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We study a periodically reviewed multiechelon inventory system in series such that order quantities at every stage have
to be multiples of a given stage-specific batch size. The batch sizes are nested in the sense that the batch size for every
stage is an integer multiple of the batch size for its downstream stage. The problem is that of determining the policy
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1. Introduction and Model
In this paper we study a periodically reviewed multiechelon
inventory system in series with batch ordering constraints.
The batch sizes are nested, that is, the batch size for every
stage is an integer multiple of the batch size for its down-
stream stage. We show that an echelon 4R1nQ5 policy min-
imizes the expected discounted sum of costs incurred by
this system over a finite horizon. This policy prescribes the
following action for every echelon: if the echelon inventory
position exceeds its target level, then this echelon should
not order; otherwise, this echelon should order the smallest
number of batches required to raise the inventory position
to this target level or above, subject to inventory availabil-
ity upstream. As far as motivation for the problem studied
here is concerned, we refer the readers to Chen (2000),
who provides an excellent discussion on it. In the remain-
der of this section, we present our model, assumptions, and
notation in detail.

We index our stages by i ∈ 81121 0 0 0 1N 9, where N
is the number of stages in the system. Stage N is sup-
plied by an external supplier with unlimited inventory,
stage N feeds stage N − 1, and so on, whereas stage 1
faces external demand. External demand that occurs at the
most downstream stage is backordered in the event that it
exceeds the available supply in a period. Holding costs are
charged at all stages, and a backorder cost is charged at the
demand-facing stage. The objective is to find a policy that
minimizes the expected discounted sum of costs incurred
over a finite planning horizon of T periods, indexed by

t ∈ 81121 0 0 0 1 T 9, subject to two constraints. The first con-
straint is the usual material availability constraint that the
amount of inventory that any stage can obtain in a period is
limited by the amount of inventory available at its upstream
stage. The second constraint is a batch ordering constraint
that requires every order placed by any stage i to be a mul-
tiple of a given batch size Qi. We assume throughout that
the batch sizes are nested in the sense that batch sizes at
upstream stages are multiples of batch sizes at downstream
stages, i.e., Qi+1 ∈ 81 · Qi12 · Qi1 0 0 09. Demands in differ-
ent periods are assumed to be probabilistically independent
of each other.1 We assume a one-period lead-time at every
stage; this assumption is made to simplify the notation and
exposition—our analysis and results extend readily to arbi-
trary integer lead-times.

Because of the batch ordering constraint, modular arith-
metic becomes important in our analysis. For any number z
and any number s > 0, we use 6z7s to denote the remainder
after dividing z by s, i.e., 6z7s = min8� ¾ 02 4z − �5/s ∈

80 0 0 1−21−1101+11+21 0 0 099. Note that, by definition, 0 ¶
6z7s < s for all z and s.

The sequence of events in each period t is as follows.
(1) Each stage i receives the delivery of the order placed in
the previous period, denoted by qi

t−1. Backordered demand
at stage 1, if any, is satisfied to the extent possible. Then,
the inventory levels and the outstanding backorder level,
if any, are observed. Let xt = 4x1

t 1 x
2
t 1 0 0 0 1 x

N
t 5 denote the

vector of echelon inventory levels, where xi
t represents the

sum of inventory in stages 1 through i minus any backorder
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at stage 1. (2) Then, the ordering quantity qi
t ¾ 0 at each

stage i is decided; the ordering cost is cit · qi
t for some

nonnegative constant cit . We require that the ordering quan-
tity qi

t is a nonnegative integer multiple of Qi and that
these units are available in the immediate upstream stage,
i.e., 6qi

t7
Qi

= 0 for i ∈ 811 0 0 0 1N 9, and qi
t ¶ xi+1

t − xi
t for

i ∈ 811 0 0 0 1N − 19. We denote the after-ordering inven-
tory position by yit = xi

t + qi
t and let yt = 4y1

t 1 y
2
t 1 0 0 0 1 y

N
t 5.

(3) Demand Dt is realized. Demand is satisfied to the extent
possible with the inventory at stage 1, and any excess
demand is backlogged. In the next period, xi

t+1 = yit −Dt .
We assume that the holding and shortage cost associated

with each period depends on the echelon inventory vector
xt in a separable manner: G̃t4xt5=

∑N
i=1 G̃

i
t4x

i
t5, where each

G̃i
t is a function that depends only on xi

t . An example of
such a function is the following, which is a standard cost
function used in multiechelon inventory theory:

G̃i
t4x

i
t5

=















hi ·xi
t if i∈8210001N 9

E6h1 ·4x1
t −Dt5

++4b+h1 +···+hN 5·4Dt−x1
t 5

+7

if i=11

(1)

where hi represents the per-unit echelon holding cost at
echelon i ∈ 811 0 0 0 1N 9, and b represents the per-unit-period
backorder cost.

