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THE CHARACTER VARIETIES OF RATIONAL LINKS C(2n, 2m+ 1, 2)

Bradley D. Meyer, MS
The University of Texas at Dallas, 2019

Supervising Professor: Anh T. Tran, Chair

In this thesis we study the nonabelian SL2(C) character varieties of an infinite family of ra-

tional links. In chapter 1 we provide background information on rational knots and links and

their character varieties. We also provide some properties of Chebyshev polynomials, which

will be used in calculating the character varieties. In chapter 2 we first find a presentation

for the knot group of C(2n, 2m + 1, 2). We then calculate the nonabelian character variety

and prove that the character variety of C(2n, 2m + 1, 2) is irreducible unless n = 1,�1 or

m = �1.
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CHAPTER 1

INTRODUCTION

1.1 Links

The mathematical study of knots is a precise investigation of how a 1-dimensional loop can

lie in 3-dimensional space. In other words, the main question to be answered is whether any

given knots are equivalent. We follow [3] in our discussion.

Formally, an m component link L is a subset of S3 consisting of m disjoint, piecewise

linear, simple closed curves. If L has one component it is called a knot. We say that two

links L1 and L2 are equivalent if there exists a homeomorphism from S3 to itself that maps

L1 to L2. Such a homeomorphism is known as an ambient isotopy.

Three types of diagram moves are su�cient in order to describe links up to ambient

isotopy. These diagram moves are known as Reidemeister moves (See figure 1.1). We see

that any two equivalent links have diagrams related by a series of Reidemeister moves and

a homeomorphism of the plane.

Figure 1.1. Reidemeister moves

Since equivalent links are related by an ambient isotopy, we see that if two links L1 and

L2 are equivalent their complements in S3 are homeomorphic as 3-manifolds.

Definition 1.1. Let L be a tubular neighborhood of a link L. We define the link complement

XL to be

XL = S3 � L.

Many link invariants are, in fact, invariants of the link complement. For example, the

fundamental group of a link L is defined to be the fundamental group of the link complement.

1



1.1.1 Rational Links

A rational link, also called a two-bridge link, is a link that admits a projection with two

maxima and two minima. To every rational link we can associate a pair (p, q) of coprime

integers such that �p < q  p. The link associated to the pair (p, q) is ambient isotopic to

the link L(p, q) defined as follows. We follow [4].

Choose ✏ 2 {0, 1} such that 0 < q/p + ✏  1. Then we can write q/p + ✏ as a continued

fraction

q

p
+ ✏ =

1

a1 +
1

a2 +
1

. . . +
1

as�1 +
1

as

such that each ai � 1. We use the sequence [a1, a2, . . . , as�1, as] to create the link shown in

figure 1.2 where the number in each block gives the number of half twists. The jth block

between the middle strands contains a2j�1 left handed half twists and the jth block between

the bottom two strands contains a2j right hand twists. This is the 4-plat presentation of the

rational link L(p, q). Note that we can always choose a sequence [a1, a2, . . . , as�1, as] such

that s is odd. Indeed, if s were even with as = a we could replace as by a� 1 and add the

new entry as+1 = 1.

Figure 1.2. The rational link [a1, a2, . . . , a2r�1]
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A rational link can have no more than two components. It is known, see [1], that the

links L(p, q) and L(p0, q0) are ambient isotopic if and only if p = p0 and q = q0 or qq0 ⌘ 1

mod p.

Note that a rational link with one component is called a rational knot. In the same way

as above, we can associate a pair (p, q) of coprime integers such that �p < q  p and the

knot associated to the pair (p, q) is ambient isotopic to the knot K(p, q).

1.2 Knot Group (Wirtinger Presentation)

We denote by ⇡1(X, x0) the fundamental group of X at the basepoint x0. If X is path

connected, for two points x0, x1 2 X we have that ⇡1(X, x0) ' ⇡1(X, x1). In such a case we

denote the fundamental group of X simply by ⇡1(X).

