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Supplementary Figure 1 | High stochasticity of single-cell gene expression means, as demonstrated by relative 

expression levels of gene Ccne1 using the mESC-SMARTer data. For every panel, 20 sample cells were randomly 

selected for each of the three stages, followed by plotting the mean expression levels at each stage. According to 

existing records, Ccne1 has its peak of relative expression at S stage. However, the panels exhibited high stochasticity 

for the peak expression stage.  
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Supplementary Figure 2 | High-belief cell cycle genes used to validate the illustrated cell cycle time-series in the main 

text. The time-series was generated for the mESC-SMARTer data with predefined cluster number 𝐾 = 8. The gene 

expression heatmaps were normalized twice by DESeq first vertically and then horizontally for better visualization. The 

expression profile confirmed the correctness of the time-series for the eight clusters. (a) Normalized gene expression 

levels of high-confidence cell cycle marker genes (G1 peak: Slbp, Ccne1, Cdca7, Ung; G1/S peak: Orc1, Pcna; S peak: 

E2f8, Rrm2; G2 peak: Cdk1, Hjurp, Top2a, Cdnf, Kif23; M peak: Aurka, Tpx2). (b) Normalized expression matrix of top 

20 Cyclebase genes for each of the six cell cycle stages (Supplementary Table 5): ‘G1’-, ‘G1/S’-, ‘S’-, ‘G2’-, ‘G2/M’-, 

and ‘M’-, arranged in the physiological order (from ‘G1’ to ‘M’) from left to right. (c) Same as (b), but with the two small 

clusters removed (the first and last clusters).  
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Supplementary Figure 3 | Other properties of the mESC-SMARTer data. (a) The 2-dimensional PCA plot for another 

time-series of the clusters, which was generated by their within-cluster covariance matrices (Supplementary Methods). 

‘Cluster 1’ and ‘Cluster 8’ were removed before because they contained too few samples to compute an eligible 

covariance matrix. (b) Explanation for incorrect labels by Hoechst staining. The colored regions indicate distributions 

of G1, S and G2/M cells over Hoechst staining. The two dashed lines represent commonly used thresholds to separate 

cells to cell cycle stages. Evidently, overlaps between these distributions can cause incorrect labels. (c) The Pearson 

scores between correlation-scores and the TSP distances for different cluster number 𝑘 using the mESC-SMARTer 

data. The cluster number ranges from 20 to 215. For each 𝑘, we computed a Pearson correlation over 1000 pairs of 

correlation-scores and TSP distances (by the arbitrary insertion algorithm). The Pearson scores are around -0.6 when 

the cluster numbers are small, and when the cluster numbers increase, the scores approach -0.07. This shows that the 

cell cycle can be modeled as a TSP problem.  
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Supplementary Figure 4 | Diagrams to display the procedures of consensus-TSP algorithm. (a) The panel exhibits 

the congruence of three graphic symbols which signify clusters time-series. (b) The process of generating a reference 

cycle. (c) The process of generating the final cycle of the cells. (d) The process of transforming the final cycle into a 𝐾 

clusters time-series. Running time (hours) of reCAT on the mESC-SMARTer dataset using 1, 10 and 20 cores of a 

computer with two CPUs (Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz, and 512GB RAM), each with 10 cores. The 

script was written in R. 
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Supplementary Figure 5 | Comparisons of seven algorithms for the TSP problem using the mESC-SMARTer dataset. 

A half width of the error bars stands for the standard deviation. (a) "arbitrary insertion", (b) "cheapest insertion", (c) 

"farthest insertion", (d) "nearest insertion", (e) "nearest neighbor ", (f) "repetitive nearest neighbor" and (g) "two-optimal". 

The solutions were assessed by the correlation-score, and the arbitrary insertion and farthest insertion algorithms 

outperformed the others.  
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Supplementary Figure 6 | Comparison of seven gene sets for cell cycle analysis using the mESC-SMARTer dataset. 

A half width of the error bars stands for the standard deviation. (a) All 378 Cyclebase genes. (b) 120 high rank Cyclebase 

genes. For each of the six cell cycle stage labels, ‘G1’, ‘G1/S’, ‘S’, ‘G2’, ‘G2/M’ and ‘M’, we selected top 20 genes with 

the highest significant ranks, for a total of 120 genes forming a list (Supplementary Table 5). (c) 872 expressed genes 

from a list of 892 cell cycle gene list (Buettner, et al)1. (d) 436 genes with highest coefficient of variation (CV) values, 

selected (50%) out of the 872 expressed genes. (e) 894 genes with highest CV values. (f) 888 genes with highest mean 

expression levels. (g) 892 randomly selected non-cell-cycle genes, i.e. excluding the Buettner’s cell cycle genes. The 

results show that Cyclebase genes and Buettner’s cell cycle genes had best performance among all.  
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Supplementary Figure 7 | Comparison of reCAT, Monocle, TSCAN, DPT and Wanderlust/Wishbone on stage labeled 

and unlabeled data sets. Mean-scores of the labeled mESC-SMARTer data arranged by the time-series generated from 

reCAT (a), Monocle (c), TSCAN (e), DPT (g) and Wanderlust/Wishbone (i). Bayes-scores of unlabeled 2i samples in 

the mESC-Cmp data arranged by the time-series generated from reCAT (b), Monocle (d), TSCAN (f), DPT (h) and 

Wanderlust/Wishbone (j). 
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Supplementary Figure 8 | The reCAT recovered cell cycle of the hESC dataset. (a) The correlation-score curves for 

the results by reCAT and Oscope (correlation-score: 0.41), respectively. The Bayes-scores (b) and mean-scores (c) 

were plotted with respect to the reCAT-generated time-series at the single cell resolution. The colored bars at the bottom 

of the panels indicate experimentally determined cell cycle stage labels.  
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Supplementary Figure 9 | The design of Bayes-scores. (a) The numbers of features (y-axis) for cell cycle stages, G1, 

S, G2/M at each threshold (x-axis). Using the mESC-SMARTer data, we enumerated all pairs of Cyclebase genes, and 

chose 𝑡 as a threshold to select eligible pairs as features for each cell cycle stage. Without loss of generality, we focus 

on the G1 stage and convert the expression of each single cell into a binary vector as follows: For gene i and j, which 

form a gene pair, if the proportion of samples with gene expression 𝑒𝑖  𝑒𝑗  is larger than 𝑡 among G1 samples and the 

proportion of samples with gene expression 𝑒𝑖 < 𝑒𝑗 is larger than 𝑡 among non-G1 samples, then the gene pair was 

chosen as a feature. Finally, eligible feature pairs of different stages (G1, S, G2M) were unified. The x-axis in the graph 

stands for the threshold 𝑡 and the y-axis stands for numbers of the selected feature pairs. Obviously, eligible features 

are quite few when 𝑡  0. . (b - d) Comparison among Logistic-Lasso scores (b) (Supplementary Methods), Naïve 

Bayes scores (c) and mean-scores (d) using the MPP cells from young individuals in the mHSC dataset (young-MPP). 

