
ADVANCED CONCURRENCY TECHNIQUES

FOR CONCURRENT DATA STRUCTURES

by

Shreyas Sanjeev Gokhale

APPROVED BY SUPERVISORY COMMITTEE:

Neeraj Mittal, Chair

R. Chandrasekaran

Ivor Page

S. Venkatesan

Copyright c© 2019

Shreyas Sanjeev Gokhale

All rights reserved

This dissertation

is dedicated to my parents,

for their constant support, guidance,

inspiration, and a strong belief in me.

ADVANCED CONCURRENCY TECHNIQUES

FOR CONCURRENT DATA STRUCTURES

by

SHREYAS SANJEEV GOKHALE, BE, MS

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

August 2019

ACKNOWLEDGMENTS

First and foremost, I would like to thank my PhD advisor, Dr. Neeraj Mittal, for his guidance and

support throughout my PhD journey. He has constantly inspired me to dig deeper and overcome

obstacles in research. I have learned a lot under his mentorship and gained knowledge which will

undoubtedly help me in my future career.

I am thankful to Dr. R. Chandrasekaran who has always been kind and helpful to me.

I would also like to thank Dr. Ivor Page for his helpful suggestions during my dissertation proposal

and Dr. S. Venkatesan for his advice and suggestions in general.

During this long journey, I have had the pleasure of meeting and working with many people who

have helped me get through to the end. They include Joseph Beshay, K. Alex Mills, Kenneth Platz,

Ketan Joshi, Swair Shah, Vishal Karande, and my fellow PhD students: Hemant Malik, Omer

Ozarslan, Partha De, Sahil Dhoked, Sarat Chandra Varanasi, and Trusit Shah.

June 2019

v

ADVANCED CONCURRENCY TECHNIQUES

FOR CONCURRENT DATA STRUCTURES

Shreyas Sanjeev Gokhale, PhD
The University of Texas at Dallas, 2019

Supervising Professor: Neeraj Mittal, Chair

Concurrent algorithms have gained importance as multi-core machines have become more ubiqui-

tous. Several techniques are employed to enable the construction of such algorithms. We present

algorithms for the Group Mutual Exclusion (GME) problem which can be used as an advanced

concurrency technique to increase the performance of software built on concurrent data structures.

The group mutual exclusion (GME) problem is a generalization of the classical mutual exclusion

problem in which every critical section is associated with a type or session. Critical sections be-

longing to the same session can execute concurrently, whereas critical sections belonging to differ-

ent sessions must be executed serially. The well-known read-write mutual exclusion problem is a

special case of the group mutual exclusion problem. We present a new GME algorithm for an asyn-

chronous shared-memory system under the Cache-Coherent model that, in addition to satisfying

lockout freedom, bounded exit and concurrent entering properties, has O(1) step-complexity when

the system contains no conflicting requests as well as O(1) space-complexity per GME object

when the system contains sufficient number of GME objects. We also present a GME algorithm

for the Distributed Shared Memory model that satisfies above properties and has optimal Remote-

Memory-Reference complexity. To the best of our knowledge, no existing GME algorithm has

O(1) step-complexity for concurrent entering for either model. The Remote-Memory-Reference

complexity of a request for cache-coherent model is only O(ċ) in the amortized case, where ċ

vi

denotes the point contention of the request. Experiments indicate that our GME algorithm vastly

outperforms well-known GME algorithms in most, if not all, cases.

We also present a lock-based concurrent algorithm for a strictly-balanced red black tree data struc-

ture. Our algorithm can be implemented on hardware directly without requiring any additional sys-

tem support such as transactional memory. We also make use of several optimizations to improve

the performance of our tree. Our experimental results indicate that our lock-based algorithm for

a strictly balanced binary search tree outperforms other relaxed balanced trees for read-dominated

workloads.