Figure 1.3. Relation for the Wirtinger Presentation

Since the knot complement XK is path connected, we denote its fundamental group by

⇡1(XK). In order to describe ⇡1(XK), we make use of the Wirtinger presentation. The

Wirtinger presentation is defined as follows [3]. Given an oriented diagram of a knot K we

begin by assigning a generator gi to each segment of the knot diagram. Each gi represents

a loop which, starting from a base point above the diagram, encircle the i-th overpassing

segment of the diagram in the positive direction. At each crossing, we then obtain a relation

rk by the following rules (See figure 1.3). At the crossing c suppose the over passing segment

is assigned the generator gj and the under passing segment is assigned gm as it approaches c
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and gn as it leaves c. Then we obtain the relation rk = gjgmg
�1
j g�1

n if the sign of c is negative

and rk = g�1
j gmgjg�1

n if the sign of c is positive. So we obtain the presentation of ⇡1(XK)

⇡1(XK) = hg1, . . . , gn : r1, . . . , rn�1i

called the Wirtinger presentation.

Note that in the same way we can define the fundamental group of a link L. In the case

of a link L, we still call ⇡1(XL) the knot group of L.

1.3 Representations in SL2(C)

An SL2(C) representation of a group G is a homomorphism ⇢ : G ! SL2(C). Two rep-

resentations ⇢ and ⇢0 are said to be equivalent if they di↵er by an inner automorphism of

SL2(C). A representation ⇢ is irreducible if there are no nontrivial subspaces of C2 invariant

under the action of ⇢(G). Otherwise, ⇢ is said to be reducible. An equivalent definition of

a reducible representation ⇢ is that it is conjugate to a representation into upper triangular

matrices. We see that every abelian representation is reducible. However, the inverse is not

true.

We define the character of a representation ⇢ as the map �⇢ : G ! C, which is defined

by �⇢(g) = tr(⇢(g)). Equivalent representations will have the same character since the trace

operation is invariant under inner automorphism. Therefore, irreducible representations are

determined up to conjugation by their character. This is not true for reducible represen-

tations. Note that any reducible representation will share its character with an abelian

representation.

1.4 Character Varieties (Riley Polynomial)

We are interested in studying particular representations of the knot groups of a specific class

of links. Namely, we are interested in the nonabelian representations, up to conjugation,
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of rational links. These representations can be described by a single polynomial called the

Riley polynomial. We will follow [2], [7] in defining the Riley polynomial of rational links

and knots.

1.4.1 Rational Knots

Let K(p, q) be a rational knot. The knot group ⇡1(XK(p,q)) has a representation

⇡1(XK) = ha, b : wa = bwi

where a, b correspond to the meridian of K and w = a✏1b✏2 · · · a✏p�2b✏p�1 where ✏i = (�1)biq/pc

for 1  i  p � 1. The existence of such a representation follows from the algorithm in

section 1.2.

Suppose ⇢ : ⇡1(XK) ! SL2(C) is a nonabelian representation. Since a and b are con-

jugate in the knot group, ⇢(a) and ⇢(b) must have the same trace. We may assume, up to

conjugation, that

⇢(a) =

2

64
t 1

0 t�1

3

75 ⇢(b) =

2

64
t 0

u t�1

3

75 .

In the case of the rational knot, the character variety is described by a polynomial in the

two variables x = tr(⇢(a)) = tr(⇢(b)) and y = tr(⇢(ab)).

