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Abstract

Background: Neuroimaging studies have yielded significant advances in the understanding of neural processes
relevant to the development and persistence of addiction. However, these advances have not explored extensively
for diagnostic accuracy in human subjects. The aim of this study was to develop a statistical approach, using a
machine learning framework, to correctly classify brain images of cocaine-dependent participants and healthy
controls. In this study, a framework suitable for educing potential brain regions that differed between the two
groups was developed and implemented. Single Photon Emission Computerized Tomography (SPECT) images
obtained during rest or a saline infusion in three cohorts of 2-4 week abstinent cocaine-dependent participants
(n=93) and healthy controls (n = 69) were used to develop a classification model. An information theoretic-based
feature selection algorithm was first conducted to reduce the number of voxels. A density-based clustering
algorithm was then used to form spatially connected voxel clouds in three-dimensional space. A statistical classifier,
Support Vectors Machine (SVM), was then used for participant classification. Statistically insignificant voxels of
spatially connected brain regions were removed iteratively and classification accuracy was reported through the
iterations.

Results: The voxel-based analysis identified 1,500 spatially connected voxels in 30 distinct clusters after a grid
search in SVM parameters. Participants were successfully classified with 0.88 and 0.89 F-measure accuracies in
10-fold cross validation (10xCV) and leave-one-out (LOO) approaches, respectively. Sensitivity and specificity were 0.
90 and 0.89 for LOO; 0.83 and 0.83 for 10xCV. Many of the 30 selected clusters are highly relevant to the addictive
process, including regions relevant to cognitive control, default mode network related self-referential thought,
behavioral inhibition, and contextual memories. Relative hyperactivity and hypoactivity of regional cerebral blood
flow in brain regions in cocaine-dependent participants are presented with corresponding level of significance.

Conclusions: The SVM-based approach successfully classified cocaine-dependent and healthy control participants
using voxels selected with information theoretic-based and statistical methods from participants’ SPECT data. The
regions found in this study align with brain regions reported in the literature. These findings support the future use
of brain imaging and SVM-based classifier in the diagnosis of substance use disorders and furthering an
understanding of their underlying pathology.
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Background

Medical imaging techniques have dramatically improved
our ability to explore the neural processes relevant to psy-
chiatric disorders. These techniques can be group into two
classes based on type of measurements: direct and indirect.
Electroencephalography (EEG) and magnetoencephalogra-
phy (MEG) are non-invasive modalities and directly meas-
ure electric changes associated with neural activity in the
brain. A major limitation within these EEG and MEG are
that they can only sense the electrical activity and magnetic
fields oriented perpendicular to the surface of the brain
and face the challenge of identifying the source of the
underlying signal. While they have superb temporal reso-
lution, their spatial resolution is limited.

Magnetic resonance imaging (MRI), functional mag-
netic resonance imaging (FMRI), positron emission tom-
ography (PET), and single-photon emission computed
tomography (SPECT) are the major approaches utilized
in neuroimaging studies and indirectly measure neural
activity. MRI/fMRI is the most widely used method in
the brain imaging because of its low risk for subjects,
better temporal and spatial resolution relative to other
indirect neuroimaging methods. PET measures blood
flow in the brain by injecting small amounts of radio-
active tracer. Then, the accumulation of the tracer is
scanned. Similar to PET, the modality of SPECT uses
radioactive tracers and a gamma camera to construct
two- or three-dimensional images with the computer
support. SPECT scanners are more affordable that PET
scanner. Both PET and SPECT can also be used to assess
specific neurotransmitter receptor binding potential and
functioning. Many studies have exploited these modal-
ities in brain research and addiction [1].

However, these discoveries have not been either specific
or sensitive enough to assist in the diagnosis or treatment
of psychiatric disorders. Thus, the identification of persons
either at risk of or suffering from most psychiatric disor-
ders, including substance use, schizophrenic, affective, and
anxiety disorders, remains dependent upon descriptive
signs and symptoms. Brain imaging obtained from healthy

and non-healthy groups can be analyzed via data-driven
machine learning and data mining algorithms to elicit the
key difference between subject groups. The findings may
pave the path for identifying new neural mechanisms
underlying these disorders as well as detecting those at risk
or responsive to specific treatment approaches.

Support Vector Machines (SVMs) are relative new multi-
variate machine learning / pattern classification algorithms
which have been intensively studied and benchmarked
against a variety of techniques [2]. An SVM [3-5] classifier
seeks maximum margin separation in multidimensional
(multivariate) feature space in order to separate two classes
with minimum error and has generalization power and fea-
ture mapping advantages over other classifiers such as
Bayesian, Neural Networks, and Decision Trees. The para-
mount advantage of SVM classifiers over linear methods
(e.g. discriminant analysis, perceptron, neural networks) is
the use of a function to map original data to another multi-
dimensional space in which linear separation yields more
accuracy [3]. SVMs also offer a great deal of flexibility in
that they can learn from multivariate subject data (continu-
ous or categorical) such as demographic or clinical mea-
sures, gene expressions, or cognitive measures.