We introduce an important concept used throughout
the paper. For any number � > 0, we say a function f
is �-difference-increasing if f 4x + �5 − f 4x5 is weakly
increasing in x (please see Figure 1 for an example). This
notion was used in Gallego and Toktay (2004) to analyze
a single-stage model. Next, we present our assumptions on
the single-period cost functions, i.e. G̃i

t4 · 5.

Assumption 1. For every i and every t, G̃i
t is a

Qi-difference-increasing function such that, for some x̄,
G̃i

t4x+Qi5− G̃i
t4x5 > 0 holds whenever x¾ x̄.

Observe that the G̃i
t function in (1) satisfies the above

assumption. To see this, note that it is convex and thus
�-difference-increasing for any �.

Figure 1. Example of a �-difference-increasing
function.

x

f (x )

� � � �

It is more convenient to express the cost function in
terms of the after-ordering echelon inventory position vec-
tor yt rather than xt . If the echelon-i inventory position in
period t is yit , then the echelon-i inventory level in the next
period (period t + 1) is yit − Dt . Because the holding and
shortage cost incurred in period t+1 is not affected by any
decision in period t + 1, we define

Gi
t4y

i
t5= � ·E6G̃i

t4y
i
t −Dt57+ cit · y

i
t1

where � ∈ 40117 denotes the discount factor. Here, the term
cit · yit is used to recognize the variable cost associated
with the inventory position yit . Let Gt4yt5 =

∑N
i=1 G

i
t4y

i
t5.

Because each G̃i
t is Qi-difference-increasing, each Gi

t is
also Qi-difference-increasing. (It is easy to verify that the
Qi-difference-increasing property is preserved under the
expectation operator.)

Now we present the dynamic program. For any t ∈

811 0 0 0 1 T 9, let

f �

t 4x
1
t 1 0 0 0 1 x

N
t 5

= min
yt

N
∑

i=1

Gi
t4y

i
t5+�E6f �

t+14y
1
t −Dt1 0 0 0 1 y

N
t −Dt57

−

N
∑

i=1

cit · x
i
t1

s.t. xi
t ¶ yit ¶ xi+1

t and 6yit7
Qi

= 6xi
t7
Qi

for each i ∈ 811 0 0 0 1N 91 (2)

where we define xN+1
t = � for convenience, and

f �
T+14 · 5= 0 everywhere.

In addition, we adopt the “plausible initial state” assump-
tion of Chen (1999), which requires that the stage on-hand
inventory at stage i+ 1 satisfies 6xi+1

1 −xi
17

Qi
= 0. (Without

this assumption, there will always be at least 6xi+1
1 − xi

17
Qi

units of inventory kept at stage i+ 1 in every period.)

Remark 1. We make an interesting observation with
respect to the sequence 8xi

t � t = 11 0 0 0 1 T 9, for any i ∈

811 0 0 0 1N 9. Because the ordering quantity in each stage
i is an integer multiple of Qi, it can be shown that the
sequence 86xi

t7
Qi

� t = 11 0 0 0 1 T 9 does not depend on any
decision and is an exogenous sequence of random variables.
In particular, 6xi

t7
Qi

= 6xi
1 − 4D1 + · · · + Dt−157

Qi
. Also, it

follows that 6yit7
Qi

= 6xi
t7
Qi

. Furthermore, due to the integer
ratio constraint, it follows that 6z7Q

i
= 6z′7Q

i
holds whenever

6z7Q
i+1

= 6z′7Q
i+1

for any pair of numbers z and z′.

Remark 2. The batch ordering constraint and the plausible
initial state assumption ensure that the installation-4i + 15
inventories are always multiples of Qi under any feasible
policy, i.e., 6xi+1

t − xi
t7
Qi

= 0 holds for any t ∈ 811 0 0 0 1 T 9.
This implies 6xi+1

t 7Q
i
= 6xi

t7
Qi

.