Theorem 1.2. The SL2(C) character variety of a rational knot is described by the set of

points (x, y) 2 C2
such that

w11 � (t� t�1)w21 = 0

where ⇢(w) =

2

64
w11 w12

w21 w22

3

75.
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Proof. We have

⇢(wa)� ⇢(bw) =

2

64
w11 w12

w21 w22

3

75

2

64
t 1

0 t�1

3

75�

2

64
t 0

u t�1

3

75

2

64
w11 w12

w21 w22

3

75

=

2

64
0 w11 � (t� t�1)w12

�uw11 + (t� t�1)w21 w21 � uw12

3

75

By lemma 2.1 in [10], we have w21 = uw12. Therefore,

⇢(wa)� ⇢(bw) =

2

64
0 w11 � (t� t�1)w12

�u(w11 � (t� t�1)w12) 0

3

75

and the matrix equation is only satisfied when

w11 � (t� t�1)w12 = 0.

We define the polynomial

RK(p,q)(x, y) = w11 + (t�1 � t)w21

to be the Riley polynomial of the rational knot K(p, q). In other words, the Riley polynomial

describes each conjugacy class of nonabelian representations of the knot group XK(p,q) into

SL2(C).

1.4.2 Rational Links

Let L(p, q) be a rational link. The knot group ⇡1(XL(p,q)) has a representation

⇡1(XL(p,q)) = ha, b : wa = awi

where a, b correspond to the meridians of L(p, q) and w = b✏1a✏2 · · · a✏p�2b✏p�1 where ✏i =

(�1)biq/pc for 1  i  p� 1. As in the case of the rational knot, such a representation exists

due to the discussion in section 1.2.
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Suppose ⇢ : ⇡1(XL(p,q)) ! SL2(C) is a nonabelian representation. Note that in the case

of the rational link, a and b are not conjugate. We assume, up to conjugation, that

⇢(a) =

2

64
s1 1

0 s�1
1

3

75 ⇢(b) =

2

64
s2 0

u s�1
2

3

75 .

Then the character variety is described by the set (x, y, z) 2 C3 such that the matrix equation

⇢(wa) = ⇢(aw) is satisfied, where x = tr(⇢(a)), y = tr(⇢(b)), and z = tr(⇢(ab)). Note that

the matrix equation ⇢(wa) = ⇢(aw) reduces to the two equations

w21 = 0

w12(s1 � s�1
1 ) + w22 � w11.

By lemma 1 in [7], we have

w12(s1 � s�1
1 ) + w22 � w11 = (s2 � s�1

2 )w21.

Therefore, ⇢(wa) = ⇢(aw) reduces to the single equation w21 = 0. We define the polynomial

RL(p,q) = w21 to be the Riley polynomial of L(p, q).

1.5 Chebyshev Polynomials and Matrix Powers

We will make use of the Chebyshev polynomials of the first kind in our calculation of the

character varieties. In this section we will introduce some properties of Chebyshev polyno-

mials following [8].

Definition 1.3. We define the Chebyshev polynomials by the following recursion relation.

S0(v) = 1

S1(v) = v

Sn(v) = vSn�1(v)� Sn�2(v)

for all n 2 Z.

7



Lemma 1.4. Suppose v = a+ a�1
where a 6= ±1. Then

Sn(v) =
an+1 � a�(n+1)

a� a�1
.

Proof. We have that S0(v) = 1 = a�a�1

a�a�1 and S1(v) = v = (a + a�1)(a�a�1

a�a�1 ). Suppose this

holds for n = k and n = k + 1. The

Sk+2(v) = vSk+1(v)� Sk(v)

= (a+ a�1)
ak+2 � a�k�2

a� a�1
� ak+1 � a�k�1

a� a�1

=
ak+3 � a�k�3

a� a�1
.

Therefore, by induction, we have that Sn(v) =
an+1�a�(n+1)

a�a�1 .

Lemma 1.5. For any integer n we have

S2
n(v)� Sn+1(v)Sn�1(v) = 1 (1.1)

S2
n(v) + S2

n�1(v)� vSn(v)Sn�1(v) = 1. (1.2)

Proof. By lemma 1.4 we have

S2
n(v)� Sn+1(v)Sn�1(v) =

a2n+2 + a�2n�2 � 2

(a� a�1)2
�

✓
an+2 � a�n�2

a� a�1

◆✓
an � a�n

a� a�1

◆

=
a2n+2 + a�2n�2 � 2

(a� a�1)2
� a2n+2 + a�2n�2 � a2 � a�2

(a� a�1)2

=
a2 + a�2 � 2

(a� a�1)2

= 1

which proves (1.1).

