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ABSTRACT 
The structure and function of tissue microcirculation are critical in most major disease 

developments and in the patient-specific treatment response. Adequate quantitative 

characterization of tissue microvasculature may therefore assist to better understand various types 

of disorders, to develop new therapeutic strategies, and to monitor early response to therapy. 

Currently, the greatest challenge is to accurately and precisely quantify the microvascular 

properties in a noninvasive manner. To address this challenge, this dissertation proposes 

characterizing the tissue microvascular network morphology using contrast-enhanced ultrasound 

(CEUS). We hypothesize that the development of morphological image analysis methods using 

CEUS images will improve in vivo quantitative analysis of tissue microvascular networks for early 

treatment monitoring. This work demonstrates (1) the potential of CEUS-derived morphological 

features as a predictor of anti-cancer therapy response, (2) the development and use of 

multiparametric CEUS image analysis, and (3) the implementation of three-dimensional super-

resolution US visualization and quantification using advanced image analysis methods. 
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CHAPTER 1   

INTRODUCTION 
 
 
1.1 Background and motivation 

Healthy tissue microvasculature is essential for the maintenance and function in all tissues. The 

structure of the microvasculature is complex and consists of several cell types interacting with the 

environment, which is crucial for tissue homeostasis [1]–[3]. Taking the form of microvascular 

networks, the tissue microvasculature supplies oxygen and nutrients to different organs and 

removes waste via blood perfusion. Insufficient function and structure of microvascular networks 

indicate the development and progression of diseases. Adequate and accurate characterization of 

microvascular network function and structure is therefore vital to understanding various major 

disease types, including diabetes, cancer, and cardiovascular [4]–[6], and to assist in developing 

better therapeutic strategies in clinical disease management [7], [5], [8]–[15]. In this dissertation 

work, we used diabetes and cancer as disease models to assess the ability of microvascular 

characterization to answer clinically relevant research questions. 

1.1.1 The role of microvascular networks in diabetes 

Diabetes is one of the leading causes of death in the world and type 2 diabetes is present in 90% 

to 95% of 422 million individuals [16], [17]. Type 2 diabetes is diagnosed by the insufficient use 

of insulin. Insulin is delivered from the central circulation into the muscle tissue microvasculature 

to allow for increased disposal in peripheral tissues [8], [18], [19]. Changes in microvascular 

function, as well as dysfunction, contribute to peripheral insulin resistance in skeletal muscle. As 

illustrated in Figure 1.1, microvascular recruitment is defined as the dilatation of the microvessels, 



 

2 

which increases the surface area of the microvascular endothelium to carry insulin and glucose 

into skeletal muscle myocytes. Impaired insulin-induced microvascular recruitment in skeletal 

muscle contributes to insulin resistance in type 2 diabetes. In the context of diabetes, there is a 

close link between small vessels and disease pathogenesis [5], [20]. A deep understanding of the 

regulation of skeletal muscle microvascular function at a smaller scale (e.g., vessels with diameters 

below 300 µm) would be possible with a reliable characterization of tissue microvascular 

networks.  

1.1.2 The role of microvascular networks in cancer 

Cancer resulted in 9.6 million deaths globally in 2018 and 27.5 million new cancer cases are 

expected by 2040 according to International Agency for Research on Cancer (IARC). Considering 

tumor diversity, several adaptive treatment options for unique tumor types have been developed. 

With a wide range of therapeutic strategies, it is important to be able to extract patient-specific 

tumor features for an efficient decision-making process for planning therapy. Accurately 

monitoring early therapy response guided by patient-specific features can reduce healthcare costs 

related to overtreatment. Monitoring changes in tumor size is known to be the most significant 

 

Figure 1.1. (A) Normal (dilated) versus (B) impaired microvascular recruitment. Impaired 
capillaries block the proper blood flow for insulin disposal in skeletal muscle, which is observed 
in type 2 diabetes (Created in BioRender.com). 
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response indicator to anti-cancer therapies when used with the Response Evaluation Criteria in 

Solid Tumors (RECIST) guidelines [21]. However, tracking tumor size requires several cycles of 

chemotherapy and a minimum of six weeks to detect the treatment response. Here, angiogenic 

networks can be used as a well-established biomarker for extracting patient-specific tumor features 

and for monitoring early tumor response to anti-cancer therapies [22]–[25]. Angiogenesis is a 

physiological neovascularization process that involves the formation of novel blood vessels from 

pre-existing vessels occurs in both health and diseased tissue [4]. As shown in Figure 1.2, 

compared to the healthy tissue, the microvascular networks (also known as tumor angiogenic 

networks) of diseased tissue is highly chaotic with disorganized, tortuous, and dilatated vessels 

due to an imbalance of stimulated pro-angiogenic factors [26]–[28]. Angiogenesis contributes 

critically to tumor growth, progression, metastasis, and therapy response [24], [26], [29], [30]. 

This is due to the fact that, beyond a tumor size of 1-2 mm, the angiogenic network is the only way 

to deliver nutrients and oxygen to sustain growth [22], to metastasize to distant sites of the body, 

and to deliver anti-cancer drugs to the tumor core. As illustrated in Figure 1.3, quantitative 

characterization of tumor angiogenic networks would enable us to capture the early response of 

anti-cancer therapies prior to any decreases in tumor size because alterations in tumor 

 

Figure 1.2. (A) Healthy versus (B) diseased (tumor) microvascular networks in tissue. 
(Created in BioRender.com) 
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microvascular networks precede alterations in tumor size. In terms of clinical assessment, 

histopathology based on either biopsy or a surgical resection is used as the gold standard for 

quantifying microvascular parameters for diagnosing cancer [7]. Nevertheless, invasiveness of 

histopathology is a major limitation for monitoring tumor status. 

 Medical imaging provides the necessary tools to noninvasively determine tissue 

microvascular function and treatment response [31]. There are several medical imaging modalities 

used in the hospital setting such as X-ray computed tomography (CT) which has a blood vessel 

detection limit of 400 μm [32] and magnetic resonance imaging (MRI) with a blood vessel 

detection limit of 300 μm. Traditional medical ultrasound (US) is the best alternative compared to 

 

Figure 1.3. Tumor microvascular networks show earlier changes than the tumor size. 
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other imaging tools due to its compact size, use of nonionizing radiation, low cost, and real-time 

image acquisition. Additionally, US performed at clinical imaging frequencies is comparable to 

MRI for blood vessel imaging [31], [33].  

1.2 Ultrasound  

Medical US uses high frequencies ranging from 2 to 20 MHz, whereas the human hearing range 

is between 20 Hz and 20 kHz [34]. Ultrasound, as mechanical energy, is transmitted by pressure 

waves like from a piezoelectric element of a US transducer. Transducer elements, when made by 

a piezoelectric material, can convert electrical energy to mechanical energy and vice versa. After 

the application of electrical energy, the piezoelectric material creates mechanical vibrations that 

result in sound waves, also known as ultrasonic pulses. The speed of sound for soft tissue is 

assumed to be 1540 m/s [34]. When sound waves travel through different tissues, the speed of 

sound changes based in part on tissue density. Sound travels faster in more dense tissues. As the 

sound waves propagate through tissues of different densities and elasticities, these waves hit a 

smooth tissue boundary where the acoustic impedance of the first tissue is different than that of 

the next tissue. This creates an echo signal that is sent back to the transducer [34].  

The acoustic impedance of each tissue is calculated based on the pressure and speed of sound 

and it indicates the resistance of the tissue to US waves [35]. The transmit time of a US wave to a 

tissue boundary and the return of the echo created at the boundary are used to calculate the distance 

between the boundary and the transducer. This allows the generation of A-line images as a function 

of depth using signals from each transducer element. With the activation of a group of elements at 

a time (usually four), all of the A-line signals from all transducer elements form a two-dimensional 
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grayscale image in brightness mode, which is called a B-mode image and is shown in Figure 1.4 

[33].  

The US wavelength determines the resolution in the axial direction while the spacing of the 

transducer elements dictates the resolution in the lateral direction. Longer US waves with low 

frequencies can penetrate deeper into the tissue but result in low-resolution images. Shorter US 

waves with high frequencies have increased image resolution but a lower penetration capability 

[34]. Although photo-acoustics [36] and functional US [37] based on ultrafast Doppler [38], [39] 

are helpful to improve the spatial resolution of US, these methods are not sufficient and spatial 

resolution needs further improvement to perform microvascular characterization at the capillary 

level [7]. 

 

Figure 1.4. Ultrasound echo (A-line) and brightness mode (B-mode) image generated from the 
signal received at transducer elements (left) (Created in BioRender.com). B-mode image from 
a chicken embryo (right). 
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1.3 Microbubbles and contrast-enhanced ultrasound 

The sensitivity of US limits to the detection of blood flow in microvessels at the capillary level. 

To overcome this limitation, microbubble (MB) contrast agents have been developed [40]. As 

illustrated in Figure  1.5, MBs have a diameter of less than 10 µm, enabling them to circulate in 

the microvasculature [41]. As they are different than red blood cells, lipid-shelled MBs with a 

nontoxic gas core can easily be detected by US imaging [41]. MBs begin oscillating when exposed 

to sufficiently high US pressures and these oscillations produce backscattered US signals with a 

nonlinear characteristic [42]. This nonlinearity allows MBs to be differentiated from the 

surrounding tissue due to an increased contrast-to-tissue ratio, and this allows more accurate 

 

Figure 1.5. Lipid shelled and nontoxic gas core microbubble contrast agents circulating into the 
tumor angiogenic network and their non-linear acoustic signature shown between states of 
compression and rarefaction due to mechanically oscillations as pressure versus time in 
response to high frequency sound waves from ultrasound transducer. (Created in 
BioRender.com). 
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visualization of small vessels due to velocity-independent MB properties [43]. The recent FDA 

approval of MBs has enabled clinical use for patients who have contraindications to contrast agents 

that are used in MRI and CT [44].  

Contrast-enhanced US (CEUS) is a non-invasive and safe imaging tool that does not use 

ionizing radiation and enables the measurement of blood flow and tissue perfusion [45]. CEUS 

has been widely utilized to analyze parameters of blood flow dynamics that have applications in 

the diagnosis and monitoring of the treatment response in diseases where tissue perfusion is vital 

[46]–[57]. Using CEUS, the microvascular network of the tissue can be quantitatively 

characterized in two ways: functionally and structurally [50], [52], [53], [58]–[62]. As shown in 

Figure 1.6, assuming that the MB concentration is similar to the blood concentration, blood 

perfusion is described by functional features (wash-in-rate, time-to-intensity-peak, peak-intensity, 

wash-out-rate, and area-under-the-curve).  The structure of the microvascular networks is 

 

Figure 1.6. Contrast-enhanced ultrasound derived functional and structural parameters of tissue 
microvascular networks. Blood perfusion parameters (A) IPK: Intensity peak, WIR: Wash-in-
rate, WOR: Wash-out-rate, TPK: Time to peak intensity, AUC: Area under the curve. 
Morphological microvascular network parameters (B) NB: Number of bifurcations, NV: 
Number of vessels, VL: Mean vessel length, VD: Mean vessel diameter, VT: Mean vessel 
tortuosity, VR: Mean vessel-to-tissue ratio or microvascular density (MVD). (Created in 
BioRender.com). 
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described by morphological features of microvessels [63] the number of vessels and bifurcations, 

geometric measures of mean vessel diameter and tortuosity, and vessel-to-tissue ratio or 

microvessel density (MVD) as a measure of compactness. Several research groups are interested 

in the characterization of tissue microvascular networks by morphological features for the 

monitoring of tumor development or regression [58], [64]–[67].  

1.4 CEUS-derived morphological analysis and its limitations 

 In recent work, our group has shown that expanding the functional analysis of tissue 

microvascular networks with structural information may improve disease management [58]. 

Patient-specific features from tumor perfusion and neovascular morphology can be extracted from 

CEUS image sequences, and results from a pilot study with clinical data has demonstrated a 

promising correlation between morphological features and the pathological response to therapy 

[58]. These results suggest that features of both CEUS-derived blood perfusion and neovascular 

morphology are useful to capture early cancer response to anti-cancer therapy [58]. However, 

 

Figure 1.7. Present image processing pipeline for morphological analysis of tissue 
microvascular networks.  
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current planar CEUS imaging methods for the extraction of neovascular morphological features 

limits CEUS-derived morphology analysis (Figure 1.7) in a number of ways. One limitation is 

displacements in transducer position and subject or organ motion can have profound impacts on 

measurement reproducibility [46], so advanced CEUS imaging methods are necessary for motion-

corrected tissue microvascular morphology analysis [68]. As examples, motion artifacts can cause 

a shadow around a vessel which may be seen as two vessels, or a straight vessel can be seen as a 

tortuous vessel. Motion-compensated CEUS-derived morphological features of microvascular 

networks can assist clinicians to accurately evaluate treatment response. Therefore, the first aim 

of this research is to improve the quantitative CEUS-derived image analysis pipeline with a motion 

correction strategy. This will enable us to investigate the clinical relevance of morphological 

features of tumor vascular networks as predictors of an early response to anti-cancer therapy.  

Although we can achieve a high contrast-to-tissue ratio using MB contrast agents in CEUS 

imaging, super-resolution US (SR-US) imaging techniques provide a unique opportunity to 

measure vessels below 100 µm [7], [69], [70]. SR-US is based on MB localization and has been 

reported to achieve considerably high spatial resolution beyond the diffraction limit of the US 

system [71]–[73]. Increased spatial resolution and utilization of a multiscale vessel enhancement 

filter would enable automated segmentation and multiparametric quantification of clinically 

meaningful metrics for different vessel groups at multiple scales [74]–[76]. Automated algorithms 

are critical to enabling a reproducible, repeatable, and objective multiscale and morphological 

analysis using CEUS imaging [8], [19]. The second aim of this work is therefore to develop and 

evaluate a series of custom image processing algorithms for automated multiscale and 

morphological analysis of tissue microvascularity from CEUS images. In a multiparametric 
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approach, both structural and functional parameters were quantified, and CEUS-derived vessel 

diameters were used to perform a more sensitive perfusion analysis of tissue microvascular 

networks for vessel groups of different sizes. CEUS-derived multiparametric analysis may be used 

to assess tissue microvascular function for diseased or healthy tissue in diabetes research. Here, 

we also explored the utility of multiple parameters from CEUS by monitoring the early response 

to anti-cancer therapy validated by histological parameters. 

Finally, the third limitation of the current morphological image analysis pipeline is the use of 

single plane (2D) CEUS-derived analysis for the characterization of tissue microvascular 

networks. A 2D analysis may not be sufficient for longitudinal studies because the same imaging 

plane from baseline imaging may not be found in follow-up imaging sessions. Specifically, within 

the scope of cancer, each tumor tissue has unique and heterogeneous characteristics. Structural 

properties of tumor angiogenic networks from preclinical and clinical CEUS studies have been 

reconstructed using a single imaging plane and have shown promising results [9], [32]. 

Nevertheless, the use of a single plane is still a major limitation because it cannot reveal the entire 

microvasculature or disease burden. It has been demonstrated that different imaging planes from 

the same tumor volume can show different results in tumor perfusion quantification, and 3D CEUS 

imaging approaches should be designed to capture the heterogeneous nature of tumor 

neovascularization more accurately [46]. 

Microvascular networks exist in three-dimensional (3D) space and, volumetric imaging is 

indispensable [18]–[21], as the adequate quantification of several important features of 

microvascular networks at the capillary level can only be extracted from 3D CEUS images using 

SR-US techniques. However, the validation of these measurements is a big challenge [65], [67], 
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[77].  To address this challenge, most US imaging studies have used histological markers (e.g., 

CD31 and CD34 staining of endothelial cells) for validating CEUS-derived microvascular 

measurements [22], [23]. However, there have been no validations of more geometric metrics such 

as vessel diameter obtained using automated algorithms and in vivo SR-US data. Therefore, for 

the third aim of this work, we present an automated approach for 3D SR-US imaging and 

morphological analysis of microvascular networks with a multimodal imaging validation. We used 

a chicken embryo model and co-registered optical microscopy images to validate the 3D SR-US 

image-derived measures.  

Microvascular morphological features are extracted by a thinning algorithm and quantified by 

digital morphological image processing operations [58], [78], [79]. Digital morphological image 

processing is based on mathematical set theory and is used to describe shape of any region depicted 

in images [80]. Operating on binary images that consist exclusively of foreground and background 

values 1 and 0, morphological image processing methods are intensity invariant and rely on pixel 

locations. The pixel connectivity that embodies an object in the image is obtained by the pixel 

locations and provides information about the object’s geometrical shape. The proposed research 

in this dissertation addresses the development of advanced CEUS imaging methods using digital 

morphological image analysis methods for tissue characterization and the assessment of the 

morphological tissue characterization in clinically relevant context.  

1.5 Research objectives  

The work presented in this dissertation examines the role of morphological features from tissue 

microvascular networks for CEUS-derived tissue characterization. Furthermore, this work 

evaluates how advanced image processing can improve the sensitivity and reliability of the 
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analysis by proposing an enhanced image analysis pipeline as shown in Figure 1.8. The overall 

goal of this research is to assess the benefits and feasibility of CEUS-derived morphological 

characterization of tissue microvascular networks. The Specific Aims of this work are summarized 

as follows: 

(1) Evaluation of tumor angiogenic networks depicted in CEUS images as a predictor for anti-

cancer treatment response using improved image processing via motion correction. 

(2) Implementation and assessment of an SR-US-derived multiparametric quantitative analysis 

of microvascular changes using vessel diameter-based multiscale and multiparametric 

quantification. 

(3) Development and validation of a new 3D SR-US imaging techniques for the visualization 

and quantification of microvascular networks. 

Chapters 2 to 4 address Aim 1. Chapters 5 and 6 addresses Aim 2. Chapters 7 address Aim 3. 

