient as the patient’s state changes by the hour [157]. 

Furthermore, these current technologies require large sample volumes, making it tedious to 

measure or account for time-based patient response. Adding to the existing predicament, sepsis 

management becomes nearly impossible in a resource-limited environment with little or no 

access to sophisticated clinical analyzers or trained laboratory experts to perform accurate tests  

[158]. This makes it even more challenging to diagnose the patient's status. Therefore, a one-

size-fits-all approach is adopted i.e., administering a broad range of antibiotics for treatment 

[159]. In bacterial sepsis, it may be advantageous. However, if the patient has a viral source of 

infection, it can do more harm than good [160]. Moreover, diagnostic ambiguity can delay 

adapting existing lifesaving treatments, increasing the further abuse and overuse of 

antimicrobial agents. The patient may even develop antibiotic resistance to the broad-spectrum 

administered drugs, which is equivalent to opening a pandora’s box altogether [161], [162]. 

Therefore, it is crucial to have the ability to make appropriate decisions at the right time to 

improve the chances of survival for patients with sepsis. We want to target this area, which is 

the foundation of the later three stages of sepsis management, i.e., prognosis, treatment, and 

recovery. This primarily includes patient endotyping and disease stratification. Many 
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technologies like SeptiFast (Roche Diagnostics) and Iridica Plex ID (Abbot Molecular) focus 

on detecting sepsis. Further, ImmunoXpert, a blood-based host immune markers-based 

diagnostic assay, distinguishes bacterial infection from viral infection. This assay integrates 

the concentrations of three biomarkers: tumor necrosis factor-related apoptosis-inducing 

ligand (TRAIL), interferon-gamma induced protein-10 (IP-10), and C-reactive protein (CRP). 

However, little work has been done to examine the host response after the patient has been 

diagnosed with sepsis, as sepsis pathophysiology is complicated, and the immune response 

varies from patient to patient. Mapping the immune response prior to physiological initiation 

of symptoms such as fever throughout the infection and post-infection complications is 

paramount towards providing appropriate clinical care. Monitoring the patient's host immune 

response in real-time could provide active feedback on the patient's immune state to alter 

treatment strategies [163], [164]. Mapping the immune response serves as a tool to ascertain 

(a) the difference between SIRS and sepsis, (b) severity of sepsis and (c) mortality and survival. 

Further, identifying sepsis patients who belong to broad immune phenotypes such as 

hyperactive immune responders or immune-suppressed will assist in biomarker-based patient 

stratification for precision immunotherapy and appropriate clinical management. Finally, upon 

initiation of appropriate treatment, these host immune analytes can also potentially serve as 

response biomarkers monitoring the treatment in real-time. Rapid POC diagnostics in real-

time, monitoring host immune analytes leading to evidence-based clinical management is the 

need of the hour. 

Our previous work demonstrates robust sensing performance that can be used as a near-patient 

POC sensor to detect sepsis [165]. This work focuses on progressing beyond validating the 
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sensor performance metrics and providing evidence-based clinical biomarker endotyping to 

help with sepsis prognosis and facilitate personalized treatment strategies. Patient stratification 

and endotyping will enable improved patient outcomes as it pivots towards precision medicine. 

During sepsis treatment, biomarker-guided immunotherapy offered at the patient bedside 

during the appropriate immune phase may empirically be a significant advancement in sepsis 

management [166]. This work builds on analyzing a cytokine network (by monitoring IL-6, 

IL-8, and IL-10) [167] to unveil dynamic inflammatory pathogenesis in sepsis and understand 

the source of pathogen-triggered immune response (bacterial infection presence reflected by 

levels of TRAIL and of viral infection presence with an increase in IP-10) combined with early 

and late-stage established biomarkers (PCT and CRP) to provide a complete profile on the 

patient’s immune state at the bedside. 
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Figure 6.1. Graphical abstract representing the cycle after the infection enters the bloodstream 

and the scope where DETEcT sepsis device is envisioned to be used at the patient bedside. 

Image is drawn using Biorender.com. 

6.3 Methods 

6.3.1 Study design 

This study aimed to validate DETecT sepsis device performance metrics and provide evidence-

based clinical biomarker endotyping to help with sepsis prognosis. To achieve this, the sensor 

was explicitly designed to simultaneously detect seven host immune biomarkers as an 

extension to our recently published work [165] which demonstrated robust sensor performance 

metrics. This work builds on analyzing cytokine network (by monitoring IL-6, IL-8, and IL-



 

97 

10) to unveil dynamic inflammatory pathogenesis in sepsis and understand the source of 

pathogen triggered immune response (bacterial presence reflected by levels of TRAIL and 

presence of viral infection with an increase in IP-10) combined with early and late-stage 

clinically established markers (PCT and CRP) to provide a complete profile on the patient’s 

immune state at the bedside. We tested all the (24 hr) sepsis patient samples matched with two 

time points (at 6hr, n=44) along with 30 healthy controls (total sample size=124) to evaluate 

clinically valuable markers for sepsis prognosis to capture patient immune status via cytokine 

profiling. Additionally, we integrated the data with machine learning algorithms to predict the 

patient outcome for early analysis. 

6.3.2 Reagents 

Specific IL-6 IL-8, IL-10, TRAIL. IP-10, and CRP antibodies were purchased from Abcam 

(USA), while PCT antibody was purchased from Fitzgerald (USA). All the stock proteins were 

preserved for further use at -20°C or according to the storage conditions. To prevent denaturing 

the proteins, none of the proteins underwent more than 3 freeze-thaw cycles. Antibodies were 

diluted in PBS to get them to their optimized concentrations before use. 

6.3.3 DETecT (Direct Electrochemical Technique Targeting Sepsis) sensor uses 

EnLiSense’s Rapid Electro Analytical Device (READ) preparation 

The DETecT sepsis sensor uses EnLiSense’s READ platform that comprises of the following: 

(1) A disposable, single use sensor cartridge with an array of sensing electrodes, individually 

designed to detect multiple biomarkers simultaneously from a sample in real-time. (2) A 

handheld, palm-size form factor electronics reader on which the sensor is placed, which 
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transfers electrochemical output from the sample to other electronic devices via a software 

interface (configurable to support both wired and wireless communication). Briefly, the 

detection framework is governed by non-faradaic EIS. An electrochemical impedance response 

is measured due to subtle changes between antibody-antigen affinity interaction when a small 

input voltage (10mV) is applied to the sensor over a frequency spectrum by the electronic 

reader [46], [67], [76]. The sensor requires a small sample volume of <40uL and provides a 

result within < 5 mins. Assay protocols were similar to our previous work [28], [123]. Sensor 

characterization and performance were evaluated thoroughly in our recently published work 

[165]. 

6.3.4 Patient samples 

Patient samples were derived from observational trials of sepsis conducted by the Austere 

environments Consortium for Enhanced Sepsis Outcomes (ACESO) in Cambodia, Ghana, and 

the United States (35, 36). The NMRC IRB approved all study protocols in compliance with 

all applicable Federal regulations governing the protection of human subjects and host country 

IRBs, and all participants, or their legally authorized representatives, provided written 

informed consent. Briefly, adult patients presenting to a participating hospital's emergency 

department with suspected infection (as judged by the attending physician) and met at least 

two of three SIRS clinical criteria (SEPSIS-2 criteria) were eligible for enrollment. The 

severity of illness was assessed by calculating the quick Sequential Organ Failure Assessment 

(qSOFA) score at 6 hours by the participating hospitals (Supplementary fig S24). 

The University of Texas authorized this study at Dallas IRB (IRB#19MRO151).  Matched 

patient plasma samples collected six hours (T1) after enrollment (n=44) and 24 hours (T2) after 
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enrollment (n=50) were provided, stripped of identifying information, by ACESO [128], [168]. 

Of the total 50 patient samples, 6 patient plasma samples were not collected at six hours, with 

44 matched samples. De-identified samples were received at the Biomedical Microdevice and 

Nanotechnology Laboratory, UT Dallas, processed immediately upon arrival, and stored at a 

temperature of -20°C until further use.  They did not undergo more than two freeze-thaw 

cycles. An additional 30 plasma samples collected from healthy controls were purchased from 

Boca Biolistics (Pompano Beach, FL, USA). 

6.3.5 Biomarker analysis 

Plasma concentrations of pro & anti-inflammatory cytokines (IL-6, IL-8, IL-10), chemokines 

(TRAIL & IP-10) and inflammatory biomarkers (PCT & CRP) were measured using (1) 

Luminex as a reference standard (2) DETecT sepsis device as the proposed method of detection 

in UT Southwestern medical center. 

6.3.6 Statistical Analysis 

Statistical analysis was performed using GraphPad Prism Software (GraphPad Software Inc., 

La Jolla, CA). ns: non-significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Data 

represented as mean ± SEM for n = 3 replicates unless stated otherwise. One-way analysis of 

variance (ANOVA) was used for the comparison between three or more groups. T-test was 

used to compare significance for specific signals against non-specific interferons in the cross-

reactive study. Differences between healthy and septic cohorts were assessed using non-

parametric unpaired Mann-Whitney tests. Biomarkers assessed by two methods were 

correlated, and the difference between the methods was assessed using Bland-Altman analysis. 



 

100 

Receiver operating characteristics were performed to validate DETecT sepsis sensing device 

specificity and sensitivity to differentiate healthy from septic patient cohort using 

Wilson/Brown method with GraphPad Prism. Multidimensional analysis was carried out to 

determine whether the different conditions of interest could be differentiated based on multiple 

cytokine profiles. Patients were categorized based on their biomarker concentration levels. 