8



By lemma 1.4 again

S2
n(v) + S2

n�1(v)� vSn(v)Sn�1(v)

=
a2n+2 + a�2n�2 � 2

(a� a�1)2
+

a2n + a�2n � 2

(a� a�1)2
� (a+ a�1)

✓
a2n+1 + a�2n�1 � a� a�1

(a� a�1)2

◆

=
a2 + a�2 � 2

(a� a�1)2

= 1

which proves (1.2).

Lemma 1.6. Suppose A 2 SL2(C) and v = tr(A). For any integer n we have

An = Sn(v)I � Sn�1(v)A
�1

where I is the 2⇥ 2 identity matrix.

Proof. By the Cayley-Hamilton Theorem we have

A2 � vA+ I = 0.

This implies that An�vAn�1+An�2 = 0. By induction we have An = Sn(v)I�Sn�1(v)A�1.

Lemma 1.7. Let A,B 2 SL2(C). Then we have the following identity:

tr
�
AB�1

�
= tr(A) tr(B)� tr(AB).

Proof. Let

A =

2

64
a11 a12

a21 a22

3

75 B =

2

64
b11 b12

b21 b22

3

75 .

By direct calculation we have

tr
�
AB�1

�
= a11b22 � a12b21 + a22b11 � a21b12

= tr(A) tr(B)� a11b11 � a22b22 � a12b21 � a21b12

= tr(A) tr(B)� tr(AB).

9



CHAPTER 2

RATIONAL LINKS C(2n, 2m+ 1, 2)

In this chapter we calculate the character varieties of the rational links C(2n, 2m+1, 2) and

analyze the reducibility of the varieties. We follow methods presented in [5] and [6].

2.1 Group Presentation of the Rational Links C(2n, 2m+ 1, 2)

Let L denote the rational link C(2n, 2m + 1, 2) (see figure 2.1) and �(L) = ⇡1(XL). We

begin by determining a presentation for �(L) by following the discussion in section 1.2. We

begin by giving L an orientation and considering the three sections of the link separately.

When finding the presentation, we start from the right side of the link and move left.

Figure 2.1. The rational link C(2n, 2m+ 1, 2)

The first section of the link consists of two crossings. We denote the loops in this section

by a and b. We have the following two relations:

a1 = b2a2b
�1
2

b1 = a1b2a
�1
1 .

10



The second section contains 2m + 1 crossings. We denote the loops in this section by c

and d. The first two crossings of this section give the relations

c1 = d1c2d
�1
1

d2 = c2d1c
�1
2 .

Combining these relations we obtain

d2 = (c�1
1 d1)

�1d1(c
�1
1 d1).

Then by induction we obtain the following

cm+1 = (c�1
1 d1)

�mc1(c
�1
1 d1)

m

dm+1 = (c�1
1 d1)

�md1(c
�1
1 d1)

m.

The final section of L contains 2n crossings. We denote the loops in this section by e and

f . Similar to the above, we consider the first two crossings of the section and by inductions

we obtain the following:

en+1 = (f�1
1 e1)

�ne1(f
�1
1 e1)

n

fn+1 = (f�1
1 e1)

�nf1(f
�1
1 e1)

n.

In considering figure 2.2, we have the following identifications:

c1 = b2

d1 = b1

e1 = a2

f1 = dm+1

en+1 = a1

fn+1 = cm+2.

11



Figure 2.2. Fundamental group

Let a1 = a and b1 = b. Using the identity en+1 = a and the relations above, we see that

a = (d�1
m+1e1)

�na�1b�1aba(d�1
m+1e1)

n.