The x-axis is the recovered time-series, and the y-axis shows the scores for each cell.  
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Supplementary Figure 10 | Illustration of mean-scores. Comparisons of G1/S mean-scores, G2/M mean-scores, 

means of log2 expression of housekeeping genes (HK) using the young-MPP samples of the mHSC data (a), the E14.5 

samples of the mDLM data (b), the 2i samples of the mESC-Cmp data (c) and the Mel78 samples of the hMel data (d). 

The start of the S stage is marked by dashed.  



Supplementary Figure 11 | Overlaps among the 378 Cyclebase genes, top 100 genes detected by KNN-MI, and top 

100 genes detected by dCor. The latter two gene sets were generated using the young-MPP data from the mHSC 

dataset, arranged and smoothed along the reCAT-produced time-series. 
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Supplementary Figure 12 | Diagrams for the structure of the HMM model. (a) Classical hidden Markov model (HMM) 

where ℎ𝑡 represents a hidden state, and 𝑜𝑡 represents an observation vector. (b) The stage transition pattern in our 

HMM model. (c) The matrix of the transition probabilities of the HMM.  
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Supplementary Figure 13 | The four panels respectively show the Bayes-scores (a) and mean-scores (b) for the 

recovered time-series, time-series expression for the 120 cell cycle stage specific marker genes (Supplementary Table 

5) (c), and time-series expression levels of 15 high confidence cell cycle marker genes (d) of the 2i cells in the mESC-

Cmp data set. The heat maps were generated from expression levels without processing by Kalman smoother. 



a b 

Supplementary Figure 14 | Cell cycle duration estimation leveraging half-time of mRNAs. The samples are 2i cells (a) 

and serum cells (b) from the mESC-Cmp data set. The cell cycle time estimation mainly leverage the degradation 

formula of mRNA, which is also the first order rate equation, 𝐶𝑡 = 𝐶0𝑒
 𝑑∙𝑡. We selected the G2/M cells from the 50% to

90% position (about the second half), in which period most cell cycle related mRNAs are degrading without synthesizing. 

Then the means of the log2(exp+1) of the Cyclebase genes of were linear regressed by least square regression. The 

regressed slope 𝑑̅ is the mean of different degrading rate 𝑑. The heights of the vertical lines are 1, thus the horizontal 

red lines represent the proportion (2i: 88.8/295 = 0.30; Serum: 103.2/250 = 0.41) of the half-time in a cell cycle period. 

Considering the median of the mRNA half-time of 7h (≈ 𝑑̅)2-4, the cell cycle time (doubling time) can be estimated as

7h/0.30 = 23.3h for the 2i samples, and 7h/0.41 = 17.0h for the serum samples. However, according to the original 

paper of the data, 81 (39 + 42 cells) of the 250 serum samples are reported with much lower proliferation rate than the 

pluripotency ground state cells (169 cells), then we can propose an approximately equivalent proliferation of 200 

(169+31 cells) pluripotency ground state cells (103.2/200 = 0.52) and got a more rational doubling time of 7h/0.52 = 

13.5h. This result is very close to the doubling time reported in the original paper (2i: 25h; Serum: 11h). 
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Supplementary Figure 15 | Bayes-scores and mean-scores profiles for cell cycle activities of the hMyo cells (Table 1) 

at four distinct time points 0th hour (a,b), 24th hour (c,d), 48th hour (e,f), and 72th hour (g,h) during myoblasts 

differentiation. After segmentation of cell cycle stages for the T0 cells, the parameters of the HMM were used as initial 

parameters for segmentations of the other three cell groups.   
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Supplementary Figure 16 | Bayes-scores and mean-scores profiles for cell cycle activities of the mDLM cells (Table 

1) at four distinct differentiation stages: E14.5 (a,b), E16.5 (c,d), E18.5 (e,f), and adult AT2 (g,h) during distal lung

epithelium development. After segmentation of cell cycle stages for the E14.5 cells, the parameters of the HMM were 

used as initial parameters for segmentations of the other three cell groups. 
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Supplementary Figure 17 | The results of the Mel78 and Mel79 group in hMel dataset (Table 1) processed by reCAT. 

The color bars on top of each panel indicated the inferred cell cycle stage labels. (a, b) The Bayes-scores and mean-

scores along the pseudo time-series of Mel78 samples. (c, d) The Bayes-scores and mean-scores along the pseudo 

time-series of Mel79 samples. Evidently, there is a large fraction of Mel78 cells in cell cycle than that of the Mel79 cells. 
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Supplementary Figure 18 | The results of the mESC-MT dataset processed by reCAT. The color bars on top of each 

panel indicated the cell cycle stage labels inferred by reCAT. (a) The Bayes-scores along the pseudo time-series. (b) 

The mean-scores along the pseudo time-series.  



Supplementary Table 1 | The top 20 genes for each of the cell cycle stages (G1, S, G2/M) from Cyclebase. (Sorted 

by ‘Peakstage’ and ‘Rank’) 