The remainder of the paper is organized as follows.
In §2, we explain how our paper is related to the literature.
We analyze the model and present our results for the single
echelon case in §3. This analysis and these results are then
generalized to the multiechelon case in §4. Finally, in §5
we discuss extensions of our results.
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2. Related Literature and Our
Contribution

Veinott (1965) studies a single-stage inventory problem
with batch ordering and shows that an 4R1nQ5 policy is
optimal when the demands are stationary, that is, indepen-
dently and identically distributed (i.i.d.) across periods. He
also shows that the result applies to the case of nonstation-
ary demands under a technical condition on the demand
distributions—the case in which demands are stochastically
increasing through time is the main example in which this
condition is satisfied. To our knowledge, there has been no
proof of the optimality of 4R1nQ5 policies for the general
case of nonstationary demands for single-stage systems.
Our result that such a policy is optimal even in multistage
serial systems with nonstationary demands is therefore a
new result, even for single-stage systems.

The model studied by Clark and Scarf (1960) is the same
as ours, with the exception that it does not include the batch
ordering constraint—this can be viewed as a special case
of our model in which the batch size is one for every stage
if the demands are integral. In this special case, our result
and proof are identical to theirs. However, for the general
case (i.e., with arbitrary but nested batch sizes), their proof
that involves decomposing the cost-to-go function for the
entire system into echelon-specific cost functions that are
one-dimensional and convex does not extend immediately.
It will be seen in our proof that the cost decomposition
idea continues to hold but that these echelon-specific cost
functions are not convex. We surmount this difficulty by
showing that for every i, echelon-i’s cost function possesses
a weaker property, which we call Qi-difference-increasing,
and that this property is sufficient for the optimality of
4R1nQ5 policies. This property was first introduced by
Gallego and Toktay (2004), who study a single-location
batch ordering problem with the constraint that at most
one batch can be ordered in a period—their result is that
a threshold policy (i.e., a policy of ordering a batch if the
inventory position in a period is smaller than the threshold)
is optimal.

The model studied by Chen (2000) is identical to ours,
with three differences. The first difference is that the
demands in different periods are assumed to be i.i.d. in his
paper. We assume only independence. The second differ-
ence is that the performance measure used there is the infi-
nite horizon, average cost per period, whereas we consider
the finite horizon. The third difference is that Chen assumes
demands to be integer-valued, whereas we do not require
this assumption. For this problem, Chen’s result is identical
to ours—echelon 4R1nQ5 policies are optimal. The second
and third differences are superficial because his proof can
be modified to address those differences without changing
its main structure. The first difference, on the other hand, is
crucial because Chen makes use of the concept of myopic
optimality (see Heyman and Sobel 1984), which is applica-
ble when demands are i.i.d. but not applicable in our set-
ting (because we assume only independence of demands).2

Our contribution to the literature is twofold. In terms
of the results, ours is the first paper that establishes the
optimality of 4R1nQ5 policies for single-stage and multi-
stage systems with nonstationary demands. In terms of
methodology, our contribution is the identification that the
Q-difference-increasing property is an appropriate general-
ization of convexity that enables the analysis of inventory
models without batch ordering constraints to carry over to
models with these constraints. Moreover, we show in §5
that our results extend to single-stage capacitated systems,
assembly systems, and systems with fixed replenishment
schedules.

We conclude this section with a comment on a differ-
ent stream of related literature on single-stage systems. An
alternate model (which is similar in spirit to batch order-
ing models) is to allow arbitrary order sizes but include
a fixed cost (or set-up cost) for placing orders. The stan-
dard result in this stream is that an 4s1 S5 policy is opti-
mal. The proofs are usually based on a property called
K-convexity introduced and used by Scarf (1960) for the
case of independent demands; later, this was extended to
Markov-modulated demand environments to show the opti-
mality of state-dependent 4s1 S5 policies (Song and Zipkin
1993, Sethi and Cheng 1997).

3. Single-Echelon System
We consider the special case of the single-echelon prob-
lem, i.e., N = 1. The analysis of this case is useful for
identifying structural properties for the multiechelon prob-
lem. Moreover, our results are new even for the single-stage
problem as discussed in §2.

