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ABSTRACT 

 

 

 Supervising Professor: Dr. Nasser Kehtarnavaz 

 

 

 

 

Classification of sound signals is increasingly being used in hearing improvement devices such as 

hearing aids, cochlear implants, and smart headphones. Classification of sound signals enables 

adapting the speech enhancement/noise reduction algorithms in such devices to different sound 

environments in an automatic manner. The thrust of this dissertation research has been on the 

development of sound signal classification approaches that are computationally efficient, thus 

enabling their real-time deployment in hearing improvement devices. Both supervised and 

unsupervised learning schemes have been examined. For the supervised case, effective and 

computationally efficient features and classifiers have been developed. For the unsupervised case, 

an online clustering algorithm has been developed without knowing the number of clusters. 

Experimental results obtained indicate that the developed classification approaches outperform the 

existing sound classification approaches in terms of both classification rates and computational 

efficiency. 
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CHAPTER 1 

INTRODUCTION 

Environmental sound signals classification constitutes a major component in machine listening 

systems. A major goal of machine listening systems is to achieve human-like auditory 

classification of sound signals, in particular speech, music, and different types of noise. A sound 

classification component often appears with other components or subsystems in the signal 

processing pipeline of hearing improvement devices. For example, it is well established that the 

hearing sensation of hearing aid users degrades considerably in noisy environments. Thus, there 

have been attempts at developing speech enhancement/noise reduction algorithms that are adaptive 

to different sound environments. Classification of sound signals enables adapting the speech 

enhancement/noise reduction algorithm in such devices to different sound environments in an 

automatic manner.  

Many sound signal classifiers have appeared in the literature. However, one aspect that has not 

been adequately addressed in the literature is the real-time computational efficiency aspect. Hence, 

the thrust of this dissertation research is placed on developing a real-time as well as a reliable 

classifier in real-world settings. In addition, a limitation of the existing sound classifiers is the 

supervised nature of the classification, meaning that a training procedure is first conducted based 

on a collected dataset. A challenge that arises as a result is how many sound classes should one 

consider. One possible solution would be to consider as many classes as possible. This would 

require extensive data collection and training. Furthermore, the sound environments encountered 

may vary from user to user. A more effective solution would be to make a hearing device user-

specific, in other words, by allowing the device to learn the sound environments on its own for a 
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specific user. Towards this objective, an on-the-fly clustering algorithm, which is capable of 

defining different clusters in real-time with no knowledge of the number of clusters is developed 

in this dissertation. This algorithm does not require any data collection for training. Clusters or 

sound classes get generated in real-time and in an on-the-fly manner.  

The contributions made in this dissertation consist of seven papers, five of which have already 

been published and two of which are under review at the time of this writing. These papers appear 

as the seven chapters of this dissertation. Each chapter provides an abstract of the contribution 

made, an introduction and literature review, the developed methodology, the results obtained 

together with discussion, and the conclusion associated with the corresponding chapter.  

Chapter 2 covers the development of computationally efficient features, named band-periodicity 

and band-entropy, for noise signals classification in cochlear implants. The experimental results 

show that the devised features along with the use of a Random Forest (RF) classifier outperform 

the state-of-the-art classifiers in terms of both classification rate and computational efficiency. A 

real-time implementation of this classification approach on Android smartphones is then covered 

in Chapter 3.  

In Chapter 4, a computationally efficient Voice Activity Detector (VAD) is developed to enable 

automatic switching between noise classification and speech enhancement for hearing aid 

applications. The developed VAD consists of a computationally efficient feature extractor and an 

RF classifier. This switching approach is compared to two popular VADs. The results obtained 

indicate the introduced approach outperforms these existing approaches in terms of both detection 

rate and processing time.  
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A hierarchical classification algorithm which is designed to classify sound signals in a 

computationally efficient manner is described in Chapter 5. The developed classification hierarchy 

consists of three levels to classify speech, music and different noise types. A distinguishing 

attribute of this hierarchical approach is that effective features are computed as needed at different 

levels of the hierarchy making the classification process computationally efficient. The results 

obtained show higher classification rates as well as higher computational efficiency of this 

hierarchical classification approach compared to the conventional one-step classification 

approach.  

As an application of the supervised classification approaches in the previous chapters, Chapter 6 

covers a multi-band environment-adaptive approach to noise suppression for cochlear implants to 

improve the speech processing pipeline in cochlear implants.  

Chapter 7 covers the unsupervised approach to sound signals classification by introducing an 

Online Frame-based Clustering algorithm named OFC, for applications in which data are received 

in a streaming manner as time passes by, with the number of clusters being unknown. This 

algorithm consists of a number of steps including density-based outlier removal, new cluster 

generation, and cluster updating. This algorithm is designed for applications when data samples 

are received in an online manner in frames. Experiments involving four synthetic and two real 

datasets are conducted to show the performance of the introduced clustering algorithm in terms of 

cluster purity and normalized mutual information. Comparison results with similar clustering 

algorithms are also reported exhibiting the effectiveness of the introduced online frame-based 

clustering algorithm. 
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In Chapter 8, a modification is made to the OFC algorithm by adding a feature extraction, a 

smoothing step and a fading step to perform real-time unsupervised classification of environmental 

noise signals without knowing the number of noise classes or clusters. The results obtained for 

actual noise signals exhibit the effectiveness of the introduced unsupervised classification in terms 

of both classification rate and computational efficiency. 
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ABSTRACT 

This chapter presents improvements made to the previously developed noise classification path of 

the environment-adaptive cochlear implant speech processing pipeline. These improvements 

consist of the utilization of subband noise features together with a random forest tree classifier. 

Three commonly encountered noise environments of babble, street, and machinery are considered. 

The results using actual noise signals indicate that this classification method provides 10% 

improvement in the overall classification rate compared to the previously developed classification 

while maintaining the real-time implementation aspect of the entire speech processing pipeline.   

  



 

7 

2.1 INTRODUCTION 

Since the introduction of cochlear implants (CIs) that has brought hearing sensation to profoundly 

deaf people, many advances have been made to improve their capabilities. It is well known that 

the hearing sensation of patients wearing cochlear implants degrades considerably in noisy 

background environments. In [1-5], we developed a speech processing pipeline that performs 

automatic classification of different background noises for the purpose of tuning the speech 

enhancement component of CIs according to the classified noise type.  

Many studies have been reported on noise classification consisting of the two major components 

of feature extraction and classification. Table 2.1 provides a representative listing of recent studies 

where different features and classifiers have been used to achieve background noise classification.  

Table 2.1. Previous works on noise classification 

References Year  Features  Classifier  

Khunarsal et al. [6] 2013 spectrogram, LPC and MP NN (neural network) classifier 

Chu et al. [7] 2012 MFCC and matching pursuit (MP) Deep belief network classifier 

Li et al. [8] 2010 
MFCC, rhythm pattern (RP) and 

matching pursuit (MP)  
SVM 

Lozano et al. [9] 2010 

MFCC, zero crossing rate, centroid 

and roll-off point with multi-

resolution window size 

GMM 

Chu et al. [10] 2009 matching pursuit (MP) and MFCC GMM 

Byeong et al. [11] 2009 

traditional features (TFs), change 

detection features (CDFs), 

and acoustic texture features (ATFs) 

SVM 

Ntalampiras et al. [12] 2008 MFCC and MPEG-7 features 
Hidden Markov Model 

(HMM) 

Kraetzer et al. [13] 2007 
63 statistical features computed 

by AAST 
Bayes classifier 

Eronen et al. [14] 2006 

zero-crossing rate (ZCR), MFCCs, 

delta-MFCC, band energy, spectral 

roll-off, linear prediction 

coefficients (LPCs) and linear 

prediction cepstral coefficient 

k-NN (k nearest neighbor) and 

one-state HMM  

Wang et al. [15] 2006 
spectral centroid, spectral spread, 

and spectral flatness  

Hybrid SVM and k-NN 

classifier 

Malkin et al. [16] 2005 
64 dimenstional MFCC and spectral 

centriod  
Auto-encoder NN and GMM 

Toyoda et al. [17] 2004 

instantaneous spectrum at power 

peak and the power pattern in the 

time domain 

NN  
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The classification rates for the listed studies varied from 80% to 95% using different datasets. One 

issue that has not been specifically addressed in these studies is the computational complexity or 

the real-time implementation aspect for actual deployment on a CI processing platform. In [1], it 

was shown that the use of mel-frequency cepstral coefficients (MFCC) features together with a 

Gaussian mixture model (GMM) classifier provided a balance between noise classification rate 

and real-time implementation on the PDA platform approved by the US Food and Drug 

Administration (FDA) for cochlear implant studies [3]. 

This work involves improving the results reported in [1] in two ways: First, in place of a GMM 

classifier, a tree classifier is used in order to improve the overall classification rate. This is the first 

time tree classifier is utilized for the purpose of achieving background noise classification. Second, 

alternative features to MFCC are considered in order to improve the overall classification rate. In 

this study, the noise classes have been limited to three widely encountered noise environments of 

babble noise (e.g., restaurant, mall), street noise, and machinery noise. Although there are other 

noise types or classes, by limiting the noise classes to the above three major noise environments, 

the computational complexity is kept low making the real-time deployment feasible. 

2.2 PREVIOUSLY DEVELOPED ENVIRONMENT-ADAPTIVE COCHLEAR 

IMPLANT PIPELINE 

The previously developed environment-adaptive speech processing pipeline for cochlear implants 

described in [1-5] is briefly mentioned here to provide an overview of the components involved. 

The pipeline consists of two parallel paths, see Figure 2.1, a speech processing path and a noise 

classification path, both running in real-time. The speech processing path includes a parameterized 

noise suppression component whose parameters are set according to the noise class identified by 
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the noise classification path. This path includes a voice activity detector (VAD) to determine 

whether signal frames are pure noise or speech+noise. Then, MFCC features are extracted from 

these durations and fed into a GMM classifier to determine the noise class or noise type. 

In sections 2.3 and 2.4, the modification of the noise classification path is presented. The 

performance results of the modifications are then reported in section 2.5.  

2.3 MODIFIED NOISE CLASSIFICATION 

The use of tree classifier has been growing for real-time applications due to their recall 

computational efficiency. There are different training methods for tree classifiers. It has been 

shown that ensemble training methods such as boosting and bagging are effective training methods 

for tree classifiers. In particular, in [18], the method of random forest (RF) was shown to provide 

higher or more accuracy than the other ensemble methods. In this method, ensemble of trees is 

grown independently using randomly selected subsets of the training data. For training, the entropy 

of the root node (starting point of training) starts high since all the training samples from all the 

Figure 2.1. Cochlear implant speech processing pipeline implemented in real-time [2] 
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classes are included at this level. Then, the tree is grown in a way that the amount of entropy is 

decreased at each level, finally reaching the leaves having the lowest entropy. 

Let 𝐻(𝑄) denote the entropy at node 𝑄, 

𝐻(𝑄) =  − ∑ 𝑃(𝜔𝑐) log2(𝑃(𝜔𝑐))  𝑐       

where 𝑃(𝜔𝑐) represents the portion of samples from class 𝜔𝑐 at node 𝑄. It is desired for this value 

to be 0, that is all the samples reaching this node corresponding to the same class; otherwise this 

value would be high when all the classes appear equally. Let us consider being at node 𝑄 and the 

samples are to be split between the left and right side of node 𝑄. The information gain after the 

split can be expressed by   

𝐼𝑄 = 𝐻(𝑆𝑄) − ∑
|𝑆𝑄

𝑑|

|𝑆𝑄|𝑑∈{𝑅𝑖𝑔ℎ𝑡,𝐿𝑒𝑓𝑡} 𝐻(𝑆𝑄
𝑑)   

where 𝑆𝑄 is the number of samples at node 𝑄, and 𝑅𝑖𝑔ℎ𝑡, 𝐿𝑒𝑓𝑡 indicate the left and right side. 

Among all possible splitting values, the value which provides the maximum information gain is 

selected. In other words, the split point which leads to a higher entropy reduction is used for 

growing the tree.  

The classification decision is then made based on the most voted class over all the trees. Each 

decision tree of RF is grown on a bootstrap training sample using a learning algorithm such as 

CARTS [19]. During the recall, a test input X gets pushed through all the trees (starting at the root) 

until it reaches the leaves. Figure 2.2 shows the recall or test process of RF. 

As the first contribution of this work, the RF tree classifier is used in place of the GMM classifier 

previously used in [1] in order to improve the classification outcome. As the second contribution 

of this work, alterative noise features are considered in place of the MFCC features previously 
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used in [1] in order to improve the classification outcome. These alternative noise features are 

discussed next.  

2.3.1 Subband Noise Features  

The alternative noise features considered include band periodicity (BP) and band entropy (BE). 

Band periodicity was used in [20] to distinguish between music and background noise based on 

the periodicity characteristics in each subband of a signal. This feature is utilized here to capture 

the periodicity aspect of the machinery noise signal whose characteristics remain mostly constant 

or stationary over time. Figure 2.3 illustrates the difference in the probability densities of this 

feature in the first subband for the three noise classes considered. 

The periodicity of each subband can be represented by the maximum local peak of the normalized 

correlation function. The normalized correlation function between two adjacent frames is 

calculated as follows: 

𝐶𝑏,𝑛(𝑘) =  
∑ 𝑓(𝑚−𝑘)𝑓(𝑚)𝑀−1

𝑚=0

√∑ 𝑓2(𝑚−𝑘)𝑀−1
𝑚=0 ∑ 𝑓2(𝑚)𝑀−1

𝑚=0

      

 

Figure 2.2. Recall process of Random Forest 
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where 𝐶𝑏,𝑛(𝑘)denotes the normalized correlation function between two frames with 𝑏 denoting 

band index and n frame index, 𝑓(. ) is the subband signal associated with the two consecutive 

frames, and 𝑀 indicates the frame length. Let the maximum local peak of the correlation of two 

adjacent frames be 𝐶𝑏,𝑛(𝑘𝑝). Then, the band periodicity of noise signal frames at each subband is 

calculated as follows: 

𝐵𝑃𝑏 =
1

𝑁
∑ 𝐶𝑏,𝑛(𝑘𝑝)𝑁

𝑛=1        

where 𝑁 indicates the total number of frames. 

Band entropy is a feature that provides a measure of entropy at each subband of noise signal 

frames, that is 

𝐵𝐸𝑏 =
1

𝑁
∑ 𝐻(𝑛)𝑁

𝑛=1        

 

Figure 2.3. Probability density curves of band periodicity for babble, machinery and 

street noise classes 
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where 𝐻(𝑛) denotes the entropy of nth frame. This feature is meant to capture the non-stationary 

characteristics of the babble and street noise types. 

2.4 CLASSIFICATION RESULTS 

To examine the effectiveness of the modifications made, noise data corresponding to the three 

noise environments of babble, street, and machinery were collected at a sampling frequency of 

44,100Hz. Randomly selected 80% of the dataset was used for training and the remaining 20% of 

the dataset was used for testing. This selection was repeated 100 times and the classification 

outcomes were averaged. 

For extracting MFCC features, the signals were windowed into 11msec frames as done in [1] via 

a Hamming window with 6 msec overlap. 50 CART trees were used for the RF tree classifier. 

Table 2.2 provides the classification outcome when using the GMM and the tree classifier while 

keeping the features the same as the ones in [1], i.e. 13 MFCC features. These results show that 

the tree classifier provided a higher classification rate than the GMM classifier. In addition, it was 

found that the computation time associated with the RF tree classification was approximately 30% 

lower than that of the GMM classifier. In other words, the entire speech processing pipeline could 

still be run in real-time. 

When using the subband features, as done in [20], the noise signals were segmented into 1s window 

frames across 8 subbands. These segments were then divided into forty 25-ms non-overlapping 

frames. It was found that the band periodicity of the first 6 subbands and the band entropy of the 

first 4 subbands provided the highest discriminatory power than the other bands. As a result, these 

10 subband features were used for the classification. Table 2.3 shows the classification confusion 

matrix via the tree classifier when using the 10 subband features in place of the original MFCC 
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features. As can be seen from this table, the overall classification rate was improved by 10% over 

the previous classification rate as a result of the two improvements made in this work. 

As stated earlier, to keep the complexity low, the noise classes were limited to the three widely 

encountered noise environments of babble noise, street noise, and machinery noise. Another 

experiment was carried out to examine the performance of our developed classification approach 

in the presence of other noise types. Table 2.4 provides the classification results for this 

experimentation. As can be seen from this table, other noise types were placed into the closest 

noise class with similar noise feature characteristics. 

Table 2.2. Comparison of GMM and RF Tree classification 

 
Babble Street Machinery 

GMM Tree GMM Tree GMM Tree 

Babble 90.1% 94.6% 7.2% 1.7% 2.7% 3.7% 

Street 5.5% 2.6% 91.6% 97.2% 2.9% 0.2% 

Machinery 10.2% 1.3% 4.8% 0.2% 85 % 98.5% 

 

Table 2.3. Confusion matrix using subband noise features 
 Babble Street Machinery 

Babble 98.3% 1.7% 0.0% 

Street 1.5% 98.5% 0.0% 

Machinery 0.1% 0.0% 99.9% 

 

Table 2.4. Treatment of other noise environments 

Noise  

Environment 

Mapped Noise Environment 

Babble Street 
Machiner

y 

Quiet office with 

PC fan running 
0% 0% 100% 

Bus on road 0% 3% 97% 

Party 100% 0% 0% 

Hood in kitchen 0% 0% 100% 

Market 90% 0% 10% 

Church 96% 4% 0% 

Airport 70% 10% 20% 
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2.5 CONCLUSION 

In this chapter, two modifications were made to the previously developed noise classification path 

of the environment-adaptive speech processing pipeline of cochlear implants. The first 

modification involved the utilization of a random forest tree classifier in place of a GMM classifier. 

The second modification involved the utilization of subband features to capture periodicity and 

entropy of noise signals. These modifications led to 10% increase in the overall classification rate 

while at the same time generating a lower computational burden, thus maintaining the real-time 

implementation aspect on the FDA approved PDA research platform for cochlear implant studies. 

It is planned to carry out a study on patients by turning on and off the classification path developed 

in this work.  
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ABSTRACT 

This chapter presents the real-time implementation and field testing of an app running on 

smartphones for classifying noise signals involving subband features and a random forest 

classifier. This app is compared to a previously developed app utilizing mel-frequency cepstral 

coefficients features and a Gaussian mixture model classifier. The real-time implementation has 

been carried out on both the Android and iOS smartphones. The field testing results indicate the 

superiority of this newly developed app over the previously developed app in terms of 

classification rates. 
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3.1 INTRODUCTION 

The problem of environmental background noise classification has been previously examined in 

many papers for various applications. Some example applications include classifying 

environmental sound signals in robotics [1], in smart homes for elderly people [2], and in automatic 

tagging of sound files [3]. In addition, noise classification has been utilized as part of speech 

enhancement or noise suppression pipelines for hearing aid and cochlear implant devices [4-6], 

where the speech enhancement parameters are adjusted depending on the environmental 

background noise.  

A typical environmental background noise classification algorithm consists of two major 

components: a feature extractor and a classifier. Signal features which have been previously 

considered for noise classification are many. The major ones include: mel-frequency cepstrum 

coefficients (MFCC), matching pursuit [7], zero crossing rate, centroid and roll-off point [8], 

spectral centroid, spectral spread, spectral flatness, spectral flux, change chirp rate spectrum, 

Hilbert envelope, local energy and discrete curvelet transform [9], harmonic ratio, upper limit of 

harmonicity, and audio fundamental frequency [10]. A combination of these features is often used 

to achieve a high classification rate [11].  

As far as classifiers are concerned, Hidden Markov Model (HMM), Gaussian Mixture Model 

(GMM), Support Vector Machine (SVM), neural networks, deep belief network classifier, k-

nearest neighbor have been utilized [7-12] for noise classification. 

As discussed in [13], one issue that has not been adequately addressed is the real-time computation 

aspect of such features and classifiers. In [13], band-periodicity and band-entropy features and 

Random Forest (RF) classifier were used to achieve background noise classification for cochlear 
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implants applications. It was shown that computationally efficient subband features along with an 

RF classifier (subband+RF) outperformed a previously developed MFCC and GMM 

(MFCC+GMM) approach [4, 14].  

In this chapter, a real-time implementation of the subband+RF noise classification is reported on 

both Android and iOS smartphones together with a performance comparison with the 

MFCC+GMM noise classification.  

The rest of the chapter is organized as follows. An overview of our previously developed 

background noise classifier using subband features and random forest classifier is provided in 

section 3.2. The steps taken towards the smartphone implementation of this classification approach 

are then reported in section 3.3. Section 3.4 includes the results corresponding to both offline 

analysis as well as real-time field testing. Finally, the conclusion is stated in section 3.5. 

3.2 OVERVIEW OF PREVIOUSLY DEVELOPED BACKGROUND NOISE 

CLASSIFICATION 

Although MFCC features have been extensively used in the literature for noise signal 

classification, it is found that they have limitations in realistic noise environments. That is why 

additional features are often used in addition to MFCC features to gain high classification rates. 

However, a practical problem that arises as a result of utilizing many features is the computational 

complexity associated with running a classification signal processing pipeline in real-time on 

handheld devices, in particular on smartphones. In [13], subband features and a random forest (RF) 

classifier were used as an alternative to MFCC features and a GMM classifier that had been shown 

to be computationally suitable to achieve real-time throughputs compared to many other features 

[4].  
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As discussed in [13], subband features consist of band-periodicity and band-entropy features. 

Band-periodicity features capture the periodicity aspect of noise signals whose characteristics 

remain more or less stationary over time; whereas band-entropy features capture the non-stationary 

characteristics of noise signals. Band-periodicity and band-entropy features are computed from 

signal segments of duration S seconds. Each segment is divided into M overlapping frames of 

length 𝑁, with the 𝑚𝑡ℎ frame specified by 𝐹𝑚 ≔ {𝑥𝑛|𝑥𝑛 ∈ ℝ, 𝑛 = 1, … 𝑁 }, where 𝑥𝑛represents 

the nth sample in the frame. Assuming the sampling rate of 𝐹𝑠, the frequency range [0,
𝐹𝑠

2
] is divided 

into B non-overlapping subbands. The cross-correlation between every two consecutive frames, 

that is 𝐹𝑚and 𝐹𝑚−1 in each band, is computed and the peak value of the cross-correlation is denoted 

by 𝑃𝑏,𝑚, where 𝑏 and 𝑚 represent the band and frame index, respectively. The band-periodicity 

feature in band 𝑏 is then defined as [15]:  

𝐵𝑃𝑏 =
1

𝑀
∑ 𝑃𝑏,𝑚  , 𝑏 = 1, … , 𝐵𝑀

𝑚=1          (3.1) 

where 𝑀 is the total number of frames over duration S. 

The band-entropy feature in each band over duration S is defined as:  

𝐵𝐸𝑏 =
1

𝑀
∑ 𝐻𝑏,𝑚

𝑀
𝑚=1  , 𝑏 = 1, … , 𝐵          (3.2)  

where 𝐻𝑏,𝑚 represents the entropy of the  𝑚𝑡ℎ frame in band 𝑏. Considering B bands, a feature 

vector of 2×B components is thus used to capture the signal characteristics over a duration of S 

seconds. The extracted feature vector is then fed into an RF classifier to find a matched class to 

the incoming signal frames. It is worth noting that band-periodicity and band-entropy features 

unlike the MFCC features are not sensitive to the sound loudness, thus they do not require any 

preprocessing normalization prior to their extraction. 
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An RF classifier [16] is an ensemble of T number of classification trees. Each tree is trained 

independently from other trees using a randomly selected (with replacement) subset of a training 

set. At the start of the training, or at the root node, the entropy is high since all training samples 

from all the classes are used at this stage. Then, the tree is built in such a way that the entropy is 

decreased as layers are added until the tree reaches its leaves with the lowest entropy allowing 

classification of all the training data.  