Gene Source Identifier Peakstage Rank Peaktime 

DTL Homo sapiens ENSP00000355958 G1 13 42 

CCNE1 Homo sapiens ENSP00000262643 G1 36 35 

PTTG1 Homo sapiens ENSP00000344936 G1 37 1 

CDKN3 Homo sapiens ENSP00000335357 G1 41 0 

ZNF367 Homo sapiens ENSP00000364405 G1 48 39 

SLBP Homo sapiens ENSP00000417686 G1 87 34 

MCM6 Homo sapiens ENSP00000264156 G1 114 44 

HSPA8 Homo sapiens ENSP00000227378 G1 115 0 

CDCA7 Homo sapiens ENSP00000306968 G1 148 36 

SKP2 Homo sapiens ENSP00000274255 G1 151 39 

ANTXR1 Homo sapiens ENSP00000301945 G1 154 3 

IVNS1ABP Homo sapiens ENSP00000356468 G1 159 44 

DYNLL1 Homo sapiens ENSP00000242577 G1 172 4 

GRPEL1 Homo sapiens ENSP00000264954 G1 173 9 

ZRANB2 Homo sapiens ENSP00000359958 G1 174 40 

OPN3 Homo sapiens ENSP00000355512 G1 187 8 

KMO Homo sapiens ENSP00000355517 G1 188 8 

MSL1 Homo sapiens ENSP00000462945 G1 196 0 

NXF1 Homo sapiens ENSP00000294172 G1 201 0 

AOC2 Homo sapiens ENSP00000253799 G1 210 7 

RRM2 Homo sapiens ENSP00000353770 S 52 64 

E2F8 Homo sapiens ENSP00000250024 S 54 58 

ATAD2 Homo sapiens ENSP00000287394 S 75 55 

HSPB8 Homo sapiens ENSP00000281938 S 116 55 

USP1 Homo sapiens ENSP00000343526 S 129 56 

DDX11 Homo sapiens ENSP00000384703 S 137 54 

LIPH Homo sapiens ENSP00000296252 S 160 56 

DHFRL1 Homo sapiens ENSP00000319170 S 198 58 

HIST2H4B Homo sapiens ENSP00000358153 S 206 54 

HIST2H4A Homo sapiens ENSP00000358162 S 207 54 

EZH2 Homo sapiens ENSP00000320147 S 214 60 

CENPQ Homo sapiens ENSP00000337289 S 220 56 

HELLS Homo sapiens ENSP00000239027 S 221 55 

EXO1 Homo sapiens ENSP00000311873 S 235 60 

HIST1H4B Homo sapiens ENSP00000366581 S 254 62 

RHPN1 Homo sapiens ENSP00000289013 S 261 57 

CDKN2AIP Homo sapiens ENSP00000427108 S 269 54 

EFHC1 Homo sapiens ENSP00000360107 S 279 56 

ASIP Homo sapiens ENSP00000364092 S 280 63 

WDR90 Homo sapiens ENSP00000293879 S 283 55 



CCNF Homo sapiens ENSP00000380256 G2 2 82 

CDCA8 Homo sapiens ENSP00000316121 G2 5 82 

HJURP Homo sapiens ENSP00000414109 G2 6 76 

UBE2C Homo sapiens ENSP00000348838 G2 8 81 

KIF23 Homo sapiens ENSP00000260363 G2 11 82 

TOP2A Homo sapiens ENSP00000411532 G2 14 81 

CDK1 Homo sapiens ENSP00000378699 G2 17 75 

CCNA2 Homo sapiens ENSP00000274026 G2 18 84 

NUSAP1 Homo sapiens ENSP00000453403 G2 26 84 

FAM72Bp Homo sapiens ENSP00000358397 G2 27 81 

FAM72A Homo sapiens ENSP00000356096 G2 28 81 

KIF11 Homo sapiens ENSP00000260731 G2 30 81 

221690_s_at Homo sapiens ENSP00000409370 G2 32 82 

PIF1 Homo sapiens ENSP00000268043 G2 35 84 

NCAPH Homo sapiens ENSP00000240423 G2 44 82 

ARHGEF39 Homo sapiens ENSP00000367638 G2 45 84 

CCDC107 Homo sapiens ENSP00000414964 G2 46 84 

ESCO2 Homo sapiens ENSP00000306999 G2 51 69 

BRD8 Homo sapiens ENSP00000254900 G2 53 83 

CDKN2C Homo sapiens ENSP00000262662 G2 58 75 



Supplementary Table 2 | 15 high confidence cell cycle genes selected according to published literatures. (Sorted by 

‘Peaktime’) 

Gene Source Identifier Peakstage rank Peaktime 

SLBP Homo sapiens ENSP00000417686 G1 87 34 

CCNE1 Homo sapiens ENSP00000262643 G1 36 35 

CDCA7 Homo sapiens ENSP00000306968 G1 148 36 

UNG Homo sapiens ENSP00000242576 G1 234 39 

ORC1 Homo sapiens ENSP00000360621 G1/S 128 48 

PCNA Homo sapiens ENSP00000368438 G1/S 43 50 

E2F8 Homo sapiens ENSP00000250024 S 54 58 

RRM2 Homo sapiens ENSP00000353770 S 52 64 

CDK1 Homo sapiens ENSP00000378699 G2 17 75 

HJURP Homo sapiens ENSP00000414109 G2 6 76 

TOP2A Homo sapiens ENSP00000411532 G2 14 81 

CCNF Homo sapiens ENSP00000380256 G2 2 82 

KIF23 Homo sapiens ENSP00000260363 G2 11 82 

AURKA Homo sapiens ENSP00000216911 M 4 90 

TPX2 Homo sapiens ENSP00000300403 M 9 91 



Supplementary Table 3 | Genes whose expression levels were strongly associated with the cell cycle pseudo time-

series. There are two methods used for testing, dCor and KNN-MI (Methods). The top 100 genes from each method 
were respectively ranked by their significant values.  