Chapters 2 to 4 evaluate the structural features of tumor vascular networks using an improved 

 

Figure 1.8. Proposed image processing pipeline for the characterization of tissue microvascular 
networks. Solid lines lead to multiscale quantification and dotted lines lead to different 
visualization methods. 
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image processing pipeline and presents the relationship between the predicted therapy response 

and pathological outcomes. We demonstrate that tumors with more complex vasculature have 

worse treatment response when compared to simpler networks. Chapter 5 presents the 

implementation of the custom software algorithm that extracts vessel diameters from 

microvascular networks and uses this metric for multiparametric and multiscale analysis. Although 

vessel diameter-based microvascular analysis has been used for diabetes research, vessel diameters 

have never been extracted using SR-US imaging and morphological image processing techniques 

to analyze microvascular recruitment based on vessel size. Our findings demonstrate that SR-US-

derived structural parameters can be utilized to focus the analysis on one vessel group. We then 

compare results from different vessel groups with each other and show that smaller vessels are 

more affected by impaired microvascular recruitment. Chapter 6 shows that a similar 

multiparametric and multiscale morphological image analysis is also applicable for monitoring 

acute changes in response to targeted anti-cancer therapy. We find that morphological metrics have 

a positive correlation with perfusion metrics. Chapter 7 presents an advanced image processing 

method for volume and surface reconstruction of microvascular features from CEUS images. We 

show improved visualization with 3D volume rendering enables us to locate specific vessels for 

longitudinal monitoring. Measurements of vessel diameter are useful in reconstructing vessel 

surfaces, which improves visualization and quantification compared to traditional US images. We 

envision that the development of morphological image analysis methods using CEUS images will 

improve our ability to perform in vivo quantitative analysis of tissue microvascular networks for 

improved early treatment monitoring and disease progress.   
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The purpose of this research project was to improve the quantification of microvascular networks 

depicted in contrast-enhanced ultrasound (CEUS) images of human hepatocellular carcinoma 

(HCC) using a two-stage motion correction method. Due to limited anatomical information in 

CEUS images, grayscale B-mode ultrasound (US) data is preferred when estimating tissue motion. 

Transformation functions derived from the B-mode data are one solution for registering a dynamic 

sequence of CEUS images. Microvessel density (MVD) can then be calculated from both the 

original and motion corrected CEUS images as the ratio of the number of contrast-enhanced image 

pixels with a value greater than zero to the number of pixels of the entire tumor space. Using US 

images of HCC before and after treatment with transarterial chemoembolization, results revealed 

that affine and non-rigid motion correction improves visualization and quantitative analysis of 

clinical data. Using the correlation coefficient (CC) between CEUS frames as metric of tissue 

motion, our motion correction strategy produced a 20% increase in the average CC from motion 

corrected frames compared to the data before correction (p < 0.001). Furthermore, enhanced 

visualization of microvascular networks in the treated liver tumor space may improve 

determination of treatment efficacy and need for any repeat procedures. 
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2.1 Introduction 

Dynamic contrast-enhanced ultrasound (CEUS) is a noninvasive imaging modality commonly 

used to quantify tissue microvascular networks, e.g., tumor angiogenesis [1], [2]. Analysis of tissue 

microvascular structures depicted in CEUS images of cancerous tissue is an emerging strategy for 

determining an early response to anticancer treatment [3]–[6]. During ultrasound (US) imaging, 

inevitable motion artifacts caused by probe motion, patient breathing, and cardiac pulsations, can 

degrade the accuracy of any image quantification. To improve image quantification, these motion 

artifacts should be properly addressed and removed, which is a process known as motion 

correction. 

One motion correction strategy that has been applied to magnetic resonance (MR) images uses 

non-rigid registrations to align images with motion artifacts to a preselected reference frame [7]. 

In short, a global motion correction strategy first registers images by applying a series of affine 

transformations, e.g., rotations, translations, shearing, and scaling. To then correct for local 

motion, free-form deformations derived from basis spline (B-spline) functional analysis were used. 

A similarity measure defined by mutual information, e.g., cross-correlation coefficient (CC), can 

be used to help evaluate the degree of image registration (i.e., corrected motion). A more recent 

study demonstrated that this non-rigid registration approach to motion correction can be used to 

improve the quality of clinical CEUS images and quantification [8]. 

Another strategy for motion estimation and correction in US images is to discard the frames 

based on correlation between two consecutive frames [9]. Assuming that the frames have one 

dominant motion artifact, such as due to respiratory or cardiac motion, the image correction values 

can be computed and analyzed. Assuming that a lower CC is observed during certain periods of 
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the respiratory or cardiac cycles, these frames can be discarded to help eliminate any CEUS image 

frames corrupted by subject motion. In this paper, we demonstrate improved quantification of 

CEUS images using a combination of the two varying methods mentioned above.  

2.2 Materials and Methods 

2.2.1 Ultrasound Imaging 

A retrospective analysis of CEUS images of human HCC was performed (N = 8) [10]. All US 

examinations were performed using a Logiq E9 scanner equipped with a C1-6-D transducer (GE 

Healthcare, Wauwatosa, WI). After acquiring baseline images, subjects received a bolus injection 

of 0.2–0.3 ml of a microbubble (MB) contrast agent (Definity, Lantheus Medical Imaging, N 

Billerica, MA) followed by a 10 ml saline flush. CEUS imaging was performed using a dual 

imaging mode, enabling side-by-side visualization of the grayscale B-mode and CEUS images at 

a rate of 8 to 9 frames per sec. Each subject underwent CEUS exams at three time points: prior to 

a transarterial chemoembolization (TACE) treatment procedure, 1 to 2 wk post TACE, and again 

about 4 wk post TACE treatment. During scanning, the transducer was being rotated for 90° after 

the peak intensity point was reached and sweep through the region to be able to see all the other 

sides of the tumor region. Our analysis of the microvascular morphology was restricted by only 

one plane, so we discarded the frames after 30 to 40 sec as these contained mostly out-of-plane 

motions. 
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2.2.2 Image Processing  

CEUS images of HCC corrupted with motion artifacts caused by respiratory, cardiac, and probe 

motions were analyzed. B-Mode US images were used for motion estimation. As seen in Figure 

2.1, the first step in the image processing pipeline was to remove the frames with out-of-plane 

motion prior to in-plane motion correction. According to the scanning protocol, consistent imaging 

was performed on plane at midline of lesion of interest for at least 10 sec after peak contrast 

enhancement was reached (about 30 sec after injection) was maintained. For this reason, the first 

255 – 355 in-plane frames were remaining after we discarded the frames with out-of-plane 

motions. Full cine length was not the same across all the time points and subjects. Therefore, the 
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Figure 2.1. Diagram of the data processing strategy used for the improved quantification of 
microvascular structures depicted in contrast-enhanced ultrasound (CEUS) images. 
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number of frames that were discarded was not the same for all subjects and time points. As an 

example, the images in the second row of Figure 2.2 were created using maximum intensity 

projection (MIP) of the first 255 in-plane frames out of 787 frames. Here, the first frame of each 

A B

C D

E F

 

Figure 2.2. Original (A-B), out-of-plane frames eliminated (C-D), the resulting motion 
corrected (E-F) B-Mode (left) and CEUS (right) maximum intensity projection (MIP) images 
from 787, 255, and 255 frames respectively. Image size was 649x585 pixels. Highlighted 
changes in the white box did not contain any vessels for the original image while the corrected 
image shows the vessels, bifurcations, and tortuosity. 
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image sequence was chosen as a reference frame and all subsequent frames were motion corrected 

and registered to that reference. Next, affine transformations were used to compensate for global 

motion and free-form deformations adjusted the motion on local regions in CEUS images. We 

customized the parts of the MATLAB code from [11] for using parallel processing in Texas 

Advanced Computing Center (TACC). The limited memory Broyden Fletcher Goldfarb Shanno 

(L-BFGS) optimization was used to minimize the squared pixel distance (SD) between static and 

moving images. Subsequently, both, original and motion corrected images were filtered to remove 

 
 
Figure 2.3. Vessel enhancement from region-of-interests (ROIs) were performed on the MIP of 
255 frames and overlaid on a single B-Mode image for baseline (left), after two-wk (middle), 
and four-wk (right). The complete response from the clinical results were in line with the images 
(bottom). Dense vascularity on the baseline decreased after two- and four-wk. These temporal 
changes of the vascular morphology were not observable from the images (top) corrupted with 
motion. 
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clutter signal using a singular value filter (SVF) which was based on principle component analysis 

signal separation for medical US images [12] and to localize MBs using the methods from [13]. In 

addition, a multiscale vessel enhancement filter was applied for better visualization of vessels, e.g., 

tubular structures in the image were enhanced [14]. As a therapy response metric, we quantified 

the microvessel density (MVD) that should indicate the changes in the tumor vasculature. MVD 

was calculated as follows:  

 

                                                            MVD =  𝑉𝑉𝑉𝑉 / 𝑀𝑀𝑀𝑀                                                          (2.1) 

 

where 𝑉𝑉𝑃𝑃 was used as an estimate of number of vascular points and 𝑀𝑀 and 𝑁𝑁 were the axial and 

lateral dimensions of the region of interest (ROI) [6].  

 

2.2.3 Evaluation Metric 

 

The CC was used as performance metric to demonstrate improvement after motion correction of 

CEUS images and given by: 

                                                 𝐶𝐶𝐶𝐶 = ∑ ∑ (𝐴𝐴𝑚𝑚𝑚𝑚−𝐴̅𝐴)(𝐵𝐵𝑚𝑚𝑚𝑚−𝐵𝐵�)𝑛𝑛𝑚𝑚

�(∑ ∑ (𝐴𝐴𝑚𝑚𝑚𝑚−𝐴̅𝐴)𝑛𝑛𝑚𝑚
2)(∑ ∑ (𝐵𝐵𝑚𝑚𝑚𝑚−𝐵𝐵�)𝑛𝑛𝑚𝑚

2)
                                     (2.2) 

 

where 𝐴𝐴 and 𝐵𝐵 are images, 𝑚𝑚 and 𝑛𝑛 are pixel coordinates, and 𝐴̅𝐴 ,𝐵𝐵�  are the mean intensity values 

𝐴𝐴 and 𝐵𝐵, respectively. MVD levels were then calculated to see if these will reflect the therapy 

response assessed by clinical results [10]. 
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2.3 Results 

From 8 subjects, the patient outcome of 3 subjects were incomplete and 5 subjects of them were 

complete response assessed by clinical criteria and MR imaging results [10]. Representative B-

mode and CEUS images of human HCC are depicted in Figure 2.2. Before motion correction, 

vessels were not visible in certain image regions. Note that subject motion is akin to image 

smoothing (blurring) and masks some smaller vascular structures. However, after applying our 

motion correction strategy, more vascular structures were visible, allowing for quantification of 

 

Figure 2.4. Vessel enhancement of ROIs was performed on the MIP of 255 frames and overlaid 
on a single B-Mode images for baseline (left), after two-wk (middle), and four-wk (right). 
Images (top) contain motion artifacts. The incomplete response from the clinical results was 
reflected on the images (bottom). Densely vascularized tumor on the baseline was preserved 
after two and four wk. 
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certain morphological features, e.g., vessel length, number of bifurcations, vessel tortuosity and 

diameter.  

Longitudinal CEUS images from an example of a complete HCC response to TACE treatment 

was depicted in Figure 2.3. Relative changes in MVD values were more pronounced after motion 

correction of the CEUS images due to a fundamental improvement in vascular network 

visualization. Figure 2.4 shows images from a representative incomplete response. The vascularity 

in the ROI from original images have high intensity values in every pixel because of motion 

artifacts. The motion corrected version of the same ROI has clearer visualized vascular network. 

Compared to the images in Figure 2.2., the motion corrected images from Figure 2.3 and Figure 

2.4 had higher intensity values, because the latter were processed with the vessel enhancement 

filter after motion correction.  

Results from complete response subjects showed rapidly decreasing MVD values after TACE 

treatment at the second and fourth wk when using motion corrected images. MVD values 0.92, 

0.82, 0.80 at first, second, and fourth wk from the original data while motion corrected MVDs, 
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Figure 2.5. Higher relative changes in MVD values for complete response subject when motion 
was corrected (left). Consistent MVD values indicating the incomplete response to the therapy 
(right). 
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e.g., 0.66, 0.35, 0.19 were in line with the therapy response as it can be seen in Figure 2.5. The 

incomplete response subjects’ original MVD values were 0.91, 0.89, 0.89, while motion corrected 

MVDs were first decreasing and then increasing, e.g., 0.52, 0.61, 0.55, that can explain the 

incomplete therapy response. 

Figure 2.6 illustrates improved CC for each time point from the representative subject. CCs 

between reference frame and subsequent frames of the entire cine were computed for corrected 

and noncorrected cines. Higher CC values represent higher similarities between the ROIs from the 

images. 

Finally, CC values from all frames of the eight subjects imaged at three time points each, were 

taken and compared with and without motion correction. The summary statistics from what a two-
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Figure 2.6. Single B-Mode as reference (A), MIP before (B) and after (D) motion correction. 
The CC values (C) were obtained for original full number of frames (787), for the frames (255) 
after discarding the out-of-plane motion, and for the corrected frames (255). 
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sample t-test was performed resulted in a significant (p < 0.001) difference between all original 

and motion corrected frames based on CC values.  

2.4 Conclusion 

After TACE treatment, detection of intratumoral vascular structures during CEUS imaging can 

help inform additional procedures. Overall, motion correction of CEUS images improves 

visualization of the tumor microvasculature and any subsequent quantification of these structures. 

Future work will investigate the relationship between tumor microvascular morphology features 

at baseline and following both partial and complete TACE treatment successes. 
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In this study, we present an image processing and analysis approach for the prediction of 

hepatocellular carcinoma (HCC) response to transarterial chemoembolization (TACE) treatment 

using clinical CEUS images and known pathological responses. This method focuses on 

addressing the challenges of CEUS by incorporating a two-stage motion correction strategy, clutter 

signal removal, vessel enhancement at multiple scales, and machine learning for predictive 

modeling. The morphological features, namely, number of vessels (NV), number of bifurcations 

(NB), vessel to tissue ratio (VR), mean vessel length, tortuosity, and diameter from tumor 

architecture were quantified from CEUS images of 36 HCC patients before TACE treatment. Our 

analysis revealed that NV, NB, and VR are the dominant features for the prediction of long term 

TACE response. The model obtained an accuracy of 86% with a sensitivity and specificity of 89% 

and 82%, respectively. Reliable prediction of the TACE therapy response using CEUS-derived 

image features may help to provide personalized therapy planning, which will ultimately improve 

patient outcomes. 
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3.1 Introduction 

Hepatocellular carcinoma (HCC) is the fifth most prevalent cancer worldwide [1] and the third 

most common cause of cancer mortality [2]. Liver function and the tumor location and stage are 

considered when planning treatment options, such as surgical resection, transplantation, 

locoregional treatment, or systemic therapy [3]. Patients with unresectable tumors are often 

candidates for a locoregional treatment option including drug-eluting bead transarterial 

chemoembolization (DEB-TACE or TACE) or transarterial radioembolization (TARE), which is 

not embolic. In the TACE procedure, polyvinyl alcohol beads or ethiodol are used to deliver 

chemotherapeutic agents into the tumor angiogenic network via a catheter placed in the tumor-

feeding hepatic artery [4]. After the embolization, the beads start releasing the chemotherapeutic 

drug slowly into the tumor vasculature [5]. Successful treatment is defined by the complete 

occlusion of the tumor vasculature, but up to 65-75% of tumors show residual blood flow, and in 

this case, repeat TACE or alternative therapies are required [6].  

Monitoring TACE therapy response is performed with contrast-enhanced magnetic resonance 

imaging (CE-MRI) or with contrast-enhanced computed tomography (CECT) [3]. The standard 

recommended time for the follow-up imaging is 4 to 6 weeks because both imaging modalities 

have limitations assessing the residual blood flow or lack thereof before this time point [3], [5]–[7]. 

Contrast-enhanced ultrasound (CEUS) is a low cost alternative to CECT and CE-MRI, and 

provides accurate evaluations of residual blood flow at 1 to 2 weeks post TACE treatment 

qualitatively [6] and quantitatively [8], [9]. Quantifications of TACE therapy response using CEUS 

are performed with blood perfusion parameters that provide functional information about the blood 

flow dynamics after the TACE treatment.  
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Structural information from the architecture of the tumor angiogenic network can be 

characterized by their morphological features [10]. These morphological features have also been 

shown as biomarkers for early response to anticancer therapy for different tumor models [11]–[19]. 

However, a more efficient HCC management would benefit from the information about future 

TACE response at the time of the treatment planning phase (in which case percutaneous ablation 

or TARE may be opted for as an alternative). Hence, a current clinical challenge is to determine 

which patients will respond to TACE as effective delivery of the embolic material may be 

influenced by the tumor vascular supply. 

We hypothesize that CEUS image-derived tumor vascular morphology features may provide 

predictive information for efficient TACE therapy planning and HCC patient management. 

