
EFFICIENT HARDWARE ACCELERATION ON SOC-FPGA WITH OPENCL

by

Susmitha Gogineni

APPROVED BY SUPERVISORY COMMITTEE:

Benjamin Carrion Schafer, Chair

Dinesh K. Bhatia

Mehrdad Nourani

Copyright c© 2017

Susmitha Gogineni

All rights reserved

Dedicated to my Parents, Grandparents and Teachers.

EFFICIENT HARDWARE ACCELERATION ON SOC-FPGA WITH OPENCL

by

SUSMITHA GOGINENI, B.Tech.

THESIS

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN

ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT DALLAS

August 2017

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my thesis adviser Dr. Benjamin Carrion

Schafer for his guidance and support in my research. I have benefited tremendously from his

deep theoretical knowledge, rich practical experience and research attitude. He always was

there to help motivate me, and I appreciate his enthusiasm and patience in helping students.

Under his guidance, I had a remarkable self improvement. Thank you, Professor!

I would thank Dr. Dinesh Bhatia and Dr. Mehrdad Nourani for being on my committee and

reviewing my work. I would like to thank the Department of Electrical Engineering and

Computer Engineering at The University of Texas at Dallas and Design Automation & Re-

configurable Computing Lab (DARC Lab) for providing resources and creating an incredible

research environment for students like me. I heartily thank my lab mates Farah, Mihir,

Siyuan, Pandy and Nandeesh for their valuable suggestions, help and moral support. I am

thankful to Rohit Somwanshi from IDEA Lab, for the suggestions and inspiration he gave me

through out my research process. I need to specially thank Sussannah Martin from Intel, for

providing me training and support in using the devices and resources for Experimentation.

I also appreciate the Office of Graduate Studies (OGS) for their help in my research work.

My heartfelt thanks to my Family and my Extended Family in Dallas, who believed in

my interests and encouraged me. They have done the best they can do for my success.

I would thank my roommates and friends who are my family at UTD for their care and

encouragement.

August 2017

v

EFFICIENT HARDWARE ACCELERATION ON SOC-FPGA WITH OPENCL

Susmitha Gogineni, MSEE
The University of Texas at Dallas, 2017

Supervising Professor: Benjamin Carrion Schafer, Chair

Field Programmable Gate Arrays (FPGAs) are taking over the conventional processors in

the field of High Performance computing. With the advent of FPGA architectures and

High level synthesis tools, FPGAs can now be easily used to accelerate computationally

intensive applications like, e.g., AI and Cognitive computing. One of the advantages of

raising the level of hardware design abstraction is that multiple configurations with unique

properties (i.e. area, performance and power) can be automatically generated without the

need to re-write the input description. This is not possible when using traditional low-level

hardware description languages like VHDL or Verilog. This thesis deals with this important

topic and accelerates multiple computationally intensive applications amiable to hardware

acceleration and proposes a fast heuristic Design Space Exploration method to find dominant

design solutions quickly.

In particular, in this work, we developed different computationally intensive applications in

OpenCL and mapped them onto a heterogeneous SoC-FPGA. A Genetic Algorithm (GA)

based meta-heuristics that does automatic Design Space Exploration (DSE) on these appli-

cations was also developed as GA has shown in the past to lead to good results in multi-

objective optimization problems like this one. The developed explorer automatically inserts

a set of control knobs into the OpenCL behavioral description, e.g., to control how to synthe-

size loops (unroll or not), and to replicate Compute Units (CUs). By tuning the these control

vi

attributes with possible values, thousands of different micro-architecture configurations can

be obtained. Thus, an exhaustive search is not feasible and other heuristics are needed. Each

configuration is compiled using Altera OpenCL SDK tool and executed on Terasic DE1-SoC

FPGA board platform to record the corresponding performance and logic utilization. In or-

der to measure the quality of the proposed GA-based heuristic, each application is explored

exhaustively (taking multiple days to finish for smaller designs) to find the dominant optimal

solutions (Pareto Optimal Designs). For complex and larger designs, exploring the entire

design space exhaustively is not feasible due to very large design space. The comparison is

quantified by using metrics like Dominance, Average Distance from Reference Set (ADRS)

and run time speed up, showing that our proposed heuristics lead to very good results at a

fraction of the time of the exhaustive search.

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF FIGURES . x

LIST OF TABLES . xi

CHAPTER 1 INTRODUCTION . 1

1.1 FPGA-based Hardware Acceleration . 1

1.2 Strengths of FPGA-based Hardware Acceleration 2

1.3 Challenges of FPGA for Hardware Acceleration 3

1.4 Motivation . 4

1.5 Thesis Structure . 6

CHAPTER 2 FIELD PROGRAMMABLE GATE ARRAYS (FPGAS) 7

2.1 Overview of Programmable Logic . 7

2.2 SRAM-based FPGA . 8

2.3 Modern FPGA Logic Cells: Xilinx Slices vs Altera ALM 9

2.4 SoC FPGA . 10

CHAPTER 3 HIGH LEVEL SYNTHESIS AND OPENCL 12

3.1 High Level Synthesis (HLS) . 12

3.1.1 High Level Synthesis Process . 13

3.2 Open Computing Language (OpenCL) . 14

3.2.1 OpenCL Hardware Platform . 15

3.2.2 OpenCL Execution Model . 15

3.2.3 OpenCL Memory Model . 16

3.2.4 OpenCL programming . 18

CHAPTER 4 HARDWARE ACCELERATION ON SOC-FPGA USING OPENCL . 19

4.1 System Description . 19

4.1.1 System Hardware . 19

4.1.2 System Software . 19

4.1.3 System Memory Architecture . 21

viii

4.2 Programming the System . 22

4.2.1 Host and Kernel . 24

4.2.2 Host Program and Device Kernel Development Flow 24

4.3 Optimization of Design for Acceleration . 27

4.3.1 Optimization Architectures . 29

4.3.2 Optimization Pragmas and Attributes 33

4.4 Acceleration Benchmarks and Results . 34

4.4.1 OpenCL Benchmarks . 34

4.4.2 Experimental Results . 37

4.4.3 Conclusions . 38

CHAPTER 5 DESIGN SPACE EXPLORATION 40

5.1 Design Space Exploration with Exhaustive Search 41

5.1.1 Methodology . 41

5.2 Design Space Exploration with Genetic Algorithm 43

5.2.1 Methodology . 44

5.3 Experimentation Results . 45

5.3.1 Comparison of Results (Exhaustive search vs Genetic Algorithm) . . 46

CHAPTER 6 CONCLUSIONS AND FUTURE WORK 50

6.1 Conclusions . 50

6.2 Future Work . 50

REFERENCES . 51

BIOGRAPHICAL SKETCH . 54

CURRICULUM VITAE

ix

LIST OF FIGURES

1.1 Flexibility and Power Efficiency trade-off for CPUs, FPGAs and ASICs 3

2.1 Architecture of PLA and PAL . 8

2.2 Xilinx Slices (a) Virtex-4 and earlier (b)Virtex-5 [1]. 9

2.3 Altera ALM in Stratix and Cyclone families [1]. 10

2.4 Cyclone V SoC FPGA - HPS with Dual Core ARM Cortex A9 MPCore Processor
interconnect to FPGA Fabric [2]. 11

3.1 High Level Synthesis Process [3]. 14

3.2 OpenCL Platform Model [3]. 15

3.3 Workload division in OpenCL . 17

3.4 OpenCL Memory Model [4]. 17

4.1 System Hardware Terasic DE1-SoC with Altera Cyclone V 20

4.2 System Memory Architecture: Global, Local and Private Memory [5]. 22

4.3 Overview of configuring the system with OpenCL code. 23

4.4 Kernel function development Flow. 25

4.5 Analysis with Profiler, Kernel incorporated with Flip-flops at Load and Store
Transactions [5]. 25

4.6 Time line of Unaccelerated system vs Accelerated System [5]. 27

4.7 Kernel to kernel communication : using Global Memory vs Channel/Pipes [5]. . 29

4.8 Iterations in No loop Pipelining vs Loop Pipelining [6] 31

4.9 Single work item implementation showing a data feedback to handle dependency
[6]. 31

4.10 Difference between CU and SIMD . 33

4.11 Communication vs Computation Time on Accelerated System (ARM+FPGA). . 35

4.12 Plots of Acceleration vs Input Data Size for the benchmark suite. 39

5.1 Steps for DSE . 43

5.2 Exhaustive Design Space for Sobel, with Pareto optimal Solutions identified. . . 43

5.3 Flow of DSE using Genetic Algorithm. 46

5.4 System Exploration Trade-off Curves: Pareto optimal Front of Exhaustive DSE
vs Pareto Dominant Front of Genetic Algorithm. 48

x

LIST OF TABLES

4.1 Timing notations. 28

4.2 System description of the benchmarks . 34

4.3 Acceleration of AES by varying number of CU and SIMD attributes across dif-
ferent data sizes,work groups = N and work items = (Num Inputs)/N ,where
N=2,4 . 36

5.1 Performance metrics of Fast heuristic Genetic Algorithm with respect to Refer-
ence Optimal Solutions . 49

xi

CHAPTER 1

INTRODUCTION

There has always been a quest for performance and power efficient hardware to meet the

growing processing needs. This developed trends in hardware architectures as per Moores

Law [7] with the increase in the number of transistor density and frequency. Nevertheless

with the breakdown of Dennard’s scaling in the mid 2000’s it is no more feasible to increase

frequency due to power constraints [8]. This led to a paradigm shift in computer architecture

where alternatives like Multi-Cores, Graphic Processing Units (GPUs) and heterogeneous

SoC with dedicated hardware accelerators are being developed. Todays applications involve

computing exponential amount of data in less time and also real time systems require ultra

low-latency responses. Examples include, Artificial Intelligence (AI), Cognitive Computing

and Cloud Computing. Therefore, there is an indispensable quest for hardware acceleration

and power efficient systems.