dCor Ranked 

Genes 
dCor Value 

Cyclebase 

or Not 

KNN-MI 

Ranked Genes 
KNN-MI Value 

Cyclebase 

or not 

Ncapd2 0.91 FALSE Hmgb2 0.95 TRUE 

Top2a 0.91 TRUE Top2a 0.95 TRUE 

Hmgb2 0.91 TRUE H2afz 0.94 FALSE 

Tacc3 0.90 TRUE Fen1 0.92 TRUE 

Tubb5 0.89 FALSE Tubb5 0.91 FALSE 

H2afz 0.89 FALSE Tuba1b 0.90 FALSE 

Bub1b 0.88 TRUE Tacc3 0.90 TRUE 

Snrpd1 0.88 FALSE Sgol1 0.90 FALSE 

SNORD93 0.87 FALSE Ncapd2 0.87 FALSE 

Hmgn2 0.87 FALSE Stmn1 0.86 FALSE 

Fen1 0.87 TRUE Hmgn2 0.85 FALSE 

Hjurp 0.87 TRUE Asf1b 0.85 TRUE 

uc009qbm.2,u

c012gva.1 
0.86 FALSE Bub1b 0.84 TRUE 

Nsl1 0.86 FALSE Cdkn3 0.82 TRUE 

Stmn1 0.85 FALSE Ccnb1 0.81 TRUE 

Cenpm 0.85 FALSE Dnmt1 0.81 FALSE 

Smc2 0.85 FALSE SNORD93 0.81 FALSE 

Cdca8 0.85 TRUE Kif11 0.80 TRUE 

Hmgb1 0.85 FALSE Uhrf1 0.80 FALSE 

Bub1 0.84 TRUE Fignl1 0.79 FALSE 

Ncaph 0.84 TRUE Hist1h4i 0.78 FALSE 

Rfc5 0.84 FALSE Spc25 0.78 FALSE 

Pbk 0.84 TRUE Rrm1 0.77 FALSE 

Ncapg2 0.84 FALSE Cenpm 0.77 FALSE 

Ezh2 0.84 TRUE Fam64a 0.77 TRUE 

Cdk1 0.84 TRUE Hmgb1 0.77 FALSE 

Nup85 0.84 FALSE Ncaph 0.77 TRUE 

Suv39h1 0.83 FALSE Smc2 0.76 FALSE 

Spc25 0.83 FALSE Atad2 0.76 TRUE 

Casc5 0.83 FALSE Nup85 0.75 FALSE 

Psmd14 0.83 FALSE Hjurp 0.75 TRUE 

Dek 0.83 FALSE Mcm5 0.75 TRUE 

Ran 0.83 TRUE Cdk1 0.75 TRUE 

Kpna2 0.83 FALSE Snrpd1 0.75 FALSE 

Tmem48 0.83 FALSE Mnd1 0.75 TRUE 

Asf1b 0.83 TRUE Kif20b 0.74 TRUE 

Kif20a 0.83 FALSE Paics 0.74 FALSE 

Kif22 0.82 FALSE Chtf18 0.73 FALSE 

Shcbp1 0.82 TRUE Racgap1 0.73 FALSE 

Cks1b 0.82 TRUE Tcf19 0.73 FALSE 

D17H6S56E-

5 
0.82 FALSE Dscc1 0.73 TRUE 



Tuba1b 0.82 FALSE Pbk 0.73 TRUE 

Nusap1 0.82 TRUE Cenpn 0.72 FALSE 

Cenpk 0.82 FALSE Ncapg2 0.72 FALSE 

Racgap1 0.82 FALSE Rfc5 0.72 FALSE 

Fancd2 0.82 TRUE Tk1 0.71 FALSE 

Psma6 0.82 FALSE Dctpp1 0.71 TRUE 

Dnajc9 0.82 FALSE Bub1 0.71 TRUE 

Dnmt1 0.82 FALSE Casc5 0.71 FALSE 

Ccnb1 0.82 TRUE Mcm6 0.71 TRUE 

BC030867 0.81 FALSE Gins2 0.71 TRUE 

Fam64a 0.81 TRUE BC055324 0.71 FALSE 

Nucks1 0.81 FALSE Dek 0.71 FALSE 

uc009elc.1 0.81 FALSE Oip5 0.70 FALSE 

Mad2l1 0.81 TRUE Lig1 0.70 FALSE 

Birc5 0.81 TRUE 
uc009qbm.2,uc0

12gva.1 
0.70 FALSE 

Kif11 0.81 TRUE Tipin 0.70 FALSE 

Fanci 0.81 TRUE Orc6 0.70 FALSE 

Ckap2l 0.81 TRUE Cdc6 0.70 TRUE 

Hist1h1b 0.81 FALSE Rpa2 0.70 FALSE 

uc008ave.1,uc

008avf.1,uc00

8avg.1,uc008

avh.1,uc008av

i.1,uc008avj.1

0.81 FALSE Cdca8 0.70 TRUE 

Sgol1 0.81 FALSE Aunip 0.70 FALSE 

Tpx2 0.81 TRUE Hells 0.70 TRUE 

Ssrp1 0.81 FALSE Rad54b 0.70 FALSE 

uc009nvv.1 0.81 FALSE Tmem48 0.69 FALSE 

Oip5 0.81 FALSE Mcm3 0.69 FALSE 

Impdh2 0.81 FALSE Nucks1 0.69 FALSE 

uc008wgd.2,u

c012drg.1,uc0

12drh.1 

0.80 FALSE Kif4 0.69 FALSE 

uc009qeb.1 0.80 FALSE Pcna 0.68 TRUE 

Ttk 0.80 TRUE Hist1h2ae 0.68 FALSE 

Cdca3 0.80 TRUE uc009nvv.1 0.68 FALSE 

Rfc4 0.80 TRUE Cenpi 0.68 FALSE 

Ncapd3 0.80 FALSE Cks1b 0.68 TRUE 

Ckap5 0.80 TRUE Ran 0.68 TRUE 

Mrpl18 0.80 FALSE Ptma 0.68 FALSE 

Clspn 0.80 TRUE Nup62 0.68 FALSE 

Lsm3 0.80 FALSE Cdc45 0.68 FALSE 

Cenpi 0.80 FALSE Cdca7 0.68 TRUE 

Rrm1 0.80 FALSE Fancd2 0.68 TRUE 

Ndc80 0.80 TRUE uc009qeb.1 0.68 FALSE 

Mrpl42 0.80 FALSE Cenpk 0.68 FALSE 

Kif20b 0.79 TRUE uc009elc.1 0.67 FALSE 



Psmb6 0.79 FALSE Cdca3 0.67 TRUE 

Ncapg 0.79 FALSE Ttk 0.67 TRUE 

Orc6 0.79 FALSE Gapdh 0.67 FALSE 

Fignl1 0.79 FALSE Prim1 0.67 FALSE 

Smc4 0.79 TRUE Mrpl18 0.67 FALSE 

Cenpn 0.79 FALSE Kif20a 0.67 FALSE 

Nuf2 0.79 TRUE uc007bgw.1 0.67 FALSE 

BC055324 0.79 FALSE Cdca5 0.67 TRUE 

Psmd11 0.79 FALSE Cdc25c 0.67 TRUE 

Uhrf1 0.79 FALSE Gm20634 0.67 FALSE 

Kif2c 0.79 TRUE Mcm4 0.66 TRUE 

Kif4 0.79 FALSE Dnajc9 0.66 FALSE 

Cdca2 0.79 TRUE Nsl1 0.66 FALSE 

Kif18a 0.79 FALSE Ezh2 0.66 TRUE 

Rad51ap1 0.79 TRUE Pmf1 0.66 FALSE 

Gins2 0.78 TRUE uc007alb.1 0.66 FALSE 

Exosc8 0.78 FALSE Cenpe 0.66 TRUE 

Prc1 0.78 TRUE Kif22 0.66 FALSE 



Supplementary Table 4 | The literature support for the top five cell cycle related non-Cyclebase genes detected by 

KNN-MI and dCor respectively.  

Gene name Statistics Evidence Function 

Ncapd2 KNN-MI & dCor 
Gene section on NCBI, 

GO 

Its protein product is cell-cycle regulated. It is 

required for chromatin-induced microtubule 

stabilization and spindle formation. (from NCBI) 

Tubb5 KNN-MI & dCor 
GeneCards®, Gene 

section on NCBI, GO 

The depletion of this gene in vivo perturbs the cell 

cycle of neurogenic progenitors and alters the 

position of migrating neurons. (Breuss et al. 2012) 

H2afz KNN-MI & dCor 
GeneCards®, Gene 

section on NCBI 

Its overexpression promotes cellular proliferation 

of breast cancer cells. (Svotelis et al. 2010) 

Tuba1b KNN-MI GeneCards® 

Modification of this gene plays a role in multiple 

cellular functions, ranging from cell motility, cell 

cycle progression or cell differentiation to 

intracellular trafficking and signaling 

(GeneCards®). It is related to cytoskeleton 

remodeling (Gene Ontology).  