Challenges for improved quantification of tumor vascular morphology in abdominal imaging 

include the high amount of motion artifacts that limit direct quantification of the structural 

information  and the tissue signal, i.e., clutter signal, which limits the vascular resolution 

reconstructed by the ultrasound (US) contrast agent (microbubble, MB) signal [10]. Another 

restriction is the lost visualization of small vessels in the tumor vasculature when focusing only on 

large vessels or vice versa during the vessel segmentation process [20]. Finally, an automated 

image processing pipeline is useful for reproducible results and clinical translation. Herein we 

investigate the potential use of abdominal CEUS and advanced image processing algorithms for 

predicting HCC response to TACE treatment. 
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3.2 Materials and Methods 

3.2.1 Ultrasound Imaging 

A retrospective analysis of CEUS images of human HCC was performed (N = 36). Data was 

acquired as part of an ongoing IRB approved multi-center trial (NCT# 02764801) in which all 

participants provided informed consent. All US examinations were completed using a Logiq E9 

scanner equipped with a C1-6-D transducer (GE Healthcare, Wauwatosa, WI). Subjects received 

a bolus injection of 0.2 to 0.3 ml of a MB contrast agent (Definity, Lantheus Medical Imaging, N 

Billerica, MA) followed by a 10 ml saline flush. CEUS imaging was performed using a dual 

imaging mode, enabling side-by-side visualization of the grayscale B-mode US and CEUS images 

at a rate of 8 to 9 frames per second. A low mechanical index (< 0.1) was used to avoid MB 

destruction during the US imaging sessions. A nonlinear harmonic imaging mode was used for 

improved MB visualization (transmit at 2 MHz, receive at 4 MHz) and gain settings were adjusted 

to minimize nonlinear signals prior to contrast injection. The focal zone was placed just below the 

approximate depth of the lesion to maximize the generation of nonlinear signals during CEUS 

imaging. The approximate tumor mid-line was imaged until homogenous liver enhancement was 

achieved (approximately 40 to 45 seconds post-injection), followed by imaging sweeps through 

the tumor. Patients underwent a total of three separate CEUS exams. In this study, we acquired 

only the pre-therapeutic baseline measurements from each subject. As a reference standard, 

treatment response was defined as incomplete (i.e., requiring retreatment) based on (in order of 

preference when available) (a) pathological examination of explanted livers demonstrating live 

tumor; (b) tumor enhancement seen with CT or MR and confirmed via angiography during 

retreatment; (c) interval tumor growth on 6 month follow-up CE-CT/MRI; or (d) asymmetrical or 
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nodular tumor enhancement on CE-MRI/CT on 6 month follow-up. Complete treatment response 

was determined using pathological examination of explanted livers when available, and a complete 

lack of enhancement and tumor size reduction on CE-MRI/CT at 6 months in patients who did not 

undergo transplant. Table 3.1 shows the patient’s demographics including the tumor size and 

location in addition to TACE treatment information. All patients were treated with a single session 

with CEUS data collected before retreatment was initiated.   

3.2.2 Image Processing 

A custom MATLAB (MathWorks, Inc., Natick, MA) software was developed to pre-process the 

images and to extract the vascular morphology features. Figure 3.1 illustrates the proposed image 

processing and analysis pipeline. First, we applied a two-stage motion correction method to align 

the frames from the dynamic CEUS sequence. Following that, a singular value filter (SVF) was 

applied to remove the tissue signal, and a multiscale vessel enhancement filter was used as a pre-

processing step before segmentation. After centerline detection, relevant morphological features 

were extracted. Finally, a distance weighted discrimination method was used to train and evaluate 

the vascular morphological features as TACE therapy response predictors in patients with HCC. 

 To delineate the tumor area, a region-of-interest (ROI) was drawn manually by a trained 

sonographer with over five years’ experience in CEUS and who also conducted the US 

examinations. The quality of co-registered B-mode US and CEUS sequences was degraded due to 

patient’s normal respiratory, cardiac physiology, and US transducer movement [21], [22]. 

According to the image acquisition protocol, any motion after about 40 seconds (the first 355 

frames) were eliminated as the probe was rotated and resulted in out-of-plane motions.  
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Table 3.1. Patient Information: Sex, BMI, age, tumor dimensions, tumor location (segment), 
treatment received, TACE results (lipiodol TACE vs. DEB-TACE) and TACE response. 

 
Subject 
No. 

Sex BMI 
(kg/m2) 

Age Largest tumor 
dimension(cm) 

Tumor 
 (segment) 

Treatment 
received 

TACE 
response 
 

 
1 M 35.3 63 2.0 6 c-TACE Complete 
2 M 22.1 71 7.1 7 c-TACE Incomplete 
3 M 21.0 52 4.2 8 DEB-TACE Complete 
4 M 39.2 44 2.4 8 c-TACE Complete 
5 M 31.9 68 2.3 7 DEB-TACE Complete 
6 M 28.1 62 2.0 2 c-TACE Complete 
7 M 41.8 42 5.5 4 DEB-TACE Incomplete 
8 M 24.0 48 4.0 3 DEB-TACE Incomplete 
9 M 30.0 69 4.1 2 DEB-TACE Incomplete 
10 F 27.3 47 2.5 5 DEB-TACE Incomplete 
11 M 26.5 70 1.8 7 DEB-TACE Incomplete 
12 M 33.2 60 2.4 8 DEB-TACE Complete 
13 M 23.7 67 2.8 6 DEB-TACE Incomplete 
14 M 27.3 78 2.4 8 DEB-TACE Complete 
15 M 27.5 62 2.1 2 / 3 DEB-TACE Complete 
16 F 37.7 44 2.5 7 DEB-TACE Complete 
17 M 29.0 56 2.6 2 DEB-TACE Complete 
18 M 24.0 56 1.8 3 DEB-TACE + c-TACE Complete 
19 M 23.9 54 3.0 8 DEB-TACE + c-TACE Incomplete 
20 M 28.7 67 2.6 4A c-TACE Incomplete 
21 M 26.2 69 6.3 8 DEB-TACE + c-TACE Incomplete 
22 M 29.5 65 1.5 6 DEB-TACE + c-TACE Complete 
23 M NA 62 3.5 6 DEB-TACE Complete 
24 M 19.7 56 NA 2 DEB-TACE + c-TACE Complete 
25 M 25.9 66 3.8 5 DEB-TACE Incomplete 
26 F 22.4 72 5.9 7 DEB-TACE + c-TACE Incomplete 
27 M 31.4 60 8.1 2 DEB-TACE Incomplete 
28 F 27.7 71 3.8 4 DEB-TACE Incomplete 
29 M 31.9 74 2.4 8 DEB-TACE + c-TACE Complete 
30 M 25.8 66 1.3 8 DEB-TACE + c-TACE Complete 
31 M 39.0 72 7.2 7 DEB-TACE + c-TACE Incomplete 
32 M 23.9 69 8.4 6 DEB-TACE + c-TACE Incomplete 
33 M 31.0 64 2.9 6 DEB-TACE + c-TACE Complete 
34 F NA 65 2.8 4B DEB-TACE Complete 
35 M 25.0 66 1.7 8 c-TACE Complete 
36 F 32.0 62 3.0 8 DEB-TACE Incomplete 

 
BMI = body mass index; TACE = transarterial chemoembolization; c-TACE = lipiodol TACE; DEB-TACE = drug-eluting beads TACE 
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The remaining B-mode US images were used to estimate the in-plane tissue motion. Since the 

co-registered CEUS images contained more visible MB motion, which was relevant for the further 

processing steps, the tissue motion was estimated on the B-mode US image sequence. The first 

frame was selected as reference frame based on the assumption that the best visualization of the 

tumor was collected at the beginning of the acquisition. Following that, affine and non-rigid 

motion estimation methods were used to compute the displacements of the B-mode US images 

from the reference. In brief, the affine transformations compensated the global motion, and free-

form deformations adjusted the motion on local regions in CEUS images using a limited memory 

Broyden Fletcher Goldfarb Shanno (L-BFGS) optimizer [23], [24]. According to the combined 

transformations estimated from the B-mode US images: 

𝑇𝑇(𝑥𝑥,𝑦𝑦) =  𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑥𝑥,𝑦𝑦) +  𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥,𝑦𝑦)                                         (3.1) 

where x and y are the pixel coordinates, the corresponding CEUS images were aligned with the 

reference frame [21], [22]. 

 

Figure 3.1. Image processing and analysis pipeline for prediction of transarterial chemotherapy 
(TACE) response for an individual patient with hepatocellular carcinoma (HCC). The contrast-
enhanced ultrasound (CEUS) image sequence was aligned using the first frame as reference. 
Tissue signal was removed, and vasculature was enhanced at multiple scales before 
segmentation. Using morphological operations, tumor microvascular features were extracted. 
A distance-weighted discriminator was trained using the CEUS image-derived morphological 
features and leave-one-out validation. 
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The tissue clutter signal was removed using a SVF [25]. SVF is a principal component analysis 

(PCA) based filter using singular value decomposition (SVD). It forms a small windowed matrix 

over all the frames (a temporal kernel), which reduces the computation time and memory 

consumption for SVD. The temporal kernel helps to incorporate more local information by 

separating the three dominate US signals, namely,  from the tissue, MB contrast agent, and noise 

[26]. Removing the tissue artifacts from the images increases the contrast-to-tissue (CNR) ratio. 

After SVF, all of the frames were merged using the maximum intensity projection (MIP) technique 

whereby the final image has the maximum intensity values throughout consecutive frames of the 

image sequence at each pixel location [27]. 

To visualize the tumor vascular network in greater detail, the tubular structures of the MIP were 

enhanced using a multiscale vessel enhancement filter. This method has been used in magnetic 

resonance and computed tomography (CT) angiography to increase the diagnostic quality [28]. It 

uses the second fundamental form from differential geometry, which allows approximating an 

image locally by its second-order Taylor expansion. The first and second-order derivatives of the 

image in the Taylor expansion provide a directional change in intensity values and curvature 

information of the image [29].  Specifically, the eigenvectors of the Hessian matrix give the 

amount of intensity variations. Tubular structures are detected as structures with high variations in 

the longitudinal direction and low variations in cross-sectional direction, i.e., the highest 

eigenvalues and its orthogonal counterpart at each pixel, respectively. Derivatives of the image are 

provided by the convolutions with the derivatives of Gaussian kernels, while multiscale 

enhancement is achieved by different sigma (the width of the kernel) values of these Gaussians. A 
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vesselness function 𝑉𝑉𝑜𝑜(𝛾𝛾) results in higher values for tubular structures in 2D and minimizes the 

noise: 

      ..      𝑉𝑉𝑜𝑜(𝛾𝛾) = �
0                               𝑖𝑖𝑖𝑖 𝜆𝜆2 > 0       
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where 𝜆𝜆1,2 are eigenvalues from the Hessian matrix of the image, 𝑅𝑅𝐵𝐵 is for identification of blob-

like or tubular patterns, S is the definition of the structureness, γ is used for the different scales of 

Gaussian kernels, β and c are the regularization parameters for adjusting filter sensitivity. With 

this, thicker vessels are detected by kernels with a large sigma, while thinner vessels are detected 

by kernels with a small sigma in the scale selection process.  

Using the same clinical US system and settings used for patient data collection, a flow phantom 

of known vessel dimensions was used to calibrate the custom software for the scale range selection 

in a controlled environment. Although this scale selection process can be optimized for thicker 

vessels, finding a lower bound for the thinner vessels was only possible with the risk of including 

some noise or removing some desired vessel signal. Hence, this lower limit was assessed 

qualitatively by the amount of background suppression. After the scale selection process, a 

multiscale image with enhanced vascular structures was created. 

3.2.3 Morphological Feature Extraction 

To use morphological image operations, vessels from the multiscale image were segmented using 

an adaptive thresholding method [30]. This method first creates an integral image to compute the 

average value of the neighboring pixels. The binary image is created by the comparison of the 

current pixel value with this average. The foreground and background pixels from the binary image 
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were used to compute the morphological features of tumor vasculature. First, the vessel-to-tissue 

ratio (VR) was estimated [10].  

The centerlines of the segmented vessels were extracted using a parallel thinning algorithm 

[31] as a simplified version of the tumor vascular network. This method keeps the same digital 

connectivity patterns and the topology of the vascular structures by modifying 8-connected 

skeletons and retaining diagonal lines as well as 2 x 2 squares [32]. As shown in Figure 3.2, the 

nodes and edges of the skeletonized network was considered as bifurcations (or branching points) 

and individual vessel segments, respectively. Accordingly, the number of bifurcations (NB) was 

found by counting each node of the network, and the number of vessels (NV) was the edge count 

of the network. As introduced in our previous work [19], the distance transform was used to 

estimate vessel diameters at each pixel on the centerline as the Euclidian distance between the 

centerline pixel and the closest edge pixel of the regarded tubular structure (vessel edge). A mean 

vessel diameter for the entire tumor was then computed by averaging all of the mean diameters 

from individual vessel segments. Similarly, the mean vessel length (VL) and vessel tortuosity (VT) 

 
Figure 3.2. Schematic for the definition of select morphological features. The simplified tumor 
angiogenic network from centerlines of the tubular structures contain vessels with branching 
points or nodes (A). Individual vessel segments, edges are counted after the removal of the 
branching point. (B), (C), and (D) denote individual vessels with gradually increased tortuosity 
and different vessel length. 
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metrics were computed by averaging over all of the vessel segments [10]. Note VT as metric value 

is zero only for straight vessel segments 

3.2.4 Feature Selection and Model Assessment 

The predictability of HCC response to TACE treatment was evaluated using a distance weighted 

discrimination method (DWD) [33]. This employs an improved machine learning method for 

statistical analysis of high-dimension low-sample size data. Similar to support vector machines 

(SVM), DWD discriminates the data into two classes but different from SVM; DWD avoids data 

piling and increases the generalizability of the model. The small sample size of our dataset is the 

rationale of choosing the DWD as the classification algorithm.  

All of the data points were labeled with one of the two classes, i.e., complete and incomplete 

response to prepare the training data [34]. The leave one out cross-validation method was used to 

have a reliable accuracy [35]. For this, the sample (N = 36) was divided into a construction (N = 

35) and a validation (N = 1) sub-datasets for each patient data [36]. Thus, 36 different models were 

trained separately with 35 patient’s data and validated on one exam. In the end, the average 

accuracy of all 36 cases was reported as the final accuracy. To investigate the contributions of the 

six extracted features from tumor vasculature for the prediction of the TACE response, two models 

were trained with a different set of features. The first model used all of the features, while the 

second model used only the most discriminative features, which was assessed visually by the pair 

plots of features, i.e., the most correlated features were excluded. Both models were tuned using a 

polynomial kernel with different values for the hyper-parameters and the best performing model 

was chosen from the largest values of accuracy and interrater reliability statistics (kappa). The data 

were centered and scaled in a pre-processing step before each training. All computations and data 
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analyses were performed using a statistical software package (R Foundation for Statistical 

Computing, Vienna, Austria) [37], [38]. 

3.3 Results 

CEUS image-derived vascular morphological features were used to evaluate HCC response to 

TACE treatment in 36 patients. According to the CT, MRI, and pathology outcomes, 19 patients 

had a complete response, and the other 17 had an incomplete response. Figure 3.3 shows the two-

step motion correction results using two representative patients’ data with complete and 

incomplete response, respectively. Starting from a single B-mode US image showing the 

anatomical structures, two MIPs of the initial dynamic B-mode US and CEUS image sequence 

have a challenging view of the tumor. MIPs are created using the maximum intensity value of each 

frame for each pixel location. Given use of the same dynamic range as the original CEUS images, 

MIPs can have intensity saturations, e.g., bright pixels. Here, the raw results after MIP processing 

were presented directly without any gain compensation for comparison with the results after the 

motion correction process. After the correction of the in-plane motion, the abdominal structures 

and the tumor vasculature are more visible in the MIP. These representative US images 

demonstrate the need for motion correction in the image processing pipeline to improve tumor 

visibility before starting with the feature extraction. 

The effect of clutter signal removal is illustrated in Figure 3.4. The presence of the tissue signal 

can complicate vessel detection. Removing the tissue signal increased the CNR as depicted in the 
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paired images. These SVF outputs improve the results of the multiscale vessel enhancement filter 

in the next step. The morphological image processing results summarized in three steps for each 

of the representative cases, is depicted in Figure 3.5. First, the results from the multiscale vessel 

enhancement filter is overlaid on the SVF results. The enlarged ROIs depict the binary image 

before spatial morphological filters like opening and closing. The enlarged ROIs also represent the 

centerlines detected from the binary vasculature. The simplified tumor network topology 

(centerlines) indicates the vascular routes for effective drug delivery, which is crucial for effective 

embolization. Figure 3.6 and Figure 3.7 present cases of HCC from individual patients for 

complete responders and incomplete responders, respectively. The colors indicate the vessel 

diameters. Here, the difference in tumor vascular complexity for the complete and incomplete 

 

Figure 3.3. Representative ultrasound (US) results from patients with HCC determined to have 
either a complete (top) or incomplete (bottom) response to TACE treatment. As shown from 
left to right are the B-mode US image, maximum intensity projection (MIP) of the original B-
mode US, CEUS image, and MIP of the motion corrected CEUS image sequence. 
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response groups can be assessed qualitatively. A larger number of vessels and bifurcations 

contribute more to the chaotic visualizations of the tumor vascular networks which was observed 

more in incomplete responders group.  

CEUS derived morphological features were used to assess the correlated and discriminative 

features qualitatively for complete and incomplete response patients. As highlighted in Figure 3.8, 

the weakest feature was the VD parameter compared to all other features. Training with all of the 

features achieved only a 52% accuracy while training with the feature set where VD was excluded 

achieved an accuracy of 72% and training with the dominant features (NV, NB, and VR) achieved 

the best overall accuracy of 86%. As informed by the pair plot and confirmed by the accuracy, the 

dominant features, namely, NV, NB, and VR, were selected to train and tune the final machine 

 

Figure 3.4. Representative results after spatiotemporal filtering of the CEUS images from 
patients with HCC determined to have either a complete (top) or incomplete (bottom) response 
to TACE treatment. 
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learning model. As listed in Table 3.2, this final model achieved a validation accuracy of 86% 

(95% CI [0.70, 0.95]) and a kappa statistic of 72%. A sensitivity and specificity of 89% and 82%, 

respectively, were obtained. Table 3.3 details the confusion matrix for the model performance in 

terms of individual predictions. Overall, these performance metrics showed that our model was 

able to make reliable pre-therapeutic HCC response to TACE predictions. 