This intelligent software has been used to detect brain
diseases, such as schizophrenia [6—8], Alzheimer’s disease
(AD) [9-12], Huntington’s disease [13], attention deficit/
hyperactivity disorder (ADHD) [14—16], Parkinson disease
[17], and social anxiety disorder [18]. Classification accur-
acies of these studies vary between 55 and 100 % for two-
category classification of healthy control vs diseased. One
of most successful classification studies [10] used linear
SVMs to classify patients with AD from four different
groups (28 to 90 subjects per group) via T1-weighted
anatomic MRI scans. In addition to the successful classifi-
cation of AD and control participants, this technique was
able to distinguish patients with mild AD from control
subjects, and subjects with AD from those with fronto-
temporal lobar degeneration. The subjects were correctly
assigned to the appropriate diagnostic category in 95 % of
trials with 95 % sensitivity and 95 % specificity within
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LOO accuracy assessment method. As for substance use
disorders, only alcohol-addicted subjects have been stud-
ied with similar data mining and machine learning algo-
rithms [19-21] so far. Alcohol-dose effects on brain
activation were explored using independent component
analysis to isolate systematically non-overlapping net-
works and their time courses [22]. To our knowledge,
there are no published studies presenting classification of
cocaine dependence using SPECT data.

The primary impetus for the present study was to de-
velop a clinically applicable framework to identify cocaine-
dependent patients via brain imaging, using study partici-
pants assessed with single photon emission computerized
tomography (SPECT) [23, 24]. The main aim of this study
was to determine the brain regions to optimally classify
cocaine dependents versus healthy controls using measures
of regional cerebral blood flow (rCBF). We also wanted to
explore whether the brain regions that classified cocaine-
dependent vs. healthy controls would be related to cortico-
striatal-limbic systems relevant to the addictive process
[25—27]. On the other hand, the framework that was devel-
oped in this work does not depend on any particular
experimental task, which means that the framework can be
applied to and tested on SPECT data from studies which
study other types of brain disorders.

Materials and methods

Participants and data acquisition

Ninety three two- to four-week abstinent cocaine-
dependent and 69 healthy control participants, 24 to
48 years old, were studied (see Table 1). All participants
underwent a medical history and physical examination,
Structured Clinical Interview for Diagnostic and Statis-
tical Manual of Mental Disorders-Fourth Edition (DSM-
IV), clinical laboratory tests and urine drug screen. T1-
weighted MRI scans were obtained from all but the first
20 subjects (10 cocaine-dependent) to enhance SPECT
registration and rule out anatomic abnormalities. Finan-
cial compensation was provided to the participants for
their involvement. Approval for the study was obtained
from the Institutional Review Boards of the University of

Table 1 Demographics of participants
Controls (n=69)

Cocaine-dependent (n = 93)

Mean/n SD/% Mean/n SD/%

Age (years) 346 75 400 6.8
Male 33 47.8 % 67 72 %
Race

White 36 522 % 22 237 %

Black 20 29.0 % 69 74.2 %

Asian 3 43 % 0 0.0 %

Hispanic 10 14.5 % 2 22 %

Page 51 of 186

Texas Southwestern Medical Center at Dallas and the
VA North Texas Health Care System.

Cocaine-dependent subjects were recruited from pa-
tients obtaining residential treatment for cocaine depend-
ence at the VA North Texas Health Care System in Dallas,
Homeward Bound, Inc. and the Nexus Recovery Center.
All cocaine-dependent participants endorsed cocaine as
their primary drug of choice. Cocaine-dependent partici-
pants were hospitalized as soon as possible after their last
reported use of cocaine and remained in a structured,
residential unit until the initial scan was completed.
Participants were excluded from participation if they took
any central nervous system active medications (including
all psychotropics) or had any major medical or neuro-
logical disorders, active affective, anxiety or psychotic
disorders (non-substance related), Axis I disorders, or
organic brain syndrome. Women were all premenopausal.
A negative pregnancy test was obtained on all female sub-
jects prior to SPECT scanning.

Healthy controls were recruited through local ads in
newspapers, the internet and notices on bulletin boards.
Exclusion criteria for healthy controls included the
criteria as noted for the cocaine-dependent subjects, as
well as a lifetime history of substance use or other Axis I
disorder (except nicotine dependence). Healthy controls
with a first-degree relative or two or more second-degree
relatives with a substance-use disorder were also excluded.