Sgol1 KNN-MI 
GeneCards®, Gene 

section on NCBI, GO 

It plays a central role in kinetochore assembly and 

is required for kinetochore targeting of Plk1. 

(Pouwels, et al.) 

Snrpd1 dCor Not clearly related 
RNA binding (Gene Ontology). No clear function 

recorded.  

Snord93 dCor 
Not clearly related (RNA 

gene) 
No clear function recorded. 



Supplementary Table 5 | The top 20 genes for each of the cell cycle stages (G1, G1/S, S, G2, G2/M, M) from 

Cyclebase. (Sorted by ‘Peakstage’ and ‘Rank’) 

Gene Source Identifier Peakstage Rank Peaktime 

DTL Homo sapiens ENSP00000355958 G1 13 42 

CCNE1 Homo sapiens ENSP00000262643 G1 36 35 

PTTG1 Homo sapiens ENSP00000344936 G1 37 1 

CDKN3 Homo sapiens ENSP00000335357 G1 41 0 

ZNF367 Homo sapiens ENSP00000364405 G1 48 39 

SLBP Homo sapiens ENSP00000417686 G1 87 34 

MCM6 Homo sapiens ENSP00000264156 G1 114 44 

HSPA8 Homo sapiens ENSP00000227378 G1 115 0 

CDCA7 Homo sapiens ENSP00000306968 G1 148 36 

SKP2 Homo sapiens ENSP00000274255 G1 151 39 

ANTXR1 Homo sapiens ENSP00000301945 G1 154 3 

IVNS1ABP Homo sapiens ENSP00000356468 G1 159 44 

DYNLL1 Homo sapiens ENSP00000242577 G1 172 4 

GRPEL1 Homo sapiens ENSP00000264954 G1 173 9 

ZRANB2 Homo sapiens ENSP00000359958 G1 174 40 

OPN3 Homo sapiens ENSP00000355512 G1 187 8 

KMO Homo sapiens ENSP00000355517 G1 188 8 

MSL1 Homo sapiens ENSP00000462945 G1 196 0 

NXF1 Homo sapiens ENSP00000294172 G1 201 0 

AOC2 Homo sapiens ENSP00000253799 G1 210 7 

CDC6 Homo sapiens ENSP00000209728 G1/S 40 46 

PCNA Homo sapiens ENSP00000368438 G1/S 43 50 

MCM5 Homo sapiens ENSP00000216122 G1/S 67 46 

CHAF1B Homo sapiens ENSP00000315700 G1/S 73 51 

FEN1 Homo sapiens ENSP00000305480 G1/S 83 52 

E2F2 Homo sapiens ENSP00000355249 G1/S 98 46 

POLD3 Homo sapiens ENSP00000263681 G1/S 102 51 

RFC4 Homo sapiens ENSP00000296273 G1/S 105 52 

SERPINB4 Homo sapiens ENSP00000343445 G1/S 117 45 

FAM111B Homo sapiens ENSP00000341565 G1/S 125 49 

ORC1 Homo sapiens ENSP00000360621 G1/S 128 48 

E2F1 Homo sapiens ENSP00000345571 G1/S 134 46 

WDR76 Homo sapiens ENSP00000263795 G1/S 163 47 

CLSPN Homo sapiens ENSP00000312995 G1/S 165 52 

UBR7 Homo sapiens ENSP00000013070 G1/S 166 52 

MBOAT1 Homo sapiens ENSP00000324944 G1/S 178 45 

GINS2 Homo sapiens ENSP00000253462 G1/S 184 50 

DONSON Homo sapiens ENSP00000307143 G1/S 197 52 

GMNN Homo sapiens ENSP00000230056 G1/S 202 47 

ARGLU1 Homo sapiens ENSP00000383059 G1/S 215 50 

RRM2 Homo sapiens ENSP00000353770 S 52 64 

E2F8 Homo sapiens ENSP00000250024 S 54 58 

ATAD2 Homo sapiens ENSP00000287394 S 75 55 



HSPB8 Homo sapiens ENSP00000281938 S 116 55 

USP1 Homo sapiens ENSP00000343526 S 129 56 

DDX11 Homo sapiens ENSP00000384703 S 137 54 

LIPH Homo sapiens ENSP00000296252 S 160 56 

DHFRL1 Homo sapiens ENSP00000319170 S 198 58 

HIST2H4B Homo sapiens ENSP00000358153 S 206 54 

HIST2H4A Homo sapiens ENSP00000358162 S 207 54 

EZH2 Homo sapiens ENSP00000320147 S 214 60 

CENPQ Homo sapiens ENSP00000337289 S 220 56 

HELLS Homo sapiens ENSP00000239027 S 221 55 

EXO1 Homo sapiens ENSP00000311873 S 235 60 

HIST1H4B Homo sapiens ENSP00000366581 S 254 62 

RHPN1 Homo sapiens ENSP00000289013 S 261 57 

CDKN2AIP Homo sapiens ENSP00000427108 S 269 54 

EFHC1 Homo sapiens ENSP00000360107 S 279 56 

ASIP Homo sapiens ENSP00000364092 S 280 63 

WDR90 Homo sapiens ENSP00000293879 S 283 55 

CCNF Homo sapiens ENSP00000380256 G2 2 82 

CDCA8 Homo sapiens ENSP00000316121 G2 5 82 

HJURP Homo sapiens ENSP00000414109 G2 6 76 

UBE2C Homo sapiens ENSP00000348838 G2 8 81 

KIF23 Homo sapiens ENSP00000260363 G2 11 82 

TOP2A Homo sapiens ENSP00000411532 G2 14 81 

CDK1 Homo sapiens ENSP00000378699 G2 17 75 

CCNA2 Homo sapiens ENSP00000274026 G2 18 84 

NUSAP1 Homo sapiens ENSP00000453403 G2 26 84 

FAM72Bp Homo sapiens ENSP00000358397 G2 27 81 

FAM72A Homo sapiens ENSP00000356096 G2 28 81 

KIF11 Homo sapiens ENSP00000260731 G2 30 81 

221690_s_at Homo sapiens ENSP00000409370 G2 32 82 

PIF1 Homo sapiens ENSP00000268043 G2 35 84 

NCAPH Homo sapiens ENSP00000240423 G2 44 82 

ARHGEF39 Homo sapiens ENSP00000367638 G2 45 84 

CCDC107 Homo sapiens ENSP00000414964 G2 46 84 

ESCO2 Homo sapiens ENSP00000306999 G2 51 69 

BRD8 Homo sapiens ENSP00000254900 G2 53 83 

CDKN2C Homo sapiens ENSP00000262662 G2 58 75 

KPNA2p Homo sapiens ENSP00000332455 G2/M 10 85 

BUB1B Homo sapiens ENSP00000287598 G2/M 33 87 

TACC3 Homo sapiens ENSP00000326550 G2/M 34 87 

KIF20B Homo sapiens ENSP00000260753 G2/M 39 88 

CKAP2 Homo sapiens ENSP00000367276 G2/M 50 85 

BORA Homo sapiens ENSP00000375082 G2/M 56 86 

MKI67 Homo sapiens ENSP00000357643 G2/M 61 85 

EIF5A2 Homo sapiens ENSP00000295822 G2/M 62 87 

CIT Homo sapiens ENSP00000376306 G2/M 66 88 



CENPA Homo sapiens ENSP00000336868 G2/M 76 86 

SGOL2 Homo sapiens ENSP00000350447 G2/M 86 85 

ATL2 Homo sapiens ENSP00000368237 G2/M 88 86 

FOXM1 Homo sapiens ENSP00000342307 G2/M 103 86 