 

Figure 3.5. Morphological operations after application of multiscale vessel enhancement in (A) 
and (D), the result of spatial filtering and binarization in (B) and (E) , and the centerline 
detection in (C) and (F) for the representative complete and incomplete response patients, 
respectively. 
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3.4 Discussion 

The strength of the proposed image processing and analysis method is that it is based on the patient 

specific geometry of their tumor vascular network while addressing the image processing 

 

Figure 3.6. US images from patients with HCC that exhibited a complete response to TACE 
treatment. Microvascular morphological structures are overlaid on a single B-mode US image 
(reference frame). Color indicates the vessel diameter measurements from red (high) to blue 
(low). 
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challenges, such as motion artifacts, tissue signal, and multi-scale segmentation in abdominal 

CEUS imaging before parameterization. This enables automated pre-processing for each patient 

and a reliable prediction of the TACE therapy response. Reproducible quantifications of HCC 

vascular networks depicted in CEUS images and the prediction of pre-therapeutic TACE response, 

can improve customized treatment strategies in personalized medicine. 

 

Figure 3.7. US images from patients with HCC that exhibited an incomplete response to TACE 
treatment. Microvascular morphological structures are overlaid on a single B-mode US image. 
Color indicates the vessel diameter measurements from red (high) to blue (low). Note that 
tumors are relatively large and have a more chaotic microvascular structure compared to patient 
tumors that exhibit a complete response to TACE. 
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Table 3.2. Model Performance Parameters 

Model Trained with Features NV, NB, and VR 

Accuracy 86 % 

Kappa 72 % 

Sensitivity 89 % 

Specifity 82 % 

%95 CI* 0.705 – 0.953 

*CI = Confidence Interval
NV = Number of vessels, NB = Number of bifurcations, 

 VR = Vessel-to-tissue ratio 

Aggressive tumors are known to have chaotic angiogenic networks [39] with more tortuous 

[13]–[15] and dense vasculature [10]. The complexity of the tumor vascular network may affect 

the arterial delivery of the drug-eluting beads during TACE treatment. Thus, quantification of the 

tumor angiogenic network may provide crucial information for physicians during treatment 

planning. The NV, NB and VR parameters were shown to be the most effective features for 

predicting HCC response to TACE. The more bifurcations in the angiogenic network may result 

in more embolization targets. 

Table 3.3. Leave-one-out cross-validation results 

Predictions/True Response Incomplete Complete 

Incomplete  14   2 

Complete    3  17 

If it is believed that the intra-arterial therapies will not provide adequate treatment response, 

alternative locoregional therapies such as ablation or radiation may be employed. In this study, 

CEUS image-derived morphological features of the HCC vascular network were able to predict 
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the eventual TACE response. The preliminary results indicate that liver tumors with less complex 

vascular networks have a higher potential for a complete response to TACE therapy. This may be 

partially attributed to the fact that tumors with more developed vascular patterns may have multiple 

feeding sources, requiring multiple TACE treatments for complete embolization. These tumors 

may be more amenable to TARE, which requires localized deposit of radiation containing beads 

but not complete embolization of the tumor vasculature.  

Using MRI as a preoperative conventional, image features and texture analysis have been 

shown to predict tumor response to TACE treatment [40]. Texture features from CT images have 

also been shown to be potential predictors for identifying patients who are not suitable for TACE 

 

Figure 3.8. Visual assessment of morphological features from patients that were determined to 
have undergone either a complete or incomplete response TACE. Number of vessels (NV), 
number of branching points (NB), vessel-to-tissue ratio (VR), mean vessel length (VL), mean 
vessel tortuosity (VT), and mean vessel diameter (VD). 
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treatment [41]–[43]. In a more recent study, it was shown that CT-derived image features can 

predict the response of TACE using a residual convolutional neural network with up to 85% 

accuracy [44]. Another recent study aimed to establish the feasibility of an artificial intelligence– 

based radiomics strategy for predicting TACE response [45]. To date none of these approaches 

have resulted in clinical adoption.  

CEUS imaging can be used to help monitor tumor response to systemic drug treatment [8], 

[10]. Advanced image analysis of breast tumor vascular networks depicted in clinical CEUS 

images showed both a strong correlation between functional and structural tumor parameters as 

well as to the post-therapeutic monitoring capabilities of CEUS image-derived morphological 

features [10]. This study introduced a method for quantification of unique vascular morphological 

features while the motion artifacts caused by patient, organ, or transducer motion were neglected 

during the image processing. Motion artifacts can negatively impact the accuracy during 

quantification of vascular morphological features. In a recent preclinical study, a simpler 

morphological feature called the vascular network length was used [46]. This parameter was 

shown to be a feasible metric for describing tumor vascular morphology from CEUS images with 

the support of the other features, such as first- order statistics, functional, textural, and wavelet-

based features. This study segmented the tumor vasculature by intensity thresholding without 

addressing the potential lost visualization of the smaller vessels when focused on larger vessels 

only. Segmentation at only one scale can also affect the quantification of vascular morphology. 

Our method addressed both of these challenges and helped improve the overall CEUS image 

quantification process.  
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Showing the feasibility of morphological feature extraction from HCC tumor vasculature and 

the ability of assessing the future TACE response, this study is limited by its small sample size. 

Before introducing to clinical practice, the approach presented in this paper needs to be extensively 

validated using a large sample size and data from different sites. 

3.5 Conclusion 

A novel CEUS image processing and analysis method was developed that both extracts the 

morphological features from the tumor vascular network and predicts HCC response to TACE 

treatment. Introduction of a reliable method for predicting a TACE response may help provide 

more effective therapeutic planning and more personalized patient strategies. 
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In this study, we present a faster motion correction strategy for clinical contrast-enhanced 

ultrasound imaging using deep learning methods. Motion artifacts affect the quantification 

accuracy of the tumor angiogenic network measurements from clinical contrast-enhanced 

ultrasound (CEUS) images. Reliable motion correction methods can improve image alignments 

but suffer from long computation times and large memory demands. This research project aims to 

reduce the time and memory needed for motion correction of clinical images from patients 

diagnosed with hepatocellular carcinoma (HCC). First, B-mode ultrasound (US) images were 

acquired using a clinical scanner from 36 patients and processed using a conventional two-stage 

motion correction strategy. Two channel input data consisting of static and moving B-mode US 

images were prepared as the training data (N = 200 for each patient). Transformation functions 

derived from the conventional method for affine and non-rigid motion corrections were used as 

labels to train a deep learning model (encoder-decoder network). After model training, the 

performance was evaluated using a normalized correlation coefficient (CC) between the reference 

and moving images. Finally, the time needed for applying motion correction using the traditional 

method was compared to the prediction time from the deep learning model. On average the CC 

results were increased by 20% when compared to the data contaminated with motion. Importantly, 

the time needed to predict a single patch was 0.20 ± 0.004 sec instead of the 3.65 ± 0.25 sec, which 

was needed to perform motion correction in CEUS images using a more conventional method (p 

= 0.001). 
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4.1 Introduction 

As a noninvasive and nonionizing imaging modality, contrast-enhanced ultrasound (CEUS) is an 

ideal method for quantification of tissue microvascular networks [1]–[7]. Characterization of 

microvascular structures from CEUS images of tumor angiogenesis has been shown to be a useful 

strategy for prediction of anticancer treatment response [8]–[14]. Free hand ultrasound (US) image 

acquisition is not possible without any motion artifacts related to probe motion, respiratory motion, 

and organ motion. The accuracy of follow-up quantifications using motion contaminated data is 

highly dependent on a reliable motion correction method in the data processing pipeline. 

Conventional motion correction methods for US images are mostly based on discarding frames 

after identification of the frames with respiratory and cardiac spikes [15]. Recently, a two stage 

motion correction strategy adapted from magnetic resonance (MR) imaging was applied to clinical 

CEUS images and increased overall image alignment by 20% when assessed using a normalized 

cross-correlation coefficient was applied to static and images corrupted with motion [16], [17]. 

These methods first applied affine transformations for global motion model of the vascularity 

depicted in the CEUS images. Then second, free form deformations based B-splines were used to 

model the local motion [18]. The method can be implemented by various similarity measures, such 

as squared differences, mutual information, or image differences between moving and reference 

images. Minimizing this difference metric results in the desired image alignment. The only 

drawback of this method is long computation times of the optimizer and large memory 

requirements during optimization.  

Deep learning approaches have introduced new medical imaging functionality and can help 

accelerate processing pipelines for various processing and computer vision tasks [19], [20]. Motion 
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correction techniques as multimodal or unimodal image registration problems have previously 

been investigated using synthetic data and supervised learning for imaging modalities such as 

computed tomography (CT) [21]. However, synthetic training data is not realistic enough for 

reliable motion estimations and the models trained with synthetic images are not translatable to 

clinical US images yet. Here, we introduce a deep learning model that was trained and tested using 

human CEUS images of HCC contaminated by real motion artifacts to achieve a faster motion 

correction while the image registration improvement is comparable with the traditional method. 

4.2 Materials and Methods 

4.2.1 Ultrasound Imaging 

CEUS exams of human hepatocellular carcinoma (HCC) were used for this study (N = 6) 

retrospectively [22]. As part of the initial research, participants provided informed consent to 

participate in this multi-center IRB-approved study. Images were collected with a Logiq E9 

scanner (GE Healthcare, Wauwatosa, WI) equipped with a C1-6-D transducer at a rate of 8 to 9 

fps. A bolus injection of 0.2 to 0.3 ml of a microbubble (MB) contrast agent (Definity, Lantheus 

Medical Imaging, N Billerica, MA) followed by a 10 ml saline flush helped enhanced the liver 

vasculature in a dual imaging mode with side-by-side visualization of the B-mode US and CEUS 

images. During scanning, the transducer was rotated 90° after the peak intensity point was reached 

and sweep through the region to be able to see all the other areas of the tumor region. This latter 

part of the data is excluded from the current study because it contains mostly out-of-plane motion 

which is not possible to improve due to missing information. 
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4.2.2 Image Processing 

Motion contaminated CEUS image sequences of HCC were cut for the first 200 frames to have 

only in-plane motion artifacts. Assuming that the sonographer started the cine loop with the best 

visualization of the tumor, the first frame of each image sequence was chosen as a reference frame 

and all subsequent frames were registered to that reference using the traditional motion correction 

method. First, affine transformations were used to compensate for global motion and then free-

form deformations adjusted local motion regions in the CEUS image sequence. Limited memory 

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization helped minimize the squared pixel 

distance (SD) between static and moving images. Here, instead of taking the entire frame (480 x 

640), we down sampled it to 16 x 16 patches. From those we measured the optimization time to 

be compared with the prediction time of the proposed deep learning model. The pixel displacement 

matrices created by the traditional motion correction method were saved for later processing with 

the deep learning model. 

 

Figure 4.1. Flow chart detailing the proposed deep learning-based approach for motion 
correction of contrast-enhanced ultrasound (CEUS) images depicting human hepatocellular 
carcinoma (HCC). Image displacement measurements are obtained from moving B-mode 
ultrasound (US) image sequences and used to correct motion in the co-registered CEUS data. 
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4.2.3 Deep Learning Model 

A fully convolutional neural network (FCN) with an encoder-decoder depth of three was 

developed in MATLAB (Mathworks Inc, Natick, MA). As shown in Figure 4.1, each moving 

image paired with its reference was used as training data. Supervision was achieved by the 

previously created pixel displacements. An encoder depth of 3 was chosen after having better 

results compared to the encoder depth of 4. All CEUS data and transformations matrices were 

divided in non-overlapping image tiles of 16 x 16 pixels to reduce the memory needed during 

training. In this study, we used 18 patches of each image and 200 frames from each subject. 

For the proposed deep learning architecture to motion correction of CEUS images of HCC, we 

employed a standard encoder-decoder network with fully connected convolutional layers. 

However, we added a regression output layer after the final convolutional layer and implemented 

the SD metric as the loss function of the custom regression layer. The stochastic gradient descent 

with a momentum of 0.9 was configured as the network optimizer to have more control of 

oscillations on the way to the minimum value during training. A piecewise linear function (i.e., 

rectified linear unit, ReLU) was used for activations of each layer with an initial learning rate of 

0.1. Learning rate drop factor of 0.1 and period of 10 as well as a batch size of 4 were defined 

empirically. The FCN was trained using CEUS images from all of the patients in an interpatient 

fashion. Specifically, the entire dataset was shuffled and divided into three groups, namely, 

training (76%), validation (8%), and testing (16%). Note that all of these three groups contained 

patches from all of the patients while the test data was unseen to the model during the training and 

validation time. The validation group was used to optimize the model training parameters for a 

better performance in image alignment. Once the training was completed by reaching the 
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maximum number of iterations for 100 epochs, the weights from the regression layer were used to 

create the predicted displacement fields. Once the predictions were completed, motion corrected 

images were generated by applying the transformations to the motion contaminated CEUS image 

sequences. 

4.2.4 Evaluation Metrics 

The performance of the proposed deep learning approach was evaluated in two aspects. First, the 

quality of the alignment in the final motion corrected image and second, the time to predict 

displacement fields. A normalized correlation coefficient (CC) between images with motion and 

the reference for the original data, for the optimizer-corrected data, and for the model-predicted 

data were then computed and compared.  Higher CC values indicate better image registration 

between reference and the moving image: 

                                       CC =
∑ ∑ (𝐴𝐴𝑚𝑚𝑚𝑚 − 𝐴̅𝐴)(𝐵𝐵𝑚𝑚𝑚𝑚 − 𝐵𝐵�)𝑛𝑛𝑚𝑚

�(∑ ∑ (𝐴𝐴𝑚𝑚𝑚𝑚 − 𝐴̅𝐴)𝑛𝑛𝑚𝑚
2)(∑ ∑ (𝐵𝐵𝑚𝑚𝑚𝑚 − 𝐵𝐵�)𝑛𝑛𝑚𝑚

2)
                                    (4.1) 

where 𝐴𝐴 and 𝐵𝐵 are US images, 𝑚𝑚 and 𝑛𝑛 are pixel coordinates, and  𝐴̅𝐴 ,𝐵𝐵�  are the mean image 

intensity of 𝐴𝐴 and 𝐵𝐵, respectively. Finally, computation times of both the conventional and deep 

learning-based motion correction methods were compared using a two-sample t-test. 

4.3 Results 

A deep learning approach using a fully convolutional network for motion correction of CEUS 

images from 36 patients with HCC is feasible in terms of efficiency and registration quality. The 

proposed network achieved an accuracy of 89% for any improvement with the predicted motion 

corrected images. Given that the traditional optimizer improved the image quality by 
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approximately 0.2 in average for CC values [17], the accuracy was measured 78% for the same 

CC threshold (i.e., 0.2) using the proposed deep learning approach. In addition to the patch-level 

tests, the patient-level results presented in Figure 4.2 are promising. Increased CC values after 

motion correction compared to the original CC values from 6 representative patients indicate the 

potential of the deep learning approach to be used for motion correction of clinical CEUS images 

of HCC instead of the traditional optimizer.  

The time needed for one frame to predict the displacement fields using the FCN was 0.20 ± 

0.004 sec while the optimizer consumed 3.65 ± 0.25 sec (on average) to complete the same work. 

The proposed method outperformed the traditional optimizer during the prediction time, p = 0.001. 

A CEUS examination with 200 frames would require around 12 min for one patch using a more 

traditional motion correction method while it is completed within 38 sec using the FCN approach. 

 

Figure 4.2. Summary of motion correction accuracy using CEUS images from six patients with 
HCC. Note that a higher normalized cross-correlation coefficient indicates improved image 
registration and elimination of motion artifacts. 
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In this study, we aimed to accelerate motion correction as compared to a more traditional, but 

computationally exhaustive, image processing strategy. Future work for analysis of clinical CEUS 

images will target 3D quantifications, where a faster image processing pipeline is critically 

required. Although a better convergence of the deep neural network was not a priority in the work 

presented herein, these preliminary results are promising. The potential of the neural network 

encourages future experiments to increase the CC for even better alignments from the neural 

network than the traditional method. Here, the common consideration is the error carried from the 

traditional method directly to the FCN training, i.e., learning. An image similarity metric can 

address this concern and be optimized at multiple spatial resolutions at the same time, producing 

surrogate supervised information referred as a self-supervised method. This approach does not 

need transformation field information during training, e.g., pixel displacements. 

4.4 Conclusion 

The proposed deep learning-based motion correction approach was applied to clinical CEUS 

images of HCC. Motion correction was completed, and pixel-wise prediction of image 

displacement was 94.8% faster than results that were obtained using a more traditional CEUS 

image-based motion correction method. This is a considerable improvement in computational 

efficiency without any significant change in the registration improvement of approximately 20%. 
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Here, an automated multiscale image processing approach was performed by defining a vessel 

diameter threshold for an objective and reproducible analysis at the microvascular level. A 

population of C57BL/6J male mice fed standard chow and studied at age 13-16 wk comprised the 

lean group and 24-31 wk-old mice who received a high-fat diet were designated the obese group. 

A clinical ultrasound (US) scanner (Acuson Sequoia 512) equipped with an 15L8-S linear array 

transducer was used in a nonlinear imaging mode for sensitive detection of an intravascular 

microbubble contrast agent. By eliminating large vessels from the CEUS images (above 300 µm 

in diameter), obesity-related changes in perfusion and morphology parameters were readily 

detected in the smaller vessels, which are known to have a greater impact on skeletal muscle 

glucose disposal. The results from the CEUS images including all of the vessels were compared 

for three different-sized vessel groups, namely, vessels smaller than 300, 200, and 150 µm in 

diameter. Thus, our automated image processing provides objective and reproducible results, 

focuses on a particular size of vessels, thereby allowing for a selective evaluation of longitudinal 

changes in microvascular recruitment for a specific-sized vessel group between diseased and 

healthy microvascular networks. 
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5.1 Introduction 

Considering the high costs related to disease treatment, the impact of diabetes across the world is 

immense. Type 2 diabetes is suffered by 90 percent of the 400 million individuals estimated to 

have diabetes [1]. Alterations in microvascular function contribute to numerous aspects of type 2 

diabetes pathogenesis and its complications, including the peripheral insulin resistance in skeletal 

muscle that drives the disorder [2], reductions in lower extremity muscle strength[3], and the 

associated increased risk of cardiovascular disease [4]. In type 2 diabetes, skeletal muscle 

microvascular recruitment is impaired, resulting in attenuated insulin delivery and compromised 

glucose disposal in the skeletal muscle tissue. Microvascular recruitment is defined as the 

dilatation of the microvasculature that delivers insulin and glucose to skeletal muscle myocytes 

due to an increased number of perfused capillaries. In the context of diabetes, small vessels are 

known to be more closely linked to disease pathogenesis and more sensitive to therapies [5], [6]. 