Study sessions took place in the afternoon at the
Nuclear Medicine Center or the Clinical Trials Office at
the University of Texas Southwestern Medical Center at
Dallas. Participants from three studies were included:
Study I) Subjects (37 controls, 35 cocaine-dependent)
participated in two study sessions to assess limbic sensitiv-
ity to the local anesthetic procaine [28, 29]. Saline was
administered in the first session. Subjects were blinded to
condition. Study II) Subjects (20 controls, 25 cocaine-
dependent) participated in four sessions to assess cholin-
ergic and 5HT3 receptor systems. Saline was administered
in one of the four sessions; study order was double-blind
and randomized [30, 31]. Study III) Subjects (12 controls,
33 cocaine-dependent) were assessed at rest [32].

SPECT images were acquired on a PRISM 3000S three-
headed SPECT camera (Picker International, Cleveland,
OH, USA) using low energy ultra high-resolution fan-
beam collimators (reconstructed resolution of 6.5 mm) in
a 128 x 128 matrix in three-degree increments. For each
scan, 20 mCi of **™Tc HMPAO was administered, and
total scan duration was 23 min. Image reconstruction was
performed in the transverse domain using back-projection
with a ramp filter. The voxel size in the reconstructed im-
ages were 1.9 mm®, Reconstructed images were smoothed
with a fourth-order Butterworth 3-D filter, attenuation
corrected using a Chang first-order method with ellipse
size adjusted for each slice.
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To register SPECT images more accurately, a rigid-body
co-registration of the SPECT scan to a skull-stripped T1-
weighted high-resolution (0.8 x 0.8 x 1.5 mm) structural
MRI scan of the same subject transformed the SPECT
image into the same space as the MRI. Spatial transform-
ation parameters were then calculated using the statistical
parametric mapping (SPM5) to warp the MRI into stand-
ard MNI [33] space. The same transformation was then
applied to the co-registered SPECT image and output im-
ages were resliced to 2 mm® voxels. All images were
smoothed to a final resolution of 10 mm and the voxel sig-
nal values normalized to whole brain counts (to correct
for individual variability in global cerebral blood flow). All
scans were combined and mapped into 2D matrix where
each column was a subject and each row was a feature
(voxel). In this representation all non-mask voxels were
eliminated, reducing the feature space twofold. All statis-
tical analyses were carried on a 64-bit 3.0 GHz PC using
MATLAB scientific programming language [34]. In the
reporting of brain regions, we used Automated Anatom-
ical Labeling [35] (AAL, 90 regions, only cerebrum) atlas
with the dimension of 79 x 95 x 69 voxels.

The framework

We designed the framework in which the input is the
normalized SPECT data of participants from both
groups, cocaine-dependent and healthy control. The
framework here is not task-dependent, which means that
the classification framework is also applicable to other
similar neuroimaging studies. Since all SPECT images
were normalized to AAL mask, it is proper to consider a
voxel (intensity of rCBF changes) as a feature at the very
low level, representing the subject. Therefore, an array
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of voxels from the same spatial location in 3D for each
participant represents one-dimension of the multidimen-
sional classification space. Through this study, the term
of feature is used for the voxels in the cerebrum.
Referring to Fig. 1, we first eliminated all non-AAL
mask voxels from the data set of 162 participants
(Fig. 1a). After the elimination, the imaging data set was
represented as a 2D matrix, where one dimension is
used for voxels (features), and the other dimension
denotes the participants (samples). Numerous non-
informative voxels were eliminated using Information
Gain method (Fig. 1b) in order to reduce the feature
space. After this step, individual voxels which are not a
member of a connected cloud of voxels (groups) were it-
eratively removed (Fig. 1c). The classification accuracy
was assessed with an SVM classifier (Fig. 1d); and the
least significant R voxels (Fig. 1e) were removed, where
R was set to 100 empirically. The loop of sub-sections
Fig. 1c—e continues to run until there is no voxel to be
used in classification (Fig. 1d). Further details of the
framework are described in the following subsections.
We considered Principal Component Analysis (PCA) as a
feature selection method before the other information-
thoretic approach. However, the issue of computational
complexity of PCA made us search for another method.
Note that the voxel size of mask is N = 203,632, and we had
M =162 participants. So, the covariance matrix Ce R,
which has time complexity of O(MN?). Furthermore and
addition computation with O(M?) required for singular
value decomposition applying to resulting matrix of first
step. A PCA is also requires a great amount of the memory
for the matrix calculations. We did experiments to find
principle component and received this error: Matrix of

N

~

b Selected M
Feature Selection features
Remove a voxel v if
info(v)=0 using Information
Gain

162 (93 cocaine-dependent and
69 control) subjects

DBSCAN

Keeps only densely
connected voxels

Report
parameter set,
voxel Set,
accuracies

)

SVM Classifier
Build models and search a
parameter set for best 10-fold
Cross Validation accuracy