CDCA3 Homo sapiens ENSP00000442068 G2/M 118 85 

PBK Homo sapiens ENSP00000301905 G2/M 121 88 

SHCBP1 Homo sapiens ENSP00000306473 G2/M 123 85 

TTC38 Homo sapiens ENSP00000370419 G2/M 126 85 

BTNL9 Homo sapiens ENSP00000330200 G2/M 138 85 

CKS1B Homo sapiens ENSP00000311083 G2/M 139 85 

SMC4 Homo sapiens ENSP00000341382 G2/M 142 85 

PLK1 Homo sapiens ENSP00000300093 M 1 93 

MAPK13 Homo sapiens ENSP00000211287 M 3 93 

AURKA Homo sapiens ENSP00000216911 M 4 90 

CENPE Homo sapiens ENSP00000265148 M 7 91 

TPX2 Homo sapiens ENSP00000300403 M 9 91 

CKS2 Homo sapiens ENSP00000364976 M 12 92 

BUB1 Homo sapiens ENSP00000302530 M 15 92 

ARL6IP1 Homo sapiens ENSP00000306788 M 16 91 

CENPF Homo sapiens ENSP00000355922 M 19 90 

DLGAP5 Homo sapiens ENSP00000247191 M 20 94 

UBE2S Homo sapiens ENSP00000264552 M 21 96 

NUF2 Homo sapiens ENSP00000271452 M 22 90 

HMMR Homo sapiens ENSP00000377492 M 23 90 

CDC20 Homo sapiens ENSP00000308450 M 24 94 

ZC3HC1 Homo sapiens ENSP00000351052 M 25 91 

LRRC17 Homo sapiens ENSP00000344242 M 29 92 

FAM64A Homo sapiens ENSP00000250056 M 31 92 

BIRC5 Homo sapiens ENSP00000301633 M 38 94 

DEPDC1B Homo sapiens ENSP00000265036 M 42 90 

SAPCD2 Homo sapiens ENSP00000386348 M 47 96 



Supplementary Notes 

Supplementary Note 1: State-of-the-art in single-cell RNA-seq 
Hundreds of thousands of single cells in multiple tissues, including embryonic tissues5, cancer tissue6-8, 

immune9, neuro10, and complex tissue11, have been assayed by scRNA-seq. It was also combined with 

simultaneous DNA sequencing12 and methylation sequencing13. Several computational methods have been 

developed for data analysis, including normalization14, differential expression detection15, differentiation 

cascade construction16, removal of confounding factors1, oscillatory gene identification17, transcription 

dynamics modeling18 and cell classification19. However, cell cycle is not taken into account in most single-

cell differentiation studies20, even though cell cycle activities impact physiological function of cells in so 

many ways21.  

Supplementary Note 2: Comparisons and selection of computational methods 

Selection of TSP methods, and feature gene sets. Among TSP solutions generated by the arbitrary 

insertion algorithm, the cycle lengths show obvious variation when the cluster number is above 20. The 

lengths also have apparent negative correlation with the correlation-scores (Supplementary Figure 3c), 

proving the principle of our approach. It is theoretically impossible to solve a TSP when the cluster number 

is large, because it is an NP-hard problem. For the different existing heuristic methods22, when we tested 

the implementations in the R package ‘TSP’, nearest insertion show high accuracy and stability 

(Supplementary Figure 5).When clustering numbers are small, correlation-scores are generally high 

(Supplementary Figure 5). This could be attributed to greater noise reduction through clustering and closer 

proximity of the TSP solution to the global optimal for smaller 𝑘 . Therefore, besides reducing 

computational time for solving TSP, clustering improves accuracy of the generated time-series. 

For feature gene selection, both Cyclebase (378) and Buettner’s (892) cell cycle gene sets gave the best 

results (Supplementary Figure 6). This shows that these known cell cycle genes are the most informative 

and that a proper number of cell cycle genes can yield more accurate time-series. Thus we chose the 

Cyclebase (378) gene set for reCAT.  

Comparison between Bayes-scores and Lasso-Logistic based score. Using features generated by gene 

expression comparisons, we compared Naïve Bayes-based Bayes-scores with Lasso-Logistic regression 

scores (LLR, Supplementary Methods; Supplementary Figure 9). The LLR-based computes a probabilistic 

score for assigning a cell (or a cell group) to a specific cell cycle stage, but the scores show high variation. 

In contrast, the Naïve Bayes based method generates smoother scores. Therefore, we adopted the Bayes-

scores.  

Supplementary Note 3: Complementary analysis 

Additional notes for the scores and expression profiles along cell cycle. Bayes-scores performs well in 

distinguishing between G1 and G2/M stages. If G1 scores are higher than G2/M scores, the corresponding 

cells are likely to be in G0, G1, or S stages. On the other hand, if G2M scores are higher, the cells are very 

likely to be in G2/M stage. If there is a smooth crossover between G1 and G2/M, this crossover point is 

often at the end of the S stage. The highest point of G1/S scores is usually near the start of the S stage, and 

the highest point of G2/M often occurs before cell division21. G0 stage has similar Bayes-scores profiles as 

G1 stage, but the mean-scores are generally lower, with G1 scores a little higher than the other scores. 