Group A was classified for patients whose biomarker concentration decreased from 6 hours to 

24 hours and was termed as recovery state. Patients whose biomarker concentrations increased 

from 6 hours to 24 hours and still survived were termed as late recovery and were placed in 

group B. Finally, group C contained deceased patients based on the 28- day mortality status.  

Principal component analysis (PCA) was used to visually evaluate if a healthy cohort was 

separable from septic patients along with various other input criteria. In PCA, each point is 

expressed in a 2- dimensional space by a single point in point so that if 2 patients share similar 

characteristics, the closer they are to each other.  Therefore, the central idea of PCA assessment 

is to identify if patients with or without a specific outcome may be grouped into two separate 

categories, or they may not be discernible. The PCA transformation is achieved through 

various steps. The data is first standardized to have mean values centered at 0 and a variance 

of 1. This step is essential to mitigate skewing of data due to few large values. Next, all the 

study biomarker values were transformed before proceeding to the PCA step. The next step 

was to compute eigen vectors and corresponding eigen values. The eigen decompositions 

provide the maximum variance and its contribution from the input feature set. The most 

prominent eigen pairs were sorted in descending order until the original dataset's threshold 

value of information variance was achieved. The visualization of PCA is done with the help of 
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the first and second principal components, as they have the maximum variance explained. The 

variance explained by every component is discussed in the results and discussion section 

separately. The datapoint represented in the lower dimension were assigned a different color 

for clarification. PCA was assessed in two different ways. First, we differentiated the data into 

a healthy and septic cohort. Then, within the septic cohort, we visualized mortality and survival 

(supplementary fig S2). 

Similarly, data was segregated based on T1 &T2 diagnosis and site of infection (supplementary 

S3-S6). Next, we used a correlation matrix to assess the relation amongst variables. The 

correlation coefficient was calculated using the Pearson’s correlation formula 

𝑟𝑥𝑦 =
𝑛 ∑ 𝑥𝑖𝑦𝑖−∑ 𝑥𝑖 ∑ 𝑦𝑖

√𝑛 ∑ 𝑥𝑖
2−(∑ 𝑥𝑖)2√𝑛 ∑ 𝑦𝑖

2−(∑ 𝑦𝑖)2 

  

rxy = Pearson r correlation coefficient between x and y 

n = number of observations 

xi = value of x (for ith observation) 

yi = value of y (for ith observation) 

The formula gives the value r between the two variables x and y where r can range from -1 to 

1. Values nearing 1 suggest a strong positive relation; similarly, values nearing -1 represent a 

robust negative relationship. The value 0 suggests no correlation between the variables. The 

correlation was visualized using the heatmap. Furthermore, we used agglomerative 

hierarchical cluster analysis, which allowed identifying patient subgroups sharing similar 

traits. Patients with similar characteristics were classified within clusters. The percentage 

difference was calculated between the 6 hr time point and 24 hr time point by the equation {(6 
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hr – 24 hr)/6 hr}. The process was repeated for all the biomarkers. The Pearson’s coefficients 

were visualized using the correlation matrix and cluster mapping. We used the Apriory 

algorithm to derive associations within the biomarkers. Apriory algorithm is based on the 

association between the two components. It is a type of association analysis that yields an 

association rule. This helps us explore the relationship within the dataset regarding the 

association between the study biomarkers. The study biomarker has been used as the presence 

of marker from the given patient’s value. This gives us the frequency occurrence of each 

biomarker. Based on this data, the association has been calculated. The association is presented 

in terms of support and lift. The support is given by 

𝑠𝑢𝑝𝑝 (𝑋) =
|{𝑋∁ 𝑇}|

|𝑇|
 

Confidence is defined as 

𝑐𝑜𝑛𝑓(𝑋 → 𝑌) =
𝑠𝑢𝑝𝑝(𝑋 ∪  𝑌)

𝑠𝑢𝑝𝑝 (𝑋)
 

Lift is defined as 

𝑙𝑖𝑓𝑡 (𝑋 → 𝑌) =
𝑠𝑢𝑝𝑝 (𝑋 ∪ 𝑌)

𝑠𝑢𝑝𝑝 (𝑋) × 𝑠𝑢𝑝𝑝 (𝑌)
 

Based on the above values, we chose support more than 50% and confidence to be more than 

80%. In other words, this means we chose the combination in which it occurs in 50% of the 

dataset, and within that, we see more than 80% occurrence.  

 The data was categorized based on the difference between T1 (6 hr) and T2 (24 hr). The 

derived association rules were tested to have minimum 0.2 support and 0.14 within the survival 

group, and their confidence was evaluated. We used network visualization to envision the 
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results from this algorithm, where each node represents the biomarker in association with the 

edge represented as the association rule. Finally, a machine learning model was built to predict 

patient mortality [169]. The input parameters for the machine learning model were taken as the 

difference between the matched patient time-points T1 (6 hr) and T2 (24 hr) along with age, 

gender, and qSOFA. The training dataset comprised 70% data, while 30% data was used for 

testing. We have used the decision tree for the classification algorithm as it has shown to be 

one of the best performing algorithms with high accuracy (supplementary S12). The decision 

tree is kept shallow to improve the accuracy of the model. If the decision tree is deep, it may 

include an outlier and try to overfit the data. Hence to avoid overfitting, the decisions tree is as 

shallow as possible. Here we tried various parameters. The depth of the decision tree should 

be comparable to the classes present in the dataset. Without tuning for the depth, the model 

gives a tree with depth 5, but a tree of depth 2 can achieve the same results. Therefore, we have 

kept the maximum depth as 2 (supplementary fig s13). 

6.4 Results 

6.4.1 Patient characteristics for sepsis evaluation 

50 patients were included from three locations (Cambodia, Ghana & the United States) for this 

work. Following adjudication, 3 (6%) patients were excluded for patient demographic 

representation as they were missing metadata. However, all the patient samples were tested, 

biomarker levels were quantified on the reference Luminex standard and DETect device and 

data analysis was included as biomarker levels were agnostic to the patient demographic 

information. Septic patients were measured across two-time points T1 and T2 (6 hr and 24 hr 

post-hospitalization) and 30 samples were collected from a healthy control totaling to 124 
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samples. The adjudicated diagnosis (fig 6.2A) and adjudicated location (fig 6.2B) indicate that 

29% of the patients with sepsis had respiratory tract infection, followed by 20% of patients 

with bacteremia as the primary adjudicated diagnosis. Visual representation of the patients 

enrolled in this study is included in supplementary fig S1 & table S1. Of the patients with 

sepsis, 26 were male and 21 were female, as shown in sup fig S1B. The average age was 47 

(18-85). Median quick sequential organ failure analysis (qSOFA) was 2 (0-3).  72% of patients 

survived, 20% died, and no data was collected for the remaining 8% of the study population at 

the end of 28 days. There was no significant difference in age (Supplementary fig S16-S22) 

and gender between the patients with sepsis and the healthy controls. 
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Figure 6.2.A) Adjudicated diagnosis for the 47 sepsis patient samples represented as a pie chart 

E) Adjudicated location at the time of patient enrollment with patient classification. 

6.4.2 Quantification of host immune response biomarkers using patient samples 

Our approach was to choose specific biomarkers that could reflect the everchanging state 

within the host immune response to gauge the nature of sepsis progression. Fig 6.3A shows 
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the pathway of an activated host immune response post local infection and how DETecT sepsis 

device can be of importance to quantify the uncontrolled cytokine release in plasma. A 

combination of pro-inflammatory and anti-inflammatory biomarkers of IL-6, IL-8 and IL-10 

were chosen to indicate the hyperimmune and immune suppression state of the patient host 

immune response. IL-6 and IL-8 have been positively correlated with the early 24 hours after 

sepsis initiation. In comparison, IL-10 levels have been shown to reflect the immune 

suppression state to suppress the hyperimmune response. The second combination of 

biomarkers consisted of pathogen-related biomarkers. Previous studies have indicated that 

significant differences in TRAIL levels from control samples have been correlated to the 

bacterial presence. 

In contrast, increased levels of IP-10 have positively correlated to the presence of viral 

infection. Therefore, the combination of TRAIL and IP-10 will indicate relevant pathogen 

information which can assist physicians in initiating pathogen-specific treatment response. The 

last combination includes well-established biomarkers of CRP and PCT, which have been 

widely accepted to indicate the presence of sepsis as an early and late-stage biomarker.  

To provide dynamic information regarding patient immune response, a panel of seven 

biomarkers was quantified using DETecT sepsis device for a total of 80 patient samples as 

seen in fig 6.3(B-H) and patient characteristics have been tabulated in Supplementary (table 

S1). There was a significant difference between the healthy control samples and the septic 

patient cohort for all seven biomarkers. All biomarkers except TRAIL showed a significant 

increase for patients with sepsis. TRIAL showed an inverse trend where septic-patient sample 

concentrations were significantly lower than the healthy control cohort. The significant 
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differences observed between healthy and septic samples indicate the chosen biomarkers' 

importance (supplementary table S2). 

Figure 6.3. A) Projected Inflammatory host immune response post-infection and effectiveness 

of DETecT sepsis device quantifying the presence of the cytokines expressed in plasma. (B-

G) Quantification of host immune biomarkers using DETecT sepsis device classifying healthy 

(n=30) vs septic patient cohort (n=124) with samples collected from healthy samples and two 

time points from septic patient cohort. Significance between the groups was calculated using 

Mann- Whitney U statistical test. Note: **p < 0.01, ***P < 0.001, ****P < 0.0001. 