MFCC features are widely used in speech processing. MFCC features attempt to capture the 

spectral information corresponding to the human auditory response. MFCC features are computed 

by grouping the short time Fourier transform coefficients of a frame into a set of L coefficients 

based on L mel-scale non-overlapping filters or filterbank, followed by a discrete cosine transform 

for decorrelation purposes. Normally, the first 13 coefficients are used to serve as MFCC features. 

Likewise, the Gaussian Mixture Model (GMM) classifier is extensively used for signal 

classification. In this classifier, the data or samples corresponding to a class is modeled by a 

mixture of several Gaussians in the feature space whose parameters are estimated using the 

iterative expectation-maximization algorithm.    

3.3 REAL-TIME IMPLEMENTATION ON SMARTPHONES 

The subband feature extraction and the random forest classifier were coded in C which were then 

integrated into the Android and iOS smartphones using the guidelines provided in the book 

“Smartphone-Based Real-Time Digital Signal Processing” [17]. The shell provided in the book 

was used for the microphone interfacing and the GUI. The software tools that were used to achieve 

the smartphone implementation are noted below: For Android smartphones, the IDE (Integrated 

Development Environment) of Android Studio was used together with the Android SDK (Software 
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Development Kit) [18]. To support C codes within Android smartphones, the Android NDK 

(Native Development Kit) [19] was used. For the iOS implementation, the IDE of Xcode [20] was 

used. C codes were interfaced with Objective-C of iOS by importing the header file. Interested 

readers are referred to the above book for the details of embedding and running C codes within the 

Android and iOS environments. 

For feature extraction, signals were captured in frames of length 25msec with half a frame overlap, 

i.e., 12.5msec overlap. MFCC features were extracted from every frame and the extracted feature 

vector was fed into a GMM classifier. The implementation was done using 13 MFCC features with 

a mel-filter bank of 40 filters together with two Gaussians in the mixture model per class.  

Band-periodicity and band-entropy features were computed per signal segment of duration S =1 

second. Each incoming frame was divided into B = 8 non-overlapping bands of width 1kHz in the 

frequency domain. Thus, a feature vector of 16 subband features (8 band-periodicity and 8 band-

entropy features) was obtained over every 1 second which was then fed into an RF classifier 

consisting of 20 trees.  

Screen snapshots of the app on an Android smartphone are provided in Figure 3.1. The user has 

the option to perform online classification of sound signals that are captured by the smartphone 

microphone or to save captured sound signals for later examination. The app allows adjusting the 

sampling rate, frame length, frame overlap amount, and decision buffer length (in frame unit) for 

majority voting classification. 
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3.4 EXPERIMENTAL RESULTS AND COMPARISON 

The developed classification app was examined by considering three widely encountered noise 

types of babble, car driving and machinery. The examination was done in offline and field testing 

manners which are explained in more details in the subsection that follow. 

3.4.1 Dataset 

As part of the app development, a comprehensive dataset of 120 sound files for the three noise 

types of babble, car driving and machinery were put together which is accessible for public use at 

the website noted in [21]. The machinery class contains noise signals of home appliances. For each 

noise type, 40 sound files of duration 30 seconds were collected at different times at a sampling 

frequency of 16kHz using a Nexus 5 smartphone. For both the data collection and the real-time 

operation of the classifier, only one microphone of the smartphone is used. 

    

Figure 3.1. Snapshots of the developed noise classification smartphone app 
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3.4.2 Offline Evaluation and Comparison  

The MFCC+GMM and subband+RF classification approaches were evaluated in an offline manner 

first as follows. The dataset was randomly divided into a training (80%) and a testing set (20%) 

with no overlap between them. This procedure was repeated 100 times. Each time the classifiers 

were trained using a different training and testing sets and the averaged results are indicated in 

Tables 3.1 and 3.2. As can be noted from these tables, the subband+RF approach provided a higher 

overall classification rate compared to the MFCC+GMM approach, in particular for babble type 

of noise. This is attributed to the discriminatory power of subband features as compared to MFCC 

features as evident by computing the Fisher discriminant measure [22]: 

𝐽 = 𝑡𝑟𝑎𝑐𝑒 (𝑆𝑤
−1𝑆𝑏)          (3.3) 

where 𝑆𝑤denotes the within-class scatter matrix and 𝑆𝑏 the between-class scatter matrix. Higher 𝐽 

values indicate that samples in the multi-dimensional feature space are more separated. When 

using the subband features, this feature was found to be 𝐽 = 2350, while when using the MFCC 

features, this measure was found to be 𝐽 = 38, indicating a high level of spread or overlap between 

the babble class and the other two classes in the MFCC feature space.  

Table 3.1. Offline evaluation of subband+RF, averaged over 100 different training and testing 
            Detected class 

Actual class 

Babble 

(%) 

Car Driving 

(%) 

Machinery 

(%) 

Babble 98.9 0.1 1 

Car Driving 0 99.7 0.3 

Machinery 3.9 0.1 96 

 

Table 3.2. Offline evaluation of MFCC+GMM, averaged over 100 different training and testing 
            Detected class 

Actual class 

Babble 

(%) 

Car Driving 

(%) 

Machinery 

(%) 

Babble 86.5 11.5 2 

Car Driving 3.3 95.6 1.1 

Machinery 2.1 0.9 97 
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The next experimentation involved running the classifiers in real-time on actual smartphones in 

the field which is mentioned next.  

3.4.3 Actual Filed Testing and Comparison 

The developed classifier apps were run on smartphone platforms in the three noise environments 

to evaluate their actual performance in the field. The outcome of this experimentation appears in 

Tables 3.3 and 3.4. It is worth pointing out that since microphones on different smartphones have 

different frequency responses, the data collection and thus training were repeated for each device 

to remove any frequency dependency on the device microphone. As noted from these tables, the 

MFCC+ GMM app and the subband+RF app performed similarly in the noise environments of car 

driving and machinery. However, in the babble environment, the subband+RF app by far 

outperformed the MFCC+GMM app.  

The reason for the poor performance of the MFCC+GMM app in the field was traced back to the 

sensitivity of MFCC features versus subband features. MFCC features were found to be quite 

sensitive to various variations that occur in babble type of noise environments in the field whereas 

Table 3.3. Field testing of Subband +RF 

             Detected class 

Actual class 

Babble 

(%) 

Car 

Driving 

(%) 

Machinery 

(%) 

Babble 80.4 0 19.6 

Car Driving 0.4 99 0.6 

Machinery 0 0 100 

 

Table 3.4. Field testing of MFCC +GMM 

            Detected class 

Actual class 

Babble 

(%) 

Car 

Driving 

(%) 

Machinery 

(%) 

Babble 47.4 1.1 51.4 

Car Driving 1 99 0 

Machinery 0 0 100 
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the subband features were found to be much less sensitive to various variations that occur in babble 

type of noise environments. As a percentage, it was found that MFCC features exhibited a large 

variation of 173% in the field testing performed whereas subband features only exhibited a 

variation of 2% when encountered with variations of babble type of noise for which the classifiers 

had not been trained.  

Another study was conducted to assess the behavior of the apps in the presence of other noise types 

for which no training had been done. The outcome of this study appears in Table 3.5. As seen from 

this table, these other noise types got matched to the closest class with similar sound characteristics 

when using the subband+RF app, while the MFCC +GMM app could not distinguish between the 

babble and machinery noise types. For example, the crowded restaurant with music in the 

background, which was not part of the training data, was classified as machinery noise type and 

the loud indoor air conditioning (AC) noise, which was not part of the training data, was classified 

as babble noise type.  

The average processing times per 25msec frames with a frame overlap of 12.5msec for the 

subband+RF model on an Android platform (Nexus 5) and on an iOS platform (iPad Mini 2) are 

shown in Table 3.6. This time incorporates the i/o delay time associated with these devices. To 

 

Table 3.5. Treatment of other noise environments, subband+RF vs MFCC+GMM 

 Subband + RF MFCC + GMM 

             Matched class 

Other classes 

Babble 

(%) 

Car Driving 

(%) 

Machinery 

(%) 

Babble 

(%) 

Car 

Driving 

(%) 

Machinery 

(%) 

Crowded Restaurant 89.5 3.4 7.1 1 1 98 

Street 18.5 13.2 68.3 0 17.5 82.5 

Loud Indoor AC 0 16.3 83.7 98.9 1.1 0 

Washer 7.8 0.8 91.4 51.3 8.7 40 

Dryer 0 8.3 91.7 50.5 49.5 0 

Vacuum 0 0 100 0 0 100 
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achieve real-time throughputs, the total processing time needed to remain below 12.5msec for no 

frame to get skipped. When using the Vector Floating-Point (VFP) coprocessor hardware on the 

smartphones, the timings naturally improved. The table lists the timings with and without using 

VFP. In all the cases, real-time throughputs were achieved. A video clip of the subband+RF 

classification app can be viewed at the link stated in [23].  

  

3.5 CONCLUSION 

This chapter has provided an app for carrying out background noise classification in real-time on 

smartphone platforms. Two classification approaches having low computational complexity which 

allowed them to be run in real-time on smartphone platforms, namely MFCC+GMM and 

subband+RF, were implemented and compared in the field. The extensive experimentations 

carried out have shown that the subband+RF approach provides both real-time throughputs and 

high classification performance for the three commonly encountered noise environments of 

babble, car driving and machinery.  
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ABSTRACT 

This chapter presents a voice activity detector (VAD) for automatic switching between a noise 

classifier and a speech enhancer as part of the signal processing pipeline of hearing aid devices. 

The developed VAD consists of a computationally efficient feature extractor and a random forest 

classifier. Previously used signal features as well as two newly introduced signal features are 

extracted and fed into the classifier to perform automatic switching. This switching approach is 

compared to two popular VADs. The results obtained indicate the introduced approach 

outperforms these existing approaches in terms of both detection rate and processing time.  
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4.1 INTRODUCTION 

It is well known that the performance of the signal processing pipelines deployed in hearing aid 

devices degrade significantly in noisy environments. This in turn negatively impacts the hearing 

experience of users of these devices in noisy environments. Initial attempts to address this issue 

have involved adjusting the enhancement setting manually by users on these devices. More 

recently, attempts have been made to automatically adjust the enhancement setting depending on 

the noise types encountered by users. For example, in [1] a real-time speech processing pipeline 

for cochlear implants was developed that allowed an automatic on-the-fly classification of 

different background noise types for the purpose of tuning the speech enhancement parameters to 

the classified noise type.  

Such noise adaptive solutions require a voice activity detector (VAD) to be used at the frontend of 

the pipeline in order to identify the input sound status as unvoiced or voiced, that is as pure noise 

or speech plus noise. As illustrated in Figure 4.1, the noise classifier is activated when the VAD 

identifies the presence of pure noise and the speech enhancement is activated when the VAD 

identifies the presence of speech, noting that speech may appear as clean speech with no noise or 

 

Figure 4.1. Noise adaptive speech enhancement pipeline 
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more realistically as speech plus noise. It is important to note that the VAD should be able to 

identify pure noise irrespective of its type. In this work, our objective has been to develop a 

computationally efficient VAD that can cope with different types of noise as part of a noise 

adaptive speech enhancement pipeline.  

VAD constitutes an essential component in many speech processing applications such as speech 

enhancement and speech recognition for the purpose of distinguishing speech from noise. The 

literature includes many studies on VADs. A typical VAD consists of two modules: a feature 

extractor and a classifier. The first module extracts signal features that allow discrimination 

between voice and unvoiced signals. The second module is a decision making one to separate 

features of voiced signals from unvoiced signals. VADs can be categorized into two categories 

based on their decision making approach: statistical-based and machine learning-based. The 

statistical-based ones establish probability density functions for noise and speech classes and then 

a data driven decision rule is applied to classify speech signal segments or frames from noise signal 

segments or frames [2-4]. More recently, machine learning-based VADs have been developed 

generating improved performance [5-12]. Table 4.1 provides an overview of existing VAD 

approaches.  

The existing approaches have mostly concentrated on one type of noise with often stationary 

statistical characteristics. In this work, we consider different types of noise (stationary, semi-

stationary, and non-stationary). Furthermore, we have found many of the features used previously 

are computationally demanding relative to the features we have considered for separating voiced 

from unvoiced signals. The thrust of this work is thus on a computationally efficient VAD so that 

it can be deployed as an automatic switch as part of a real-time noise adaptive speech processing 
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pipeline in hearing devices. From a practical standpoint, this switch is designed in such a way that 

the switching between voiced and unvoiced situations only takes place in the presence of sustained 

type of sound environments, i.e. switching is not done frequently in response to noise or voiced 

frames rather in response to a large number of frames in a majority voting manner. 

The rest of the chapter is organized as follows. In section 4.2, the modules of the developed 

automatic switch or VAD are discussed. This is followed by the experimental results in section 

4.3. Finally, the conclusion is stated in section 4.4.  

4.2 DEVELOPED AUTOMATIC SWITCH OR VAD 

We have considered the following computationally efficient features to separate pure noise signals 

from speech signals that may also contain noise: band-periodicity, band-entropy, spectrum flux, 

subband short-time energy deviation (𝑆𝑇𝐸𝐷) and subband power spectral deviation (𝑆𝑃𝑆𝐷). These 

features are chosen here as they are found to exhibit good discriminatory power between pure 

noise signals and speech signals while at the same time they are computationally efficient to 

Table 4.1. Overview of existing VAD approaches 
Reference Year Features Decision rule 

 Kim et al. [5] 2016 likelihood ratios deep belief neural network  

Hwang et al. [6] 2015 
prior SNR, posterior SNR and 

 statistical-based features named LR 
ensemble of deep neural networks 

 Zou et al. [7] 2014 PCA- mel-frequency cepstral coefficients (MFCC) support vector machine (SVM) 

 Zhang et al. [8] 2014 multi-resolution cochleagram (MRCG) boosted deep neural network 

 Zhang et al. [9] 2013 

pitch, discrete Fourier transform (DFT), MFCC, linear 

predictive coding (LPC), relative-spectral perceptual 

linear predictive analysis (RASTA-PLP) , and 

amplitude modulation spectrograms (AMS) 

deep belief networks 

Wu et al. [10] 2011 multiple-observation maximum probability (MO-MP) 

features/ multiple-observation SNR(MO-SNR) features 

multiple kernel SVM 

Jo et al. [11] 2009 likelihood ratio SVM 

Kinnunen et al. [12] 2007 MFCC, delta-MFCC and double delta-MFCC SVM 
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compute. A feature vector consisting of the above feature components for a sound frame at time t 

is computed over the period [t-S, t]. 

Spectrum flux has been widely used to separate speech from noise signals. As defined in [13], 

spectrum flux denotes the averaged difference between spectra of two adjacent frames over a sound 

segment or frame of S-seconds duration, that is  

𝑆𝐹 =
1

𝐾×𝑀
∑ [log(𝐹(𝑚, 𝑘)) − log(𝐹(𝑚 − 1, 𝑘))]

2𝐾
𝑘=1      

where 𝐹(𝑚, 𝑘) denotes the spectrum of the 𝑚𝑡ℎ frame in the period [t-S, t] at frequency 𝑘, 𝐾 is the 

DFT length, and 𝑀 is the number of frames in the period. 

Band-periodicity and band-entropy features were introduced in [14] and later on were 

implemented to run in real-time on smartphone platforms [15]. These features along with a 

Random Forest (RF) classifier have been shown to provide effective discriminatory power for 

separating three different noise types: machinery, traffic and babble. These features are thus used 

here considering that they can be obtained in a computationally efficient manner. They are briefly 

explained next.  

Assuming the sampling rate of the input signals is 𝑓𝑠, the frequency range ([0,
𝑓𝑠

2
]) is divided into 

B non-overlapping subbands. For a frame at time t, the band-entropy and band-periodicity features 

are computed as follows:  

𝐵𝐸𝑏 =
1

𝑀
∑ 𝐻𝑏,𝑚 ,   𝑏 = 1, … , 𝐵𝑀

𝑚=1       

where 𝐻𝑏,𝑚 represents the entropy of the 𝑚𝑡ℎ frame during the period [t- S, t] in band 𝑏. 
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To compute the band-periodicity features, the cross-correlation between every two adjacent frames 

in each band is computed and then the peak value of the cross-correlation denoted by 𝜌𝑏,𝑚is used 

to define the band-periodicity features in band b as follows [13]:  

𝐵𝑃𝑏 =  
1

𝑀
∑ 𝜌𝑏,𝑚 ,   𝑏 = 1, … , 𝐵𝑀

𝑚=1       

Energy-based features have shown promising results for identifying the presence of speech. Hence, 

the energy level is also used here as a feature. Assuming that in a sustained noise environment, the 

level of background noise remains more or less constant, in the presence of speech, the energy 

level goes higher. In other words, on average, the deviation in the energy level between the highest 

(when a person talks) and the lowest energy level (gaps between speech frames) for speech and 

background noise is higher than that for pure noise as captured by a microphone. It is understood 

that there are exceptions to this assumption but in general this assumption holds in many practical 

situations. The deviation in the energy level of the input sound signal 𝑆𝑇𝐸𝐷 is computed in 

different frequency bands as follows: 

𝑆𝑇𝐸𝐷𝑏 =  
𝜇𝑏−𝛾𝑏

𝜇𝑏
 , 𝑏 = 1, … , 𝐵      

where 𝜇𝑏 and 𝛾𝑏 are the average and the minimum energy of 𝑀 frames during the period [t- S, t] 

in band b. Here, the average value is considered instead of the maximum value in order to capture 

noise which is sustained and to avoid capturing transient noise. The difference between the average 

and the minimum value for sustained noise is expected to be lower, while in the presence of noisy 

speech or clean speech is expected to be higher. Figure 4.2 presents the distributions of this feature 

for machinery noise and speech plus machinery noise at different SNRs. It can be seen that the 

distributions for the speech plus noise shift to the right of the pure noise distribution. 
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Another feature which is introduced and used here is the difference between two adjacent bands 

in the average power spectral density of sound signals over a long duration. The shape of the 

average power spectral density over a long duration provides an indication of which frequency 

regions of the spectrum are more affected by noise distortion and which ones are least affected. 

Figure 4.3 shows an example of the average power spectral density of clean speech, noisy speech 

and noise. As shown in this figure, the averaged difference in the power spectrum between the first 

and the second frequency bands for the clean speech is more noticeable compared to the pure noise 

and noisy speech. This feature is computed as follows:  

𝑆𝑃𝑆𝐷𝑏 =
1

(𝐾/𝐵)
(∑ 𝜔̃𝑏+1(𝑘)

𝑢𝑏+1
𝑘=𝑙𝑏+1

− ∑ 𝜔̃𝑏(𝑘)
𝑢𝑏
𝑘=𝑙𝑏

) , 𝑏 = 1, … , 𝐵 − 1    (4.5) 

 

𝜔̃𝑏 = 10 log10 ∑ 𝑃̅𝑀
𝑚=1 𝑏

, 𝑏 = 1, … , 𝐵              (4.6) 

 

where 𝜔̃𝑏 is the sum of power spectral density of frames, denoted by 𝑃̅𝑏, during the period [t-S, t], 

and𝑙𝑏& 𝑢𝑏represent the lower and upper frequencies of band b. 

 

Figure 4.2. Normalized distributions of STED feature in band 1 for pure machinery noise and 

speech plus machinery noise at 5dB and 10dB SNRs. 
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As stated earlier, for classification, an RF classifier is used since it is computationally efficient and 

provides good classification performance. An RF classifier is an ensemble of T number of decision 

trees. Each tree is trained independently using a randomly selected subset of the training set. Then, 

the tree is built in such a way that the entropy is decreased as tree levels are added until the tree 

reaches its leaves. In the recall mode, an input sound is assigned to the most voted class by all the 

trained trees in the RF. More details on RF classification can be found in [16]. 

4.3 EXPERIMENTAL RESULTS AND DISCUSSION 

This section reports the experimental results of switching when using the developed VAD. HINT 

sentences [17] are widely used by audiologists to measure a person’s ability to hear speech in noisy 

background environments. These sentences were thus used to serve as clean speech sounds. Noisy 

speech sounds were generated by adding three different noise types: machinery (stationary type), 

driving car (semi-stationary type) and babble (non-stationary type) to the HINT sentences at 

 

Figure 4.3. Average power spectral density of clean speech, noise and noisy-speech over long 

durations at 10dB SNR. 
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different SNR levels. The noise files are made available for public use and can be downloaded 

from the link http://www.utdallas.edu/~kehtar/VAD-dataset.  

Frames of 10 ms durations with 50% overlap were considered for feature extraction. Feature 

vectors were extracted for a majority voting period of S=200 ms. Four subbands, or B=4, were 

used for the subband features and 10 trees, or T=10, were used in the RF classifier. One half of the 

dataset was randomly chosen for training and the remaining half with no overlap was used for 

testing. Among the extracted subband features, the four band-periodicity features, the first two 

band-entropy features and the first band 𝑆𝑇𝐸𝐷 feature were found to be the most effective features 

by carrying out a minimum redundancy maximum relevance (MRMR) feature selection analysis 

as discussed in [18]. Thus, together with the spectrum flux and 𝑆𝑃𝑆𝐷 features, 9 features were 

used in total. 

The developed VAD was evaluated in terms of speech hit rate or true positive rate (TPR) and false 

alarm rate (FAR). True positive rate here means the ratio of number of correctly detected speech 

frames to the number of true speech frames and false alarm rate is defined based on non-speech 

detection hit rate (NHR) (FAR = 100-NHR), where non-speech hit rate denotes the ratio of number 

of correctly detected noise frames to number of true noise frames.  

Table 4.2 provides a comparison of the performance of our developed VAD with the standard 

G.729 annex B [19] and Sohn’s VAD [3] in terms of TPR and NHR. These results reflect the 

outcome after applying majority voting over 200 ms. The same majority voting was also 

considered for the other two VADs. As can be seen from this table, our approach outperformed 

these approaches by more than 25% in terms of TPR. The FAR for our VAD was about 5% while 

for G.729 and Sohn, it was much higher; 40.8% and 57.8%, respectively. Figure 4.4 shows an 

http://www.utdallas.edu/~kehtar/VAD-dataset
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example of sound segments passed through the developed VAD. This example consists of the 

concatenation of seven files consisting of pure noise and speech plus noise. As shown in this figure, 

it is important to note that the switching, denoted by vertical arrows, only occurred when the noise 

was sustained for more than 200 ms and the silent gaps between speech sounds did not get detected 

as noise. The gray area indicates the 200 ms latency associated with switching after the sound 

environment was changed. In terms of computation time, it took 7.5 ms to compute our features 

for 10 ms frames using a PC with 2.67 GHz clock compared to 13.4 ms and 11.1 ms for the features 

used in the G.729 and Sohn VADs.  

