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ABSTRACT 

 
 
 Supervising Professor:  Leonidas Bleris 
 
 
 
 
Genome editing has revolutionized not only the future of biological research, but also holds the 

promise of being a powerful therapeutic for genetic diseases. When considering the multitude of 

genetic regulations that contribute to various biological processes and their individual 

contributions that permit diseased cellular states, especially in instances where more than a single 

genetic aberration is attributed to the diseased phenotype, it is crucial to consider the 

interconnectivities of gene regulators and their individual contributions to cell health. Biological 

network maps that reveal the relation of gene products to one another can provide insight into the 

biological properties they govern. A biological network map consists of nodes (gene products) 

connected by edges that are dictated by the nature of the interaction between the two nodes. 

Nodal ablation (i.e., knocking out a gene to render it non-functional) has been crucial in 

understanding diseased states. However, this type of mutational analysis essentially disregards 

the impact that individual edges have on the network as a whole. The goal of my dissertation 

work was to utilize the genome editing tool Cas9 to disrupt the p53-miR-34a network in an edge-

specific manner in order to demonstrate not only the complexity of these networks, but to also 
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underscore the importance that individual edges have on the tumor suppressor phenotype. To this 

end, I, along with a team of researchers, developed a genetic screen using Cas9-bearing lentiviral 

vectors to disrupt 93 miR-34a binding sites within the 3’ untranslated region (UTR) of 71 genes 

impactful to cell survival under apoptotic conditions. I quantified the degree of apoptosis in two 

colorectal cancer cell lines that differ in functional p53 status, and that each harbored miR-34a 

binding site mutations within the pro-survival gene Bcl-2 3’UTR, demonstrating the importance 

of the miR-34a-Bcl-2 edge on apoptotic progression. Concurrently, I investigated the 

phenomenon of cell cycle desynchronization by tracking the DNA distribution of a population of 

cells starting from a synchronized state until asynchrony with flow cytometry analysis. In doing 

so, I utilized statistical tools to quantify the degree of desynchronization that does not rely on 

individual cell cycle phase labeling. Additionally, with the help of my peers, tested and validated 

a mathematical model the capitulates experimental observations. I explored the sensitivity of the 

model to changes in its parameters to reveal that cell cycle variability within the population is a 

main contributor to cell cycle desynchronization. Furthermore, I tested this model prediction by 

treating cells with lipopolysaccharide to enhance cellular noise, resulting in a greater variability 

of cell cycle duration, which was also shown to increase the rate of cell cycle desynchronization. 

Taken together, my research provides insight into the importance individual edges have to 

biological networks and their resulting phenotypes, as well as the underlying sources of cell 

population heterogeneity and its contribution to cell cycle variability. 
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CHAPTER 1 

INTRODUCTION 

 
 

1.1 Author contributions  
Chance M. Nowak prepared this chapter. A section of this chapter is reused from the original 

manuscript “Guide RNA engineering for versatile Cas9 functionality”. The open-access article 

distributed under the terms of the Creative Commons Attribution License allows the reuse of 

portions of the full article as a part of the author’s dissertation. Oxford University Press, Nucleic 

Acids Research, Volume 44, Issue 20, 16 November 2016, Pages 9555–9564, DOI: 

10.1093/nar/gkw908 

 

1.2 Biological networks: nodes vs edges 

The complex, overlapping macromolecular interactions, whether it be physical or biochemical, 

dictate all aspects of biological processes and can be depicted as an interaction network map. 

Biological network maps consist of nodes and edges, in which nodes are the gene product and 

their functional relation to other nodes is described by the nature of the edge (Figure 1.1a). 

Networks can depict multiple cellular processes from protein-protein, protein-DNA, RNA-RNA, 

or amalgamation of all the aforementioned interactions. The interconnectivity of nodes via edges 

can reveal molecular interactions that govern specific molecular processes that manifest as 

observable phenotypes. Highly connected nodes (a node with many edges) are generally referred 
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to as hubs and are typically genes or gene products that are essential to a particular biological 

process. 

  

Mutations that completely inactivate a gene or render the gene product nonfunctional can be 

viewed as a nodal ablation, and loss of highly connected hubs can reveal the biological processes 

the given node governs. Analogously, the classic mutational analysis approach typically seeks to 

inactivate genes, which has been pivotal in elucidating the biological function of genes, 

particularly in instances of monogenic diseases in which the functional loss of a given gene 

removes all of the interconnected edges and the network essentially collapses and the loss of the 

biological process is detected as a clear observable phenotype (Figure 1.1b). However, this type 

of network analysis does not capture the full range of potential biological malignancies. Indeed, 

there are multiple instances in which edge perturbations can “rewire” biological networks 

resulting in phenotypic changes (Sahni et al. 2013).  

 

For example, genetic mutations that exhibit gain-of-function traits are essentially gene products 

that have gained new edges distinct from the their unperturbed interactome counterpart (Figure 

1.1c). The tumor suppressor transcription factor p53 can mutate such that it in contrast to its 

usual transcriptional activation of genes involved in DNA damage response, cell cycle arrest, and 

programmed cell death (apoptosis) can, through altered binding specificity, upregulate pro-

survival and proliferation-enhancing gene products that significantly alter the canonical p53 

interactome (C. Zhang et al. 2020). Missense mutations within the DNA-binding domain of p53 

can lead to alternative binding that results in upregulation of cell cycle progression genes in 



 

3 

response to DNA damage (Di Agostino et al. 2006), thus propagating mutations that can lead to 

genomic instability.  

 

Similarly, edges can be lost through missense mutations that have significant impact on disease 

phenotypes (Zhong et al. 2009) (Figure 1.1d). For example, a missense mutation in the p53-

inhibitor, Mdm2, can result in the inability to bind to ribosomal proteins associated with 

ribosomal stress, which ordinarily would lead to p53 activation (Macias et al. 2010). 

Interestingly, Mdm2 can still regulate p53, under DNA damaging conditions for instance, but 

loses the ability to regulate it under ribosomal stress in particular. This results in a failure of p53 

to become active under ribosomal stress, leading to sustained c-myc (proto-oncogene)-mediated 

upregulation of proteins involved in ribosome biogenesis contributing to tumorigenesis (Macias 

et al. 2010). It is therefore pivotal to not just understand the interconnectivity of nodes, but to 

consider the nature of the “edgetic” interactions in order to build complete mechanistic details 

that govern specific biological processes, especially those integral to diseased states (Zhong et al. 

2009).  
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Figure 1.1: Biological network map demonstrating node- and edge-specific mutations. a) intact 
wildtype network consisting of nodes (i.e., gene and gene products) and edges (i.e., regulatory 
interaction) with a central hub (highly connected node) that functional regulates multiple nodes. 
b) mutation of hub that renders the gene completely nonfunctional removes all edge interactions, 
collapsing the entire network. c) mutation of hub that results in gaining new edges (e.g., mutated 
transcription factor that binds alternative DNA sequences, resulting in transactivation of new 
genes. d) mutation of hub that results in loss of edge (e.g., mutated sensory response protein, 
resulting in compromised network regulation) 
 

Perturbing networks by augmenting edgetic interactions holds great promise for understanding 

the properties of the network as a whole. When considering mutational perturbations for edge 

function and relation, it is crucial to preserve the overall function of the nodes connected to the 

given edge. Gene structures contain regions that are not involved in the protein functions itself, 
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but do contain regulatory motifs that are directly responsible for the degree of expression, 

particularly in instances of responding to environmental cues. Thus, there is a unique opportunity 

to investigate these regulatory interactions without compromising protein function, while 

understanding what conditions are edges crucial to cell state and environmental responses. An 

attractive network for edge investigations would be a network that contains hubs with high 

connectivity that respond to changes in cellular state in highly phenotypic manner. One such 

network paradigm are microRNA networks, as not only can some miRNA networks be highly 

connected (hundreds of interactions) but can respond to cellular states. In the next section, a 

prominent miRNA network will be discussed with the emphasis on the method of regulation 

miRNAs confer as well as the states under which they are induced (e.g., cellular stress) with 

robust phenotypic reactions. 

 

1.3 p53 and miR-34a 

microRNAs (miRNAs) are a class of small non-coding RNAs ~22 nucleotides (nt) in length that 

post-transcriptionally regulate gene expression through translational repression. miRNAs must 

go through extensive processing before becoming functionally mature and are processed in a 

step-wise and compartmentalized fashion with biogenesis beginning in the nucleus as long 

hairpin structures that are extensively processed (trimmed to shorter hairpin structures) before 

being exported to the cytoplasm for further processing in and trimming and strand separation 

(removing the hairpin structure) (Bohnsack, Czaplinski, and Gorlich 2004). Ultimately, the 

miRNA is trimmed down to a mature 22 nt double-stranded RNA in the cytoplasm, which then 

associates with a member of the Argonaute protein family, namely Ago1-4 with Ago2 being 
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functionally distinct by its endonuclease activity (Höck and Meister 2008; Ruda et al. 2014). Of 

the two strands, one acts as a guide strand and the other a passenger strand, with the latter being 

degraded while the guide strand tightly associates to the Ago protein to form the RNA induced 

silencing complex (RISC) (Marzi et al. 2016). The guide strand dictates which mRNA substrates 

the RISC binds, and is largely dependent on partial complementary base pairing with a small ~7 

nt “seed” sequence typically found in the mRNA’s 3’ untranslated region (UTR) (Brennecke et 

al. 2005), although non-canonical (i.e. seed-independent) binding interactions have been shown 

to occur (Seok et al. 2016; Clark et al. 2015). In canonical mRNA-RISC interactions, this seed 

region has been shown to be a crucial determinant of which mRNAs to target, and such a 

relatively small determinant enables some miRNAs to have a multitude of targets, with some 

miRNAs predicted to have hundreds (Lim et al. 2005; David P Bartel 2009). 

 

Some miRNAs are basally expressed in the cells to constrictively curb gene expression of some 

gene products. Other miRNAs are highly inducible depending on the cellular state. For example, 

DNA damage can result in the acquisition of multiple mutations, and while there are 

sophisticated DNA repair pathways to ameliorate this cellular stress, under extreme conditions, 

however, the cell may not be able to repair the damage abruptly, thus necessitating a halt on cell 

cycle progression, or in some cases the damage may be so severe that the cell self-destructs in 

order to prevent the propagation of these mutations to daughter cells. One highly connected node 

that serves as a hub for this response process is the p53 protein that actively upregulates the 

transcription of miRNAs to downregulate a host of genes.  
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p53 is a transcription factor that is crucial in maintaining genome integrity, and has earned the 

title as guardian of the genome (Lane 1992). In response to cellular stress such as DNA damage, 

p53 activation induces cell cycle arrest allowing the cell to repair the damage before any 

mutations can be propagated; if the damage is beyond repair, p53 will initiate programmed cell 

death (apoptosis) to prevent the propagation of a compromised genome. These anti-proliferative 

functions of p53 are well documented (Muller and Vousden 2013; Bieging, Mello, and Attardi 

2014), and accordingly, most human cancers have been found to acquire a mutated or 

dysfunctional p53 (Hainaut and Hollstein 1999). Furthermore, the importance of p53 in tumor 

suppression is underscored by the activation of target genes that suppress cell proliferation and 

promote apoptosis. p53 can exert cell cycle arrest by transactivating the expression of potent 

cyclin-dependent kinases (CDKs) inhibitors such as p21, p27, and p16 (Polager and Ginsberg 

2009; G. He et al. 2005) that regulate of the transition of G1 to S phase. Not only can p53 

regulate cell fate by transactivating inhibitors of key cell cycle regulatory proteins, but also can 

transactivate the expression of miRNAs that directly repress genes involved in cell cycle 

progression, proliferation, and pro-survival, such as miRNA-34a.  

 

RISC-mediated silencing has been implicated in most, if not all, cellular processes from 

mammalian development to disease (Kloosterman and Plasterk 2006). In relation to disease, 

specifically cancer, some miRNAs can be classified as oncogenic or anti-oncogenic (B. Zhang et 

al. 2007). One prominent miRNA that exhibits tumor suppressive functions is miR-34a (Rokavec 

et al. 2014; Bader 2012; Hermeking 2010). miR-34a expression is strongly associated with cell 

cycle arrest and apoptosis. A subset of miRNA-34a targets are those involved in the cell cycle 
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progression at the G1-S phase transition, of which include proto-oncogenes such as c-myc 

(Christoffersen et al. 2010; Sotillo et al. 2011; Yamamura et al. 2012), CDK4 (Hargraves, He, 

and Firestone 2016; Tianyou Wang 2014; Guo et al. 2015) and CDK6 (Navarro et al. 2009; 

Yunqing Li et al. 2009; Sun et al. 2008), and cyclins E2 (Lin He et al. 2007; Sun et al. 2008) and 

D1 (Sun et al. 2008; Hermeking 2010). Unsurprisingly, miR-34a-mediated regulation of the G1/S 

phase transition can be induced by the tumor suppressor protein p53, due to the presence of the 

p53 response element located near the miR-34a transcriptional start site (Chang et al. 2007; 

Concepcion et al. 2012). miR-34a is also involved in repressing the expression of proliferation 

promoting genes such as SIRT1 (Yamakuchi, Ferlito, and Lowenstein 2008), which can 

inactivate the p53 protein via deacetylation, and pro-survival genes such as BCL-2 (Lin et al. 

2014), which inhibit proteins that initiate apoptosis. Interestingly, while miR-34a is 

transactivated by p53 resulting in repression of cell cycle regulators of the G1/S transition in a 

redundant fashion to p53 upregulation of CDK inhibitors, miR-34a can also exhibit 

antiproliferative functions independent of p53 functional status (i.e., wildtype p53).  

 

Importantly, given the prevalence of p53 inactivation as well as gain of function mutations in 

multiple cancer types it is worth considering modes of treatment that allow p53-independent 

functional interactions as potential therapeutics. While miR-34a is highly connected to p53 

activity, it is worth noting that there are reported incidents of miR-34a tumor suppressor activity 

independent of p53 status, that is miR-34a has shown to be activated without functional p53 

status (Zhao et al. 2013; Christoffersen et al. 2010; Tazawa et al. 2007).  
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Thus, the p53-miR-34a network seems to be an ideal candidate for edgetic interventions given its 

robust phenotypes, namely cell cycle arrest as well as promoting cell death, as well as its 

response to cellular states, such as cell stress, and lastly the highly interconnected edges that 

make up this network. The question then becomes, how can we perturb these regulatory 

interactions in a precise manner? One such manner is genomic intervention via genome editing 

such as the programmable nuclease Cas9 to independently and systematically remove these 

edges in a way that does not compromise the function of the individual nodes that describe these 

relations. Interestingly, however, while the tumor suppressor p53 is constitutively expressed, the 

protein is rapidly degraded due to the p53 inhibitor E3 ubiquitin ligase Mdm2 (Kubbutat, Jones, 

and Vousden 1997; Haupt et al. 1997), and despite studies that have demonstrated post-

transcriptional regulation motifs within the p53 3’UTR via reporter assays (Haronikova et al. 

2019), genomic deletion of the endogenous p53 3’UTR was shown to have no impact on p53 

translation under normal conditions or following DNA damage (Mitschka and Mayr 2021). Thus, 

highlighting the importance of genomic perturbations in native gene contexts for elucidating the 

impact of regulatory elements over synthetic gene reporter constructs (such as luciferase or 

fluorescent proteins).  In Chapter 2, genomic editing of edge-specific interactions within the 

p53-miR34a are explored further. 
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1.4 SpCas9 as genome editing tool 

1.4.1 SpCas9 endogenous system 

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system allows a 

single guide RNA (sgRNA) to direct a protein with combined helicase and nuclease activity to 

the DNA. Streptococcus pyogenes Cas9 (SpCas9), a CRISPR-associated protein, has 

revolutionized our ability to probe and edit the human genome in vitro and in vivo. CRISPR loci 

are present in prokaryotes, including both bacteria and archaea (Horvath and Barrangou 2010; 

Garneau et al. 2010), and are primarily characterized by direct repeat sequences interspaced by 

similarly sized variable sequences (Sorek, Kunin, and Hugenholtz 2008; Brouns et al. 2008; 

Barrangou et al. 2007; Jansen et al. 2002). Early investigations into the nature of the repeat and 

variable sequences revealed that CRISPR and the CRISPR-associated proteins (Cas) work in 

tandem to recognize and cleave invading foreign DNA (Barrangou et al. 2007; Lander 2016; 

Brouns et al. 2008; Jansen et al. 2002; Sorek, Kunin, and Hugenholtz 2008; Deveau et al. 2008; 

Garneau et al. 2010; Horvath and Barrangou 2010). The characterization of CRISPR-Cas as a 

type of prokaryotic immune system laid the groundwork for what has now become a powerful 

tool for various applications well outside the original biological context (Mali et al. 2013b; Le 

Cong et al. 2013; Niu et al. 2014; Hai et al. 2014; Richard Moore et al. 2015; Yi Li et al. 2016; 

Hilton et al. 2015; Jinek et al. 2013). 

 

In prokaryotes, the CRISPR-Cas system functions as a microbial analog to the acquired 

(adaptive) immune system present in higher organisms (Barrangou et al. 2007; Bolotin et al. 

2005; Makarova et al. 2006). The variable sequences of the CRISPR array, known as spacers, are 
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relics of previous infectious events whereby fragments of invading DNA, or protospacers, have 

been captured and integrated into the host genome at the CRISPR locus to serve as an 

immunological memory (Deveau et al. 2008). Once a new protospacer has been integrated into 

the CRISPR array, the entire array can be transcribed into pre-crRNA and processed into mature 

crRNA.  

 

The processing of pre-crRNA into mature crRNA is distinct in type II CRISPR systems in that it 

relies on the presence of trans-activating crRNAs (tracrRNAs) that hybridize with the pre-crRNA 

through complementary base pairing to the repeat regions (Deltcheva et al. 2011; Gasiunas et al. 