1.1 FPGA-based Hardware Acceleration

FPGAs support computational acceleration as they can provide performance and power ef-

ficiency. Moreover, FPGAs can be integrated with other systems like CPUs, GPUs. Recent

studies prove that, platforms with combination of FPGA and CPU achieve better perfor-

mance than CPUs alone on certain workloads. Researches have shown that by offloading

a CPU from computationally intensive parts to an FPGA, significant acceleration can be

achieved [[9],[10]]. This idea is picked up and implemented by leading FPGA vendors as

well.

In 2015, Intel acquired Altera to encourage FPGA products in the data center and IoT

markets [11]. Microsoft started project Catapult in 2010, a hyper scale acceleration fabric

technology which integrates an FPGA into Microsoft data centers to accelerate networking,

1

security, cloud services and artificial intelligence [12]. The project Amazon EC2 F1, uses

customizable FPGA designs to accelerate computing in Amazon Web Services (AWS). In

2017, Baidu has deployed Xilinx FPGA-based application acceleration services in their public

cloud [13].

1.2 Strengths of FPGA-based Hardware Acceleration

In this section we discuss the benefits of FPGA for hardware acceleration and efficient data

processing.

1. Re-Configurable:

FPGA is a programmable hardware and can be quickly reprogrammed within millisec-

onds. They can be programmed to any dedicated hardware function. This gives them

the flexibility to be continually updated in the field.

2. Moore’s Law:

As per the prediction of Gordon Moore in 1965, the number of transistors on the

Integrated chip have been doubling approximately every two years [7]. This also holds

true for FPGAs enabling complete hardware systems to be implemented on them with

minimal off-chip resources. Moore’s law has enabled FPGAs to be integrated with

other hardware units like CPUs, GPUs, DSPs, ASICs and Memory on the same chip.

This supports division of workload and parallel processing on FPGAs.

3. High level Synthesis(HLS) to program FPGA:

Programming methods of FPGA have come a long way. Initially, FPGA programming

was relegated to only hardware designers skilled in low level languages like Verilog,

VHDL, which was also a time consuming process. With the increase in complexity of

FPGAs, most of the FPGA vendors now provide HLS tools to synthesize High level

languages (e.g., C, C++, SystemC, OpenCL) to programmable logic. This makes

2

Figure 1.1. Flexibility and Power Efficiency trade-off for CPUs, FPGAs and ASICs

programming an FPGA easier and faster. Moreover, HLS allows Design Space Explo-

ration as it allows to generate different architectures without the need to modify the

behavioral description.

4. Cost Effective and Rapid Prototyping:

FPGAs provide significant results in reducing time to market and development costs.

FPGAs are claimed as the cost effective alternatives to ASICs as NRE costs are neg-

ligible.

5. Power Effective:

FPGAs provide lower power foot prints than Processors, due to dedicated hardware

Implementations (see Figure 1.1). Data can be processed in parallel at a much lower

frequency faster than with CPUs.

1.3 Challenges of FPGA for Hardware Acceleration

This section discusses the limitations of FPGA.

3

1. Communication Overhead

In heterogeneous systems like SoC-FPGA, the parallel processing efficiency is limited

due to data transfer at the interface. Therefore, we need architectures to handle

communication overhead, which is one of the major factors impacting the speed-up.

2. Programming the FPGA

Though, we have reached a point where we can synthesize most of the popular High

level language descriptions onto FPGAs. there are still some limitations. The pro-

grammer needs to be knowledgeable enough about the hardware Micro-Architectures

and the compiler tools. The compilers have a complex compilation process with a

number of stages and cycles, that can take several hours to synthesize a single design.

1.4 Motivation

Growing performance needs for applications demand faster and efficient hardware. Since

2006, with the breakdown of Dennard’s scaling [8], a paradigm shift in computer architecture

is taking place. The term dark silicon has been coined to describe the part of the circuitry of

an Integrated Circuit (IC) that cannot be powered for a given thermal design constraint [14].

It is estimated that at 22 nm, 32% of a fixed-size IC must be powered off and at 8nm more

than 50% . One solution that is being proposed is to customize the computing platforms to

the application domain, also known as domain specific computing. At the computer level,

by using CPUs with FPGA [15, 16], at the chip level through heterogeneous Multiprocessor

Systems on-Chips (MPSoCs) with dedicated Hardware Accelerators (HWacc) [17], and at

the micro-architectural level by being able to quickly re-optimize micro-architectures for

different computing platforms. The acquisition of Altera by Intel is also mainly motivated

by this, and Intel has recently announced that it is targeting the production of around 30%

of the servers with FPGAs in data-centers by 2020 [16].

4

The main problem when adapting these computing systems to different domains is that,

it is driving IC design to complexities never seen before, making their design extremely

challenging. At the same time, the increasing demand for newer products with more powerful

features, new or revised versions of these systems (i:e: SoCs) need to be taped-out in shorter

and shorter time frames. This means that time-to-market, but also time-in-the-market is

getting shorter and hence the risk of not achieving the estimated return on investment

(ROI) is growing significantly. To address these issues, companies are relying on third

Party Intellectual Properties (3PIPs) to meet their schedules. They have also started to

rely on High-Level Synthesis (HLS) to increase their design productivity. The International

Technology Roadmap for Semiconductors (ITRS) already suggested in 2013 that by 2020

a 10x productivity increase for designing complex SoCs is needed. Two main factors were

predicted to help achieving this goal. The first is the re-use of components. ITRS estimates

that around 90% of the SoCs will be composed of re-used components. Secondly, the use

of new design methodologies to raise the level of abstraction i:e: HLS, also called C-based

VLSI design [18].

Raising the level of design abstraction has multiple advantages. One particular advantage

that this thesis aims at exploiting is the ability to generate different micro-architectures

without having to modify the behavioral description, also known as design space exploration

(DSE). This is typically done by changing different synthesis options to e.g., control loop

unroll factor, Number of duplicated compute units etc. HLS DSE can be classified as a multi-

objective optimization problem. The presence of multiple objectives in HLS DSE, gives rise

to a set of optimal solutions, also known as Pareto-optimal solutions, instead of a single

optimal solution. In the absence of any further information, none of these Pareto-optimal

solutions can be considered to be better than the other. This distinct advantage of C-based

VLSI design is also a weakness as it forces users to fully understand each exploration knob,

which is often tool dependent. In addition, the search space is extremely large. For a simple

5

8-TAP FIR filter the solution space consists of over 1000 possible knob settings. Each time

a new configuration is generated, this has to be synthesized in order to extract the different

design metrics (i.e., area, latency, delay). Thus, fast, automated methods to evaluate the

effects of these knobs are required.

1.5 Thesis Structure

Chapter 2, presents a brief study on the evolution of FPGAs and SoC-FPGA. Chapter

3, introduces High Level Synthesis (HLS) and OpenCL parallel programming Language.

Chapter 4, introduces the methodology and architectures used for hardware acceleration on

FPGAs. Then we describe the applications described in OpenCL and the acceleration results

obtained. In Chapter 5, we describe the methodology to perform automatic DSE using and

exhaustive search and a fast heuristic approach based on GA. This chapter measure the

Quality of Results (QoR) of our proposed heuristic using standard metrics. This section

also discusses the results and makes a few observations from the results. Finally, chapter 6,

presents the conclusions and discusses some future work.

6

CHAPTER 2

FIELD PROGRAMMABLE GATE ARRAYS (FPGAS)

2.1 Overview of Programmable Logic

Early programmable devices had architectural regularity and functional flexibility but by the

mid-1960s, field-programmability, the ability to change the logic function of a chip after the

fabrication process, was achieved via the introduction of cutpoint cellular arrays [19]. The

functionality of each logic cell in array would be determined by setting the programmable

fuses through currents or photo-conductive exposure, although all the connections within

an array were fixed. Hence, field programmability was introduced which allowed simplified

array manufacturing and wider applicability.

In 1970s, read only memory (ROM)-based programmable devices were introduced, al-

though mask programmable and fuse-programmable ROMs (PROMs) with n-input addresses

can be used to implement n-input logic functions, there were issues with area-efficiency that

were introduced with these devices. Hence, later developments were made to introduce pro-

grammable logic arrays (PLAs) where each plane in a wired-AND or wired-OR structure

along with inverters can build any AND or OR logic term. This type of structure closely

matches common logic functions and is more area efficient. The architectures evolved fur-

ther in 1977 by Monolithic Memories Incorporated (MMI) with the realization that sufficient

flexibility was provided by programmable AND-plane followed by fixed OR-plane, in devices

which are called programmable array logic (PAL) [20]. Figure 2.1 shows comparison of PLA

and PAL architectures. It can be seen that in Figure 2.1b, the combinational logic is fed

to fixed sequential logic in the form of D-type flip flop macro cells. PLA, PAL and generic

array logic (GAL) can be classified as Low-density PLDs.