Table 4.2. Comparison between the developed VAD, G.729 VAD, and Sohn’s VAD in 

terms of speech hit rate and noise hit rate in percentage % 

Environments 
SNR 

(dB) 

Developed 

VAD 
G.729 Sohn 

Real noisy speech - 98.8 79.1 77.6 

Simulated noisy speech 

(machinery, driving car and 

babble noises) 

0 94.1 55.0 69.0 

5 95.9 74.1 70.0 

10 96.9 68.8 70.6 

15 98.4 70.6 73.5 

Clean speech - 99.5 56.2 67.8 

Pure noise (machinery, 

driving car, babble noises)  
- 95.0 59.2 42.2 

 

 

Figure 4.4. Illustration of switching between sustained noise and speech presence, small vertical arrows 

on top indicate the occurrence of switching, the grey area shows the latency associated with switching 

after transitioning to a new sound environment (for a 200 ms majority voting decision buffer). 
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4.4 CONCLUSION 

This chapter has presented an automatic switching mechanism between speech enhancement and 

noise classification for deployment in hearing devices. A total of nine computationally efficient 

features have been extracted and fed into a random forest classifier to identify the presence of 

speech in different types of noise. The results obtained have indicated that the developed automatic 

switch or voice activity detector outperforms two other popular voice activity detectors in terms 

of both detection rate and processing time.  
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ABSTRACT 

This chapter presents a hierarchical approach to sound signal classification for utilization in 

hearing improvement devices. The developed classification hierarchy consists of three levels to 

classify speech, music and different noise types. A distinguishing attribute of this hierarchical 

approach is that effective features are computed as needed at different levels of the hierarchy 

making the classification process computationally efficient. This approach is compared to the 

conventional one-step classification approach by examining both trained and non-trained sound 

signals. The results obtained show higher classification rates as well as higher computational 

efficiency of this hierarchical approach compared to the conventional one-step approach.  
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5.1 INTRODUCTION 

Classification of sound signals plays a major role in hearing improvement devices. Examples of 

such devices that benefit from a sound classification component or subsystem include hearing aids, 

cochlear implants, and smart headphones. It is well established that the hearing sensation of 

hearing aid users degrades considerably in noisy environments. Thus, there have been attempts at 

developing speech enhancement/noise reduction algorithms that are adaptive to different sound 

environments, e.g. [1-5]. Examples of commercially available hearing improvement devices that 

include a sound classification component are Phonak Bolero V hearing aid [6] and Cochlear 

Limited Necleus6 cochlear implant [7]. Classification of sound signals enables adapting the speech 

enhancement/noise reduction algorithm in such devices to different sound environments in an 

automatic manner.  

This work is aimed at introducing a computationally efficient classification component for hearing 

improvement devices in order to cope with three major categories of environmental sounds that 

are commonly encountered on a daily basis. These categories include speech in the presence or 

absence of background noise, music, and various types of background noise.  

A typical sound signal classification component or subsystem possesses two major modules: 

feature extraction and classifier. Different types of environmental sound signals have been 

considered in the literature for different applications. As the number of features is increased, the 

computational complexity of the classification is increased. It is well-known that the combination 

of many individual features does not necessarily lead to higher classification rates and often causes 

a limitation as far as the real-time implementation aspect is concerned. Thus, from a practical 

implementation standpoint, it would be helpful to break down the above multi-class classification 
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problem into several two-class classifiers, similar to the modulation signal classification discussed 

in [8]. This way, the classification process can be made computationally efficient by using a small 

number of effective features for each two-class classifier. This is achieved by performing the 

classification in a hierarchical manner. In this chapter, a hierarchical classification approach is thus 

developed to gain computational efficiency for utilization in hearing improvement devices noting 

that a hierarchical approach avoids unnecessary computation of features and classifiers.   

The rest of the chapter is organized as follows. Section 5.2 discusses the developed hierarchical 

classification approach. Then, in section 5.3, the details of the features used at each level of the 

hierarchy are mentioned. The experimental results appear in section 5.4. Finally, the conclusion is 

stated in section 5.5.  

5.2 HIERARCHICAL SOUND SIGNALS CLASSIFICATION 

The hierarchical approach to classification of sound signals has been limited to a few studies in 

the literature. In [9], a hierarchical rule-based approach was developed to classify audio signals 

from movies or TV programs. In [10], a hierarchical approach was proposed for recognition of 

environmental noise events, where input sound signals were initially classified into road 

vehicle/non-road vehicle noise. This was then followed by additional classifiers to separate the 

road vehicle noise into car, truck and motorbike noise classes, and the non-road vehicle noise into 

aircraft, train and industrial machinery noise classes. The features considered were MPEG-7, mel-

frequency cepstral coefficients (MFCC) and the classifiers used consisted of a k-nearest neighbor, 

a neural network, and a Gaussian mixture model (GMM) classifier. In [11], audio signal 

classification for a movie video abstraction scheme was presented in three stages: (i) silence or 

environmental noise detection, (ii) speech and non-speech classification, and (iii) pure music/songs 
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and speech with background music classification. In [12], a hierarchical algorithm for classifying 

urban mechanical sound signals consisting of aircraft, motorcycle, car, crowd, thunder, wind, train, 

horn was covered where at the top level, sound signals were classified into two categories of 

mechanical and non-mechanical sounds, then at a lower level, the mechanical sound signals were 

classified into aircraft, motorcycle, car and train, and the non-mechanical sounds were classified 

into crowd, thunder, wind, and horn via GMM and HMM classifiers.  

The focus of this work is on the development of a computationally efficient hierarchical 

classification approach for classifying non-quiet sound environments into music, speech, and 

background noise, where background noise signals are also classified into three types of noise: 

stationary (such as machinery), semi-stationary (such as driving car) and non-stationary (such as 

babble). Hence, basically a five class classification problem is addressed here in a hierarchical 

manner for the purpose of utilizing it in hearing improvement devices including hearing aids and 

cochlear implants.  

Figure 5.1 shows a block diagram of the developed hierarchical classifier. An incoming sound 

signal is first checked to see whether the environmental condition is quiet or not. No further 

processing is done for the quiet condition. Non-quiet sound signals are passed through a classifier 

to separate speech activity from absence of speech. If speech activity is not detected, the signal is 

passed to the second level of the hierarchy to see whether it is music or background noise. If the 

signal is detected to be noise, at the third level of the hierarchy, it is classified into three different 

noise types having stationary, semi-stationary and non-stationary statistical characteristics.  
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It is important to note that despite the existing hierarchical approaches that compute all the features 

at the start of the classification, in this hierarchical approach, effective features are extracted as 

needed at the appropriate level of the hierarchy. This approach improves the computational 

efficiency of the classification. It should be noted that the features that are already computed at 

higher levels are also utilized at lower levels. In the next section, the features that have been found 

effective at different levels of the hierarchy are described. 

 

Figure 5.1. Hierarchical classification of sound signals for hearing improvement devices 
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5.3 FEATURES AT DIFFERENT LEVELS OF HIERARCHY 

A list of the effective features used at different levels of the hierarchy is provided in Table 5.1.  

5.3.1 Quiet/ Non-quiet Condition 

As shown in Figure 5.1, an incoming sound signal is first seen to be quiet or non-quiet. This is 

achieved based on Sound Pressure Level (𝑆𝑃𝐿). The louder a sound signal becomes, the greater 

the change in air pressure gets. 𝑆𝑃𝐿 is computed as follows: 

 

𝑆𝑃𝐿 = 20 log10(𝜆/𝜆𝑟𝑒𝑓)               (5.1) 

 

where 𝜆 denotes the root mean square value of sound pressure and 𝜆𝑟𝑒𝑓  the pressure of the lowest 

sound level that a user of a hearing improvement device can hear. Usually the 𝑆𝑃𝐿 of quiet 

environments is less than 40dB. This value can be adjusted by the user depending on his/her 

perception level of a quiet environment. When the 𝑆𝑃𝐿 level exceeds such a set amount, the sound 

Table 5.1. List of features at different levels of the hierarchical classification approach 

Classification levels Features 

Level 0: quiet/non-quiet Sound Pressure Level (𝑆𝑃𝐿) 

Level 1: speech present/ 

speech absent 

Band-Periodicity 𝐵𝑃𝑏 , 𝑏 = 1, … , 𝐵, 

Subband Power Spectral Deviation SPSDb, 𝑏 = 1, 

Spectral Centroid 𝑆𝐶, 

High Zero-Crossing Rate Ratio (𝐻𝑍𝐶𝑅𝑅), 

Low Short-Time Energy Ratio (𝐿𝑆𝑇𝐸𝑅), 

and Spectrum Flux 

Level 2: music/noise 

Spectral Centroid 𝑆𝐶, 

High Zero-Crossing Rate Ratio (𝐻𝑍𝐶𝑅𝑅), 

Low Short-Time Energy Ratio (𝐿𝑆𝑇𝐸𝑅), 

Spectrum Flux 

Band-Periodicity 𝐵𝑃𝑏 , 𝑏 = 1, 

Band-Periodicity Deviation 𝐵𝑃𝐷𝑏 , 𝑏 = 1, … , 𝐵 − 1 

Subband Short-Time Energy Deviation STEDb, 𝑏 = 1 

Level 3: noise classifier Band-Periodicity 𝐵𝑃𝑏 , 𝑏 = 1, … , 𝐵 

Band-Entropy 𝐵𝐸𝑏 , 𝑏 = 1, … , 𝐵 

 

https://en.wikipedia.org/wiki/Root_mean_square
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signal is considered to be non-quiet and is passed to the first level of the hierarchy to detect any 

speech activity in it.  

5.3.2 Speech/ Non-speech Activity Detection  

Many works have been carried out in the literature to separate speech from non-speech signals, 

e.g. [13-16]. In [11], normalized root mean square (RMS) amplitude, normalized RMS variance, 

low short-time energy ratio, minimum value of RMS amplitude, mean value of autocorrelation 

coefficient, variance of log-energy, variance of differential-log energy, variance of spectral 

entropy, and the variance of second and third MFCCs were used for separating speech activity 

signals from other sound signals. In [17], spectral centroid, spectral flux, zero-crossing rate, 4Hz 

modulation energy (related to the syllable rate of speech), and the percentage of low-energy 

frames, were used to discriminate speech signals from various types of music. In [18], low short-

time energy ratio, high zero-crossing rate ratio, spectrum flux were used to separate speech from 

non-speech sound signals. It is observed that zero-crossing rate (ZCR), short time energy, spectrum 

flux, root mean square (RMS), MFCC, and spectral centroid have been widely used for the purpose 

of detecting speech activity.  

In this chapter, the features reported in the previous works were examined in terms of their 

discriminatory power towards detecting the presence of speech via the Fisher discriminant score:  

 

𝐽 = 𝑡𝑟𝑎𝑐𝑒(𝑆𝑤
−1𝑆𝐼)           (5.2) 

 

where 𝑆𝑤 denotes the within-class scatter matrix and 𝑆𝐼 the between-class scatter matrix. Higher 𝐽 

values indicate more separation in the multi-dimensional feature space. The features identified to 

have high 𝐽 values for separating the presence and absence of speech are mentioned next.  

https://en.wikipedia.org/wiki/Root_mean_square
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In [18], the high zero-crossing rate ratio (𝐻𝑍𝐶𝑅𝑅) feature was proposed for separating speech 

from non-speech sound signals. This feature captures the ratio of number of frames whose zero-

crossing rate ratio is above the average value across a segment of the signal,    

𝐻𝑍𝐶𝑅𝑅 =
1

2𝑀
∑ [𝑠𝑔𝑛(𝑧𝑐𝑟(𝑚) − 1.5𝜇𝑧𝑐𝑟) + 1]𝑀

𝑚=1         (5.3) 

 

 𝜇𝑧𝑐𝑟 =
1

𝑀
∑ 𝑧𝑐𝑟(𝑚)𝑀

𝑚=1            (5.4) 

where 𝑧𝑐𝑟(𝑚) denotes the zero-crossing rate of the 𝑚𝑡ℎ frame, 𝑀 is the number of frames and 

𝜇𝑧𝑐𝑟 is the average 𝑧𝑐𝑟 in a duration of S-seconds. It is worth noting that all features in this work 

are computed from signal segments of duration S-seconds of 𝑀 overlapping signal frames, with 

the 𝑚𝑡ℎ frame expressed as 𝐹𝑚 ≔ {𝑥𝑛|𝑥𝑛 ∈ ℝ, 𝑛 = 1, … 𝑁}, where 𝑥𝑛 represents the 𝑛𝑡ℎ sample 

in this frame of size 𝑁.  

The low short-time energy ratio (𝐿𝑆𝑇𝐸𝑅) feature was discussed in [18] for separating speech from 

music signals. This feature reflects the ratio of the number of frames whose energy level is one 

half below the average energy of the signal over a S-seconds signal segment, that is  

𝐿𝑆𝑇𝐸𝑅 =
1

2𝑀
∑ [𝑠𝑔𝑛(0.5𝜇𝐸𝑅 − 𝐸𝑅(𝑚)) + 1]𝑀

𝑚=1          (5.5) 

 

where 𝐸𝑅(𝑚) and 𝜇𝐸𝑅 denote the energy of the 𝑚𝑡ℎ frame and the average energy in a S-seconds 

signal segment, respectively. Figures 5.2 and 5.3 illustrate the distributions associated with the 

high zero-crossing rate ratio and the low short-time energy ratio features for the presence and 

absence of speech of a typical dataset. Figure 5.4(a) shows a scatter plot of the 𝐻𝑍𝐶𝑅𝑅 and 𝐿𝑆𝑇𝐸𝑅 

features for speech and noise signals of a typical dataset.  
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Another feature which is used here is the difference between two adjacent bands in the average 

power spectral density of sound signals named subband power spectral deviation (𝑆𝑃𝑆𝐷). This 

feature was introduced in [19] for speech activity detection, and is computed as follows:  

𝑆𝑃𝑆𝐷𝑏 =
1

(𝐾/𝐵)
(∑ 𝜔̃𝑏+1(𝑘)

𝑢𝑏+1
𝑘=𝑙𝑏+1

− ∑ 𝜔̃𝑏(𝑘)
𝑢𝑏
𝑘=𝑙𝑏

) , 𝑏 = 1, … , 𝐵 − 1        (5.6) 

 

𝜔̃𝑏 = 10 log10 ∑ 𝑃̅𝑀
𝑚=1 𝑏

, 𝑏 = 1, … , 𝐵                                           (5.7) 

 

Figure 5.2. Distributions of the high zero-crossing rate ratio (𝐻𝑍𝐶𝑅𝑅)feature for speech and non-

speech sound signals of a typical dataset 

 

 

 

Figure 5.3. Distributions of the low short-time energy ratio (𝐿𝑆𝑇𝐸𝑅) feature for speech and non-

speech sound signals of a typical dataset 
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where 𝜔̃𝑏 is the sum of power spectral density of frames, denoted by 𝑃̅𝑏 over [t-S,t], and 𝑙𝑏& 

𝑢𝑏 represent the lower and upper frequencies of band 𝑏. As mentioned in [19], the average 

difference in the power spectrum between the first and the second frequency bands 𝑆𝑃𝑆𝐷1 for 

speech signals is more noticeable compared to the other sounds. Thus, in this work, only 𝑆𝑃𝑆𝐷1 

is used. Adding this feature increases the Fisher discriminant score. Figure 5.4(b) shows the scatter 

plot of the 𝑆𝑃𝑆𝐷1 and 𝐿𝑆𝑇𝐸𝑅 features of a typical dataset.  

In addition to these features, spectral centroid, spectrum flux, and band-periodicity are considered 

in this work to provide more discriminatory power between the presence and absence of speech. 

By adding these features to the aforementioned ones, a feature vector with higher Fisher 

discriminant score is achieved. 

Spectrum flux defines the difference between spectra of adjacent frames and is widely used in 

speech activity detection applications. This feature is expressed as 

𝑆𝐹 =
1

𝐾×𝑀
× ∑ ∑ [𝐴(𝑚, 𝑘) − 𝐴(𝑚 − 1, 𝑘)]2𝐾

𝑘=1
𝑀
𝑚=1           (5.8) 

 

Figure 5.4. Scatter plots of (a) high zero-crossing rate ratio (𝐻𝑍𝐶𝑅𝑅) and low short-time energy 

ratio (𝐿𝑆𝑇𝐸𝑅) features, (b) low short-time energy ratio (𝐿𝑆𝑇𝐸𝑅) and subband power spectral 

deviation1 (𝑆𝑃𝑆𝐷1) features for speech and non-speech sound signals of a typical dataset 
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where 𝐴(𝑚, 𝑘) is the spectrum of the 𝑚𝑡ℎ frame at bin 𝑘. In this work, similar to [18], the average 

value of spectrum flux over S-seconds of sound signals is considered.  

Spectral centroid is also a widely used feature for classifying different sound activities. This feature 

is expressed as 

𝑆𝐶(𝑚) =
∑ 𝑘𝐴(𝑚,𝑘)𝐾

𝑘=1

∑ 𝐴(𝑚,𝑘)𝐾
𝑘=1

               (5.9) 

 

where 𝐴(𝑚, 𝑘) is the spectrum of the 𝑚𝑡ℎ frame at bin 𝑘. Here, the average spectrum centroid over 

S-seconds of sound signals is considered. 

In [18], so called band-periodicity features were used to separate music from other environmental 

sounds. These features along with a Random Forest (RF) classifier were shown to provide high 

discriminatory power towards distinguishing speech sound signals from noise sound signals [19]. 

These features are briefly explained below.  

Assuming the sampling rate is 𝑓𝑠, the frequency range [0,
𝑓𝑠

2
] is divided into a number of B linear 

non-overlapping subbands. To compute the band-periodicity features, the cross-correlation 

between every two adjacent frames in each band is computed and then the peak value of the cross-

correlation denoted by 𝜌𝑏,𝑚 is used to define the band-periodicity features in band b as follows 

[20-21]:  

𝐵𝑃𝑏 =
1

𝑀
∑ 𝜌𝑏,𝑚 , 𝑏 = 1 … , 𝐵𝑀

𝑚=1           (5.10) 

5.3.3 Music/ Noise Separation  

Classifying or separating music from noise signals such as machinery noise is a challenging task 

since such signals exhibit similar periodicity characteristics. Although there are many papers in 
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the literature that have addressed the separation of speech from music, there are relatively limited 

works on separating music from noise [22]. In [23], short-time energy (STE), spectral flatness and 

MFCC were used for this purpose. In [18], the band-periodicity, spectrum flux, and noise frame 

ratio features were used to distinguish between music and environmental noise signals.  

In the developed hierarchical approach, the music/noise classification is activated only if the sound 

signal at the previous level is detected as a non-speech sound signal by using these features: 𝑆𝐹, 

𝑆𝐶, 𝐻𝑍𝐶𝑅𝑅, 𝐿𝑆𝑇𝐸𝑅, 𝑆𝑃𝑆𝐷1 and 𝐵𝑃𝑏 , 𝑏 = 1, … , 𝐵.  As noted earlier, the features which are 

extracted at higher levels are also used at lower levels. Our analysis has shown that 𝑆𝑃𝑆𝐷1, which 

is extracted in the speech/non-speech classification level, does not have any noticeable impact on 

the music/noise classification outcome. Also, our analysis has revealed that the band-periodicity 

of the first band provides the highest discriminatory power between the two classes compared to 

the other bands. Figure 5.5 shows the distributions of the band-periodicity feature in the first band 

for music and noise signals of a typical dataset.  

The difference between the first two band-periodicity features, that is 

𝐵𝑃𝐷𝑏 = 𝐵𝑃𝑏+1 − 𝐵𝑃𝑏 , 𝑏 = 1, … , 𝐵 − 1                  (5.11) 

 

Figure 5.5. Distributions of the band-periodicity 𝐵𝑃1 feature for music and noise sound 

signals of a typical dataset. 
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is also used at this level. Another feature used at this level is the subband short-time energy 

deviation 𝑆𝑇𝐸𝐷. In [19], this feature was used to separate speech from noise signals. Assuming 

that in a sustained noise environment, the level of background noise remains more or less constant, 

the energy level fluctuates considerably for music signals in particular when the music involves 

singing. In other words, on average, the deviation in the energy level between the highest and the 

lowest energy level for music is higher than that for pure noise. It is understood that there are 

exceptions to this assumption but in general this assumption holds in many practical situations. 

The deviation in the energy level of the input sound signal 𝑆𝑇𝐸𝐷 is computed in different 

frequency bands as follows: 

𝑆𝑇𝐸𝐷𝑏 =  
𝜇𝑏−𝛾𝑏

𝜇𝑏
 , 𝑏 = 1, … , 𝐵                                         (5.12) 

where 𝜇𝑏 and 𝛾𝑏 denote the average and the minimum energy of 𝑀 frames over [t-S,t] in band 𝑏. 

Here, the average value is considered instead of the maximum value in order to capture noise 

which is considered to be of a sustained nature and to avoid capturing any transient noise. The 

difference between the average and the minimum value for sustained noise is expected to be lower, 

while in music it is expected to be higher. Figure 5.6 shows the distributions of this feature for 

machinery noise and music of a typical dataset. From this figure, one can see that the distribution 

for music signals appears to the right of the distribution for pure noise signals. 

5.3.4 Noise Type Classification 

Noise classifier is activated at the lowest level of the hierarchy if noise activity is detected at the 

music/noise level. At this level, the noise signal is classified into three different classes labeled 

stationary, semi-stationary and non-stationary based on their statistical characteristics. Here, the 
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noise classifier developed in [20] is used based on the band-periodicity and band-entropy features. 

Similar to the band-periodicity features, the band-entropy features are computed as follows:  

𝐵𝐸𝑏 =
1

𝑀
∑ 𝐻𝑏,𝑚

𝑀
𝑚=1 , … . , 𝐵            (5.13) 

where 𝐻𝑏,𝑚 denotes the entropy of the 𝑚𝑡ℎ frame in band 𝑏. 

5.3.5 Random Forest Tree Classifier   

At each level of the hierarchy, a random forest tree classifier is used to perform the classification. 

Tree classifiers are widely used in machine learning applications and are suited for real-time 

implementation due to their computational efficiency during testing or operation. In [24], the 

method of random forest (RF), which is an ensemble of randomly trained decision trees, was shown 

to provide higher accuracy than other commonly used classifiers. An RF classifier is a combination 

of a number of classification trees. Each tree is trained independently from other trees via a 

randomly selected (with replacement) subset of training data. A brief overview of training and 

testing a tree is stated below. The interested reader is referred to [24] for more details on RF 

classifiers. 

 

Figure 5.6. Distributions of the subband short-time energy deviation 𝑆𝑇𝐸𝐷1 for 

music and noise sound signals of a typical dataset. 
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A tree is a set of nodes and branches which is structured in a hierarchical manner. Nodes are either 

internal nodes or terminal nodes. All nodes have one input (incoming branch) and only two 

outgoing branches. Training a tree starts at the root node, where all the training samples from all 

the classes are included at this level which correspond to the situation with the information content 

being low or entropy being high. Then, the tree is grown in such a way that the amount of entropy 

is decreased at each level by maximizing an information gain objective function at each split node, 

where entropy 0 at a node means that all the data at that node are from one class. After training, 

classification decision is made based on the most voted class over all the trees. A test sample is 

pushed through all the trees simultaneously until it reaches the leaves. 

5.4 EXPERIMENTAL RESULTS AND DISCUSSION 

To examine the effectiveness of the developed hierarchical classification approach, a dataset 

consisting of five classes of music, speech, machinery noise, driving car noise, and babble noise 

was considered. Sound files were collected at different RMS levels from these sound 

environments. Each sound class contained 120 sound files of duration 30 seconds that were 

collected at a sampling rate of 16kHz. The speech class contained clean speech and noisy speech 

that was created by adding the background noise signals at different signal to noise ratios (SNRs). 

One half of the dataset was chosen randomly for training and the other half for testing. Input sound 

signals were captured using a frame size of 11ms with 5.5ms overlap between consecutive frames. 

The segment length S for feature extraction was considered to be 1 second. Sample sound files of 

the dataset examined can be downloaded and listened to from this link 

http://www.utdallas.edu/~kehtar/SampleSoundFiles.rar. 

http://www.utdallas.edu/~kehtar/SampleSoundFiles.rar
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For the subband feature extraction, the use of more than 4 bands or 𝐵 = 4 did not make much 

difference in the outcome. Thus, to gain computational efficiency, only 4 bands were considered. 

For the RF classification, different numbers of trees were considered and it was found that a 

random forest of size more than 10 did not make much difference in the classification outcome. 