Therefore, we design an HMM to incorporate these scores to determine each of the cell cycle stages (G0, 

G1, S and G2/M).   



Discussion of experimental technologies to generate cell cycle stage labels. Cell cycle stage labels 

generated from different experimental technologies can have different accuracies. Though the original 

paper, which revealed FUCCI, used Hoechst to measure the accuracy of FUCCI23, no literature reported 

accuracy comparisons between the two technologies. According to the principles of the two technologies, 

the resolution of FUCCI may be higher than Hoechst sometime. However, because the definition of cell 

cycle stage is based on DNA replication and division, we tended to believe Hoechst is more fundamental 

for cell cycle stage determination. Apparently, both of the technologies give incorrect cell labels, and the 

ones of the mESC-SMARTer data (Supplementary Figure 7a) may skew training of Bayes-scores in our 

analyses.  

Supplementary Note 4: Further assessment for the pseudo time algorithm 

We assessed the results using Bayes-scores and mean-scores, which were developed independently against 

the tested pseudo time-series construction algorithms. Using the cell cycle-labeled mESC-SMARTer 

dataset, we plotted mean-scores of the time-series produced by reCAT (Supplementary Figure 7a), Monocle 

(Supplementary Figure 7c), TSCAN (Supplementary Figure 7e), DPT (Supplementary Figure 7g) and 

Wanderlust (Supplementary Figure 7i), with labeled cell cycle stages at the bottom of each panel. In spite 

of the color bars at the bottom, we observed that the G2/M mean-scores (red) of TSCAN and DPT did not 

decrease at the end of the cell cycle, which is not consistent to the degradation biological properties of the 

mRNAs2-4 (Supplementary Figure 14). To explain, TSCAN and DPT have more consideration on linear 

property of gene expression profiles, not curvilinear or cyclic details. We then plotted Bayes-scores of the 

time-series produced by reCAT (Supplementary Figure 7b), Monocle (Supplementary Figure 7d), TSCAN 

(Supplementary Figure 7f), DPT (Supplementary Figure 7h) and Wanderlust (Supplementary Figure 7i), 

using the unlabeled 2i samples in the mESC-Cmp data. reCAT produced very clean curves, making it 

possible to clearly distinguish each cell cycle stage, while the Bayes-scores of TSCAN, DPT and 

Wanderlust time-series are noisy or discontinuous. These results show the superior accuracy of the cell 

cycle pseudo time-series produced by reCAT.  

Since the pseudo time algorithm is based on TSP solving, people may care about its robustness. Therefore, 

we took the following tests to prove that. It is most straightforward to use labeled data sets. Therefore, for 

each ‘K’ on the horizontal axis, 200 trials were respectively implemented. For each trial, correlation-score 

was calculated to test the robustness, on the mESC-SMARTer data (Figure 2d), the hESC data 

(Supplementary Figure 8a) and mESC-Quartz data (Figure 3a).  

In summary, the algorithm of reCAT is more reliable for cell cycle pseudo-time reconstruction, mainly 

because of its accuracy and robustness. The good results of reCAT can first be attributed to the fact that it 

is based on a circular model that brings in more prior information. Second, it merges many routes together 

to produce a robust result, similar to the Wanderlust approach24. Third, it is a nonlinear method able to fit 

nonlinear properties of data.  

Supplementary Note 5: Further assessment for Bayes-scores and means-scores  

As discussed at the beginning of the paper, the greatest challenge faced in delineating cell cycle stages is 

the high level of uncertainty of marker gene expression. Therefore, Bayes-scores and mean-scores were 

designed to overcome this uncertainty. The genes used by Bayes-scores and mean-scores are well known 

and with specific biological explanation25. Specifically, Bayes-scores is based on the Naïve Bayesian model 

that combines a well-behaved cell classification feature selection method26, which is about expression 

comparisons of thousands of gene pairs. Mean-scores is based on the means of expression levels of tens of 

marker genes at each cell cycle stage. Methods similar to mean-scores have been used as a reliable21.  

We demonstrated that the Naïve Bayes model was more robust to noise than other computational methods 

such as the Logistic regression (Supplementary Note 2, Supplementary Figure 9). To evaluate the 



robustness of the Bayes-scores, we trained and tested the Bayes-score method on the labeled mESC-

SMARTer dataset. Through ten-fold cross-validation, we found that 94.3% of the G1 cells had higher G1 

Bayes-scores than the G2/M Bayes-scores, and that 92.9% of the G2/M cells had higher G2/M Bayes-scores 

than G1 Bayes-scores. The results demonstrate that the Bayes-scores are very accurate in discriminating 

between G1 and G2/M cells. We then applied the trained Bayes-score method to discriminate G1 and G2/M 

cells on the labeled hESC and mESC-Quartz dataset. The results showed that the error rates were 18.4% 

for the G1 cells and 36.8% for the G2/M cells. While all the G1 and G2/M cells in the mESC-Quartz were 

correctly discriminated. We did not test the model on the S stage because the S stage is a transitive stage, 

which can easily be confused with the G1 and G2/M stages.  

For mean-scores, we compared G1/S scores with G2/M scores of the mESC-SMARTer data, and plotted 

these two scores on a 2-dimensional space in which a linear classifier (generated by SVM) achieved 88.9% 

accuracy to discriminate G1 and G2/M cells. We further showed the robustness of means-scores via 

comparison with housekeeping genes and random selected genes. For the different types of cells, compared 

with housekeeping genes and the random selected genes, the curves of G1/S and G2/M dimensions exhibit 

a clear phase gap along the time-series (Supplementary Figure 10).   

Though the calculated values of the scoring methods have some noise and undesirable results, which 

might because of data qualities, gene selections and stochasticity, the HMM in reCAT can combine all 

Bayes-scores and mean-scores together to segment the pseudo time series into different cell cycle stages. 

Besides, the segmentation of HMM model has some robustness to noise and only sensitive to the variation 

trends of the values but not the values themselves.  



Supplementary Methods 

Information extraction from the covariance. Covariance matrices of each cluster were calculated as 𝐀𝑖,

and PCA (principle component analysis) was performed to extract information within each cluster. For 

PCA, 𝐀 = 𝐔 ∙ 𝚲 ∙ 𝐔′ where 𝐀 is the covariance of all samples, and 𝚲 is a symmetric matrix composed of

eigenvalues of 𝐀. 𝐔 can be estimated and columns of it are composed of homologous eigenvectors. For 

each covariance matrix 𝐀𝑖 corresponding to cluster 𝑖, 𝚲𝑖 = 𝐔′ ∙ 𝐀𝑖 ∙ 𝐔. The vector which represents 𝐀𝑖 can

be obtained through combining the diagonal elements of 𝚲𝑖, marked as 𝛎𝑖.