2012; Jinek et al. 2012). RNase III, a dimeric endoribonuclease that cleaves double-stranded 

RNA, then recognizes the pre-crRNA:tracrRNA hybrid and cleaves individual crRNA:tracrRNA 

hybrids from the primary CRISPR array transcript (Deltcheva et al. 2011). Ultimately the 

crRNA-tracrRNA hybrid spacer sequence (Figure 1a) is trimmed down to 20 nucleotides 

(Deltcheva et al. 2011) before tightly associating with the SpCas9 nuclease and forming the 

catalytically active ribonucleoprotein (RNP) complex used for targeted DNA cleavage (Bolotin 

et al. 2005; Makarova et al. 2006). 

 



12 

Figure 1.2: S. pyogenes CRISPR-SpCas9 guide RNA anatomy. (a) Endogenous CRISPR RNA 
(crRNA) and transacting crRNA (tracrRNA). The spacer sequence (orange) is 20 nucleotides in 
length and the repeat sequence (green) is 22 nucleotides that basepairs with tracrRNA 
complementary region (blue). The 3’ handle region (purple) has functional significance for 
structure-dependent recognition by SpCas9. (b) The synthetic sgRNA retains dual-
tracrRNA:crRNA secondary structure via a fusion of the 3’ end of the crRNA to the 5’ end of the 
tracrRNA with an engineered tetraloop. (c) Individual functional modules of the sgRNA (sgRNA 
structure adopted from Briner et al., 2014). The 5’ spacer sequence dictates SpCas9 localization 
within the genome. The lower stem is formed by the duplex between the CRISPR repeat 
sequence from the crRNA and the region of complementarity in the tracrRNA. SpCas9 interacts 
with the upper and lower stems in a sequence-independent manner, whereas the bulge 
interactions with SpCas9 appear to be sequence-dependent. The nexus contains both sequence 
and structural features necessary for DNA cleavage and lies at the center of the sgRNA:SpCas9 
interactions. The nexus also forms a junction between the sgRNA and both SpCas9 and the target 
DNA. The terminal hairpins assist in stabilizing the sgRNA and supports stable complex 
formation with SpCas9. 

An indispensable aspect of any immune system is the ability to distinguish self from non-self; in 

other words, the components of the immune system must be able to recognize molecules that do 

not originate from the host. The SpCas9 CRISPR system achieves this distinction through the 

recognition of a protospacer adjacent motif (PAM), which is a short G-rich oligonucleotide 

sequence downstream of the target DNA (Deveau et al. 2008; Marraffini and Sontheimer 2010). 

This feature is crucial for targeted DNA cleavage, as the corresponding spacer in the CRISPR 
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array is identical to the target DNA, and would otherwise be cleaved. It is not until after SpCas9 

scans invading foreign DNA for the PAM sequence 5’NGG that complementary base pairing 

between the target DNA and crRNA can occur and trigger targeted DNA cleavage (Mojica et al. 

2009; Sternberg et al. 2014).  

The high-resolution crystal structure of SpCas9 in complex with a sgRNA, and its cognate target 

DNA obtained by Nishimasu et al. identified key functional interactions that govern the 

molecular mechanism of SpCas9-mediated DNA cleavage. The crystal structure revealed that 

SpCas9 has a bilobed architecture composed of a Recognition lobe (REC) and a Nuclease lobe 

(NUC), and the site of heteroduplex formation between the sgRNA and its cognate target DNA is 

a positively charged cleft at the interface between the two lobes (Nishimasu et al. 2014; Jinek et 

al. 2014).  The REC lobe is comprised of an α-helical region termed the bridge helix domain that 

recognizes the “seed” region (the 10-12 PAM-proximal nucleotides of the guide region) of the 

sgRNA through salt bridges with sgRNA backbone, a REC1 domain that recognizes repeat:anti-

repeat duplex of the sgRNA, and the REC2 domain that does not interact with the guide:target 

heteroduplex. The NUC lobe is comprised of a RuvC catalytic nuclease domain that cleaves the 

non-complementary strand of the target DNA, a HNH catalytic nuclease domain that cleaves the 

complementary strand of the target DNA, and a PAM-interacting (PI) domain that recognizes the 

5’NGG PAM on the non-complementary strand (Jinek et al. 2012; Nishimasu et al. 2014; Jinek 

et al. 2014; Gasiunas et al. 2012).  
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SpCas9 interacts with the sgRNA in both sequence-dependent and independent manners—the  

guide region is recognized in a sequence-independent mechanism, whereas SpCas9 recognition 

of the sgRNA repeat:anti-repeat duplex involves sequence-dependent interactions (Nishimasu et 

al. 2014).  Additional information on the base pair interactions and details regarding 

conformational changes due to sgRNA and target DNA/PAM recognition can be found in recent 

literature (Nishimasu et al. 2014; Jinek et al. 2014; Sternberg et al. 2015; Anders et al. 2014). 

 

1.4.2 SpCas9 genome editing in mammalian cells 

Endogenous Type II CRISPR RNA components require extensive processing before becoming 

functional (Jinek et al. 2012; Gasiunas et al. 2012). The first effort to recapitulate the bacterial 

CRISPR system in mammalian cells involved the delivery of SpCas9, SpRNase III, the 

tracrRNA, and the pre-crRNA array, which contained the spacer sequence flanked by direct 

repeats (Le Cong et al. 2013). Interestingly, the inclusion of SpRNase III was found to be 

unnecessary for cleavage of the target DNA sequence in mammalian cells (Le Cong et al. 2013).   

 

A key advance in CRISPR programmability came with the engineering of the chimeric single 

guide RNA (sgRNA) (Jinek et al. 2012). The chimeric sgRNA (Figure 1b) is a single transcript 

that retains the dual-tracrRNA:crRNA secondary structure via a fusion of the 3’ end of the 

crRNA to the 5’ end of the tracrRNA with an engineered tetraloop (Jinek et al. 2012). The most 

common approach to produce sgRNAs in human cells is using the human U6 RNA polymerase 

III (RNAP III) promoter (Mali et al. 2013b; Le Cong et al. 2013; Jinek et al. 2013). This 

constitutive RNAP III promoter allows the sgRNA transcript to escape post-transcriptional 
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modifications that are coupled to RNAP II transcription (such as 5’ methyl capping and 

polyadenylation), which would otherwise result in its export out of the nucleus (Hamm and 

Mattaj 1990; McCracken et al. 1997).   

The use of Cas9 and engineered sgRNA has served as a molecular toolkit that provided a 

foundation from which an innumerable number of applications have spurred. Applications using 

the wildtype SpCas9 include: gene knockout via targeting genes in their open reading frame 

(ORF) and subsequent error-prone DNA repair via the non-homologous end-joining (NHEJ) (L 

Cong et al. 2013; Mali et al. 2013a), regulatory motif ablation through NHEJ by targeting 

noncoding genetic regions (Yi Li et al. 2018; Hsieh et al. 2019), and gene knock-in with DNA 

fragments that contain regions of homology for targeted genomic integration via homologous 

recombination (HR) DNA repair(L Cong et al. 2013; Mali et al. 2013a). Additionally, Cas9 can 

be mutated to have nickase activity at the RuvC domain (D10A) or the HNH domain (H840A) 

resulting in single strand cleavage of the target strand or non-target stand, respectively (Jinek et 

al. 2012). Single strand nicking has recently been used in conjunction with deaminase fusions for 

single nucleotide base editing (Komor et al. 2016; Gaudelli et al. 2017) as well as fused to 

reverse transcription and elongated 3’ gRNA for templated DNA repair (i.e., prime editing) 

(Anzalone et al. 2019).  If both mutations are installed, Cas9 becomes nuclease deficient (dCas9) 

(Qi et al. 2013) and can be used as programmable DNA binding domain in which various 

functional proteins (or protein domains) can be fused to dCas9 for localized functional activity 

including: transcriptional activation (L. A. A. Gilbert et al. 2013), transcriptional repression (L. 
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A. A. Gilbert et al. 2013), epigenetic alterations (Hilton et al. 2015), fluorescent imaging of DNA 

(B. Chen et al. 2013). 

 

While Cas9 has shown to be an indispensable tool for biological research into the function of 

genes, one promise intrinsic to the ability to alter genetic sequences with such precision is the 

use of genome editing intervention is use as a therapeutic to change genetic abnormalities. 

However, genetic alterations with genome editing tools ought to be used with consideration to 

p53 status (Haapaniemi et al. 2018). For example, one approach to utilizing genome editing tools 

such as Cas9 is to integrate Cas9 expressing constructs into the genome, which often harbor 

genetic antibiotic selection cassettes. Cells selected with the antibiotic in the presence of Cas9, 

which due to its nuclease activity, is considered cytotoxic, not only due to its on-target DNA 

cleavage, but additional off-targeted DNA cleavage can result in the inadvertent selection of 

nonfunctional p53 (Enache et al. 2020). As described previously, the p53 protein is a crucial 

regulator of DNA damage response, and can lead to cell cycle arrest in order to prevent the 

propagation of mutations from the subsequent daughter cells. Therefore, the artificial selection of 

the antibiotic resistance gene used to sustain Cas9 expression, which may persistently induce 

DNA damage, selects for p53 deficient cells, which may lead to further oncogenic activation 

(Conti and Di Micco 2018).  

 

1.5 Cell cycle variability 

While much attention has been focused on elucidating the cellular interactions that govern cell 

cycle regulation, one interesting phenomenon is the overall variability of cell cycle duration 
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within a population. Indeed, a great deal in effort has been investigating the source of 

heterogeneity within cellular populations to account for cell cycle variation (Robert F. Brooks 

2021; D. A. Gilbert 1982; Perez-Carrasco, Beentjes, and Grima 2020; Alberghina, Mariani, and 

Martegani 1985; Koch 1980), and additionally, developing models that accurately describe cell 

population behavior, particularly the variability of the cell cycle. The cell cycle is a tightly 

regulated process that is mediated by multiple feedback networks (Pomerening, Kim, and Ferrell 

2005; Gérard, Gonze, and Goldbeter 2012; Pomerening 2009; Ferrell and Jr. 2013) that enable 

oscillatory timing of events that result in the duplication of DNA and cellular division. Particular 

consideration has been focused on the genetic mechanisms regulating this process, especially the 

G1/S transition, which is a critical point (termed the restriction point, or R-point) in the cell cycle 

in which the cell either commits to DNA synthesis, enters quiescence, or initiates apoptosis.  

 

There are multiple factors that can contribute to the cellular fate of the cell, such as 

environmental cues, resource availability, and cell type. Interestingly, despite the highly 

regulated mechanisms that compute this decision, there exists noticeable variations in the timing 

of these events within a cellular population. Indeed, identical daughter cells that enter the cell 

cycle at the same time can have vastly different cell cycle durations. These overall variations in 

periodicity have been largely been attributed to the variable timing a given cell spends in the G1 

phase (especially in cell types that can exit G1 and enter quiescence). Critically, cancer cells that 

have can highly dysregulated cell cycle regulatory mechanisms (Otto and Sicinski 2017; Leal-

Esteban and Fajas 2020) can also demonstrate variability in the cell cycle duration. One realm of 

investigation to this phenomenon is to consider cellular noise in gene expression.  
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Gene expression noise can be divided into two sources: extrinsic and intrinsic. Extrinsic noise 

can arise from variations in cellular constituents such as transcriptional processivity or ribosome 

availability. Intrinsic noise arises from the inherent stochasticity of biomolecular interactions. 

Interestingly, multiple modes of thought have sought to provide an explanation for sources of 

cell cycle variability that also take into account cellular noise (Swain, Elowitz, and Siggia 2002; 

Zopf et al. 2013; Soltani et al. 2016; Gonze et al. 2018). Additionally, one of the crucial 

regulatory motifs of the G1/S transition are bistable switches that are ultrasensitive to stochastic 

fluctuations (Yao et al. 2008b; T. J. Lee et al. 2010) that can commit a cell to engage in DNA 

synthesis. The variations in cell cycle periodicity are frequently analyzed through mathematical 

modeling, with an emphasis on incorporating sources of stochasticity to accurately capture cell 

cycle dynamics.  

 

One of the earliest models proposed was the transition probability (TP) model (Smith and Martin 

1973) used to describe entry into S phase from G1 thus initiating DNA synthesis. This model 

postulates that the cell cycle is both probabilistic and deterministic. Specifically, the cell cycle 

was divided into and A state and a B phase. The B phase consisted of S, G2, and M which are 

deterministic in that once DNA synthesis starts in S phase it is committed to reaching G2 (and 

ultimately mitosis if conditions are permissive). Thus, its duration is determinate. Whereas in the 

A-state, cells are not directed towards DNA synthesis and subsequent division, and as such can 

spend an indeterminate time within this state where the probability of leaving the A state at any 

time is constant. Therefore, the entry into S phase is dictated by a stochastic process, similar to 

the random radioactive decay of an atomic nucleus. However, this model had difficulties in 
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rectifying cells that enter quiescence (G0) or from cells that are arrested at the R-point, and the 

model used a general strategy to describe these instances as just high or low probabilities of 

transition (Shields and Smith 1977). Later the model was updated to include an additional 

transition probability to account for quiescence cells, but is amenable to environmental factors 

such as serum deprivation and replenishment, which has shown to cause quiescent cells to 

reenter the cell cycle (R. F. Brooks, Bennett, and Smith 1980). Later, a second model was 

developed that posited that the duration of the entire cell cycle is largely dictated by the G1 

phase, and should be modeled separately from the rest of the cell cycle, i.e. the G1-rate model 

(Castor 1980) (later referred to as growth control model, GC). The model removes the 

unpredictable aspect of the transition model and instead attributes variability in S-phase reentry 

timing to differences in cell metabolism. The authors support this claim with the additional 

observation that the amount of RNA in a cell correlates with the rate of progression through 

initiation and completion of DNA synthesis, and the variability in G1 arises from the capacity at 

which a cell can synthesize the proteins necessary for DNA replication. This thresholding 

description implicit in the GC model was later re-interpreted as an alternative description of the 

R-point (Cooper 2003). Interestingly, these two phenomenological models (TP and GC) largely 

escape the need for any mechanistic details, while still maintaining accurate descriptions of cell 

cycle control.  

 

However, it was eventually shown that R-point is actually governed by bistable switch within the 

Rb-E2F pathway (Yao et al. 2008a), in which E2F (a master cell cycle transcription factor, and 

Rb its transcriptional repressor) is involved in two positive feedback motifs that put E2F in either 
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an ON or OFF state depending on nutritional availability (e.g. serum concentration). Later the 

activation of these ON or OFF states was shown to be stochastic, arising from intercell 

variability of gene expression such as intrinsic noise (e.g. stochastic nature of biochemical 

interactions within a cell) and extrinsic noise (e.g. heterogeneity in cellular components affected 

by environmental factors or cell age) (T. J. Lee et al. 2010; M. Elowitz et al. 2002). Importantly, 

the sensitivity to stochastic fluctuations could account for the inherent variability in cell cycle 

duration. This stochastic activation of the bistable switch controlling the R-point seems to 

reconcile differing aspects of the TP and GC models by extracting parameters from both models. 

Namely, the transition rate and time delay from the TP model, and mean growth rate and its 

variance from the GC model. Critically, simulated nodal perturbations of the Rb-E2F pathway 

led to changes in these parameters both predicted by their respective model.  

 

These models have provided useful insight into the nature of cell population dynamics; 

moreover, the nature of the cell cycle heterogeneity gained further insight from the ability to 

synchronize cells to the same cell cycle phase and monitor cell cycle progression following 

synchronization. Indeed, investigations into cell cycle progression and regulation has often 

started with the need to synchronize all cells within a population to the same cell cycle phase. 

For example, the experiments in these early investigations described previously largely relied in 

serum deprivation for cell cycle synchronization. Another common approach to cell 

synchronization is the double thymidine block that interferes with nucleotide metabolism 

resulting in an inability of the cells to synthesize DNA causing a cell cycle arrest at the G1/S 

boundary (Bjursell and Reichard 1973; G. Chen and Deng 2018). 
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 One interesting observation discovered from observing the behavior of synchronized cell 

populations is that they desynchronize, and quickly reach a state of “asynchronicity,” whereby 

the individual cell cycle phases stabilize into fixed percentages. This phenomena has also been 

studied in cultured cells that were pulse labeled with bromodeoxyuridine (BrdU), thus creating a 

semi-synchronous cell population where only cells that are actively progressing through S-phase 

incorporate the thymidine analog BrdU into their genome, and thus can be tracked overtime by 

using a fluorescently conjugated BrdU antibody (Chiorino et al. 2001). These investigations 

hinted at the possibility of cell cycle variance (potentially manifesting from inherent cellular 

noise) as a contributor to desynchronization rates. Therefore, it is crucial to utilize mathematical 

models to capture cell cycle behavior at the population level to gain insight into the nature of cell 

cycle progression and regulation. In Chapter 3, the role of cell cycle variability with respect to 

the rate of cell cycle desynchronization is explored further. 

 

1.6 Summary 

Understanding the extent of cellular behavior in response to various conditions does not only lay 

the groundwork for understanding basic biological functions, but also provides insight in to how 

diseased cell states are acquired. Furthermore, the ability to describe these phenomena by 

representing biological pathways and processes via network analysis or mathematical modeling 

can lead to a greater appreciation of the highly organized and complex interactions and reactions 

that govern cell fate in a more holistic and approachable fashion. In this work, I present 

experimental results that support the contributions edges have to shaping overall networks 

through genome editing of miRNA target sites within the 3’UTR of genes involved in the p53-
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miR-34a network. Additionally, I present experimental results coupled with in silico 

mathematical modeling to describe cell cycle desynchronization, and demonstrate that a main 

contributor of this process is cell cycle variability between cells, which may arise from stochastic 

sources of cellular noise. 
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CHAPTER 2 

CRISPR-BASED EDITING REVEALS EDGE-SPECIFIC  
EFFECTS IN BIOLOGICAL NETWORKS 

 

2.1 Author Contributions 

The original manuscript was published along with Yi Li (YL), Daniel Withers (DW), Alexander 

Pertsemlidis (AP), and Leonidas Bleris (LB). YL and LB designed the experiments. YL, Chance 

Nowak (CN), and DW performed the experiments. YL, CN, AP, and LB analyzed the data. YL, 

CN, AP, and LB wrote the manuscript. LB supervised the project. Permission from YL was 

obtained for use of this manuscript in this dissertation in conjunction with © Mary Ann Liebert, 

Inc., The CRISPR Journal, Volume 1, Number 4, 4 November 2018, Pages 286-293, DOI: 

10.1089/crispr.2018.0018.  