Which implies

wa = aw

where w = bavn and v = d�1
m+1e1. Writing d�1

m+1e1 in terms of a and b we see that

v = (a�1b�1ab)�mb�1(a�1b�1ab)m+1a.

Hence, we have the following.

Lemma 2.1. Let L denote the rational link C(2n, 2m+ 1, 2) and �(L) = ⇡1(XL). We have

�(L) = ha, b : wa = awi

where w = bavn and v = (a�1b�1ab)�mb�1(a�1b�1ab)m+1a.

2.2 Calculating Character Variety

We will use the presentation above to calculate the character variety of L = C(2n, 2m+1, 2).

Since L is a rational link, the character variety will be a polynomial in the three variables

x = tr(⇢(a)), y = tr(⇢(b)), and z = tr(⇢(ab)).

12



Let ⇢ : �(L) ! SL2(C) be a nonabelian representation. Then we may assume, up to

conjugation, that

⇢(a) =

2

64
s1 1

0 s�1
1

3

75 ⇢(b) =

2

64
s2 0

u s�1
2

3

75 .

The character variety is the polynomial determined by the matrix equation ⇢(w)⇢(a) =

⇢(a)⇢(w). From now on, by abuse of notation, we will identify g 2 �(L) with its image

⇢(g) 2 SL2(C).

Proposition 2.2. The character variety of L is given by the points (x, y, z) 2 C3
such that

Rn,m(x, y, z) = 0 where

Rn,m(x, y, z) = Sn(�)� Sn�1(�)(Sm(↵)� Sm�1(↵))[zSm(↵)� (xy � z)Sm�1(↵)].

Where � = tr(v) and ↵ = tr(a�1b�1ab).

Proof. We begin by finding the matrix w = ba((a�1b�1ab)�mb�1(a�1b�1ab)m+1a)n.

Let � = tr((a�1b�1ab)�mb�1(a�1b�1ab)m+1a) and ↵ = tr(a�1b�1ab).

By lemma 1.6 we have

w = ba
⇥
Sn(�)I � Sn�1(�)a

�1(a�1b�1ab)�(m+1)b(a�1b�1ab)m
⇤

= Sn(�)ba� Sn�1(�)
⇥
b(Sm(↵) b

�1a�1ba� Sm�1(↵)I)b(Sm(↵)I � Sm�1(↵) b
�1a�1ba)

⇤

= Sn(�)ba� Sn�1(�)
⇥
S2
m(↵)a

�1bab+ S2
m�1(↵)ba

�1ba� Sm(↵)Sm�1(↵)(a
�1b2a+ b2)

⇤
.

The character variety is given by the matrix equation wa � aw = 0 where a =

2

64
s1 1

0 s�1
1

3

75

and w is as above. Using Mathematica, we see that

wa� aw =

2

64
s�1
2 uQ(s1, s2, u) (s�2

1 s�2
2 + s�1

1 s�1
2 u� s�2

1 )Q(s1, s2, u)

(s�1
1 s�1

2 � s1s
�1
2 )uQ(s1, s2, u) �s�1

2 uQ(s1, s2, u)

3

75

13



where

Qn,m(s1, s2, u) = Sn�1(�)s
2
1(Sm(↵)Sm�1(↵)(1 + s22)� S2

m�1(↵)� S2
m(↵)s

2
2)

+ Sn�1(�)(Sm(↵)Sm�1(↵)(1 + s22)� S2
m�1(↵)s

2
2 � S2

m(↵))

+ s1s2(X + (S2
m�1(↵)� S2

m(↵))uSn�1(�)).

It remains to write Qn,m(s1, s2, u) in terms of x, y, and z. Note that x = tr(a) = s1+s�1
1 , y =

tr(b) = s2 + s�1
2 , and z = tr(ab) = s�1

1 s�1
2 + s1s2 + u.