Therefore, greater knowledge of the processes that regulate muscle microvascular function at a 

smaller scale (e.g., vessels with diameters below 300 µm) could help increase our understanding 

of type 2 diabetes. 

Dynamic contrast-enhanced ultrasound (CEUS) imaging has been used for the investigation of 

microvascular function or impairment [7]–[13]. Ultrasound (US) is widely known to be a real-time 

imaging mode, low-cost, and is devoid of ionizing radiation.  Moreover, the spatial resolution of 

CEUS has been increased by 10-fold with the recently introduced technique known as super-

resolution US (SR-US) [14]. This technique has enabled US imaging at the capillary level where 

microvascular recruitment is known to occur in vivo. These higher resolution CEUS images, and 

subsequent quantitative analysis, represent a promising new tool for assessing microvascular 
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recruitment in subjects suffering from type 2 diabetes [15]. However, a major challenge during 

CEUS image quantification is the subjectively surrounding ROI selection and placement for small 

vessel groups [7], [16], [17]. Reliable algorithms are critical to enable an automated and objective 

multiscale analysis, and to apply CEUS to both preclinical and clinical studies of type 2 diabetes 

risk and pathogenesis [2], [18]. 

The purpose of this study was to develop and evaluate a series of custom image processing 

algorithms for the automated multiscale analysis of CEUS images of tissue microvascularity. A 

second goal of this work was to investigate morphological metrics that provide structural 

information about the skeletal muscle microvascular network. In addition to functional perfusion 

parameters, CEUS-derived morphological parameters may be used to assess skeletal muscle 

microvascular responses to insulin challenges. 

5.2 Materials and Methods 

5.2.1 Image Acquisition 

All animal experiments were approved by the Institutional Animal Care and Utilization Committee 

(IACUC) at the University of Texas Southwestern Medical Center. Studies were performed in 

male C57BL/6J mice (The Jackson Laboratory, Bar Harbor, ME) in two groups, namely, lean (N 

= 14) and obese (N = 9) mice. Lean mice were fed standard chow for their entire post-weaning life 

and were studied at 13-16 wk of age. Obese mice were placed on a high fat diet (D1233i, Research 

Diets Inc, New Brunswick, NJ) at weaning to promote obesity and invoke insulin resistance, and 

they were studied at 24 to 31 weeks of age. Mice were US imaged using a custom lipid-shelled, 

perfluorocarbon gas-filled, microbubble (MB) contrast agent. Following an overnight fasting 
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period, mice were anesthetized using isoflurane inhalation and normal body temperature (36.5 ± 

0.5°C) was maintained throughout the procedure using a rectal probe and heating pad temperature 

monitor with homeothermic controller (Kent Scientific Corp, Torrington, CT). Animals were 

instrumented with a jugular venous catheter and a 4-way connector by which insulin, glucose, and 

the MB contrast agent could be administered as needed. The US imaging transducer was positioned 

and secured over the proximal hindlimb adductor muscle group (adductor magnus and 

semimembranosus) to capture microvascular changes along the same image plane. After a 60-min 

stabilization period following instrumentation, a grayscale US scan was collected before MB 

injection. Subsequently, baseline CEUS imaging was performed for 10 min before and following 

a slow bolus injection of the MB contrast agent (2.5 x 107 MBs in 100 µL saline) [19]. MB 

concentrations were measured prior to injection using established methods (Multisizer 3 Coulter 

Counter, Beckman Coulter, Brea, CA). Following baseline imaging, mice underwent a 2 h 

hyperinsulinemic-euglycemic clamp. This procedure is the most widely used approach for the 

determination of insulin sensitivity, and it entails a continuous infusion of insulin (20 mU/kg/min) 

and a variable infusion of glucose to maintain a constant blood glucose level of 120 ± 5 mg/dL as 

determined every 5 min by a glucometer. A second US imaging session was done towards the end 

of the 2 h clamp procedure. Using a clinical US scanner (Acuson Sequoia 512, Siemens Healthcare, 

Mountain View, CA) equipped with a 15L8 linear transducer array and operating in a nonlinear 

contrast mode with a center frequency of 10 MHz, CEUS images were collected for 10 min at 15 

frames per sec. Potential MB destructions were minimized using a mechanical index (transducer 

output) less than 0.2. CEUS images depth x width of 8 x 16 mm (121 x 281 pixels) were saved for 

offline processing. 
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5.2.2 High Resolution CEUS Imaging 

The image processing strategy illustrated in Figure 5.1 starts with steps that are similar to methods 

used during SR-US image generation. The first frame of each CEUS dataset was subtracted from 

subsequent frames to normalize for any background tissue signal [10]. The tissue and MB signals 

were then separated using a singular value decomposition filter (SVD) [20], [21]. This method 

assumes that the US signal consists of three components, namely clutter, blood, and noise [20]. 

High spatiotemporal coherence in the clutter (tissue) signal compared to the low spatiotemporal 

coherence in the MB signal allows for removing the tissue signal from every frame before 

localization of MBs and the creation of a CEUS-derived maximum intensity projection (MIP) 

image. The frames with detected MB signals were binarized using a threshold, and a connected 

component analysis was applied to isolate individual MBs as described previously [7]. In short, a 

 

Figure 5.1. A new image processing approach for quantification of microvascular networks 
was developed and consists of three main components. After (A) acquisition of a series of 
dynamic contrast-enhanced ultrasound (DCE-US) images, singular value decomposition 
(SVD) filtering is used to remove any residual tissue clutter signal before microbubble (MB) 
localization. (B) Morphological image processing is then performed before computation of 
individual microvessel diameters and selective elimination of larger vessels. After vessel 
thresholding from the region-of-interest (ROI), structural parameters are quantified. (C) Tissue 
perfusion parameters are then derived from a time-MB count (TMC) curve. Outcomes of each 
processing step illustrate representative results. 
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comparison with an empirically defined point spread function (PSF) of an isolated MB was used 

to reject any clustering as isolated MBs and their centroids were accumulated at each pixel location 

throughout the stack of frames. The CEUS MIP images contains spatial and temporal information 

of MB density at each pixel location in a single image [12]. Custom software was developed in 

MATLAB (Mathworks Inc, Natick, MA) installed on an Alien Aurora desktop computer (Dell Inc, 

Round Rock, TX), and parallel processing was performed to reduce computation time. 

5.2.3 Multiscale Vessel Enhancement 

This section introduces our novel image processing strategy that uses multiscale and 

morphological image processing operations to provide the functionality of vessel size thresholding 

for improved quantification of the acquired CEUS images. 

A multiscale vessel enhancement filter was applied to detect the larger vessels from the CEUS 

MIP image [22]. This method considers vessels as tubular structures (shapes) in 2D images. 

Tubular shapes were detected by the proportional relationship between the eigenvalues of the 

Hessian matrix derived from the image for a specific point. The curvature of the objects in the 

image at that point were used to detect the tubular shapes. Specifically, high curvature in one 

direction and low curvature in the orthogonal direction was defined as a vessel. The derivatives of 

the image were obtained using derivatives of Gaussian convolutions. By applying Gaussian kernels 

with different sizes, vessels within a specific range of scales were found. A vesselness function 

𝑽𝑽𝒐𝒐(𝜸𝜸) defined as [22]:  

𝑉𝑉𝑜𝑜(𝛾𝛾) = �
0                               𝑖𝑖𝑖𝑖 𝜆𝜆2 > 0
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where 𝜆𝜆1,2 are eigenvalues of the Hessian matrix from the image, 𝑅𝑅𝐵𝐵 defines either a blob-like or 

tubular pattern, and S defines the structureness, has higher values for tubular structures in 2D and 

minimizes the impact of the image noise. Here, γ scales the Gaussian kernels and the β and c are 

filter sensitivity regularization parameters. After enhancing the tubular structures of an image, 

Otsu’s global thresholding method [23] was used to create corresponding binary images as 

preparation for the morphological image processing steps given in Figure 5.1. 

5.2.4 Morphological Image Processing and Structural Quantification 

We used morphological image processing operations to build our vessel isolation algorithm, which 

is then used to assess changes in response to insulin in healthy versus diseased microvascular 

networks. Based on mathematical set theory, morphological image processing was applied to 

extract image components for representing and describing region shapes [24]. Using binarized 

images, morphological image processing methods were intensity invariant and relied on pixel 

locations. In this case, foreground pixels represent vessels and background pixels represent non-

vessels. The 8-connectivity of the pixels that represent an object in the image contained the 

information about its geometric shape. 

Vessel segments identified as connected components had their centerlines detected using a 

thinning algorithm while preserving their topology [25], [26]. For each foreground pixel on the 

centerline, the nearest background pixel was found using distance transform. Figure 5.2 shows 

how the Euclidian distance (De) between the centerline pixel (u) and the edge pixel (v) with 

coordinates (x, y) and (k, l), respectively, was computed as the radius (r) at u. A function D used 

as a metric (distance measure) for the pixels u, v, and z with the criteria: 𝐷𝐷(𝑢𝑢,𝑣𝑣) ≥ 0, 𝐷𝐷(𝑢𝑢,𝑣𝑣) =
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0 𝑖𝑖𝑖𝑖𝑖𝑖 𝑢𝑢 = 𝑣𝑣, 𝐷𝐷(𝑢𝑢,𝑣𝑣) = 𝐷𝐷(𝑣𝑣, 𝑢𝑢),𝐷𝐷(𝑢𝑢, 𝑣𝑣) ≤  𝐷𝐷(𝑢𝑢, 𝑧𝑧) + 𝐷𝐷(𝑧𝑧, 𝑣𝑣). The latter criterion ensures that 

the distance between u and v is always the minimum even if there is another ways to reach the 

pixel v starting from the pixel u going over the pixel z.  

 

                                     𝑟𝑟 = 𝐷𝐷𝑒𝑒(𝑢𝑢, 𝑣𝑣) = �(𝑥𝑥 − 𝑘𝑘)2 + (𝑦𝑦 − 𝑙𝑙)2                                             (5.2) 

 

Multiplying equation (2) by two provided an estimation of the diameter for the respective 

vessel segment at the specific centerline point. Mean vessel diameter was computed by averaging 

all values of vessel diameter computed from each pixel along the vessel centerline. The full width 

half maximum method (FWHM), which is the reference standard for vessel diameter estimations, 

was used to validate our diameter measurements [27]. Once all average diameters for vessel 

segments were computed, we were able to isolate vessels from the CEUS MIP image based on the 

vessel diameter threshold, Figure 5.3.  

 

Figure 5.2. Morphological image processing methods using (A) 8-pixel connectivity of the 
arbitrary pixel u to form its connected components, then (B) detection each vascular structure 
centerline before (C) computing vessel diameter as the distance from each centerline to the 
closest edge pixel. 
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Perfusion and morphology parameters were compared using the full image that included all 

vessels as ROIFULL, as well as for vessels with diameters less than 300, 200, and 150 µm, where 

these latter three groups are referred to hereafter as thresholded vessel groups. While our method 

allows to a microvascular perfusion and morphology analysis for any vessel diameter threshold, 

these three thresholds were selected based on two criteria: (1) minimum of the largest vessel 

diameters and the (2) different vessel diameter ranges. First, largest vessel diameters from the 

individual CEUS images were identified and the minimum, e.g., 300 µm, was selected as the 

threshold to exclude larger vessels from all CEUS images. Second, the 200 and 150 µm thresholds 

helped to exclude vessel groups of different diameter ranges. After removal of the largest vessels, 

we removed a vessel group with diameter range of 100 µm, i.e., from 200 µm to 300 µm, and 

another vessel group with diameter range of 50 µm, i.e., from 150 µm to 200 µm. Morphology 

parameters were then extracted from the binarized and skeletonized CEUS MIP images and 

 

Figure 5.3. Thresholded vessel groups for perfusion parametric analysis using MB density over 
time for each white pixel location and zero for each black pixel. White regions contain the 
vessels that are smaller than (A) 300, (B) 200, and (C) 150 µm. 
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included vessel-to-tissue ratio (VR) and number of vessels (NV) [10]. Both parameters can 

indicate increased microvascular openings or impaired microvascular recruitment. VR is defined 

as 𝑉𝑉𝑉𝑉 = 𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

× 100 where VPixels is the number foreground pixels and ROIPixels is the number 

of all pixels for the vessel group [10]. Using the skeletonized image, first the branching points 

were identified as pixels with more than two foreground neighbors. Individual connected 

components were then detected by removing the branching points. The number of individual vessel 

segments as connected components after the removal of the branching points (bifurcations) was 

used as the NV metric [10]. Increased NV, as well as increased VR, indicate a more complex 

vascular network. Note that the physical pixel size was 55 µm and this limits the resolution for 

extracting the structural parameters. 

5.2.5 Functional Quantification 

From the time sequence CEUS images, individual MBs detected within the ROI can be enumerated 

to produce a time MB count curve (TMC) [7]. It has been shown previously that TMC-derived 

values have less variance compared to the more traditional time intensity curve (TIC)-derived 

measurements. Each TMC was fit with a smoothing spline s that finds the minimum value 𝑍𝑍 of 

                                   𝑍𝑍 = 𝑎𝑎�𝑤𝑤𝑖𝑖(𝑦𝑦𝑖𝑖 − 𝑠𝑠(𝑥𝑥𝑖𝑖))2 + (1 − 𝑎𝑎) ∫�𝑑𝑑
2𝑠𝑠

𝑑𝑑𝑥𝑥2
�
2
𝑑𝑑𝑑𝑑

 

𝑖𝑖

                              (5.3) 

where a is the smoothing parameter, w is weight, y is the MB density and s(x) is the fitted MB 

density value at time i  in units of sec. Parameters derived from the fitted TMC curve included the 

area under the curve (AUC) and peak MB count (IPK) values. AUC is a surrogate measurement 
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for blood volume and IPK is a surrogate measurement for blood velocity, where both of these 

measures are indicative of microvascular recruitment. 

5.2.6 Statistical Tests 

Perfusion and microvascular morphology parameters from both lean and obese groups of mice 

were summarized as mean ± standard error (SE). Longitudinal measurements of individual 

parameters were compared using a paired t-test for each group separately. Group comparisons 

were performed using a two-sample t-test. For the non-normal distributions Wilcoxon rank-sum 

test was applied. 

5.3 Results 

The experimental study involved CEUS imaging the microvascular features of skeletal muscle 

tissue of lean and obese mice. Before the US imaging sessions, the body weight (age) for the lean 

and obese animals was 25.1 ± 0.8 g (12.8 ± 0.4 wks) and 51.8 ± 1.1 g (27.0 ± 0.7 wks), respectively 

(p < 0.001). In the obese animals, there was a higher fasting blood glucose level than in the lean 

animals (p < 0.001). These values indicate that the obese mice have glucose intolerance and insulin 

resistance. 

CEUS imaging was applied at baseline and again near the end of a 2 h hyperinsulinemic-

euglycemic clamp procedure. Microvascular recruitment of smaller vessel segments during this 2-

h period can be noted from inspection of Figure 5.4 for a lean subject. The vessels within the white 

box are considered small (with a diameter below 300 µm) and increased microvascularity in this 

area is visible at the second time point. Figure 5.5 shows the results of an obese subject where the 

microvascular recruitment was impaired at the second time point. 
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Representative grayscale US and CEUS-based MIP images after having the SVD filter applied 

 

Figure 5.4. Representative DCE-US images of the microvascular network in the hindlimb of a 
lean mouse (baseline, top) and after application of an hyperinsulinemic-euglycemic clamp (2 h, 
bottom). Results shows obvious dilatations and recruitment of smaller microvascular structures 
(< 300 µm, white box). 

 

 

 

 

Figure 5.5. Representative DCE-US images of the microvascular network in the hindlimb of an 
obese mouse (baseline, top) and after application of an hyperinsulinemic-euglycemic clamp (2 
h, bottom). Results show microvascular impairment. 
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are depicted in Figure 5.6 for a lean and in Figure 5.7 for an obese subject. Removal of tissue 

clutter made the MB signal more pronounced in the MIP image. The multiscale vessel 

enhancement filter helped to delineate the large vessels and was used as a preprocessing step before 

segmentation. Figure 5.8 and Figure 5.9 show representative TMC curves from a lean and obese 

mouse, respectively. TMC curves were derived using either an ROIFULL, which include all of the 

 

Figure 5.6. Representative lean subject. (A) Grayscale ultrasound (US) images of skeletal 
muscle tissue and co-registered (B) DCE-US-derived maximum intensity projection (MIP) 
images depicting the microvascular networks (C) after SVD filtering and (D) after vessel 
enhancement. Color bars denote image intensity. 

 

 

 

Figure 5.7. Representative obese subject. (A) Grayscale ultrasound (US) images of skeletal 
muscle tissue and co-registered (B) DCE-US-derived maximum intensity projection (MIP) 
images depicting the microvascular networks (C) after SVD filtering and (D) after vessel 
enhancement. Color bars denote image intensity. 
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microvasculature structures, and the thresholded group that isolated and restricted the analysis to 

only those vessels with diameters less than 150 µm. Note the more pronounced change in the TMC 

amplitude from Figure 5.8 in the latter after application of the insulin challenge.  