 

2.2 Abstract 

Unraveling the properties of biological networks is central to understanding both normal and 

disease cellular phenotypes. Networks consist of functional elements (nodes) that form a variety 

of diverse connections (edges) with each node being a hub for multiple edges. Herein, in contrast 

to node-centric network perturbation and analysis approaches, we present a high-throughput 

CRISPR-based methodology for delineating the role of network edges. Ablation of network 

edges using a library targeting 93 miRNA target sites in 71 genes reveals numerous edges that 

control, with variable importance, cellular growth and survival under stress. To compare the 

impact of removing nodes versus edges in a biological network, we dissect a specific p53-
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microRNA pathway. We show that removal of the miR-34a target site from the anti-apoptotic 

gene BCL2 desensitizes the cell to ectopic delivery of miR-34a in a p53-dependent manner. In 

summary, we demonstrate that network edges are critical to the function and stability of 

biological networks. Our results introduce a novel genetic screening opportunity via edge 

ablation and highlight a new dimension in biological network analysis. 

 

2.3 Introduction 

We focus on the network formed by p53 and its upstream and downstream regulators, which is 

critical to cell health, yet incompletely understood. Since its discovery in 1979 (DeLeo et al. 

1979), p53 has been shown to play a crucial role in maintaining genomic stability (Vousden and 

Prives 2009), with more than 50% of human cancers harboring mutant or deleted p53 (Levine 

1997). Under normal conditions, the p53 protein exists in a latent form and at low concentration, 

but in response to various cellular stress signals such as DNA damage, hypoxia, and oncogene 

expression, post-translational modification of p53 results in its stabilization and accumulation 

(Batchelor, Loewer, and Lahav 2009). As most human malignancies shut down the p53 tumor-

suppressing responses, p53 is one of the critical targets for drug interventions in cancer therapy 

(Parrales and Iwakuma 2015; Hong et al. 2014) . 

 

A class of post-transcriptional regulators, called microRNAs (miRNAs), is directly associated 

with p53, either regulating the mRNA responsible for p53 production or being regulated by p53 

and its partners (L He et al. 2007; Tarasov et al. 2007). miRNAs, in their mature forms, are small 

non-coding RNAs approximately 22 nucleotides in length that act as major regulators of gene 
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expression. Since miRNAs are involved in critical cellular and physiological processes such as 

growth, differentiation, apoptosis and metastasis, the gain or loss of critical miRNAs in a given 

cell type can have significant implications for cell fate (D P Bartel 2009; Filipowicz, 

Bhattacharyya, and Sonenberg 2008; Richard; Moore et al. 2015; J. Lee et al. 2014). Studies 

have revealed extensive crosstalk between the p53 network and miRNAs, but the specifics of 

how miRNAs participate in the regulation of p53 signaling and what they contribute to the role 

of p53 as a tumor suppressor remain largely elusive. 

In miRNA-based networks, the edges are regulatory interactions between miRNAs and target 

mRNAs. These interactions are mediated by sequence complementarity and therefore are 

susceptible to genetic variation in either the miRNA or the target site – the seed sequence of the 

miRNA and the complementary region in the target site are considered the largest determinants 

of the interaction. Variation in miRNA binding sites has been associated with numerous diseases, 

including Tourette Syndrome (Abelson et al. 2005), rheumatoid arthritis (Chatzikyriakidou et al. 

2010), lupus (Consiglio et al. 2011), psoriasis (Wu et al. 2011), Crohn’s disease (Brest et al. 

2011; Kulkarni et al. 2013), Parkinson’s disease (G. Wang et al. 2008), hypertension (Sethupathy 

et al. 2007; Hanin et al. 2014), diabetes and obesity (Lv et al. 2008; Richardson et al. 2011), and 

multiple cancers (Ryan et al. 2015; Chin et al. 2008; Zu et al. 2013; Xiong et al. 2011; Pu et al. 

2013). In the context of p53 signaling (Okada et al. 2014), miR-34a regulates HDM4, a strong 

repressor of p53, creating a positive feedback loop in which high levels of miR-34a de-repress 

p53, which in turn transcriptionally up-regulates the expression of miR-34a. 
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Network edges (e.g., miRNA-gene target interactions) are central to the function and stability of 

biological pathways. Today, we have the unprecedented opportunity to dissect individual cells 

and pathways with single-nucleotide specificity using genome editing. The most widely adopted 

editing methodology to date is the bacterial type II clustered regularly interspaced short 

palindromic repeats (CRISPR) system consisting of the CRISPR-associated protein Cas9 derived 

from Streptococcus pyogenes (SpCas9), a DNA endonuclease, and a guide RNA, which directs 

the binding of Cas9 to a DNA target upstream of a protospacer adjacent motif (PAM). The 

CRISPR technology has revolutionized our ability to probe and edit the human genome in vitro 

and in vivo, through targeted gene disruption, insertion, deletion, single-nucleotide mutation, and 

chromosomal rearrangement (Mali et al. 2013; Rong et al. 2014; J.-F. Li et al. 2013). 

Furthermore, pooled sgRNA libraries can be used for versatile in vitro screening to investigate 

phenotypes of interest. Recent examples include screens identifying genes conferring drug 

resistance (Tim Wang et al. 2014), genes involved in metastasis (S. Chen et al. 2015), and long 

non-coding RNAs (lncRNAs) regulating human cancer cell growth (Zhu et al. 2016). Thus far, 

pooled sgRNA libraries have been applied to transcribed loci, which correspond to network 

nodes. Here, we selectively remove edges in the miRNA-p53 network, using a first-of-a-kind 

CRISPR-based screen. We demonstrate that removing edges sheds new light on pathways, in 

ways not achievable through node-based approaches, which may lead to novel and non-obvious 

therapeutic opportunities. 
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2.4 Materials and Methods 

2.4.1 Preparation of the CRISPR plasmid library 

The CRISPR plasmid library was prepared by following the lentiCRISPRv2 cloning protocol 

provided by Dr. Feng Zhang (Department of Biology, MIT). Briefly, for each identified sgRNA 

target (20 nt), two oligos were synthesized. The first oligo was designed as 5’-CACCG-(20 nt 

sgRNA target sequence)-3’. The second oligo was designed as 5’-AAAC-(20 nt reverse 

complement of the sgRNA target sequence)-C-3’. All 93 pairs of oligonucleotides were 

synthesized by Sigma-Aldrich using its customized 96-well plate format (Table A.9). Each well 

contained the pair of oligos for a specific sgRNA target (100 nmol for each). The oligo pairs 

were reconstituted using 100 μL of dH2O. For annealing the oligo pairs, 2 μL of each of the 

reconstituted oligo solutions was mixed with 2 μL of 10X T4 DNA Ligase Buffer (New England 

Biolabs, catalog number: B0202S) and 16 μL dH2O. The mixtures were heated at 95°C for 4 

minutes, then left at room temperature for 60 minutes. 1 μg of the lentiCRISPRv2 plasmid 

(Addgene, catalog number: 52961) was digested with 1 μL Esp3I (ThermoFisher Scientific, 

catalog number: ER0451) at 37°C for 1 hour and run out on an 1% agarose gel. The 12 kb band 

was extracted using the QIAquick Gel Extraction Kit (Qiagen, catalog number: 28704). 1 μL of 

each of the annealed oligo pairs was mixed with 9,904 μL dH2O. Subsequently, 1 μL of the oligo 

mixture was ligated with Esp3I-digested lentiCRISPRv2 using T4 DNA Ligase (New England 

Biolabs, catalog number: M0202S). To prepare the library, XL10-Gold Ultracompetent cells 

(Agilent, catalog number: 200314) were transformed and more than 300 individual clones were 

pooled. To confirm complexity, the library was subjected to Sanger sequencing (Genewiz) using 

primer P1 and analyzed using FinchTV (Geospiza). 
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2.4.2 General cloning protocols 

Q5 High-Fidelity 2X Master Mix (New England Biolabs, catalog number: M0492) was used for 

all polymerase chain reactions (PCR) according to the manufacturer’s protocol. All 

oligonucleotides were ordered from Sigma-Aldrich and are listed in Table A.9. Plasmids were 

constructed using PCR amplification, restriction digest (all restriction enzymes were ordered 

from New England Biolabs), and ligation with T4 DNA ligase (New England Biolabs, catalog 

number: M0202S). Gel purification and PCR purification were performed with QIAquick Gel 

Extraction (catalog number: 28704) and PCR Purification kits (catalog number: 28104) (Qiagen). 

Transformations were performed using NEB 5-alpha electrocompetent Escherichia coli (New 

England Biolabs, catalog number: C2987P). Minipreps were performed using QIAprep Spin 

Miniprep kit (Qiagen, catalog number: 27104). The final plasmids were confirmed by both 

restriction enzyme digestion and direct Sanger sequencing. To generate the Bcl-2 sgRNA a pair 

of oligonucleotides (Forward: 5’-CACCGAATCAGCTATTTACTGCCAA-3’, Reverse: 5’-

AAACTTGGCAGTAAATAGCTGATTC-3’) was annealed and cloned into the Esp3I-treated 

lentiCRISPRv2 plasmid following the same procedure for the lentiviral library construction 

The zeocin resistance gene/sgRNA1 and zeocin resistance gene/sgRNA2 sequences were 

prepared from two rounds of PCR. First, the fragments were PCR amplified from U6-

BCL2/sgRNA-PEF1 using primers P12 and P13 or P14. Second, the final fragments were PCR 

amplified from the first round PCR products using primers P12 and P15. Subsequently, the PCR 

products were cloned into the U6-BCL2/sgRNA-PEF1 plasmid using KpnI and EcoRI sites. 
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2.4.3 Cell culture  

HEK293 cells were acquired from American Type Culture Collection (ATCC, catalog number: 

CRL-1573). HCT116 wild-type and HCT 116 p53-/- cells were gifts from Dr. Michael A. White 

(University of Texas Southwestern Medical Center). Flp-In-293 cells were purchased from 

ThermoFisher Scientific (catalog number: R75007). All cell lines were maintained at 37°C, 100% 

humidity and 5% CO2. Cells were grown in Dulbecco’s modified Eagle’s medium (DMEM, 

Invitrogen, catalog number: 11965–1181) supplemented with 10% fetal bovine serum (FBS, 

Invitrogen, catalog number: 26140), 0.1 mM MEM non-essential amino acids (Invitrogen, catalog 

number: 11140–050), and 0.045 units/mL of penicillin and 0.045 units/mL of streptomycin 

(Invitrogen, catalog number: 15140). In addition, 100 μg/mL zeocin (ThermoFisher Scientific, 

catalog number: R25001) was used for maintaining the Flp-In-293 cells. To pass the cells, adherent 

cultures were first washed with Dulbecco’s phosphate-buffered saline (PBS, Mediatech, catalog 

number: 21-030-CM), then trypsinized with Trypsin-EDTA (0.25% Trypsin with EDTAX4Na, 

Invitrogen, catalog number: 25200) and finally diluted in fresh medium. 

 

2.4.4 Transient transfection 

For transient transfection of miRNA mimics, 200 μL of DMEM was mixed with 25 nM (final 

concentration) of miR-34a mimic (Qiagen, catalog number: MSY0000255) or miR-cel-67 mimic 

(Dharmacon, catalog number: CN-001000-01), in addition to 2 μL of RNAiMAX (Invitrogen, 

catalog number: 13778030). The mixture was added to each well of 12-well culture treated plastic 

plates (Greiner Bio-One, catalog number: 665180) and incubated at room temperature for 20 
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minutes. Adherent cell cultures were washed with PBS, then trypsinized with Trypsin-EDTA and 

finally diluted in fresh medium to the cell density of 200,000 cells/800 μL medium. 800 μL of the 

diluted cell suspension was then added to the well containing the miRNA-RNAiMAX complex.  

 

2.4.5 Generation of the CRISPR lentiviral screen library 

To generate the lentiviral vectors, HEK293T cells were grown to 50–70% confluence and then 

transfected with 3.3 μg of the CRISPR plasmid library, 3.3 μg of the pMD2-VSVG plasmid, and 

3.3 μg of the psPAX2 plasmid using 20 mL of JetPRIME (Polyplus, catalog number: 114-01). 24 

h later, the medium was removed and replenished with 5 mL of complete growth medium. In the 

next 3 days, the growth medium containing lentiviral vectors was harvested, and 5 mL of fresh 

complete growth medium was replenished. The final pooled 15 mL growth medium was 

centrifuged at 3,000 rpm for 15 min at 4°C to remove cell debris. The supernatant was filtered 

through a 0.45 μm filter, dispensed into 1–2 mL aliquots and stored at -80°C. Viral titers were 

determined using qPCR Lentivirus Titration Kit (ABMGood, catalog number: LV900) following 

manufacturer’s instructions. Briefly, 2 μL of viral stock was mixed with 18 μL of Virus Lysis 

Buffer and incubated at room temperature for 3 minutes. This viral lysate, together with positive 

control (STD1), positive control (STD2), and negative control (NTC), were subjected to qRT-

PCR. Finally, the titer of the viral stock was calculated based on the formula provided by the 

manufacturer and determined to be 2.07×107 IU/mL. To generate the LIB-WT and LIB-p53-/- 

stable cells, ~10 million cells were seeded onto a 10 cm petri dish. 16 hours later, cells were 

transduced using the lentiviral vectors at a multiplicity of infection (MOI) of 0.3. 48 hours post-

transduction, cells were treated with 0.5 μg/mL of puromycin (ThermoFisher Scientific, catalog 
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number: A1113802). Polyclonal stable cell line libraries were established after ~2 weeks of drug 

selection. 

2.4.6 Sanger amplicon sequencing 

To confirm the complexity of the LIB-WT and LIB-p53-/- cell line libraries, total genomic DNA 

was isolated from LIB-WT and LIB-p53-/- cells using the DNeasy Blood & Tissue Kit (Qiagen, 

catalog number: 69504). The cDNA fragments harboring the sgRNA target sequences were PCR 

amplified by using ~100 ng of the genomic DNA and primers P2 and P3. PCR conditions were 

one cycle of 30 seconds at 98°C, 40 cycles of 10 seconds at 98°C, 30 seconds at 60°C, and 30 

seconds at 72°C. The 181 bp product was then subjected to direct Sanger sequencing using 

primer P2 and analyzed using FinchTV (Geospiza). To determine editing efficiency, total 

genomic DNA was isolated from BCL2tgt-WT and BCL2tgt-p53-/- cells using the DNeasy Blood 

& Tissue Kit (Qiagen, catalog number: 69504). cDNA fragments harboring the miR-34a target 

site within the 3’UTR of BCL2 were PCR amplified by using ~100 ng of genomic DNA and 

primers P8 and P9. The 191 bp product was then subjected to direct Sanger sequencing using 

primer P9 and analyzed using FinchTV (Geospiza). 

2.4.7 Next generation sequencing 

To determine the relative abundance of the 93 sgRNA target sequences before and after the 

CRISPR screen, total genomic DNA was isolated from miR-34a-treated LIB-WT and LIB-p53-/- 

cells at days 0 and 6 using the DNeasy Blood & Tissue Kit (Qiagen, catalog number: 69504). 
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cDNA fragments harboring the sgRNA target sequences were PCR amplified by using ~100 ng 

of the genomic DNA and primers P10 and P11, which added the 5’-overhang adapter sequence 

(5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3’) and the 3’-overhang adapter 

sequence (5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3’) for subsequent 

Illumina NGS amplicon sequencing, which was performed at the Genome Sequencing Facility 

(GSF) at The University of Texas Health Science Center at San Antonio (UTHSCSA). To 

determine the editing efficacies of the BCL2 targets in the BCL2tgt-WT and BCL2tgt-p53-/- 

cells, total genomic DNA was isolated using the DNeasy Blood & Tissue Kit. cDNA fragments 

harboring the miR-34a target site within the 3’-UTR of BCL2 gene were PCR amplified by using 

~100 ng of the genomic DNA and primers P16 and P17, and subsequently subjected to Illumina 

NGS amplicon sequencing, with ~2 million reads generated for each sample. The relative 

abundances of all 93 sgRNA target sequences were calculated and represented as counts per 

million reads (CPM). Log-transformed values were used for presentation.  

 

2.4.8 Next generation sequencing data analysis 

Four genomic DNA samples (LIB-WT-D0, LIB-WT-D6, LIB-p53-/--D0, LIB-p53-/--D6) were 

subjected to the NGS amplicon sequencing. ~2 million individual reads were generated for each 

sample. Next, the 20-nt sgRNA sequences were extracted and matched to the 93 designed 

sgRNA sequences (valid reads) using the script NGS_processing.py. For all 4 samples, the valid 

reads account for more than 90% of the total reads. Next, the relative abundances of the 93 

sgRNA targets were calculated by dividing the number of the reads matching a specific sgRNA 

target by the number of the total valid reads (Table A.6). Subsequently, for each sgRNA target 
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sequence, the normalized log2(transformed counts per million reads) were calculated by 

evaluating log2(relative abundance of a specific sgRNA target sequence * 1,000,000 + 1), which 

was shown in Table A.7. Finally, the cell line samples without miR-34a treatment (LIB-WT-D0 

and LIB-p53-/--D0) were used as normalization controls and the normalized fold change for a 

specific sgRNA between day 6 (D6) and day 0 (D0) was calculated by evaluating 2^(normalized 

log2(transformed counts per million reads of day 6) – normalized log2(transformed counts per 

million reads of day 0)), which was shown in Table A.8. To examine the indels generated within 

the 3’-UTR of the BCL2 gene in BCL2tgt-WT and BCL2tgt-p53-/- cells, the top 10 most 

frequently detected sequences were extracted and aligned (Figure A.7). 

2.4.9 Apoptosis assay 

To determine the non-apoptotic cell population 72 hours post-transfection with 25nM of miR-

34a mimic, 1 mL of the original cell growth medium was transferred into a 15 mL conical tube. 