For t ∈ 811 0 0 0 1 T 9, define

f 1
t 4x

1
t 5= −c1

t · x1
t + min

y1
t

8g1
t 4y

1
t 5 � y1

t ¾ x1
t 1 6y

1
t 7

Q1
= 6x1

t 7
Q1
91

(3)

where

g1
t 4y

1
t 5=G1

t 4y
1
t 5+�E6f 1

t+14y
1
t −Dt571 (4)

and f 1
T+14 · 5 = 0. This formulation is a special case of (2)

for N = 1.
Proposition 3.2 below shows the optimal policy for the

above formulation. We first need a preliminary definition
and a lemma. It is easy to show, using Assumption 1 and
induction, that for every t, g1

t 4y+Q15− g1
t 4y5 > 0 for suf-

ficiently large y. We now define

r1
t = inf8y � g1

t 4y+Q15− g1
t 4y5¾ 09

if it exists and r1
t = −� otherwise0 (5)

Lemma 3.1. Assume that a function g is Q-difference-
increasing such that there exists ȳ satisfying g4y + Q5 −

g4y5 ¾ 0 for all y ¾ ȳ. Let r be defined as inf8y � g4y +

Q5 − g4y5 ¾ 09 if it exists, and let r = −� otherwise
(i.e., g4y + Q5 ¾ g4y5 for all y). For any x ∈ 601Q5, let
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s4x5 = −� if r = −�; otherwise, let it be the unique num-
ber in 6r1 r +Q5 such that 6s4x57Q = x. Then, the following
statements hold:

(i) For every x ∈ 601Q5, if r > −�, then s4x5 is the
smallest y such that g4y+Q5− g4y5¾ 0 and 6y7Q = x.

(ii) For every u ∈ <, max8u1 s46u7Q59 minimizes g4y5
over y subject to 6y7Q = 6u7Q and u¶ y.

(iii) For every v ∈ <, min8v1 s46v7Q59 minimizes g4y5
over y subject to 6y7Q = 6v7Q and y ¶ v.

All our proofs can be found in the online appendix. An
electronic companion to this paper is available as part of the
online version at http://dx.doi.org/10.1287/opre.1120.1060.
Lemma 3.1 implies that if g1

t is a Q1-difference-increasing
function, then the interval 6r1

t 1 r
1
t + Q15 forms an interval

of minimizers for the collection of problems of the form
min8g1

t 4y52 6y7
Q1

= x9 for all x ∈ 601Q15.

Proposition 3.2. The following statements hold for any
t ∈ 811 0 0 0 1 T 9:

(i) Both f 1
t 4 · 5 and g1

t 4 · 5 are Q1-difference-increasing.
(ii) An optimal solution to (3) is to order, in each

period t, the minimum number of batches of size Q1 such
that the after-ordering inventory position y1

t is at least r1
t .

That is, the 4R1nQ5 policy with R = r1
t and Q = Q1 in

every period t is optimal.

4. Multiechelon System
We now consider the system with N echelons. We initially
assume N = 2. We show that an echelon 4R1nQ5 policy
is optimal for this system. Our proof is a generalization
of Clark and Scarf’s (1960) proof that echelon base-stock
policies are optimal (without batch ordering).

For t ∈ 811 0 0 0 1 T 9, we define the induced penalty func-
tion for echelon 2 as follows:

�2
t 4x

2
t 5= min

y1
t

8g1
t 4y

1
t 5 � y1

t ¶ x2
t 1 6y

1
t 7

Q1
= 6x2

t 7
Q1
9

− min
y1
t

8g1
t 4y

1
t 5 � 6y1

t 7
Q1

= 6x2
t 7

Q1
91 (6)

and let �2
T+14 · 5 = 0. Above, the constraint 6y1

t 7
Q1

= 6x2
t 7

Q1

is equivalent to 6y1
t 7

Q1
= 6x1

t 7
Q1

because we recall from
Remark 2 that 6x2

t 7
Q1

= 6x1
t 7

Q1
. In the first minimization

problem above, the after-ordering inventory position of ech-
elon 1 is constrained by x2

t , the echelon-2 inventory level.
This upper bound constraint does not exist in the second
minimization problem. Thus, each �2

t is clearly nonnega-
tive, and �2

t captures the additional cost to the single-stage
system due to the upper bound constraint imposed by x2

t .

Proposition 4.1. For any t ∈ 811 0 0 0 1 T 9, �2
t 4 · 5 is

Q1-difference-increasing.