Bayes-scores and mean-scores to assess cell cycle. Bayes-scores and mean-scores reveal the membership 

of a cell (cluster) for a certain cell cycle stage from two different aspects. Bayes-scores are based on 

comparison of the gene expression pairs in a cell and integrating the results of a certain number of 

comparison pairs. Mean-scores are based on comparing specific gene expressions in different samples and 

integrating the expression into one value by averaging. 

 We propose a Naïve Bayes model to calculate the likelihood that a cell (cluster) belongs to a specific 

cell cycle stage. The process is similar to classification of a cell via the Bayes decision rule; thus, we refer 

to the prediction scores obtained in this way as Bayes-score. Formally, let 𝐆 = {𝑔 , … , 𝑔𝑚} be the set of

annotated cell cycle genes, with expression of 𝑔𝑖 denoted by 𝑒𝑖. For each pair of genes 𝑔𝑖 and  𝑔𝑗 with 𝑖 <

𝑗, we compare the expression level using a sign function, defined as 

𝑞𝑖𝑗 = sign(𝑒𝑖, 𝑒𝑗) = {
−1 𝑒𝑖 < 𝑒𝑗
1 𝑒𝑖 ≥ 𝑒𝑗

. 

There are two steps in the training phase: feature selection and likelihood estimation. We follow the 

literature26 to select a set of gene pairs specific to a cell cycle phase. In detail, given a set of 𝑛 cells with 

cell cycle stages labeled as 𝐥 = {𝑙 , … , 𝑙𝑛} and expression data of cell cycle genes for the 𝑘-th cell extracted

as 𝐞𝑘 = {𝑒𝑘 , … , 𝑒𝑘𝑚}, for genes 𝑔𝑖 and  𝑔𝑗, we calculate two scores 𝑞+𝑖𝑗 = ∑ 𝑞𝑖𝑗(𝑒𝑘𝑖, 𝑒𝑘𝑗)𝑙𝑘=𝑙
  and 𝑞 𝑖𝑗 =

∑ 𝑞𝑖𝑗(𝑒𝑘𝑖, 𝑒𝑘𝑗)𝑙𝑘≠𝑙
for a certain cell cycle stage 𝑙. Gene pairs with 𝑞+𝑖𝑗  0 and 𝑞 𝑖𝑗 < 0 are then collected 

to form a set of feature gene pairs specific to the cell cycle stage 𝑙. Hence, we get feature pairs for G1, S

and G2/M stages and unify them to get 𝑁P feature pairs. Then, given the cell cycle stage label 𝑙, we estimate

the distribution of the feature pairs based on the assumption that the features are mutually independent. The 

results generate a series of estimates 𝑝(𝑠𝑖 = 𝑠̂𝑖|𝑙 = 𝑙), where 𝑠𝑖 ∈ {𝑠 , 𝑠 … , 𝑠𝑁P}, 𝑙 is a random variable

denoting the cell cycle stage, 𝑠 ∈ {0,1} which indicates if 𝑒𝑘𝑖 ≥ 𝑒𝑘𝑗 (𝑠 = 1) or not (𝑠 = 0) for each pair of

expression comparison, and 𝑙 ∈ {G1, S, G2/M}. 
In the testing (or scoring) step, the probability of a cell in a specific cell cycle stage is 

𝑝(𝑙 = 𝑙|𝐬 = 𝐬̂) ∝ 𝑝(𝑙 = 𝑙)∏ 𝑝(s𝑖 = 𝑠̂𝑖|𝑙 = 𝑙)
𝑁P
𝑖= , 

where 𝐬 = (𝑠 , 𝑠 … , 𝑠𝑁P) is the binary vector of the comparison results for the feature pairs, and 𝐬̂ =

(𝑠̂ , 𝑠̂ … , 𝑠̂𝑁P) is the realization of 𝐬 in the given cell. We consider the prior distribution of cell cycle phases

𝑝(𝑙 = 𝑙) to be equal for different stages. Therefore, the Bayes-scores is defined as log (∏ 𝑝(s𝑖 = 𝑠̂𝑖|𝑙 =
𝑁P
𝑖= 

𝑙)). The training dataset is mESC-SMARTer.

Logistic regression compared with Bayes-score. Logistic regression is a classification method which can 

offer probabilistic measures. Because the dimension number of a feature vector is far larger than the sample 

number, Lasso is integrated into the logistic regression. Thus, the gene expression comparison result of a 



cell 𝑖, i.e. 𝐬𝒊 = (𝑠𝑖 , 𝑠𝑖 … , 𝑠𝑖𝑁P), is the input, and the generated probability for a cell in a specific cycle

stage 𝑙, which stands for the membership of the cell in that stage, is the output. Without loss of generality,

we focus on the G1 stage; thus, the formula of the probability can be expressed as 

𝜋(𝐬𝑖) = 𝑃(𝑙𝑖 = G1|𝐬𝑖
′, 𝛃) =

+𝑒𝑥𝑝(−𝛃
𝑻𝐬𝑖
′)

,

in which 𝐬𝑖
′ = (1, 𝐬𝑖)

  is the input and 𝛃 = (𝛽0, 𝛽 , … , 𝛽𝑁P)
  is a set of coefficients that performs linear

transformation on the input vectors 𝐬𝑖
′.

We use maximum likelihood to estimate the parameter vector 𝛃, and the objective likelihood function to 

optimize is as follows  

𝑙(𝛃) = −∑ [(1 − 𝑙𝑖)𝛃
 𝐬𝑖
′ + ln(1 + exp(−𝛃 𝐬𝑖

′))] − 𝜆∑ |𝛽𝑘|
𝑁P
𝑘= 

𝑛
𝑖= . 

The parameters can be estimated by some optimization methods for 𝛃̆ = 𝑎𝑟𝑔𝛃𝑚𝑎𝑥 𝑙(𝛃). mESC-SMARTer

data were used to train for estimating the parameters. 

Additional notes for HMM for segmentation. Procedures of parameter estimation and inference already 

exist27. Scaling is necessary in the implementation of the Baum-Welch re-estimation process. Otherwise, 

forward and backward probabilities are too small to store in a computer since the sequence is too long.  

Before segmentation, we choose a group of initial values for the Baum–Welch algorithm. Because of the 

various data types, limited cell samples, high level of noise and high demand for accuracy, we choose a 

confidence interval of 4-10 samples for each stage by direct observation (Supplementary Note 3). Then we 

use maximum likelihood estimation (MLE) to estimate mean and variance of each dimension of the scores. 

The obtained means and variances are the required initial values.  
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