Thus, the number of trees of the RF classification was set to 10. 

In our first study, the developed hierarchical approach was compared with the one-step 

classification approach, that is by extracting all the features together and the classification was 

conducted by separating the classes in one step. The results of this comparison averaged over 100 

different training and testing cases (no overlap between training and testing samples in each case) 

and also over different RMS levels are provided in Tables 5.2 and 5.3. The classification results at 

each level of the hierarchy are also shown in these tables. As seen from these tables, the 

hierarchical classification outperformed the one-step classification by 13% over all the classes; 

more specifically, by 10% in the classification of music, by 27% in the classification of stationary 

noise type, and by 30% in the classification of non-stationary noise type. It can also be observed 

that at the first level of the hierarchy, the presence of speech was achieved 97% of the time. At the 

second level of the hierarchy, music and noise were separated 88% of the time and at the third 

level of the hierarchy, the noise type was identified 99% of the time. 

Another study was conducted to assess the behavior of the developed hierarchical classification in 

the presence of other sound signals for which no training had been done. A dataset consisting of 

non-trained sound files were collected and used for testing. Sample sound files of this testing 

dataset can be downloaded and listened to from this link 

http://www.utdallas.edu/~kehtar/SampleSoundFiles.rar.  

http://www.utdallas.edu/~kehtar/SampleSoundFiles.rar
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Table 5.2. Confusion matrix (percentages) of one-step classification averaged over 100 

training/testing cases with an overall classification rate of 79% 

 Speech 

present 
Music 

Stationary 

noise type 

Semi-

stationary 

noise 

type 

Non-

stationary 

noise 

type 

Speech 

present 
95 1 0.2 0.2 3.6 

Music 18.9 70 1.7 1.7 7.7 

Stationary 

noise type 
0.8 0.3 73.5 9 16.4 

Semi-

stationary 

noise type 

1.8 0.5 1.4 95.3 1 

Non-

stationary 

noise type 

16.4 2.2 11.4 8.4 61.4 

 

Table 5.3. Confusion matrix (percentages) of hierarchical classification averaged over 100 

training/testing cases with an overall classification rate of 92.6% 

  
Speech 

present 
Music 

Stationary 

noise type 

Semi-

stationary 

noise type 

Non-

stationary 

noise type 

 Speech 

present 
96 1.3 0.6 0 2.1 

Music 6 80 4 4.7 5.3 

Stationary 

noise type 
0.3 0.5 99 0.1 0.1 

Semi-

stationary 

noise type 

0.1 2.5 0.1 97.3 0 

Non-

stationary 

noise type 

3.5 4.5 0 1 91 

 

Level 1 
Speech 

present 

Non-

speech 

Speech 

present 
96 4 

Non-speech 2 98 
 

  

 
Level 2 Music Noise 

Music 81 19 

Noise 4 96 
 

 

  
Level 3 

Stationary 

noise type 

Semi-

stationary 

noise type 

Non-

stationary 

noise type 

Stationary 

noise type 
100 0 0 

Semi-

stationary 

noise type 

0.3 99.5 0.2 

Non-

stationary 

noise type 

0 0.9 99.1 
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The confusion matrices of this study appear in Tables 5.4 and 5.5. As can be seen from these tables, 

nearly 50% improvement in the overall classification rate was obtained when using the hierarchical 

approach as compared to the conventional one-step approach. 

As far as the computational efficiency aspect is concerned, the processing time of the one-step 

classification was found to be 2.3ms on a laptop with a 2.4GHz processor for 11ms signal frames 

Table 5.4. Classification percentages of non-trained sound environments when using the one-step 

approach 

 Music 
Speech 

present 

Stationary 

noise type 

Semi-stationary 

noise type 

Non-stationary 

noise type 

live bar music 64.9 16.7 2.3 15.7 0.4 

loud car engine 1.1 1.5 1.3 96.2 0 

driving car 0 0 0 99 1 

outdoor ac 0 0 100 0 0 

train 9.8 50.8 4.9 31.1 3.3 

vacuum 4.4 22.7 62.5 1.9 8.4 

hair dryer 3.1 17.8 68.3 8.5 0.7 

mall 4.8 92.9 0 1.8 0.5 

church 2.4 1.2 0 96.4 0 

Speech 

(HINT sentences) 
9.1 81.8 0 0 9.1 

restaurant 0.4 3.3 0 35 61.3 

 

Table 5.5. Classification percentages of non-trained sound environments when using the 

hierarchical approach 

 Music 
Speech 

present 

Stationary 

noise type 

Semi-stationary 

noise type 

Non-stationary 

noise type 

live bar music 98.5 0 1.5 0 0 

loud car engine 1.1 0 0.4 98.5 0 

driving car 0 0 0 100 0 

outdoor ac 0 0 97.7 2.3 0 

train 57.4 0 8.2 26.2 8.2 

vacuum 2.7 0 97.3 0 0 

hair dryer 0 1.1 79.8 15.2 2.8 

mall 3.6 91.6 0 0 4.8 

church 84.3 15.7 0 0 0 

Speech 

(HINT sentences) 
0 100 0 0 0 

restaurant 2.1 1.7 3.8 13.3 79.2 
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captured by its sound card. However, when using the hierarchical classification, the average 

processing time across the three levels was reduced to 1.8ms.  

5.5 CONCLUSION 

A hierarchical classification approach to distinguish environmental sound signals has been 

developed in this chapter. The computational efficiency of this classification approach makes it 

suited for deployment in hearing improvement devices. Furthermore, it has been shown that by 

processing input signal frames via the hierarchical classification developed in this work, higher 

detection rates with higher robustness to non-trained sound signals are acquired compared with the 

conventional one-step classification.  
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ABSTRACT 

This chapter presents an improved environment-adaptive noise suppression solution for the 

cochlear implants speech processing pipeline. This improvement is achieved by using a multi-band 

data-driven approach in place of a previously developed single-band data-driven approach. Seven 

commonly encountered noisy environments of street, car, restaurant, mall, bus, pub and train are 

considered to quantify the improvement. The results obtained indicate about 10% improvement in 

speech quality measures. 
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6.1 INTRODUCTION 

Cochlear Implants (CIs) are surgically implanted devices that enable hearing sensation in 

profoundly deaf people. It is known that speech understanding by CI patients drops significantly 

in noisy environments. The literature includes many studies, e.g. [1, 2], where noise suppression 

is achieved by treating all noise types as noise with no distinction in the characteristics of the noise 

in a particular environment.  

 In the previous works conducted by our research team [3-6], a more effective noise suppression 

in terms of speech quality was developed by automatically adapting to different noise types. In 

addition, the real-time implementation of our environment-adaptive speech enhancement was 

provided as part of the CI speech processing pipeline on the FDA-approved PDA (Personal Digital 

Assistant) research platform. In these works, the adaptive-environment aspect was achieved by 

utilizing a number of gain tables for different noise environments based on the data-driven 

approach in [7]. In other words, for each noisy environment, a gain table discretized over a range 

of priori and posteriori SNRs was obtained. This table was built without distinguishing among 

different frequency bands. 

Noting that the spectrum of real-world noise signals varies depending on different frequency 

bands, this chapter provides a multi-band environment-adaptive speech enhancement approach. In 

this approach, a number of gain tables were trained for different frequency bands. It is shown that 

this multi-band approach generates improved results over the previously developed single-band 

approach. 

The rest of the chapter is organized as follows: section 6.2 provides an overview of the previously 

developed environment-adaptive speech processing pipeline of CIs. The new multi-band approach 
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is then presented in section 6.3 followed by the experimental results in section 6.4. Finally, the 

conclusion is stated in section 6.5. 

6.2 OVERVIEW OF PREVIOUSLY DEVELOPED ENVIRONMENT-ADAPTIVE 

NOISE SUPPRESSION PIPELINE 

Figure 6.1 shows a block diagram of the environment-adaptive pipeline for cochlear implants that 

was previously developed in [3]. This environment-adaptive CI speech processing pipeline is 

briefly mentioned here to set the stage for the understanding of the multi-band approach. The 

pipeline consists of two parallel paths running in real-time: speech processing path, and noise 

detection/classification path. The noise detection/classification path uses a Voice Activity Detector 

(VAD) to determine if a current signal frame is speech+noise or pure noise. If it is found to be 

pure noise, mel-frequency cepstrum (MFCC) or sub-band features are extracted and fed into a 

trained Gaussian Mixture Model (GMM) or Random Forest (RF) classifier to determine the noise 

type [8]. The speech processing path includes a parameterized noise suppression component whose 

parameters get automatically used based on the noise class determined by the classification path. 

6.2.1 Data-driven Noise Suppression  

To achieve speech enhancement by noise suppression, a gain function is used to map the magnitude 

spectrum of the input noisy speech signal to an estimate of the associated clean spectrum according 

to 

𝐴̂𝑘(𝑛) = 𝐺̃(𝜉𝑘(𝑛), 𝛾𝑘(𝑛))𝑅𝑘(𝑛)      
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𝜉𝑘(𝑛) =
𝜆𝑥(𝑘,𝑛)

𝜆𝑑(𝑘,𝑛) 
       



𝛾𝑘(𝑛) =
𝑅𝑘

2(𝑘,𝑛)

𝜆𝑑(𝑘,𝑛) 
       


where 𝐴̂𝑘(𝑛)and 𝑅𝑘(𝑛) are the estimated clean spectral and noisy amplitudes in the frequency bin 

k for the time frame n, respectively, 𝐺̃ denotes the optimized gain function, and 𝜉𝑘& 𝛾𝑘represent 

the priori and posteriori SNRs, respectively. To compute these SNRs, estimations of the clean 

spectral variance 𝜆𝑥(𝑘)and noise spectral variance 𝜆𝑑(𝑘) are needed. The so called decision-

directed estimator involves the use of the following rule to update the priori SNR for each frame 

n [9]:  

𝜉𝑘(𝑛) = max [𝛼
𝐴̂𝑘

2(𝑛−1)

𝜆𝑑(𝑘,𝑛)
+ (1 − 𝛼)[𝛾𝑘(𝑛) − 1], 𝜉𝑚𝑖𝑛]    



where 𝛼 is a weight close to one and 𝜉𝑚𝑖𝑛 is a lower bound on the estimated value of 𝜉𝑘(𝑛). In 

this work, the estimator and noise tracking discussed in [7] are utilized. 

According to the estimated priori and posteriori SNRs, the spectral amplitude of the enhanced 

(clean) signal is estimated from the noisy signal based on an assumed probability density function 

and the optimization of an objective function. The objective function can involve MMSE, log 

 

Figure 6.1. Cochlear implant speech processing pipeline implemented in real-time [3] 
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MMSE, maximum a posteriori (MAP) estimation methods [10] or involve more recent data-driven 

methods [7]. In the data-driven methods, no estimation of the spectral variance is required. A brief 

explanation of the data-driven approach is provided next.  

Let 𝑋and 𝑋 ̂be the clean and enhanced signals. In the data-driven approach, the aim is to find the 

function 𝐺̃(𝜉𝑘, 𝛾𝑘) so that by applying it to the noisy signal, the estimated clean signal gets close 

to the clean signal. In other words, the average distortion 𝐷(𝑋, 𝑋̂) between clean and enhanced 

signals for (𝜉𝑘 , 𝛾𝑘) pairs is minimized. This distortion can be any of the following: Weighted-

Euclidean (WE), Log-Euclidean (LE), Weighted-Cosh (WC) or simple mean-square error (MSE) 

[7, 11]. Mathematically, the following equations describe the data-driven approach: 

𝐺̃ = {𝐺̃𝑖𝑗 , ∀𝑖= 1, … , 𝐼, ∀𝑗= 1, … , 𝐽}      

𝐺̃𝑖,𝑗 = 𝑎𝑟𝑔 min
𝐺𝑖,𝑗

𝐷(𝑋, 𝑋̂)        

where 𝐺 ̃is a look-up table discretized over a grid of priori and posteriori SNRs. A parameter cell 

contains the closest values of 𝜉 and  𝛾 to a grid point with values 𝐺̃𝑖𝑗 stored in matrix 𝐺 ̃. Thus, for 

a total of 𝐼 and 𝐽 priori and posteriori SNRs, respectively, the gain table consists of an 𝐼 × 𝐽 matrix 

containing the noise suppression parameters.  

6.3 MULTI-BAND DATA-DRIVEN NOISE SUPPRESSION 

In the data-driven method discussed in [7], for each frame and each frequency bin, there is an 

(𝜉𝑘 , 𝛾𝑘)pair that falls into one of the parameter cells of the gain table. As a result, an(𝜉𝑘, 𝛾𝑘)pair 

from different frequency bins and different frames may fall into the same parameter cell during 

the training of 𝐺̃(𝜉𝑘 , 𝛾𝑘)involving a clean amplitude 𝐴𝑘 and a noisy amplitude𝑅𝑘.  
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In the multi-band data-driven approach introduced here, the signal is divided into 𝑀 different non-

overlapping frequency bands. Then, 𝑀 different gain tables corresponding to 𝑀 frequency bands 

are trained. The frequency band decomposition can be done in Fourier domain or by using a filter 

bank. In each frame for a frequency band, the priori and posteriori SNRs (𝜉𝑏𝑘 , 𝛾𝑏𝑘), with b 

denoting the band index, are computed. Therefore, the parameterized suppression values for each 

frequency band get trained separately. It is worth mentioning that the size of the gain tables is kept 

the same considering that each gain table covers the same prior and posterior SNR ranges. Hence, 

there would be 𝑀 gain tables for each environment, that is: 

𝐺̃𝑏 = {𝐺̃𝑏𝑖𝑗 , ∀𝑖= 1, … , 𝐼, ∀𝑗= 1, … , 𝐽}, b = 1, … , 𝑀       (6.7) 

As mentioned earlier, in the single-band noise suppression, (𝜉𝑘 , 𝛾𝑘)pairs from different frequency 

bands and different frames might fall in the same cell of the gain table. This means that the 

corresponding suppression value 𝐺̃(𝜉𝑘, 𝛾𝑘) for an input frame is only a function of the estimated 

priori and posteriori SNRs, and thus the frames from different frequencies are treated the same. 

This causes some distortion in the signal. By separating the gain tables based on the frequency 

bands, any such distortion can be avoided. Here it is worth pointing out that the data driven 

suppression is performed independently in each band. As reported in [3], the suppression 

processing time takes only 2.4 ms out of a total processing time of 8.41 ms on the PDA platform 

for 11.6 ms frames. Hence, the two-band suppression processing time is still expected to run in 

real-time on the PDA platform. 
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6.4 EXPERIMENTAL RESULTS AND DISCUSSION  

The introduced multi-band noise suppression was evaluated by using seven commonly 

encountered noise types of street, car, restaurant, mall, bus, pub and train. Noise samples were 

collected using the same BTE (Behind-The-Ear) microphone worn by Nucleus ESPrit cochlear 

implant users at a sampling frequency of 8000 Hz. For training, the first 50 IEEE sentences 

provided in [12] (approximately 2-3s long) were used to serve as clean speech files. For each noisy 

environment, 50% of the noise files were added to each speech signal at several SNRs from -12.5 

to 27.5 dB in steps of 5 dB to generate the training dataset. The signals were windowed into 25-

ms frames via a Hamming window with 50% overlap across two non-overlapping low and high 

frequency bands. In the experiments reported in this work, 𝛼and 𝜉𝑚𝑖𝑛were set to 0.98 and -19 dB, 

respectively, the prior SNR was discretized from -19 dB to 40 dB and the posterior SNR from -

30dB to 40 dB in steps of 1 dB with a grid size of 60×71. It was found that the use of two bands 

maintained the real-time throughput of the pipeline.  

The speech quality measures of Perceptual Evaluation of Speech Quality (PESQ) and Log-

Likelihood Ratio (LLR) [10] were computed to provide a quantification of the improvement in the 

noise suppressed output signals. Figure 6.2 shows the comparison of the PESQ and the LLR 

measures for the multi-band and single-band approaches for 0 dB SNR. The non-suppressed noisy 

signals are shown to serve as the baseline. The results reflect the averages on the second half of 

the 50 IEEE sentences which had not been used in the training dataset. This figure illustrates that 

the multi-band approach provides an improvement of nearly 10% in speech quality measures 

averaged across the noisy environments considered compared to the single-band approach. An 

Analysis of Variance (ANOVA) was conducted to show the statistical significance of the 



 

78 

improvement (p <0.001). In our noise dataset, the files for train and car noises had approximately 

uniform spectrum over all the frequency bands. That is why the improvement did not generate 

statistically significant improvement over the single-band approach for these two noise types while 

for the other noise types the improvement was found to be statistically significant.  

Another experiment was carried out to examine the performance of the multi-band approach in the 

presence of other noise types which had not been considered in the original set of environments. 

 

 

Figure 6.2. Bar charts showing the performance of the single-band data-driven adaptive noise 

suppression, two-band data-driven adaptive noise suppression and no-noise suppression in terms 

of the speech quality measures of Perceptual Evaluation of Speech Quality (PESQ) and Log-

Likelihood Ratio (LLR) 
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Figure 6.3 shows a comparison of the PESQ and the LLR measures exhibiting the outcome for the 

multi-band data-driven approach versus the noisy non-processed signals for three noise 

environments of airport, airplane and market. These three environments in the classification path 

were placed into the closest class, namely street, bus and restaurant, respectively. Consequently, 

the suppression parameters of these detected classes were used for the noise suppression. A visual 

comparison can be made in Figure 6.4 where the spectrogram of the clean, noisy, single-band data-

driven suppressed and multi-band data-driven suppressed signals at 0 dB SNR are shown. This 

figure shows the background noise was suppressed by the developed multi-band method more than 

the single band method, thus retrieving the speech signal more accurately. 

6.5 CONCLUSION 

A modification to the previously developed noise suppression path of the environment-adaptive 

speech processing pipeline of cochlear implants was introduced in this chapter to improve speech 

enhancement via noise suppression. This modification involved the use of multiple frequency 

bands instead of a single band to achieve data-driven environment-adaptive noise suppression. The 

 

Figure 6.3. Comparison of PESQ and LLR quality measures when encountering unknown noise. 
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experimental results showed 10% improvement in speech quality measures for seven noisy 

environments considered while at the same time maintaining the real-time throughput of the entire 

speech processing pipeline. 

 

  

          

          

Figure 6.4. Spectrograms of the clean speech (top left) and noisy signals (top right) (SNR = 0 dB). 

Bottom left figure shows enhanced signals by the introduced two-band noise suppression approach and 

the bottom right one shows the single-band noise suppression approach; IEEE sentence: “The clock 

struck to mark the third period”. 
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ABSTRACT 

This chapter presents an online frame-based clustering algorithm (OFC) for unsupervised 

classification applications in which data are received in a streaming manner as time passes by with 

the number of clusters being unknown. This algorithm consists of a number of steps including 

density-based outlier removal, new cluster generation, and cluster update. It is designed for 

applications when data samples are received in an online manner in frames. Such frames are first 

passed through an outlier removal step to generate denoised frames with consistent data samples 

during transitions times between clusters. A classification step is then applied to find whether 

frames belong to any of existing clusters. When frames do not get matched to any of existing 

clusters and certain criteria are met, a new cluster is created in real time and in an on-the-fly manner 

by using support vector domain descriptors. Experiments involving four synthetic and two real 

datasets are conducted to show the performance of the introduced clustering algorithm in terms of 

cluster purity and normalized mutual information. Comparison results with similar clustering 

algorithms designed for streaming data are also reported exhibiting the effectiveness of the 

introduced online frame-based clustering algorithm. 
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7.1 INTRODUCTION 

Clustering algorithms normally assume that data samples are available as a collection or in their 

entirety [1, 2]. However, there are applications that demand clustering to be performed on-the-fly 

or online as new data samples become available in a streaming manner with passing time without 

having any prior knowledge of the number of clusters or classes. Clustering algorithms, such as k-

means and k-medians [3-6], require that the number of clusters or classes to be specified 

beforehand and operate on all the samples of a dataset that exist in one place without considering 

the element of time. In general, clustering algorithms are not designed to cope with data samples 

that are made available in a time gradual or streaming manner without knowing the number of 

clusters or classes.  

Although several online clustering algorithms have been reported in the literature, e.g., [7-15], 

these algorithms are primarily designed for sample-based clustering and some of them require the 

number of clusters or classes to be known. A single data sample often does not carry much 

information and it is more effective to consider a frame of data samples. The clustering algorithm 

introduced in this chapter is based on frames of data samples that become available in an online 

streaming manner without having any prior knowledge of the number of clusters or classes.  

The rest of the chapter is organized as follows: In section 7.2, an overview of similar clustering 

algorithms designed for streaming data is provided. Section 7.3 describes the details of the 

introduced online frame-based clustering algorithm. The experimental results are then reported in 

section 7.4 together with a comparison to three existing clustering algorithms. Finally, the 

conclusion is stated in section 7.5. 
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7.2 OVERVIEW OF EXISTING ONLINE CLUSTERING ALGORITHMS  

In this section, an overview of existing online clustering algorithms is presented. One of the earliest 

and well-known clustering algorithms is the STREAM algorithm proposed by Guha et al. [11, 12]. 

This algorithm utilizes a divide-and-conquer strategy to segment streaming data into segments 

followed by k-means clustering. An extension to this algorithm using a sliding window appeared 

in [16]. 

A clustering algorithm named CluStream was covered in [7]. This algorithm includes two parts: 

an online micro-clustering part and an offline macro-clustering part. It uses a predefined number 

of micro-clusters to store a summary of streaming data. In its offline part, the k-means clustering 

algorithm is used to form larger clusters out of micro-clusters. In [17, 18], a clustering algorithm 

named HPStream was discussed for clustering of high-dimensional streaming data. HPStream 

applies a data projection module before clustering to reduce the high dimensionality of streaming 

data and then uses a so called Fading Cluster Structure (FCS) to maintain a summary of data 

samples while attaching more importance to recent data samples. The number of clusters and 

average number of projected dimensions are considered known in this clustering algorithm.  

The aforementioned algorithms are similar to the k-means clustering algorithm and have the 

limitation of not being able to cope with clusters of non-spherical shapes. In many applications, 

clusters may have arbitrary shapes and thus are not easily separable by k-means type algorithms 

[7], [19-21]. Cao et al. [8] presented an extension of the clustering algorithm DBSCAN [20] called 

DenStream to cope with clusters of arbitrary shapes. This algorithm incorporates an online and an 

offline part. In its online part, micro-clusters are obtained and in its offline part, DBSCAN is 

applied to generate the final clusters from micro-clusters. 
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The clustering algorithm named D-Stream [19], [22] is a density-based clustering which divides 

the data space into a grid for density estimation instead of using micro-clusters. It involves two 

parts. In its online part, it maps data samples onto a grid. In its offline part, it obtains the grid 

density. The final clusters are then created based on the grid density. A fading function is used to 

decrease the grid density over time if it falls below a predefined threshold. In this algorithm, the 

number of grids increases exponentially with the number of dimensions. In [23], another density-

based clustering algorithm was discussed which is capable of detecting clusters of arbitrary shapes. 

It uses a sparse-graph approach to incrementally cluster incoming data samples by modeling their 

spatiotemporal relationships.  

More recently, the clustering algorithm named SVStream was introduced in [24], which is a 

modification of the Support Vector Clustering method in [25]. SVStream utilizes support vector 

descriptors and a complete graph (CG) labeling method [25] to label clusters. In this algorithm, 

the complexity of the CG labeling is dependent on the data dimensionality. Furthermore, if more 

than one half of incoming data samples fall outside existing sphere-shaped areas, a new sphere 

gets added and the cluster labeling is updated. Thus, when data are noisy, unnecessary spheres get 

added.  