Figure 5.10 summarized differences between the lean and obese groups regarding percent 

increases above baseline at 2 h. Using all of the vessels, e.g., full ROI, the differences between 

 

Figure 5.9. Representative TMCs for a lean subject showing the time history of MBs detected. 
Skeletal muscle tissue perfusion in a lean mouse was assessed using the (A) full ROI and then 
from the same (B) ROI that only included vessels with diameters below 150 µm. Baseline 
values in (B) were closer to zero and larger differences were observed between baseline and 2 
h after application of a hyperinsulinemic-euglycemic clamp and microvascular size 
thresholding. 

 

Figure 5.8. Representative TMCs for an obese subject showing the time history of MBs 
detected. Skeletal muscle tissue perfusion in an obese mouse was assessed using the (A) full 
ROI and then from the same (B) ROI that only included vessels with diameters below 150 µm. 
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lean and obese group were not significant while significant differences were observed when using 

the thresholded vessel groups for the parameters AUC, IPK, and VR. All of the parameters 

demonstrated an increasing trend for the lean group compared to the obese group for smaller vessel 

sizes. The ability to detect differences in functional and structural parameter responses to insulin 

between lean and obese groups increased as the vessel diameter threshold was reduced. In short, 

our method allowed the observation of longitudinal changes in vessel groups of varying size 

distribution in lean and obese mice after applying a hyperinsulinemic-euglycemic clamp, which is 

a common procedure for evaluating insulin resistance in skeletal muscle tissue. 

 

Figure 5.10. Summary of changes in DCE-US image-derived tissue perfusion and 
microvascular morphology measurements. Elimination of larger vessels from the image 
analysis process (above 300 µm in diameter) reveals a general increase in skeletal muscle 
microvascular perfusion and morphology parametric changes relative to baseline. A * denotes 
p < 0.05 relative to obese measures. 
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5.4 Discussion 

Reliable analysis of smaller vessels is challenging when using CEUS imaging. In this study, a 

series of image processing algorithms were presented for multiscale analysis of CEUS images to 

discern microvascular properties in skeletal muscle after application of a hyperinsulinemic-

euglycemic clamp. This procedure produced microvascular recruitment in the lean animal group, 

whereas it highlighted insulin resistance in the obese subjects, which is common condition 

associated with type 2 diabetes. A general quantification of impaired microvascular function in 

skeletal muscle may help researchers better understand various disease types [2], [4], [6], [28]–

[30]. Previous research has confirmed that smaller vessels are more impacted by diabetic disease 

and treatment than larger vessels [5], [30]. In our study, the removal of larger vessels was crucial 

during the analysis of microvascular function and helped improve the sensitivity of CEUS for the 

detection of changes in skeletal muscle tissue. 

The novelty of our work lies in the ability to isolate vessels at multiple scales based on their 

morphology from CEUS images. This was previously not possible because CEUS lacked the 

resolution necessary for applying morphological image processing operations. Previous work used 

knowledge of blood velocity information [15], [27], [29] or manually drawn ROIs [7], [16], [17] 

to help avoid larger vessels during any subsequent image analysis. The ROI drawing process is 

subjective and has been recognized as a major limitation in several prior studies [7], [16], [17]. 

During our study, it was found that the CEUS-derived TMC data from the different thresholded 

vessel groups exhibited smaller IPK values at 2 h after start of the hyperinsulinemic-euglycemic 

clamp because the larger vessels were removed from the image analysis. At the 2 h time-point 

relative to baseline, differences of AUC values were more pronounced in the thresholded vessel 
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group compared to the image including all vascular information. This specific vessel size selection 

process enabled us to use perfusion data from a specific group of vessels at the scale of interest. 

The relative differences between microvasculature properties in lean and obese mice was found to 

be more pronounced using our image processing method as compared to utilizing microvascular 

information from the entire ROI, further highlighting the increased sensitivity of the analysis.  

In addition to the more traditional tissue perfusion parameters, the present work also evaluated 

the use of microvascular morphologic parameters for quantification of defects associated with type 

2 diabetes. Large variations in these structural parameter values may have been caused by limited 

sample size. Additionally, structural measurements were limited to the physical pixel size of 55 

µm. Increasing the spatial resolution of the CEUS images will further enhance the ability to detect 

changes in structural parameters. A higher image resolution will also allow data analysis 

comparing distinct ranges of vessel sizes, which may be more informative from both physiologic 

and pathophysiologic perspectives.  

A potential limitation of this study is that it quantified functional and structural alterations in 

microvascular networks using only a single US imaging plane. Since the structural pattern of 

microvascular architecture is inherently manifests in volume space, a 3D approach could provide 

additional information of value. For example, a single bright pixel of a vessel that is placed 

orthogonal to the coronal slice is not considered as a vessel in 2D analysis while the 3D 

reconstruction of the same vessel from many coronal slices would visualize the entire vessel, which 

would be counted in the image analysis. We validated our diameter measurements with the FWHM 

method, which is the gold standard for vessel diameter estimation [27]. Since the relative changes 

in the images were of greater importance than the absolute diameter measurements, the results of 
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our analysis were not affected. The accuracy of the vessel diameter measurements could not be 

estimated which is a limitation of this study. During our study, we also fixed the transducer to have 

a consistent US imaging plane. Notwithstanding, it has been shown that the remaining free form 

deformations may further affect image quantifications. Motion artifacts from the CEUS images 

have been reported to result in duplicate visualizations of a single vessel [31] or random fractions 

on a long vessel [32]. We hypothesize that the results for the structural parameters might have been 

more affected by motion artifacts compared to the functional parameters. A motion correction 

method before quantification and a volumetric approach could help resolve these potential 

limitations. 

5.5 Conclusion 

Multiscale morphological image processing of CEUS data introduces a new vessel sized-based 

approach for the quantification of parametric information that details properties of a microvascular 

network in states of health and disease. Collectively, CEUS image-derived microvascular 

morphology and perfusion parameters detected differential longitudinal changes in skeletal muscle 

tissue after application of a hyperinsulinemic-euglycemic clamp procedure in lean and obese 

subjects. 
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The purpose of this study was to monitor acute changes in pancreatic tumor perfusion with 

contrast-enhanced ultrasound (CEUS) imaging following targeted hyaluronan (HA) treatment. 

Intratumoral accumulation of HA is one of contributing factors that can lead to an increased tumor 

interstitial pressure (TIP). These elevated TIP levels can hinder delivery of chemotherapeutic drugs 

and cause treatment failure. For this study, pancreatic cancer-bearing mice were imaged at baseline 

and again at 2 h after intravenous administration of physiological saline (control group) or 

PEGPH20, which targets HA (therapy group). CEUS data were collected for 5 min and the 

temporal sequence was first analyzed using a singular value filter (SVF) to remove any background 

clutter signal. Given the time history of contrast agent flow, a tumor perfusion parametric analysis 

was performed. A series of morphological image operations was applied to quantify structural 

features of the tumor angiogenic network including vessel count, density, length, diameter, 

tortuosity, and branching points. After imaging, animals were euthanized, and tumors excised for 

histological processing. Acute microvascular changes were found at 2 h after drug administration 

as confirmed by CEUS imaging. Further, histologic analysis of tumor sections revealed lower HA 

accumulation in the therapy group animals. Overall, these findings suggest that CEUS imaging of 

acute changes in tumor perfusion may help identify an optimal window whereby follow-up 

chemotherapeutic drug dosing would be more effective. 
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6.1 Introduction 

Pancreatic cancer accounts for about 3% of all cancers in the US and about 7% of all cancer deaths 

[1]. Effective drug delivery to the bulk tumor can be profoundly impacted by excessive 

accumulation of hyaluronan (HA), which is a component of the extracellular matrix [2]. Increased 

HA is associated with high tumor interstitial pressure (TIP), and vascular collapse [3]–[6]. These 

physical conditions can compromise microvascular function and impede chemotherapeutic drug 

delivery. Recently, a PEGylated version of recombinant human hyaluronidase (PEGPH20) has 

been described. When administered systemically PEGPH20 was shown to degrade HA levels in 

pancreatic cancer and improve drug delivery [4]–[8].  

Real-time contrast-enhanced ultrasound (CEUS) is a noninvasive imaging technique that uses 

an intravascular tracer (microbubble, MB) to help visualize tumor microvascular networks [9]. 

These CEUS images can then be analyzed to extract both tumor perfusion and microvascular 

morphology features [10]–[14]. To that end, CEUS imaging has been used to assess the tumor 

response (or lack thereof) to gemcitabine plus PEGPH20 therapy [5]. This study revealed that 

this treatment protocol produced a positive response in pancreatic cancer-bearing mice after only 

one cycle of combination therapy. Consistent with known mechanisms, treated tumors exhibited 

decreased proliferation and increased apoptosis of primary cancer cells compared to placebo 

control. Using a novel image processing strategy applied to CEUS data, this paper aims to 

expand on earlier findings by evaluating the acute functional and structural changes of tumor 

microvasculature after administration of PEGPH20. 



 

97 

6.2 Materials and Methods 

All studies were approved by the Institutional Animal Care and Use Committee (IACUC) at the 

University of Texas at Dallas. Human BxPC3/HAS3 pancreatic cancer cells were implanted in the 

hindlimb (2 million per site near the tibia) of six-week-old male athymic nude mice (Charles River 

Laboratories, Wilmington, ME). Once tumors reached a size of 10 to 12 mm, animals were 

assigned to one of two groups, namely, control or therapy (N = 2 per). CEUS imaging of each 

tumor was performed using a clinical system (Acuson Sequoia 512, Siemens Healthcare, Mountain 

View, CA) equipped with a 15L8 linear transducer array. The transducer was fixed using a ring 

stand to maintain the same imaging plane during repeat measurements. Each animal received a 50 

µL bolus injection of MBs (Definity, Lantheus Medical Imaging, N Billerica, MA) via a tail vein 

catheter. Using a MB sensitive imaging mode, a low transmit power (mechanical index, MI, less 

than 0.2) helped minimize contrast agent destruction. 

Each tumor was imaged by CEUS for 5 min at baseline and again at 2 h after systemic 

administration of a matched dose of saline (control) or PEGPH20 (therapy) (1.0 mg/kg, Halozyme 

Therapeutics, San Diego, CA). The body temperature of each animals was monitored during the 

entire study using a rectal probe regulated by a homeothermic controller (Kent Scientific Corp, 

Torrington, CT). 

6.2.1 Image Processing 

Sequences of CEUS images were first processed using a singular value filter (SVF) to remove the 

clutter signal [11] followed by MB localization [15]. A maximum intensity projection (MIP) image 

was then created with the values for each pixel location from 8x interpolated CEUS images. This 
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step created high-resolution CEUS images from each imaging session. A spherical region-of-

interest (ROI) of 100-pixel radius was placed on a hypoenhanced area of the tumor space (baseline 

images). A matched size ROI was used for all subjects. According to the mean intensity 

distribution as a function of time in this ROI, time-intensity curves (TICs) were created [16], [17]. 

Select tumor perfusion parameters were derived from TIC data, i.e., area under the curve (AUC) 

and peak intensity (IPK) [18]–[20].  

To assess tumor microvascular morphology features, CEUS images were improved with a 

multiscale vessel enhancement filter, e.g., tubular structures in the image [21]. After binarization, 

a series of morphological image processing methods [22] were applied for computation of different 

structural metrics from tumor microarchitecture [23], e.g., number of branching points (NB), 

number of vessels (NV), mean vessel length (VL), mean vessel tortuosity (VT), mean vessel 

diameter (VD), and microvessel density (MVD) [14]. Note that only connected components having 

more than two pixels were considered as vessels for all the above-mentioned metrics. 

6.2.2 Histology Analysis 

Mice were euthanized and tumors were harvested after CEUS imaging at 2 h. Tumors were fixed 

in 10% formalin and tissue section were prepared from paraffin blocks. Sections were processed 

and stained for immunohistochemistry using anti-HA IgG horseradish peroxidase (HRP) conjugate 

and DAB substrate (Fisher Scientific, Waltham, MA). Five histology images were selected 

randomly from each group and used to quantify the color intensity of the HA stain. 



 

99 

6.2.3 Statistical Analysis 

All experimental data was summarized as mean ± standard error when applicable. A linear 

regression analysis was performed between select functional and structural parameters. A 2-way 

Analysis of variance (ANOVA) was used to analyze the longitudinal measurements relative to 

absolute baseline values from histology data. A p-value less than 0.05 was considered statistically 

significant.  

6.3 Results 

From our CEUS image analysis, we report the changes in tumor perfusion and microvascular 

morphology parameters at baseline and 2 h for all of the individual subjects. Also, TICs and ROIs 

from representative subjects of each group are presented in this section. Tumor microvascular 

structural parameters increased at 2 h for the therapy group animals when compared to control 

measurements. CEUS image-based parametric values at baseline and 2 h are listed in Table 6.1. 

Table 6.1. Functional and structural parameter values for each subject and timepoint 
        

Parameter 
Control 1 Control 2 Therapy 1 Therapy 2 

Baseline 2 h Baseline 2 h Baseline 2 h Baseline 2 h 

 
IPK 17.04 

 
15.17 

 
11.96 14.22 10.04 32.82 27.47 34.54 

AUC 169.10 
 

182.97 179.41 211.08 137.41 388.33 258.56 322.17 

NB 
 

0.00 0.00 5.00 6.00 0.00 8.00 0.00 4.00 

NV 2.00 
 

1.00 14.00 13.00 0.00 22.00 6.00 16.00 

VD 
 

0.00 0.00 0.07 0.03 0.00 0.10 0.01 0.05 

VT 
 

0.10 0.00 0.92 0.26 0.00 0.31 0.05 0.13 

VL 
 

22.07 1.00 38.59 17.19 0.00 19.55 11.87 14.20 

MVD 
 

0.01 0.01 0.08 0.03 0.00 0.13 0.02 0.06 

 
IPK = Peak intensity, AUC =Area under curve, NB = Number of vessels, NV = Number of vessels, VD = Vessel diameter, VT = Vessel tortuosity, VL = Vessel length,  

MVD  Microvessel density  
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Two control subjects had slightly different starting values and both ended up with decreased values 

or no changes at 2 h after administration of saline. In contrast, the therapy subjects showed marked 

increased values at 2 h compared to the control group. Figure 6.1 depicts the qualitative changes 

in tumor microarchitecture for a representative control and therapy subject, respectively. Perfusion 

parameters indicate a considerably higher blood volume (AUC and IPK) for the therapy group 

animals at 2 h after administration of PEGPH20, Figure 6.2. Figure 6.3 illustrates the linear 

relationship between tumor perfusion and microvascular morphology parameters. A significant 

correlation was observed between AUC and NV (R2 = 0.64, p = 0.01) suggesting the amount of 

MBs is proportional with the number of vessels. The same is true also for the AUC and MVD 

 

Figure 6.1. B-mode ultrasound (US) images of representative pancreatic cancer-bearing mice 
overlaid with contrast-enhanced US (CEUS) images. Images were acquired at baseline and 
again at 2 h after dosing with either targeted hyaluronan (therapy, PEGPH20 drug) or saline 
(control). An intratumoral region-of-interest (ROI, white) was manually selected to encompass 
an area with relatively low tissue perfusion 
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parameters (R2 = 0.58, p = 0.02). In contrast, another functional parameter IPK showed a weak 

correlation with the structural parameters NV (R2 = 0.35, p > 0.10) and MVD (R2 = 0.29, p < 0.16), 

respectively. After further investigation, we found that having a large vessel can produce a similar 

 

Figure 6.2. Time-intensity curves (TICs) for control (left) and therapy (right) subjects. Note 
CEUS-derived parameter increases for the therapy group animals compared to the control group 
at 2 h relative to baseline. 

 

Figure 6.3. Linear relationship between CEUS-derived tumor blood volume (peak intensity, 
IPK; area under curve, AUC) and microvascular structure (number of vessels, NV; microvessel 
density, MVD) at 2 h.  
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IPK value as having many small vessels. While our analysis did not discriminate based on 

microvessel size within the tumor ROI, if we focused our analysis on only the smaller blood 

vessels, we would expect an improved correlation between these CEUS image-based parametric 

measures. In short, these results suggest that tumors with a more extensive microvascular network 

have a corresponding increased tumor blood volume. CEUS imaging results were confirmed by 

histologic analysis of excised pancreatic tumor tissue samples, Figure 6.4. At 2 h after dosing with 

saline or PEGPH20, tissue samples exhibited a pronounced decrease in intratumoral HA levels 

when compared to control findings (p < 0.0001). Accumulation of HA is associated with the 

microvascular collapse and high TIP [3]. 

6.4 Discussion 

This study can be improved in a few aspects. Specifically, the accuracy of the morphological 

parameters can be improved by removing the motion artifacts from the images before MB 

 

Figure 6.4. Histology images from pancreatic cancer-bearing mice at 2 h after being dosed with 
saline (control) or PEGPH20 (therapy). Sections were stained for HA (hyaluronan) 
accumulation and quantified as percent tumor cross-sectional area. Scale bar = 0.5 mm. 
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localization [10]. Also, the quality of the high-resolution CEUS images could have been increased 

by a slower bolus injection and longer imaging sessions [13]. 

Previous studies have demonstrated that targeted HA degradation with PEGPH20 can help 

restore blood flow through previously collapsed microvascular segments and improve drug 

delivery [2], [5], [6]. In this study, preliminary results reveal that advantageous tumor changes 

after targeted HA treatment can also be monitored using CEUS images and parametric 

measurements of tumor perfusion and microvascular morphology. 

6.5 Conclusion 

Monitoring acute changes in tumor perfusion and microvascular morphological features may help 

assess early changes such as dosing windows that are beneficial for follow up chemotherapeutic 

drug delivery. 
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The purpose of this study was to improve the morphological analysis of microvascular networks 

depicted in three-dimensional (3D) super-resolution ultrasound (SR-US) images. This was 

supported by qualitative and quantitative validation by comparison to matched brightfield 

microscopy and traditional B-mode ultrasound (US) images. Contrast-enhanced US (CEUS) 

images were collected using a preclinical US scanner (Vevo 3100, FUJIFILM VisualSonics Inc) 

equipped with an MX250 linear array transducer. Volume data was collected by mechanically 

scanning the US transducer throughout a tissue volume-of-interest (VOI) in 90 µm step 

increments. CEUS images were collected at each increment and stored as in-phase/quadrature (IQ) 

data. All SR-US images were then used to reconstruct a final 3D volume for vessel diameter 

quantification and for surface rendering. Vessel diameter quantification from the 3D SR-US data 

exhibited an average error of 6.1 ± 6.0% when compared with matched brightfield microscopy 

images, whereas measurements from B-mode US images had an average error of 77.1 ± 68.9%. 