6.4.3 Patient sample validation comparing DETecT sepsis device with reference standard 

LUMINEX technique for pre-clinical utility 

It is vital for the developed sensor to exhibit strong agreement with the current standard 

reference technique to be used in clinical use-case. Thus, DETecT sepsis device performance 
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was validated with clinical reference LUMINEX as a standard technique to evaluate the 

quantification of the seven biomarkers in patient plasma samples as represented in schematic 

fig 6.4A. All patient samples (including healthy controls) were tested using both methods. 

Concentrations measured by DETecT sepsis device correlated well with the LUMINEX 

standard for all seven biomarkers (Pearson’s r> 0.94), as seen in fig 6.4 (B-H). In addition, the 

concentrations were tested over a wide dynamic range for the healthy and septic patient cohorts 

to capture the diseased state and recovery state according to the physiologically relevant 

ranges. 
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Figure 6.4.A.Schematic of patient plasma samples for correlation of DETecT sepsis device 

with LUMINEX reference standard. (B-H) Patient sample validation using reference 

LUMINEX method for IL-6, IL-8, IL-10, TRAIL, IP-10, CRP and PCT correlated with 

DETecT sepsis device. 

The difference between the two methods was assessed using Bland-Altman analysis, as seen 

in Fig 6.5. Low mean bias and low variance of the mean bias for all seven biomarkers show 

the degree of closeness in measuring patient samples by both methods (fig 6.5B-H). Therefore, 

the developed sensor showed comparable results when validated against the clinical reference 

LUMINEX standard. These results provide confidence in the DETecT sepsis device. 

Additionally, to comprehend the overall device accuracy to differentiate between healthy state 
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and septic state for each test biomarker, Receiver operating Curve (ROC) analysis was used. 

Patients with confirmed sepsis were compared with healthy control subjects, and values were 

obtained using the cutoff that reflected the best discrimination as determined by the ROC 

(supplementary table S3 for cutoff values). Area under the curve (AUC) for all the seven 

biomarkers was above 0.83 (supplementary fig S25), which signifies that the chosen 

biomarkers distinguished healthy and septic cohorts with good sensitivity and specificity using 

DETecT sepsis device. CRP showed the best ability to discriminate healthy from the septic 

cohort with an AUC of 0.99. The next good analytes following CRP were PCT and IL-6 with 

an AUC of 0.97 followed by IL-8. This indicated that CRP, PCT, IL-6 and IL-8 would provide 

97-99% sensitivity & specificity for discriminating healthy and septic cohorts. Therefore, the 

clinically established biomarkers (CRP & PCT) combined with the pro-inflammatory (IL-6 

and IL-8) markers provide robust accuracy using the DETecT sepsis device. Lastly, the anti-

inflammatory biomarker IL-10 showed the least AUC of 0.83. LUMINEX did not report many 

concentrations in healthy subjects for IL-10, which resulted in a very low AUC of 0.56. On the 

contrary, the DETecT sepsis device showed quantification for all healthy subjects for IL-10 

due to its ultra-sensitive detection capability. This is an advantage with DETecT sepsis device 

as the recovery state of the patient can also be captured by tracking low concentrations in 

plasma.  
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Figure 6.5. Schematic of patient plasma samples for method comparison between DETecT 

sepsis device and LUMINEX reference standard. (B-H) Bland Altman analysis measures the 

degree of closeness across the developed DETecT sepsis device and reference standard 

LUMINEX method using patient plasma samples.  

6.4.4 Patient categorization based on the signature combination of biomarkers 

We classified the patients into three groups according to the difference between the biomarker 

concentrations. Group A (n=26) consisted of patients who recovered from sepsis and survived 

by observing a decrease in biomarker concentration between 6 hour and 24-hour time points. 

Group B (n=8) was classified with patients who recovered late and survived sepsis (despite 

biomarker concentration increase from 6 hour to 24 hour). Group C (n=10) were patients who 

died during the study based on 28-day mortality status (Supplementary fig S23). The samples 
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were grouped into non-overlapping categories. More information about categorizing can be 

found in the methods section. A distinct trend between the temporal response and the patient 

outcome was observed. Fig 6.6A shows the concentration of specific biomarkers between T1 

(6hr) and T2 (24hr) time points classified in groups A, B, and C. The concentration decreases 

significantly from T1 to T2 for IL-6, IL-8, IL-10, and PCT, indicating early recovery for 

patients in group A. This signifies IL-6, IL-8, andL-10 (Marchant et al., 199), and PCT can be 

used as early-stage biomarkers for identifying sepsis prognosis.  

Despite a significant increase in IL-10, IP-10, PCT and CRP concentration, patients clustered 

in group B survived the initial 28 days post-admission and were classified as late recovered 

patients. High levels of IL-10 concentration (mean 123±283 pg/mL) within the first 24 hours 

is known to inhibit and eventually stop inflammatory response, making it an anti-inflammatory 

cytokine [170]. This behavior is seen in patients categorized in group B who survived 28 days 

post-admission.  Biomarker concentrations did not change significantly for patients who died 

within 28 days except for IL-10 and CRP. This shows that initial two-time points (6 hr and 24 

hrs) may not be sufficient to predict the 28 days survival status based on the current grouping 

system for this study as many factors may affect the biomarker concentrations like patient 

history, antibiotic, treatments, etc. 

The difference between T1 and T2 for each group for a given biomarker is shown in fig 6.6B. 

IL-6 showed significant differences between early recovered patients (group A) compared to 

late recovered patient groups (group B), followed by significance between early recovery 

(group A) and non-survivors (group C) which demonstrates that dynamic time-based response 

can be observed to help understand changes in the host immune state. IL-10 showed significant 
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between-group differences indicating that IL-10 can respond dynamically, reflecting possible 

changes in the patient's immune state. TRAIL, IP-10, and PCT distinguished patients classified 

under group B from group C significantly, indicating the use of these biomarkers can identify 

recovered patients from non-survivors within the first 24 hours. IP-10 showed significance 

from group A to group B and group B to group C when compared individually. This highlights 

that IP-10 concentrations may change at the 24 hr time point indicated as a later stage 

biomarker. Thus, the hypothesis that PCT is an early-stage marker for the clinically established 

markers and CRP is a late-stage marker is verified. The PCT levels for group A significantly 

decreased, whereas the CRP levels for group B show significance. Both biomarkers show 

significance in patients who had a poor outcome, which signifies the importance of the early 

and stage biomarkers during disease prognosis. 

Patient history with information on underlying conditions affects the biomarker 

concentrations. Thus, categorizing the patients based on comorbid conditions may provide 

better patient-centric treatment strategies. Connecting the patient history with the biomarker 

levels could provide valuable insights into why patients are stratified into specific groups. 

Group A contained 25% of patients with respiratory tract infection and had a history of chronic 

lung disease. The adjudicated location classified as other (including bacteremia, cellulitis, or 

non-infectious) accounted for 21% of patients. Genitourinary (GU), head, eyes, ears, nose, and 

throat (HEENT), and dermatology accounted for 21% of patients in each category. 18% of 

patients from group A suffered from a gastrointestinal infection. The remaining 14% of 

patients were categorized under systemic infection. For the 8 patients classified under group 

B, 3 patients died with 1 year (within 34,44 and 150 days after initial admission). Lower 
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respiratory tract infection and dermatologic diagnosis each accounted for 38% of the patients. 

In contrast, systemic and GU each contributed to 13% of the total patients classified in group 

B. Similarly, in group C, out of all the patients who died within 28-days, 50 % had diabetes, 

and 40% suffered from hypertension. 

Biomarker levels were correlated with lab results for the septic patient group across both time 

points to determine any coherent relationship. The highest correlation of 0.98 between 

biomarkers was found between PCT (24hr) and IL-8 (24hr), CRP (6hr) and IL-8 (24hr), and 

IL-10 (6hr) with PCT (6hr). Il-6 and IL-8 correlated well with a coefficient of 0.91, while 

TRAIL and IP-10 showed a 0.85 correlation coefficient. When the biomarker levels were 

compared with lab results, TRAIL (6hr) and Chloride, PCT (24hr) and blood urea nitrogen 

(bun), TRAIL (6hr) and alanine transaminase (alt) and TRAIL (6hr) with eosinophils showed 

a correlation of 0.9. TRAIL has been implicated in the pathogenesis of metabolic disorders, 

including diabetes and hypercholesterolemia in experimental studies [171]. Additionally, a low 

number of eosinophils in blood tests can indicate blood infection (sepsis). Studies have shown 

after an episode of hypotension or shock, aspartate aminotransferase (AST) and alanine 

aminotransferase (ALT) are rapidly and significantly elevated, with AST predominating over 

ALT [172]. 
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Figure 6.6.A. Patient categorization based on the signature combination of biomarkers. Patient 

plasma samples were measured using the DETecT sepsis device at 6 hr and 24 hr with 124 

samples in total. Patients were classified into three groups; group A: recovered (n=26), group 

B: late recovery (n=8), and group C: died (n=10) B. Temporal changes were seen in septic 

patients across three groups is represented as the difference between the two time points.  Each 

box indicates the lower and upper quartile values, and the line in between represents the 

median, and the whiskers are represented as 1.5 times the value. The line at 0 indicates no 

difference between T1 (6 hr) and T2 (24 hr). Significance between the groups was calculated 

using the Two-sided Man Whitney U statistical test. 
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6.4.5 Exploratory sepsis analysis shows biomarker associations across patient cohorts 

We used PCA to visualize the 80-patient cohort using each biomarker's T1 and T2 values (fig 

6.7A). PCA analysis shows healthy control samples could be separated from the septic patient 

cohort with minimal overlap. The separation boundary between healthy and septic cohorts is 

seen in the plot, with separation occurring at x = -1. The septic subjects have more spread for 

the y-axis than the healthy subjects. The PC1 component is dominated by CRP (T2) with a 

47% contribution, followed by TRAIL (T1), CRP (T1), PCT (T1), TRAIL (T2). The PC2 

component is dominated by IL-10 (T2) with 60% weightage, followed by TRAIL (T2), IP-10 

(T2), IL-8 (T2), and PCT (T2).  Noticeably, the predominant features of PC2 are all from T2. 