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF FIGURES . x

LIST OF TABLES . xi

CHAPTER 1 INTRODUCTION . 1

1.1 Our Contributions . 4

1.2 Dissertation Roadmap . 5

CHAPTER 2 SYSTEM MODEL AND PROBLEM SPECIFICATION 6

2.1 Shared Memory Model Types . 6

2.2 Synchronization Primitives . 8

2.3 GME Problem Specification . 9

2.3.1 Properties . 9

2.3.2 Complexity Measures . 10

2.4 Red Black Tree Preliminaries . 11

2.5 Correctness Conditions . 12

CHAPTER 3 BACKGROUND AND RELATED WORK 13

3.1 Related Work for Group Mutual Exclusion . 13

3.1.1 Previous Work Drawbacks . 13

3.1.2 Subroutines . 18

3.1.3 Fairness and Concurrency Guarantees . 18

3.2 Related Work for Concurrent Red Black Tree . 19

CHAPTER 4 GME ALGORITHM FOR CACHE-COHERENT (CC) MODEL 22

4.1 The Main Idea . 22

4.2 A Starvation-Free Algorithm . 23

4.2.1 Data Structures Used . 23

4.2.2 Achieving Deadlock-Freedom . 33

4.2.3 Achieving Starvation-Freedom . 36

4.2.4 Correctness Proof . 38

viii

4.2.5 Complexity Analysis . 43

4.3 Achieving Space Efficiency . 45

CHAPTER 5 EXPERIMENTAL EVALUATION . 52

5.1 Different Group Mutual Exclusion Algorithms . 52

5.2 Experimental Setup . 52

5.3 Results . 58

CHAPTER 6 GME ALGORITHM FOR DISTRIBUTED SHARED
MEMORY (DSM) MODEL . 61

6.1 Overview . 61

6.2 Proof And Complexity Analysis . 63

CHAPTER 7 LOCK-BASED CONCURRENT RED BLACK TREE 73

7.1 Top-Down-Framework . 73

7.1.1 Tsay and Li’s Framework . 73

7.1.2 Tarjan’s Sequential Top-Down Algorithm for Red-Black Tree 74

7.1.3 Optimizations on the Top-Down Framework 76

7.2 A Lock-Based Algorithm . 77

7.2.1 Overview of the Algorithm . 77

7.2.2 Details of the Algorithm . 81

7.3 Correctness Proofs . 90

7.3.1 The Main Idea . 90

7.3.2 Executions are Linearizable . 92

7.4 Experimental Evaluation . 108

CHAPTER 8 CONCLUSION . 112

REFERENCES . 114

BIOGRAPHICAL SKETCH . 119

CURRICULUM VITAE

ix

LIST OF FIGURES

2.1 Sample execution with 3 processes and 5 operations. The point contention of A, B,
and E are 3, while the point contention of C and D are 2. The interval contention of A,
B, C, D, and E are 5, 3, 2, 2, and 3 respectively. 8

4.1 Structure of the node with its contents . 26

4.2 Snapshot of a process in execution. Initially, head points to a dummy node. P1 enters
with session request x. Since there are no other processes in the system, P1 establishes
its session in the following sequence of events: it atomically switches the next pointer
of the dummny node to point to its node, sets the previous pointer to point to the
dummy node, updates the sequence number field in its node (1 + dummy node’s num-
ber), atomically switches the head pointer to point to its node, and finally, retires the
dummy node. Note: For brevity, the node structure only shows the following fields:
session, state, size (Sz), sequence number (Sn), prev, and next pointers 35

4.3 Snapshot of a process in execution during helping. Announce array is shown in top
right corner. P1, P2, and P3 have announced their nodes to other processes. Once P1
adjourns the session, P2 and P3 compete to establish their session. If P2 gets delayed,
P3 checks if it should help P2. Note: For brevity, the node structure only shows the
following fields: session, state, size (Sz), sequence number (Sn), prev, and next pointers 38

5.1 Comparison of system throughput of different algorithms. Higher the throughput, bet-
ter the performance of the algorithm. 53

5.2 Comparison of L3 cache references of different algorithms. 54

5.3 Comparison of branch instructions of different algorithms. 55

5.4 Comparison of store micro-operations of different algorithms. 56

5.5 Comparison of data TLB store instructions of different algorithms. 57

7.1 An illustration of a red-black tree. Shaded nodes represent black nodes and unshaded
nodes represent red nodes. 76

7.2 An illustration of the coverage sets of various nodes in a binary search tree assuming
that the range of keys is [0,100]. 93