7

Figure 2.1. Architecture of PLA and PAL

2.2 SRAM-based FPGA

FPGAs can be classified as High-density PLDs. The first static memory-based FPGA (com-

monly called an SRAM based FPGA) architecture allowed for both logic and interconnection

configuration using a stream of configuration bits. Unlike its contemporary cellular array

counterparts, both wide-input logic functions and storage elements could be implemented in

each logic cell. Additionally, the programmable inter-cell connections could be easily changed

through memory-configurability to enable the implementation of a variety of circuit topolo-

gies. Although static memory offers the most flexible approach to device programmability,

it requires a significant increase in area per programmable switch compared to ROM imple-

mentations [20]. SRAM-based FPGAs can be programmed using master and slave mode.

In master mode, the FPGA reads an external flash memory chip to configure the bitstream.

However, in slave mode, the FPGA is configured by an external master device such as a

processor. SRAM based chips include most chips from Xilinx - Virtex Spartan families and

Altera - Stratix Cyclone [21].

8

Figure 2.2. Xilinx Slices (a) Virtex-4 and earlier (b)Virtex-5 [1].

2.3 Modern FPGA Logic Cells: Xilinx Slices vs Altera ALM

FPGAs consists of multiple programmable logic blocks called Logic Cells. Logic cells in Xilinx

is called a slice and in Altera it is called Adaptive Logic Module(ALM). The architecture

of Xilinx Slices used in Virtex-4 and earlier, as shown in Figure 2.2(a), include two 4-input

LUTs, two dedicated user-controlled multipliers for combinational logic, dedicated arithmetic

logic gates for fast and efficient multiplication and two 1-bit registers that can be configured

either as flip-flops or as latches. On the other side, as shown in Figure 2.2(b), Virtex-5

Slices include four LUTs that can be configured as 6-input LUTs with 1-bit output or 5-

input with 2-bit output, three dedicated user controlled multipliers for combinational logic,

dedicated arithmetic logic and four 1-bit registers that can be configured either as flip-flops

or as latches. The multiplexers are not actually user controlled however the path is selected

during FPGA Programming [1].

Altera FPGAs of Stratix and Cyclone families, as shown in Figure 2.3, uses slightly

different logic blocks called Adaptive Logic Modules (ALM), which include two 4-input

LUTs and four 3-input LUTs for combinational logic implementation, dedicated arithmetic

9

Figure 2.3. Altera ALM in Stratix and Cyclone families [1].

and carry logic and two programmable registers. ALM has 8 inputs out of which some

inputs are connected to more than one LUTs.The architectures of logic cells are different

and usually its the number of LUTs not the number of registers that is bottleneck for FPGA.

From this perspective, it could be stated that one Virtex-5 slice can be in theory substituted

by 8 Virtex-4 slices or 4 ALMs.

2.4 SoC FPGA

SoC FPGA devices integrate both processor and FPGA architectures into a single device.

Melding the two technologies provides a variety of benefits including higher integration, lower

power, smaller board size, and higher bandwidth communication between the processor and

FPGA. Best-in-class devices exploit the unique advantages of a merged processor and FPGA

system while retaining the benefits of a stand-alone processor and FPGA approach [22].

As the signals between the processor and the FPGA now reside on the same silicon, com-

munication between the two consumes substantially less power compared to using separate

chips. The integration of thousands of internal connections between the processor and the

FPGA leads to substantially higher bandwidth and lower latency compared to a two-chip

solution.

10

Figure 2.4. Cyclone V SoC FPGA - HPS with Dual Core ARM Cortex A9 MPCore Processor
interconnect to FPGA Fabric [2].

Figure 2.4 shows the architecture of Altera Cyclone V, a SoC FPGA with HPS. The

HPS consists of ARM Cortex-A9 MPCore processor, a rich set of peripherals and a shared

multiport SDRAM memory controller. There are three HPS-FPGA AXI Bridges which

support Advanced Micro-controller Bus Architecture (AMBA) Advanced extensible Interface

(AXI) specifications: (a) FPGA to HPS AXI bridge is a high-performance bus supporting

32-,64- and 128-bit data widths allows FPGA fabric to be the master to slaves on HPS.

(b) HPS to FPGA AXI Bridge is a high performance 32-, 64- and 128-bit data widths that

allow HPS to be master to FPGA fabric slaves. (c) Lightweight HPS to FPGA is a low

performance 32-bit width AXI bridge where HPS is the master [2].

11

CHAPTER 3

HIGH LEVEL SYNTHESIS AND OPENCL

3.1 High Level Synthesis (HLS)

High level synthesis, is an automated design process that converts untimed behavioral de-

scription of an algorithm in e.g., ANSI-C or C++, OpenCL to digital hardware that efficiently

implements the required function. The complete HLS process is divided into multipe steps

which includes syntax parsing, technology independent optimizations, allocation, scheduling

and binding to create a Register Transfer Level (RTL) description in any Hardware Descrip-

tion Language (HDL), which can then in turn be synthesized to a gate-level netlist using a

logic synthesis tool.

Due to the need to increase the design productivity and decrease in the time to market,

HLS has finally become mainstream in most VLSI design companies which allows the design

teams to meet their tight schedules. The main advantage of HLS is the increase in design

productivity as less details are needed (only the functionality of the circuits needs to be

specified), faster to design and verification leading to less bugs and easier to maintain the

source code. Most of the systems today are heterogeneous systems. FPGA vendors have

also released their own configurable SoC (CSoC) devices, e.g., Alteras Cyclone V SoC and

Xilinxs Zynq FPGA and Intels recent announcement to acquire Altera is mainly based on

the benefits of the tight integration of the x86 processors with FPGAs. As HLS raises the

abstraction level of designing, it is easier to program all the units on heterogeneous system

using same High level language.

One more advantage of raising the abstraction level is that, using HLS allows the gen-

eration of several micro architectures with different performance trade-off without having

to modify the entire behavioral code. This is normally done by setting different synthesis

options like program attributes or pragma.Therefore, HLS supports exploration of design

space at Micro-Architectural Level.

12

3.1.1 High Level Synthesis Process

Figure 3.1 shows the complete HLS process starting from behavioral description. HLS tools

use technology libraries of the target ASIC or FPGA and follows the three aforementioned

steps: Allocation, Scheduling and Binding.

1. Allocation : In this step, the behavioral description is analyzed and the necessary

hardware resources are determined. This step determines the Functional Units (FUs)

required to realize the application. By default most of the HLS tools will try to

maximize the parallelism as much as possible and hence allocate as many FUs as

possible in the same cycle unless dependencies.

2. Scheduling: Determines in which clock step each the operations should be executed

such that no precedence constraint is violated. Scheduling partitions the algorithm in

control steps that are used to define the states in the FSM. Many scheduling algorithms

have been proposed in HLS [23]. There are two most basic scheduling algorithms, As

soon as possible (ASAP) and As late as possible (ALAP). ASAP maps operations to

their earliest possible start time while ALAP maps operations to the latest possible

start time, without any precedence violation.

3. Binding: In resource allocation each operation is assigned to a specific FU and each

variable is mapped to a register. HLS tools are designed such that the units are reused

to minimize logic requirement.

The typical hardware architecture generated after HLS contains two main paths: A con-

trol path which is a Finite State Machine (FSM) and a Data path, which includes hardware

components, multiplexers, registers. Based on this design model the RTL is generated and

described in any HDL languages like VHDL or Verilog.

13

Figure 3.1. High Level Synthesis Process [3].

3.2 Open Computing Language (OpenCL)

OpenCL (Open Computing Language) is a standard framework from Khronos Group [24],

allows parallel programming of heterogeneous systems that can include CPUs, GPUs, DSPs,

and FPGAs. OpenCL programming language is based on C99 and C++11. It supports pro-

gramming the devices on the heterogeneous platform and also the Application Programming

Interface (API) to control the communicate between the compute devices. OpenCL provides

a standard interface and API functions to support parallel computing using task and data

based parallelism. In this section, we provide various concepts and technology background

required to understand OpenCL Programming Model [3].

OpenCL Architecture is constructed with hierarchy of hardware units, consistent Exe-

cution Model and Memory Model which supports Parallel code Execution on heterogeneous

systems.

14

Figure 3.2. OpenCL Platform Model [3].

3.2.1 OpenCL Hardware Platform

OpenCL views a computing system as a number of computing units controlled by a Host

Processor.The OpenCL hardware is layered to different abstraction layers (see Figure 3.2).

At the top layer lies the CPU based host processor which is connected to one or more OpenCL

Devices (For instance CPU, GPU or FPGA). Each OpenCL device consists of one or more

Compute units (CUs), which are further divided into one or more Processing Elements (PEs)

[3].

Computations are done within the processing elements. Multiple PEs, CUs and OpenCL

devices can work in parallel. The host manages the workload division and data communica-

tion between the units using OpenCL API.

3.2.2 OpenCL Execution Model

The OpenCL applications have two execution units, the Kernel program and Host Program.

The OpenCL host program executes on the Host. The host program uses OpenCL API

functions to query the status of the Compute devices and manage the workloads across the

Compute units. Whereas, the kernel program is executed on the Processing Elements(PEs).

The kernel programs execute the computational part of the OpenCL application.

15

The entire data space which needs to be executed is termed as NDRange, where N denotes

the number of dimensions of input data, which can be one, two or three. The NDRange is

decomposed into Work-groups and Work-items (see Figure 3.3). Each independent element

of execution in the entire workload is called a work-item. A set of work-items are grouped

to into a Work-Group [4]. The decomposition is indicated by the Dimension(N), Global

size and Local size variables. The Global size is defined as the total number of global work

items in the NDRange for given dimension. The local size is defined as the number of

local work-items in a work-group for given dimension. Figure 3.3 which illustrates the top

view decomposition of a 1-Dimensional and 2-Dimensional NDRange. Work-Groups can be

executed in parallel and distributed among the compute units. All the work items belonging

to the same Work-group are computed by different Processing elements (PEs) of the same

Compute unit.