Cells were washed with 1 mL of PBS solution, which was also collected. Cells were trypsinized 

using 150 μL of trypsin-EDTA for 5 minutes at 37°C. Subsequently, the trypsin-EDTA was 

neutralized using 2 mL of the original cell growth medium/PBS washing solution mixture. The 

cells were harvested by centrifugation at 1,000 rpm for 5 minutes. The cell pellet was then re-

suspended in 1 mL PBS solution, then subjected to centrifugation at 1,000 rpm for 5 minutes. 

Apoptosis was quantified using the Dead Cell Apoptosis Kit with Annexin V Alexa Fluor™ 488 

& Propidium Iodide (PI) (Invitrogen, catalog # V13241), following manufacturer’s instructions. 

Briefly, the harvested cell pellets were re-suspended in 100 μL of 1X annexin-binding buffer 

before being stained with 1 μL propidium iodide (100 μg/μL) and 5 μL of stock annexin V, 
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Alexa Fluor™ 488 conjugate for 15 minutes in the dark. Stained cells were then diluted with 400 

μL of 1X annexin-binding buffer before subjected to flow cytometry. Excitation/emission 

wavelengths for the annexin V, Alexa Fluor™ 488 conjugate are 495/519 nm; for propidium 

iodide they are 533/617 nm.  

 

2.4.10 Cell viability assay 

Approximately 150,000 of the HEK293, Flp-In-293, FLP-EDIT1 and FLP-EDIT2 cells were 

seeded into 6-well plates in 2 mL of complete medium. FLP-EDIT1 and FLP-EDIT2 cells were 

maintained with 0.5 μg/mL puromycin. All cells were treated with 100 μg/mL zeocin. For each 

cell type, 6 wells were included so that one of the wells could be harvested and counted on each 

day (from day 1 to day 6 after seeding). Three independent experiments were performed. For live 

cell counting, the cell suspension was mixed with 0.4% Trypan Blue solution (Invitrogen, 

catalog number: 15250) at a 1:1 ratio (volume:volume). Unstained, live cells were then counted 

using a hemocytometer (Hausser Scientific, catalog number: UX-79001-00) under a light 

microscope. 

 

2.4.11 Quantitative reverse transcription-PCR (qRT-PCR) 

For measurement of BCL2 mRNA levels, total RNA was extracted using the RNeasy Mini Kit 

(Qiagen, #74104) 48 hours post-transfection. First strand synthesis was performed using the 

QuantiTect Reverse Transcription Kit (Qiagen, #205311). Quantitative PCR was performed 

using the KAPA SYBR FAST Universal qPCR Kit (KAPABiosystems, #KK4601), with 
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GAPDH levels used for normalization. Quantitative analysis was performed using the 2−ΔΔCt 

method. Fold-change values are reported as mean with standard deviation. Primers used for 

BCL2 were (P4) 5’-CATGCTGGGGCCGTACAG-3’ and (P5) 5’-

GAACCGGCACCTGCACAC-3’. Primers used for GAPDH were (P6) 5’-

AATCCCATCACCATCTTCCA-3’ and (P7) 5’-TGGACTCCACGACGTACTCA-3’. 

2.5 Results 

2.5.1 CRISPR-based screen for microRNA target editing 

We focus on five miRNAs – miR-34a, miR-145, miR-192, miR-194 and miR-215 – which are 

known to be directly or indirectly regulated by p53, and play elaborate roles in the p53 pathway 

(Navarro and Lieberman 2015; Sundaram et al. 2011; Feng et al. 2011). The target genes for 

each miRNA were compiled from miRTarBase (Chou et al. 2016). We selected targets that have 

been experimentally validated by multiple methods, including luciferase reporter assay, western 

blot, and quantitative RT-PCR (qRT-PCR) (Tables A1-A5). For each of the target genes, the 

miRNA target sites within its 3’UTR were determined using TargetScan (Agarwal et al. 2015). 

In total, 93 miRNA target sites were identified across the 71 target genes. The miRNAs and the 

71 target genes are the nodes of the derived network, while the experimentally verified and high-

confidence predicted interactions between the nodes, including interactions between miRNAs 

and target genes and between target genes themselves, are the network edges (Figure 2.1a). To 

selectively edit these edges, we employed SpCas9-mediated NHEJ, which typically introduces 

short insertions or deletions (indels) near its cutting site, and designed sgRNAs in which a PAM 
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is adjacent to the miRNA target seed sequence(s) in the 3’UTR (David P Bartel 2009) (Tables 

A1-A5). 

 

Next, we constructed a pooled CRISPR sgRNA library, containing both SpCas9 and sgRNA 

expression cassettes (Sanjana, Shalem, and Zhang 2014). Equimolar amounts of the 93 pairs of 

oligonucleotides were mixed and cloned into a lentiviral vector (lentiCRISPRv2). To confirm 

library complexity, we sequenced the resulting plasmid library. The resulting reads displayed 

consistent flanks with a 20-bp “noisy” sgRNA target sequence, matching the expected pattern 

from the sgRNA mixture (Figure A.1). Subsequently, the lentiviral library was used to infect 

HCT116 wild-type (WT) and HCT116 p53-/- cells at a multiplicity of infection (MOI) of 0.3, 

which has been shown (Shalem et al. 2014) to yield at most one integration of the sgRNA 

cassette in the majority of cells (Figure 2.1b). To verify the complexity of our resulting libraries 

in cells (named LIB-WT and LIB-p53-/-) was maintained, the sgRNA locations were amplified 

from genomic DNA and subjected to Sanger sequencing, which again displayed the expected 

pattern (Figure A.2). 
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Figure 2.1: p53-miRNA network and CRISPR-based edge screens. (a) Complexity of the p53-
miRNA network with nodes comprising the indicated miRNAs and their 71 target genes 
(detailed list provided in Table A.1-A.5) and edges based on experimentally verified and high-
confidence predicted direct interactions, derived using Qiagen Ingenuity Pathway Analysis. (b) 
CRISPR-based lentiviral libraries were prepared using the lentiCRISPRv2 system. The stably 
integrated CRISPR sgRNA constructs were recovered by PCR and the sgRNA targets were 
identified using NGS. 

In parallel, to test the efficacy of the viral system, we prepared two CRISPR lentiviral vectors 

that target the open reading frame (ORF) of the zeocin resistance gene (target 1: 5’-

TCGCCGGAGCGGTCGAGTTC-TGG; target 2: 5’-CTCACCGCGCGCGACGTCGC-CGG; 

PAM underlined), and stably integrated them into cell line Flp-In-293 (ThemoFisher Scientific) 

which harbors the zeocin resistance gene. As shown in Figure A.3, disruption of the zeocin 

resistance gene abolished resistance to zeocin (100 μg/mL) in the two resulting cell lines (FLP-

EDIT1 and FLP-EDIT2), compared to the parental Flp-In-293 cells. 

Using the established cell lines (LIB-WT and LIB-p53-/-), we focused on the role of miR-34a in 

the overall p53-miRNA network (Figure 2.1a). miR-34a is transcriptionally activated by p53 

and induces an anti-proliferative phenotype including senescence, cell cycle arrest at the G1 

phase, and apoptosis (Chang et al. 2007; Bader 2012). In turn, over-expression of miR-34a 
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increases p53 protein level and stability (Navarro and Lieberman 2015). Importantly, our 

established cell lines (LIB-WT and LIB-p53-/-) do not produce miR-34a (Figure A.4), and can 

therefore be considered to lack the miR-34a node. The miR-34a targets and target sites are still 

present, however, and therefore the addition of miR-34a to these cells re-establishes the miR-34a 

network. Compared to baseline miR-34a expression there is a 71-fold increase in mature miR-

34a levels 48 hours post-transfection. 

 

We adopted a growth competition assay mediated by ectopic exposure to miR-34a mimics. 

miRNA mimics are chemically synthesized double-stranded RNA molecules that when 

transfected into a cell behave similar to a mature endogenous miRNA, regulating the same 

mRNA (and non-mRNA) targets through the same interactions as the endogenous miRNAs. We 

treated both cell lines (LIB-WT and LIB-p53-/-) to 25 nM of miR-34a mimic for 6 days. Cells 

were harvested at day 0 (before miRNA mimic transfection) and at day 6. For each sample, 

sgRNA constructs were amplified from genomic DNA and subjected to NGS amplicon 

sequencing to assess the relative abundance for each of the 93 sgRNA target sequences (Tables 

A.6-A.7). The most enriched or depleted sgRNA targets, defined by fold-changes between day 6 

and day 0 larger than 10, were identified for both LIB-WT and LIB-p53-/- cells (Figure 2.2, 

Table A.8).  

 

Intriguingly, RBX1 (RING-box protein 1), a RING subunit of SCF (Skp1, Cullins, F-box) E3 

ubiquitin ligases, was highly enriched in both cell lines. Although not a direct target of miR-34a, 

over-expression of RBX1 has been demonstrated to increase cancer cell survival (Jia and Sun 
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2009), and thus could serve as a general response mechanism to cellular stress induced by 

ectopic miR-34a. Additionally, for a subset of gene targets, we observed differential response to 

miR-34a mimic between the LIB-WT and LIB-p53-/- cells (Table A.8). For example, the sgRNA 

targeting the anti-apoptotic gene BCL2 was enriched in the LIB-p53-/- cells after miR-34a mimic 

transfection while no enrichment was observed in the LIB-WT cells (Table A.9). 

2.5.2 Node perturbations versus edge edits in biological networks 

Our edge editing approach revealed (Figure 2.2a) several clones that are enriched or depleted 

after prolonged exposure to ectopic miR-34a. To assess the impact of edge removal (through 

ablation of miRNA:target interactions) we focused on BCL2, a gene that shows differential 

expression in response to miR-34a treatment between the two cell lines (Figure 2.2b) and is 

known to be involved in cell survival (Cory and Adams 2002). 
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Figure 2.2: High-throughput editing of edges with CRISPR libraries in (a) HCT116p53WT 
(LIB-WT) and (b) HCT116p53-/- (LIB-p53-/-) cells. The sgRNA targets showing the highest 
fold changes (> 10) after 6 days treatment of 25nM with miR-34a mimic are shown, with 
positive values indicating enrichment and negative values indicating depletion. 

Returning to the HCT116 wild-type (WT) and HCT116 p53-/- cells, we removed the miR-34a 

target site from the BCL2 locus. We prepared a single sgRNA construct designed against the 

BCL2 3’UTR and established stable cell lines (BCL2tgt-WT and BCL2tgt-p53-/-) using the same 

viral delivery system. Sanger and NGS sequencings of PCR products spanning the sgRNA target 

site showed that edits (indels) occurred immediately upstream of the PAM (Figure A.6-A.7) in 

both cell lines. Additionally, we compared the   sgRNA sequence targeting BCL2 (5’-

AATCAGCTATTTACTGCCAAAGG-3’, Table A.1) against the human genome, confirming 

BCL2 as the unique target and indicating that non-specific targeting by this sgRNA should be 

minimal. 
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Treating delivery of ectopic miR-34a mimic as perturbation of a network node and removal of 

the miR-34a/BCL2 interaction as perturbation of a network edge (Figure 2.3a), there are four 

possible combinations (node and edge present/absent). When miR-34a levels are low (i.e., the 

node is absent) the presence or absence of the edge does not impact survival (Figure A.8) of 

either cell line. 

In the context of node perturbation, the introduction of ectopic miR-34a in wild-type cells 

induces apoptosis (Figure 2.3b right panel and Figure A.9; cell viability is 87.6% without the 

miR-34a node, and 71.6% with the miR-34a node; p = 0.006). Similar changes were observed in 

p53-/- cells (Figure 2.3b left panel and Figure A.9; cell viability is 86.1% without the miR-34a 

node, and 80.0% with the miR-34a node; p = 0.002). In this case, perturbing the miR-34a node 

results in the same behavior for both p53 wild-type and p53-/- cells. 

In the context of edge perturbation, the response of the cell lines to ectopic miR-34a is sensitive 

to the presence of the miR-34a/BCL2 edge. Specifically, removing the ability of miR-34a to 

regulate BCL2 in the p53-/- cells induces apoptosis (Figure 2.3b left panel and Figure A.9; cell 

viability is 84.8% without the miR-34a/BCL2 edge, and 80.0% with the miR-34a/BCL2 edge; p 

= 0.015), while no such phenotypic changes are observed in p53 WT cells (Figure 2.3b right 

panel and Figure A.9; cell viability is 72.0% without the miR-34a/BCL2 edge, and 71.6% with 

the miR-34a/BCL2 edge; p = 0.900). We note that the same conclusions can be drawn when 

quantifying the early- or late-apoptotic cells (Figure A.10). 
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Figure 2.3: Growth competition analysis after ectopic miR-34a delivery using node vs. edge 
approaches. (a) Schematic illustration of node vs. edge analysis. Ectopic miR-34a represents a 
network node and the miR-34a/BCL2 interaction represents a network edge. (b) The node-based 
approach shows that addition of the miR-34a node induces apoptosis in both p53 WT and 
deficient cells. In contrast, the edge-based approach reveals that introduction of the miR-
34a/BCL2 edge induces apoptosis only in the p53-deficient cells and not in p53-WT cells. 

To further explore the response to miR-34a in BCL2tgt-WT cells, we quantified expression of 

the BCL2 mRNA in response to miR-34a mimics using qRT-PCR. As expected, miR-34a 

suppresses the expression of BCL2 mRNA in the WT and p53-/- cells by 55% and 40%, 

respectively (Figure A.11). In the BCL2tgt-p53-/- cells, ectopic miR-34a has a minimal effect on 

BCL2 mRNA level (95% compared to the control-treated sample; p = 0.71). In the BCL2tgt-WT 

cells, ectopic miR-34a results in a significant down-regulation of BCL2 expression (62% 

compared to the control-treated sample; p = 0.028), possibly due to additional p53-miR-34a 

regulatory mechanisms. 

2.6 Discussion 

Biological networks consist of nodes and the interactions between them (edges). Conventional 

screening methods remove one node at a time, disrupting all edges connected to that node, and 

therefore producing a relatively blunt effect. An inhibitor that perturbs or removes a single 
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node yields diverse and systemic changes in the whole network through both direct and indirect 

connections (Kang et al. 2015), which may explain the heterogeneity observed with single-

molecule associated therapeutics. 

Our approach reveals edge-specific effects related to the pro-apoptotic p53 and anti-apoptotic 

Bcl-2 proteins, focal nodes of apoptotic signaling. Normally, p53-dependent inhibition of Bcl-2 

and induction of BAX, PUMA and NOXA overcome the anti-apoptotic threshold set by Bcl-2 

family members. Conceivably, the difference in apoptosis observed between the BCL2tgt-WT 

and BCL2tgt-p53-/- cells treated with miR-34a mimics (Figure 2.3b) may be explained by the 

presence of wild type p53-dependent upregulation of PUMA or NOXA in p53 WT cells and not 

in p53-/- cells. Additionally, p53 could disrupt the binding of POU4F1 (POU Class 4 Homeobox 

1) to the promoter of BCL2 and thus indirectly down-regulate BCL2 expression (Figure A.11).
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CHAPTER 3 

IMPACT OF VARIABILITY IN CELL CYCLE PERIODICITY 
ON CELL POPULATION DYNAMICS  

3.1 Author contributions 

This work was completed alongside Tyler Quarton (TQ) and Leonidas Bleris (LB). Chance 

Nowak (CN) performed the experiments. CN, TQ, and LB analyzed the data and developed the 

models. CN, TQ, and LB wrote the manuscript. LB supervised the project. 

3.2 Abstract 

The cell cycle consists of a series of orchestrated events controlled by molecular sensing and 

feedback networks that ultimately drive the duplication of total DNA and the subsequent division 

of a single parent cell into two daughter cells. The ability to block the cell cycle and synchronize 

cells within the same phase has helped understand factors that control cell cycle and the 

properties of each individual phase. Intriguingly, when cells are released from a synchronized 

state, they do not maintain synchronized cell division and rapidly become asynchronous. The 

rate and factors that control cellular desynchronization remain largely unknown. In this study, 

using a combination of experiments and simulations, we investigate the desynchronization 

properties in cervical cancer cells (HeLa) starting from the G1/S boundary following double-

thymidine block. Propidium iodide (PI) DNA staining was used to perform flow cytometry cell 

cycle analysis at regular intervals of 8 hours, and a custom auto-similarity function to assess the 

desynchronization and quantify the convergence to asynchronous state. In parallel, we developed 
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a single-cell phenomenological model the returns the DNA concentration across the cell cycle 

stages and fitted the parameters using experimental data. Simulations of population of cells 

reveal that the cell cycle desynchronization rate is primarily sensitive to the variability of cell 

cycle duration within a population. To validate the model prediction, we introduced 

lipopolysaccharide (LPS) to increase cell cycle noise. Indeed, we observed an increase in cell 

cycle variability under LPS stimulation in HeLa cells, accompanied with an enhanced rate of cell 

cycle desynchronization. Our results show that the desynchronization rate of artificially 

synchronized in-phase cell populations can be used a proxy of the degree of variance in cell 

cycle periodicity, an underexplored axis in cell cycle research. 

3.3 Introduction 

Cell division is traditionally described as a general process divided into two phases, the 

interphase and mitosis (cell division). Interphase is further divided into three subphases; Gap 1 

phase (G1) in which the cell has a DNA content of 2N, synthesis phase (S) in which the cell’s 

DNA content is greater than 2N but less than 4N, and Gap 2 phase (G2) in which the cell’s DNA 

content is 4N upon completion of synthesis. Early observations into cell cycle progression 

showed that the timing of G1 phase is highly variable not just between cell types but also 

between cells within a monoclonal population, and that this variable length directly impacts the 

heterogeneity observed in clonal populations for cell cycle periodicity (Smith and Martin 1973; 

Prescott 1968). Additionally, a critical point in the cell cycle was discovered (Temin 1971), in 

which cells were found to be committed to DNA synthesis independent of environmental factors. 