The respective weightage of PC1 and PC2 components is represented in supplementary table 

S4. 



 

117 

Figure 6.7. Exploratory analysis of patient samples with sepsis. A) Principal component 

analysis representing the clear differentiation of the healthy cohort from the septic patient 

cohort. B) Correlation and cluster analysis of matched patients considering percentage change 

of each biomarker level across T1(6 hr) and T2(24 hr) with respect to T1(6 hr) considered as 

baseline. C) Cluster analysis heat map of all patients with seven biomarkers. Each column 

represents the biomarker level, and each row represents every patient sample. D) The network 

visualizes biomarkers associated with patient survival considering a change in biomarker levels 

from T1 (6 hr) to T2 (24 hr) using an Apriori algorithm. E)  Network visualized for biomarkers 

associated with deceased patient state considering a change in biomarker levels from T1(6 hr) 

to T2(24 hr) using Apriory algorithm. The size of each node represents the number of 

associations with other biomarkers. The most significant size has a maximum of 6 associations, 

whereas the smallest node size is associated with only one other biomarker. F) Machine 

learning-based survival prediction using a decision tree where matched patient sample time-

points for all seven biomarkers and age, gender, and qSOFA are considered input parameters. 

The first subgroup split is based on TRAIL, while the second level is based on PCT with 

threshold values of 17.931 pg/mL and 2390 pg/mL, respectively. Gini impurity is tending 

towards 0, indicating the purity of the node and model’s success in classifying survived patients 

from deceased with an accuracy of 92.85 %. G) Confusion matrix classifies survived from the 

deceased patient cohort with a false-positive error of 7.14 % due to the small data set. False-

negative error is absent, reducing chances of type 1 error. 
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Next, we performed survival analysis to predict the survival ratio in the patient cohort 

(supplementary fig S7). From admission, the chances of survival drop to 65% at the end of 350 

days, whereas the survival ratio is 90% until 30 days. This elucidates the 28- day mortality is 

higher for septic patient cohorts. Further, we analyzed hierarchical clustering of Pearson’s 

correlation with the two matched time-points for all seven biomarkers for all patients, as seen 

in fig 6.7B. The figure is the combination of the cluster mapping and correlation heat map. The 

cluster mapping shows the two dominant clusters. Correlation and cluster analysis of matched 

patient samples were considered as a percentage change of each biomarker level across T1 (6 

hr) and T2 (24 hr) with respect to T1 (6 hr) biomarker level as the baseline. From the correlation 

matrix, the highest Pearson coefficient of 0.95 was between IL-8 and PCT followed by IL-6 

and IL-8 (0.81) and PCT and IL-6 (0.71). These pairs of biomarkers show a similar trend, 

followed by IL-10 and TRAIL, which show a correlation of 0.54. Refer to supplementary fig 

S8-S11 for individual correlation and cluster analysis of matched patients for two-time points.  

Similarly, fig 6.7C is a cluster heat map with patient ID as rows and biomarkers represented 

as columns. The first cluster was formed between IL-8 and PCT, followed by IL-10 and 

TRAIL. These subgroups intern correlated with IL-6 and IP-10, respectively. The second 

subgroup formed a cluster with CRP and finally joined the first subgroup of IL-6. 

The network of biomarkers associated with the survived state (fig 6D) and deceased state (fig 

6.7E), using the change in biomarker levels from 6 hr to 24 hr (as seen in fig 5B) were created 

using the Apriory algorithm (supplementary fig S14 & S15 for network analysis based on 

threshold analysis). The size of each node represents the number of associations with other 

biomarkers. The most significant node size has a maximum of six associations. In contrast, the 



 

119 

smallest node size is associated with only one other biomarker. As seen in fig 6.7D, IL-10 

associates with six biomarkers for the survived patient cohort, followed by IP-10 with four and 

PCT with three. IL-10 showed dominance with five associations in the deceased state, followed 

by IL-6 and PCT with four each. The different levels of associations within 6 to 24 hours of 

admission in varying conditions can be helpful in patient endotyping and risk stratification 

through rapid screening using the DETecT sepsis device for improved patient outcomes. In 

addition, these biomarker associations can help direct the clinician on the type of medication 

to improve patient survival by understanding immune response at a particular time within 

sepsis pathophysiology. 

Additionally, a machine learning-based decision tree algorithm was utilized to classify healthy 

and septic patient cohorts accurately, where matched patient sample time-points for all seven 

biomarkers and age, gender, and qSOFA were considered input parameters. We integrated the 

patient sample data using a machine learning algorithm and selected a decision tree as the best 

fit for other algorithms (supplementary fig S3). The difference between the two time points for 

all the biomarkers was given as input. Based on the time difference, the decision tree algorithm 

classifies TRAIL as the first sub-group with a 17.931 pg/mL threshold followed by PCT with 

a 2390 pg/mL threshold. Gini impurity was seen to be tending towards 0, indicating the purity 

of the node and model’s success in classifying survived patients from deceased with an 

accuracy of 92.85 %. 

Furthermore, fig 6.7G illustrates the confusion matrix, which classifies patients who survived 

from the deceased patient cohort with a false positive error of 7.14 % due to a small data set. 

A false-negative error was absent, reducing the chances of type 1 error. With this study, we 
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leveraged the combinatorial power of rapidly measuring a panel of seven biomarkers and 

combined it with machine learning model to accurately predict the patient outcome when 

presented with two-time points in the earlier stages of sepsis. This elucidates the capability of 

DETecT sepsis platform to be used as a holistic enabling technology useful for patient 

endotyping and risk stratification, providing valuable insights for physicians while treating 

patients with sepsis. 

6.5 Discussion 

Herein, we present the validation of the developed DETecT sepsis device as an enabling 

technology to visualize patient sepsis outcomes. We stratified patient samples at 2 matched 

time points and 30 healthy donor samples by measuring a panel of 7 host immune response 

biomarkers on a single platform. Our approach aimed to efficiently characterize patient 

samples as in an analytical, empirical longitudinal system for clinicians. The DETecT sepsis 

device was able to quantify 7 biomarkers simultaneously using as little as 40 µL of the patient 

sample, which provided results in less than 5 mins. The developed DETecT sepsis device can 

be imagined as an enabling technology capable of stratifying patients based on the temporal 

immune response. 

Furthermore, the device may provide a means to quantify the biomarker levels and gauge if 

the patient is recovering based on active feedback at the patient's bedside. This could facilitate 

quicker response time for clinicians to administer specific drugs during a state of infection. 

The developed sensor outperforms the comparable clinical analyzers that require many 

additional steps for assay preparations and has a longer turnaround time for results to be 

reported. In conclusion, we demonstrated the value of combining cytokines, chemokines, and 
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protein host immune response biomarkers using small sample volume (<40 uL) and rapid 

response time (~5 mins) at the patient bedside to enable technology to monitor sepsis. 

Analytical understanding and a machine learning approach help provide meaningful 

information on configuring treatment strategies for personalized medicine for patients 

diagnosed with sepsis. 

6.5.1 Limitation of the study 

At first, although we have assessed seven biomarkers in various combinations, prospective 

validation would be further required. Second, a comparatively limited number of patients were 

involved in this study. Therefore, additional research is required to explain the role of the 

cytokine network in sepsis pathogenesis. Furthermore, since the septic patient samples were 

collected from three different locations, there could be a difference in how the samples were 

collected based on varying timelines.  Furthermore, control samples were collected from 

healthy individuals from one location. Additional work will be required to determine how these 

values compare to patients hospitalized for reasons other than sepsis.  

Future work will include building on this framework presented here using the DETecT sepsis 

device technology and validating with expanded sample sets representing a geographically, 

ethnically, and etiologically diverse set of host responses to infections. Failure to develop 

effective therapeutics and limitations of diagnostic tests in sepsis is often attributed to the 

heterogeneity inherent to the disease [173]. Therefore, we see the value of the DETecT sepsis 

platform in enabling personalized, rapid, and precise on-demand patient assessment. We hope 

that our research will serve as a basis for future studies on patient endotypying relying on the 

classification of selected biomarkers, including larger patient cohorts across multiple locations. 
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Although blood culture remains the gold standard for initial sepsis identification, rapid bedside 

POC testing will allow physicians to administer personalized patient treatment relying on 

individual host immune responses. DETecT sensor is an enabling technology that provides two 

diagnostic advantages over the current lab methods (i) it quantifies a panel of 7 pro and anti-

inflammatory biomarkers that provide information on activation or downregulation of host 

immune response indicating the phase of sepsis (ii) Active patient immune feedback on status 

can help alter treatment strategies where immunomodulators or suppressants can be 

administered towards personalized medicine. Sepsis management would become more 

effective by monitoring patients' dynamic host immune response with multiple time-course 

analyses due to the proposed device's low sample volume (<40 uL). Utilizing the DETecT 

sepsis device with minimal sample handling also facilitates its usability in a low resource-

challenging environment with reliable results. This enabling technology promises to be 

paradigm-shifting in achieving sepsis endotyoing by leveraging the plethora of biomarker 

information in easily accessible patient body fluid samples. 

within the “golden hour” and initiate required treatment thus, avoiding the dynamic sequence 

of irreversible organ failure and subsequent death caused due to delayed response time. Finally, 

small form factor and ease in handling allow flexibility in using the device in a versatile 

environment (in an emergency department, or for bed-side monitoring) while ultra-low sample 

volume (< 40 µL) encourages physicians to collect multiple measurements within a day to 

monitor patients host immune response and assess the severity of sepsis. The study was limited 

to a small sample size of septic patients. However, these observations have several implications 

for research to integrate different host immune response biomarkers with self-integrated POC 
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devices for a better patient outcome. We are currently in the process of expanding our 

multiplexed capabilities and investigating sepsis pathophysiology via a larger patient cohort. 