It is worth noting that in all of the aforementioned clustering algorithms, there are many user-

specified parameters that highly influence the clustering outcome. The computationally efficient 

clustering algorithm introduced in this chapter is capable of creating clusters of arbitrary shapes 

on-the-fly in real time without having access to all the data samples in one place and more notably 

without knowing the number of clusters.  
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7.3 ONLINE FRAME-BASED CLUSTERING  

The Online Frame-based Clustering algorithm introduced in this chapter is named OFC. This 

clustering algorithm is meant to be used for applications where streaming data associated with a 

cluster occurs for some time duration and each sample by itself does not carry enough information 

to be assigned to a cluster or class. An example application includes background noise 

classification, where audio data frames get captured in a streaming manner from a noisy 

environment and such frames need to be classified on-the-fly and in real time with no prior 

knowledge of the number of noise types or classes.  

OFC comprises the following steps: denoising or outlier removal, density connection check, 

classification, new cluster creation, and cluster update. The algorithm begins by considering a 

frame of samples for making a decision. This is done by collecting data samples in a buffer of size 

N, and when the buffer becomes full, its data are referred to as a frame. Each frame is passed onto 

the outlier removal step to generate denoised frames with consistent data samples. Denoised 

frames are then passed onto the classification step. When no cluster has formed, denoised frames 

are moved to a collection of frames named Chunk. Other than the very beginning, frames are 

passed onto the classification step to find whether a match exists to any of existing clusters. If a 

frame does not get matched to any of existing clusters, it is moved to Chunk. In other words, Chunk 

keeps track of those frames identified to be new or novel. Figures 7.1 and 7.2 provide a flowchart 

of the introduced clustering algorithm OFC. In what follows, a detailed explanation of the steps 

appearing in this flowchart is provided. 
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7.3.1 Initialization 

The clustering process begins by placing data samples into a temporary buffer, labeled Buf, which 

denotes a frame. When Buf gets full (i.e., a frame of size N data samples is collected), it is passed 

to the outlier removal step, where possible noisy samples are removed from a frame. A denoised 

frame is then passed onto the classification step. In the classification step, if no match to a denoised 

 

 

Figure 7.1. Flowchart of the introduced OFC clustering algorithm 

 

 

Figure 7.2. Outlier removal flowchart 
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frame is found, that frame is considered to be from a potential new cluster, a flag named NewProb 

is set to one and the frame is moved to Chunk. When Chunk gets full, the new cluster creation step 

is activated. Here it is worth mentioning that the initial streaming data time duration denoted by 

InitT is assumed to be longer than Chunk size L, i.e., InitT >>L or InitT ≥ L×N (N is frame size). 

Framing- Each new incoming sample is first placed into a buffer Buf, and its mutual Euclidian 

distances to all the previous samples in a frame are computed. Euclidian distance is considered 

here due to its computational simplicity noting that it is also possible to use other distances. When 

Buf becomes full, it is labeled to be a frame 𝐹. Let the tth frame be denoted by 𝐹𝑡 ≔ {𝒴𝑖,𝑡|𝒴𝑖,𝑡 ∈

ℝ𝑑 , 𝑖 = 1, … 𝑁} , 𝑡 = 1,2, …, where 𝒴𝑖,𝑡 indicates the ith d-dimensional feature vector in the tth 

frame. For a frame of size N, (𝑁
2

) =
𝑁(𝑁−1)

2
  so called internal mutual distances (denoted by 𝑔) 

between sample pairs are computed, where 𝑔𝑖,𝑗(𝒴𝑖,𝑡 , 𝒴𝑗,𝑡) = ‖𝒴𝑖,𝑡 − 𝒴𝑗,𝑡‖
2

 , 𝑖, 𝑗 = 1, … , 𝑁 , . 

Alternatively, mutual distances can be computed after a frame is created rather than at each time 

instance. 

7.3.2 Outlier Removal  

Outlier removal is a pre-clustering step that is performed in many density-based clustering 

algorithms. Noting that it is desired to find clusters of arbitrary shapes, a density-based approach 

is also adopted here. The density-based outlier detection approaches of DBSCAN [20] and 

OPTICS [26] involve several parameters which need to be specified by users. Therefore, to avoid 

having such user-specified parameters, a data-driven density-based approach is considered here to 

find outliers in a frame. The objective of the outlier removal step in our algorithm is to remove 
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inconsistent samples from a frame that do not belong to the same cluster. Basically, a frame is 

purified before getting passed onto the classification step. 

The outlier removal is performed based on the histogram of internal mutual distances (HIMD) of 

a frame. The assumption commonly made in the existing density-based outlier detection methods 

is that the density of the outliers is less than the density of the main object and outliers usually are 

located far from the main object. In other words, instances of the main object are closer to each 

other in a more dense area. Likewise, samples in low density areas with far mutual distances from 

other samples (more than a threshold value 𝑇𝑡) are considered to be potential outliers. To find 

potential outliers, the histogram HIMD is used. Figure 7.3 represents the HIMD corresponding to 

a typical frame. The minimum, maximum and peak values of this histogram are denoted by 𝐿𝑡 , 

𝑈𝑡 and 𝑀𝑡 , respectively.  

 

Figure 7.3. Histogram of internal mutual distances (HIMD) of a typical frame; 𝐿𝑡 , 𝑀𝑡 , and 

𝑈𝑡 denote the minimum, peak, maximum of HIMD, respectively; 𝑇𝑡 and 𝛿𝑡 are the threshold 

values for outlier detection and standard deviation of internal mutual distances, respectively. 
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The threshold  𝑇𝑡  is set automatically as follows: Let 𝒬𝑡 ≔ {𝒷|𝒷 > 𝑀𝑡 , 𝑓𝑡(𝒷) = 𝜚𝑓𝑡(𝑀𝑡)} denote 

a set corresponding to 𝑡 = 1,2, …, with weight 𝜚 ∈ [0,1] and 𝑓𝑡: ℝ → [0,1] indicating the 

normalized histogram. The threshold 𝑇𝑡  is then set to be the smallest member of  𝒬𝑡, i.e.,  𝑇𝑡 =

min(𝒬𝑡). Samples with mutual distances greater than 𝑇𝑡 are then regarded as potential outliers 

considering that they have distances far from other samples and their density is low (𝜚 times less 

than 𝑓𝑡(𝑀𝑡)). It is important to note that non-outlier samples having mutual distances greater than 

𝑇𝑡 may get detected as potential outliers. Figure 7.4 provides an illustration of such samples to 

make this point more clear. These samples should not be treated as outliers, and they need to be 

removed from the list of potential outliers. This is achieved by examining the closeness of these 

samples, where closeness is defined by a neighborhood εt around 𝓌𝑡 samples. Thus, if any of the 

potential outlier samples appears close, it is excluded as a non-outlier sample. 

For finding ε of a frame, a density approach is adopted here by using the following equation: 

 𝐷𝑡 =
𝑀𝑡−𝐿𝑡

𝑈𝑡−𝑀𝑡
, 𝑡 = 1,2, …              (7.1) 

where 𝐷𝑡 denotes a measure of the tth frame density. It provides a representation of the histogram 

shape and its peak location, see Figure 7.5. When 𝐷𝑡 becomes equal to one, it indicates 𝑀𝑡 is 

located at equal distances from the minimum (𝐿𝑡) and maximum (𝑈𝑡) values of the HIMD of the 

 

Figure 7.4. Potential outliers (hollow dots) and main object (black dots) 
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tth frame (see Figure 7.5b). A frame with 𝐷𝑡 less than one is considered to be a dense frame. 𝑀𝑡 

getting closer to 𝐿𝑡 indicates samples generate close distances to each other and vice versa. The 

neighborhood εt for a dense frame is defined based on  𝑀𝑡. However, to allow for some tolerance 

margin, the following neighborhood is considered: 

𝜀𝑡 = 𝑀𝑡 +  𝛿𝑡 , 𝑡 = 1,2, …             (7.2) 

𝛿𝑡 = (
1

𝑁2
∑ (𝑔𝑖,𝑗 − 𝑔𝑡̅̅̅)

2𝑁
𝑖,𝑗=1 )

1

2
             (7.3) 

𝑔𝑡̅̅̅ =
1

𝑁2 
∑ 𝑔𝑖,𝑗

𝑁
𝑖,𝑗=1               (7.4) 

where 𝛿𝑡 denotes the standard deviation of 𝑔𝑖,𝑗  values, 𝑖, 𝑗 = 1, … , 𝑁, found via (7.3). A frame 

with  𝐷𝑡 greater than one translates into three possibilities: (i) 𝑀𝑡 is located close to 𝑈𝑡 due to 

𝑓𝑡(𝑀𝑡) not being significantly larger than other values, (ii) 𝐿𝑡 and 𝑈𝑡 are close to each other, or 

(iii) density of samples of interest and density of samples of noninterest are the same (mostly when 

a frame has data from two different clusters). In such cases, 𝑔𝑖,𝑗𝑠 range is divided into two 

intervals: [𝐿𝑡 , 𝑀𝑡] and [𝑀𝑡 , 𝑈𝑡]. For 𝐷𝑡 greater than one, the first interval is used to find 𝑀𝑡 and εt 

among the smaller mutual distances. 𝓌𝑡 can be specified to be any number up to N-|potential 

outliers|, where bars denote the number of potential outliers.  

 

Figure 7.5. Different possible values and distributions of frame internal distances 
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Based on 𝓌𝑡 and εt, outliers get identified among potential outliers. This is done by examining the 

neighborhood εt in (7.2) of each potential outlier sample. If there are at least 𝓌𝑡 non-outliers in 

this neighborhood, the sample is considered to be a non-outlier sample; otherwise it is assigned to 

be an outlier sample. After excluding all the outliers from a frame, its purified version is named a 

dense or a denoised frame. The tth denoised frame can be specified as F̃t ≔ {(𝒴𝑗,𝑡 , 𝜇𝑡 , εt)|𝒴𝑗,𝑡 ∈

ℝ𝑑 , 𝜀𝑡 = 𝑀𝑡 + 𝛿𝑡 , 𝑗 = 1, … , 𝒩𝑡}, 𝑡 = 1,2, …, where 𝑀𝑡 and 𝛿𝑡 are found as explained earlier and 

𝜇𝑡 is obtained using (7.5). The centroid of this frame is given by: 

𝜇𝑡 =
1

𝒩𝑡
∑ 𝒴𝑗,𝑡

𝒩𝑡
𝑗=1  , 𝑡 = 1,2, …           (7.5) 

where 𝒩𝑡 is the size of a denoised frame, which is smaller than the size of an original frame 𝒩𝑡 ≤

𝑁. 

7.3.3 Chunk Evaluation 

A new denoised frame is moved to Chunk having a size L when it does not get matched to any of 

the existing clusters by the classification step. Any such frame that gets to Chunk is analyzed to 

find its connection to the last frame in Chunk as described below. 

Frame Connection - This step is for the purpose of seeing whether two frames are 

connected/similar to each other (Definition 3) or not (the expectation is that frames from the same 

cluster or class are close to each other). After the outlier detection, all the samples in the tth frame 

either have mutual distances less than 𝑇𝑡 (not selected as potential outliers; main object samples) 

or have 𝓌𝑡 samples in their εt-neighborhoods (potential outliers kept as non-outliers). Often such 

samples are transitioning samples in a denoised frame as illustrated in Figure 7.4. Two consecutive 

frames 𝐹𝑡 and 𝐹𝑡′ can be either similar/connected to each other or disconnected. Connected frames 
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are required to be from the same class. Therefore, their distribution and their most common mutual 

distances (and thus  𝜀𝑡 and 𝜀𝑡′  ) appear close to each other.  

Definition 1: Two objects 𝑂𝔵 and 𝑂𝔶 from two different frames 𝐹𝔵 and 𝐹𝔶 are close 

enough/connected to each other if at least one of the objects is in the ε-neighborhood of the other 

object, that is  

{
𝑔𝔵,𝔶(𝑂𝔵, 𝑂𝔶) < 𝜀𝔵 + 𝜀𝔶 , 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                  𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑    
        (7.6) 

Two frames 𝐹𝑡 (of size 𝒩𝑡 ) and 𝐹𝑡′  (of size 𝒩𝑡′) are defined as connected frames if there exists a 

connection between their samples. To find connections between all the samples of a frame, 𝒩𝑡 ×

𝒩𝑡′ Euclidian distances need to be computed. To reduce this computational burden, instead of 

computing the mutual distances between all the samples of two frames, only the distances between 

their centroids is computed.  

Definition 2: Two frames 𝐹𝑡and 𝐹𝑡′  are directly-connected to each other if their centroids are close 

(as per Definition 1), that is 

𝑔𝑡,𝑡′  (𝜇𝑡, 𝜇𝑡′) < 𝜀𝑡 + 𝜀𝑡′         (7.7) 

Definition 3: A frame 𝐹𝑡 is connected to a frame 𝐹𝑡′′ if there is a chain of 

frames 𝐹𝑡1
, 𝐹𝑡2

… , 𝐹𝑡𝑛
, 𝐹𝑡1

=  𝐹𝑡, 𝐹𝑡𝑛
=  𝐹𝑡′′ such that 𝐹𝑡𝑖+1

is directly-connected (as per Definition 

2) to 𝐹𝑡𝑖
. 

Definition 4: A micro-cluster 𝒞 is defined as an ensemble of connected frames (as per Definition 

3), that is 

𝒞 ≔ {𝐹𝑡𝑖
, ∀𝑖 = 1, … , 𝐼, 𝑔𝑡𝑖,𝑡𝑖+1

(𝜇𝑡𝑖
, 𝜇𝑡𝑖+1

) <  𝜀ti
+ 𝜀ti+1

}     (7.8) 

where I denotes the number of frames in the micro-cluster.  
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In an ideal case, Chunk should contain only one micro-cluster of connected samples from one new 

cluster. However, in practice, because of the presence of noisy data samples, some disconnections 

between adjacent frames occur, causing an increase in the number of micro-clusters in Chunk. 

When Chunk gets full, an evaluation of micro-clusters is conducted as follows: 

Number of micro-clusters and their sizes (number of frames in each micro-cluster) are first found. 

Sporadic micro-clusters are removed. That is if the size of a micro-cluster is less than two, it is 

considered to be a sporadic micro-cluster. This means if a frame is disconnected from both 

directions, it is not connected to previous frames and neither to proceeding ones. Close micro-

clusters are then merged.  

As mentioned before, disconnection between frames usually occur because of the presence of 

noisy data samples. Thus, if any connection between frames of different micro-clusters exists, 

these micro-clusters are considered to be connected micro-clusters (Definition 5). 

Definition 5: Two micro-clusters are connected to each other if both micro-clusters are directly-

connected to each other through at least one frame (as per Definition 2).  

After removing sporadic micro-clusters and connecting similar ones, if there is a micro-cluster 

with a size greater than one half of the size of Chunk, the algorithm declares that a new cluster or 

class needs to be created, the flag NewC gets set to one and the micro-cluster is moved to the new 

cluster creation step. By conducting such a chunk evaluation process, it is made sure that only 

consistent and most homogeneous data are used for creating a new cluster. 

7.3.4 New Cluster Creation  

In this step, data associated with Chunk are used to create a new cluster based on a data description 

method. Different data description methods appear in the literature. Most involve estimating a 
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probability density using Parzen window [27] or Gaussian distribution [28]. The drawbacks of 

these methods are that in general a large number of samples are required (in particular, in higher 

dimensional feature spaces) and also the focus is placed on modeling high density areas and not 

low density areas. In [29], Tax proposed a simple nearest neighbor data description method and its 

improved version, called k-nearest neighbor data description. It was shown that these two methods 

did not work well for low-dimensional data. In [30], Vapnik presented an improved solution by 

computing the boundary around a dataset rather than estimating the density. An attempt to use just 

the boundary of a dataset was made based on neural networks in [31], which required one to specify 

many parameters such as network size, weight initialization, stopping criterion, etc. In [32], Tax 

utilized a Support Vector Data Description (SVDD) to obtain a spherically shaped boundary 

around a dataset. It was shown that SVDD was quite effective when a proper kernel was used [29]. 

Hence, SVDD is also used here.  

In our clustering algorithm, one class gets created at a time. Thus, when Chunk is moved to the 

create-new-cluster step, only one cluster is created. The task of this step is to provide a cluster 

representative that can be used for the classification step instead of keeping all the samples of a 

cluster. SVDD is used for this purpose.   

Support Vector Domain Description (SVDD) - SVDD is a sphere-shaped data description 

involving nonlinear transformation (kernel functions). SVDD provides an effective data 

description relying on only a small number of support vectors (SVs) [32]. Let 𝑋 ≔ {𝑥𝒿|𝑥𝒿 ∈

ℝ𝑑 , 𝒿 = 1, … , 𝒥} be a dataset of 𝒥 points. Using a nonlinear transformation 𝜑 from X to a high-

dimensional kernel feature space, the smallest enclosing hypersphere of radius 𝑅 and center 𝑎  can 

be stated as: 
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𝐻(𝑅, 𝑎, 𝜉𝒿) = 𝑅2 + 𝛾 ∑ 𝜉𝒿
𝒥
𝒿=1            (7.9) 

with the constraints 

‖𝜑(𝑥𝒿) − 𝑎‖
2

≤ 𝑅2 + 𝜉𝒿, ∀𝒿 = 1, … , 𝒥         (7.10)  

The weight 𝛾 establishes a trade-off between volume and error (accuracy of data description), 𝜉𝒿 ≥

0, denotes variables that punish samples whose distances from the center 𝑎 are farther than R. By 

using the Lagrange multiplier method, the constraints (7.10) is incorporated into (7.9) generating 

the Lagrangian function: 

ℒ(𝑅, 𝑎, 𝜉𝒿, 𝛽𝒿, 𝛼𝒿) = 𝑅2 + 𝛾 ∑ 𝜉𝒿
𝒥
𝒿=1 − ∑ 𝛽𝒿 (𝑅2 + 𝜉𝒿 − ‖𝜑(𝑥𝒿) − 𝑎‖

2
) − ∑ 𝛼𝒿𝜉𝒿

𝒥
𝒿=1

𝒥
𝒿=1    (7.11)  

where 𝛽𝒿 ≥ 0, 𝛼𝒿 ≥ 0 represent Lagrange multipliers. The function (7.11) is minimized with 

respect to R, a, 𝜉𝒿 and maximized with respect to 𝛽𝒿 and 𝛼𝒿. As shown in [30], (7.11) can be written 

as:  

ℒ =  ∑ 𝛽𝒿𝜑(𝑥𝒿). 𝜑(𝑥𝒿) −𝒥
𝒿=1 ∑ 𝛽𝒿𝛽𝓀𝜑(𝑥𝒿). 𝜑(𝑥𝓀)𝒥

𝒿,𝓀 =1         (7.12) 

The inner product 𝜑(𝑥𝒿). 𝜑(𝑥𝓀) can be replaced by an appropriate kernel function: 

ℒ =  ∑ 𝛽𝒿𝒦(𝑥𝒿, 𝑥𝒿) −𝒥
𝒿=1 ∑ 𝛽𝒿𝛽𝓀𝒦(𝑥𝒿, 𝑥𝓀)𝒥

𝒿,𝓀 =1         (7.13) 

In this paper, the Gaussian kernel 𝒦(𝑥𝒿, 𝑥𝓀) = exp (
1

𝜎
‖𝑥𝒿 − 𝑥𝓀‖

2
) is used, where 𝜎 denotes a 

width parameter.  

Samples with 𝛽𝒿 = 0 are inner samples meaning that they either lie inside or on the sphere surface. 

Samples with 0 < 𝛽𝒿 < 𝛾 are called support vectors (𝑆𝑉𝑠). These samples lie on the sphere 

surface. Samples with  𝛽𝒿 = 𝛾 fall outside the sphere boundary and are excluded.  
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To test a new sample 𝑧, its distance to the center of the sphere is computed and if this distance is 

smaller than R, it means that the sample belongs to the sphere and it is accepted, 

Rz
2 =  ‖𝑧 − 𝑎‖2            (7.14) 

Expressing the center of the sphere in terms of the support vectors, one gets 

Rz
2 = 𝒦(𝑧, 𝑧) − 2 ∑ 𝛽𝒿𝒦(𝑧, 𝑥𝒿) + ∑ 𝛽𝒿𝛽𝓀𝒦(𝑥𝒿, 𝑥𝓀)𝒥

𝒿,𝓀 =1
𝒥
𝒿=1        (7.15) 

The radius of the sphere is given by: 

𝑅 = max {𝑅𝑥𝒿
|𝑥𝒿 𝑖𝑠 𝑎 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑉𝑒𝑐𝑡𝑜𝑟}         (7.16) 

A practical way for defining R is to use the maximum or the average value over all the support 

vectors. Next, a cluster representative is defined. 

Definition 6: Given a set of 𝒥 data samples, the sphere structure 𝜓 is defined as:  

𝜓 = {𝒮̅, ‖𝑎‖2, 𝑅, ℓ}            (7.17) 

where  𝒮̅ denote the support vectors and their Lagrange multipliers, that is: 

𝒮̅  = {(𝑥𝒿, 𝛽𝒿)| 0 < 𝛽𝒿 < 𝛾}           (7.18) 

with this squared length of the sphere center  

‖𝑎‖2 = ∑𝛽𝒿𝛽𝓀𝒦(𝑥𝒿, 𝑥𝓀), ∀(𝑥𝒿, 𝛽𝒿), (𝑥𝓀, 𝛽𝓀) ∈ 𝒮̅                        (7.19) 

When Chunk is moved to the new cluster creation step, the data associated with the frames are 

used to solve the optimization problem in (7.13) towards creating a new sphere or cluster and 

obtaining its parameters (7.17)-(7.19). The cluster label ℓ for the newly created cluster is specified 

to be the current cluster label plus one.  



 

100 

7.3.5 Classification  

In this step, it is seen whether incoming samples belong to any existing clusters and whether there 

are changes occurring in the streaming data. There exist other methods for detecting changes in 

the streaming data, e.g., [33], [34], which can also be used here. After creating the first cluster, 

each new frame gets fed into the classification step to find whether it belongs to any of the existing 

clusters or not.  

By using SVDD to characterize the data samples of a cluster, the boundary of its samples, its kernel 

centroid and radius are obtained. Such boundaries are used to assign a new cluster. To find a cluster 

getting matched to a new frame  F̃t ≔ {𝑍𝑖,𝑡| 𝑍𝑖,𝑡 ∈ ℝ𝑑 , 𝑖 = 1, … , 𝒩𝑡 , }, 𝑡 = 1,2, … , the distance of 

each sample 𝑅𝑍𝑖,𝑡

2  in a new frame to the center of each sphere is computed via (7.15). Samples with 

distances smaller than the sphere radius lie inside the cluster sphere and samples with larger 

distances lie outside or on the cluster sphere surface. First, the closest sphere to a frame (to its 

centroid) is obtained. Then, if the number of the inside samples is greater than the outside samples, 

that frame is assigned to the corresponding sphere. If the frame is outside all the cluster spheres, a 

flag named NewProb is set to one which means the frame might be from an unseen cluster, 

therefore it is moved to Chunk. 