3.2.3 OpenCL Memory Model

The OpenCL memory hierarchy is structured to support data sharing and synchronization

of the work items. The OpenCL memory model consists of Global Memory, Local Memory,

Private Memory and Host Memory (shown in Figure 3.4)

1. Host Memory: The memory directly available for the Host. Other computing units

cannot access the host memory.

2. Global Memory: Global Memory can be accessed by all the compute units (CUs),

processing elements (PEs) and the host. Therefore, it is shared by all work-items

and work-groups. Global Memory Latency can be high so it is preferred to cache

global memory to local memory when possible. The Part of the global memory which

is constant throughout the execution is referred to as Constant Memory, Constant

variables are declared here as it allows read only accesses for Compute units.

16

(a) 1 Dimension

(b) 2 Dimensional

Figure 3.3. (a) Example of Work-group and Work-item division for 1 dimensional.
(b)Example of Work-group and Work-item division for 2 dimensional. [4]

Figure 3.4. OpenCL Memory Model [4].

17

3. Local Memory: Each compute unit has a unique Local memory and cannot be accessed

by other CUs. This memory region is local to the work group and can be shared by the

work-items in the same workgroup. Variables defined in local memory are not visible

to any other work groups.

4. Private Memory: Each Work-item has a private memory and is not visible for other

work-items.

It is important that the read and write operations to Local and Global memory must be

synchronized as they are shared memory. This is done by memory synchronization functions

like Barriers and Memory fences [3].

3.2.4 OpenCL programming

For most of the parallel applications, the sequential part is executed in the host program

and parallel computation parts are shared by the compute units which are programmed

using the kernel programs. In addition, the host program should manage and coordinate

the compute units which work in parallel. For this OpenCL API(Application Programming

Interface) functions are used [25]. The OpenCL API functions allows the user to create

and define objects like Context, Command Queue, and Data Buffers. The context defines

the environment within which the kernel executes. A command queue is defined for each

OpenCL Device. These queues enable the host to give commands and interact with the

device. Buffers are used to transfer data between host and OpenCL device in the run time.

18

CHAPTER 4

HARDWARE ACCELERATION ON SOC-FPGA USING OPENCL

In the previous chapters we briefly discussed about SoC-FPGA, High level Synthesis Tools(HLS)

and OpenCL Programming. In this chapter, we will discuss how using these technologies we

can obtain acceleration on FPGA. Initially, we present the system description and method-

ology used to accelerate computations on FPGA. Then, we introduce the set of OpenCL

benchmarks developed to study the acceleration behavior and factors affecting acceleration.

Finally, we present the results obtained and observations.

4.1 System Description

4.1.1 System Hardware

All the experiments were made on Terasic DE1-SoC board [26], which consists of a hardware

design platform built around the Altera SoC FPGA Cyclone V. Cyclone V [27] integrates an

ARM-based Hard Processor System (HPS) consisting of processor, peripherals and memory

interfaces tied seamlessly with the FPGA fabric using a high-bandwidth interconnect. This

interface enables communication between the ARM processor and FPGA.

We used Linux terminal on the computer to interact with the FPGA Platform. The

commands to the FPGA board can be given by user from the Linux terminal on the computer.

The system is incorporated with a micro SD card installed with Linux image which enables to

runs Linux commands on the FPGA board. An USB-UART cable is used to communication

the Board and Linux host on the Computer. We used LAN port on the Board to transfer

files between the Board and the Computer. The system is depicted in Figure 4.1

4.1.2 System Software

We used the following software to compile OpenCL programs and synthesize on the FPGA

fabric:

19

Figure 4.1. System Hardware Terasic DE1-SoC with Altera Cyclone V

1. Altera FPGA SDK for OpenCL (AOCL)

Altera FPGA OpenCL SDK (Software Development Kit) is a HLS tool [5], which

involves a complex flow to convert high level OpenCL code to hardware configuration

files. It also allows functional verification by emulating OpenCL accelerator code on

an x86-based host . The tool provides an optimization report with information about

dependencies in the pipeline, memory stalls and timing information of the design.

This report gives insights of the synthesized design which helps to modify the design

for performance.

20

Compilation, OpenCL to HDL, emulation and optimization report generation processes

may just take a few seconds. Whereas, the full flow synthesis process to generate

Hardware configuration file (.aocx file) from OpenCL may take 1-5 hours depending

on the design complexity. The end file from synthesis process with .aocx extension is

used to configure the FPGA.

2. Altera Quartus II

Altera Quartus tool is used to configure the target FPGA device from HDL (Hardware

Description Language) provided by the user. This tool allows compiling of the designs,

performing timing analysis and configuring the target device. This tool is required by

AOCL compiler to generate a synthesized .aocx file

3. Altera SoC Embedded Design Suite

The Altera SoC FPGA Embedded Development Suite (SoC EDS) is a tool for em-

bedded software development on Intel SoC FPGAs. We used this tool to compile

the OpenCL host program and generate an ARM executable.This executable file is

executed by the Embedded ARM processor on the system.

4.1.3 System Memory Architecture

The system consists to three types of memory(see Figure 4.2), each are described below

1. Global Memory

Global Memory is off-chip DDR (Double Data Rate) memory. The data communication

between host and kernel can be done only through the global memory. Therefore, all

the host to kernel interface happens at global memory. It offers high capacity and

latency is high. Global memory is visible to all work groups.

2. Local Memory

Local memory is on-chip memory, it lies on the same chip as the HPS and FPGA. It

21

Figure 4.2. System Memory Architecture: Global, Local and Private Memory [5].

offers higher bandwidth and lower latency compared to global memory. Local memory

is shared between work-items of same work-group.

3. Private Memory

Private memory uses registers and block RAM on the FPGA. It offers performance at

the cost of area. Private memory is unique to each work item.

4.2 Programming the System

Most of the applications have two types of code segments. The segments which needs be ex-

ecuted sequentially and the segments which can be executed in parallel. Sequential segments

mostly involve data transfer instructions and set of instruction with dependencies. Whereas,

the segments with parallelism involve loop instructions with less or no dependency, Single

instruction multiple data computations etc.

Typically, sequential segments are performance efficient on general purpose processors

(i.e. CPU) with pipelining, out of order execution, Memory hierarchy etc. Whereas, the

22

Figure 4.3. Overview of configuring the system with OpenCL code.

Parallel segments are performance efficient on the platforms which support parallel processing

like Multicores, GPUs or FPGAs. Not only parallel tasks, FPGA can achieve performance

on computationally intensive sequential tasks as well, by developing a dedicated hardware

to compute these tasks.

SoC FPGA being a heterogeneous platform, provides benefits of both processor system

(ARM) and re-configurable fabric (FPGA) for performance. The sequential segments can

be executed by ARM processor, whereas the data parallel segments and computationally

intensive segments can be executed by dedicated hardware designs on the FPGA. Here, the

challenge is to establish a communication interface between the HPS and FPGA. Moreover,

we need a common language to program both the systems and the interface.

Therefore, to meet these requirements OpenCL programming language is developed [24].

OpenCL supports development of programs that execute across heterogeneous units on a

platform. OpenCL is widely used for parallel processing as it allows to configure the com-

munication interface between units for both task and data based parallelism. Most of the

23

recent hardware devices and compiler tools from different vendors support OpenCL execu-

tion.

4.2.1 Host and Kernel

An OpenCL application views a computing system as combination of Host Processor (typi-

cally a CPU) and a set of accelerating OpenCL devices which can work in parallel, they are

termed as Kernels.The Host device is responsible for issuing functions to the compute units

and the control of data communication interface.

In this case, the ARM processor is the Host Processor and FPGA is the Kernel device.

Each OpenCL application has two set of programs, the Host program and OpenCL Kernel

program to program the host and kernels respectively. It is possible that the Kernel De-

vice(FPGA) can have multiple compute units working in parallel. The Kernel code can be

compiled, emulated and synthesized using Altera FPGA OpenCL SDK. Whereas, the host

program can be compiled and host executable is generated by Altera SoC Embedded Design

Suite. The flow of Programming system using OpenCL host and kernel programs is shown

in Figure 4.3.

4.2.2 Host Program and Device Kernel Development Flow

The Host program is an OpenCL program with C/C++ based Library functions, compiled

by Embedded design suite to generate ARM executable file. Kernel code is in standard

OpenCL and compiled by Altera OpenCL FPGA SDK to generate hardware configuration

file (.aocx), RTL files, HTML reports, synthesis reports and scripts etc.

Figure 4.4 shows the development flow to develop kernel for an application. These stages

involve functional verification, optimization and performance improvement of kernel. Each

stage provides different information about the design which help in optimizing the hardware

kernel. Each step in the flow is described below:

24

Figure 4.4. Kernel function development Flow.

Figure 4.5. Analysis with Profiler, Kernel incorporated with Flip-flops at Load and Store
Transactions [5].

25

1. Functional Verification: Emulation and Debugging

This step is used to functionally verify and debug the host and kernel programs in

a short time before starting the full compile flow. Using AOCL Emulator a .aocx

file is generated within seconds, which emulates the functionality of the kernel. This

.aocx file can execute on x86-64 windows or Linux host. To support debugging print

statements can be used in kernel and there are debugging tools like Intel Code Builder

which allow to set break points, read intermediate variables etc. Emulation resembles

the functionally but does not give correct execution times. In fact, it might execute at

slower speed than on actual optimized Hardware.