Volume and surface renderings in 3D space enabled qualitative validation and improved 

visualization of small vessels below the axial resolution of the US system. Overall, 3D SR-US 

image reconstructions depicted the microvascular network of the developing chicken embryos. 

Improved visualization of isolated vessels and quantification of microvascular morphology from 

SR-US images achieved a considerably greater accuracy compared to B-mode US measurements. 
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7.1 Introduction 

Traditional ultrasound (US) imaging is not overly sensitive to slow blood flow in small vessels, 

and this motivated in part the development of microbubble (MB) contrast agents. In response to 

sufficiently high US pressures, MBs resonant and produce backscattered US signals with a 

nonlinear component. This nonlinearity helps make them differentiable from the surrounding 

tissue by an increased MB signal-to-tissue ratio, and allows more accurate visualization of small 

vessels due to the velocity independent MB properties [1]. MBs have a nontoxic gas core and after 

intravenous administration, they can be detected with high sensitivity by US imaging. With recent 

FDA approval of MBs for use in the United States, clinical use is increasing, particularly in patient 

populations where magnetic resonance imaging (MRI) and computed tomography (CT) contrast 

agents are contraindicated [2]. Contrast-enhanced US (CEUS) is a noninvasive and nonionizing 

imaging modality that enables an accurate assessment of blood flow and tissue perfusion [3]. 

CEUS has therefore been widely used to perform parametric analysis of blood dynamics to assist 

the diagnosis and treatment monitoring of diseases where tissue perfusion plays an important role 

[4]–[6].  

While blood perfusion is defined by functional properties, CEUS-derived morphological 

features of microvessels are related to the structural organization of the microvascular networks. 

The complexity of the underlying microarchitecture can be defined by the number of vessels and 

bifurcations, geometric measures of mean vessel diameter and tortuosity, and microvessel density 

(MVD) as a measure of compactness. These morphological features are crucial because it is known 

that some more severe diseases, such as diabetes, begin developing impaired functionality at the 

capillary level [7], [8]. Other severe diseases, such as cancer, can also trigger neovascularization 
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as the disease progresses. The addition of structural information to the functional analysis of tissue 

microvascular networks may help improve disease management, particularly in the oncological 

setting [5]. Morphological features of microvascular networks can be clinically informative. For 

example, complex networks may assist in guiding repeat therapies while simpler networks may 

suggest a successful therapy response [9]. CEUS-derived quantification of microvascular 

morphology can expand our understanding of the chaotic development of pathologic angiogenesis 

by which tumors develop their own blood supply to receive nutrients and oxygen from the host 

vascular system [10].  

Despite the advantages of CEUS, the spatial resolution of any US imaging system is 

fundamentally limited by diffraction to length scales of approximately half the wavelength of the 

transmitted beam. The recently introduced super-resolution US (SR-US) imaging technique is 

based on precise MB localization and has been shown to achieve a remarkably high spatial 

resolution beyond the diffraction limit [11]–[13]. With the use of SR-US imaging, it is now 

possible to provide functional and structural quantification of microvascular networks [14]. SR-

US imaging offers the promise of more accurate identification of microvascular morphology for 

the vessels below 50 µm in diameter [15], [16]. For the most reliable morphological analysis 

derived from US studies, volumetric SR-US imaging is critical because microvascular networks 

inherently exist in three-dimensional (3D) space [17]–[20]. While several important features of 

microvascular networks can be quantified from 2D and 3D SR-US images, detailed validation of 

these measurements is challenging.  

Most CEUS imaging studies to date have relied on use of vascular flow phantoms for in vitro 

validation [21], [22] and histological biomarkers of microvessel density or prior knowledge about 
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healthy versus tumor tissue for in vivo validation [23]–[26]. Recently, a CEUS study using a 

chicken embryo model demonstrated that image-derived morphology metrics (e.g., intervessel 

distance and microvascular tortuosity) were correlated to local tissue hypoxia [27]. Herein, we 

present an automated approach for 3D SR-US imaging and morphological analysis of 

microvascular networks. SR-US image-derived vessel diameters were extracted using an 

automated thinning algorithm. Accuracy was validated with matched brightfield microscopy 

images of vessel structures from the same chicken embryo model. The primary novelty of this 

research lays in improved visualization and validation of an approach to measure microvascular 

morphology features using 3D SR-US imaging. 

7.2 Materials and Methods 

7.2.1 Phantom Materials 

A tubing material of regenerated cellulose (Dow Corning Corp, Midland, MI) with a 200 μm 

internal lumen diameter was immersed and secured inside a water filled container. Two different 

phantom setups were used for US system configuration testing and custom software calibration. 

In the first experiment, a single straight tube was used to circulate MBs, whereas in the second 

experiment, two crossing straight tubes were US imaged. With these flow phantoms, scale 

parameters for a vessel enhancement filter, were optimized using several different US image and 

focal depths.  
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7.2.2 Chicken Embryo Model 

Fertilized white leghorn chicken eggs were obtained from a commercial vendor (Texas A&M 

University, College Station, TX) and stored in a forced-draft incubator (GQF Manufacturing 

Company Inc, Savannah, GA) maintained at 37°C and 60% humidity until Hamburger-Hamilton 

stage 18 (HH18, 3 days). Eggs were then transferred to an open 3D printed polymer boat with a 

window created on one of the sides by gluing a thin polyester film (McMaster-Carr, Elmhurst, IL). 

A total of eight chicken embryos were used for this study. 

7.2.3 Ultrasound Imaging Protocol 

CEUS imaging was performed using a preclinical US scanner (Vevo 3100, FUJIFILM 

VisualSonics Inc, Toronto, Canada) equipped with an MX250 linear array transducer. This 

transducer has a center frequency of 21 MHz (axial resolution ≈ 75 µm) and bandwidth from 15 

to 30 MHz. A custom MB contrast agent was formulated using established methods [28]. For the 

phantom studies, 2 µL of MBs were diluted in 100 mL of degassed water and perfused through 

the cellulose tubes using a syringe pump at a rate of 2 mm/min similar to the blood flow of a 

chicken embryo [27], [29]. For the chicken embryo studies, 5 µL of the MB solution was loaded 

into a pulled glass pipette. Physical measurement of MB size and concentration found a mean 

diameter of 2.6 ± 1.3 µm and 1.4 × 1010 MBs/mL, respectively. While visualizing the embryo with 

a stereomicroscope (Carl Zeiss Microscopy, White Plains, NY) connected to a digital camera, MBs 

were slowly introduced into the embryo’s vitelline network by microinjection for a duration of 

about 5 sec. Both phantoms and chicken embryos were US imaged as the transducer was 

mechanically scanned over a volume-of-interest (VOI) in 90 µm step increments using the Vevo 
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Imaging Station (FUJIFILM VisualSonics Inc). Note that MBs circulated throughout the 

microvascular network of the chicken embryo until the heart stopped, which could take up to 30 

min according to our observations. The volume of the circulating blood in the chick embryo on 

day 4 was estimated to be 44 ± 12 mm3 [30].As detailed in Figure 7.1, a series of CEUS images 

were acquired at each increment and stored as in-phase/quadrature (IQ) data (N = 2000). All scan 

parameters, such as time gain compensation (TGC) and system power (1%) were saved as a preset 

and fixed for all experimental studies. Volume US datasets from eight different embryos were 

saved for offline processing and analysis. 

7.2.4 Ultrasound Image Processing 

All image processing, quantification, and visualization was performed using custom MATLAB 

software (MathWorks Inc, Natick, MA). For each CEUS dataset, a singular value filter (SVF) was 

first applied to the IQ frames [31]. SVF separates the stationary speckle signal (tissue) from the 

nonlinear MB signal of interest. After the removal of tissue signal, MBs were detected by an 8-

connected component analysis. A single MB was represented as a connected component. The 

 

Figure 7.1. Diagram of the experimental design and the data processing strategy used for 
acquiring a sequence of contrast-enhanced ultrasound (CEUS) images and subsequent 
generation of the three-dimensional (3D) super-resolution ultrasound (SR-US) maps of 
microvascular structures. Two thousand frames of ultrasound (US) data was collected for each 
cross-section as the transducer was mechanically scanned over a defined volume-of-interest 
(VOI). 
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centroid of each connected component was then determined and mapped as described previously 

[8]. The centroid of each connected component was then determined and mapped. At any tissue 

cross-section, a sequence of 2000 CEUS images were collected and a SR-US image was created 

by counting the number of MBs found at each pixel location. Lastly, SR-US data from each spatial 

position were resampled to reconstruct an isotropic 3D SR-US volume.  

A multiscale vessel enhancement filter was applied to the 3D SR-US volume to further enhance 

microvascular structures [32], [33]. Note this method has been widely used in CT and MRI 

angiography to improve diagnostic quality. Vessels were assumed to be tubular structures having 

a Gaussian profile and detected using the second derivative of Gaussian kernels of a specific 

dispersion. This parameter helps to detect a range of large and small vessels with wider and thinner 

Gaussian kernels, respectively. Next, we introduce a vesselness function Vo(γ) defined as:  
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Here, Vo(γ) results in greater values for tubular structures in 3D space and consequently, 

background noise is suppressed, i.e., nontubular structures. Previous experience has revealed that 

enhancement of the vascular structures is helpful to improve individual vessel segmentation before 

performing any diameter measurements. The vesselness function is needed to enhance 
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connectivity between pixels belonging to the same vessel segment. This function improves the 

process in two main ways. First, it suppresses background structures that are not necessarily 

tubular. And second, it enhances the tubular structures at different scales so we retain smaller 

vessels in the image as connected components during binarization. This is requisite for creating an 

accurate 3D centerline of the vessel segment, which relies on pixel connectivity of binary images. 

It was not possible to create accurate 3D centerlines without applying this multiscale vessel 

enhancement due to the presence of non-connected vessel segment components. Segmentation is 

performed using an adaptive thresholding algorithm [34]. This method finds a local threshold to 

create a binary volume that represents vessels as foreground voxels. This binary volume was then 

used for morphological image processing. 

3D SR-US image-based morphological analysis was automated such that centerlines of the 

vasculature from the binary volume were extracted and a connected component analysis was 

performed. A 3D parallel medial-axis-thinning algorithm was then used for centerline extraction 

[35]. This method uses a morphological thinning operator that removes the voxels starting from 

the vessel border until it represents each vessel segment by a voxel-thick line (centerline) in 

volume space [36]. Also called a skeleton, the centerlines have the same topology as the original 

vasculature. Vessel groups containing different vascular branches are defined by 26-voxel 

connectivity, where connected voxels are defined as two adjacent voxels sharing their faces, edges, 

or corners. Following the thinning process, a standard pruning algorithm is used to remove all 

branches shorter than 10 voxels in length [37]. Branching points are also removed to create isolated 

vessel segments and the shortest vessel segments are identified as two-voxel connected centerlines. 

Vessel diameter (VD) for each point on the centerline were estimated using another morphological 
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operator called the distance transform. The Euclidean distance of each centerline point to the 

nearest point on the vessel border is computed and multiplied by the voxel size to obtain the VDs 

for the 3D SR-US data. Each embryo needed up to 30 min of processing time to create the final 

skeleton using an Alien Aurora desktop computer (Dell Inc, Round Rock, Texas). Parallel 

processing was performed to reduce computation time for creation of the SR-US images. 

Skeletonized microvasculature and diameter measurements at each centerline point were used for 

the surface reconstruction and for the extraction of morphological features, namely, number of 

bifurcations (NB), number of vessels (NV), mean vessel length (VL), and mean vessel tortuosity 

(VT). VL is computed as the total vessel arc length. VT is the ratio of the VL to the distance 

between vessel end points. The VDs from microscopy and B-mode US images were measured 

using the reference method full-width-half-maximum (FWHM) for randomly selected individual 

vessels within the VOI. A mean FWHM from a single vessel segment is computed as the average 

of three randomly selected locations on the same vessel segment. Maximum intensity projection 

(MIP) images are created using the maximum values of the image stack. A control point 

registration method from the MATLAB Image Processing Toolbox (MathWorks Inc) was used to 

apply affine realignment between the three imaging modalities. Control points were selected on 

the static image (microscopy) and moving image (B-mode US or SR-US MIP) and the spatial 

transformation was performed to locate the same vessels on all three different imaging modalities. 

Finally, surfaces of the individual vessels were reconstructed based on the centerline and 

diameter values at each centerline point to improve visualization [38]. The final surfaces of isolated 

vessels were calculated as follows. First, the gradient vector was calculated to show the proper 

orientation of the microvasculature at each centerline point. A plane orthogonal to the gradient 
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vector was established to determine surface reference points. Using sequential orthogonal planes, 

all surface reference points are connected to create right triangles that build the surface of the 

microvasculature. Visualization improvement was defined by 3D SR-US volume and surface 

renderings generated from microvascular centerlines to provide the shape information of a specific 

vessel in volume space, and by assessing the ability to detect vessels with diameters less than 75 

µm. Both types of improvements were validated using co-registered brightfield microscopy images 

that were used to identify the matching vessels by qualitative assessment. 

7.2.5 Performance Metrics 

The VD parameter was used to quantitatively compare FWHM microscopy, B-mode US, and 

thinning-based 3D SR-US-derived image diameter measurements. Unpaired t-tests between 

microscopy and 3D SR-US measurements, and between microscopy and B-mode US diameter 

measurements, were performed to test for differences in VD. Further, average diameter values for 

individual vessel segments were used to assess the accuracy in VD between the microscopy images 

and SR-US or B-mode US images using the following metrics: 

 

 Absolute Error (µm) ∆ = � VDSR−US −  VDMicroscopy� (7.3) 

 

and 

 

 
Percent Error (%) =  

∆
VDMicroscopy

× 100. (7.4) 
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From equation (3), the root-mean-square error (RMSE) for VD measures is computed between 

those derived from microscopy and each of 3D SR-US images as follows: 

 

 

RMSE =  �
∑ (VDSR−US(i) −  VDMicroscopy(i)) N
i=1

2

K  (7.5) 

 

where i is the individual diameter measurement index and K is the number of vessel segments that 

were analyzed. Note that VDSR−US  was replaced with VDB−mode for the B-mode US 

measurements.. 

7.3 Results 

A set of 3D SR-US images were acquired from a slowly perfused flow phantom (internal vessel 

diameter of 200 µm) and volume reconstructions are presented in Figure 7.2. Representing a 

simple vessel structure, the phantom containing a single straight tube was successfully visualized 

using a MIP from the SR-US data and in 3D space. The skeletonized image illustrates a simplified 

topology of this single vessel. Using data acquired from the flow phantom with crossing tubes, 

scaling parameter optimization of the vessel enhancement filter resulted in successful visualization 

of the 3D SR-US data and the derived topology of the vascular network. As further summarized 

in Figure 7.2, mean internal vessel diameter measurements were found to be 204 ± 19 µm and 206 

± 12 µm for the straight and crossing tube phantoms, respectively. The corresponding vessel 

diameter measurements from the co-registered B-mode US images were 242 ± 92 µm and 188 ± 

59 µm, respectively. 
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Figure 7.2. Representative CEUS images from two phantoms containing either a (A) single 
straight tube or (B) two crossing tubes, all with an internal lumen diameter of 200 µm. After 
acquisition of the CEUS data, (D, E) SR-US maps were created and displayed as 2-dimensional 
(2D) projections. Matched (F, G) 3D SR-US image reconstructions are also shown in volume 
space. After binary image skeletonization as needed for morphological analysis of 
microvascular features, (H, I) centerline segments were colorized to reflect local vessel 
diameter measurements. (C) Tube diameter measurements (mean ± standard deviation) were 
found to be 204 ± 19 µm and 206 ± 12 µm for the straight and crossing tubes, respectively. 
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Phantom studies demonstrated that 3D SR-US morphological analysis with multiscale vessel 

enhancement and surface reconstruction qualitatively improved the visualization of microvascular 

structures. A validation study using developing chicken embryos then showed promising results 

when compared to co-registered brightfield microscopy images. Representative B-mode US and 

SR-US images from this model system are presented in Figure 7.3, which allows a qualitative 

 
Figure 7.3. Co-registered (A) brightfield microscopy, (B) SR-US, and (C) B-mode US images 
for a defined area (white box), which has been enlarged in (D, E, F), respectively. Panel (G) 
contains the 3D SR-US volume reconstruction of the microvascular network from a developing 
chicken embryo.  



 

120 

comparison between the three different imaging methods for a VOI containing vessels with several 

varying morphological characteristics. A 3D reconstruction of the SR-US volume data provides a 

more comprehensive view of the microvascular network in the developing chicken embryo 

although some structures are disconnected due to the limited number of US frames (i.e., sparse 

dataset). The spatial gaps between the detected MBs were partially filled after the use of a 

multiscale vessel enhancement algorithm.  

As detailed in Figure 7.4, the SR-US image processing approach removes the unwanted 

stationary tissue signal while leaving the MB signal of interest for further analysis. Further 

highlighted, the microvascular network in the B-mode US image is obscured and vessels within 

are not clearly distinguishable due in part to insufficient spatial resolution and reverberation 

artifacts. However, the SR-US MIP image in Figure 7.4 clearly depicts the microvasculature that 

was successfully perfused with MBs. When considering a specific VOI, the smallest vessel 

resolved was approximately 30 µm in diameter as estimated from the FWHM profiles shown. 