Moreover, it was later demonstrated that under various suboptimal nutritional conditions, cell 
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cycle progression could be arrested at the G1/S boundary, and escapement into S-phase could 

only occur once suitable nutritional needs were restored (Pardee 1974). The boundary was 

termed the restriction point (R-point), whereby cells could enter a lower metabolic rate (a 

quiescent state) to remain viable until adequate nutrition is restored allowing the necessary 

constituents to be present in suitable amount to enable DNA synthesis (Pardee 1974). Ultimately, 

it was shown that the high variability of G1 phase duration can be attributed to a cell’s ability to 

overcome the restriction point (Zetterberg and Larsson 1985).  

Investigations into cell cycle progression and regulation often start with the need to synchronize 

cells within a population to the same cell cycle phase (Schorl and Sedivy 2007; PK, A, and SF 

2001). One common approach to cell cycle synchronization is the double-thymidine block that 

interferes with nucleotide metabolism resulting in an inability of the cells to synthesize DNA 

causing a cell cycle arrest at the G1/S boundary (Bjursell and Reichard 1973; G. Chen and Deng 

2018). Interestingly, when synchronized cell populations are released from cell cycle arrest, they 

quickly desynchronize, and reach a state of “asynchronicity,” whereby the individual cell cycle 

phases stabilize into fixed percentages within the overall population. Indeed, simply sampling 

cells from an asynchronously growing in vitro cell culture will reveal (Figure 3.1a) the fixed 

percentages for the three phases of interphase (G1, S, and G2). Additionally, cells can be pulse-

labeled with bromodeoxyuridine (BrdU) to create a semi-synchronous cell population in which 

only cells in actively progressing through S-phase incorporate the thymidine analog BrdU into 

their genome, and thus the original pulse-labeled population can be tracked overtime by using a 

fluorescently conjugated BrdU antibody (Chiorino et al. 2001). These observations again showed 
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that the initially pulse-labeled cells progressed synchronously through the cell cycle for some 

time before quickly desynchronizing and resorting back to an asynchronous DNA distribution 

profile.   

The inherent variability of cell cycle duration between identical cells may be accounted for by 

considering sources of cellular noise. In other words, the variability between cellular constituents 

such as signaling and transcriptional factors, along with the biochemical stochasticity of 

molecular interactions do likely propagate to the phenotypic level and may be responsible for 

varying timing events that dictate cell cycle progression. For example, signalling factors in a 

tumor microenvironment that confer a higher degree of intercell variability contribute to tumor 

cell heterogeneity and pathology (Nguyen et al. 2016; O’Duibhir et al. 2014). Therefore, it is 

important to examine the implications of cellular noise to cell cycle periodicity. 

In this report, we investigated the rate of cell cycle desynchronization by measuring the change 

in the DNA distribution of a population of cells over time. To this end, we measured the single-

cell DNA concentration of a population of cells as they transition from an initial state of cell 

cycle synchrony, where cells are experimentally locked into the G1/S boundary, to a state of 

asynchrony. We used statistical tools to quantify the dynamic change in the DNA probability 

density function over time from an initial synchronized cell population. Subsequently, we 

developed a mathematical model to simulate at single-cell level the DNA concentration as the 

cell transitions through cell cycle states, and finally, experimentally validated our model 

prediction. More specifically, our model revealed that cell cycle desynchronization rates were 
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particularly sensitive to the variability of cell cycle duration within a population. With this 

insight, to validate the results we introduced external noise in synchronized cells using 

lipopolysaccharide and, indeed, confirmed an increase in cell cycle desynchronization. 

Considering the ubiquitous role of the cell cycle properties to cell health, the implications of our 

work extend to numerous fronts. 

3.4 Materials and Methods 

3.4.1 Cell culturing and synchronization 

HeLa cells were grown in Gibco DMEM supplemented with 10%FBS, 1X PenStrep, 2mM 

glutamine, and 1X Gibco NEAA and grown at 37°C with 5% CO2. 50,000 cells were seeded per 

well in 6 well plates. 24 hours post-seeding cells were treated with 2mM of thymidine for 19 

hours after which the cells were washed with 1X PBS and given fresh complete media to release 

from the first thymidine block. The cells then incubated for 9 hours before receiving a second 

dose of 2mM of thymidine for 15 hours. Cells were washed with 1X PBS to remove thymidine 

before given fresh media to continue to grow unimpeded. Cells harvested at t=0 were collected 

immediately following the second PBS wash. Additional wells were harvested every 8 hours for 

88 hours. Asynchronous cells were harvested at same time as synchronized cells for each time 

point. Cells were harvested by washing with PBS, detached from the well with trypsin-EDTA 

(0.25%) for 3 min at 37°C then quenched with fresh complete media. Harvested cells were 

pelleted at 1000rpms for 5 min at room temperature. The supernatant was removed and the cell 

pellet was resuspended in 1X PBS, then pelleted again at 1000rpms for 5 min at room 
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temperature. The supernatant was removed and the cell pellet was resuspended in 1 mL of 70% 

ethanol and stored at 4°C for a minimum of 24 hours to fix the cells. LPS derived from E. coli 

0E111 was reconstituted in PBS without Mg2+ or Ca2+ at a concentration of 1mg/mL. LPS 

solution was added directly to the cell culture media after replacing with fresh media initiating 

the release from the double thymidine arrested state.  

3.4.2 Propidium iodide staining 

After fixation, cells were pelleted by centrifuged at 1000 rpms for 5 minutes at room 

temperature. The fixing solution was aspirated off the cell pellet, and resuspended in 1X PBS. 

Cells were counted for each sample, and then normalized to the lowest cell count for uniform 

propidium iodide (PI) staining across samples. The PI staining procedure was done according to 

manufacturer’s directions (Propidium Iodide Flow Cytometry Kit, cat# ab139418).  

3.4.3 Cell cycle phase analysis 

Stained cells were subjected flow cytometry using a BD LSRFortessa™ flow cytometer. PI 

fluorescence was excited with a 561nm laser and emission was detected using a 610/20 nm band-

pass filter. Assignment of cell cycle phases were performed using the univariate modeling via the 

Dean-Jett-Fox algorithm with FlowJo 10.7.1. 



50 

3.4.4 Lentiviral HeLa transduction for H2B-FT expression 

The fluorescent tracker sequence was obtained from addgene (#157671) and cloned using 

primers P1: gaagagttcttgcagctcggtgac and P2: cagtagggtaccccggaattagatcgatctctcgacatcc. The 

amplicon was digested with restriction enzymes BsiWI and KpnI and inserted into the 

LentiCRISPRv2 (addgene #52961) backbone. The resulting plasmid was transfected into 

HEK293T cells along with pMD-VSVG and psPAX2 plasmids to generate viral particles that are 

released into the media. The media was aspirated two days post-transfection, and replenished 

with 5 mL of fresh media every day for three days. The 15 mL of harvested viral-containing 

media was passed through a 0.45 μm filter and dispensed into 1 mL aliquots. 250 μl was used to 

transduce HeLa cells, and 0.5μg/mL of Puromycin was used to select for integrated clones for 7 

days. 

3.4.5 Time-lapse microscopy 

Images were collected every 20 min for 72 hours using Hamamatsu camera attached to the 

Olympus IX81 microscope at 10x magnification. Cells were maintained at 37°C and 5% CO2. 

The exposure time was 250 ms for Brightfield and 100ms for TexasRed using Chroma filter 

ET560/40x (excitation) and ET630/75m (emission). 

3.4.6 Modeling and simulations  

All models and simulations were developed and tested in Mathematica. 
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3.5 Results 

3.5.1 Thymidine-based arrest and desynchronization 

The exogenous introduction of excessive thymidine into cells interrupts DNA synthesis, arresting 

the population of cells in the G1/S-phase transition. Upon release, the population of cells are 

permitted to reenter their respective cell cycles. Ultimately, the population of cells will become 

asynchronous with respect to their cell cycles, yielding a PI fluorescent profile. The PI 

distributions dynamically change as the population desynchronizes.  

After cells were synchronized via double-thymidine block, timepoints were collected every 8 

hours for a total of 88 hours. Both asynchronous (untreated) cells (Figure 3.1b) and 

synchronized (Figure 3.1c) were subjected propidium iodide staining and flow cytometry 

analysis. Notably, we observed near full synchronization of cells as judge by the first few 

timepoints (Figure 3.1c) in the synchronous population. While inhibition of DNA synthesis can 

cause replicative errors due to stalled replication forks, resulting in quiescence or cell death, we 

did not observe neither an increase in cell death nor any quiescent populations, which would 

manifest as a sub-G1/G1 population at timepoint 8. Each PI histogram was subjected to cell cycle 

phase classifier (Watson, Chambers, and Smith 1987; Fox 1980; Dean and Jett 1974) with the 

cell cycle phase distribution displayed as percentages of the total population. As we observe in 

Figure 3.1d, the synchronized population eventually reaches an asynchronous distribution. The 

residual plots of the DNA distribution of the synchronous population against the asynchronous 

population ultimately converges to within 8.4%, 1.5%, and 6.1% of G1, S, and G2, respectively 

(Figure B.1). 
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Figure 3.1: Cell cycle desynchronization via double thymidine block and release. a) Cell cycle 
phases as indicated by cell DNA content and approximate phase distribution in an asynchronous 
population. b) Fluorescent profile of propidium iodide (PI) stained cells during asynchronous 
growth from t=0 to t=88. c) Fluorescent profile of PI-stained cells following G1/S 
synchronization by double thymidine block from t=0 to t=88. d) Percentages of cells in a given 
cell cycle phase at a given time point; asynchronous cell growth in green and desynchronous cell 
growth in red. The cell cycle phase percentages for each time point were determined via the 
Dean-Jett-Fox model. 
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3.5.2 Quantifying cell synchronicity 

The DNA dynamics during interphase of a population of cells is defined by the population’s 

collective distribution of its DNA at a given time. If all the cells within a population are 

undergoing interphase synchronously, time separated measurements of the population’s DNA 

distribution will accordingly change in time. This would mean that the DNA distribution of a 

population of cells will be different for each time measurement. Conversely, if the population’s 

cells are independently progressing through interphase, temporal differences between the 

population’s DNA distribution become indistinguishable, rendering its DNA distribution into a 

static steady-state (Figure 3.1a).  

With this in mind, we can create a set of assumptions: Let {𝐗𝐗𝑡𝑡} denote sets of observations 

generated from an evolving probability distribution at any point in time 𝑡𝑡. We define the auto-

similarity function (ASF) between times 𝑡𝑡1 and 𝑡𝑡2 as 

𝚺𝚺𝐗𝐗𝐗𝐗(𝑡𝑡1, 𝑡𝑡2) = max
−∞ < 𝑥𝑥 < ∞  �𝐹𝐹𝐗𝐗𝑡𝑡1(𝑥𝑥) − 𝐹𝐹𝐗𝐗2(𝑥𝑥)� + max

−∞ < 𝑥𝑥 < ∞  �𝐹𝐹𝐗𝐗2(𝑥𝑥) − 𝐹𝐹𝐗𝐗𝑡𝑡1(𝑥𝑥)�

where  𝐹𝐹𝐗𝐗𝑡𝑡 denotes the cumulative distribution function of a given set of observations 𝐗𝐗𝑡𝑡. 

Essentially, the auto-similarity function is the Kuiper two-sample test statistic, which measures 

the similarity between two sets of data, performed on a single, time evolving variable 𝐗𝐗𝑡𝑡 rather 

than two distinct variables. The Kuiper test statistic is rotation-invariant, making its application 

insensitive to the “starting points” of the data to be compared. As the DNA content measured in 

our cell populations cycle between 2N to 4N, the data collected from our cell cycle experiments 
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are inherently cyclical, making the use of a rotation-invariance test statistic ideal. If the evolving 

distribution eventually converges to a steady-state, we expect 𝚺𝚺𝐗𝐗𝐗𝐗(𝑡𝑡𝑖𝑖, 𝑡𝑡𝑖𝑖+1) → 0 for some 

successive time measurements 𝑡𝑡𝑖𝑖 and 𝑡𝑡𝑖𝑖+1 as 𝑡𝑡 → ∞, where a value of 0 indicates full 

asynchrony. Conversely, we interpret non-zero, positive evaluations of the ASF to indicate 

dissimilarity, where, in the case of a cyclically evolving sets of data, evidence that the underlying 

probability distribution is in a transient state, where a maximum value of 1 indicates full 

synchrony (Figures 3.2a). 

In our experiments, {𝐗𝐗𝑡𝑡} is variable DNA fluorescently measured by flow cytometry in PI-

stained populations of cells, where 𝑡𝑡𝑖𝑖 = {0, 8, 16, … ,88} indicates the hour corresponding to the 

𝑖𝑖𝑡𝑡ℎ measurement of data collected with respect to their release from cycle arrest via double 

thymidine block at 𝑡𝑡0 = 0. We expect that the ASF evaluation of times 𝑡𝑡0 and 𝑡𝑡1 to be the 

greatest as the population of cells synchronously progress through the cell cycle, resulting in 

markedly dissimilar distributions of DNA in observation sets 𝐗𝐗𝑡𝑡0 and 𝐗𝐗𝑡𝑡1.  

As the individual cells within a population variably progress through the cell cycle, we expect 

population DNA distributions to diverge, eventually settling to the classic asynchronous 

distribution profile (Figure 3.1a-d), where successive measurements of a no-longer-evolving 

variable are expected to be near-zero. We calculated the ASF between each temporally 

successive pair of data for both the synchronized cell population and the asynchronous control 

population (Figure 3.2c). We found that the ASF converges to a minimum of 0.127 from an 

initial value of 0.869, following a logistics curve. We observed an expected linear ASF from the 
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asynchronous population with slight oscillations, most likely emerging from unintended loss of 

mitotic cells during harvesting (mitotic shake off) positive slope (Figure 3.2c). 

Figure 3.2: Rate of desynchronization using Kuiper Test Statistic. a) Pairwise comparison of PI 
CDFs for each time point (data shown is from synchronized cells). b) Visual representation of 
Kuiper Test Statistic determination between time points. c) Rate of desynchronization between 
asynchronous (green) and synchronized (red) Hela cells. Over time (~60 hours) synchronized 
cells being to reach an asynchronous state 

3.5.3 A single cell interphase model 

Cell cycle progression is intimately linked to a cell’s dynamically changing DNA content. 

Temporal transitions from a cell’s state of 2N to 4N define cell cycle phases, where G1, S, and 
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G2, correspond to genetic quantities of 2N, 2N+, and 4N, respectively, where the event of mitosis 

restarts the cell cycle for two progeny cells. Deterministically, we model a single cell’s dynamic 

DNA content as 

𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝑑𝑑𝑑𝑑𝑑𝑑0 +
𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑑𝑑𝑑𝑑𝑑𝑑0

1 + 𝑒𝑒−𝛽𝛽(𝑡𝑡−𝑠𝑠)  𝑡𝑡0 ≤ 𝑡𝑡 ≤ 𝜏𝜏 

where 𝑑𝑑𝑑𝑑𝑑𝑑0 is the initial genetic content in phase G1, 𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum genetic content 

after synthesis, 𝛽𝛽 parameterizes the synthesis rate, 𝑠𝑠 is the time in which the cell is halfway 

through synthesis and determines the periods of G1, S, and G2, and 𝑡𝑡 is time. We assume that 

synthesis faithfully duplicates the genetic content, where 𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 2 𝑑𝑑𝑑𝑑𝑑𝑑0, thus reducing the 

above equation to: 

𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝑑𝑑𝑑𝑑𝑑𝑑0 �1 +
1

1 + 𝑒𝑒−𝛽𝛽(𝑡𝑡−𝑠𝑠) �       𝑡𝑡0 ≤ 𝑡𝑡 ≤ 𝜏𝜏 

We can further reduce Eq. 2 by representing 𝛽𝛽 and 𝑠𝑠 as functions of the cycle period 𝜏𝜏 as: 

𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝑑𝑑𝑑𝑑𝑑𝑑0 �1 +
1

1 + 𝑒𝑒−24�𝑡𝑡−
2𝜏𝜏
3 �

 �     𝑡𝑡0 ≤ 𝑡𝑡 ≤ 𝜏𝜏 

where we assume that the duration of S is ~1/3 of the total cycle period. Accordingly, this single 

cell model captures DNA concentration during interphase using two parameters, the initial DNA 

concentration and the cell cycle period (Figure 3.3a).  

To study the impact of the cell cycle period to the rate of asynchrony we use the Error-in-

Variables (EIV) modeling approach to add noise to the cycle periodicity:  

𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) = (𝑑𝑑𝑑𝑑𝑑𝑑0 + 𝜀𝜀𝑑𝑑𝑑𝑑𝑚𝑚0)�1 +
1

1 + 𝑒𝑒−24�𝑡𝑡−
2𝜏𝜏+𝜀𝜀𝜏𝜏
3 �

 �     𝑡𝑡0 ≤ 𝑡𝑡 ≤ 𝜏𝜏 
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where 𝜀𝜀𝜏𝜏~𝑁𝑁(0,𝜎𝜎𝜏𝜏2) is a normally distributed error term with variance 𝜎𝜎𝜏𝜏2 and 𝜀𝜀𝑑𝑑𝑑𝑑𝑚𝑚0~𝑁𝑁(0,𝜎𝜎𝑑𝑑𝑑𝑑𝑚𝑚0
2 ) 

is additionally added to capture fluorescent variability seen as broadened peaks around G1 and G2 

(Figure 3.1a). We simulate a population of 1,000 cells, each starting synchronously at G1 with 

extrinsically varying initial DNA content and cell cycle periodicity, as they repetitively progress 

through interphase (Figure 3.3b). We then take temporal slices of the DNA content of the 

population of cells and plot the populations distribution of DNA content intermittently (Figure 

3.3b-c). We finally apply ASF to the slices in a pairwise manner as done in the experiment 

(Figure 3.2). An observation from these simulations is that a Poisson distributed error term for 

variance, as opposed to normal distribution, did not accurately capture the DNA dynamics of 

desynchronized cells using our ASF analysis. 