7.3 Comparison of system throughput of different algorithms. Higher the throughput, bet-
ter the performance of the algorithm. 109

x

LIST OF TABLES

3.1 Fairness and concurrency properties satisfied by different algorithms. Note that all
algorithms satisfy P1. 15

3.2 Complexity measures for ME algorithms used by some GME algorithms. 15

3.3 Complexity measures of GME algorithms excluding those in [41, 17] that use an
abortable ME algorithm as a subroutine. 16

3.4 Complexity measures of the GME algorithms in [41, 17] using the three abortable
mutex algorithms. 17

xi

CHAPTER 1

INTRODUCTION

The field of concurrent computing has gained in importance due to changes seen in the processor

manufacturing industry. Up until the mid-2000s, most processors consisted of a single, fast exe-

cution unit. Since around the mid-2000s, Dennard scaling [24] no longer continued to hold due to

physical limitations of hardware (greater power requirements with accompanying excessive heat).

As a result, major chip manufacturers shifted their focus from increasing the speed of individual

processors to increasing the number of cores on a chip. To exploit these multi-core architectures,

programs must be executed in a concurrent manner. The algorithms must be designed with a large

number of processes and their concurrent accesses to shared data must be synchronized to prevent

inconsistencies. This shared data typically takes the form of a data structure. A concurrent data

structure is one in which multiple processes may need to operate on overlapping regions of the

data structure at the same time. Contention between different processes must be managed in such

a way that all operations complete correctly and leave the data structure in a valid state.

Concurrency often adds significant complexity to an algorithm, requiring concurrency control

such as mutual exclusion to avoid problems such as race conditions. Concurrency is most often

managed through locks. A process holding a lock is guaranteed exclusive access to the data struc-

ture until it releases the lock. In a coarse-grained lock based algorithm, a single lock governs large

portions, even possibly the entire data structure. Fine-grained locks allow greater concurrency

compared to coarse-grained locks, as they govern smaller portions of the data structure. Lock-

ing based methods make it easier to perform (potentially conflicting) updates to the data structure

because they are implemented in a mutually exclusive manner and hence serialized. This also

makes it easier to design, implement, and debug lock-based data structures and reason about their

correctness compared to their lock-free counterparts. Furthermore, David and Guerraoui recently

observed that lock-based data structures can be practically wait-free [18], the strongest progress

guarantee that can be provided by a non-blocking algorithm. Wait-freedom guarantees that every

1

process completes its operation in a finite number of steps. Lock-based algorithms for concurrent

versions of many important data structures have been developed including linked lists [33, 35],

queues [53, 35], hash tables [39, 20, 47, 36], skip lists [48] and search trees [5, 46, 9, 3, 6, 16, 10]).

However, locks are blocking; while a process is holding a lock, no other process can access the

portion of the data structure protected by the lock. If a process stalls while it is holding a lock, then

the lock may not be released for a long time. This may cause other processes to wait on the stalled

process for extended periods of time. As a result, lock-based implementations of concurrent data

structures are vulnerable to problems such as deadlock, priority inversion, and convoying [35].

Non-blocking algorithms avoid the pitfalls of locks by using special (hardware-supported)

read-modify-write instructions such as load-link/store-conditional (LL/SC) [31] and compare-and-

swap (CAS) [35]. These algorithms can provide stronger progress guarantees since a stalled pro-

cess cannot block other processes. Non-blocking algorithms for many data structures such as

queues, stacks, linked lists, hash tables, search trees and tries have been developed (e.g., [31, 29,

51, 33], [23, 61, 6, 26, 19], and [58, 8, 38, 54, 55]). However, non-blocking algorithms are much

harder to design, implement, and debug compared to their blocking counterparts.

Our main goal is to design efficient, scalable concurrent objects. This requires use of building

blocks needed to design the objects together with concurrent data structures that make up the main

component of the concurrent object. The building blocks are in the form of concurrency techniques

used to implement these concurrent data structures. This work is divided into two parts: Group

Mutual Exclusion as an advanced concurrency technique to further improve the performance of

certain lock based concurrent data structures and a lock based algorithm for a Concurrent Red

Black Tree data structure.