7.3.6 Cluster Update 

If two clusters are too close to each other, they need to be merged. Based on Definition 6, a cluster 

is defined as 𝜓 = {𝒮̅ , ‖𝑎‖2, 𝑅, ℓ}. If two spheres 𝜓 and 𝜓̃ have the center distance ‖𝑎 − 𝑎̃‖ less 

than the summation of their radii (7.20)-(7.21), the two spheres are considered to be too close and 

thus  one cluster is used to represent them, that is [24]: 
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‖𝑎 − 𝑎̃‖2 =  ‖𝑎‖2 + ‖𝑎̃‖2 − 2∑𝛽𝒿 𝛽̃𝓀 𝒦(𝑥𝒿, 𝑥̃𝓀),

∀(𝑥𝒿, 𝛽𝒿) ∈ 𝜓, ∀ (𝑥̃𝓀, 𝛽̃𝓀) ∈ 𝜓̃ 
      (7.20) 

{ 
‖𝑎 −  𝑎̃‖ ≤ 𝑅 + 𝑅 ̃ 𝑡𝑤𝑜 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑠𝑝ℎ𝑒𝑟𝑒𝑠 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑡𝑤𝑜 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒 𝑠𝑝ℎ𝑒𝑟𝑒𝑠 
 

      (7.21) 

7.4 EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, we provide extensive experimentations to evaluate the introduced clustering 

algorithm as well as comparisons with three clustering algorithms that are designed for streaming 

data, namely CluStream [7], DenStream [8], and SVStream [24]. It is worth mentioning that in 

[24], it was shown that SVStream outperformed the clustering algorithms StreamKM [11], 

RepStream [23] and StrAP [35]. At the beginning of the clustering process, when there was no 

cluster, all frames were stored in Chunk. Once the first cluster was built, frames were then fed into 

the classification part and if they were not labeled with any of the existing clusters or classes, they 

got moved to Chunk. 

7.4.1 Datasets  

To evaluate the developed algorithm OFC for clustering streaming data arriving in an online 

manner, both synthetic and real datasets were examined. The four synthetic datasets, labeled DS1, 

DS2, DS3, and DS4, were generated using the code in [36]. These datasets are shown in Figure 

7.6. DS1 consists of 14,000 data samples forming four classes; DS2 consists of 10,000 samples 

forming two classes; DS3 consists of 12,000 samples belonging to 7 classes; and DS4 dataset 

consists of 4,000 samples of two classes. Time was simulated by feeding these samples into the 

clustering algorithms in a streaming manner. 
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Two real-world datasets from the UCI Machine Learning Archive [37] were also examined. These 

datasets are known as KDD-CUP99 Network Intrusion Detection and Forest-CoverType, 

respectively. The KDD-CUP99 dataset is a real dataset that has evolved over years and has been 

widely used to evaluate clustering algorithms for streaming data [7], [8], [17], [23]. This dataset 

consists of a stream of TCP connection records from two weeks of LAN network traffic managed 

by the MIT Lincoln Lab. The complete dataset contains approximately 4.9 million records. 42 

features were collected for each record which included the duration of connections, the number of 

transmitted bytes from source to destination (and vice versa) and the number of failed login 

attempts. As done in [7], [17], [19], here a subset of length 494,020 was examined. Each 

connection was classified into either a normal connection or an intrusion (attack). The attacks were 

categorized into four main categories: denial-of-service (DOS), R2L (unauthorized access from a 

remote machine), U2R (unauthorized access to local super user privileges), and PROBING 

(surveillance and other probing).  

 

Figure 7.6. Four synthetic datasets used in the experiments. 
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The dataset Forest-CoverType contains a total of 581,012 observations from seven types of forest 

cover. Each observation consisted of 54 geological and geographical features that described 

environments in which trees were observed, including 10 quantitative variables, 4 binary 

wilderness areas and 40 binary soil type variables. As done in [17], all 10 quantitative variables 

were used here. To be able to use these datasets, they were converted into data streams by taking 

the data order as the order of streaming. Based on the consideration that the streaming data of each 

cluster was greater than at least one half the Chunk size, the samples of each cluster were arranged 

such that they appeared for some time duration and the order of the clusters was randomly shuffled 

in time. 

To evaluate the performance of the OFC algorithm, initially the cluster purity measure was 

considered.  This measure is defined as follows [8]: 

𝑃𝑢𝑟𝑖𝑡𝑦 =  
∑

|𝑉ℓ
̂ |

|𝑉ℓ|
𝑈
ℓ=1

𝑈
× 100           (7.22) 

where U denotes the number of clusters, |𝑉ℓ̂| indicates the number of samples with the dominant 

cluster label in cluster ℓ, and |𝑉ℓ| indicates the total number of samples in cluster ℓ. In other words, 

this measure indicates the purity of the identified clusters with respect to the groundtruth or the 

true clusters. It is important to note that of course in practice the number of clusters is unknown or 

there exists no groundtruth.  

Another measure that was examined to evaluate the performance of our clustering algorithm was 

normalized mutual information (𝑁𝑀𝐼). This measure indicates the similarity of created clusters 

with respect to groundtruth clusters keeping in mind that in practice groundtruth clusters are not 
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known. Let 𝑄 and 𝑄′ denote the cluster sets corresponding to the groundtruth and the algorithm, 

respectively. The normalized mutual information 𝑁𝑀𝐼(𝑄, 𝑄′) is given by   

𝑁𝑀𝐼(𝑄, 𝑄′) =  
𝑀𝐼(𝑄,𝑄′)

√E(Q).E(Q′)
            (7.23) 

𝑀𝐼(𝑄, 𝑄′) = ∑ 𝑝(𝑞𝑖 , 𝑞ℓ
′ ). log 

𝑝(𝑞𝑖,𝑞ℓ
′)

𝑝(𝑞𝑖).𝑝(𝑞ℓ
′)𝑞𝑖∈𝑄,𝑞ℓ

′∈𝑄′          (7.24) 

where 𝑝(𝑞𝑖), 𝑝(𝑞ℓ
′ ) and 𝑝(𝑞𝑖 , 𝑞ℓ

′ ) are the probabilities of samples being in the clusters 𝑞𝑖, 𝑞ℓ
′ , and 

the intersection of 𝑞𝑖 and 𝑞ℓ
′ , respectively. E(Q) and E(Q′) denote the entropies of the clusters. 

Next, before showing the performance results, let us first state how the parameter values were set. 

7.4.2 Parameter Setting  

This section provides the OFC outcome for the four datasets DS1, DS2, DS3 and DS4 when using 

different buffer size (frame sizes) 𝑁, Chunk size 𝐿 (units expressed in terms of frames), and 

Gaussian kernel width 𝜎. The default values of the frame size 𝑁, Chunk size 𝐿, and smoothing 

kernel parameter 𝜎 in our experimentations were 10, 10, and 2.5, respectively. While altering one 

of the parameters, the other two parameters were kept constant. 

Gaussian Kernel Width 

The parameter 𝜎  controls the smoothness of the contour generated by SVDD. Small 𝜎 values for 

Gaussian kernel cause rough boundaries and involve a large number of support vectors and as 𝜎 

is increased, cluster boundaries become smoother and the number of support vectors decreases 

[25]. Table 7.1 and 7.2 show the average purity and the average 𝑁𝑀𝐼 of the OFC algorithm, 

respectively, for the DS1, DS2, DS3 and DS4 datasets across different values of 𝜎. As seen from 

these tables, 𝜎 = 2.5 provided a balance between performance and number of support vectors 

while setting N and L to 10. As mentioned in [32], the created boundary by SVDD is controlled 
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by the kernel width parameter, thus for different numbers of data samples, the kernel parameters 

need to get adjusted so that the created boundary is made close to the actual boundary. As the 

number of data samples is increased for a fixed kernel parameter, the created boundary by SVDD 

grows and would cover part of the domains of other close clusters leading to a drop in performance 

[38].  

Frame Size  

The average cluster purity and 𝑁𝑀𝐼 were examined when using different buffer sizes to create 

frames for the four synthetic datasets. Tables 7.3 and Table 7.4 show the average purity and 𝑁𝑀𝐼 

for different N values for the DS1, DS2, DS3 and DS4 datasets, respectively. Using large N values 

with L=10 dropped the performance because some of the clusters did not get created at the time 

they were supposed to get created. Therefore, as stated earlier, it is important to set N and L values 

depending on the application in such a way that they are consistent with the streaming duration of 

a cluster at its first appearance.  

Table 7.1. Average cluster purity in percentages versus Gaussian kernel width 𝜎 for synthetic 

dataset DS1, DS2, DS3 and DS4. 

Datasets             𝜎 0.5 1 1.5 2 2.5 3 - 6.5 7 7.5 8 8.5 9 9.5 10 

DS1 36 41 61 90 99.5 98.5 99.8 99.4 99.1 99 98.6 97.5 97.1 

DS2 50 50 100 100 100 100 100 100 100 99.9 99.8  99.6 98.6 

DS3 42 41 98.5 98.5 98.5 98.5 98.5 98.4 98 97.9 97.7 97.1 96.5 

DS4 77 76 96 99 99 100 100 100 100 100 100 100 100 

 

Table 7.2. Average 𝑁𝑀𝐼 value versus Gaussian kernel width 𝜎 for synthetic dataset DS1, DS2, 

DS3 and DS4 

Datasets             𝜎 0.5 1 1.5 2 2.5 3 - 6.5 7 7.5 8 8.5 9 9.5 10 

DS1 0.1 0.1 0.4 0.8 0.97 0.99 0.99 0.99 0.97 0.95 0.93 0.89 0.88 

DS2 0.4 0.4 1 1 1 1 1 1 1 0.98 0.98 0.96 0.9 

DS3 0.03 0.03 0.99 0.99 0.99 0.99 0.99 0.97 0.93 0.92 0.91 0.86 0.82 

DS4 0.14 0.14 0.97 1 1 1 1 1 1 1 1 1 1 
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Chunk Size   

The effect of changing Chunk size was also examined for N=10 and 𝜎 = 2.5 . Table 7.5 and 7.6 

provide the outcome for different L values on the DS1 dataset. Likewise, for the other datasets 

L=10 was found to provide the highest purity and NMI value. 

It is worth pointing out that for the datasets DS1, DS3 and DS4, the purity and 𝑁𝑀𝐼 values did not 

always increase by increasing the frame size or the Chunk size. As stated earlier, the initial number 

of data samples received from each cluster was considered to be longer than the Chunk size, i.e., 

longer than L×N. Increasing any of these two parameters or both of them up to the point that 

exceeded the number of the initial streaming data samples of a cluster caused errors since Chunk 

got filled with the data from more than one cluster. As explained in the chunk evaluation step, 

when dissimilarities were discovered, only the consistent data were used for cluster creation.  

A study was also conducted by changing the frame size and the Chunk size for all the datasets in 

terms of the correct creation of clusters. The parameter area that generated the correct outcome for 

all the six datasets is displayed in Figure 7.7. This figure shows that regardless of the shape and 

Table 7.3. Average cluster purity in percentages versus frame size N for synthetic dataset DS1, DS2, 

 DS3 and DS4 

Datasets                 N 1-3 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

DS1 98 99 99 99 99.5 97.2 94.3 91.9 93.8 88.5 93 91.6 84.5 78.6 78.7 

DS2 98 98 98 98 100 100 100 100 100 100 100 100 100 100 100 

DS3 96 99 98.1 97.8 98.5 98.5 97 98.5 99.1 100 99.9 96.55 98.5 98.5 93.68 

DS4 99 99 99 99 99 99 99 99 99 99 78.95 78.9 78.3 77.3 77.2 

 

Table 7.4. Average 𝑁𝑀𝐼 value versus frame size N for synthetic dataset DS1, DS2, DS3 and DS4  

Datasets                 N 1-3 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

DS1 0.5 1 0.99 0.99 0.97 0.92 0.87 0.82 0.85 0.76 0.84 0.79 0.53 0.1 0.1 

DS2 0.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

DS3 0.76 1 0.88 0.85 0.99 0.99 0.81 0.83 0.99 1 0.7 0.8 0.75 0.74 0.72 

DS4 0.67 1 1 1 1 1 1 1 1 1 0.16 0.12 0.12 0.1 0.1 
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distribution of the datasets, by keeping N and L values in the mid-range (white area in the figure), 

the correct clustering outcome was obtained.  

 

Table 7.5. Average cluster purity in percentages versus Chunk size L for synthetic dataset DS1, DS2,  

DS3 and DS4 

Datasets                 L 1-3 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

DS1 98 99.8 99.8 99.8 99.5 99.5 97.5 97 96.3 94.9 92.8 92.4 85.3 78.6 78.6 

DS2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

DS3 98.7 98.8 98.7 98.6 98.5 98.4 98.2 98.1 97.8 97.5 97.1 95.8 94.24 89.9 97.7 

DS4 99 99 99 99 99 99 99 99 99 99 78.6 78.7 78.6 78.5 78.4 

 

Table 7.6. Average 𝑁𝑀𝐼 value versus Chunk size L for synthetic dataset DS1, DS2, DS3 and DS4 

Datasets                 L 1-3 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

DS1 0.7 0.99 0.99 0.99 0.97 0.97 0.93 0.92 0.91 0.88 0.85 0.82 0.6 0.1 0.1 

DS2 0.75 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

DS3 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.79 0.78 0.77 0.77 0.77 

DS4 0.8 1 1 1 1 1 1 1 1 1 0.11 0.13 0.1 0.1 0.1 

 

 

 

Figure 7.7. Parameter setting area (white area) for frame size and Chunk size generating correct 

clusters for all six datasets 
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7.4.3 Performance Evaluation  

The clustering outcome and new cluster detection at different elapsed times are reported in this 

subsection. Figures 7.8 through 7.11 represent the clustering outcome across different elapsed 

times or frames for the DS1, DS2, DS3, and DS4 datasets, respectively. The true cluster labels at 

a number of elapsed times in frame units are provided in parts (a) of the figures while parts (b) 

show the generated cluster labels with parts (c) showing the flag NewC. This flag exhibits the new 

 

Figure 7.8. DS1 results: (a) groundtruth clusters, (b) OFC clustering outcome, (c) new cluster detection, 

 (d) clusters versus elapsed time 
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cluster creation time. These results are provided using the default values of N=10, L=10, and 𝜎 =

2.5. The clusters at different elapsed times are shown in parts (d) of the figures.  

7.4.4 Comparison 

The OFC algorithm was compared in terms of purity and normalized mutual information with the 

three clustering algorithms CluStream, DenStream and SVStream. For CluStream [7] which 

involves an online micro-clustering part and an offline macro-clustering part, the first initial 

number (IntNo) of data samples were collected and clustered by k-means to create W micro-

clusters. Each new data sample was added to the nearest micro-cluster. If it was not in the 

 

Figure 7.9. DS2 results: (a) groundtruth clusters, (b) OFC clustering outcome, (c) new cluster detection,  

(d) clusters versus elapsed time 
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maximum boundary of the existing micro-clusters, a new micro-cluster was created and one of the 

old micro-clusters was deleted or two close micro-clusters were merged. In the offline part, K 

macro-clusters were generated at each time by merging the micro-clusters within a time duration 

h. The parameters of CluStream were set based on the ones that generated the best results as 

recommended in [7], i.e., IntNo = 1000, W=10× K and h=100.  

 

Figure 7.10. DS3 results: (a) groundtruth clusters, (b) OFC clustering outcome, (c) new cluster detection,  

(d) clusters versus elapsed time 
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DenStream [8] also involves an online and an offline part. In this algorithm, there is a fading 

function ℎ(𝜏) = 1/2𝜆𝜏 to weight data samples; 𝜏 denotes the elapsed time and 𝜆 a fading factor. 

The first initial number (IntNo) of data samples were collected and clustered using DBSCAN to 

create the initial micro-clusters; a new data sample was merged to the nearest micro-cluster or a 

new micro-cluster was created. In the offline part, different DBSCANs [20] were performed to 

create the macro-clusters. The parameters of DenStream were set based on the ones recommended 

in [8], i.e., IntNo=1000, λ =0.25.  

In addition, a comparison was made to the algorithm SVStream [24]. SVStream processes data 

chunk by chunk. After creating an initial sphere, new chunk data are assigned to outside the sphere 

 

Figure 7.11. DS4 results: (a) groundtruth clusters, (b) OFC clustering outcome, (c) new cluster detection,  

(d) clusters with elapsed time 
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if more than 𝛿 times of the chunk size are outside the sphere, and then a new sphere is created. 

After creating a sphere, if all the spheres have distances less than  𝜂, they are merged together and 

the cluster labels are updated. Boundary samples with an age parameter more than 𝜁 are removed 

from data. For comparison purposes, these parameters were set as the ones recommended in [24], 

that is chunk size = 100, 𝜂 = 1,  𝛿 = 0.6 , 𝜁 = 2, trade-off parameter C =0.25, and Gaussian kernel 

width q = 0.011 and  q = 16 for the KDDCUP and Forest-CoverType datasets, respectively. For 

the four synthetic datasets, SVStream was examined using different parameters. It was noticed that 

the parameter q highly influenced its outcome. SVStream generated many clusters (up to 100 

clusters) or all the samples during the streaming were removed by labeling them as outside 

boundary samples and sometimes only part of the last chunk was kept.  It was obtained that for 

SVStream, q =10, 12, 0.1, and 0.2 provided the best results for the DS1, DS2, DS3 and DS4 

datasets, respectively.  

Figures 7.12 and 7.13 summarize the comparison between our OFC clustering algorithm and 

SVStream, CluStream and DenStream for the four synthetic datasets and the two real datasets 

KDDCUP and Forest-CoverType, averaged over different time arrangements of the streaming 

data. In general, one can see that OFC provided higher average purities and 𝑁𝑀𝐼s across all the 

datasets compared to SVStream, DenStream and CluStream. In terms of purity, the improvements 

over SVStream were 43%, 48%, 24%, 30%, 70% and 15% for the DS1, DS2, DS3, DS4, KDD 

and Forest-CoverType datasets, respectively. For the DS2, DS3, DS4, KDD and Forest-CoverType 

datasets, OFC outperformed DenStream by 36%, 44%, 51%, 17% and 18%, respectively. The 

improvements over CluStream were 14%, 2%, 8%, 17% and 13%, respectively. For the DS1 

dataset, OFC performed the same as CluStream and DenStream in terms of purity. A statistical 
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analysis of variance (ANOVA) based on the t-test was conducted to show the statistical 

significance of the improvements provided by OFC. This statistical analysis indicated that in terms 

of purity, OFC generated 9% and 38% improvements at 95% confidence interval over CluStream 

and SVStream, respectively, and 28% improvement over DenStream at 95% confidence interval. 

 

Figure 7.12. Cluster purity (1 represents 100%) comparison between OFC, SVStream, 

CluStream and DenStream over the four synthetic and two real datasets. 

 

 

Figure 7.13. Cluster 𝑁𝑀𝐼 comparison between OFC, SVStream, CluStream and DenStream 

over the four synthetic and two real datasets 
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The t-test showed the statistical significance of the improvement with the p value < 0.003 across 

all the six datasets. In terms of 𝑁𝑀𝐼, the average improvement over SVStream, DenStream and 

CluStresm was around 32%, 51% and 46.47%, respectively.  

OFC was also compared with SVStream in terms of processing time and memory usage noting 

that SVStream was stated in [24] to be more computationally efficient than the other clustering 

algorithms. The algorithm was written in MATLAB running on a Windows operating system PC 

equipped with a 2.67GHz clock processor. The same machine was used to run all the algorithms. 

The results obtained are provided in Tables 7.7 and 7.8, exhibiting the computational efficiency of 

OFC over SVStream. It was found that although SVStream was more efficient in memory usage 

by 12% on average, the processing time of OFC was at least one-third of the processing time of 

SVStream. It is worth mentioning that the processing time of SVStream for a typical chunk 

increased over time during the streaming process as the number of created spheres grew or the 

dimensionality of the data increased.  

Table 7.7. Average processing time for a frame of length N=10 considering the lowest processing time for 

SVStream 

Datasets 
OFC SVStream 

Time (msec) Time (msec) 

DS1 0.043 0.12 

DS2 0.040   0.14 

DS3 0.048 0.17 

DS4 0.047 0.17 

KDDCUP 0.060 0.19 

Forest-CoverType 0.052 0.082 

 

Table 7.8. Average memory usage of OFC and SVStream algorithms 

Datasets 
OFC SVStream 

Memory(kB) Memory(kB) 

DS1 384  316 

DS2 384 316 

DS3 384 316 

DS4 152 72 

KDDCUP 1140 1400 

Forest-CoverType 500 660 
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7.5 CONCLUSION  

An online clustering algorithm operating on frames of data samples has been introduced in this 

chapter which allows streaming data to be clustered without knowing the number of clusters or 

classes. This algorithm provides a major advantage over the existing clustering algorithms 

designed for streaming data as it does not require the number of clusters to be known. This 

algorithm allows data samples to be processed and grouped into clusters of arbitrary shapes as the 

data are received in a streaming fashion in real time in an on-the-fly manner. Experimental results 

involving four synthetic datasets and two real datasets were carried out which indicated that this 

new clustering algorithm outperformed the existing clustering algorithms in terms of the cluster 

purity and normalized mutual information measures. In our future works, we plan to apply this 

clustering algorithm to specific applications in signal and image processing where it is required to 

perform clustering in an online and frame-based manner while not knowing the number of clusters.  

7.6 APPENDIX A 

Table 7.9 provides a list of the notations in the chapter. 