Multiplying Qn,m(s1, s2, u) by s�1
1 s�1

2 we get

Sn(�) + Sn�1(�)
⇥
Sm(↵)Sm�1(↵)(s1s2 + s1s

�1
2 + s�1

1 s2 + s�1
1 s�1

2 )

� S2
m�1(↵)(s1s2 + s1s

�1
2 + s�1

1 s2 + s�1
1 s�1

2 ) + (S2
m�1(↵)� S2

m(↵))z
⇤
.

Since (s1s2 + s1s
�1
2 + s�1

1 s2 + s�1
1 s�1

2 ) = xy, we have

Rn,m(x, y, z) = Sn(�) + Sn�1(�)
⇥
Sm(↵)Sm�1(↵)xy + z(S2

m�1(↵)� S2
m(↵))� S2

m�1(↵)xy
⇤

= Sn(�)� Sn�1(�) (Sm(↵)� Sm�1(↵)) [zSm(↵)� (xy � z)Sm�1(↵)] .

2.3 Observations on the Reducibility of the Character Variety

Our goal is to determine the reducibility of Rn,m 2 C[x, y, z]. The polynomial Rn,m contains

Chebyshev polynomials in ↵ and �, which are then polynomials in x and y. This makes

it di�cult to determine the reducibility of Rn,m directly. In order to achieve our goal we

will perform a birational transformation to obtain the polynomial Rn,m 2 C[↵, �, z], which

is easier to work with.

We first note that the cases n = ±1 give the twisted Whitehead link. It is known that

the character variety of the twisted Whitehead link is reducible [9]. We also note that the

case m = �1 is ambient isotopic to C(2(n� 1)), which is a torus link. It is also known that
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the character variety of torus links is reducible. Therefore, in the following discussion, we

will not consider the cases n = 1,�1 or m = �1.

We begin by writing ↵ and � in terms of x and y.

Lemma 2.3. Let ↵ = tr(a�1b�1ab) and � = tr(v) = tr((a�1b�1ab)�mb�1(a�1b�1ab)m+1a).

Then

↵ = x2 + y2 + z2 � xyz � 2

� = (xy � z)(Sm(↵)� Sm�1(↵))
2 � z(↵� 2)S2

m(↵).

Proof. By lemma 1.7 we have

tr
�
a�1b�1ab

�
= tr

�
a�1b�1

�
tr
�
b�1a�1

�
� tr

�
a�1b�2a�1

�

= tr
�
a�1b�1

�2 � tr
�
a�1b�2

�
tr(a) + tr

�
b�2

�

= tr
�
a�1b�1

�2 �
⇥
tr
�
a�1b�1

�
tr(b)� tr

�
a�1

�⇤
tr(a) + tr

�
b�2

�

= z2 � [zy � x] x+ y2 � 2

= x2 + y2 + z2 � xyz � 2.

In order to calculate �, we first determine the matrix v = (a�1b�1ab)�mb�1(a�1b�1ab)m+1a.

By lemma 1.6 we have,

v = (a�1b�1ab)�mb�1(a�1b�1ab)m+1a

= (Sm(↵)I � Sm�1(↵)a
�1b�1ab)b�1(Sm(↵)a

�1b�1ab� Sm�1(↵)I)a

= S2
m(↵)b

�1a�1b�1aba+ S2
m�1(↵)a

�1b�1a2 � Sm(↵)Sm�1(↵)
⇥
b�1a+ a�1b�2aba

⇤
.
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We find the trace

tr(v) = S2
m(↵) tr

�
b�1a�1b�1aba

�
+ S2

m�1(↵) tr
�
b�1a

�
� 2Sm(↵)Sm�1(↵) tr

�
b�1a

�

= S2
m(↵)

⇥
tr(aba) tr(bab)� tr

�
(ab)3

�⇤
+ (xy � z)(S2

m�1(↵)� 2Sm(↵)Sm�1(↵))

= S2
m(↵)

⇥
(zx� y)(zy � x)� z3 + 3z

⇤
+ (xy � z)(S2

m�1(↵)� 2Sm(↵)Sm�1(↵))

= S2
m(↵) [(xy � z)� z(↵� 2)] + (xy � z)(S2

m�1(↵)� 2Sm(↵)Sm�1(↵))

= (xy � z)(Sm(↵)� Sm�1(↵))
2 � z(↵� 2)S2

m(↵).