2. Static Analysis: Optimization Report Analysis

The compiler automatically generates a HTML report file, which gives architectural

overview of the system that will be synthesized. It consists of loop Analysis, Area

Report and Architectural view of the system. The information from the report can be

used to modify the kernel code for better performance.

• Loop Analysis Report:

This report shows the status of each loop in the application. It provides if loop unroll

status, pipeline status and Initiation Interval (II) of each pipeline loop. Initiation

Interval is defined as the number of cycles for which each new data enters into the

pipeline. Any bottleneck due to data dependency or memory stalls can be identified.

• Area Analysis Report

The compiler provides a resource utilization report with hierarchical information. That

is, the amount of resources utilized by each line in source code and each block in source

code. Therefore, allows us to depict which part of the code is using most resources

(like LUTs, Memory etc.). Generally, complex data operations, float point operations

consume more logic resources and unrolled loops consume more memory bandwidth.

26

Figure 4.6. Time line of Unaccelerated system vs Accelerated System [5].

• System Viewer

This part of the report displays the blocks in the system and the memory access

implementation. It presents information about all Load/store stalls and latency for

both global and local memories.

3. Dynamic Analysis: Profiler

This step involves runtime analysis of kernel performance. In this process additional

performance counters are added at each load and store in the design as shown in Figure

4.5. These counters collect kernel performance data and send to host program. This

information can be viewed via GUI. Profiling is generally used to identify which channel

in the pipeline is causing the memory stalls.

4.3 Optimization of Design for Acceleration

In this section, we discuss the methods and architectures to improve data processing efficiency

on FPGA and different optimization metrics which affect the performance. As per the timing

diagram in Figure 4.6 and timing notations in Table 4.1, the major factors through which

acceleration can be achieved are discussed.

1. Reduce Taf : Increase the number of parallel operations

This can be achieved by increasing the number of parallel operations.

27

Table 4.1. Timing notations.

Timing Notation Description

Ts Total Time spent on an unaccelerated system

Th Time spent on an unaccelerated system for the host part

Tf Time spent in an unaccelerated system for the Un-accelerated function

TAS Total Time spent on accelerated system

TC Time spent on communication between host and accelerator

TAF Time spent on an accelerated system for the accelerated function

AS System Acceleration = Ts/TAS

• Data level parallelism:

In applications where the data can be partitioned and computed independently,

data level parallelism can be deployed. This is done by replicating Compute units,

vectorising data processing units on the kernel and launching them in parallel.

Similarly, loop iterations can be paralleled by loop unrolling.

• Instruction level parallelism:

Instruction level parallelism can be achieved by pipelining the kernel application.

Dependencies between the instructions can be handled by data feedbacks.

• Task level parallelism:

A set of independent tasks can be run in parallel on different kernels. Task level

parallelism is achieved by dividing a big problem into separate kernel devices and

run them in parallel.

2. Reduce Tc: Reduce Communication Overhead:

To reduce communication latency between host and kernel, the following practices can

be implemented to reduce global memory accesses. The system allows host to kernel

communications only through global memory. Due to high global memory latency,

global memory accesses from kernel must be reduced when possible.

• By moving frequently used data to local memory or On-chip memory.

• Using Channels and pipes to communicate between kernels, instead of global

28

Figure 4.7. Kernel to kernel communication : using Global Memory vs Channel/Pipes [5].

memory to pass the data in between. Figure 4.7 compares kernel-kernel commu-

nication through Global Memory vs Channels/Pipes.

4.3.1 Optimization Architectures

The Altera SDK for OpenCL (AOCL) compiler offers two different data processing architec-

tures for the kernels, they are Single Work Item Execution and NDRange Kernel Execution

[28]. Depending on the application one or a combination of both can be chosen for the

kernel design on FPGA. At the early stage of design planning one should decide whether

to construct the OpenCL kernel as a Single work item kernel or an NDRange Kernel. Both

architectures are described in detail below.

1. Single Work Item Kernels

• The entire kernel application is executed as a Single thread. In this Single work item

execution mode, the kernel consists of one compute unit which executes work items

sequentially one after another. When a kernel is defined with an attribute ’task’ the

29

compiler will automatically synthesis it as a single work item execution kernel.

• In these designs, the throughput is achieved by a method called Loop Pipelining,

shown in Figure 4.8. In this method, compiler will infer pipelined parallel execution

across the loop iterations. That is, the loop structure is pipelined and multiple loop

iterations will be executed simultaneously in the pipeline. Figure 4.9 shows an example

of OpenCL kernel realized as a Single Work Item Kernel, it depicts that when work

item 1 is at add stage, work item 2 is at load stage in pipeline.

• For Single task kernels, the throughput mainly depends on the factor called Initiation

Interval (II). It is defined as the number of cycles for which every new data launches

into the pipeline. It determines the launch frequency of loop iterations. Therefore,

minimizing the II is the key to single work item kernel performance (refer equation

4.1). Best performance is obtained when new data is launched every cycle (i.e., II=1).

Higher II can be reduced by relaxing the loop carried dependencies with methods like

converting nested loops to single loop, using local variables instead of global variables

etc.

Exec time = ((Num iterations ∗ II) + (Loop latency)) ∗ Time period (4.1)

• The data dependencies within the successive loop iterations will be resolved by in-

corporating data feed backs on the FPGA hardware as illustrated in Figure 4.9 . Here,

each iteration is dependent on C[i] value written in the previous iteration. Therefore,

the computed C[i] is shared through a feedback to the next iteration. So the next

iteration can be launched as soon as the dependency is cleared.

• This mode is ideal when there is dependency between the work items and no data

level parallelism is possible between the work Items. Therefore, in cases where it is

difficult to partition data among parallel work items or if data must be shared between

30

Figure 4.8. Iterations in No loop Pipelining vs Loop Pipelining [6]

Figure 4.9. Single work item implementation showing a data feedback to handle dependency
[6].

31

the work items, Single work item execution provides better throughput.

• For example, FIR filter, Interpolation Filter, Decimation filter are good to implement

as Single Work Item kernels because the new outputs depend on previous inputs and

output data.

2. NDRange Kernels

• In NDRange Kernel, Data processing efficiency is achieved by implementing data

level parallelism. Hardware is replicated to allow parallel execution. NDRange kernel

can have a number of compute units (CUs) and a number of Single Instruction Multiple

Data processing units (SIMDs), which simultaneously work on different work groups

or work items in parallel.

• Achieves throughput by parallel processing at the cost of Memory Bandwidth and

Logic utilization.

• An application can be implemented as an NDRange kernel, if the kernel program has

no loop or memory dependencies between the work-items. For example, applications

like AES Encryption, Matrix Multiplication etc .

• CUs work on different work-groups in parallel, whereas SIMDs work on different

work-items which belong to same work group. In Compute unit duplication, the entire

units of datapath, control path and memory access blocks are replicated. In contrast,

for SIMD vectorization only the datapath of the compute unit is duplicated and the

control logic is shared.

• Figure 4.10a and Figure 4.10b depicts the difference between compute unit replica-

tion and SIMD vectorization. Though both offer throughput they provide different

efficiency. Multiple compute units consume more logic utilization and create undesired

memory access patterns as they work on data from different work groups. Whereas,

32

(a) (b)

Figure 4.10. (a) Kernel with 4 compute units (b) Kernel with 1 Compute unit and 4 SIMD
units per Compute Unit.

SIMD vectorization allows to coalesce memory accesses and is area efficient.

• Therefore, in most cases SIMD vectorization is preferred over multiple compute units.

In few cases, when work items have different control logic and cant share a single control

path multiple compute units are used for parallelism.

4.3.2 Optimization Pragmas and Attributes

Adding the following attributes and pragmas to OpenCL Kernel code allows compiler to

modify the kernel Micro-architecture accordingly [28]. Each has its own advantages and

disadvantages over efficiency. By changing these attributes in different combinations, we

can create different hardware configurations.These attributes affect the Logic utilization,

memory Bandwidth, memory Access patterns and performance in different ways.

1. num compute units(N): This attribute duplicates N compute units on the kernel. This

duplicates the control path and data Path. These CUs work in Parallel on different

work groups, due to which it is possible that they have wider memory access patterns.

33

Table 4.2. System description of the benchmarks

Benchmark Kernel Pipeline II Fmax Logic Highest

status (MHz) (%) Acceleration

Sobel Single task Yes 2 136 20 7.3

FIR Single task Yes 1 168 20 0.95

ADPCM Single task Yes 40 158 20 2.6

Decimation Single task yes 1 129 81 2.8

Interpolation Single task yes 1 125 28 2.8

AES NDRange No N/A 135 84 6.9

CU=2,SIMD=2

2. num simd work(N): This creates N number of SIMDs per each compute unit. The

value of N is limited to 2, 4, 8, and 16. This duplicates only the data path, the control

path is shared. SIMDs work on workitems of same workgroup. Therefore, memory

access patterns can be coalesced.

3. #pragma unroll < N >: This Pragma unrolls the following loop N times. Increases

the memory bandwidth requirement.

4. max work group size(N): This attribute N determines the maximum work group size

the kernel should execute.

5. reqd work group size(x, y, z): This attribute determines the exact work group size the

kernel should execute in three dimensions.