Importantly, we found that only by including a variance term to cell cycle periodicity were we 

able to capture population dynamics that recapitulates the experimental results. Moreover, our 

model revealed that increasing the magnitude of variance resulted in increasing rates of 

desynchronization (Figure B.2). In order to further evaluate our model’s prediction, we sought to 

experimentally introduce an additional source of noise that might impact the overall variance of 

cell cycle duration. 
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Figure 3.3: Single cell model of desynchronization. a) DNA synthesis is captured by the 
Gaussian error function where the relative durations of cycle phase are tunable. b) Cell cycle 
pace inheritance following a Gaussian distribution. c) Simulated data of PI staining of multiple 
lineages with normally distributed initial gene content. d) Desynchronization rate of simulated 
cell population. 

3.5.4 Impact of LPS on cell cycle duration variability  

Lipopolysaccharide (LPS) is a major component of the outer membrane of Gram-negative 

bacteria that can bind to TLR4 receptors initiating a signaling cascade that ultimately results in 

NFκB translocation from the cytoplasm to the nucleus, where as a transcription factor, it initiates 

the upregulation of inflammation regulatory genes (Y. Wang et al. 2014; Savinova, Hoffmann, 
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and Ghosh 2009; N et al. 2017). Additionally, NFκB activation can be induced by cytokines such 

as TNFα (Hayden and Ghosh 2014), which has been reported with contrasting roles, whereby 

NFκB induction is associated with both the activation of pro-survival genes as well pro-apoptotic 

genes (R. E. C. Lee et al. 2016). In addition to regulating inflammation signaling pathways, 

NFκB regulates major cell cycle regulatory factors (Bash, Zong, and Gélinas 1997; Ankers et al. 

2016; Ledoux and Perkins 2014; Kenter and Watson 1987). Interestingly, components of NF-κB, 

such as RelA, have shown to interact with key cell cycle regulators, such as E2F transcription 

factors that are crucial in controlling progression through the G1/S boundary (Ankers et al. 2016). 

We therefore hypothesized that the contrasting nature of LPS stimulation in HeLa cells would 

result in a greater variance in overall cell cycle duration. Accordingly, if LPS is a viable 

approach for introducing cellular noise we would expect the desynchronization rate to increase 

compared to untreated synchronized cells (Figure B.3). Thus, in order to determine if LPS 

simulation had any effect on cell cycle duration, we conducted a time-lapse experiment to track 

individual cells cell cycle duration. In order to have a better indication of relative position of 

each cell in relation to the cell cycle, we integrated a fluorescence tracker using lentiviral 

transduction that express the histone protein H2B fused to a fluorescent protein (H2B-FT) 

(Eastman et al. 2020). Upon expression, the H2B protein is incorporated into nucleosomes, 

which binds DNA, and therefore could more easily distinguish cells undergoing mitosis. Next, 

we treated asynchronously-growing HeLa cells with 1.0 μg/mL of LPS derived from E. coli. 

O111:B4, and monitored the duration of the cell cycle for individual cells with timelapse 

microscopy for 72 hours every 20 minutes (Figure B.4). We found that the overall variance was 
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higher in treated cells versus untreated cells with an accompanying increase in the mean duration 

23.7±4.73 and 21.7±3.42 hours, respectively (Figure 3.4a). Additionally, we also found that the 

addition of LPS appeared to enhance cell motility, as LPS treated cells showed an increase in 

overall cell displacement (Figure B.5), which supports the notion that LPS can induce epithelial-

mesenchymal transition via TLR4 signaling (Jing et al. 2012; H. Li et al. 2014; Cho et al. 2015).  

We next sought to test if the predictability of our simulation model with the values obtained from 

the time-lapse microscopy would result in an increased desynchronization rate under LPS 

stimulation. In order to compare multiple synchronous cell samples, we normalized each sample 

to its initial ASF value (𝐗𝐗𝑡𝑡0 − 𝐗𝐗𝑡𝑡8, Figure B.6). Upon inputting our new values obtained from 

the time-lapse microscopy, our model indeed predicted an increase in desynchronization when 

treated with LPS compared to the untreated sample (Figure 3.4b).  

Given that we were able to increase the variance of cell cycle duration with LPS, and that our 

simulation model predicted an increase in desynchronization due to increased cell cycle duration 

variance, we next tested if we could experimentally obtain higher rates of desynchronization 

using the previous approach of PI-staining time-separated synchronized cells. Therefore, we 

again synchronized HeLa cells via the double-thymidine block method, and immediately 

following release of the arrested cells, we treated with varying concentrations of LPS (0.0, 0.1, 

0.5, 1.0 μg/mL) and collected timepoints every 8 hours for 88 hours. We then analyzed the PI-

stained cell populations via FlowJo cell cycle classifier that uses the Dean-Jett-Fox algorithm, 

and while it was not able to detect substantial changes in the overall phase distributions at the 
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early timepoints (0-32 hours), the effects of LPS were more evident at the later timepoints (40-88 

hours) (Figure 3.4c). Interestingly, our ASF analysis methodology (Figure B.7-B.8) was able to 

differentiate the impact on cell cycle desynchronization at all timepoints tested for all LPS 

concentrations, with each increase in LPS having a greater impact in cell cycle 

desynchronization (Figure 3.4d).   
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Figure 3.4: Noise variation of cell periodicity. a) Representative images of time lapse 
experiments. Once the septum (white arrow) is visible following cytokinesis, the cell cycle 
duration recording begins for both daughter cells (yellow and blue arrow). Both cells being cell 
cycle at Frame 2, and both daughter cells can be seen progressing through interphase in Frames 
26-26-28. By the end of Frame 57, the first daughter cell completes the cell cycle and record
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ends. The second daughter cell (yellow arrow) had a substantially longer cell cycle duration, 
which concluded at the end of Frame 84, thus demonstrating the inherent variability of cell cycle 
duration between identical cells within the population. b) Asynchronous cells were wither treated 
with 1 μg/mL of LPS or left untreated and cell cycle duration was recorded as described in 
Figure 4a. 100 cells were tracked for each condition and the population mean and standard 
deviation of cell cycle duration is shown. c) Values obtained from time lapse microscopy for cell 
cycle mean and standard deviation were used in our model to predict the impact on cell cycle 
desynchronization. The model revealed the LPS administration should result in an increased rate 
of cell cycle desynchronization d) Cell cycle phase distribution of various LPS concentrations 
following cell cycle synchronization for 88 hours post release. e) Normalized ASF scores for 
LPS-treated desynchronizing cells. The asynchronous population was not normalized in order to 
capture the overall linear trend. 

3.6 Discussion 

The cell cycle and subsequent daughter cell division is a central facet of cell biology from 

development and cellular differentiation to disease initiation and progression. While the process 

is tightly regulated and robust in a single cell, across a population we observe significant 

variability in period. Each cell within a given population contains measurable variations in their 

cellular content and housekeeping genes (e.g., differences in their RNA polymerases, 

ribosomes). These variations impact the expression of genes in what is known as extrinsic noise 

(Quarton et al. 2020; M. B. Elowitz et al. 2002; Kang et al. 2020; Raser and O’Shea 2004; 

Swain, Elowitz, and Siggia 2002). Furthermore, the cellular machinery responsible for 

progressing a cell through its cycle is intrinsically noisy as well. These intra and inter-cellular 

differences cause an initially synchronously in-phase population of cells to diverge as each 

progresses independently through their life cycle at varying rates (Chao et al. 2019).  

Moreover, cell synchronicity is an essential aspect of mammalian biological homeostasis. The 

circadian rhythm is a molecular orchestrated process present in various tissues that synchronizes 
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biological outputs to the 24-hour day-night cycle (Patke, Young, and Axelrod 2019). It is 

composed of multiple master transcription factor regulators that are involved in robust feedback 

networks that enable these oscillatory functions is cells (Partch, Green, and Takahashi 2014). 

Importantly, cancer cells can become compromised with respect to these molecular actuators the 

enable cellular synchronization, and there is evidence that this disruption can enhance 

tumorigenesis (Sulli, Lam, and Panda 2019). For example, DNA repair mechanisms are tied to 

the circadian regulation (Sancar et al. 2010) and if these processes are disrupted it may lead to 

accumulating mutations and overall genome instability (Gery et al. 2006). Thus, understanding 

and modeling cell desynchronization at a single-cell level is a decisive approach to quantifying 

cellular changes that may impact oncogenesis (Barberis and Verbruggen 2017).  

Here, using a combination of simulations and experiments we show that the variability in cell 

cycle period directly impacts the rate of desynchronization in a population of cells. The next line 

of investigation will include studying the factors that contribute to this variability at a single cell 

level, and the distribution between intrinsic and extrinsic sources of noise. Finally, a key 

direction of research is not just on how such a tightly regulated process can rely on stochastic 

variations, but also how diseased states such as cancer cells, utilize noise and if noise itself can 

become a contributor to disease progression. More specifically an intriguing hypothesis is that 

cancer cells obtain benefit by having higher noise in cell cycle periodicity, which yields ultra-

slow and fast diving cells. Moreover, this hypothesis opens the path for potential means to 

exploit variability in cell cycle period for therapeutic purposes. 
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APPENDIX A 

SUPPLEMENTAL MATERIAL FOR CHAPTER 2 

Figure A.1: Confirming the complexity of the CRISPR plasmid library. The CRISPR plasmid 
library was subjected to Sanger sequencing using primer P1, resulting in a 20-nt “noisy” target 
sequence closely matching the expected pattern from the 93 sgRNA oligonucleotide mixture. 
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Figure A.2: Confirming the complexity of the CRISPR stable cell line libraries. The PCR 
fragments harboring the sgRNA constructs were amplified from the (a) WT-LIB and (b) KO-LIB 
cells by PCR and subjected to Sanger sequencing using primer P2, resulting in a 20-nt “noisy” 
sgRNA target sequence closely matching the expected pattern. 
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Figure A.3: Efficacy of the LentiCRISPRv2 system. Lentivirus was prepared targeting the open 
reading frame (ORF) of the zeocin resistance gene. On stable integration of these CRISPR 
constructs, the zeocin resistance cassette in the Flp-In-293 cells was effectively disrupted and the 
cells (FLP-EDIT1 and FLP-EDIT2) became sensitive to treatment with 100 μg/mL zeocin. 
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Figure A.4: Endogenous and ectopic miR-34a expression in HCT116p53 wild-type and p53-/- 
cells. Empty represents cells that were not transfected with anything. Negative control represents 
cells that were transfected with 25nM of a miRNA mimic derived from C. elgans (cel-miR-67). 
miR-34a levels were measured relative to the small nuclear RNA U6. 
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Figure A.5: High-throughput editing of edges with CRISPR libraries in (a) HCT116p53-/- (LIB-
p53-/-) and (b) HCT116p53WT (LIB-WT) cells. 34 sgRNAs corresponding to direct miR-34a 
targets are shown. After 6 days treatment with 25nM of miR-34a mimic, LIB-p53-/- cells showed 
an enrichment of the sgRNA targeting the miR-34a target site in the BCL2 3’UTR. 
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Figure A.6: Preparation of BCL2tgt-WT and BCL2tgt-p53-/- stable cells. Sanger sequencing 
results for PCR products harboring the miR-34a target sites within the 3’UTR of BCL2 in 
BCL2tgt-WT (left, upper panel) and BCL2tgt-p53-/- cells (left, lower panel) were included. 
Additionally, Sanger sequencing results for their corresponding parental cells (right, upper panel: 
HCT116p53WT; right, lower panel: HCT116p53-/-) at the same genomic location were included 
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Figure A.7: Alignment of wild-type and the most frequently detected indel sequences in BCL2tgt-
WT and BCL2tgt-p53-/- stable cells. NGS amplicon sequencing results for PCR products 
harboring the miR-34a target sites within the 3’UTR of BCL2 in BCL2tgt-WT and BCL2tgt-p53-

/- cells. 
. 
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Figure A.8: Cell survival after miR-34a/BCL2 edge removal. In both WT and p53-/- cells, the 
removal of miR-34a/BCL2 edge alone did not induce apoptosis.  
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Figure A.9: miR-34a-induced apoptosis in WT, p53-/-, BCL2tgt-WT and BCL2tgt-p53-/- cells. 
As the cell initiates apoptosis it flips phosphatidylserine (PS) from the inner leaflet of the cell 
membrane to the outer leaflet. Annexin V binds externalized PS, giving a positive Alexa-Fluor 
488 signal. As apoptosis progresses, the outer membrane loses its integrity such that the 
propidium iodide, which is typically impermeable to the cell, is able to enter the cell and bind 
nucleic acids giving a positive propidium iodide signal. Transfection of 25nM of miR-34a 
mimics induces apoptosis in the WT and p53-/- cells. This effect is mitigated in BCL2tgt-p53-/- 
cells, but not in BCL2tgt-WT cells 
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Figure A.10: Cells undergoing early and late apoptosis after miR-34a delivery. Ectopic miR-34a 
delivery induces early and late apoptosis in WT and p53-/- cells. This effect is mostly abolished 
in BCL2tgt-p53-/- cells, but not in BCL2tgt-WT cells, where the miR-34a target sites within the 
3’UTR of BCL2 are disrupted. 
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Figure A.11: Expression of BCL2 after miR-34a delivery. Treatment with miR-34a suppresses the 
expression of BCL2 in WT and p53-/- cells. This effect is abolished in BCL2tgt-p53-/- cells, but not 
in BCL2tgt-WT cells (* indicates p < 0.05). 
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Table A.1: Target genes for miR-34a and the corresponding sgRNA sequences. 
Gene 
name miRNA seed sgRNA target PAM 
AXL CACTGCCA TCCAAGCTAAGCACTGCCAC TGG 

BCL2 ACTGCCA AATCAGCTATTTACTGCCAA AGG 
CCND1 ACTGCCA AGAAAACTAAAACTAGTACA TGG 
CDK6 CACTGCCT TTTGCCAACAAGGCAGTGTG TGG 

DLL1-1 CACTGCC TGCAACGGCGACGTCACGGA AGG 
DLL1-2 CACTGCCT AGAATCCAAAATATACACTC AGG 
DLL1-3 CACTGCCT CGTATCAAAAAGGACAATAA AGG 
E2F3 CACTGCCA AAAGCAGCTAGAAAGTATTC TGG 

FOSL1 CACTGCCA TCACCTGCTGCTGCTGGCAG TGG 
FUT8 CACTGCCA GTCACTTAAATTACACAATA TGG 

GALNT7 CACTGCCA TCTTTTTGAAGCACTGCCAC AGG 
GAS1 CACTGCCA CATAAAGAGACTTTCATACA TGG 

HDAC1 GAGCCAAGAAA AGAGGGCAGGCAGTGTTTCT TGG 
HNF4A CCACTGCC GAAGGTGAAGGTGAAGGCAG TGG 
INHBB ACTGCCA AAAAATAACTTTTTTTCAAA TGG 
JAG1-1 CACTGCC CCTCAGACTCTACCTAGCGG CGG 
JAG1-2 CACTGCCT TTGATTTCCTCACTTAAGGC AGG 

KLF4 CACTGCCA AAAAATACTGAATTCTCTTC TGG 
MAP2K1 CACTGCCA TGGTGAAGCCCCAGCTATCA TGG 
MET-1 CACTGCCT TCGATGGCCTTTTAAAGGTC AGG 
MET-2 CACTGCCT TTCAGTTCAGCTGCAGGTAT AGG 

NOTCH1 CACTGCCT AACAGTACATATAAATAAAA AGG 
NOTCH2 CACTGCCT AGATCAGTAAAAAGTTTGAA AGG 

PDGFRA-1 ACTGCCA ACAGCTTGTCATAAATGTTT TGG 
PDGFRA-2 CACTGCC AGTTAAAAAAATATAAACGA AGG 

YY1 ACTGCCA TTACACTGAACATCAGCATC TGG 
MDM4 CACTGCCA AGTAACCTTAACATTCCCTA TGG 

MYCN-1 CACTGCC AAAAATCAAAATGTGCAAAG TGG 
MYCN-2 CACTGCC AGCGTCATACTAAAGTATAC AGG 
PDGFRB CACTGCC GAGATGTCACTGCTAGGTCT GGG 
SNAI1 CACTGCC CCACATCCTTCTCACTGCCA TGG 
SRC-1 CACTGCC CAGCTGGGCTGAGCGGGCAG CGG 
SRC-2 CACTGCC ACACAGCCAGTCCTGGTGCA TGG 
SRC-3 CACTGCC CTGGCTGGCTCAAGAACCCC TGG 
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Table A.2: Target genes for miR-145 and the corresponding sgRNA sequences. 
Gene name miRNA seed sgRNA target PAM 

ADAM17 AACTGGAA CATTTATTTGTGATGACAAC TGG 
ADD3-1 AACTGGA GATTGGGGGATGTAGCAAAC TGG 
ADD3-2 AACTGGAA GCAAACTGGACTTTAAGAAC TGG 
ADD3-3 ACTGGAA TTCTAGATCTCACTAACTAC TGG 
CDK6-1 AACTGGAA AAAATGCAGCTGTTCTGAAC TGG 
CDK6-2 AACTGGA ACCAATAATCCTTTGGAAAC TGG 
CTNND1 AACTGGA AAAGCTCTGTTCCATGCAAC TGG 

DDX6 ACTGGAA TTATCTCAATAAAAGCCCAC TGG 
DDX17 ACTGGAA TATATATATATATAGCTGAC TGG 
E2F3 ACTGGAA GCTTTGTGTTAAGTGCCTAC TGG 
ETS1 ACTGGAA GTGGTGGGTGGTTTATACAC TGG 

FLI1-1 AACTGGA CCTTGAAGGGAAGACAAAAC TGG 
FLI1-2 AACTGGAA CAAATTCAGTGGATGGCAAC TGG 
FLI1-3 AACTGGAA CAGTGAAGTTTTCACCCAAC TGG 

FSCN1-1 AACTGGAA AGCCCCCTTGCCTTTCAAAC TGG 
FSCN1-2 AACTGGAA CCCTGGGCGTGTAGTGTAAC TGG 
FSCN1-3 ACTGGAA TCCTTTCACCCTAGCCTGAC TGG 
FSCN1-4 AACTGGAA CCATGATAGTAGCTTCAAAC TGG 