—_—

M 2100

SVM Feature

Elimination
Remove R features, M=M-R

/

Fig. 1 Feature selection, parameter selection, classification, and reproducibility framework. To find the best classification model, the framework is started
with single photon emission computerized tomography (SPECT) scans (162 subjects) (@). Information Gain algorithm (b) removes non-informative voxels. A
loop of parameter selection and Support Vector Machines (SVMs)-based feature selection then takes place. Only voxel clusters with size 220 are kept in the
dataset (c) with DBSCAN, a density-based clustering method. At each iteration, the dataset is trained and tested (d); SVM's feature elimination (e) refines
voxels before next DBSCAN run. When there was no more than 100 voxels, parameter search was ended. At the next steps, model, 10-fold Cross Validation
(10xCV), and leave-one-out (LOO) classifications were carried out and accuracies and set of selected voxels were identified (f)
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203633 x 203633 = 41466398689 elements is too large to be
allocated using a single Java array. Note that 203633 =
203632 + class variables with 4-byte unit size requires
around 155 GB memory to calculate covariance matrix and
following eigenvalue calculations, which is impractical with
a mediocre computer.

Information gain
The whole unprocessed dataset consisted of a concatenated
162 x 203,632 matrix from all of the brain scans. A SPECT
image of participant in the dimension of 79 x 95 x 69 =
517,845 voxels, which leaves 203,632 voxels after brain ex-
traction and thresholding using the AAL brain atlas. This
meant that we should device a classifier to deal with all
203,632 features at-large, which is practically infeasible. As
done in many classification frameworks [6, 9-12], we
reduced the number of voxels by selecting only the most
informative ones. To find out the optimal analysis for initial
voxel selection, the Gaussian distribution of each voxel over
all sample was investigated first. Since we found out that
only 12.6 % of 203,632 voxels were normally distributed
with the method proposed by Lilliefors et al. [36] in both
groups, we opted not to use the traditional statistical
methods to reduce the size of features. Information Gain
[37], an information theoretic-based feature reduction algo-
rithm, was employed in this step. As a result, 6,683 of the
203,632 brain voxels were identified as significantly inform-
ative in the classification of the two groups of subjects.
Information Gain, also known as Kullback—Leibler diver-
gence, is a non-parametric method used to select a feature
that reflects minimum randomness in class distributions.
More formally for a two-class problem, it is given as

IG(v) = - p1 logopy - p2 logyps,

where, p; and p, are the probabilities that the voxel v
belongs to class 1 and 2, respectively. This first step of
entropy-based voxel selection served as a blind dimen-
sion selection and discarded all but voxels with IG(v) >0
regardless of the spatial or informational correlation be-
tween pairs of voxels (Fig. 1b).

Clustering voxels in 3D
Following the removal of many features with Informa-
tion Gain, we are left with 6,683 voxels that are from dif-
ferent locations from the AAL bring regions. Before the
classification step, we removed individual voxels which
are spatial proximity of a group of other selected voxels.
We wanted to determine the minimum cluster size
(number of spatially connected voxels) which would pro-
vide an overall false discovery rate of 0.01 and a voxel-
level false discovery rate of 0.002. We used the AlphaSim
utility of AENI software which runs Monte-Carlo simu-
lations, and we determined cluster size to be 20 [38, 39].
A spatial case of A density-based algorithm for discov-
ering clusters in large spatial databases with noise
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(DBSCAN) [40] with e=+/2, Minpts =2 was used.
The ¢ and Minpts are two parameters for DBSCAN clus-
tering algorithm to fine-tune how far a boundary of a
cluster can go and how dense at least each cluster can
be, respectively. The conditions of e= /2, Minpts =2
requires that the minimum size cluster be two and these
two voxels should be next to each other sharing a com-
mon edge (e= v/2) in 3D space (see Fig. 2).

Let K be set of voxels resulted from either first feature
selection, Fig. 1b or SVM feature elimination step, Fig. le.
The pseudocode of a special case of DBSCAN is presented
in Fig. 3. It performs only one pass in the set of voxels, K,
and finds all clusters under a given parameter conditions
above. At the beginning all voxels are labelled as unclus-
tered. For each voxel that is not yet clustered, DBSCAN
checks whether this voxel, v, is a core (Step 1). This is sim-
ply to check if v has at least one common-edge neighbor.
If the voxel is a core, a new cluster is expanded starting
with this voxel (Step 2). Otherwise, the voxel is labelled as
a non-member (Step 4). To expand an existing cluster,
DBSCAN begins by inserting all common-edge neighbors
of the initial voxels into a queue (Step 3). For each voxel,
y, in the queue, the algorithm finds all common-edge
neighbors of y and inserts only voxels that are unclustered
yet and not the member of queue into the queue. This is
repeated until the queue is empty. Since each voxel of a

Fig. 2 During the expansion of clusters (clouds of spatially connected
voxels) in 3D, a cluster can grow via those voxels that are sharing a
common edge with the one of existing cluster’s voxels. This property is
regulated by parameters of e= /2, Minpts = 2 . In this 3D figure, each
cube represents a voxel. The centered (red-outlined) voxel (#1) and only
five (#2, #3, #4, #5, #6) of its twelve common-edge neighbors are
depicted for the sake of simplicity. Note that point-based neighborhood
(sharing only one corner, such as #1 and #7) between two voxels does
not satisfy the condition of cluster expansion