In conclusion, this work has pioneered a potential solution to the current sepsis dilemma, by 

providing host response strategy to address complexity, shifting the paradigm of the on-going 

sepsis diagnostic approach.  
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CHAPTER 7 

VALIDATION OF DETECT SEPSIS 2.0 DEVICE IN DIRECT WHOLE BLOOD  

PATIENT SAMPLES 

 

 

7.1 Prior publication 

AmbalikaS.Tanak performed the experiments, designed the experimental protocol, analyzed 

the data, and wrote the manuscript. Ambalika S. Tanak, Dr. Shalini Prasad and Dr. Sriram 

Muthukumar provided feedback on data interpretation. Abha Sardesai provided data on 

machine learning models.  

This manuscript will be submitted to Bioengineering and Translational medicine journal in 

November 2021. The paper discusses the simultaneous detection of eight sepsis biomarkers 

directly in patient whole blood and identify relationship between multiple biomarkers groups.  

7.2  Abstract 

Sepsis is a silent killer, caused by syndromic reaction of the body’s immune system to an 

infection that is typically the ultimate pathway to mortality due to numerous infectious 

diseases, including COVID-19 across the world. In United states alone, sepsis claims 220,000 

lives, with a dangerously high fatality rate between 25-50%. Early detection and treatment can 

avert 80% sepsis mortality which is currently unavailable in most healthcare institutions. The 

novelty in this work is the ability to simultaneously detect eight (IL-6, IL-8, IL-10, IP-10, 

TRAIL, d-dimer, CRP, and G-CSF) heterogeneous immune response biomarkers directly in 

WB without the need for dilution or sample processing. The DETecT Sepsis (Direct 

Electrochemical Technique Targeting Sepsis) 2.0 sensor device leverages EIS as a technique 
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to detect subtle binding interactions at the metal/semi-conductor sensor interface and reports 

results within 5 minutes using only two drops (~100 uL) of blood. The device positively 

(r>0.87) correlated with lab reference standard LUMINEX for clinical translation using 40 

patient samples. The developed device showed diagnostic accuracy greater than 80% (AUC> 

0.8) establishing excellent specific and sensitive response. Portable handheld user friendly 

feature coupled with precise quantification of immune biomarkers makes the device amenable 

in a versatile setting providing insights on patient’s immune response. This work highlights an 

innovative solution of enhancing sepsis care and management in the absence of a decision 

support device in the continuum of sepsis care. 

7.3 Introduction 

Sepsis and sepsis-related complications like multi-organ failure is indeed a substantial 

challenge on the healthcare systems and a major research concern for scientist around the 

world. Sepsis pathogenesis still remains unclear, despite significant fundamental research and 

clinical trials [174]. Sepsis is increasingly being recognized as incredibly diverse disease 

resulting from abnormalities within the inflammatory pathways.  In the intensive care unit 

(ICU), sepsis is one of the most prevalent causes of mortality and in the United States alone, 

sepsis is responsible for up to half of all in-hospital fatalities. The global incidence of hospital-

related sepsis in adults is estimated to be over 270 per 100,000, with an astonishing 26% overall 

death rate. There are 19.4 million cases and 5.3 million fatalities worldwide each year, 

excluding sepsis incidence amongst children and that which occur outside the hospital [175]. 

In the presence of an infection through pathogen, sepsis is developed as a systemic 

complication of the host immune system [176]. The pathogenic invader is the catalyst, while 
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the overzealous immune response of the host is to blame for the extensive organ damage that 

is a hallmark of the disease. The identification of several key biomarkers enable improved risk 

stratification and treatment decision making has stemmed from better understanding of the 

inflammatory events that contribute to host tissue damage in sepsis. There is substantial 

evidence that monitoring key biomarkers in the hyperinflammatory cytokine storm and acute 

phase response provide valuable diagnostic and prognostic indication of disease progression4. 

Interestingly, critically ill COVID-19 patients are known to have sepsis, often accompanied by 

infection and organ failure with elevated concentrations of cytokines ultimately leading to 

tissue damage, need for mechanical ventilator, and eventually death [177] . Cytokines are 

substances released by innate and adaptive immune system components that serve as signaling 

pathways or activators of the inflammatory response, which play a pivotal role in the 

development of sepsis [178]. 

Comprehensive mapping of the biomolecular milieu at a particular time point, is required for 

the development of viable treatment approaches. Previous research has identified a connection 

between blood levels of various cytokines, the severity of inflammatory response, and sepsis 

prognosis [141], [179]–[181]. The present workflow in a clinical setting follows a systemic 

process depending on the technology and manpower available to diagnose patients with sepsis. 

If a patient remotely exhibits early indications of sepsis (i.e SIRS criteria) antibiotics are 

immediately administered to target a variety of infectious sources before a disease is diagnosed 

[182]–[184]. Although this may enhance patient survival, such antibiotic regimens are futile 

and lead to antibiotic resistance [185], [186]. Parallelly, large volume of blood samples is 

collected in order to identify the causative pathogens and fine-tune the antibiotic prescription 
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for the patient. A bacterial culture, gram staining, and drug resistance test are amongst the few 

clinical tests used to verify whether the particular treatment successfully limits pathogen 

proliferation. The major disadvantage with these methods is that results arrive days after the 

patient is hospitalized, which may lead to missing out on a valuable timeframe for accurate 

medical diagnosis and planning effective interventions. The remaining techniques for 

quantifying sepsis-related biomarkers, such as flow cytometry and lactate tests, have a 

tendency of providing inadequate diagnosis in most scenarios because they often require large 

sample volume, have constrained detection ranges, are difficult to discern results, which only 

delays prognosis from trained clinicians, limiting their usage in resource-constrained 

environments across the world um[187]–[190]. Although some of the commercial POC sepsis 

technologies have managed to improve their reliability and efficiency in clinical tests, none of 

them have multiplexing capabilities any further than their focused primary biomarkers class, 

limiting their ability to obtain an extensive sepsis immunological patient profile.  

A solution to this everlasting problem is the development of POC biosensing device with a 

capability to overcome all the underlying issues with the existing testing methodologies. To 

this direction, we have developed a multiplexed panel of simultaneously detecting eight crucial 

biomarkers by using merely two drops (~100 uL) of undiluted WB to rapid assess the patient 

immune response and project the possibility of patient undergoing sepsis, rapidly with a sample 

to result turnaround time of 5 minutes. The effort to bring results closer to patient bedside is 

propelled by designing miniaturized portable hardware coupled with sensitive EIS technique 

to assist clinicians to monitor disease progression and provide guided treatment. Our vision is 

to develop a sensing device that can appease the ASSURED (Affordable, Sensitive, Specific, 
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user-friendly, Rapid and Robust, Equipment free and Deliverable to end users) criteria set out 

by the World health Organization which could also be useful anywhere [191], [192]. The 

developed device is specially designed to be effective in resource-replete conditions where the 

objective is to attain quick test results, with minimal sample handling, along with a projection 

of disease severity with the help of machine learning model to aid in planning of an emergency 

intervention. 

7.4 Methods 

7.4.1 Experimental design of the study 

This work is designed to validate the performance of the developed DeTecT sepsis 2.0 device 

for simultaneous detection of valuable sepsis biomarkers directly in WB. For this, the sensor 

was designed to perform multiplexed detection with good sensitivity and specificity. To 

validate the efficacy of the sensor against WB samples, 30 WB patient samples were procured 

from Discovery life science (Atlanta), that were declared positive for sepsis using reference 

laboratory standard technique. Parallelly, 10 healthy WB samples were procured from Carter 

blood bank (Texas) as positive control samples. Multiplexed biomarkers used for this work 

was IL-6, IL-8, IL-10, IP-10, TRAIL, Granulocyte-colony stimulating factor (G-csf), D-dimer, 

CRP. All the antigens and antibodies were purchased from Abcam. All the stock proteins were 

aliquoted and stored in -20°C until further use. To prevent denaturing the proteins, none of the 

proteins underwent more than 3 freeze-thaw cycles. Antibodies were diluted in PBS to get 

them to their optimized concentrations before use. 
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7.4.2 DETecT (Direct Electrochemical Technique Targeting Sepsis) 2.0 sensor uses 

EnLiSense’s Rapid Electro Analytical Device (READ) preparation 

The DeTecT sepsis 2.0 device consists of a uniquely designed sensor with sixteen independent 

electrodes on a single PCB platform. The gold deposited electrodes are equally spaced on the 

PCB surface to provide uniform fluid flow. All the sixteen working electrodes is deposited 

with a thin layer of zinc oxide (ZnO) uniformly to attain high sensitivity. The deposited sensor 

is then mounted on a handheld reader device which encompasses the portable electronics with 

EIS module for the signal detection. The reader is compatible to support both wired and 

wireless communication. The detection mechanism is based on EIS framework where subtle 

changes that occur at the electrode solution interface can be detected on applying a small input 

voltage over a frequency spectrum. The sensor requires sample of approximately 100 uL which 

is equivalent to two drops of blood. The detection occurs immediately, and results can be read 

within 5 minutes. Shorter measurement times ensures the blood does not clot and measurement 

is taken promptly. Assay development, sensor characterization and validation were performed 

using similar protocols followed in our previous work[117]. Machine learning algorithms were 

implemented to visualize and predict the healthy and septic patient groups using supervised 

and unsupervised algorithms. 