4.4 Acceleration Benchmarks and Results

4.4.1 OpenCL Benchmarks

We have developed six acceleration benchmarks including Sobel filter, FIR filter, ADPCM

filter, Decimation filter, Interpolation and AES encryption in OpenCL. These benchmarks

are developed from S2CBenchmark suite [29], which are created in SystemC. All the bench-

marks are written in OpenCL with a C based OpenCL host program and a standard OpenCL

34

Figure 4.11. Communication vs Computation Time on Accelerated System (ARM+FPGA).

Kernel. The main goal of these benchmarks is to accelerate their execution on SoC FPGA

systems. These benchmarks are portable to most of the Altera SoC-FPGA with few to

no modifications. These benchmarks can be used to generate different hardware Micro-

Architectures by changing the attributes and parameters.

• Sobel: Sobel is a 3X3 , edge detection image filter developed for 8-bit .bmp images

• FIR : A 10 Tap Finite Impulse Response Filter

• ADPCM : An Adaptive Differential Pulse Code Modulation encoder for 16 bit Pulse

Code Modulation (PCM) samples.

• Decimation: A 5 Stage Decimation Filter.It consists of 5 Cascading FIR Filters,

where the output of one filter is fed to the next Filter.

• Interpolation: A 4 Stage Interpolation Filter

• AES Encryption : A 16 bit data and 128 bit key AES Encryption

35

Table 4.3. Acceleration of AES by varying number of CU and SIMD attributes across
different data sizes,work groups = N and work items = (Num Inputs)/N ,where N=2,4

workgroups Compute SIMD 256 512 1024

units units Inputs Inputs Inputs

2 1 1 2.5 4.6 6.6

2 1 2 2.7 5.4 6.6

2 1 4 2.4 5.4 6.9

2 2 1 4.0 4.6 6.9

2 2 2 2.6 5.2 6.9

(a) Number of workgroups = 2

workgroups Compute SIMD 256 512 1024

units units Inputs Inputs Inputs

4 1 1 0.7 2.6 6.2

4 1 2 1.0 2.7 4.6

4 1 4 3.8 5.5 5.7

4 2 1 1.3 2.1 5.7

4 2 2 1.2 2.0 6.5

(b) Number of workgroups = 4

We compiled each benchmark kernel using AOCL compiler and Host program using Altera

EDS. We deployed each benchmark on Terasic DE1-SoC board which has Altera Cyclone

V FPGA. The Benchmarks are designed such that, each Benchmark runs the application

in two versions, first version is on the unaccelerated system (ARM) and second version

on the accelerated System (ARM + FPGA). The corresponding Execution times in both

the systems are recorded. The execution time on ARM+FPGA system with respect to

the execution time on ARM processor alone is used to determine the System Acceleration

obtained. Table 4.2 shows the system parameters for different Benchmarks. The following

are the Timing are determined by the benchmarks

• arm time = Computation time of application on ARM processor alone

• write time = Time consumed for Input transfer from Host to Input Buffer

• read time = Time consumed for Outputs transfer from Output Buffer to Host

36

• api time = Time taken in-out data communication between Host(ARM) and Ker-

nel(FPGA)

• comp time = Computation time of application on FPGA kernel

• hw time = api time + comp time

• acceleration = arm time/hw time

• api% = (api time / hw time) *100

4.4.2 Experimental Results

For each benchmark, the Execution times from both unaccelerated execution (ARM) and

Accelerated Execution (ARM+FPGA) and the speed up is determined for several Input data

sizes. Therefore, the results show the acceleration on ARM+FPGA system with respect to

ARM.

The plots in Figure 4.12 represents the trends in acceleration with respect to the Input

data size. It can be observed that, initially the acceleration tends to increase with the input

data size because with the growing computational complexity, the resulting computational

acceleration overcomes the communication overhead between the host and kernel. In common

for all the benchmarks, the acceleration tend to saturate after reaching certain input size.

The computational acceleration freezes beyond a point as there is no immediate data is

available for processing due to communication overhead and limited data buffer size between

host and kernel.

The plot in Figure 4.11 depicts the ratio between the time taken for computation to

the time take for communication between the host and kernel. For all the benchmarks,

most of the execution time is spent on data transfer between the host (ARM) and the

kernel (FPGA). The highest speed up for FIR filter is 0.95 (See Figure 4.12b), there is no

acceleration achieved because of 93% of communication overhead.

37

Table 4.3 presents the acceleration values obtained for different Micro-Architectural con-

figurations of AES benchmark design. AES is designed as a NDRange Kernel in which

data workgroups can be executed in parallel. By varying the attributes say number of CUs,

SIMDs and Work-group size the performance of the design effected due to change in Data

Efficiency, Memory access due to which the speed up varies.

4.4.3 Conclusions

This Chapter presents the Architectures and Attributes which affect the performance of

the system. We introduced few OpenCL Benchmarks which are mapped to Cyclone V

SoC-FPGA. An average speed-up of 4 times is observed and most of the execution time is

consumed for data transfer between host and kernel. The results show that at higher input

data size the acceleration saturates, because of the Computational acceleration is limited by

the communication overhead.

38

(a) Sobel (b) FIR

(c) Decimation (d) Interpolation

(e) ADPCM (f) AES,CU=2,SIMD=2

Figure 4.12. Plots of Acceleration vs Input Data Size for the benchmark suite.

39

CHAPTER 5

DESIGN SPACE EXPLORATION

The activity of exploring the design alternatives of a system prior to the design implemen-

tation is called Design Space Exploration (DSE). DSE refers to systematic analysis and

pruning of unwanted design points based on parameters of interest [30]. It is used for many

applications like rapid prototyping, trade off analysis and to find optimal design with respect

to the parameters of interest etc. One of the advantage of VLSI design at behavioral level is

that HLS allows to alter the Micro-Architectures without having to modify the behavioral

description. This is done by setting different synthesis options like Attributes and Pragmas

(Loop unroll factor, Number of Compute units, and Number of SIMD units etc.) in the

code, as discussed in the previous chapter.

Each of these attributes directly affect the performance, resource utilization and memory

access patterns of the design by changing the Micro-Architecture. Therefore, different combi-

nations of these attributes, create a large design set with multiple configurations and varying

performance. In Most of the cases, it is difficult to predict the right combination of attributes

which provides the optimal solution because these attributes can interact with each other in

unforeseen manners [31]. For example, increasing the number of compute units, which is du-

plicating processing units and running in parallel should increase the performance. However,

this may not be true always as the high memory bandwidth requirement can degrade the

performance as a result of memory stalls, such trade-offs offered by these attributes varies

from application to application. Thus, it is not easy to anticipate the optimal design without

testing many designs. In addition, the search space is extremely large and it is not practical

to prototype entire solution space due to Compilation time constraint. This motivates to

develop a faster heuristic approach to search the solutions space for a good solution, fast

enough.

40

In this Chapter, we propose and analyze a fast and heuristic DSE method using Ge-

netic Algorithm (GA) to search the solution space by evaluating the effect of these control

attributes. Here we present the methodology of DSE using Exhaustive search and a Fast

Heuristic algorithm, then compare the results of both approaches with well-defined quanti-

tative metrics.

5.1 Design Space Exploration with Exhaustive Search

Exhaustive search DSE involves analyzing of all possible search combinations. It has the

advantage that it is able to find the optimal solution and it is easy to implement. The

main challenge is that the size of the design space is typically extremely large and groups

exponentially with the number of exploration options.

5.1.1 Methodology

Figure 5.1 shows the steps for DSE methodology,each step is described below

1. Add Attributes

For Each benchmark, we determined the relevant attributes (e.g., Loop Unroll factor,

CUs etc.), which can affect the kernel performance. The OpenCL KerneL code is

incorporated with these attributes and their corresponding values can be tuned to

generate different kernel configurations.

2. Generate possible designs by varying the attributes

We used scripts to tune the optimization parameters with appropriate values for each

kernel. This step generates several kernel configurations with different combinations

of optimization attributes. The number of designs generated for each benchmark and

that could fit into the resources ranged between 50 to 200 .

41

3. Compile Each Design

Each design generated in the previous step is synthesized using Altera OpenCL SDK

(AOCL) compiler to extract the different design metrics (i.e. area, latency, delay).

The synthesis time for one design typically takes 1 to 4 hours depending on the design

complexity. So, the compilation of the entire solution set exhaustively for each small

benchmark takes several days (typically 5-7).

We use Kernel area and Execution time as metrics to compare the performance of the

designs. These metrics are extracted for each design from the report files generated

by the compiler tool. The Logic utilization is extracted from the Synthesis report and

the timing is estimated form Latency, Initiation Interval (II) and Maximum Frequency

(Fmax) using equation 4.1. The execution time also depends on the input size, so we

assumed a fixed input data size for all kernel designs.

4. Plot Design Space for analysis

Design Space is created by plotting all the designs with Area and execution time values

as vertex co-ordinates. To illustrate, the DSE of Sobel benchmark performed for image

size of 1024 by 1024 is shown in 5.2

5. Reference Pareto Optimal Front

A good design is expected to have lower execution time along with lower logic utiliza-

tion. In DSE, a design X is referred to as dominated by another design X* if and only

if, X* is better than X with respect to all parameters. The Solutions which are not

dominated by any other solutions in the Design Space are referred to as Non-dominated

Solutions. It is important to note that a Design Space can have multiple Nondominated

solutions. Pareto Optimal Solutions is the set of non-dominated solutions, for which

no parameter can be improved without sacrificing at least one other Parameter. In this

case, the Pareto front is the solution front which is closest to axes, as we expect area

42

Figure 5.1. Steps for DSE

Figure 5.2. Exhaustive Design Space for Sobel, with Pareto optimal Solutions identified.

and execution time to be low. For each benchmark, we manually identified the Pareto

Optimal Solutions. Figure 5.2 illustrates the Pareto Optimal Solution for Exhaustive

DSE of Sobel benchmark.