The Author(s) BMC Bioinformatics 2016, 17(Suppl 13):357

Page 54 of 186

Algorithm DBSCAN (K, &, n)) // K is set of voxels

// all voxels of K are labeled as unclustered
for each unclustered voxel, v € K do
// STEP 1, check whether v is a core
if CORE(v) then // Check if v has at least one common-edge neighbor
// STEP 2, if v is a core, a new cluster is formed and expanded
generate a new clusterID|

insert v into queue Q

while Q is not empty do

for each x € T do

end for
remove y from Q
end while

else

label v as non-member

end for

remove all non-members

y = first voxel in Q
label y with clusterID
// STEP 3, expand the cluster with new members

T = {x € K | x is common-edge neighbor of y}

if x is unclustered and x € Q then

insert x into queue Q

// STEP 4, if v is not a core, it is labeled as non-member

remove all clusters with the size (number of voxels) less than 20

Fig. 3 The pseudocode of the modified DBSCAN algorithm to find group of voxels through the processes of feature selection

cluster is labelled with a clusterID, they are not process
again in the later stage of the algorithm. The DBSCAN al-
gorithm labels each voxel either a member of a cluster or
a non-member. At the end, all non-members voxels and
members of a cluster with less than 20 voxels are removed
from the data set. For instance, in the first run of
DBSCAN algorithm, 1164 out of 6,683 voxels are removed
data set either because of they are not a member of any
cluster or they could not form big enough clusters (<20).

A statistical classifier: support vector machine

From the machine learning perspective, classification is
the process of mapping a new data sample (a participant)
to one of known labels where rules or functions are in-
duced from a training population. In this study, the size of
training data was 162 — round(162 x 0.1) = 146 partici-
pants in the case of 10xCV, and 162 — 1=161 in LOO.
Training and test datasets were normalized between -1
and 1. Identification of cocaine-dependent participants in
a cohort with healthy controls is a binary classification
and it was carried out via the SVM statistical classification
algorithm, SVM. Note that in this study SVM was used as
both classification tool and feature selection method. In
the classification phase (Fig. 1d), all voxels from the dense
cluster found with DBSCAN clustering algorithm were
fed to SVM as a feature set.

In many SVM classification problems the resulting
classifier cannot be visualized because of high dimen-
sionality. For instance, given the fact that we worked on
this study with thousands of voxels, it would be impos-
sible to present the classifier for human perception.

Hence, a toy example with only two features and 19
samples (10 circles and 9 triangles which constitute the
two categories/groups) are depicted in Fig. 4, where the
resulting hyperlines of linear and polynomial kernels of
SVMs are shown to visualize kernel effect in classifica-
tion. Furthermore, two SVM models classifying all of the
participants with only two features (voxels) are visual-
ized in Fig. 5. In each sub-figure, the resulting separating
line (hyperplane) with corresponding training kernel is
shown. The accuracy of obtained models were not same.
In Fig. 5-upper, the problem space was divided into two
sub-regions and yielded an accuracy of 0.72 (number of
correctly classified participants is 117). However, in
Fig. 5-lower, hyperplane is polynomial to include more
patients in correct regions. For instance, the subject with
the left superior parietal (horizontal axes) expression
around 96 and right superior temporal pole (vertical
axes) around 78 was misclassified with linear kernel.
However, the same subject was correctly labeled as
cocaine-dependent once SVM classifier was trained with
a polynomial kernel. Particular to this comparison, the
mapping of data with a polynomial kernel increased the
model accuracy of the system from 0.72 to 0.74, mean-
ing that three more participates are correctly classified.
An SVM classifier labels the group/category membership
(in our case, as either cocaine-dependent or healthy) by
defining a hyperplane in multi-dimensional space, separ-
ating group-specific features (see Fig. 4). However, the
large number of voxels in SPECT images in our case
creates unmanageably high dimensionality, requiring
that only a subset of selected features is used in the
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Fig. 4 In this toy illustration, the hyperlines (dashed lines) of Support Vector Machine (SVM) separate cocaine-addicted (red circles) from healthy
control (blue triangles) participants via two features F; and F». Left panel: The kernel function, which maps a data point to another dimension, is
in the form of ®(x). O(x), which produces a linear decision boundary. Right panel: The separating line is non-linear, since a polynomial kernel,
(D). DX, is used to map the data. In this case, the decision boundary is non-linear, placing more cocaine-addicted participants in the correct
regions. For instance, two of the cocaine-addicted participants and one healthy participant pointed with green arrows are misclassified with a
linear kernel. Once trained with a polynomial kernel, the decision boundary is more flexible resulting in fewer misclassified participants. The use of

classification algorithm. Therefore, the framework intro-
duced in Section 2.2 includes two levels of feature selec-
tion schema: 1) dimension reduction with Information
Gain reduced the number of voxels to a manageable set,
ie, from 203,632 to approximately 5,500 voxels (see
Fig. 1); 2) SVM-based feature selection reduced size of
voxels from 1000s to the order of 100 s (see Fig. le),
iteratively.