7.4.3 Statistical analysis 

Graphpad software was used to perform statistical analysis (GraphPad Software Inc., La Jolla, 

CA). *P 0.05, **P 0.01, ***P 0.001, ****P 0.0001. ns: non-significant, *P 0.05, **P 0.01, 

***P 0.001, ****P 0.0001. Unless otherwise noted, data is provided as mean SEM for n = 3 
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replicates. For comparisons between three or more groups, one-way analysis of variance 

(ANOVA) was performed. In the cross-reactive investigation, the T-test was utilized to 

examine the importance of particular signals vs non-specific interferons. Non-parametric 

unpaired Mann-Whitney tests were used to compare the healthy and septic cohorts. Biomarkers 

were compared using two methodologies, and the difference between them was determined 

using Bland-Altman analysis. Wilson/Brown method using GraphPad Prism was used to assess 

DETecT sepsis 2.0 device specificity and sensitivity to identify healthy from septic patient 

group using receiver operating parameters. Along with many additional input criteria, principal 

component analysis (PCA) was utilized to visually evaluate if a healthy cohort could be 

distinguished from septic patients. 

7.5 Results 

7.5.1 Spike and recovery 

The blood panel with eight biomarkers each have individual standard curves containing wide 

dynamic range to cover healthy and sick individuals with varying dose concentrations. Efficacy 

of the DETecT Sepsis 2.0 device was done by spiking a known concentration to the blood 

matrix and measuring the concentration using the calibrated curve for each biomarker (figure 

7.1, A-H). The recovery of the spiked sample was determined by comparing it to calibrated 

dose response curve for individual biomarkers. Mean recovery concentration for the blood 

panel biomarkers was 105±6 % which lies within the accepted assay range according to the 

CLSI standards [78]. When compared individually, the coefficient of determination, R2 >0.97 

implies the assay for the sensor device is linear with negligible matrix effect. 
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Figure 7.1. (A-H) Spike and recovery in WB sample using n=3 sensors to demonstrate assay 

linearity using DETecT Sepsis 2.0 device for IL-6, IL-8, IL-10, IP-10, TRAIL, G-CSF, d-dimer 

and CRP with R2>0.97. 

7.5.2 Specificity 

Analytical specificity and selectivity of the DETecT Sepsis 2.0 device was evaluated by cross 

reactivity study using bovine serum albumin (BSA) in WB buffer matrix. Every analyte was 

tested with low concentration of BSA followed by high concertation of BSA depending on the 

target analyte’s dynamic range. This was followed by adding low concertation of target 

specific analyte and signal response was measured. Percent reactivity was calculated 

depending on the signal response for individual target analytes. As seen in figure 7.2 (A-H), 

DETecT Sepsis 2.0 device was able to distinguish the specific target signal with ~100% 

reactivity and non-specific signal accounted less than ~10% reactivity. When evaluating actual 

clinical samples, where the concentration of the actual analyte might be significantly lower 

than those of the non-specific molecule, the biosensor’s selectivity is essential. Overall 

reactivity less than 10% for the non-specific BSA molecule indicates that DETecT Sepsis 2.0 
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device selectively binds to the target analyte with minimal interference from the non-specific 

molecules present in WB samples. 

Figure 7.2.(A-H) The specificity of DETecT Sepsis 2.0 device for each of the target biomarker 

was evaluated using cross reactivity study.CR high: high concentration of BSA. CR Low: low 

concentration of BSA. All the analytes are spiked in WB buffer matrix. 

7.5.3 Clinical validation of DETecT Sepsis 2.0 device with reference standard LUMINEX 

using whole blood patient samples 

It is crucial to understand and validate the performance of the developed sensor platform with 

an existing reference method and measure the accuracy of the sensor. For clinical validation, 

40 patient blood samples were measured using the DETecT Sepsis 2.0 device and reference 

LUMINEX standard method (Figure 7.3 A-H).  
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Figure 7.3.(A-H) Clinical validation of blood panel using DETecT Sepsis 2.0 device. The 

DETecT Sepsis 2.0 device was validated using standard LUMINEX as a reference method 

against n=40 patient samples in whole blood matrix. All biomarkers showed positive 

correlation with coefficient of determination (R2>0.87). 

The concentrations measured by both methods correlated positively with coefficient of 

determination (R2>0.97) for IL-6, IL-10, IP-10, TRAIL, G-CSF, and d-dimer. Whereas IL-8 

and CRP correlated well with an R2> 0.87. Additionally, the wide dynamic range ensure to 

capture both healthy and the diseased state of the patient which can be useful as a monitoring 

device. To evaluate the pre-clinical utility of the developed sensor platform, it is essential for 

the sensors performance to be in agreement with current lab standards. Hence, we compared 

the performance of DETecT Sepsis 2.0 device with LUMINEX using Bland-Altman analysis 

as seen in figure 7.4 (A-H). The difference between each pair is plotted on the y axis while the 

average of each pair of measurement is plotted on the x axis. Low mean bias between the two 

methods shows good degree of agreement between Luminex reference standard and DETecT 

Sepsis 2.0 device. Individual mean bias values can be found in supplementary information. 

Since all the points except few lies well within the limit of agreement (±1.96 SD), the two 

methods are in agreement. The dispersion of the points is minimally observed, and the points 
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are reasonably near the mean bias line. Mean bias and the limit of agreement provide 

information on the usability of the new measuring method as a quantifiable measure. The data 

measured across the blood panel biomarkers show equal distribution across the mean bias in 

both positive and negative direction. This indicates not one method overpredicts or 

underpredicts the concentration values.  

Figure 7.4.(A-H) Bland Altman analysis comparing the developed device and reference 

Luminex standard using n=40 patient blood samples. 

Sepsis being a complicated disease with dysregulated immune response, measuring it with a 

single biomarker may not be informative. To know how sepsis affects the patient’s immune 

response, it is necessary to look at different group of biomarkers that can provide valuable 

insights. Therefore, we focused on cytokines, chemokines, and infectious biomarkers 

simultaneously to gauge the active patient state. Quantification of IL-6, IL-8, IL-10, IP-10, 

TRAIL, G-CSF, d-dimer, and CRP was done using DETecT Sepsis 2.0 device with 10 healthy 

WB control samples and 30 septic WB patient samples (Figure 7.5 A-H). 100 uL of patient 

WB samples was directly added to the DETecT Sepsis 2.0 device without dilution or additional 

sample preparation. Mean blood concentration for IL-6 was 0.7 ±0.37 pg/mL and that of septic 
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cohort was 214±297 pg/mL. IL-8 showed mean concentration of 135±55 pg/mL for healthy 

and 706±401 pg/mL for septic patients. Healthy WB concentration for IL-10 and IP-10 were 

9±5.37 pg/mL and 15±5.8 pg/mL, whereas septic IL-10 and IP-10 blood concentration were 

34±54 pg/mL 102±144 pg/mL respectively. Similarly, G-CSF mean healthy concentration was 

97±125 pg/mL and patients with sepsis had blood concentration of 320±264 pg/mL. D-dimer 

and CRP significantly classified healthy from septic cohort with mean healthy blood 

concentration of 551±556 pg/mL and 818±758 pg/mL while septic blood concentration from 

3636±1818ng/mL 15481±6122 ng/mL respectively, with no overlapping interquartile ranges. 

The multiplexed panel of eight biomarkers showed statistical significance between healthy 

controls against septic patient cohort, with TRAIL as an exception. TRAIL has a negative trend 

where healthy cohort shows higher mean concentration of 42 pg/mL and the septic cohort 

shows slightly lower mean concentration of 37 pg/mL. TRAIL is a potent inducer of cell death. 