The main focus of this work is the Group Mutual Exclusion (GME) problem. The GME prob-

lem is a generalization of the classical mutual exclusion (ME) problem in which every critical

section is associated with a type or session [43]. Critical sections belonging to the same session

can execute concurrently, whereas critical sections belonging to different sessions must be exe-

cuted serially. The GME problem models situations in which a resource may be accessed at the

2

same time by processes of the same group, but not by processes of different groups. As an exam-

ple, suppose data is stored on multiple discs in a shared CD-jukebox. When a disc is loaded into

the player, users that need data on that disc can access the disc concurrently, whereas users that

need data on a different disc have to wait until the current disc is unloaded [43]. Another example

includes a meeting room for philosophers interested in different forums or topics [44, 62]. The

well-known readers/writers problem is a special case of the group mutual exclusion problem in

which all read critical sections belong to the same session but every write critical section belongs

to a separate session.

Note that any algorithm that solves the mutual exclusion problem also solves the group mu-

tual exclusion problem. However, the solution is inefficient since critical sections are executed in

a serial manner and thus the solution does not permit any concurrency. To rule out such ineffi-

cient solutions, a group mutual exclusion algorithm needs to satisfy concurrent entering property.

Roughly speaking, the concurrent entering property states that if all processes are requesting the

same session, then they must be able to execute their critical sections concurrently.

The GME problem has been defined for both message-passing and shared-memory systems.

The focus of this work is to develop an efficient GME algorithm for shared-memory systems.

Recently, GME-based locks have been used to improve the performance of lock-based concurrent

skip lists for multi-core systems using the notion of unrolling by storing multiple key-value pairs in

a single node [57]. Unlike in a traditional skip list, most update operations in an unrolled skip list

do not need to make any structural changes to the list. This can be leveraged to allow multiple insert

operations or multiple delete operations (but not both) to act on the same node simultaneously in

most cases. To make structural changes to the list, an operation needs to acquire exclusive locks on

the requisite nodes as before. Note that implementing this idea requires GME-based locks; read-

write locks do not suffice since a lock needs to support two distinct shared modes. Experimental

evaluation showed that, using GME-based locks, we can improve the performance of a concurrent

(unrolled) skip list by more than 40% [57].

3

Next, we consider the red black tree, a self-balancing binary search tree data structure for

organizing ordered data and that support search and modify (insert and delete) operations [13].

Red Black Trees provide good worst-case time complexity for search and modify operations. As

a result, they are used in symbol table implementations within systems like C++, Java, Python and

BSD Unix [59]. They are also used to implement completely fair schedulers in Linux kernel [42].

However, red-black trees have been remarkably resistant to parallelization using both lock-based

and lock-free techniques. The tree structure causes the root and high level nodes to become the

subject of high contention and thus become a bottleneck. This problem is only exacerbated by the

introduction of balancing requirements.

1.1 Our Contributions

In this work, we present two algorithms for the Group Mutual Exclusion problem. The first al-

gorithm is for the cache-coherent shared memory model and the second algorithm is for the dis-

tributed shared memory model. Both GME algorithms satisfy the group mutual exclusion, lockout

freedom, bounded exit, concurrent entering, and bounded space variable properties. They also sat-

isfy the following desirable properties. First is O(1) concurrent entry step complexity. Note that, as

a corollary, a process can enter its critical section within a constant number of its own steps in the

absence of any other request, which is typically referred to as contention-free step complexity. To

the best of our knowledge, no existing GME algorithm has O(1) concurrent entry step-complexity.