We define the following dynamic program that cap-
tures the impact of the echelon-2 inventory decisions. Let
f 2
T+14 · 5= 0. For any t ∈ 811 0 0 0 1 T 9, define

f 2
t 4x

2
t 5=min

y2
t

8g2
t 4y

2
t 5 �y

2
t ¾x2

t 1 6y
2
t 7

Q2
= 6x2

t 7
Q2
9−c2

t ·x
2
t 1 (7)

where

g2
t 4y

2
t 5=G2

t 4y
2
t 5+�E6�2

t+14y
2
t −Dt57

+�E6f 2
t+14y

2
t −Dt570 (8)

It will be shown later, in Theorem 4.3, how f 2
t 4x

2
t 5 is

related to the dynamic programming function f �
t 4x

1
t 1 x

2
t 5

given in (2).
Note that in (8) the first term represents the impact of the

current echelon-2 inventory position y2
t on the echelon-2

cost, the second term represents its impact on the echelon-1
cost in the next period (t+1), and the third term represents
the future costs. The following proposition shows that the
optimal solution for the above dynamic programming for-
mulation (7) is once again an 4R1nQ5 policy. It is easy to
show, using Assumption 1 and induction, that for every t,
g2
t 4y + Q25 − g2

t 4y5 > 0 for sufficiently large y. We now
define

r2
t = inf8y � g2

t 4y+Q25− g2
t 4y5¾ 09

if it exists and let r2
t = −� otherwise0 (9)

Proposition 4.2. The following statements hold for any
t ∈ 811 0 0 0 1 T 9:

(i) All f 2
t 4 · 5, g2

t 4 · 5, and �2
t 4 · 5 are Q2-difference-

increasing.
(ii) An optimal policy to (7) is to order, in each period t,

the minimum number of Q2-unit batches such that the after-
ordering inventory position y2

t is at least r2
t .

We recall the dynamic program for the multiechelon sys-
tem given in (2). Let

g�

t 4y
1
t 1 y

2
t 5=G1

t 4y
1
t 5+G2

t 4y
2
t 5

+�E6f �

t+14y
1
t −Dt1 y

2
t −Dt570 (10)

Then for t ∈ 811 0 0 0 1 T 9,

f �

t 4x
1
t 1 x

2
t 5= min

y1
t 1 y

2
t

8g�

t 4y
1
t 1 y

2
t 5 � x1

t ¶ y1
t ¶ x2

t ¶ y2
t 1

6yit7
Qi

= 6xi
t7
Qi

∀ i ∈ 811299

− c1
t · x1

t − c2
t · x2

t 0 (11)

The following result shows that f �
t 4x

1
t 1 x

2
t 5 can be written as

a separable function of x1
t and x2

t , and the optimal choice of
y1
t and y2

t is closely related to the optimal policy of the two
single-dimensional dynamic programs (3) and (7). Recall
the definitions of f 1

t 4 · 5, g
1
t 4 · 5, and r1

t from (3)–(5), and
also the definitions of f 2

t 4 · 5, g
2
t 4 · 5, and r2

t from (7)–(9).

Theorem 4.3. The following statements hold for any t ∈

811 0 0 0 1 T 9:
(i) g�

t 4y
1
t 1 y

2
t 5= g1

t 4y
1
t 5+ g2

t 4y
2
t 5.

(ii) An optimal policy to (11) is the following: stage 2
orders the minimum number of Q2-unit batches such that
y2
t is at least r2

t , and stage 1 orders the minimum number of
Q1-unit batches such that y1

t is at least min8r1
t 1 x

2
t 9. That is,

an echelon 4R1nQ5 policy is optimal.
(iii) f �

t 4x
1
t 1 x

2
t 5= f 1

t 4x
1
t 5+ f 2

t 4x
2
t 5+�2

t 4x
2
t 5.
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The result that an echelon 4R1nQ5 policy is optimal
holds even when the number of stages N exceeds 2. The
main addition required is to replicate (6)–(9) once for each
i ∈ 831 0 0 0 1N 9 and to replace the superscript 2 (super-
script 1) by the superscript i (i − 1) in these equations.
Furthermore, while we have assumed one-period lead-times
at all stages, our result holds when every stage i faces a
procurement lead-time of � i ¾ 1 periods. Now, yit denotes
the echelon-i inventory position after ordering and Gi

t4y
i
t5

denotes cit · yit plus the discounted value of the expected
holding and shortage costs experienced in echelon i in
period t+� i. In (8), the quantity �E6�2

t+14y
2
t −Dt57 should

be replaced by ��2
E6�2

t+�24y
2
t −

∑t+�2−1
t′=t Dt′57. Now the ech-

elon 4R1nQ5 policy refers to the policy of raising the inven-
tory position of every echelon i to the interval 6r it 1 r

i
t +Qi5

in every period t. Finally, we remark that our results are
also useful in obtaining efficient algorithms; a discussion is
included in the online appendix.