Through these iteratively refined steps, the most sig-
nificant voxels remained in the dataset by removing the
less significant ones. At each step with the refined voxel
set, a new SVM classifier was trained to separate con-
trols from the cocaine-dependent participants. Because
of the nature of SVM’s heavy dependence on parameter
selection, in each iteration, training and classification
were done using various parameters and kernels. The list
of kernels and parameters are given in Table 2. The clas-
sification was performed using all of the parameter com-
binations listed in Table 2, and the parameter
combinations which yielded the best classification accur-
acy result are reported in the Results section below.

Since one of the aims is to elicit brain regions that sig-
nificantly contribute to the SVMs classifier, we kept all
162 subjects in the main loop of the framework. Once
we determined the best-possible parameter and voxel
sets, their classification power was evaluated with LOO
and 10xCV methods.

Support vector machine based feature selection

In a classification framework, features (e.g., the selected
voxels in this study) are information carrying representa-
tives of samples (e.g., study participants). In this context,
feature selection involves removal of insignificant fea-
tures aiming for a better classification accuracy with the
remaining features. For the feature selection sub-section

in the loop of framework, an SVM-based approach was
adapted since SVM is being used in the classification of
controls and cocaine-dependent participants in the pre-
vious step. Guyon et al. [41], for example, showed that
their recursive feature elimination technique utilizing
SVM vyielded better accuracy than correlation-based
methods in a DNA microarray dataset, which is similar
to this study in terms of high dimensionality of voxel
data set and the machine learning task of classification
of control and diseased subjects.

The feature elimination framework started with the set
of possible significant features to be used in the classifi-
cation algorithm (Fig. 1d). This set of features was then
refined through the elimination of non-significant ones
from the initial set. Features to be removed were se-
lected utilizing weight vector weR” of linear SVMs.
Since each component of w corresponds to a feature in
the classification problem, Guyon et al. [41] showed that
the larger |wj|, j<# , the more contribution to decision
in the classification. In the previous notation, # is num-
ber of voxels and |wj| is the length of j™ component of
the weight vector w. After each classification attempt in
the framework, a linear SVM classifier was run and 100
least significant features were removed from the data
set. When comparing to the Information Gain feature
selection method which was used in the first step to re-
move vast number of voxels, the one proposed by
Guyon et al. is more refined, i.e. more successful in sort-
ing out the voxels which contribute most to the
classification.

Classification software and accuracy

LibSVM [42] was used for the training of SVM models
and classifications of participants. The accuracies ob-
tained with 10xCV and LOO assessment methods along
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Fig. 5 The hyperplanes (dashed line) of SVM model separating patient groups via two voxels from right superior temporal pole (vertical axes) and left
superior parietal (horizontal axes) with different kernel functions. (upper) The kerel function was in the form of ®(x). ®(x), which produces a linear
decision boundary having 117 out of 162 subjects were correctly classified. (lower) The separating line is non-linear since a polynomial kernel (DX). dDX))*
was used to map the data. 120 out of 162 subjects were correctly classified

Table 2 List of various parameters used with SVM on the

dataset

Kernels Linear, radial basis function,
polynomial, sigmoid

SVM type C—-SVM, v-SVM

Degree of polynomial function 3,4,56,7

C 2,4,10,12, 15,20 (N/A in v—SVM)

Gamma (y) 0.001, 0.003, 0.01, 0.03, 0.05, 0.1
Coefficient 0.01,0.1,1,5,10, 15, 20
Nu (v) 0.2,0.29,04,05

with sensitivity and specificity are reported. In 10xCV,
the dataset (N =162 participants) was divided into 10
non-overlapping quasi-equal class distribution partitions.
In each of the 10 folds, one partition (16 participants)
was held as test data, S, while a model was built with the
remaining nine partitions (training samples, N — S). S is
also called the validation set. Through this method,
every participant is entered in the test set one time, and
in the training set nine times. Finally, the average of ac-
curacies from each fold was reported.

The LOO is the exhaustive version of k-fold cross-
validation with k=N=162, and it simply avoids
combination-driven calculation problem of k-fold cross-
validation. In LOO, we exclude only one test subject, S=1,
from the group of N=162 and classify whether S is
dependent or healthy using the model built based on the
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remaining N — S = 161 subjects, which constitute the train-
ing group. In turn, each subject is considered as S once,
and this classification process is repeated N = 162 times for
each of the subjects. The accuracy of model is reported in
each case (0 or 1 in this case), and an average of all 162 ac-
curacies is reported. Note that SVM classification models
obtained for each training dataset result in different but
similar classification model (a hyperline in multidimen-
sional space) even if the SVM is trained with exactly same
parameters and constraints. In general, a dataset with sig-
nificant informative features would be more robust to re-
moval of a particular S assuming that the other subjects
who are of the same class as S will cover the missing infor-
mation excluded by the removal of S.