 

Table 7.9. Listing of notations 
Notation Type Definition 

𝑁 ℕ frame size 

𝐿 ℕ Chunk size 

𝑡  time 

𝑑 ℕ dimension of input samples 

𝒴𝑖,𝑡 ℝ𝑑 input sample 

𝐹𝑡 ℝ𝑑×𝑁 Frame; 𝐹𝑡 = {𝒴𝑖,𝑡|𝒴𝑖,𝑡 ∈ ℝ𝑑 , 𝑖 = 1, … 𝑁}, 𝑡 = 1,2, … 

𝑔𝑖,𝑗(𝒴𝑖,𝑡 , 𝒴𝑗,𝑡) 
ℝ𝑁×𝑁

→ ℝ0
+ 

mutual distance, 𝑔𝑖,𝑗(𝒴𝑖,𝑡 , 𝒴𝑗,𝑡) = ‖𝒴𝑖 − 𝒴𝑗‖
2

 , 𝑖, 𝑗 = 1, … , 𝑁   

𝐿𝑡 ℝ0
+ minimum value of the HIMD of 𝐹𝑡 

𝑈𝑡 ℝ0
+ maximum value of the HIMD of 𝐹𝑡 

𝑀𝑡 ℝ0
+ peak value of the HIMD of 𝐹𝑡 

𝑔𝑡̅̅̅ ℝ0
+ average of mutual distances of 𝐹𝑡; 𝑔𝑡̅̅̅ =

1

𝑁2 
∑ 𝑔𝑖,𝑗

𝑁
𝑖,𝑗=1  
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Table 7.9. Listing of notations (continued) 
𝒬𝑡 ⊆ ℝN2

 𝒬𝑡 ≔ {𝒷|𝒷 > 𝑀𝑡 , 𝑓𝑡(𝒷) = 𝑓𝑡(𝑀𝑡)},  

𝛿𝑡 ℝ0
+ standard deviation of the mutual distances of  𝐹𝑡;𝛿𝑡 = (

1

𝑁2
∑ (𝑔𝑖,𝑗 − 𝑔𝑡̅̅̅)

2𝑁
𝑖,𝑗=1 )

1

2
 

𝜚 [0,1] weight value 

𝑓𝑡(. ) ℝ → [0,1] probability density function of 𝐹𝑡 

𝑇𝑡 ℝ0
+ threshold for finding potential outliers in  𝐹𝑡 

𝐷𝑡 ℝ0
+ density of a of 𝐹𝑡;𝐷𝑡 =

𝑀𝑡−𝐿𝑡

𝑈𝑡−𝑀𝑡
, 𝑡 = 1,2, … 

𝜀𝑡 ℝ0
+ radius of neighborhood around potential outliers to search for non-outliers samples 

𝓌𝑡 ℕ 
minimum required non-outliers in the 

𝜀𝑡 neighborhood of the potential outliers to consider 

𝒩𝑡 ℕ frame size after outlier removal 

F̃t ℝ𝑑×𝒩t  F̃t ≔ {(𝒴𝑗,𝑡 , 𝜇𝑡 , εt)|𝒴𝑗,𝑡 ∈ ℝ𝑑, 𝜀𝑡 = 𝑀𝑡 + 𝛿𝑡, 𝑗 = 1, … , 𝒩𝑡}} 

𝜇𝑡 ℝ 𝜇𝑡 =
1

𝒩𝑡
∑ 𝒴𝑗,𝑡

𝒩𝑡

𝑗=1  , 𝑡 = 1,2, …  

𝑋 ℝ𝑑×𝒥 𝑋 ≔ {𝑥𝒿|𝑥𝒿 ∈ ℝ𝑑 , 𝒿 = 1, … , 𝒥}, 𝒥 ∈  ℕ 

𝐻( 𝑅, 𝑎, 𝜉𝒿

) 

(ℝ+)3

→ ℝ 
smallest enclosing hypersphere representing a dataset 

𝑅 ℝ+ radius of the  hypersphere 

𝑎 ℝ+ center of the  hypersphere 

𝜉𝒿 ℝ0
+ slack variables to  punish samples whose distances from the center a are farther than R 

𝛽𝒿 and 𝛼𝒿 ℝ0
+ Lagrange multipliers  𝛽𝒿 ≥ 0, 𝛼𝒿 ≥ 0 

𝛾 ℝ0
+ establishes a trade-off between volume and error (accuracy of data description) 

𝜑(𝑥𝒿) ℝ𝑑 → ℝ𝑑′
 transfer function, 𝑑′ kernel domain 

𝒦(𝑥𝒿, 𝑥𝓀) ℝ𝑑×𝑑 → ℝ kernel function 

𝜎 ℝ+ Gaussian kernel width 

ℓ ℕ cluster label 

𝒮̅ - support vectors and their Lagrange multipliers, 𝒮̅  = {(𝑥𝒿, 𝛽𝒿)| 0 < 𝛽𝒿 < 𝛾} 

𝜓 - sphere structure 𝜓 = {𝒮̅, ‖𝑎‖2, 𝑅, ℓ} 

I ℕ Number of frames in a micro-cluster 

𝒞 - micro-cluster,  𝒞: = {𝐹𝑡𝑖
, ∀𝑖 = 1, … , I, 𝑔𝑡𝑖,𝑡𝑖+1 (𝜇𝑡𝑖

, 𝜇𝑡𝑖+1
) <  𝜀ti

+ 𝜀ti+1
} 

U ℕ0 number of clusters created by the algorithm 

𝑃𝑢𝑟𝑖𝑡𝑦 [0,100] averaged purity of a cluster set; 𝑃𝑢𝑟𝑖𝑡𝑦 =
∑

|𝑉ℓ
̂ |

|𝑉ℓ|
𝑈
ℓ=1

𝑈
 × 100  

𝑀𝐼(𝑄, 𝑄′) ℝ+ 
mutual information of clusters sets 𝑄 and 𝑄′ ; 𝑀𝐼(𝑄, 𝑄′) =

∑ 𝑝(𝑞𝑖 , 𝑞ℓ
′ ). log 

𝑝(𝑞𝑖,𝑞ℓ
′)

𝑝(𝑞𝑖).𝑝(𝑞ℓ
′)𝑞𝑖∈𝑄,𝑞ℓ

′∈𝑄′  

𝑁𝑀𝐼(𝑄, 𝑄′) [0,1] normalized mutual information 𝑁𝑀𝐼(𝑄, 𝑄′) =  
𝑀𝐼(𝑄,𝑄′)

√E(Q).E(Q′)
 

𝑝(𝑞𝑖) ℝ → [0,1] probabilities of samples being in cluster 𝑞𝑖 

𝑝(𝑞ℓ
′ ) ℝ → [0,1] probabilities of samples being in cluster 𝑞ℓ

′   

𝑝(𝑞𝑖), 𝑝(𝑞ℓ
′ ) ℝ → [0,1] probabilities of samples being in the intersection of 𝑞𝑖 and 𝑞ℓ

′  

E(. ) ℝ+ entropy function 

W ℕ number of micro-clusters in CluStream method 

IntNo ℕ first initial number of data in CluStream and DenStream methods 

K ℕ number of macro-clusters in CluStream method 

h - time duration in CluStream method 

𝜏 ℝ+ elapsed time in DenStream method 

𝜆 ℝ+ fading factor in DenStream method 

ℎ(. ) ℝ+ → ℝ+ fading function in DenStream method, ℎ(𝜏) = 1/2𝜆𝜏 

𝛿 [0,1] 
number of outside sphere samples in terms of chunk size, for creating new sphere in 

SVStream method 

C ℝ+ Trade-off parameter in SVStream method 

 𝜂 ℝ+ merging spheres distance threshold  

q ℝ+ Gaussian kernel width in SVStream method 

𝜁 ℝ+ data age threshold in SVStream method 
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ABSTRACT 

This chapter presents a real-time unsupervised classification of environmental noise signals 

without knowing the number of noise classes or clusters. A previously developed online frame-

based clustering algorithm is modified by adding feature extraction, a smoothing step and a fading 

step. The developed unsupervised classification or clustering is examined in terms of purity of 

clusters and normalized mutual information. The results obtained for actual noise signals exhibit 

the effectiveness of the introduced unsupervised classification in terms of both classification 

outcome and computational efficiency. 

  



 

122 

8.1 INTRODUCTION 

Many studies have been conducted on environmental noise classification, for example [1-6]. A 

typical noise classifier incorporates two major components: a feature extractor and a classifier. 

Table 8.1 provides a listing of some representative noise signal classification approaches that have 

been reported in the literature.  

The attribute which is common among all these approaches is the supervised nature of the 

classification, meaning that a training dataset for each noise environment is first collected in order 

to train a classifier. Often, a frontend Voice Activity Detector (VAD) is used to separate pure noise 

signals from speech or speech in noise signals. During testing or operation, the trained classifier is 

then used to assign an unknown noise signal to a trained noise class based on the features extracted 

from the unknown noise signal. In these approaches, noise signals for which no training is done 

get assigned to the closest trained noise class although their noise characteristics may be different 

than the trained noise classes. This issue becomes of importance in applications, e.g. in hearing 

devices [2, 5-6], where the detected noise class is used to perform further signal processing such 

as noise suppression or speech enhancement. For example, in [17], a tunable speech enhancement 

algorithm was discussed whose parameters were adjusted depending on a number of noise 

environments to improve both the quality and intelligibility of noisy speech. As another example, 

in [2], a classifier path was added to the speech processing pipeline of cochlear implants to achieve 

noise adaptive suppression depending on a number of predefined noise environments. 
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Table 8.1. Representative previous works on background noise classification  

References Year Features Classifier Dataset 

Wang et al. 

[7] 
2014 Non-uniform frequency map SVM 

cat meows, clapping, coughing, double clapping, dogs 

barking, doorbell ringing, female speeches, frogs 

croaking, glass breaking, gunshot firing, door 

knocking, laughing, male speeches, motorcycles 

revving their engines, pianos playing, screaming, and 

telephones ringing 

Saki et al. [8] 2013 
Band-periodicity and band-entropy 

features 

Random forest 

tree 
babble, machinery , street 

Khunarsal et 

al. [9] 
2013 Spectrogram pattern matching NN and k-NN 

car engine, construction, crowd applause, crowd 

clamor, fire, helicopter, office, outdoor sounds- forest, 

road, restaurant, transportation-motorcycle, 

transportation -train, water, weather-rain, weather-

thunder, household, airplane, water (Ocean), chicken 

farm, and auto racing 

Chu et al. [10] 2012 

Mel-frequency cepstral coefficients 

(MFCC) and matching pursuit 

(MP) 

deep belief 

network 

classifier 

inside casino, playground, nature-nighttime,nature-

daytime, inside restaurants,next to rivers/streams,train 

passing, inside vehicles, raining, street with traffic, 

ocean 

waves, and thundering. 

Li et al. [11] 2010 MFCC and matching pursuit (MP) SVM 

sounds of water, sounds of birds, chirpings of insects, 

roars of mammal, the sounds emitted in certain 

weather condition, sounds on the street or road with 

traffic, clamors in shopping centers or supermarkets. 

Lozano et al. 

[12] 
2010 

MFCC, zero crossing rate (ZCR), 

centroid and roll-off point with 

multi-resolution window size 

GMM 
pans, cups, bottles, china, sprays, phones, clocks, 

rattles(kara), door locks, shavers and dryers 

Chu et al. [13] 2009  MP and MFCC 
GMM and K-

NN 

inside restaurants, playground, street with traffic and 

pedestrians, train passing, inside moving vehicles, 

inside casinos, street with police car siren, Street with 

ambulance siren, nature-daytime, nature-nighttime, 

ocean waves, running water/stream/river, 

raining/shower, and thundering 

Byeong et al. 

[14] 
2009 

MFCC, ZCR, spectral centroid, 

spectral spread, spectral flatness, 

spectral flux, change chirp rate 

spectrum, Hilbert envelope of the 

analytic signal, and the local 

energy and discrete curvelet 

transform 

SVM 
on the street , on the road, talking, raining, pub/bar, in 

car 

Ntalampiras 

et al. [15] 
2008 

MFCC and audio waveform, 

power, spectrum envelope, 

spectrum centroid, spectrum 

spread, spectrum flatness, 

harmonic ratio, upper limit of 

harmonicity, audio fundamental 

frequency 

GMM and 

hidden Markov 

model (HMM) 

aircraft , motorcycle, car , crowd , thunder, wind, train 

and horns 

Kraetzer et al. 

[16] 
2007 

63 statistical features computed 

by AAST 

Bayes classifier, 

K-means 

clustering 

large office, small office, bathroom, laboratory, 

lecture hall, anechoic chamber, quiet outside 

environment, busy parking lot, long and narrow 

corridor, stone stairwell, strong echo 
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A challenging issue that has not been adequately addressed in the literature is which noise classes 

or types to consider for the purpose of achieving optimum noise suppression in response to 

different noise types. In practice, no matter how many noise types or classes are considered, 

different users of these devices experience different noise environments that vary from user to 

user. A hearing device can be made more useful if it learns the noise environments that a specific 

user encounters in his/her daily life in an unsupervised manner. In other words, a hearing device 

can be made more effective and usable by making it user-specific. This means that the hearing 

device can be designed to automatically learn those noise environments that a specific user 

encounters.  

In [18], we developed an online clustering algorithm, which is capable of defining different 

clusters on-the-fly with no knowledge about the number of clusters or classes. In this chapter, this 

clustering algorithm is modified and applied to address the problem of background noise 

classification in an unsupervised manner. Such an approach enables the development of more 

advanced hearing devices that learn on their own. In addition, the real-time aspect of deploying 

this clustering algorithm for online background noise classification is presented. To the best of our 

knowledge, there exists no unsupervised classification algorithm that is capable of performing 

real-time background noise classification without knowing the number of classes.  

It should be noted that although there exist a number of unsupervised classification or clustering 

algorithms that are designed for streaming data such as noise signals [19-23], they all require the 

number of clusters to be specified. Thus, the key element that differentiates the clustering 

algorithm in [18], named Online Frame-based Clustering (OFC), from the existing clustering 

algorithms, is that OFC does not require the number of classes or clusters to be specified. In [18], 
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it was shown that OFC outperformed a recent clustering algorithm SVStream [24] designed for 

streaming data in terms of both accuracy and computational efficiency. In this chapter, OFC has 

been modified for the background noise classification application. Therefore, unlike the existing 

background noise classifiers, it is important to note that the introduced approach does not require 

any data collection and training phase, and the classification is achieved in an on-the-fly and 

unsupervised manner without knowing the number of classes.  

The rest of the chapter is organized as follows: section 8.2 provides an overview of the previously 

developed OFC clustering algorithm. section 8.3 covers the modifications made to this algorithm 

to perform online unsupervised background noise classification. The real-time implementation 

aspect of the developed unsupervised classification is then reported in section 8.4. Finally, the 

conclusion is stated in section 8.5. 

8.2 OVERVIEW OF ONLINE FRAME-BASED CLUSTERING WITH UNKNOWN 

NUMBER OF CLUSTERS  

In this section, an overview of the OFC clustering algorithm is provided to set the stage for the 

modifications made to it in section 8.3 to achieve unsupervised background noise classification. A 

detailed explanation of the OFC algorithm appears in [18].  

Figure 8.1 shows the flowchart of the components of the OFC clustering algorithm. In this 

algorithm, incoming samples are processed frame by frame. Let 𝐹𝑡 ≔ {𝒴𝑖,𝑡|𝒴𝑖,𝑡 ∈ ℝ𝑑 , 𝑖 =

1, … 𝑁}, 𝑡 = 1,2, … represent a frame at time instance t, where 𝒴𝑖,𝑡 denotes a d-dimensional feature 

vector at the ith instance of extracting a feature vector. Each frame is first passed through the 

classifier to see whether it belongs to any of the existing clusters or not. Frames which do not 
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match any existing cluster or class are examined to see whether they belong to a possible new 

cluster by moving them to another buffer called Chunk. Of course, at the beginning when there is 

no cluster, all frames go to Chunk. The buffer Chunk is used to keep track of data which belong to 

a potential new cluster or class. In the ideal case, all frames in Chunk should be from one cluster 

or class and similar to each other.  

Frames in Chunk are checked for similarity. Similarity is defined using the statistical attributes of 

mean or centroid 𝜇 and radius ε of frames, see Figure 8.2. The radius 𝜀 of a frame is defined based 

on the density method described in [18]. This method involves first finding the histogram of mutual 

distances of feature vectors. Then the radius is set as 𝜀𝑡 = 𝑃𝑡 + 𝛿𝑡, where 𝑃𝑡 denotes the histogram 

peak value and 𝛿𝑡 the histogram standard deviation. As illustrated in Figure 8.3, similar frames in 

Chunk can be represented by connected nodes in a graph. Each node would have two direct 

connections (one to a previous frame and one to a next frame). A collection of connected frames 

is defined to be a micro-cluster. Note that connections between frames denote similarity and two 

  

 
Figure 8.1. Flowchart of the OFC clustering algorithm introduced in [18] 
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connected frames are not necessarily the same as two frames that occur consecutively in time. Of 

 

Figure 8.2. (a) Frames i and j are directly connected, (b), frames a and b, b and k are directly 

connected, while frames a and k are connected through frame b; 𝜇 denotes frame center, 𝑔𝜇𝑖,𝜇𝑗
distance 

between frame centers i &j, and 𝜀 frame radius as defined in [18]. 

 

 

Figure 8.3. (a) A grid of frames in Chunk of length L in an ideal case when all frames are connected 

and no disconnection exists in Chunk; 𝐹𝑡1
 corresponds to the first frame and 𝐹𝑡𝐿

 corresponds to the 

time that the latest frame gets to Chunk, (b) four micro-clusters in Chunk, two are sporadic and two 

are connected through a frame. 
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course, in the ideal case, connected frames would occur consecutively in time. However, in 

practice, due to the presence of data noise, there may be disconnections between frames in Chunk, 

which means that there could be more than one micro-cluster in Chunk, as illustrated in Figure 

8.3(b).  

The most prominent micro-cluster in Chunk is then identified and used to create or establish a new 

cluster. This is achieved by using the Support Vector Domain Descriptors (SVDD) method [25, 

26]. This method involves a sphere-shaped data description using nonlinear transformations 

(kernel functions). SVDD provides the smallest closed boundary or a hypersphere based on a small 

number of support vectors. As explained in [18], a cluster 𝜓 is defined in terms of the support 

vectors, sphere center, radius and class label as follows:  

  

𝜓 = {𝒮̅, ‖𝑎‖2, 𝑅, ℓ}         (8.1) 

  

where 𝒮̅ and 𝑎 denote support vectors and sphere center, respectively, 𝑅 sphere radius and ℓ cluster 

label for a newly created cluster which is specified to be the current number of clusters plus one.  

After creating the first cluster or class, each new frame is evaluated to see whether it is inside the 

boundary of any existing clusters. Frames with their distances to the sphere center smaller than the 

sphere radius are considered to be inside frames and those larger than the sphere radius are 

considered to be outside frames. The sphere class label is then assigned to inside frames and the 

outside frames are moved to Chunk.  

8.3 REAL-TIME UNSUPERVISED BACKGROUND NOISE CLASSIFICATION 

In this section, the steps and modifications made to the OFC algorithm to perform real-time 

unsupervised background noise classification are discussed. The intent here is to identify different 



 

129 

background noises or sounds with no training or no prior knowledge of these noises. For this 

purpose, the following additions or modifications are made to the original OFC algorithm: feature 

extraction, fading function and classification smoothing. The subsections that follow discuss these 

additions and modifications. 

8.3.1 Feature Extraction 

Any noise classification approach includes a feature extraction component which is critical to 

provide distinguishing characteristics of different environmental noises. As discussed in [27], 

basically two processing schemes are utilized: sample-based processing and frame-based 

processing. Frame-based processing is more widely used since often there is not enough 

information in a single sample to perform clustering. Furthermore, the i/o of commonly used 

mobile devices is designed to read and write data one frame at a time and not one sample at a time. 

For unsupervised noise classification discussed in this work, feature vectors are extracted from a 

number of captured signal frames and then they are combined to form a feature vector frame or an 

OFC frame that is used by the OFC algorithm. It is worth pointing out that the captured signal 

frame is different than the feature vector frame. The captured signal frame denotes a frame of input 

audio signal and the feature vector frame denotes a number of feature vectors extracted from signal 

frames. Note that the classification decision is made based on the feature vector frame and not the 

captured signal frame.  

The first step in the OFC algorithm is the framing step. In this step, input data samples are buffered 

to form an OFC or feature vector frame. For the application of environmental noise classification, 

input data samples correspond to feature vectors which are extracted from captured signal frames. 

Let 𝛾 denote the duration of captured signal frames. Each signal frame is first passed through a 
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feature extraction step, and then the extracted features are stored/concatenated in a buffer to form 

a feature vector frame that corresponds to the OFC frame. In other words an ensemble of N feature 

vectors, 𝒴𝑖,𝑡, are extracted over a time period [𝑡 − 𝜆, 𝑡]; 𝐹𝑡 ≔ {𝒴𝑖,𝑡|𝒴𝑖,𝑡 ∈ ℝ𝑑 , 𝑖 = 1, … 𝑁}, where 

𝒴𝑖,𝑡 indicates ith feature vector and N denotes the number of concatenated feature vectors over this 

time duration. The extracted features are briefly described below. 

As discussed in [8], the feature vectors of band-periodicity and band-entropy, named subband 

features, have been found to be effective as noise features that can be computed in a 

computationally efficient manner. These features are thus used here due to their effectiveness as 

well as their low computational complexity for the purpose of achieving real-time processing rates 

on a typical laptop or PC computer.  

Based on the sampling rate 𝑓𝑠 for captured signal frames of duration 𝛾 seconds, the frequency 

range of frames, that is [0,
𝑓𝑠

2
], is divided into a number of B linear non-overlapping subbands. It is 

worth noting that both Mel filter bank and bark filter bank were also considered but there was no 

impact on the classification outcome. To compute the band periodicity features, the cross-

correlation between every two adjacent frames in each band is computed and then the maximum 

peak of the cross-correlation denoted by 𝑟𝑏,𝑚 is used to define the band-periodicity features in band 

b for duration of S seconds as follows [28]:  

𝐵𝑃𝑏 =  
1

𝑀
 ∑ 𝑟𝑏,m

𝑀
𝑚=1  , 𝑏 = 1, … , 𝐵       (8.2) 

where 𝑟𝑏,m is the maximum peak of the correlation between two consecutive signal frames at band 

b and frame 𝑚 with 𝑀 denoting the number of captured signal frames in S seconds. Band-
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periodicity features essentially reflect the correlation of each incoming signal frame with a 

previous signal frame in different bands. 

The band-entropy features over S seconds are computed as follows: 

 𝐵𝐸𝑏 =
1

M
∑ 𝐻𝑏,𝑚

𝑀
𝑚=1             (8.3) 

where 𝐻𝑏,𝑚 denotes the entropy of the Fourier transform of 𝑚𝑡ℎ frame in band b. Note that the 

computed feature vector at the instance t denotes the signal information over the time duration [t- 

S, t]. An illustration of the subband feature extraction process is provided in Figure 8.4.  

The computed subband feature vectors across a longer time duration [𝑡 − 𝜆, 𝑡]; (S< 𝜆) are 

concatenated to form the feature vector frame or OFC frame 𝐹𝑡 ≔ {𝒴𝑖,𝑡|𝒴𝑖,𝑡 ∈ ℝ𝑑 , 𝑖 = 1, … 𝑁}  

(see Figure 8.4) that is used in the OFC algorithm, where 𝒴𝑖,𝑡 indicates ith feature vector with 𝑑 =

2 × 𝐵 (for each band, two features of band-periodicity and band-entropy are computed) and N 

denotes the number of concatenated subband feature vectors over the last 𝜆 seconds. Naturally, N 

depends on S for a fixed 𝜆. The feature vector frame 𝐹𝑡 is then fed into the OFC algorithm to 

establish the background noise class at time t. It is worth mentioning that the developed 

unsupervised classification solution is general purpose in the sense that it allows any other set of 

features to be used in place of subband features.  

In the classification step, the distances of the OFC frame 𝐹𝑡 at time t to the existing sphere centers 

is computed. For the cluster label at time t, first the closest sphere to 𝐹𝑡  is identified based on this 

distance  

 

𝑑𝑡,ℓ =
‖𝜇𝐹𝑡

−𝑎ℓ‖
2

𝑅ℓ
2             (8.4) 



 

132 

This distance denotes the normalized distance of frame 𝐹𝑡  and cluster ℓ, 𝜇𝐹𝑡
 represents the center 

 

Figure 8.4. Subband feature extraction process 
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of frame 𝐹𝑡 and 𝑎ℓ & 𝑅ℓ represent the sphere center and radius of a cluster or class ℓ, respectively. 

If the number of feature vectors falling inside the closest sphere is greater than the number of 

feature vectors falling outside, that 𝐹𝑡  is assigned to the corresponding sphere. Otherwise, a new 

cluster flag is activated indicating that data from a new cluster or class is coming in and the feature 

vector frames are moved to Chunk.  

8.3.2 Fading Function 

Feature vector frames which appear in Chunk indicate data from a potential unseen cluster or class. 

When Chunk gets full, a new cluster or class gets created. Before adding a new cluster, the data in 

Chunk need to be evaluated in terms of homogeneity and similarity. In practice, due to data noise, 

some dissimilarity and disconnections between parts of the data in Chunk may occur. To address 

this issue, only the homogenous and connected data in Chunk are used to form a micro-cluster. 

Assuming that the size of a micro-cluster meets the size specified for creating a new cluster, a flag 

named NewC is used to create a new cluster and Chunk is emptied. Otherwise, a micro-cluster 

stays linked to Chunk and later when Chunk gets filled, it is examined again.  

In practice, sound data occur in a streaming manner or continuously. Thus, it may happen that data 

from one unseen noise environment get to Chunk, but the data stream is not long enough to fill 

Chunk and the rest of Chunk may get filled with another unseen cluster data. Such data are not 

regarded as valid data for cluster creation. As a result, it is more effective to keep only useful data 

before running the Chunk evaluation. A simple computation is thus performed to remove the data 

that stay in Chunk for a long time. To this end, before checking the similarity between the frames 



 

134 

in Chunk, the age of the feature vector frames in Chunk are examined by using a fading function 

mentioned next.  