Lower levels of TRAIL have been associated with increased possibility of organ dysfunction, 

septic shock and higher rate of in-hospital mortality [135], [193]. Although plasma levels of 

TRAIL septic samples showed the capability to distinguish healthy from the diseased patient 

group [194], there are many factors associated with poor significance in WB samples. 
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Figure 7.5.(A-H) Classification of infectious cytokine panel using n=40 patient blood samples 

into healthy and septic patient cohort for IL-6, IL-8, IL-10, IP-10, TRAIL, G-CSF, d-dimer, 

and CRP. Statistical analysis was performed using Mann-Whitney U test to determine the 

significance between healthy and septic patient cohort. Note: ns: no significance, **p < 0.01, 

***P < 0.001, ****P < 0.0001. 

7.5.4 Diagnostic Accuracy of DETecT Sepsis 2.0 device 

The utility of DETecT Sepsis 2.0 device in a clinical setting was tested using receiver operating 

curve. It is essential for the device to identify specificity and sensitivity of the device to 

minimize false positive results. Area under the curve (AUC) helps to evaluate the diagnostic 

performance of the test device. The ability of the device to identify patients with sepsis 

positively is termed as device sensitivity. On the contrary, in AUC, specificity is defined as the 

device capability to identify non-septic patients as negative. As seen in figure 7.6, IL-6 and 

CRP had the highest discriminative value with an AUC of 1 (95% Confidence interval of 1 to 

1) followed by IL- 8 and d-dimer with an AUC of 0.98 (CI 0.93 to 1). IL-6 had a sensitivity of 
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100%, and a specificity of 80% with a cut off 0.97 pg/mL was used to differentiate healthy 

from the septic patient cohort. CRP at a cut off value of 1882 ng/mL had a sensitivity of 100% 

and specificity of 90%. For IL-8 had sensitivity of 96% at a cut off value set as 161.6 pg/mL 

and specificity of 80% to distinguish healthy from septic cohort. With a cut off at 872 ng/mL, 

d-dimer showed a 96% sensitivity and 90% specificity. IP-10 and G-CSF showed moderate 

discriminative value with an AUC of 0.87 (CI: 0.76 to 0.98) and 0.82 (CI:0.65 to 0.99) 

respectively. IP-10 had 90% sensitivity and 70% specificity at a cut off at 16.26 pg/mL 

followed by 93% sensitivity and 60% specificity at cut off value of 46.43 pg/mL for G-CSF. 

Overall, the AUC for the blood panel biomarkers was above 0.90 for IL-6, IL-8, d-dimer and 

CRP which can be used as reliable biomarkers o differentiate healthy from the septic patient 

cohort. 
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Figure 7.6.(A-H) Receiver operating characteristic curve for blood panel biomarkers using 

DETecT Sepsis 2.0 device. Areas under the curve for individual biomarker is labelled at the 

bottom right of each graph. 

Understanding how the effect of combined biomarkers have on the ability to distinguish 

healthy from the septic patient group, principal component analysis was performed. All eight 

biomarkers were added as input to simply the results and narrow down he results. The summary 

plot selected 3 major components PCA1, PCA2 and PCA3 accounting for 29.23, 22.26 and 

16.99% of the sample variability respectively. The biomarkers that are responsible to 

distinguish healthy from septic cohort comprise of PCA1, PCA2, PCA3, PCA4, PCA5 and 

PCA6 with the cumulative proportion of variance of 94% according of the scree plot 

(supplementary). Thus, the scree plot suggests, 6 components out of the 8 are sufficient to 

provide meaningful insight on the patient status. The loading plot for this data seen in 

supplementary shows that IL-6, IL-10, and CRP are positively correlated as they are clustered 

together. Whereas G-CSF, IL-8 and d-dimer form another cluster and are well correlated with 
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each other.  Third cluster formed is between TRAIL and IP-10 showing a correlation of 0.8. 

As seen in figure 7.7A, for the blood cytokine biomarkers, were able to distinguish healthy 

control subjects from the septic patient cohort. Heat map analysis shows that healthy and septic 

profile is separated with top one-fourth section with very low values represented in blue with 

values towards lower end of the colored scale bar. All the patients with sepsis showed very 

high CRP levels followed by d-dimer, G-csf and IL-8. Heat map correlation between patients 

was analyzed to visualize patterns within the different biomarkers as seen in figure 8B. Data 

suggests that patients with high IP-10 levels also had high TRAIL blood concentration. Next, 

we evaluated the degree to which certain pair of biomarkers correlated using pearson’s 

correlation matrix, seen in figure 7.7C. TRAIL and IP-10 showed the highest correlation of 

0.81 followed by d-dimer and IL-8 with a coefficient of 0.5. D-dimer levels have been known 

to be associated with the activation of pro-inflammatory cytokine cascade. The paucity of 

correlation of d-dimer with anti-inflammatory cytokine IL-10 implies that existence of d-dimer 

may represent an imbalance between pro-inflammatory and anti-inflammatory cytokines 

[195].  

On acquiring results from the multiplexed cytokines panel from healthy and septic patients 

using DeTecT sepsis 2.0 device, we implemented the use of machine learning model to predict 

the outcomes. Confusion matrix represented in figure 7.7D represents the actual and predicted 

state using logistic regression algorithm. The machine learning algorithm used here is the 

supervised version. We have used basic logistic regression algorithm to stratify the patient 

from healthy and septic state. The logistic regression is common classification algorithm for 

two-class stratification. Since the objective here is to provide decision support for clinicians in 
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determine the probability of patient being healthy or septic it provides valuable input. We 

observed the accuracy of logistic regression to be 0.923% sufficient to be confidant about the 

implementation of the algorithm while allowing room for generalization. The true positive here 

are of 69.23% and true negative are of about 23.08%. Total false positive which is type I error 

is found to be 7.69% and none false negative are observed on test dataset. This builds the 

confidence on the algorithm that no positive case would be unnoticed. Furthermore, 

supplementary table S1 shows another metrics about the classification algorithm. In case of 

class imbalance, it would be more robust. The f-1 score gives the overall weighted score for 

the algorithm and in this case, it is same as accuracy 0.92. The precision for healthy group was 

found to be 0.75 and 1.00 for septic. The individual f-1 score for healthy group is 0.86 and 0.95 

for the septic one. This shows algorithm is able to classify the data correctly. 
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Figure 7.7. A) Principal component analysis representing the healthy and septic classification 

by adding IL-6, IL-8, IL-10, IP-10, TRAIL, G-CSF, d-dimer, and CRP as input variables. B) 

Heat map plotted to evaluate the correlation between patient data across multiplexed blood 

biomarker panel. C) Correlation analysis between blood panel biomarkers. D) Confusion 

matrix showing accuracy of logistic regression machine learning model. 

7.6 Discussion 

Sepsis is a complicated disease to tackle. With such complicated pathophysiology, differing 

from individuals based on their immune response, it can be burdensome to track the disease 

progression. From previous research on the vast availability of biomarkers, certain biomarkers 



 

142 

provide good understanding of how the patients’ immune response is changing. Unfortunately 

relying on single biomarker for such a complex disease can be of very little use. Therefore, in 

this study we combined key biomarkers that provide a snapshot of patient’s immune response. 

Timing of cytokine release is attributed to disease severity. Proinflammatory immune 

biomarkers such as IL-6, IL-8 and IL-10 highlight the patient status at the beginning of sepsis.  

The importance of proinflammatory and anti-inflammatory cytokine biomarkers has been 

developed and used for sepsis diagnosis as the paradigm of sepsis pathogenesis has evolved 

through time with many medical treatments. In patients with severe sepsis, cytokine profiling 

could be a useful strategy for recognizing various immune response patterns, expressing the 

diversity of patient groups with identical biological deregulation. This works reflects a 

multiplexed cytokine analysis in WB samples using DeTecT 2.0 device to be able to identify 

patients with sepsis and the utility of biomarker associations with disease severity. The results 

in our work confirm that IL-6, IL-8, d-dimer and CRP are primarily the best indicators of 

identifying patients with sepsis. 

The vast heterogeneity in the immune response of septic patients has made the development of 

efficient immunotherapies and prediction of infection outcomes that leads to organ failure or 

death maybe the major cause of lack of progress. Therefore, detection of multiplexed 

biomarkers has the potential to improve diagnostic efficacy. Furthermore, one of the biggest 

technological gaps is the availability of rapid detection of these biomarkers at patient bedside. 

When a patient suspected with sepsis arrives in the hospital, time is of essences to treat the 

patient with the right approach. A study reveals early goal-oriented therapy reduced in-hospital 

mortality as compared to conventional care (30 to 46 %) [196]. Additionally, in septic shock, 
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starting antibiotics within one hour improves survival, where every hour antibiotics are delayed 

reduces survival by 8%. Choosing the right set of biomarkers may provide valuable insight on 

understanding the pathophysiology of sepsis in each patient. Cytokines are known to be the 

first biomarkers to respond to inflammation.  [197]. This is also reflected by the results where 

IL-6 and IL-8 have shown significant difference between healthy and septic patient cohort, 

seen in figure 7.5.  

It is observed that 20-25% patients with sepsis have disseminated intravascular coagulation 

(DIC) which may lead to organ failure, thereby significantly increasing the risk of mortality 

[198]. The activation of a coagulation deluge is a typical and early occurrence in septic patients 

with infection, and several molecules involved in this process are also key inflammatory 

response amplifies. Fibrinolysis is activated by d-dimer which causes coagulation. Role of d-

dimer is significant in identifying the severity of immune response, as d-dimer signifies the 

level of blood coagulation which in turn can reflect severity in host immune response, leading 

to organ failure [199]. This work showed results in line to the results shown with the previous 

study of d-dimer in sepsis. A higher mortality rate and hospitalization was found to be 

correlated with patients with higher d-dimer levels8. Level of D-dimer in our septic patient 

cohort was nearly 10 times higher than of healthy patient group [181], [182] and correlated 

moderately with CRP, thus becoming a potential biomarker for identifying infected individuals 

with high risk of mortality in a simple and quick manner. The levels of CRP have known to be 

markers of sepsis. CRP levels increase within the first 6 hours of the infection. Although it is 

a generic biomarker for inflammation, the incidence in that of sepsis is much higher [200]. 