F-measure was the criterion to choose the best classifica-
tion model. F-measure, extensively used in information re-
trieval domain, is the harmonic mean of precision and
recall. Recall is the percentage of positive labeled instances
that were predicted as positive and found by True Positive/
(True Positive + False Negative). Precision is defined as the
percentage of positive predictions (e.g., cocaine-dependent)
that are correct, and calculated as True Positive/(True Posi-
tive + False Positive). Based on given ratios, the F-measure
was calculated as ZPredsionRecall Jf the same F-measure is
obtained from several SVMs, the one with highest recall is
selected.

Results

Feature selection and classification accuracy

Since only 12.6 % of the 203,632 voxels were normally
distributed, Information Gain returned only 6,683 voxels
as a starting set (Fig. 2b). While the voxels are iteratively
refined in the loop of the framework, it was found that
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polynomial kernel, f(x) = 0.007(D(x). d(x) + 10)* with
coefficient R = 1.0 and penalty parameter C = 15 within a
C - SVMs yielded the best average classification (F-meas-
ure) accuracy using 1500 voxels. Figure 6 shows how
average accuracy changed over number of selected
voxels.

To select the parameter set for SVM and voxel clus-
ters, three different types of schemas, focusing 1500 -
voxels in 30 clusters with at least 20 spatially connected
voxels in each, were explored. Model accuracy for all
assessments (F-measure, sensitivity, specificity) was 1.0,
meaning that both groups were perfectly separable in a
higher dimensional space, which had all 162 participants
mapped by a degree-four polynomial kernel. The F-
measure of LOO and 10xCV were 0.89 and 0.88,
respectively. Sensitivity and specificity were 0.90 and
0.89 for LOO; 0.83 and 0.83 for 10xCV, respectively.
Similar results for LOO and 10xCV indicated that the
classification model build using 1500 clustered voxels
appeared robust to the exclusion of either one or 10 sub-
jects. 29 of 30 clusters showed significant features having
p-value less than or equal to 0.002. All identified clusters
and corresponding regions are detailed in the Fig. 7.

Identified regions of interest

Of the 30 clusters used to successfully classify cocaine-
dependent and control participants, 27 showed relative
rCBF increases in cocaine-dependent compared to con-
trol participants and three showed rCBF decreases in
cocaine-dependent compared to control participants
(see Fig. 7; transverse images and MNI coordinates pro-
vided in Additional file 1). A large cluster in the left
superior parietal gyrus, encompassing almost 20 % of
the voxels used in classification, showed higher rCBF in
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Fig. 6 10-fold cross-validation accuracies (the accuracy values used to select best parameter and voxel sets). These result are obtained with Support Vector
Machines (SVM), polynomial kernel, f(x) = 0.007(®(x). O(x) + 10)* coefficient R=1.0, and penalty parameter C=15. The 10-fold cross validation accuracy
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Fig. 7 Regions that is used to classify cocaine-dependent and controls participants with the best accuracy. 1500 voxels in 30 clusters were identified.
Figure shows sagittal sections of region-of-interests (ROIs) where 100 % model, 89 % LOO, and 88 % 10xCV accuracies were obtained. Red identifies
clusters of increased regional cerebral blood flow (rCBF) in cocaine-dependent participants relative to controls. Blue identifies clusters of decreased
(rCBF) in cocaine-dependent participants relative to controls. Slice numbers are in MNI coordinates. MNI coordinates of each cluster and images in axial

planes are provided in the Additional file 1

the cocaine-dependent participants relative to controls.
Other clusters of increased rCBF in the cocaine-
dependent participants included the right and left pre-
and post-central gyrus and cerebellum, the left transverse
temporal gyrus, inferior parietal lobule, thalamus, parahip-
pocampus, posterior cingulate, and cuneus, and right mid-
dle temporal gyrus, lingual gyrus and precuneus. Clusters
with decreased rCBF in the cocaine-dependent partici-
pants, relative to controls, were restricted to the left lateral
OFC and bilateral superior temporal cortex.