5. Extensions

Capacitated Systems

For the single-echelon system described in §3, let us con-
sider a new constraint that the ordering quantity in each
period t cannot exceed Ut · Q1. Then Proposition 3.2 can
be adapted to show that f 1

t and g1
t are Q1-difference-

increasing, and the optimal policy is a modified 4R1nQ5
policy—this policy is the same as an 4R1nQ5 policy if the
production requirement in a period is within the capacity
limit in that period; the modification is that if the require-
ment exceeds the capacity limit, then the policy prescribes
that the entire capacity be used in that period. (Federgruen
and Zipkin 1986 show the same result without batch order-
ing.) The special case in which Ut = 1 for all t was
analyzed in Gallego and Toktay (2004). Moreover, for the
multiechelon system of §4, if there is a production limit of
Ut ·Q

N for stage N while the other stages are not capacity
constrained, our analysis in that section continues to hold;
the optimal policy is an echelon 4R1nQ5 policy for eche-
lons 1121 0 0 0 1N − 1 and it is a modified echelon 4R1nQ5
policy for echelon N .

Assembly Systems

Rosling (1989) shows how Clark and Scarf’s (1960) anal-
ysis of serial systems applies to assembly systems under
a reasonable assumption on the starting inventory state of
the system. His main result is that echelon base-stock poli-
cies are optimal for assembly systems also. Chen (2000)
applies similar ideas to show the optimality of echelon
4R1nQ5 policies for assembly systems with backordering,
again with i.i.d. demands. Under our more general assump-
tions on demands (that they are independent), Rosling’s
ideas can be used in a straightforward manner along with
our analysis in §4 to show the same result.

Fixed Replenishment Intervals

Recent papers by Van Houtum et al. (2007), Chao and
Zhou (2009), and Shang and Zhou (2010) study multiech-
elon models in which every echelon is constrained to order
according to a fixed replenishment schedule. By letting cit
take prohibitively high values for those periods in which
echelon i is not allowed to order, such scheduling con-
straints can be accommodated by our model. Thus, our
result on the optimality of echelon 4R1nQ5 policies contin-
ues to hold. We illustrate this idea through an example: Let
echelon i be allowed to order with an ordering frequency
of T i periods and at a unit cost of ci. Let the holding and
shortage cost functions G̃i

t4 · 5 be those defined in (1). If we
relax this model by allowing echelon i to order in the other
periods also but at a unit cost cit = b ·T i + ci, we obtain an
instance of the model studied in this paper.

Moreover, it is easy to verify that the optimal policy will
be such that no orders are placed in these other periods, i.e.,
r it = −� in these periods. This is because the maximum
benefit we obtain by ordering a unit in one of these other
periods, instead of waiting until the next scheduled ordering
opportunity, is b ·T i. Thus, the scheduling constraint is sat-
isfied by the optimal policy to our model, and the optimal
policy in our model coincides with the optimal policy in the
schedule-constrained model. It should be noted that there
is one main difference between our results and assump-
tions on fixed replenishment intervals and the three papers
mentioned above. Those papers required that the ordering
epochs for the various echelons are nested, in the sense that
the ordering frequency at any stage is an integer multiple
of the ordering frequency at its upstream stage. We do not
require this assumption. The reason for this difference is
the following: The papers above focus on computing the
optimal policy when minimizing the infinite horizon aver-
age cost. Under the assumption of nested ordering epochs,
this minimization can be achieved by solving the myopic
problem of minimizing the costs over one ordering cycle
for echelon N . In our case, on the other hand, we focus
only on minimizing the finite horizon cost and establish
only the structure of the optimal policy rather than provide
a special algorithm to compute it or show myopic optimal-
ity; this is why we do not need to assume nesting.

Electronic Companion

An electronic companion to this paper is available as part of the
online version at http://dx.doi.org/10.1287/opre.1120.1060.

Endnotes

1. It should be noted that cyclical demands are special cases of
independent demands. Our model and results (§§3 and 4) easily
extend to the more general case, where demands are Markov-
modulated. We find it convenient for the sake of exposition to
limit our discussion to independent demands.
2. A detailed explanation is provided in the online appendix.
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