5.2 Design Space Exploration with Genetic Algorithm

In the previous section, we discussed the use of and exhaustive search method to perform the

DSE. Due to the exponential nature of the problem, faster heuristics are needed. To approach

43

this problem, we can automate DSE with an exploration software that can make decisions

and come up with a good solution in comparatively less time. For this, we need a heuristic

search algorithm, which makes decisions such that the successive iterations are directed

towards the better solutions and also has a convergence criteria to minimize the number of

iterations during exploration. Moreover, the algorithm must support exploration in spite of

trade off between several attributes. To meet these requirements we used Genetic Algorithm

(GA) which has ability to generate good enough solution fast enough. Genetic Algorithm

applies the principle of natural selection and is formulated by bio-inspired operators such as

mutation, crossover and selection. GA offers a good proportion of randomness and control

logic to search the space. Although, GA starts randomized, it exploits historical information

and direct the search to designs with better performance.

5.2.1 Methodology

The Genetic Algorithm takes a few control inputs from user such as Number of Mutations

(M), Number of Parent Initiations (P), Count Value for convergence Criteria (N) and Area

Cost Factor (a). The Genetic Algorithm graphical flow diagram is represented in Figure 5.3.

Each solution in the entire design space is represented with a unique array of Optimization

Parameters (Loop unroll, SIMD etc.).This array is analogous to genetic set of an individual.

A set of two solutions (parents solutions) are randomly chosen from the entire design space.

A random cross over point is chosen and the parent attributes are combined accordingly.

This is followed by M random mutations, the mutation locations are replaced by values from

pre-defined knob values defined for each attribute. The new offspring is compiled for full

synthesis flow to determine the cost function (5.1) using area and execution time of the

design.

cost function = a ∗ (Normalized Area) + b ∗ (Normalized time) (5.1)

44

The survival function is to discard the solution with high cost function. The better solu-

tions with low cost function will continue to iterate around the genetic operations (Crossover

and Mutations) to produce new generations till the convergence criteria is met. According

to Convergence Criteria,the iterations are terminated when there is no decrease in the cost

function for N consecutive iterations. At this point we consider the algorithm has converged

to a solution. After GA reaches a convergence point, the algorithm is repeated for new set

of parents chosen randomly. This loop continues for P different Parent sets and the then the

termination criteria is met. The optimal solutions from different P iterations are compared

and the best solution is returned.

The area cost factor is varied from 0 to 1 with a step value of 0.1.The set of solutions are

plotted with area utilization and execution time as coordinates, the dominant solution front

is determined and compared with Pareto Optimal Front.

5.3 Experimentation Results

4 benchmarks are used to test our proposed search method. In particular, Sobel, FIR,

ADPCM and Interpolation filter. The other 2 benchmarks Decimation and AES are excluded

due to the resource constraints on the board as not many of their design variations fit on

the single FPGA. The design space is compiled for Terasic DE1 SoC which contains Altera

Cyclone V SoC and the compilations are done using Altera OpenCL SDK (AOCL). The

possible designs which are confined to the resources available on a single board are tested.

The experiments are conducted in order to fully understand the effectiveness of our proposed

fast heuristic method with respect to the Exhaustive search which leads to optimal solutions

in all cases. To compare these two multi-objective function optimization methods, we used

few standard metrics to quantify the Quality of results(QoR) of the heuristic with reference

to the optimal and also compare the running time differences.

45

Figure 5.3. Flow of DSE using Genetic Algorithm.

5.3.1 Comparison of Results (Exhaustive search vs Genetic Algorithm)

To analyze the performance of the fast Heuristic method, we consider factors like closeness to

the reference Pareto front, range of diverse solutions in trade off with the total compilation

Time. There are few studies proposed on addressing the metrics to compare the approxima-

tions of trade-off surface in quantitative manner [32]. The metrics used for evaluating the

exploration method are as follows:

1. Pareto Dominance: This index is the fraction of the number of points common in the

Pareto front being evaluated and the reference Pareto front. It quantifies the range of

46

diverse solutions found by the multi objective optimization method being evaluated.

The higher the value, the better the Pareto set is.

2. Average Distance from Reference set(ADRS): This index is used to quantify how

close the evaluated Pareto Front is to the reference front. It measures the average

distance between the Pareto Optimal front(R) and the approximated Front(A). The

lower the value, the better the Pareto set is.

The Plots in Figure 5.3, shows graphically the system exploration trade off curves, that

is the comparison of fast heuristic method Pareto dominant front with the reference Pareto

Optimal front from Exhaustive exploration. The designs are plotted with normalized area

and normalized execution time as their coordinates. The effectiveness of the exploration

method is determined by the closeness between the solution fronts(ADRS) and the number

of common solutions (Dominance).

Table 5.1 presents the comparison metrics Dominance, ADRS and Speed up in the compi-

lation time of Genetic algorithm with respect to Exhaustive search. The Genetic algorithm

control parameters are varied to analyze the affect on the efficiency of the approach. In

summary of Table 5.1, with average dominance of 0.7 the heuristic can determine about 70%

of the optimal dominant solutions. The average ADRS of 0.2, that is the genetic algorithm

solution can be within a 20% distance from the optimal solutions. The average Speed up in

the compilation time is about 6 times for this benchmark suite. Thus, we can conclude that

our method is effective in speeding up the DSE.

47

(a) Sobel (b) FIR

(c) Interpolation (d) ADPCM

Figure 5.4. System Exploration Trade-off Curves: Pareto optimal Front of Exhaustive DSE
vs Pareto Dominant Front of Genetic Algorithm.

48

Table 5.1. Performance metrics of Fast heuristic Genetic Algorithm with respect to Reference
Optimal Solutions

GA Performance Benchmarks Average Metrics

Parameters Metrics FIR Interpolation ADPCM Sobel For GA

Mutations=1 DOM 0.5 0.5 0.5 0.6 0.52

Parent=5 ADRS 0.47 0.33 0.06 0.1 0.24

Count =10 Spd Up 4.6 4 1.2 12.6 5.6

Mutations=2 DOM 0.75 0.5 0.5 0.6 0.59

Parent=5 ADRS 0.48 0.18 0.06 0.16 0.22

Count =10 Spd Up 3 2.8 1.17 12 4.74

Mutations=2 DOM 0.75 0.75 1 0.6 0.77

Parent=5 ADRS 0.48 0.23 0 0.1 0.20

Count =5 Spd Up 5.2 4 2 12.5 5.92

Mutations=1 DOM 0.75 1 1 0.33 0.77

Parent=3 ADRS 0.48 0 0 0.32 0.2

Count =15 Spd Up 4.6 4 1.6 21.8 8

Mutations=2 DOM 0.5 0.75 1 0.6 0.71

Parent=3 ADRS 0.47 0.83 0 0.2 0.37

Count =10 Spd Up 4 3.4 1.56 22 7.74

49

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

The thesis first presents OpenCL benchmarks developed to achieve acceleration on SoC-

FPGA Architectures and the resulting trends in the acceleration is discussed based on the

experiments done on Altera Cyclone V SoC FPGA. The experiments show that the acceler-

ation saturates after a certain input data size due to the communication overhead between

the Processor and the FPGA.

Secondly, A fast and heuristic method to explore the design space is developed and its

performance is analyzed by comparing with Optimal solutions obtained from Exhaustive

DSE. Based on the experiments, an average dominance of 0.7 and an average ADRS of 0.2

at a speed up of 6 times is observed.

6.2 Future Work

The future scope of this work could be experimenting with wider range of benchmarks. The

current benchmarks are designed to work only on a single Kernel FPGA device. The bench-

marks can be upgraded to experiment on platforms with multiple FPGA devices because

most of the current applications (for example in Data Servers) need multiple SoC systems

working together.

Other Fast Heuristic methods like In-Situ, Simulation Annealing or Machine Learning

algorithms can be used for exploration. There is scope for comparing the efficiency of these

algorithms for exploration in the design space.

50

REFERENCES

[1] CoreTech. Fpga architectures comparision, . URL http://ee.sharif.edu/~asic/

Docs/fpga-logic-cells_V4_V5.pdf.

[2] Altera. Cyclone v habndbook, . URL https://www.altera.com/en_US/pdfs/

literature/hb/cyclone-v/cv_5v1.pdf.

[3] Khronous. Opencl specification. URL https://www.khronos.org/registry/OpenCL/

specs/opencl-2.0.pdf.

[4] Jonathan Tompson and Kristofer Schlachter. An introduction to the opencl program-
ming model. Person Education, 49, 2012.

[5] INTEL. Intel fpga opencl sdk programming guide cyclone v. URL https:

//www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl_programming_

guide.pdf.

[6] Intel Altera. Intel opencl optimzation, . URL https://www.altera.com/products/

design-software/embedded-software-developers/opencl/developer-zone.

html#design-examples.

[7] Wikipedia. Mooore’s law, . URL https://en.wikipedia.org/wiki/Moore%27s_law.

[8] Wikipedia. Breakdown of dennard scaling, . URL https://en.wikipedia.org/wiki/

Dennard_scaling.