Discussion
It is shown that a machine learning framework based on
SVM-based classifier and feature selection method and pri-
marily supported with a density-based clustering tool suc-
cessfully classified cocaine-dependent from healthy controls
individuals with 0.89 LOO and 0.88 10xCV accuracies. Sen-
sitivity, the ability to correctly identify those having the dis-
order, was 0.90. Given these high classification rates,
determined by cross-validation, our final SVM model may
offer insights into the pathogenesis of cocaine addiction.
Several clusters successfully classifying cocaine-
dependent participants and healthy controls are highly
relevant to the addictive process, including regions rele-
vant to cognitive control (e.g., superior parietal cortex)
[43], default mode network related self-referential thought
(e.g., posterior cingulate cortex, precuneus) [44], behav-
joral inhibition (e.g., lateral OFC) [45], and contextual
memories (e.g., parahippocampal gyrus) [46]. Perhaps of

equal note are some regions intimately associated with the
addictive process that were not identified in the classifica-
tion process (e.g., striatum, ventromedial OFC, dorsolat-
eral prefrontal cortex, anterior cingulate cortex, and
amygdala). Similarly, hyperactivity of prefrontal cortex in
addiction subjects was reported in [47, 48]. In our attempt
to limit false positives, at least 20 spatially connected vox-
els were required during feature selection. Thus, smaller—
but physiologically relevant—clusters may have been
missed. Conversely, a number of clusters important to our
classification did not encompass regions typically associ-
ated with addictive processes, highlighting the potential
importance of a theoretical statistical approaches for iden-
tifying relevant—but unexpected—brain regions. Our find-
ings, therefore, highlight the importance of utilizing whole
brain analyses to identify regions useful in discriminating
persons with addictive disorders from healthy controls.
SVM classification of resting state functional connectivity
has also been used to successfully classify heroin-
dependent subjects and healthy controls, although the
study population was limited to 25 participants [49].
Although classification was conducted in a binary
fashion, i.e. positive (cocaine-dependent) or negative
(healthy control), brain alterations may occur over the
course of an addiction and may differ depending upon
disease severity. Thus, an extension of the SVM
approach could consider probabilistic classifiers in the
future, allowing the identification of specific subgroups
of addicted patients (e.g., those at high of low risk of
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relapse or those at variable intensity of addiction).
Pariyadath et al., for example, has recently identified resting
state neural networks predictive of nicotine dependence
using an SVM-based classification approach [50].

Strengths of our approach included a relatively large
sample of cocaine-dependent participants at least 2—4
weeks abstinent, precluding the acute and withdrawal ef-
fects of cocaine that confound imaging studies con-
ducted during the first several days of abstinence.
Participants were without other active DSM-IV sub-
stance dependent (except nicotine dependence) or psy-
chiatric disorders and were not taking psychotropic
medications. The spatial resolution (6 mm reconstructed
resolution Niall planes) of the SPECT, 4 x4 x4 cubic
mm voxel size, and 20 voxel cluster restriction provided
a minimum cluster size well within the resolution of our
device. Potential limitations included the use of highly
selective populations dissimilar from typical clinical pop-
ulations that may limit the generalizability of our find-
ings. Also, the use of both saline and resting scans offers
a possible confound, although we have previously re-
ported similarities in rCBF during both scan in Cohort I
participants [23]. Another limitation is that the features
selection algorithms, both of information gain and
SVM-based feature selection, have not been tested on a
completely new sample of test subjects (that is, subjects
that were part of the feature selection training set). Note
that this problem only regards feature selection steps,
not the classification algorithm. The LOO and 10xCV
approaches remedy this problem and classification algo-
rithm run on an entirely different test subject set. The
two groups differed in gender, age, and race, although
consideration of these potential confounds may minim-
ally affect the model. Since other demographic variables
were not consistently obtained over the span of time
used to collect the three cohorts, other potentially rele-
vant confounds (e.g., other substance use, socioeconomic
status, education) were not available for inclusion.

Our findings support the use of machine learning stat-
istical approaches in the classification of patients with
substance use disorders. Coupled with structural and
functional neuroimaging, this approach offers a powerful
technique for distinguishing neural signatures of relapse,
classifying features overlapping with and/or dissimilar
from other psychiatric disorders, and potentially identi-
fying neuroplastic alterations underlying these disorders.

Conclusion

In this study it is presented that a generalizable machine
learning framework can successfully classify cocaine
dependent subjects using SPECT images. The brain re-
gions associated with the best classification accuracy
mainly point to some of the addiction related brain re-
gions. In the future, disease state of cocaine dependency
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can be determined with a similar framework since the
distance of each subject from a subject to hyperline,
which is boundary to separate controls and dependent
participates in multidimensional space, implies probabil-
ity of being positive or negative in the classification. In a
screening study, detecting those who are at risk or mov-
ing toward to decision boundary could benefit individu-
ally before they are acutely dependent.

This study was conducted with SVM classification and
SVM-based feature selection algorithms. Although SVM
is known as one of the most successful classifier for
multidimensional dataset, in the future a methodological
comparison study involving other classifiers (Random
Forest, Decision tree, neural networks, Bayesian) and
feature selection algorithms will be conducted.

Additional file

Additional file 1: Transverse images and MNI coordinates for identified
brain regions. (DOCX 336 kb)
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