Second, both use only O(m+n2) space for managing m GME objects, where O(n2) space is shared

among all m GME objects. In addition, each process needs only O(`) space, where ` denotes the

maximum number of GME objects (or locks) a process needs to hold at the same time, which is

space-optimal. Third, for the cache-coherent model, the number of remote references made by a

request under the cache-coherent model, which is referred to as RMR complexity, is O(min{c̄,n})

in the worst case and O(ċ) in the amortized case, where c̄ denotes the interval contention of the

request (total number of passages involving the same GME object as π that overlap with π) and

4

O(ċ) denotes the point contention of the request (maximum number of passages involving the same

GME object as π that are simultaneously in progress in the system at any point). Note that passage

is defined as the code executed by a process from the time it enters or starts executing the algorithm

to the time it exits for a single request. For more information on these, please refer to Section 2.1.

For the distributed shared memory model, the RMR complexity is O(n) which is optimal for this

model.

We also present an algorithm for a lock-based algorithm for a concurrent (strictly-balanced)

red-black tree that supports search, insert, and delete operations. Our algorithm uses single-word

atomic instruction, namely compare-and-swap (CAS), in the form of a CAS-based lock (TTAS

lock). The TTAS lock is shown [11] to perform better than the Java Reentrant Lock under low

contention scenarios. The insert and delete operations require locks but the search operations are

lock-free. In this work, we design a top-down framework similar to the one used in [56]. Our

algorithm is similar to the one used in [54], however, it differs from it in fundamental ways with

respect to the progress guarantees it provides combined with several optimizations to derive a

lock-based algorithm that is able to compete with relaxed versions of binary search trees.

1.2 Dissertation Roadmap

The rest of the text is organized as follows. We first describe the preliminaries and system model

necessary to understand our work in Chapter 2. In Chapter 3, we discuss prior related work on

group mutual exclusion and background on red black trees. In Chapter 4, we describe the first GME

algorithm, provide its pseudo-code, and discuss its proof of correctness. In Chapter 5, we analyze

its performance against other GME algorithms and provide a reasoning for the same. We then

describe our second GME algorithm and its pseudo-code in Chapter 6. In Chapter 7, we describe

our lock-based concurrent red black tree, provide the pseudo-code, and analyze its performance.

5

CHAPTER 2

SYSTEM MODEL AND PROBLEM SPECIFICATION

We assume an asynchronous shared memory system where a finite set of processes running on

a finite set of independent processors communicate by applying read, write and synchronization

operations to shared memory locations. Each process also has its own private variables. A system

execution is modeled as a sequence of process steps. In each step, a process either performs some

local computation affecting only its private variables or executes one of the available instructions

(read, write or RMW) on a shared variable. Processes take steps asynchronously. This means that

in any execution, between two successive steps of a process, there can be an unbounded but finite

number of steps performed by other processes.

2.1 Shared Memory Model Types

Typically, systems are organized with a memory hierarchy which involves a large, slow main

memory and one or more layers of smaller, faster cache memories. These cache memories may be

shared by one or more processors or they may be unique to each processor. Multi-core processors

generally contain two to three levels of caches (L1-L3). The last level cache (L3) is typically

situated farthest from the processor and is shared among multiple cores. The L2 cache may or may

not be shared between multiple cores. The L1 cache is dedicated to a single core.

Most GME or Mutual exclusion lock algorithms include busy-waiting loops wherein a process

spins on some flag waiting for some condition. This spinning may generate a lot of traffic on the

interconnection between the processor and memory which may slow down other processes. Thus, it

is important to distinguish between local access and remote access and to try to reduce the number

of remote accesses as much as possible. We consider two machine architecture models: (a) Cache-

Coherent (CC) model and (b) Distributed Shared Memory (DSM) model. The two models differ on

where shared variables are physically stored and what is the overhead of accessing them. We define

6

a remote memory reference (RMR) by process p as an attempt to reference (access) a memory

location that does not physically reside on ps local memory.

Cache-Coherent Model In the CC model, all shared variables are stored in a central location or

global store. Each processor has a private cache. When a process accesses a shared variable,

a copy of the contents of the variable is saved in the private cache of the process. Thereafter,

every time the process reads that shared variable, it does so using its cached (local) copy

until the cached copy is invalidated. Also, every time a process writes to a shared variable,

it writes to the global store, which also invalidates all cached copies of the variable.