IGF1R AACTGGAT TACCTACCGGTTTCCACAAC TGG 
IRS1 AACTGGAA TCAAACTACCGATTTAAAAC TGG 

ITGB8 AACTGGAA CACTTTTAAACAAAATTAAC TGG 
KLF4 ACTGGAA CAAAATGCCAAGGGGGTGAC TGG 
KLF5 AACTGGAA AAGAAAACCACAACTAAAAC TGG 

MYO6-1 AACTGGA ATGGCACAGTACCATATAAC TGG 
MYO6-2 AACTGGA AGGTGGCATAGTGGCTTAAC TGG 
NEDD9 AACTGGAA TAACGGTTACTAAGGAAAAC TGG 
NRAS AACTGGAA GATGTTTAAAAAATAAAAAC TGG 
PAK4 ACTGGAA GGCAGCGGCCCTCCCATCAC TGG 

RREB1 AACTGGAA GGGTACCCATAGCCAATAAC TGG 
RTKN AACTGGAA AACCCTTCCTGGAAGAAAAC TGG 

SERPINE1 AACTGGA GCCTTCATCTGGGACAAAAC TGG 
SMAD3-1 AACTGGAA CTAGTCTAAATTATTTCAAC TGG 
SMAD3-2 AACTGGA GAAACTTGCCTCATGTAAAC TGG 

SOX9 AACTGGAA TGTTTTTGTTGAAAACAAAC TGG 
SP1 ACTGGAA TCTTCACATTGTGTGAATAC TGG 

SRGAP1-1 AACTGGA CTTAGTTTTGTGCTTATAAC TGG 
SRGAP1-2 AACTGGA TTGTAATTTTTTTAAATAAC TGG 
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Table A.2, continued 
SRGAP1-3 AACTGGAA GTCAGATCCATAAAGCAAAC TGG 
SWAP70 AACTGGAA TTATTTACATGAGAGGAAAC TGG 
TGFBR2 AACTGGAA TCTGGGTTATCAGCATAAAC TGG 
TNFSF13 ACTGGAA CAGACCTGGTCGGGGCCCAC TGG 

YES1 AACTGGAA GCATGTTTTTAATGGTAAAC TGG 
BNIP3-1 AACTGGA TGAAGAACTGGAGTCTGACT TGG 
BNIP3-2 AACTGGA CTGTGTCTACTTTAAAAAAC TGG 
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Table A.3: Target genes for miR-192 and the corresponding sgRNA sequences. 
Gene name miRNA seed sgRNA target PAM 

ALCAM TAGGTCA GTTTTGGCAGCCATGATAAT AGG 
DICER1 TAGGTCA TATACTCGCACAACTTAAAT AGG 

RB1 TAGGTCAA TCAGTTAGTTTTTAGGTCAA GGG 
WNK1 TAGGTCA GTGCAACTCTTTCTTATGAT AGG 
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Table A.4: Target genes for miR-194 and the corresponding sgRNA sequences. 
Gene name miRNA seed sgRNA target PAM 

DNMT3A CTGTTAC CTGTAAACAAGAGGTAACAG CGG 
HBEGF-1 CTGTTAC AAGTGCCTAGACTGTTACTT TGG 
HBEGF-2 CTGTTACA AAGTTGTAACAGTTCAGAAA TGG 

IGF1R CTGTTACA ATCATGTCTTGCACTGTAAC AGG 
ITGA9 CTGTTAC TATATTTATAAAAATACTTT AGG 

PTPN12 CTGTTACA TCTACAAGCAGCGTGTAACA GGG 
RBX1 CTGTTAC ATTTGTAATTAGGTAACAGC AGG 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

 82 

Table A.5: Target genes for miR-215 and the corresponding sgRNA sequences. 
Gene name miRNA seed sgRNA target PAM 

ALCAM TAGGTCA GTTTTGGCAGCCATGATAAT AGG 
PTPRT AGGTCAA AGCAGAAGGTAAATAATGTC AGG 

RB1 TAGGTCAA ATACAAATCAGTTAGTTTTT AGG 
WNK1 TAGGTCA GTGCAACTCTTTCTTATGAT AGG 
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Table A.6: Relative abundance of the 93 sgRNA target sequences as determined by NGS 
amplicon sequencing. 

sgRNA Target LIB-WT-D0 LIB-WT-D6 LIB-p53-/--D0 LIB-p53-/--D6 
AXL 0.0014406 0.00059977 0.002269509 0.001206818 

BCL2 0.00116582 0.00056636 4.30E-06 0.000712584 
CCND1 0.00900663 0.00499026 0.00949756 0.009996992 
CDK6 0.02117193 0.02389951 0.013848337 0.015336366 

DLL1-1 0.02707046 0.00908714 0.012335809 0.015994559 
DLL1-2 0.00034274 0 2.87E-07 3.93E-07 
DLL1-3 0.00083966 5.22E-07 1.43E-06 1.26E-03 
E2F3 0.2536203 0.4203797 0.107535808 0.120319506 

FOSL1 0.00050852 6.52E-06 4.51E-05 0.004232699 
FUT8 1.04E-06 2.35E-06 0.000968178 0.00145796 

GALNT7 0 0 0 0 
GAS1 0 0 0 0 

HDAC1 0.00134714 0.00158086 0.011911693 0.003894962 
HNF4A 0.00451927 0.00352503 0.004715781 0.004747746 
INHBB 0.00097331 0.00067076 0.003390633 0.003639304 
JAG1-1 0.03373529 0.03751129 0.04793143 0.042674737 
JAG1-2 0.01346623 0.00703596 0.033127253 0.028289924 

KLF4 2.07E-07 2.61E-07 0 4.32E-06 
MAP2K1 0.00133036 4.44E-06 0.001998339 1.35E-03 
MET-1 0 0 0 0 
MET-2 0.02470359 0.01539126 0.026401943 0.02801031 

NOTCH1 0.00058333 5.22E-07 0 5.89E-07 
NOTCH2 0.01315187 0.00582154 0.005607343 7.16E-03 

PDGFRA-1 0.00135937 0.00077464 0.003011282 9.43E-06 
PDGFRA-2 0.00518839 0.00278823 0.001020404 1.51E-03 

YY1 0.00150318 5.48E-06 0.000932883 9.80E-05 
MDM4 0 0 0 0.00E+00 

MYCN-1 0.00065751 1.04E-06 1.72E-06 1.18E-06 
MYCN-2 0.03807698 0.04691867 0.019170735 1.66E-02 
PDGFRB 0.01467391 0.01018045 0.013979474 0.012529424 
SNAI1 0.00841004 0.00322097 0.011193738 0.011962931 
SRC-1 0.04748313 0.04273201 0.112325622 0.11057778 
SRC-2 0.01374659 0.01093526 0.033329842 0.033475549 
SRC-3 0.00140268 6.00E-06 0.002223023 0.000672527 

ALCAM 0.06371658 0.03938864 0.154566206 0.162712666 
PTPRT 0.02649791 0.00757988 0.00808604 0.01155588 
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Table A.6, continued 
RB1 0.00546938 0.00276683 0.019628425 0.019041057 

WNK1 0.05712116 0.12653401 0.034930751 0.028601937 
DNMT3A 0 0 0 0 
HBEGF-1 0.01392978 0.00583433 0.022108844 0.030726926 
HBEGF-2 0.00363133 0.00146524 0.001297313 0.001815136 

IGF1R 0.04630529 0.02288684 0.017214005 0.014285063 
ITGA9 2.07E-07 2.61E-07 8.61E-07 3.93E-07 

PTPN12 0 0 5.74E-07 3.93E-07 
RBX1 2.69E-06 0.00084876 5.17E-06 1.05E-03 

ALCAM 0 0 0 0 
DICER1 0.00203428 0.00108392 0.004851222 0.002461744 

RB1 0 0 0 0 
WNK1 0 0 0 0 

ADAM17 0 0 0 0 
ADD3-1 0.05134075 0.03375423 0.046668551 0.040806192 
ADD3-2 0.00764727 0.00157355 0.003598387 0.007044156 
ADD3-3 0.00165093 0.00189693 0.000831589 0.00068529 
CDK6-1 0.00268496 0.00530503 0.012269523 0.012464626 
CDK6-2 0.00036782 0.00182646 0.000681226 0.001165779 
CTNND1 0.00561568 0.00324863 0.000961005 0.002768259 

DDX6 0 0 0 0 
DDX17 0 0 0 0 
E2F3 0.00673632 0.00292604 0.00464806 0.003046891 
ETS1 6.22E-07 0.00021558 0.001169619 2.55E-06 

FLI1-1 0.00068818 0.0005139 8.61E-07 1.18E-06 
FLI1-2 0.00546979 0.00058176 0.006579538 2.74E-03 
FLI1-3 0.01225461 0.00828796 0.010742074 0.023490928 

FSCN1-1 0.00355632 0.00351328 0.008916768 0.004905815 
FSCN1-2 0.01821365 0.011475 0.006625164 0.000846304 
FSCN1-3 0.04537135 0.02319768 0.017552896 0.016474458 
FSCN1-4 0 0 0 0 

IGF1R 0.00130238 0.0015699 0.003967695 0.005591694 
IRS1 0 0 0 0 

ITGB8 0.00063513 3.65E-06 4.59E-06 2.10E-05 
KLF4 0.00538048 0.00146785 0.002142102 4.84E-04 
KLF5 0.00077956 0.00152892 0.001459728 0.000650535 

MYO6-1 0.00095176 2.87E-06 2.87E-06 3.53E-06 
MYO6-2 0.00216442 0.00144305 1.43E-05 2.12E-03 
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Table A.6, continued 
NEDD9 0.00143894 0.00103355 0.00345118 0.003832913 
NRAS 0 0 0 0 
PAK4 0.00852567 0.00340158 0.008635267 0.010401686 

RREB1 0.00348628 1.23E-05 0.003863818 0.002857405 
RTKN 0.00699307 0.00510954 0.017313578 0.019979846 

SERPINE1 0.00997974 0.00689737 0.028574462 0.033511679 
SMAD3-1 4.99E-05 2.61E-07 2.18E-05 0 
SMAD3-2 0.00034523 0.0010265 1.15E-06 0.000134505 

SOX9 0 0 0 0 
SP1 0.02086669 0.00795023 0.041485898 0.038913298 

SRGAP1-1 0 0 0 0 
SRGAP1-2 1.45E-06 7.83E-07 7.49E-05 0.00084061 
SRGAP1-3 1.04E-06 0.00055201 5.74E-07 3.93E-07 
SWAP70 0.00351529 0.00146002 0.009548351 8.10E-03 
TGFBR2 0 0 0 0 
TNFSF13 0.00254715 0.00144566 0.005597012 0.002562279 

YES1 0.00444343 0.00724502 0.004088502 0.000642288 
BNIP3-1 0.00480544 0.0025074 0.007038089 0.002951461 
BNIP3-2 0 0 0 0 

 

 

 

 

 

 

 

 

 

 

 



86 

Table A.7: log-transformed counts per million reads for the 93 sgRNA target sequences as 
determined by NGS amplicon sequencing. 

sgRNA Target LIB-WT-D0 LIB-WT-D6 LIB-p53-/--D0 LIB-p53-/--D6 
AXL 10.49345223 9.230672244 11.14879994 10.23818721 

BCL2 10.18836955 9.148130131 2.407159755 9.478939719 
CCND1 13.13693225 12.28518973 13.21349313 13.28742263 
CDK6 14.36993313 14.54475352 13.75752928 13.90476308 

DLL1-1 14.72448504 13.14976879 13.59068169 13.96538375 
DLL1-2 8.425185406 0 0.363959021 0.477901637 
DLL1-3 9.715374381 0.605962886 1.283781618 10.30397784 
E2F3 17.95231638 18.68133691 16.71447103 16.87652302 

FOSL1 8.992992549 2.911677746 5.525178517 12.04770288 
FUT8 1.025810247 1.743719184 9.920618414 10.5107247 

GALNT7 0 0 0 0 
GAS1 0 0 0 0 

HDAC1 10.39675522 10.62740576 13.54021199 11.92776406 
HNF4A 12.14219395 11.78382781 12.20358676 12.213331 
INHBB 9.928244117 9.391807626 11.72776435 11.82984322 
JAG1-1 15.04201383 15.19507564 15.54871445 15.38112846 
JAG1-2 13.71716501 12.78073663 15.01577453 14.78805166 

KLF4 0.271689229 0.334564973 0 2.411394177 
MAP2K1 10.37868037 2.442797807 10.96530707 10.39599311 
MET-1 0 0 0 0 
MET-2 14.59249129 13.90991753 14.68841114 14.77372181 

NOTCH1 9.190629063 0.605962886 0 0.668187021 
NOTCH2 13.6830902 12.50743308 12.45335875 12.8053138 

PDGFRA-1 10.40977976 9.59924234 11.5566409 3.382002676 
PDGFRA-2 12.34134849 11.44565231 9.996337575 10.56184554 

YY1 10.55475922 2.69620294 9.867098315 6.629105545 
MDM4 0 0 0 0 

MYCN-1 9.363063066 1.031387046 1.444516614 1.123103023 
MYCN-2 15.21666921 15.51790519 14.22669331 14.0173545 
PDGFRB 13.84106368 13.3136559 13.77112568 13.61314765 
SNAI1 13.03806928 11.65372528 13.45053308 13.54640384 
SRC-1 15.53515782 15.38306343 16.77734037 16.75471504 
SRC-2 13.74689159 13.41683144 15.02457015 15.0308632 
SRC-3 10.45499392 2.80795941 11.11895567 9.395592066 

ALCAM 15.95940382 15.26552862 17.23787474 17.3119759 
PTPRT 14.69364534 12.88814926 12.98139601 13.49646435 

RB1 12.41742489 11.43453983 14.26073029 14.21690171 
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Table A.7, continued 
WNK1 15.80176302 16.94917709 15.09225135 14.80387567 

DNMT3A 0 0 0 0 
HBEGF-1 13.76598816 12.5105984 14.43240123 14.90726278 
HBEGF-2 11.82668049 10.51790338 10.34242265 10.82665634 

IGF1R 15.49892053 14.4822935 14.07137898 13.80232082 
ITGA9 0.271689229 0.334564973 0.895968027 0.477901637 

PTPN12 0 0 0.654348814 0.477901637 
RBX1 1.885131808 9.73091606 2.624135633 10.0374476 

ALCAM 0 0 0 0 
DICER1 10.99101427 10.0833743 12.2444299 11.26605067 

RB1 0 0 0 0 
WNK1 0 0 0 0 

ADAM17 0 0 0 0 
ADD3-1 15.64784479 15.04282363 15.51019397 15.31653582 
ADD3-2 12.90091697 10.62072532 11.81353541 12.78241599 
ADD3-3 10.68993322 10.8902088 9.701460515 9.42267522 
CDK6-1 11.39122008 12.37341639 13.58290914 13.60566772 
CDK6-2 8.526759061 10.83562238 9.414105272 10.18831561 
CTNND1 12.45550086 11.66606022 9.909899928 11.43528415 

DDX6 0 0 0 0 
DDX17 0 0 0 0 
E2F3 12.71796008 11.51522607 12.18272324 11.57359566 
ETS1 0.69747275 7.758780298 10.1930561 1.828898567 

FLI1-1 9.42873563 9.008157752 0.895968027 1.123103023 
FLI1-2 12.41753419 9.186764397 12.68398988 11.41789165 
FLI1-3 13.58115431 13.01697597 13.39111924 14.51987749 

FSCN1-1 11.79657443 11.77901431 13.12246694 12.2605711 
FSCN1-2 14.15281144 13.48633214 12.69395814 9.726736049 
FSCN1-3 15.46952565 14.50175537 14.09950366 14.00803096 
FSCN1-4 0 0 0 0 

IGF1R 10.34804309 10.61737346 11.95444893 12.44932773 
IRS1 0 0 0 0 

ITGB8 9.313179815 2.218458683 2.483169064 4.460109129 
KLF4 12.39378747 10.52046916 11.06548469 8.920741087 
KLF5 9.608372342 10.57924153 10.51247218 9.347698692 

MYO6-1 9.895974835 1.952694473 1.952157195 2.180927158 
MYO6-2 11.08043002 10.49590802 3.939944415 11.05391849 
NEDD9 10.49179224 10.01478566 11.75329198 11.90460198 
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Table A.7, continued 
NRAS 0 0 0 0 
PAK4 13.05776733 11.73241141 13.07619219 13.34466849 

RREB1 11.76788565 3.72975552 11.91618476 11.48099484 
RTKN 12.77191668 12.31926016 14.07969957 14.28633003 

SERPINE1 13.28493108 12.75203995 14.80248921 15.0324194 
SMAD3-1 5.670731143 0.334564973 4.511493629 0 
SMAD3-2 8.435584341 10.00492499 1.10286689 7.08220663 

SOX9 0 0 0 0 
SP1 14.34898339 12.95696289 15.34036818 15.24801273 

SRGAP1-1 0 0 0 0 
SRGAP1-2 1.293101822 0.834299696 6.245926332 9.71700755 
SRGAP1-3 1.025810247 9.111158875 0.654348814 0.477901637 
SWAP70 11.77983787 10.51275809 13.22118694 12.98436926 
TGFBR2 0 0 0 0 
TNFSF13 11.31523709 10.49851318 12.45069893 11.32377477 

YES1 12.11778253 12.82297285 11.99770944 9.32932068 
BNIP3-1 12.23075414 11.29255129 12.78117294 11.5277023 
BNIP3-2 0 0 0 0 
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Table A.8: sgRNA target genes showing differential responses to treatment with miR-34a between WT-LIB and KO-LIB cells. Direct 
miR-34a targets are in bold and underlined. For each gene, the number of target sites for miR-34a is in parenthesis. 