[9] EETimes. An introduction to offloading cpus to fpgas hardware programming for
software developers. URL http://www.eetimes.com/document.asp?doc_id=1280560.

[10] Paulo Possa, David Schaillie, and Carlos Valderrama. Fpga-based hardware acceler-
ation: A cpu/accelerator interface exploration. In Electronics, Circuits and Systems
(ICECS), 2011 18th IEEE International Conference on, pages 374–377. IEEE, 2011.

[11] Intel. Intel acquisitaion of altera. URL https://newsroom.intel.com/press-kits/

intel-acquisition-of-altera/.

[12] Microsoft. Microsoft catapult project. URL https://www.microsoft.com/en-us/

research/project/project-catapult/.

[13] Xilinx. Xilinx acceleration. URL https://www.xilinx.com/products/design-tools/

acceleration-zone.html.

[14] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam, and
Doug Burger. Dark silicon and the end of multicore scaling. In ACM SIGARCH
Computer Architecture News, volume 39, pages 365–376. ACM, 2011.

51

http://ee.sharif.edu/~asic/Docs/fpga-logic-cells_V4_V5.pdf
http://ee.sharif.edu/~asic/Docs/fpga-logic-cells_V4_V5.pdf
https://www.altera.com/en_US/pdfs/literature/hb/cyclone-v/cv_5v1.pdf
https://www.altera.com/en_US/pdfs/literature/hb/cyclone-v/cv_5v1.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0.pdf
https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html#design-examples
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html#design-examples
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html#design-examples
https://en.wikipedia.org/wiki/Moore%27s_law
https://en.wikipedia.org/wiki/Dennard_scaling
https://en.wikipedia.org/wiki/Dennard_scaling
http://www.eetimes.com/document.asp?doc_id=1280560
https://newsroom.intel.com/press-kits/intel-acquisition-of-altera/
https://newsroom.intel.com/press-kits/intel-acquisition-of-altera/
https://www.microsoft.com/en-us/research/project/project-catapult/
https://www.microsoft.com/en-us/research/project/project-catapult/
https://www.xilinx.com/products/design-tools/acceleration-zone.html
https://www.xilinx.com/products/design-tools/acceleration-zone.html

[15] supercomputing conference ’15. Is the future cpu+gpu or cpu+fpga. URL https:

//insidehpc.com/2015/12/does-the-future-lie-with-cpugpu-or-cpufpga/.

[16] Jeff Burt. Intel begins shipping xeon chips with

fpga accelerators. URL http://www.eweek.com/servers/

intel-begins-shipping-xeon-chips-with-fpga-accelerators.

[17] Wayne Wolf, Ahmed Amine Jerraya, and Grant Martin. Multiprocessor system-on-

chip (mpsoc) technology. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 27(10):1701–1713, 2008.

[18] ITRS. The international technology roadmap for semiconductors on soc. URL http:

//www.itrs2.net/2013-itrs.html.

[19] Robert C Minnick. A survey of microcellular research. Journal of the ACM (JACM),

14(2):203–241, 1967.

[20] Ian Kuon, Russell Tessier, and Jonathan Rose. Fpga architecture: Survey and chal-

lenges. Foundations and Trends in Electronic Design Automation, 2(2):135–253, 2008.

[21] CoreTech. Fpga architectures overview, . URL https://www.pdx.edu/nanogroup/

sites/www.pdx.edu.nanogroup/files/FPGA-architecture.pdf.

[22] Texas Instruments. Multicore socs stay a step ahead of soc fpgas. URL http://www.

ti.com/lit/wp/spry296/spry296.pdf.

[23] C-T Hwang, J-H Lee, and Y-C Hsu. A formal approach to the scheduling problem

in high level synthesis. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 10(4):464–475, 1991.

[24] Khronous Group. Opencl overview. URL https://www.khronos.org/opencl/.

[25] khronos. Opencl quick reference guide. URL https://www.khronos.org/files/

opencl-1-2-quick-reference-card.pdf.

[26] Terasic. Terasic de1soc board. URL http://www.terasic.com.tw/cgi-bin/page/

archive.pl?Language=English&CategoryNo=205&No=836&PartNo=2.

[27] ALTERA. Altera cyclone v. URL https://www.altera.com/products/fpga/

cyclone-series/cyclone-v/overview.html.

[28] Intel Altera. Intel fpga opencl sdk best practice guide. URL https://www.altera.

com/en_US/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf.

52

https://insidehpc.com/2015/12/does-the-future-lie-with-cpugpu-or-cpufpga/
https://insidehpc.com/2015/12/does-the-future-lie-with-cpugpu-or-cpufpga/
http://www.eweek.com/servers/intel-begins-shipping-xeon-chips-with-fpga-accelerators
http://www.eweek.com/servers/intel-begins-shipping-xeon-chips-with-fpga-accelerators
http://www.itrs2.net/2013-itrs.html
http://www.itrs2.net/2013-itrs.html
https://www.pdx.edu/nanogroup/sites/www.pdx.edu.nanogroup/files/FPGA-architecture.pdf
https://www.pdx.edu/nanogroup/sites/www.pdx.edu.nanogroup/files/FPGA-architecture.pdf
http://www.ti.com/lit/wp/spry296/spry296.pdf
http://www.ti.com/lit/wp/spry296/spry296.pdf
https://www.khronos.org/opencl/
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=836&PartNo=2
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=836&PartNo=2
https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html
https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html
https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf
https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf

[29] Benjamin Carrion Schafer and Anushree Mahapatra. S2cbench: Synthesizable systemc
benchmark suite for high-level synthesis. IEEE Embedded Systems Letters, 6(3):53–56,
2014.

[30] Eunsuk Kang, Ethan Jackson, and Wolfram Schulte. An approach for effective design
space exploration. In Monterey Workshop, pages 33–54. Springer, 2010.

[31] Quentin Gautier, Alric Althoff, Pingfan Meng, and Ryan Kastner. Spector: An opencl
fpga benchmark suite. In Field-Programmable Technology (FPT), 2016 International
Conference on, pages 141–148. IEEE, 2016.

[32] Gianluca Palermo, Cristina Silvano, and Vittorio Zaccaria. An efficient design space
exploration methodology for multiprocessor soc architectures based on response surface
methods. In Embedded Computer Systems: Architectures, Modeling, and Simulation,
2008. SAMOS 2008. International Conference on, pages 150–157. IEEE, 2008.

53

BIOGRAPHICAL SKETCH

Susmitha Gogineni was born in Vijayawada, Andhra Pradesh, India on 22nd August, 1994.

She completed her Undergraduate Degree (B.Tech) in Electronics Communication Engineer-

ing with distinction from PVP Siddharths Institute of Technology, affiliated by Jawaharalal

Nehru Technological University(JNTU), Kakinada. She joined The University of Texas at

Dallas to pursue her Masters in Electrical Engineering (MSEE) in August 2015. She joined

DARC Lab (Design Automation and Reconfigurable Computing Lab) under Dr. Benjamin

Carrion Schafer, in January 2017 to research on Hardware Acceleration on FPGAs. Her

research interests include Computer Architecture, Re-configurable Computing, Hardware

Acceleration and High Performance Computing (HPC).

54

CURRICULUM VITAE

Susmitha Gogineni
August, 2017

Contact Information:

Department of Electrical Engineering
The University of Texas at Dallas
800 W. Campbell Rd.
Richardson, TX 75080-3021, U.S.A.

Voice: (469) 763-5200
Email: sxg155930@utdallas.edu

Educational History:

B.Tech., Electronics & Communication Engineering, P.V.P Institute of Technology, Vi-
jayawada, India, 2015
M.S, Electrical Engineering, The University of Texas at Dallas, 2017

Efficient Hardware Acceleration on SoC-FPGA using OpenCL
MS Thesis
Electrical Engineering Department, The University of Texas at Dallas
Advisor: Dr. Benjamin Carrion Schafer

Employment History:

Design Verification Intern, Palo Alto Networks, May 2016 – August 2016

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	FPGA-based Hardware Acceleration
	Strengths of FPGA-based Hardware Acceleration
	Challenges of FPGA for Hardware Acceleration
	Motivation
	Thesis Structure

	Field Programmable Gate Arrays (FPGAs)
	Overview of Programmable Logic
	SRAM-based FPGA
	Modern FPGA Logic Cells: Xilinx Slices vs Altera ALM
	SoC FPGA

	High Level Synthesis and OpenCL
	High Level Synthesis (HLS)
	High Level Synthesis Process

	Open Computing Language (OpenCL)
	OpenCL Hardware Platform
	OpenCL Execution Model
	OpenCL Memory Model
	OpenCL programming

	HARDWARE ACCELERATION ON SoC-FPGA USING OPENCL
	System Description
	System Hardware
	System Software
	System Memory Architecture

	Programming the System
	Host and Kernel
	Host Program and Device Kernel Development Flow

	Optimization of Design for Acceleration
	Optimization Architectures
	Optimization Pragmas and Attributes

	Acceleration Benchmarks and Results
	OpenCL Benchmarks
	Experimental Results
	Conclusions

	DESIGN SPACE EXPLORATION
	Design Space Exploration with Exhaustive Search
	Methodology

	Design Space Exploration with Genetic Algorithm
	Methodology

	Experimentation Results
	Comparison of Results (Exhaustive search vs Genetic Algorithm)

	CONCLUSIONS AND FUTURE WORK
	Conclusions
	Future Work

	References
	Biographical Sketch
	Curriculum Vitae