Here, vessel diameter was accurately estimated by the 3D SR-US-derived MIP image when 

compared to the reference standard brightfield microscopy image. This specific vessel was isolated 

from the microvascular network and its surface was reconstructed for a qualitative comparison to 

the B-mode US image embedded in the width-depth plane. This example illustrates that the spatial 

resolution of the B-mode US image does not allow visualization of vessels that have a diameter 

below the US system resolution (about 75 μm) while 3D SR-US MIP images can accurately 

delineate vessels with diameters as small as 30 μm. The ability to reconstruct the surface from the 

3D SR-US data using the simplified network topology, together with the vessel diameters, enables  
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Figure 7.4. Comparison of co-registered (A) B-mode US (A), (B) SR-US, and (C) brightfield 
microscopy images of a developing chicken embryo. Vessel cross-sectional line plots in (E) 
and (F) were taken from within the white box and estimated to be approximately 30 µm and 
below the axial resolution of the US system used for data acquisition. (D) Zoomed-in area from 
the B-mode US image is shown into the width-depth plane (grayscale map) with the matched 
3D SR-US surface reconstruction provided for qualitative comparison.  
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a more complete morphological analysis that can provide information about the complexity, 

geometric diversity, and the compactness of the underlying microvascular network.  

A collection of vessels segments from a brightfield microscopy image and 3D SR-US data are 

shown in Figure 7.5. The mean diameter of the sample vessels vary and range from 30 to 350 µm. 

As a result of the thinning algorithm, representative samples of isolated vessel topologies 

containing the morphological information is depicted in volume space. According to the 

automatically extracted tortuosity measurements, for example, vessel 3 is the most tortuous vessel 

(14.0) and vessels 1, 5, and 4, have decreasing tortuosity contours of 2.7, 1.9, and 1.5, 

respectively). Vessel 2 is the simplest vessel with the least tortuosity (0.5), which implies it is a 

nearly straight segment. The centerlines of different microvascular segments from a developing 

chicken embryo are presented in Figure 7.6, and allow for an analysis using morphological features 

from the network topology. Qualitatively, B-mode US images are first improved by the SR-US 

MIP, which enables visualization of the microvascularity.  

 
Figure 7.5. Individual vessels from a (A) brightfield microscopy image and (B - F) 3D SR-US 
images that were used to make select microvascular morphology measurements. Color bar 
represents vessel diameter. 
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Figure 7.6. CEUS images of five different developing chicken embryos whereby each row 
shows the intermediate steps of the image processing pipeline for each target. Visual inspection 
of the B-mode US images (column one) compared to the SR-US MIP (column two), spatially 
filtered SR-US MIP (column three), and extracted 3D network topologies (column four), 
reveals a clear representation of tissue microvascular networks using SR-US imaging. 
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Further qualitative improvement is achieved after using the multiscale vessel enhancement 

filter, which provides a more connected microvascular structure in volume space after closer 

inspection. Improved connectivity resulted in more accurate segmentation and thinning for 

mapping the microvascular topology in a clear and simplified form of vessel centerlines. These 

qualitative results are also supported by the quantitative results summarized in Figure 7.7. 

Diameter measurements from 15 individual vessel segments extracted from different chicken 

embryo datasets show good agreement between the brightfield microscopy and 3D SR-US images. 

On the other hand, B-mode US image measurements exhibited large deviations from the true 

values (i.e., microscopy quantification).  Physical limitations of the US system prevent accurate 

B-mode US measurement of vessels with diameters below the resolution threshold, which is about 

75 µm for the transducer used. On average, 3D SR-US had an average vessel diameter 

measurement error of 6.1%, including small vessels, while B-mode US-derived results exhibited 

an average error of 77.1% for vessels greater than this 75 µm diameter threshold, Table 7.1. The 

 
Figure 7.7. Comparison of vessel diameter validations using brightfield microscopy, B-mode 
US, and 3D SR-US images. Quantification from the 3D SR-US image reconstructions are in 
good agreement with the microscopic measurements. Vessels are ordered by diameter values 
and it was not possible to measure vessels from the B-mode US images that were smaller 
than the spatial resolution limits US system used for image acquisition. 
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absolute error between the 3D SR-US and microscopy image measurements was 4.8 µm for all 15 

vessels studied and only 4.2 µm for the smaller vessels (those less than 75 µm in diameter). The 

RMSE between the 3D SR-US and microscopy measures was 7.4 µm, while the RMSE between 

the B-mode US and microscopy was found to be considerably higher and 171.6 µm. B-mode US 

image-derived estimations were found to be significantly different than those from the microscopy 

measurements (p < 0.01), which was no true for the 3D SR-US estimates (p = 0.93) and supports 

the previously observed qualitative improvements.  

7.4 Discussion 

It was shown that 3D SR-US image reconstructions could be obtained from CEUS data 

acquired at multiple tissue cross-sections on a preclinical US system without any hardware 

modifications. Vessel diameters were quantified using co-registered B-mode US, SR-US, and 

brightfield microscopy images. An automated 3D SR-US morphological analysis was performed 

and VD measurements demonstrated greater accuracy when compared to B-mode US image-

derived values and use of microscopy image measures as the reference standard. This work helps 

validate the accuracy of 3D SR-US imaging and quantification of microvascular morphology 

features.  

Table 7.1. Quantification error of vessel diameters when comparing B-mode ultrasound (US) 
and super-resolution US (SR-US) after comparison to co-registered microscopy-based 
(reference) measurements.  

Imaging Technique Absolute Error (µm) Percent Error (%) p-value 

B-mode US 113.9 77.1 0.007 

3D SR-US 4.8 6.1 0.9 
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Structural properties of vascular networks depicted in preclinical and clinical CEUS images 

have previously been investigated using a single cross-sectional plane [5], [39]. While these studies 

demonstrated the potential of structural analysis from CEUS images, use of a single plane is a 

limitation and it was suggested that a 3D CEUS imaging approach could better capture the 

heterogeneous nature of tumor vascularization in volume space [40], [41] and allow isotropic 

measurements [42]. This current study provided a 3D morphological analysis of CEUS images 

and the use of super-resolution techniques provided a more precise and accurate depiction of 

morphometries extracted from the microvascular network of developing chicken embryos. Further, 

results were compared with morphological measurements from traditional B-mode US images to 

highlight the improvements.  

Other studies have performed CEUS-derived morphological analysis using US systems with 

modified hardware components [19], [24], [26], [43]. Although these studies validated MVD by 

histological analysis and found correlations between the CEUS-derived morphological features 

and tumor growth, a detailed validation of the underlying geometrical measurements was missing. 

Our study demonstrated a reliable multimodal imaging validation of VD using an in vivo embryo 

model and brightfield microscopy. This current work also showed that 3D SR-US image 

measurements are highly accurate compared to those derived using traditional B-mode US. With 

the 3D surface reconstruction of isolated smaller vessels, it is now possible to identify the same 

vessels for longitudinal studies and to track quantifiable morphological changes to assess disease 

progression, which typically manifests at the capillary level. 

Chicken embryo models have been investigated in a non CEUS imaging study [44]. Compared 

to CEUS, contrast-free US is known to have limited sensitivity to slow blood flow. A recent CEUS 
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study using chicken embryo models have shown that image-derived morphology metrics (e.g., 

intervessel distance and vascular tortuosity) were correlated to tissue hypoxia [27]. This particular 

study compared manually selected vessel profiles from brightfield microscopy to SR-US images 

acquired with a research US system, where morphological metrics were validated with histological 

analysis. Our approach in the current study is different from this work in several aspects. First, we 

used a preclinical US system with a smaller step size to collect the 3D CEUS data. Second, our 

automated 3D SR-US software measures the vessel centerlines based on a thinning algorithm. 

Third, and most importantly, we compare the validated VD measurements with B-mode US images 

and demonstrate improved accuracy and visualization using 3D SR-US imaging.  

Extracting vascular morphometric maps directly from B-mode US images can lead to 

systematic biases that result in erroneous measurements, particularly from smaller vessels. The 

effect of such a bias is reduced with use of 3D SR-US data for two principal reasons. First, the 

higher spatial resolution allows more accurate delineation of microvascular details. Second, 3D 

reconstructions of microvascular shape improves the geometric accuracy because the 

microvasculature inherently exists in volume space. The coherent geometry of the microvascular 

structures from a VOI can be better visualized and measured more accurately (10-fold 

improvement) based on the percent error in VD using the proposed method. Visualization of 

smaller blood vessels (i.e., those with diameters below the diffraction limit) is only possible with 

SR-US data as these structures are not readily visible in B-mode US images. 

For some longitudinal studies, it is assumed that various types of artifacts are included in 

baseline and follow-up measurements, and these would contribute equally to erroneous results. It 

would therefore be beneficial to observe relative changes to capture a disease treatment response 
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or to observe progressive tumor growth. Nevertheless, it is important to characterize the tumor 

microvascularity as accurately as possible using a noninvasive imaging method so as to 

appropriately plan a drug delivery and treatment study [9]. Being able to observe any sub-optimal 

vascularization and reduced tumor blood flow could guide the selection of alternative treatment 

strategies. For example, if the microvasculature has collapsed due to high intratumoral pressures, 

the angiogenic network could be normalized first [45], [46]. In this case, as a pre-therapeutic 

necessity, the vessels needed to be dilated to a certain diameter range to deliver any systemic 

anticancer drug efficiently. The software approach presented here is also appropriate for these 

types of drug delivery studies. 

Compared to traditional B-mode US image analysis, 3D SR-US morphological analysis offers 

the prospect of measurement repeatability. Instead of single imaging plane, a volumetric 

representation can assist in repeating measurements for the same subject, which is important for 

monitoring drug response or status of disease progression. A reproducible quantitative 

morphometric analysis increases the reliability of the metrics, and this may improve drawing 

clinically-relevant correlations to the measured quantities. 3D isolation of individual vessels 

allows for more accurate monitoring of vessel shape alterations. In 2D, the binarization process 

creates many overlapping vessels, and this may cause the centerline detection to fail. Due to the 

heterogeneous nature of the tumor burden, a noninvasive 3D morphological analysis is the 

preferred method. 

A potential limitation of the method presented herein is related to motion artifacts. When 

applying the proposed approach to complex microvascular structures and in the presence of tissue 

displacement, this method would presumably necessitate a fine motion correction strategy [47], 
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which was not necessary in the present study due to negligible cardiac motion of the chicken 

embryo. All imaging was performed in live chicken embryos and it was noted that the heartbeat 

did tend to slow after introduction of the MB contrast agent. Subsequently, microvascular 

displacement was negligible relative to MB motion. An optimizer to correct any CEUS frame 

motion might have revealed any otherwise negligible microvascular pulsations. A multi-stage 

motion correction strategy for SR-US [48], [49] can be performed and will be needed with use of 

more complex in vivo models. Any of these respiratory, cardiac, or transducer motions would have 

a more profound impact on the skeletonization and thinning processing when devoid of a motion 

correction strategy. In future studies, we will explore use of motion correction before thinning and 

any subsequent microvascular measurements. The limitation of elevational plane thickness is 

minimized by having a smaller step size (90 µm) than the slice thickness (403 µm). This allowed 

overlap between sequential slices and a 90 µm window for updated and differentiable information 

between two slices.  

As MB size is known to impact SR-US image quality, use of a larger MB contrast agent [50] 

and more sensitive US imaging strategy [51] may further help improve quantification of the finer 

microvascular detail in the developing chicken embryo and other tissue environments. Recently, a 

simultaneous comparison between different transmit pulsing strategies revealed that a combined 

CEUS approach can improve SR-US imaging by increasing the number of MBs detected during a 

given acquisition time period [52]. It was also shown that MB tracking can help improve 

delineation of smaller vessels [53]. To use our quantification and visualization approach for SR-

US imaging of human subjects, the image processing will need to address additional 

considerations, including the impact of US attenuation and the ability to detect MBs at tissue depth, 
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acceptable motion correction accuracy, etc. Once adequate SR-US images are produced, our 

quantification and visualization approach could be applied without any known limitations. 

Although some promising results have shown that SR-US image can be formed using clinical data 

[54], 3D CEUS image acquisition needs to be assessed in a controlled clinical setup due to above 

noted (and other) potential concerns. 

7.5 Conclusion 

The work presented details a novel framework for image processing and validation of 3D SR-US. 

Morphological analysis of microvascular networks was validated using co-registered brightfield 

microscopy images. Microvessel segments with a diameter (size) below the B-mode US image 

resolution were visible in volume and surface reconstructions of the 3D SR-US image data. 
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CHAPTER 8   

 CONCLUSIONS AND FUTURE WORK 
 

8.1 Conclusions 

Microvascular networks are an integral component of all types of tissues and they may be used to 

monitor tissue function in patients diagnosed with several major diseases, including diabetes and 

cancer. Contrast-enhanced ultrasound (CEUS) provides a noninvasive characterization of tissue 

microvascular networks using morphological image processing pipelines. Currently, these 

imaging methods are limited by motion artifacts, low resolution, manual segmentation, and single 

plane imaging [1]. Ongoing studies suggest that advanced image registration methods can be used 

for motion correction and that super-resolution ultrasound (SR-US) imaging can achieve improved 

morphological quantification [2], [3]. Previous literature shows the necessity of additional work 

to be performed to provide multiscale three-dimensional (3D) quantification and visualization of 

tissue microvascular networks depicted in CEUS images [4], [5]. In this dissertation, the 

limitations of the image analysis pipeline for CEUS-derived tissue characterization are addressed 

using advanced image processing and multimodal imaging. Improvements are assessed using 

preclinical and clinical data. The purpose of this research aimed to: (1) improve the CEUS-derived 

image processing pipeline by using an advanced motion correction strategy and to assess the 

improved quantification of morphological parameters from tissue microvascular networks as a 

predictor of early therapy response; (2) develop and evaluate a multiscale and multiparametric 

quantitative analysis of high-resolution CEUS images from microvascular networks; and (3) 

develop and validate 3D visualization and quantification methods to demonstrate the feasibility of 

CEUS-derived 3D morphological microvascular analysis. 
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In the Chapters 2 to 4, a two-stage motion correction method to increase the accuracy of CEUS-

derived morphological feature maps that manifest the structural features of the tumor vascular 

networks. These structural features were used to evaluate patient-specific hepatocellular carcinoma 

(HCC) response to transarterial chemoembolization (TACE) treatment in 36 patients. The motion-

compensation approach increased the correlation coefficients (CC) values between consecutive 

frames by 40%. A multiscale vessel enhancement filter increased thinning accuracy by accounting 

for both small and large vessels together, though on different scales. By training a machine learning 

model with morphological features of number of vessels (NV), number of bifurcations (NB), and 

vessel-to-tissue ratio (VR), we achieved 86% validation accuracy, 89% sensitivity, and 82% 

specificity. Collectively, these performance metrics demonstrated that our model was able to make 

reliable pre-therapeutic predictions of HCC responses to TACE. This study showed the feasibility 

of morphologic feature extraction from HCC tumor vasculature after applying a motion correction 

strategy and the ability to assess the future TACE therapy response using CEUS imaging and 

machine learning. 

In Chapter 5, the image analysis pipeline is enhanced with the SR-US technique to utilize the 

advantages of multiscale analysis. Applying the SR-US technique allowed for the selection of 

vessels below 100 µm, and implementation of automated vessel diameter quantification made 

multiscale perfusion analysis possible. This automated technique enabled reproducible and 

repeatable CEUS-derived tissue characterization by morphological analysis. In addition to 

quantifying perfusion parameters (area-under-curve (AUC) and intensity peak (IPK)), two 

morphological parameters (NV and VR) were also quantified using morphological image 

processing methods. With these functional and structural parameters together, a new tool in 
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diabetes research was developed for multiparametric microvascular recruitment analysis with 

ultrasound (US).  

In Chapter 6, this multiparametric US approach was also applied to monitoring acute changes 

in pancreatic cancer after targeted hyaluronan (HA) treatment. This study demonstrated the 

association between structural and functional parameters. In response to HA-targeted therapy, HA 

was removed and interstitial pressure was reduced. As a result, previously collapsed 

microvasculature structures recovered by opening. This early response to the HA therapy was 

captured both quantitatively by increased perfusion and qualitatively by increased detail in the 

microvascular structure in the CEUS images. CEUS-derived quantifications were also validated 

by histological outcomes. 

In Chapter 7, a 3D CEUS-derived image analysis method is developed for the characterization 

of the tissue microvascular networks. The image analysis pipeline was validated by multimodal 

imaging. First, 3D CEUS-derived vessel diameter (VD) measurements were extracted using a flow 

phantom of known dimensions. Two different flow phantoms were used in a series of experiments 

to calibrate the image processing algorithms according to the ultrasound system and the focus of 

the transducer. The vessel diameters from a developing chicken embryo microvascular network 

were then measured using 3D CEUS imaging methods. Finally, we compared the VD 

measurements of 3D CEUS with two-dimensional (2D) B-mode US and microscopy images using 

the reference method full-width-half-maximum (FWHM). 3D CEUS-derived measurements 

achieved an absolute error of 4.8 µm while this error was 113.9 µm for the B-mode measurements. 

VD measurements deviated from the true value by 6.1% in the 3D CEUS method and by 77.1% in 

the FWHM method from B-mode US images. Improved quantification using 3D CEUS with 
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advanced imaging methods demonstrated superior performance. Volume and surface 

reconstructions of microvascular structure improved the visualization of high-resolution CEUS 

images. CEUS-derived 3D microvascular network mappings will enable tracking of the same 

vessels for longitudinal studies in future.  

8.2 Future work 

To use CEUS-derived morphological tissue characterization, image processing will need to 

address computational considerations. For example, the motion correction method presented in 

Chapter 2 to 4 and the 3D SR-US technique presented in Chapter 5 to 7 have used high 

performance computation clusters (HPC) [6]. The translation of these methods to the daily clinical 

practice requires faster processing and elimination of the need for any HPC. Future studies, 

therefore, may further improve the computation time by introducing deep learning methods. 
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