Let x = u + v and y = u � v. Then we have a birational equivalence between ↵, � and

u2, v2 given by

↵ = 2(u2 + v2) + z2 � (u2 � v2)z � 2

� = (u2 � v2 � z)(Sm(↵)� Sm�1(↵))
2 � z(↵� 2)S2

m(↵).

Writing Rn,m in terms of u and v we have

Rn,m = Sn(�)� Sn�1(�)(Sm(↵)� Sm�1(↵))[zSm(↵)� (u2 � v2 � z)Sm�1(↵)].

Solving � for (u2 � v2) we get

(u2 � v2) =
� + z [(Sm(↵)� Sm�1(↵))2 + (↵� 2)S2

m(↵))]

(Sm(↵)� Sm�1(↵))2
.

Putting this into Rn,m, we get the polynomial Rn,m 2 C[↵, �, z] defined by

Rn,m = Sn(�)(Sm(↵)� Sm�1(↵)) + �Sn�1(�)Sm�1(↵)

� z
⇥
(Sm(↵)� Sm�1(↵))

2 � (↵� 2)Sm(↵)Sm�1(↵)
⇤
Sn�1(�)Sm(↵)

= Sn(�)(Sm(↵)� Sm�1(↵)) + �Sn�1(�)Sm�1(↵)� zSn�1(�)Sm(↵)

Note that since we do not consider the case n = �1, this is a valid transformation.
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Lemma 2.4. Suppose |n| > 1 and m 6= �1. Then the polynomial Rn,m 2 C[↵, �, z] is

irreducible.

Proof. We have

Rn,m = Sn(�)(Sm(↵)� Sm�1(↵)) + �Sn�1(�)Sm�1(↵)� zSn�1(�)Sm(↵).

Let

Pn,m = Sn(�)(Sm(↵)� Sm�1(↵)) + �Sn�1(�)Sm�1(↵)

and

Qn,m = Sn�1(�)Sm(↵).

Since Rn,m 2 C[↵, �, z] is linear in z we only need to check that gcd(Pn,m, Qn,m) = 1.

Suppose gcd(Pn,m, Qn,m) 6= 1. Then there exists an F such that F divides P,Q and either

F | Sn�1(�) or F | Sm(↵).

Suppose F | Sn�1(�). Note that gcd(Sn(�), Sn�1(�)) = 1. Then F - P , which is a

contradiction. So we must have F | Sm(↵). But, then F - P for the same reason. Therefore,

gcd(P,Q) = 1 and Rn,m 2 C[↵, �, z] is irreducible.

Since we have a birational equivalence between ↵, � and u2, v2, the above lemma is

equivalent to Rn,m 2 C[u2, v2, z] being irreducible unless n = 1,�1 or m = �1. Next we

show that Rn,m 2 C[u, v, z] is irreducible under the same conditions. In order to achieve

this, we will make use of the following lemma.

Lemma 2.5. Let f(u, v, z) 2 C[u2, v2, z] be irreducible. If f(0, 0, z) 6= g(z)2 2 C[z] then

f(u, v, z) 2 C[u, v, z] is irreducible.

Proof. Suppose that f(u, v, z) 2 C[u, v2, z] is reducible. Then there exists h(u, v, z) 2

C[u, v2, z] such that h(u, v, z) is prime and h(u, v, z) | f(u, v, z). Since f is even in u,
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this also implies that h(�u, v, z) | f(u, v, z). If h(u, v, z) 6= �h(�u, v, z), where � 2 C, then

h(u, v, z)h(�u, v, z) | f(u, v, z).