Distributed Shared Memory Model In the DSM model, instead of having the shared memory in

a central location or a global store, each process “owns” a part of the shared memory and

keeps it in its own local memory. Every shared variable is stored in the local memory of

some process. Accessing a shared variable stored in the local memory of a different process

causes the process to make a remote memory reference. A reference to a variable stored in

a non-local memory requires traversing the processor-to-memory interconnect, which takes

much longer to access than to access a locally stored variable.

In the CC model, spinning on a memory location generates at most two RMRs—one when the

variable is cached and the other when the cached copy is invalidated. In the DSM model, spinning

on a variable that is stored in remote memory may generate an unbounded number of RMRs. An

algorithm is called local-spinning (under CC or DSM model) if the maximum number of RMRs

made in entry and exit sections is bounded. It is desirable to design algorithms that minimize the

number of remote memory references because this factor can critically affect the performance of

these algorithms [50]. In general, it is difficult to achieve bounded number of RMRs in the DSM

Model. In this work, we analyze the RMR complexity of our algorithm under the CC model.

We express the RMR complexity of our GME algorithm using the following measures of con-

tention. The interval contention of a passage π , denoted by c̄(π), is defined as the total number

7

of passages involving the same GME object as π that overlap with π . The point contention of a

passage π , denoted by ċ(π), is defined as the maximum number of passages involving the same

GME object as π that are simultaneously in progress in the system at any point during π .

Note that passage is defined as the code executed by a process from the time it enters or starts

executing the algorithm to the time it exits for a single request.

Figure 2.1 shows an execution involving 3 processes and 5 operations. The interval contention

and point contention are described in the figure.

Figure 2.1: Sample execution with 3 processes and 5 operations. The point contention of A, B,
and E are 3, while the point contention of C and D are 2. The interval contention of A, B, C, D,
and E are 5, 3, 2, 2, and 3 respectively.

2.2 Synchronization Primitives

Processes can only communicate by performing read, write and read-modify-write (RMW) instruc-

tions on shared variables. In the first part of our work, we assume the availability of two RMW

instructions, namely compare-and-swap (CAS) and fetch-and-add (FAA) for our algorithms. A

compare-and-swap instruction takes a shared variable x and two values u and v as inputs. If the

current value of x matches u, then it writes v to x and returns true. Otherwise, it returns false. A

8

Algorithm 1: Structure of a GME Algorithm

1 while true do
2 NON-CRITICAL SECTION (NCS)
3 ENTRY SECTION // try to enter critical section

4 CRITICAL SECTION (CS) // execute critical section

5 EXIT SECTION // exit critical section

fetch-and-add instruction takes a shared variable x and a value v as inputs, returns the current value

of x as output, and, at the same time, increments the value of x by v. These instructions are com-

monly available in many modern processors such as Intel 64 [2] and AMD64 [1]. In the second

part of our work, we make use of exclusive locks based on compare-and-swap (CAS) instruction.

2.3 GME Problem Specification

In the GME problem, each process repeatedly executes four sections of code, namely non-critical

section (NCS), entry section, critical section (CS), and exit section, as shown in Algorithm 1. Each

critical section is associated with a type or a session. Critical sections belonging to the same

session can execute concurrently, whereas critical sections belonging to different sessions must

be executed serially. We refer to the code executed by a process from the beginning of its entry

section until the end of its exit section as an passage. Note that the session associated with a critical

section may be different in different passages (and is selected based on the needs of the underlying

application). We say that a process is active if it is in one of its passages.

We assume that every process is live meaning that, if it is not executing its non-critical section,

then it will eventually execute its next step.

2.3.1 Properties

Solving the GME problem involves designing code for entry and exit sections in order to ensure

the following four properties are satisfied in each passage:

9

(P1) Group mutual exclusion If two processes are in their critical sections at the same time, then

they have requested the same session.

(P2) Lockout freedom If a process is trying to enter its critical section, then it is able to do so

eventually (entry section is finite).

(P3) Bounded exit If a process is trying to leave its critical section, then it is able to do so even-

tually within a bounded number of its own steps (exit section is bounded).

(P4) Concurrent entering If a process is trying to enter its critical section and no process in the

system is requesting a different session, then the (former) process is able to enter its critical

session eventually within a bounded number of its own steps (entry section is bounded in the

absence of a request for a different session).