To check the age of the feature vector frames in Chunk, a time-sensitive weight for a frame is 

defined by considering a time fading function ℎ(𝜏), which assigns lower weights to older frames 

and higher weights to newer frames:  

 

ℎ(𝜏) = exp (− log2(𝜏 + 1))            (8.5) 
 

where 𝜏 denotes the age of the feature vector frames in Chunk. The age of a current frame is 𝜏 =

0, or the corresponding fading weight is one. Over time, the frame’s age increases. The maximum 

accepted elapsed time for frames can be adjusted based on the application at hand by setting a 

threshold 𝜏 = Θ, where Θ is defined in terms of Chunk size. As a result, frames that are older than 

exp (− log2(Θ + 1)) get removed from Chunk.  

8.3.3 Classification Smoothing 

Another modification that is made here is classification smoothing. Because of the presence of 

noisy data, in practice, fluctuations in the classification outcome might occur which cause noisy 

feature vector frames to be placed into Chunk. To avoid or reduce this possibility, a smoothing 

step is added to the clustering decision outcome. This smoothing reflects the situation that if frame 

𝐹𝑡 is from class ℓ and frame 𝐹𝑡+2 is from class ℓ as well, then frame 𝐹𝑡+1 is expected to be from 

the same class, noting that signal data occur in a streaming manner and the interest is primarily on 

sustained type of noise. The smoothing step consists of first applying a median filter of length 3 

for removing spikes in classification and then applying a majority voting across a window of size 

𝑊. Majority vote reflects the detected class at time t is the most detected class over the time 
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duration of 𝑊 × 𝜆 seconds. This step copes with noisy data getting into Chunk, and prevents filling 

Chunk with noisy data and running unnecessary Chunk evaluations.  

8.3.4 Parameter Setting  

In this subsection, a set of guidelines are provided as how the parameters of the algorithm can be 

set when running the unsupervised noise classification in real-time. These parameters include the 

captured signal frame duration  𝛾, the segment length S for computing the subband features, the 

Chunk size 𝐿, the smoothing window size 𝑊, the age threshold Θ for frames in Chunk, and finally 

the number of bands B for feature extraction. 

In many audio applications, frames durations of 10-40 msec are considered since over this time 

duration, sound characteristics remain mostly statistically stationary. On the other hand, such short 

sound segments may not carry adequate information for classification purposes. Often, the 

extracted features from a noise signal over at least 100-500 msec would be needed to indicate the 

noise type. In the experimentations reported in this work, the captured signal frames was 

considered to be 𝛾 = 25 msec and the segment length was considered to be S=100 msec. Then, 

the extracted subband feature vectors over duration 𝜆 =500 msec were concatenated to form an 

OFC or a feature vector frame at which rate a decision was made. 

To set the length of the smoothing window 𝑊 for the majority voting decision, one needs to take 

into consideration how frequent the noise environment changes or how fast the noise environment 

is to be updated. For a user moving between two different noise environments, a reasonable update 

rate would be every two to three seconds, that is [t-𝑊 × 𝜆,t] with at least  𝑊 × 𝜆= 2~3 seconds, 

i.e. 𝑊=4 to 6 when 𝜆 duration is 500 msec.  
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To set Chunk size, one needs to specify how long an occurring noise is to be sustained in order to 

establish a new cluster. In other words, if a user gets to a new noise environment, how long the 

noise needs to last for a new noise cluster to get established. For our experimentations reported in 

the next section, this time was assigned to be at least 5 seconds. Note that this is a user-specified 

parameter. Expressing the Chunk size in terms of the number of feature vector or OFC frames for 

the duration 𝜆 =500 msec, one gets 𝐿= 10. The longer the Chunk size, the more information about 

a new cluster is made available. However, to accommodate for the real-time implementation aspect 

of creating a cluster in an on-the-fly manner, one needs to keep in mind the tradeoff between Chunk 

size and computational complexity. This is due to the fact that a longer Chunk size causes more 

delay in the creation of a new cluster.  

For subband feature extraction, the number of bands used in [8] was 8 and thus 16 band-periodicity 

and band-entropy features were used for background noise classification. Here 2, 4 and 8 bands 

were considered and it was found that 4 and 8 bands were adequate for the application under 

consideration. That is why only 4 bands, corresponding to 8 band-periodicity and entropy features, 

were used for computational efficiency. The interested reader is referred to [8] for more details on 

the feature extraction parameters.  

Finally, the age threshold for each feature vector frame in Chunk depends on the Chunk size. For 

a new cluster to get added when data from a noisy data are received, the maximum elapsed time 

between the oldest feature vector frame in Chunk and a current incoming feature vector frame in 

Chunk was set here to Θ = 2 ×  𝐿 to accommodate for interruptions when placing new data into 

Chunk.  
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8.4 EXPERIMENTAL RESULTS AND REAL-TIME OUTCOME 

In this section, the experimental results of the developed background noise unsupervised 

classification algorithm as well as its comparison with the SVStream algorithm are presented. In 

the first experiment, the dataset in [2] was used to carry out the classification without any training. 

This dataset consisted of five different background noise classes of babble, driving car, machinery, 

train, and street. These signals were then fed into the unsupervised classifier in a streaming manner 

and the following cluster purity measure described in [21] was computed:  

𝑃𝑢𝑟𝑖𝑡𝑦 =  
∑

|𝑉ℓ
̂ |

|𝑉ℓ|
𝑈
ℓ=1

𝑈
× 100          (8.6) 

where U denotes the number of clusters, |𝑉ℓ̂| indicates the number of samples with the dominant 

class label in cluster ℓ, and |𝑉ℓ| indicates the total number of samples in cluster ℓ. Basically, this 

measure indicates the purity of the identified clusters with respect to the groundtruth or the true 

clusters. It is important to bear in mind that of course in actual operation or in practice, the number 

of clusters is unknown or the groundtruth clusters are not known.  

Another measure that was used here to evaluate the performance of the developed unsupervised 

classification algorithm was normalized mutual information (𝑁𝑀𝐼). NMI uses the mutual 

information between two cluster sets, i.e. the groundtruth clusters and the created clusters, by 

comparing the clusters of each set one by one. This measure indicates the similarity of the created 

clusters with respect to the groundtruth clusters. Note that in practice the groundtruth clusters are 

not known. Let 𝑄 and 𝑄′ denote the cluster sets corresponding to the groundtruth clusters and the 

clusters generated by the developed algorithm, respectively. The normalized mutual information 

𝑁𝑀𝐼(𝑄, 𝑄′) is given by 
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𝑁𝑀𝐼(𝑄, 𝑄′) =  
𝑀𝐼(𝑄,𝑄′)

√E(Q).E(Q′)
             (8.7) 

𝑀𝐼(𝑄, 𝑄′) = ∑ 𝑝(𝑞𝑖 , 𝑞ℓ
′ ). log 

𝑝(𝑞𝑖,𝑞ℓ
′)

𝑝(𝑞𝑖).𝑝(𝑞ℓ
′)𝑞𝑖∈𝑄,𝑞ℓ

′∈𝑄′                      (8.8)  

where 𝑝(𝑞𝑖), 𝑝(𝑞ℓ
′ ) and 𝑝(𝑞𝑖 , 𝑞ℓ

′ ) denote the probabilities of samples being in the clusters 𝑞𝑖, 𝑞ℓ
′ , 

and the intersection of 𝑞𝑖 and 𝑞ℓ
′ , respectively, with E(Q) and E(Q′) indicating the entropies of 

the clusters.  

8.4.1 Parameters Setting Experiments 

In this subsection, a comparison between the original OFC, OFC+Smoothing, and OFC+Fading 

and OFC+Smoothing+Fading for different Chunk sizes 𝐿 and segments lengths S is provided. 

Tables 8.2-8.9 summarize the effect of different parameter settings. In these tables, the average 

Purity and NMI values for different Chunk sizes 𝐿 and segment lengths S are provided for the 

original OFC, OFC+Smoothing, OFC+Fading and OFC+Smoothing+Fading versions. The  study 

of the effect of  changing the three parameters of the algorithm, that is Chunk size 𝐿, segments 

length S for subband feature extraction, and smoothing window 𝑊, is reported for different Chunk 

sizes 4≤𝐿≤30 and durations 60≤S≤240msec for no smoothing window, i.e. W=1, as well as for 

these smoothing window sizes 2≤W≤10.  

The effect of changing the Chunk size and the segment duration S on the number of times that the 

clustering algorithm generated the right number of clusters was also examined. It was found that 

on average, the original OFC algorithm provided lower Purity and 𝑁𝑀𝐼 values and these values 

were sensitive to changes in the Chunk size and segment length, and 21% of the time the number 

of clusters matched the number of groundtruth clusters. By adding only the Smoothing step to the 
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OFC algorithm, the matching percentage time was increased to 25%. By keeping the Chunk size 

and subband segment length fixed and by varying the smoothing window size, it was seen that in 

general these measures increased slightly and became less sensitive to the variations in the Chunk 

size and subband segment length. Although by setting large window sizes, these measures were 

slightly increased, the reaction to background noise changes was delayed. Therefore, in our 

Table 8.2. Average cluster Purity measure for chunk size 𝐿 versus feature extraction segment length S for 

OFC + Smoothing + Fading 
            Chunk Size 𝐿 

Segment length S 
4 6 8 10 12 14 16 18 20 22 24 26 28 30 

60 96.9 95.5 96.2 96.2 96.3 96.5 96.5 96.5 96.5 96.5 91.6 97.6 95.9 95.9 

100 97.1 98.2 98.1 89.1 98.3 98 98 98.2 97.2 97.3 97 97 95.3 97 

160 93.3 97.5 96.7 97.7 98 97.6 97.6 98.7 95 93.2 98.9 99.4 97.7 98 

200 80 95.2 83.7 90.6 97.7 95.2 97.5 93 98.3 98.1 96.8 90.4 98 97.3 

 

Table 8.3. Average cluster Purity measure for chunk size 𝐿 versus feature extraction segment length S for 

OFC + Smoothing 
                    Chunk Size 𝐿 

Segment length S 
4 6 8 10 12 14 16 18 20 22 24 26 28 30 

60 96.9 31.3 30 33 65.6 32.9 46.8 41.1 33.5 40.7 39.9 90.1 56.4 56.6 

100 90.5 94.1 89.9 93.2 69.6 86.7 97.7 98.1 97.5 97.7 97.7 85.9 85.4 85.2 

160 90.5 88.6 98.1 94.5 95.6 96.5 97.3 97.2 97.3 93.1 96.7 98.6 98.1 97.9 

200 90.8 94.7 93.6 94.2 90.4 92.8 94.9 91 96.6 90.7 91.1 92.9 94.9 97.3 

 

Table 8.4. Average cluster Purity measure for chunk size 𝐿 versus feature extraction segment length S for 

OFC + Fading 
                     Chunk Size 𝐿 

Segment length S 
4 6 8 10 12 14 16 18 20 22 24 26 28 30 

60 87.1 48.3 83.9 58 96.1 72.6 56.3 37.7 42.8 42.5 48.7 66 91.5 96.2 

100 83.3 89.7 93.8 87 98.3 86.8 90.1 97.5 97.2 97.8 97.9 97.9 97.5 97.9 

160 89.2 98.4 90.3 98.4 97.6 98.4 99 97.9 95.9 97.2 97.9 98.9 98.9 98.9 

200 92.1 90 91.2 88.7 97.7 92 97.3 97.7 98.3 97.3 97.8 94.9 97.1 96 

 

Table 8.5. Average cluster Purity measure for chunk size 𝐿 versus feature extraction segment length S for 

original OFC  
                    Chunk Size 𝐿 

Segment length S 
4 6 8 10 12 14 16 18 20 22 24 26 28 30 

60 91.7 78.8 84.1 91.2 66 65.9 65.6 36.5 36.5 47 36.5 41.1 79 64.2 

100 97.3 94.7 93 97 92.4 90.5 89.4 92.4 82.3 87.7 86.1 81.1 97.5 97.5 

160 93.6 92.6 89.8 92.6 91.7 91.1 95.3 92.2 93.1 94.6 93.1 93.2 92 91.2 

200 95.1 96 88.5 89.6 91.1 94.8 93.1 91.1 97.4 93.1 94.7 96.5 92.2 92 
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experimentations, 𝑊 =5 was considered as this setting allowed the background noises to be 

updated every 2.5 seconds and smoothing window sizes larger than 5 provided more or less similar 

results. The cluster purity for 𝑊 =5 across different Chunk sizes and segments lengths was 

examined and it was found that Chunk sizes 𝐿≥ 12 and subband segment lengths 100 ≤S≤ 220msec 

provided the best performance in terms of correctly detected number of clusters and accuracy of 

Table 8.6. Average cluster 𝑁𝑀𝐼 measure for chunk size 𝐿 versus feature extraction segment length S for 

OFC + Smoothing + Fading 
Chunk Size 𝐿 

Segment length S 
4 6 8 10 12 14 16 18 20 22 24 26 28 30 

60 93.4 91.3 92.4 92.6 92.9 93 93 93 93 92.9 89.1 94.3 92.1 92.2 

100 93 91 93 89 94 93 93 93 93 93 93 95 92 93 

160 82.9 79.3 90.9 84.5 87.3 84.8 88.9 91.5 90 89.9 97.1 95.7 92.6 93.6 

200 83.5 77.8 76.2 90.6 84.9 79.9 87.8 85.3 94 92.8 88.1 89.6 89.9 90.5 

 

Table 8.7. Average cluster 𝑁𝑀𝐼 measure for chunk size 𝐿 versus feature extraction segment length S for 

OFC + Smoothing 
Chunk Size 𝐿 

Segment length S 
4 6 8 10 12 14 16 18 20 22 24 26 28 30 

60 93.4 75.9 74.7 74.5 74.3 74.6 74.2 74.6 77.3 82.7 82.8 87 87 87.2 

100 78.7 95 87 92.9 89.6 89.1 92.4 93.6 92.5 92.9 93.1 88.2 87.1 87 

160 83.6 82.1 88.7 83.3 79.8 83.8 85.1 88.1 87.1 87.5 92.4 96.4 92.7 93 

200 73.3 79.3 75.6 85.2 73.7 78.5 81.6 81.7 85.7 84.3 88.1 87.1 86.7 90.5 

 

Table 8.8. Average cluster 𝑁𝑀𝐼 measure for chunk size 𝐿 versus feature extraction segment length S for 

OFC + Fading 
Chunk Size 𝐿 

Segment length S 
4 6 8 10 12 14 16 18 20 22 24 26 28 30 

60 86.8 91.3 90.6 92.7 91.8 92.9 77.1 77.5 78.7 77.7 78.1 89.5 90.8 91.2 

100 93.2 89.7 88.1 85.3 92.2 85.2 90 93.7 92.2 93.3 93.6 95.3 93 93.6 

160 85.3 80.8 90.4 86.1 86.9 88.4 89.8 87.4 88.1 90.1 91.6 95.2 95.2 94.7 

200 87.8 81.2 84 85.2 83.7 83.1 82.1 85.7 88.1 86.4 87.3 86.9 91.9 86.5 

 

Table 8.9. Average cluster 𝑁𝑀𝐼 measure for chunk size 𝐿 versus feature extraction segment length S for 

original OFC  
Chunk Size 𝐿 

Segment length S 
4 6 8 10 12 14 16 18 20 22 24 26 28 30 

60 88.3 87 90.3 92 74.7 74.6 74.2 74.3 74.5 74.5 74.4 74.7 74.6 83.4 

100 93.5 83.7 82.8 86.8 83.8 83.5 85.7 90.9 76.6 75.8 77 76 92.8 94.7 

160 78 76.1 86.4 77.6 78.8 79.8 85.3 82.5 81.3 83.5 83.3 91.1 88.4 88 

200 80.3 83.1 77.7 82.9 77.6 79.6 78.2 78.5 90.9 82.2 83.1 83.4 84.9 89.4 
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clustering with Purity ≅ 96% and 𝑁𝑀𝐼 ≅ 0.92. When the Fading function was added to the OFC 

algorithm, the matching percentage was improved to 36%, whereas after adding the Smoothing 

step and the Fading function together to the OFC, the matching percentage reached 52%. Figure 

8.5 shows the improvement for each of the five classes separately. Note that having larger Chunk 

sizes (𝐿≥ 12) led to a cluster set closer to the groundtruth cluster set and therefore to higher cluster 

purity even when the size of the smoothing window was kept small. It was found that when L was 

set small for a noise environment, usually more than one cluster was created, where these clusters 

mostly included data from only one class. Hence, the purity and 𝑁𝑀𝐼 values stayed more or less 

the same. The larger the Chunk size was set, the more information about the input noise 

environments and thus more accurate clusters were obtained. However, larger Chunk sizes created 

higher time delays in the creation of new clusters. A trade-off between the Chunk size and real-

time throughput was established by setting 𝐿=20. It should be noted that this tradeoff is very much 

application dependent and can be set by the user depending on the application. Finally, it is worth 

 

Figure 8.5. Average Purity value for five different classes using original OFC, 

OFC+Smoothing, OFC+Fading and OFC+Smoothing+Fading   
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mentioning that by having smoothing window sizes higher than 5, changes in the segment length 

S had a negligible impact on the performance, thus S =100 msec was considered in our subsequent 

experimentations. It is important to note that although different applications may require different 

parameters than the above, the guidelines discussed are applicable to any other application of 

interest.  

Finally, the effect of changing the value Θ was also studied. It was found that as long as appropriate 

values for the Chunk size L and segment duration S were selected, Θ could be selected to be any 

value higher than Θ = 2 × 𝐿. For the application under consideration in this work, by considering 

the Chunk size to be 20 and the OFC frame duration to be 500 msec, the maximum age gap between 

the feature vector frames in Chunk for Θ = 2 × 𝐿 was set to 2 × 𝐿 × λ = 2 × 20 × 500 =

20 seconds. This value indicated that the gap age was not more than 20 seconds between the 

clustering decision instances. 

8.4.2 Clustering Evaluation  

Figure 8.6 shows the performance of the algorithm in terms of classification rate, new cluster 

creation with the smoothing step using the parameter setting as noted above S =100 msec, 𝐿=20, 

𝑊 =5 for a typical experiment. In this figure, the class labels 1, 2, 3, 4 and 5 refer to babble, driving 

car, machinery, train and street classes, respectively. Note that the label 0 means the OFC frame 

is not assigned to any of the existing clusters. In this set of experiments, the groundtruth clusters 

were changed in on-the-fly manner and the developed algorithm was used to identify the clusters 

without any training. The confusion matrix for this experiment after applying the entire sound file 

or clusters is shown in Table 8.10 in terms of all the misclassification errors. Table 8.11 shows the 
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performance of the algorithm for seven different experiments consisting of different sound files in 

terms of clustering purity, NMI, processing time per feature vector frame, and the online identified 

number of clusters versus the actual number of clusters. In the sound files used for mall and church, 

there existed many variations of sound which led to more than one cluster to be created for these 

environments.  

8.4.3 Real-time Field Testing  

Field testing of the unsupervised classification algorithm was also conducted to verify its real-time 

throughput by checking to see whether any captured signal frames would get skipped. The 

 

Figure 8.6. A typical classification outcome for different background noises in terms of actual 

clusters and created clusters 
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algorithm was run in real-time on a laptop platform equipped with a 2.4GHz clock processor while 

taking the laptop to three environments of restaurant, driving car, and office in a random order. 

The background noise signals were captured using the laptop microphone. The results of a typical 

run of the algorithm are shown in Figure 8.7. When the laptop was taken to a new noise 

Table 8.10. Typical confusion matrix in percentages for the classification outcome reported in 

Figure 8.6   
      Detected class 

Actual class 
Restaurant  

Driving 

car  
Machinery  Train Street  

Restaurant  99.7 0 0 0 0.3 

Driving car  0 99.6 0.4 0 0 

Machinery  0 1.5 98.5 0 0 

Train 0 0 8.6 91.4 0 

Street  0 0 0 2 98 

 

Table 8.11. Average cluster purity and NMI measures across seven different sound files 

Environments Purity NMI 

Actual 

number of 

clusters 

Online 

identified 

number of 

clusters 

Processing 

time 

(msec) 

Restaurant, 

Driving car, 

Machinery 

0.99 0.98 3 3 59 

Train, 

Street 

Church 

0.98 0.87 3 4 59 

Driving car, 

Train, 

Plain 

0.99 0.97 3 3 59 

Restaurant, 

Pub, 

Mall 

0.99 0.93 3 4 59 

Fan, Plane, 

Office 
0.99 0.98 3 3 59 

Restaurant, 

Driving car, 

Machinery, 

Plane, Street 

0.98 0.96 5 5 60.9 

Restaurant, 

Driving car, 

Machinery, 

Plane, 

Vacuum, 

Train, Street, 

Church 

0.90 0.88 8 9 65.3 
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environment for the first time, a new cluster was detected and thus a new cluster was created for 

that environment. Then, when returning to a previously identified noise environment, the algorithm 

detected that the incoming signal frames were from an existing cluster or class and assigned them 

accordingly. The total processing time of a typical OFC or decision frame for the entire processing 

pipeline was less than 90 msec, which included the time for generating the OFC frame and 

performing the clustering. It is worth pointing out regardless of the number of clusters created, it 

took the same processing time of 90 msec for 500 msec OFC or decision frames. 

A comparison with the recently introduced online clustering algorithm SVStream was also 

conducted. It was found that the computational time for a signal of a typical decision frame 

duration of 500 msec increased over time during the streaming process when using the SVStream 

algorithm and this time became as high as 10 seconds as the number of created spheres grew in 

this algorithm. In terms of the cluster purity measure, for the same dataset and the same parameters, 

 

Figure 8.7. A typical field testing outcome of the developed unsupervised noise signal 

classification running in real-time; x-axis denotes frames and y-axis denotes cluster label 
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it was found that the SVStream algorithm generated close to 200 clusters which did not correspond 

to the true number of noise clusters or classes.  

A videoclip of the algorithm running in real-time on the laptop can be seen at the website  

www.utdallas.edu/~kehtar/UnsupervisedClassificationNoise.wmv  

8.5 CONCLUSION 

A real-time unsupervised background noise classification algorithm has been developed in this 

chapter which allows environmental background noise signals to be classified in an online fashion 

without having any knowledge of the number of clusters or noise classes. Compared to the existing 

noise classification algorithms, the developed algorithm has the advantages of not requiring any 

training and also not requiring the number of noise classes to be specified. The performance of the 

algorithm was assessed by examining actual noise signals in real-time and in an on-the-fly manner. 

The experimental results have indicated the effectiveness of this algorithm in terms of both 

clustering performance and computational efficiency. Our future work involves implementing this 

online noise classification algorithm on smartphone platforms as an app to allow its utilization in 

a user-specific manner.  

  

http://www.utdallas.edu/~kehtar/UnsupervisedClassificationNoise.wmv
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CHAPTER 9 

CONCLUSION AND FUTURE WORK 

This dissertation work has involved the development of sound signal classification approaches that 

are computationally efficient to enable their real-time deployment in hearing improvement 

devices. Both supervised and unsupervised learning schemes have been developed. The 

contributions made in this dissertation are summarized below:  

1- The results obtained have shown that the developed environmental noise supervised 

classification algorithm outperforms the state-of-the-art supervised classification 

algorithms in terms of both classification rate and computational efficiency.  

2- A real-time implementation of the above algorithm has been achieved on smartphone 

platforms. 

3- An online clustering or unsupervised classification algorithm has also been developed 

which allows streaming data to be clustered without knowing the number of clusters or 

classes. 

4- A real-time implementation of the above algorithm has been achieved on laptop platforms, 

which allows environmental background noise signals to be classified in an online fashion.  

5- A computationally efficient hierarchical classification approach to distinguish different 

environmental sound signals has also been developed for deployment in hearing 

improvement devices. 

Possible future research extensions include:  

1- Developing a hybrid environmental sound classification approach by combining the 

developed supervised and unsupervised classification approaches.  
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2- Noting the developed clustering algorithm is general purpose, applying it to other 

applications in signal and image processing, such as human action recognition and real-

time video segmentation.  
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