Since h(u, v, z)h(�u, v, z) 2 C[u2, v2, z] and f(u, v, z) is irreducible in C[u2, v2, z] we must

have h(u, v, z)h(�u, v, z) = �f(u, v, z). Taking u = v = 0 we get h(0, 0, z)2 = �f(0, 0, z),

which is a contradiction. Therefore, f(u, v, z) 2 C[u, v2, z] is irreducible.

Suppose that f(u, v, z) 2 C[u, v, z] is reducible then there exists g(u, v, z) 2 C[u, v, z]

such that g(u, v, z) is prime and g(u, v, z) | f(u, v, z). If g(u, v, z) 6= �g(u,�v, z) then

g(u, v, z)g(u,�v, z) | f(u, v, z).

Since g(u, v, z)g(u,�v, z) 2 C[u, v2, z] and f(u, v, z) is irreducible in C[u, v2, z] we must have

that g(u, v, z)g(u,�v, z) = �f(u, v, z). Taking u = v = 0 we get g(0, 0, z)2 = �f(0, 0, z),

which is a contradiction.

Lemma 2.6. Suppose |n| > 1 and m 6= �1. Then Rn,m 2 C[u, v, z] is irreducible.

Proof. By the above lemma, we need to show that Rn,m(u, v, z) 2 C[u, v, z] is such that

Rn,m(0, 0, z) 6= F (z)2 for some F 2 C[z]. Recall that

↵ = 2(u2 + v2) + z2 � (u2 � v2)z � 2

� = (u2 � v2 � z)(Sm(↵)� Sm�1(↵))
2 � z(↵� 2)S2

m(↵)

and Rn,m 2 C[u2, v2, z] is

Rn,m = Sn(�)� Sn�1(�)(Sm(↵)� Sm�1(↵))[zSm(↵)� (u2 � v2 � z)Sm�1(↵)].

Let u = 0 and v = 0. Then we have

↵ = z2 � 2

� = �z(Sm(↵)� Sm�1(↵))
2 � z(z2 � 4)S2

m(↵)
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and Rn,m becomes

Rn,m = Sn(�)� zSn�1(�)(S
2
m(↵)� S2

m�1(↵))

We can write z = a+ a�1. Then by lemma 1.4 we have

↵ = a2 + a�2

� = �a4m+3 � a�(4m+3).

Then by lemma 1.4 again Rn,m becomes

Rn,m =
(�1)n(an(4m+3)+1 � a�(n(4m+3)+1))

a� a�1
= (�1)nSn(4m+3)(z).

This has no repeated factors. So by lemma 2.5, Rn,m 2 C[x, y, z] is irreducible.

Since we have the birational equivalence between x, y and u, v given by

x = u+ v

y = u� v

the above lemma shows that Rn,m 2 C[x, y, z] is irreducible unless n = 1,�1 or m = �1.

Therefore, we have proven the following theorem.

Theorem 2.7. Suppose |n| > 1 and m 6= �1. Then the nonabelian character variety of the

rational link C(2n, 2m+ 1, 2) is irreducible.

As a corollary we have the following.

Corollary 2.8. Suppose |n0| > 1 and m0 6= 0. Then the nonabelian character variety of the

rational link C(2n0, 2m0,�2) is irreducible.

19



Proof. Consider the links C(2n, 2m + 1, 2). To these links we can associate the continued

fraction

1

2n+
1

(2m+ 1) +
1

2

.

This is equivalent to

1

2n+
1

(2m+ 2) +
1

�2

.

Therefore, the links C(2n, 2m + 1, 2) and C(2n, 2(m + 1),�2) are ambient isotopic. Then

let n = n0 and m+ 1 = m0.
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