CRP is also used as a standard for measuring sepsis as part of clinical standard, or blood 
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culture. CRP is also a marker used to test for adverse outcomes with COVID-19 [183]. The 

concertation difference between healthy and septic patient cohort is almost 200 times, which 

indicates characteristic response to the infection. Several studies have shown that increased 

CRP concentration especially in patients in ICU have increased risk of organ failure and higher 

chances of mortality[184], [185]. IL-6 is an essential cytokine which is a key activator for acute 

phase response, particularly, triggering the production of CRP, a well-known proinflammatory 

marker for atherothrombotic vascular disease14. Tracking IL-6 in connection with CRP have 

shown to have prognostic value for early detection of sepsis [201]. The threshold value of IL-

6 and CRP was 1.6 pg/mL and 2619 ng/mL which was in line with previous studies [123], 

[202]. IL-6 is also a known to be one of the first mediators to provocate the cytokine storm in 

patients with sepsis and COVID-19 [203]. Therefore, monitoring the levels of IL-6 along with 

other proinflammatory markers provides evidence of the how the patient’s immune response 

is reacting during the infection. Diagnostic accuracy of a single marker in a complex disease 

like sepsis is difficult to predict the dynamic state of the patient [204]. There is a novel 

combination of biomarker that showcase various immune response phases within the patient 

provides valuable information to the clinicians to make crucial decisions on therapeutics.  For 

instance, if the presenting patient shows higher proinflammatory levels of biomarkers, the 

clinician can provide immunosuppressants to dial down the immune response, and avoid the 

catastrophic event of a cytokine storm, which could lead to uncontrollable side effects like 

multiple organ failure, or even death. Herein IL-10 plays a crucial role to determine the state 

of immune response. IL-10 is known to act as a double-edged sword during infection as it acts 

based on the body’s feedback. For instance, if the patient is in the state of hyper immune state, 
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IL-10 is triggered as an anti-inflammatory signal to lower the over responsive effects of the 

inflammatory response. Whereas, if the body is in the state of immunosuppression, IL-10 

triggers the necessary biomarkers to activate the pro-inflammatory response, to curb the 

infection in the body during infection. The right role of IL-10 is unknow during sepsis, but as 

it has a dual nature, the diagnostic accuracy can be affected. Therefore, it is necessary to club 

IL-10 along with other proinflammatory markers to completely understand the nature of the 

individual biomarker. Overproduction of IL-10 have been associated with severe outcome and 

mortality [187]. IL-10 suppresses the activity of proinflammatory cytokines and chemokines 

including IL-6, IL-8, IP-10 and G-csf [188]. Its major role is to limit damage to the host. But 

in doing so, it also grants free pass to the pathogen to multiple or sustain within the host, 

thereby harming the host eventually. Therefore, if IL-10 is expressed at an inopportune time, 

such as too early during virulent infection, or too late during avirulent infection, it can cause 

overwhelming infection or severe tissue damage [189]. This work is in line with the research 

done previously where 75% IL-10 production is at 34 pg/mL all the way upto 272 pg/mL in 

septic patient cohort [190]. Progression of TRAIL and IP-10 has been researched over different 

patient groups and have said to be distinguishing factors for bacterial and viral sepsis. 

Especially, lower levels of TRAIL show more severe outcomes. 

Detection of biomarkers in WB is a completely different arena compared to regular standard 

diagnostics. There are a few advantages of exploring blood as a biofluid for ease in detection. 

This work focuses on the potential of using a POC device capable of measuring eight 

biomarkers simultaneously in a small sample of WB within 5 minutes.  
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In a clinically relevant environment, effective detection and prediction of patient at risk of 

developing sepsis is key for successful management. Integrating machine learning model with 

the multiplexed cytokine results in blood, enables a unique way to predict the possibility of a 

patient with sepsis with high accuracy (AUC >0.92). The application of machine learning 

based predictive technology might aid medical decision-making by adding new components to 

assist proper and early diagnosis of patients with sepsis. 

Our work has a few limitations, even though a combination of cytokines shows high accuracy 

for predicting patients with sepsis. The limited sample size restricts the extent to which our 

findings can be extended to other patient cohorts.  Furthermore, only a single time point 

cytokine measurement was considered, and although blood measurement is crucial for early 

prognosis, it may not elucidate the depth of the influence of cytokines in disease etiology as 

compared to those offered by sequential measurements. However, specific cytokine accuracy 

was high for predicting the patient state and disease severity. Although it is tempting to 

presume that variations in cytokine concentrations are linked to pathophysiology of organ 

failure, we believe, no single cytokine can be credited for the entire severity of the disease. 

Cytokine concentrations in blood could also be elevated merely as indicators of tissue injury, 

without necessarily playing a direct role.  

The multiplexing capability of DeTect 2.0 device directly in WB at patient bedside provides 

opportunities to create a panel of sepsis biomarkers that includes well studied cytokine 

biomarkers with good prognostic value along with other biomarkers to accommodate for 

similar disease like COVID-19 to expand the potential application of the device. To gain 

comprehensive understanding of complex interactions that occurs during disease progression, 
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we acknowledge that newer techniques can benefit, rather than studying individual effect of 

the chosen biomarkers. 

Apart from the current limitations, DeTect Sepsis device 2.0 has several advantages over 

existing analytical techniques. Firstly, high detection sensitivity of DeTecT sepsis 2.0 device 

coupled with wide dynamic range and good specificity provides rapid and accurate results to 

improve sepsis stratification. Next, the miniaturized portable device can be used anywhere, 

from patient bedside to emergency department or even in an ambulance. Secondly, low sample 

requirement equivalent of two drops of blood (~100 uL) provides rapid information on a panel 

of eight useful biomarkers which can provide valuable insights on the patients host immune 

response at that instant. Lastly, integrating machine learning algorithm with the multiplexed 

cytokine panel offers the user (for instance, a clinicians) valuable insights and can be valuable 

asset as a clinical decision support system for improved patient outcomes.  

Till date, there is no POC device that can rapidly assess the biomarker concentrations without 

sample dilution in WB with low sample volume (~100 uL). This translational research work 

would support and benefit the clinical community in rapidly assessing the state of the patient’s 

immune response at the time of intervention, thus providing real-time valuable information. In 

conclusion, simultaneous detection of eight cytokine biomarkers combined with machine 

learning model can reveal complicated cytokine patterns reflecting systemic response linked 

to severe sepsis, organ failure and death. Based on the cytokine profiles provided by the 

DeTecT sepsis 2.0 device, clinicians can assess disease severity and forecast distinct clinical 

presentations and outcomes. 
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

This dissertation has successfully demonstrated a prototype of a multiplexed, highly sensitive, 

near-patient bedside POC biosensing device with a rapid response time applicable in a diverse 

scope across healthcare industry. The miniaturized diagnostic biosensor can be used to measure 

PTH as a single biomarker as a guide to clinicians during a parathyroidectomy surgery as well 

as for early detection of complex infectious disease such as sepsis by leveraging a combination 

of host immune response biomarkers. This research has contributed towards the 1) assessing 

the unique semiconducting ZnO interactions to provide controlled binding efficacy for target 

biomarkers to increase sensitivity across a single analyte 2) evaluating the developed 

biosensing assay performance for clinical utility 3) strategies to expand the biosensing 

capability to assess performance of multiplexed biomarkers on a single platform with rapid 

response time 4) in-depth clinical validation by testing the performance of the biosensing 

device against stand laboratory reference method using patient samples from three 

geographical locations 5) innovative solutions for translating the performance metrics to test 

patient samples directly in WB toward in-field testing application. This dissertation has 

established the framework for a versatile electrochemical POC biosensing device that can 

measure up to eight biomarkers simultaneously with a rapid response time, high sensitivity 

while using approximately two drops (~100 uL) of WB without sample dilution. 

Every biosensing device developed in this work has demonstrated sensitive, selective, and 

precise detection of single and multiplexed biomarkers in complex body fluids such as serum, 
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plasma and WB. Early detection of sepsis included measuring cytokines such as IL-6, IL-8, 

IL-10, chemokines such as TRAIL, IP-10 and infectious biomarkers including d-dimer, G-

CSF, CRP and PCT simultaneously without compromising on sensitivity or specificity. This 

is attributed to the selective functionalization of highly specific capture probes integrated with 

the sensitive detection capability of EIS. Multiplexed detection will facilitate the creation of a 

precise molecular fingerprint for every patient, enhancing precision medicine endeavors. The 

DETecT Sepsis device’s quick response time promotes faster clinical decision making for 

healthcare professionals, allowing them to operate for early intervention. Additionally, this 

research is developed to address ASSURED (Affordable, Sensitive, Specific, User Friendly, 

Rapid and Robust, Equipment free and Deliverable to end users) that can be used toward in-

field testing application especially in resource limited areas. Thus, the next version of DeTecT 

Sepsis 2.0 device demonstrated the potential of using direct WB without the need for dilution 

(thereby making it user friendly which can be operated by minimally trained individuals), with 

smaller sample volumes (to avoid patient discomfort and contaminations) while measuring 

eight host immune response biomarkers simultaneously.  

In conclusion, the developed versatile portable biosensing device prototype with the ability for 

rapid detection of multiplexed biomarkers in WB can be used to detect other infectious diseases 

like COVID-19, for better patient outcomes. We have also explored the combinatorial effects 

of using DeTecT Sepsis device paired with machine learning algorithm to provide calculated 

prediction to guide clinicians with better outcomes. Clinical utility of machine learning models 

is currently limited; thus, it is critically needed across a wide range of patient population to 

establish clinical impact, verify predictive validity, and close the gap between medical data 
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and patient bedside treatment.  The implementation of machine learning- based predictive 

technologies may assist medical decision-making by introducing new aspects to assist the 

correct and early identification of complex diseases such as sepsis. The developed sensor 

technology would enable medical practitioners to facilitate targeted patient interventions for 

complex diseases as a rapid prognostic approach that could avert mortality as an imperative 

clinical resource. 
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