2.3.2 Complexity Measures

We say that two requests conflict if they involve the same GME object but belong to different

sessions. We say that a request is outstanding until its process has finished executing the exit

section. We use the following metrics to evaluate the performance of our GME algorithm:

Context switch complexity It is defined as the maximum number of sessions that can be estab-

lished while a process is waiting to enter its critical section. It is also referred to as session

switch complexity elsewhere [45, 28].

Concurrent entry step complexity It is defined as the maximum number of steps a process has

to execute in its entry and exit sections provided no other process in the system has an

outstanding conflicting request during that period.

Remote memory reference (RMR) complexity It is defined as the maximum number of remote

memory references required by a process in its entry and exit sections.

10

In addition, we also consider the memory footprint of the GME algorithm when the system

contains multiple GME objects.

Multi-object space complexity It is defined as the maximum amount of space needed to instan-

tiate and maintain a certain number of GME objects.

2.4 Red Black Tree Preliminaries

We assume that a binary search tree (BST) implements a dictionary abstract data type and supports

search, insert and delete operations [19]. For convenience, we refer to the insert and delete oper-

ations as modify operations. A search operation explores the tree for a given key and returns true

if the key is present in the tree and false otherwise. An insert operation adds a given key to the

tree if the key is not already present in the tree. Duplicate keys are not allowed in our model. A

delete operation removes a key from the tree if the key is indeed present in the tree. In both cases,

a modify operation returns true if it changed the set of keys present in the tree (added or removed

a key) and false otherwise.

Given a tree, we refer to a sequence of nodes in the tree such that every node in the sequence

(except for the last node) is the parent of the next node in the sequence as a path. Further, we refer

to the top-most and bottom-most nodes in the path as its head and tail nodes, respectively.

A binary search tree satisfies the following key-based properties:

(1) the left subtree of a node contains only nodes with keys less than or equal to the node’s key

(2) the right subtree of a node contains only nodes with keys greater than the node’s key

(3) the left and right subtrees of a node are also binary search trees.

To locate a key in a binary search tree, the tree is traversed starting from its root node. At each

node, the target key (the key being searched) is compared with the stored key (the key present at

the node) and depending on the result either the node’s left child (the target key is smaller than the

11

stored key) or its right child is followed (otherwise). This path in the tree from the root node to a

leaf node as induced by a key is referred to as its access-path.

A red-black tree (RBT) is a type of self-balancing binary search tree in which every node is

either colored red or black. A red-black tree satisfies the following color-based properties:

(1) each node in the tree is either red or black

(2) a red node cannot have a red child node

(3) every path from a given node to any of its descendant leaf node contains the same number

of black nodes.

The above color-based properties ensure that the height of a red-black tree is a logarithmic function

of the number of keys present in the tree. We use an external red-black tree in our algorithm.

Furthermore, every internal node has exactly two children.

2.5 Correctness Conditions

To demonstrate the correctness of our algorithms, we use linearizability [37] as the safety property.

Each operation consists of an invocation and response event. Essentially, linearizability requires

that an operation should appear to take effect instantaneously at some point between these events.

This point is called the linearization point. For our lock-based red black tree algorithm we use

deadlock-freedom [35] for the liveness property. Deadlock-freedom requires that some process

with a pending operation be able to complete its operation eventually. For our GME algorithms,

we use the starvation-freedom for the liveness property. Starvation-freedom requires that every

operation (session request) executed by every process will eventually complete.

12

CHAPTER 3

BACKGROUND AND RELATED WORK

In this chapter, we first give an overview of earlier work done in the area of Group Mutual Exclu-

sion. Next, we consider the related work for the Concurrent Red Black Tree data structure.

3.1 Related Work for Group Mutual Exclusion

Since the GME problem was first introduced by Joung around two decades ago [43], several al-

gorithms have been proposed to solve the problem for shared-memory systems [43, 45, 28, 62,

41, 17, 7, 30]. These algorithms provide different trade-offs between fairness, concurrency, step

complexity and space complexity.