WT-LIB (D6 vs. D0) KO-LIB (D6 vs. D0) 
Enriched Fold (X) Depleted Fold (X) Enriched Fold (X) Depleted Fold (X) 
SRGAP1-

3 (0) 271.60 DLL1-3 (3) 552.34 DLL1-3 (3) 519.22 ETS1 (0) 329.51 

RBX1 (0) 230.05 
NOTCH1 

(2) 383.92 RBX1 (0) 170.46 
PDGFRA-1 

(2) 288.94 

ETS1 (0) 133.56 DLL1-2 (3) 343.74 
MYO6-2 

(0) 138.52 SMAD3-1 (0) 22.81 

    
MYCN-1 

(2) 322.17 BCL2 (1) 134.53     
    RREB1 (0) 262.86 FOSL1 (1) 91.93     

    
MYO6-1 

(0) 246.13 
SMAD3-2 

(0) 63.09     

    
MAP2K1 

(1) 244.87 
SRGAP1-2 

(0) 11.09     
    YY1 (1) 232.09         
    SRC-3 (3) 200.44         
    ITGB8 (0) 136.69         
    FOSL1 (1) 67.71         

    
SMAD3-1 

(0) 40.40         
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Table A.9: Oligonucleotide pairs for the 93 sgRNA target sequences. 

sgRNA 
Target Forward Primer Reverse Primer 

AXL CACCGTCCAAGCTAAGCACTGCCAC AAACGTGGCAGTGCTTAGCTTGGAC 
BCL2 CACCGAATCAGCTATTTACTGCCAA AAACTTGGCAGTAAATAGCTGATTC 

CCND1 CACCGAGAAAACTAAAACTAGTACA AAACTGTACTAGTTTTAGTTTTCTC 
CDK6 CACCGTTTGCCAACAAGGCAGTGTG AAACCACACTGCCTTGTTGGCAAAC 

DLL1-1 CACCGTGCAACGGCGACGTCACGGA AAACTCCGTGACGTCGCCGTTGCAC 
DLL1-2 CACCGAGAATCCAAAATATACACTC AAACGAGTGTATATTTTGGATTCTC 
DLL1-3 CACCGCGTATCAAAAAGGACAATAA AAACTTATTGTCCTTTTTGATACGC 
E2F3 CACCGAAAGCAGCTAGAAAGTATTC AAACGAATACTTTCTAGCTGCTTTC 

FOSL1 CACCGTCACCTGCTGCTGCTGGCAG AAACCTGCCAGCAGCAGCAGGTGAC 
FUT8 CACCGGTCACTTAAATTACACAATA AAACTATTGTGTAATTTAAGTGACC 

GALNT7 CACCGTCTTTTTGAAGCACTGCCAC AAACGTGGCAGTGCTTCAAAAAGAC 
GAS1 CACCGCATAAAGAGACTTTCATACA AAACTGTATGAAAGTCTCTTTATGC 

HDAC1 CACCGAGAGGGCAGGCAGTGTTTCT AAACAGAAACACTGCCTGCCCTCTC 
HNF4A CACCGGAAGGTGAAGGTGAAGGCAG AAACCTGCCTTCACCTTCACCTTCC 
INHBB CACCGAAAAATAACTTTTTTTCAAA AAACTTTGAAAAAAAGTTATTTTTC 
JAG1-1 CACCGCCTCAGACTCTACCTAGCGG AAACCCGCTAGGTAGAGTCTGAGGC 
JAG1-2 CACCGTTGATTTCCTCACTTAAGGC AAACGCCTTAAGTGAGGAAATCAAC 

KLF4 CACCGAAAAATACTGAATTCTCTTC AAACGAAGAGAATTCAGTATTTTTC 
MAP2K1 CACCGTGGTGAAGCCCCAGCTATCA AAACTGATAGCTGGGGCTTCACCAC 
MET-1 CACCGTCGATGGCCTTTTAAAGGTC AAACGACCTTTAAAAGGCCATCGAC 
MET-2 CACCGTTCAGTTCAGCTGCAGGTAT AAACATACCTGCAGCTGAACTGAAC 

NOTCH1 CACCGAACAGTACATATAAATAAAA AAACTTTTATTTATATGTACTGTTC 
NOTCH2 CACCGAGATCAGTAAAAAGTTTGAA AAACTTCAAACTTTTTACTGATCTC 

PDGFRA-1 CACCGACAGCTTGTCATAAATGTTT AAACAAACATTTATGACAAGCTGTC 
PDGFRA-2 CACCGAGTTAAAAAAATATAAACGA AAACTCGTTTATATTTTTTTAACTC 

YY1 CACCGTTACACTGAACATCAGCATC AAACGATGCTGATGTTCAGTGTAAC 
MDM4 CACCGAGTAACCTTAACATTCCCTA AAACTAGGGAATGTTAAGGTTACTC 

MYCN-1 CACCGAAAAATCAAAATGTGCAAAG AAACCTTTGCACATTTTGATTTTTC 
MYCN-2 CACCGAGCGTCATACTAAAGTATAC AAACGTATACTTTAGTATGACGCTC 
PDGFRB CACCGGAGATGTCACTGCTAGGTCT AAACAGACCTAGCAGTGACATCTCC 
SNAI1 CACCGCCACATCCTTCTCACTGCCA AAACTGGCAGTGAGAAGGATGTGGC 
SRC-1 CACCGCAGCTGGGCTGAGCGGGCAG AAACCTGCCCGCTCAGCCCAGCTGC 
SRC-2 CACCGACACAGCCAGTCCTGGTGCA AAACTGCACCAGGACTGGCTGTGTC 
SRC-3 CACCGCTGGCTGGCTCAAGAACCCC AAACGGGGTTCTTGAGCCAGCCAGC 

ALCAM CACCGGTTTTGGCAGCCATGATAAT AAACATTATCATGGCTGCCAAAACC 
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Table A.9, continued 
PTPRT CACCGAGCAGAAGGTAAATAATGTC AAACGACATTATTTACCTTCTGCTC 

RB1 CACCGATACAAATCAGTTAGTTTTT AAACAAAAACTAACTGATTTGTATC 
WNK1 CACCGGTGCAACTCTTTCTTATGAT AAACATCATAAGAAAGAGTTGCACC 

DNMT3A CACCGCTGTAAACAAGAGGTAACAG AAACCTGTTACCTCTTGTTTACAGC 
HBEGF-1 CACCGAAGTGCCTAGACTGTTACTT AAACAAGTAACAGTCTAGGCACTTC 
HBEGF-2 CACCGAAGTTGTAACAGTTCAGAAA AAACTTTCTGAACTGTTACAACTTC 

IGF1R CACCGATCATGTCTTGCACTGTAAC AAACGTTACAGTGCAAGACATGATC 
ITGA9 CACCGTATATTTATAAAAATACTTT AAACAAAGTATTTTTATAAATATAC 

PTPN12 CACCGTCTACAAGCAGCGTGTAACA AAACTGTTACACGCTGCTTGTAGAC 
RBX1 CACCGATTTGTAATTAGGTAACAGC AAACGCTGTTACCTAATTACAAATC 

ALCAM CACCGGTTTTGGCAGCCATGATAAT AAACATTATCATGGCTGCCAAAACC 
DICER1 CACCGTATACTCGCACAACTTAAAT AAACATTTAAGTTGTGCGAGTATAC 

RB1 CACCGTCAGTTAGTTTTTAGGTCAA AAACTTGACCTAAAAACTAACTGAC 
WNK1 CACCGGTGCAACTCTTTCTTATGAT AAACATCATAAGAAAGAGTTGCACC 

ADAM17 CACCGCATTTATTTGTGATGACAAC AAACGTTGTCATCACAAATAAATGC 
ADD3-1 CACCGGATTGGGGGATGTAGCAAAC AAACGTTTGCTACATCCCCCAATCC 
ADD3-2 CACCGGCAAACTGGACTTTAAGAAC AAACGTTCTTAAAGTCCAGTTTGCC 
ADD3-3 CACCGTTCTAGATCTCACTAACTAC AAACGTAGTTAGTGAGATCTAGAAC 
CDK6-1 CACCGAAAATGCAGCTGTTCTGAAC AAACGTTCAGAACAGCTGCATTTTC 
CDK6-2 CACCGACCAATAATCCTTTGGAAAC AAACGTTTCCAAAGGATTATTGGTC 
CTNND1 CACCGAAAGCTCTGTTCCATGCAAC AAACGTTGCATGGAACAGAGCTTTC 

DDX6 CACCGTTATCTCAATAAAAGCCCAC AAACGTGGGCTTTTATTGAGATAAC 
DDX17 CACCGTATATATATATATAGCTGAC AAACGTCAGCTATATATATATATAC 
E2F3 CACCGGCTTTGTGTTAAGTGCCTAC AAACGTAGGCACTTAACACAAAGCC 
ETS1 CACCGGTGGTGGGTGGTTTATACAC AAACGTGTATAAACCACCCACCACC 

FLI1-1 CACCGCCTTGAAGGGAAGACAAAAC AAACGTTTTGTCTTCCCTTCAAGGC 
FLI1-2 CACCGCAAATTCAGTGGATGGCAAC AAACGTTGCCATCCACTGAATTTGC 
FLI1-3 CACCGCAGTGAAGTTTTCACCCAAC AAACGTTGGGTGAAAACTTCACTGC 

FSCN1-1 CACCGAGCCCCCTTGCCTTTCAAAC AAACGTTTGAAAGGCAAGGGGGCTC 
FSCN1-2 CACCGCCCTGGGCGTGTAGTGTAAC AAACGTTACACTACACGCCCAGGGC 
FSCN1-3 CACCGTCCTTTCACCCTAGCCTGAC AAACGTCAGGCTAGGGTGAAAGGAC 
FSCN1-4 CACCGCCATGATAGTAGCTTCAAAC AAACGTTTGAAGCTACTATCATGGC 

IGF1R CACCGTACCTACCGGTTTCCACAAC AAACGTTGTGGAAACCGGTAGGTAC 
IRS1 CACCGTCAAACTACCGATTTAAAAC AAACGTTTTAAATCGGTAGTTTGAC 

ITGB8 CACCGCACTTTTAAACAAAATTAAC AAACGTTAATTTTGTTTAAAAGTGC 
KLF4 CACCGCAAAATGCCAAGGGGGTGAC AAACGTCACCCCCTTGGCATTTTGC 
KLF5 CACCGAAGAAAACCACAACTAAAAC AAACGTTTTAGTTGTGGTTTTCTTC 

MYO6-1 CACCGATGGCACAGTACCATATAAC AAACGTTATATGGTACTGTGCCATC 
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Table A.9, continued 
MYO6-2 CACCGAGGTGGCATAGTGGCTTAAC AAACGTTAAGCCACTATGCCACCTC 
NEDD9 CACCGTAACGGTTACTAAGGAAAAC AAACGTTTTCCTTAGTAACCGTTAC 
NRAS CACCGGATGTTTAAAAAATAAAAAC AAACGTTTTTATTTTTTAAACATCC 
PAK4 CACCGGGCAGCGGCCCTCCCATCAC AAACGTGATGGGAGGGCCGCTGCCC 

RREB1 CACCGGGGTACCCATAGCCAATAAC AAACGTTATTGGCTATGGGTACCCC 
RTKN CACCGAACCCTTCCTGGAAGAAAAC AAACGTTTTCTTCCAGGAAGGGTTC 

SERPINE1 CACCGGCCTTCATCTGGGACAAAAC AAACGTTTTGTCCCAGATGAAGGCC 
SMAD3-1 CACCGCTAGTCTAAATTATTTCAAC AAACGTTGAAATAATTTAGACTAGC 
SMAD3-2 CACCGGAAACTTGCCTCATGTAAAC AAACGTTTACATGAGGCAAGTTTCC 

SOX9 CACCGTGTTTTTGTTGAAAACAAAC AAACGTTTGTTTTCAACAAAAACAC 
SP1 CACCGTCTTCACATTGTGTGAATAC AAACGTATTCACACAATGTGAAGAC 

SRGAP1-1 CACCGCTTAGTTTTGTGCTTATAAC AAACGTTATAAGCACAAAACTAAGC 
SRGAP1-2 CACCGTTGTAATTTTTTTAAATAAC AAACGTTATTTAAAAAAATTACAAC 
SRGAP1-3 CACCGGTCAGATCCATAAAGCAAAC AAACGTTTGCTTTATGGATCTGACC 
SWAP70 CACCGTTATTTACATGAGAGGAAAC AAACGTTTCCTCTCATGTAAATAAC 
TGFBR2 CACCGTCTGGGTTATCAGCATAAAC AAACGTTTATGCTGATAACCCAGAC 
TNFSF13 CACCGCAGACCTGGTCGGGGCCCAC AAACGTGGGCCCCGACCAGGTCTGC 

YES1 CACCGGCATGTTTTTAATGGTAAAC AAACGTTTACCATTAAAAACATGCC 
BNIP3-1 CACCGTGAAGAACTGGAGTCTGACT AAACAGTCAGACTCCAGTTCTTCAC 
BNIP3-2 CACCGCTGTGTCTACTTTAAAAAAC AAACGTTTTTTAAAGTAGACACAGC 
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Table A.10: Primers used in this study. 
primer sequence (5'->3') 
P1 GGGCCTATTTCCCATGATTCCTTCA 
P2 CATATGCTTACCGTAACTTGAAAGT 
P3 GAATTCAAAAAAGCACCGACTCGGTG 
P4 CATGCTGGGGCCGTACAG 
P5 GAACCGGCACCTGCACAC 
P6 AATCCCATCACCATCTTCCA 
P7 TGGACTCCACGACGTACTCA 
P8 CAATTAACAGTCTTCAGGCA 
P9 GCACAGAACATCCAGGTGGAGCCACACG 
P10 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCATATGCTTACCGT

AACTTGAAAGT 
P11 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGAATTCAAAAAA

GCACCGACTCGGTG 
P12 CAGTACGGTACCGAGGGCCTATTTCCCATGATTCCTTC 
P13 TAACTTGCTATTTCTAGCTCTAAAACGAACTCGACCGCTCCGGCGAC

GGTGTTTCGTCCTTTCCACAAGATATA 
P14 TAACTTGCTATTTCTAGCTCTAAAACGCGACGTCGCGCGCGGTGAGC

GGTGTTTCGTCCTTTCCACAAGATATA 
P15 CAGTACGAATTCAAAAAAGCACCGACTCGGTGCCACTTTTTCAAGTT

GATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC 

P16 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAATTAACAGTCTT
CAGGCA 

P17 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCACAGAACATC
CAGGTGGAGCCACACG 
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APPENDIX B 

SUPPLEMENTAL MATERIAL FOR CHAPTER 3 

 

 

 
Figure B.1: Residual plot comparison of synchronous cells to asynchronous cells. The difference 
for each phase distribution for each time point demonstrates that overtime an initially 
synchronous population will converge to a static stead-state DNA distribution indicative of cells 
passing through the cell cycle asynchronously. 
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Figure B.2: Effect of population variance of cell cycle duration. If variance of the cell cycle is 
not incorporated into the model, not only does the model not capitulate experimental 
observation, but the population of cells will never desynchronize. Therefore, we can assume that 
single-cell variance of the cell cycle is core component driving cell cycle desynchronization. 
Importantly, as variance is increased, the desynchronization rates increase. A standard deviation 
of 4 hours most accurately captures experimental observations. Furthermore, as the variance 
increases, desynchronization begins to approach an asynchronous trend. 
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Figure B.3: Graphical hypothesis of LPS exposure to synchronous cell populations. If LPS 
exposure induces a greater degree of cell cycle variation starting from the same point of 
synchronicity, it would be expected that the desynchronization rates would increase, or rather 
reach an asynchronous trend sooner than cells not treated with LPS. 
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Figure B.4: Overall scheme of single-cell tracking of cell cycle duration. Timelapse microscopy 
of asynchronous cells performed for 72 hours at 20 minutes per frame. Frame 0 depicts a parent 
cell undergoing mitosis. Frame 1 show the parent cell undergoing telophase and cytokinesis. 
Once the septum is visible between the two daughter cells (yellow and blue arrow), the cell cycle 
duration begins being recorded. Frames 26-28 depicts cells progressing through interphase. At 
frame 56, one of the two daughter cells (blue arrow) begins metaphase, and by frame 58, the two 
resulting daughter cells are apparent and the cell cycle duration ends. Thus, the (blue arrow) 
daughter cell had a cell cycle duration of 18.3 hours (57 frames – 2 frames, multiplied by 20 
minutes per frame). The other daughter cell (yellow arrow) had a substantially longer cell cycle 
duration of 27 hours, thus highlighting the inherent heterogeneity of cell cycle duration between 
identical cells within the population. 
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Figure B.5: Total displacement of single cells from time-lapse analysis. Cell coordinates were 
recorded both at the start and end of each cell that was recorded for single-cell cell cycle 
duration, and the total displacement was plotted for 100 cells for both conditions. LPS exposure 
had a large impact on the overall motility of cells. Total displacement was calculated with pixel 
coordinates using  𝑑𝑑 = �(𝑥𝑥𝑠𝑠𝑡𝑡𝑚𝑚𝑠𝑠𝑡𝑡 − 𝑥𝑥𝑒𝑒𝑑𝑑𝑑𝑑)2 + (𝑦𝑦𝑠𝑠𝑡𝑡𝑚𝑚𝑠𝑠𝑡𝑡 − 𝑦𝑦𝑒𝑒𝑑𝑑𝑑𝑑)2 . 
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Figure B.6: Normalized and curve fitted desynchronization rates from simulated model using 
experimental values. The mean and standard deviation of the cell cycle duration obtained from 
single-cell time-lapse analysis were used in the simulated model to predict if the model was 
accurate in predicting resulting desynchronization rate. All ASF scores were normalized to the 
first value (𝐗𝐗𝑡𝑡0 − 𝐗𝐗𝑡𝑡8) in order to compare synchronous population trends to asynchrony. The 
normalized data points were fit with exponential curves. 
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Figure B.7: ASF methodology for cell cycle desynchronization for LPS treated cells. Pairwise 
comparison of cumulative distribution function for propidium iodide-stained cells for each 
condition tested.  
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Figure B.8: Normalized and curved fitted desynchronization rates for synchronized cells. All 
ASF scores for synchonized cell populations treated with varying concentrations of LPS were 
normalized to the first value (𝐗𝐗𝑡𝑡0 − 𝐗𝐗𝑡𝑡8) in order to compare synchronous population trends to 
asynchrony. The normalized data points were fit with exponential curves. Asynchronous 
population was not normalized to retain linear trend.  
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