3.1.1 Previous Work Drawbacks

To the best of our knowledge, all of the prior work suffers from at least one and possibly both of

the following drawbacks:

Drawback 1 (high step complexity in the absence of any conflicting request): In a system using

fine-gained locking, most of the lock acquisitions are likely to be uncontended in practice (i.e., at

most one process is trying to acquire a given lock). Note that this is the primary motivation behind

providing a fast-path mechanism for acquiring a lock [35]. Moreover, in concurrent unrolled skip

lists using GME-based locks [57], most of the lock acquisitions involve only two shared sessions.

In many cases, all requests are likely to be for the same session. This necessiates the need for a

GME algorithm that has low step-complexity when all requests for acquiring a given lock are for

the same session, which we refer to as concurrent entry step complexity. (Note that this includes

the case where there is only one request for lock acquisition.)

To the best of our knowledge, except for two, all other existing GME algorithms have concur-

rent entry step complexity of Ω(n), where n denotes the number of processes in the system. The

13

GME algorithm by Bhatt and Huang [7] has concurrent entry step-complexity of O(min{logn, ċ}),

where ċ denotes the point contention of the request. Also, one of the GME algorithms by Danik

and Hadzilcos [17, Algorithm 3] has concurrent entry step complexity of O(logs ·min{logn, ċ}),

where s denotes the number of different types of sessions.

Drawback 2 (high space complexity with a large number of GME objects): All the existing

work in this area has (implicitly) focused on a single GME object. However, many systems use

fine-grained locking to achieve increased scalability in multi-core/multi-processor systems. For

example, each node in a concurrent data structure is protected by a separate lock [35, 57].

All the existing GME algorithms that guarantee starvation freedom have a space-complexity

of at least Θ(n) for a single GME object. Note that this is expected because mutual exclusion is a

special case of group mutual exclusion and any starvation-free mutual exclusion algorithm requires

Ω(n) space even when powerful atomic instructions such as compare-and-swap are used [22].

Some of these GME algorithms (e.g., [45, 17, 30]) can be modified relatively easily to share the

bulk of this space among all GME objects and, as a result, the additional space usage for each

new GME object is only O(1). However, it is not clear how the other GME algorithms (e.g.,

[43, 28, 62, 41, 17, 7, 30]) can be modified to achieve the same space savings. For these GME

algorithms, to our understanding, the additional space usage for each new GME object is at least

Θ(n). We refer to the former set of GME algorithms as space-efficient and the latter set of GME

algorithms as space-inefficient.

Consider the example of a concurrent data structure using GME-based locks to improve per-

formance [57]. If n is relatively large, then the size of a node equipped with a lock based on a

GME algorithm that is space-inefficient may be several factors more than its size otherwise. This

will significantly increase the memory footprint of the concurrent data structure, which, in turn,

will adversely affect its performance and may even negate the benefit of increased concurrency

resulting from using a GME-based lock.

14

Table 3.1: Fairness and concurrency properties satisfied by different algorithms. Note that all
algorithms satisfy P1.

Algorithm P2 P3 P4 P5 P6 P7 P8 P9
Joung [43] 3 3 3 3 7 7 7 7

Keane & Moir [45] 3 7 7 7 7 7 7 7

Hadzilacos [28] 3 3 3 7 3 3 7 7

Takamura & Igarashi [62, Algorithm 1] 7 3 7 7 7 7 7 7

Takamura & Igarashi [62, Algorithm 2] 3 7 7 7 7 7 7 7

Takamura & Igarashi [62, Algorithm 3] 3 7 7 7 7 7 7 7

Jayanti et al. [41, Algorithm 1] 3 3 3 7 3 3 7 7

Jayanti et al. [41, Algorithm 2] 3 3 3 3 3 7 3 7

Jayanti et al. [41, Algorithm 3] 3 3 3 3 3 7 3 7

Danek & Hadzilacos [17, Algorithm 1] 3 3 3 3 3 3 3 7

Danek & Hadzilacos [17, Algorithm 2] 3 3 3 7 7 3 7 7

Danek & Hadzilacos [17, Algorithm 3] 3 3 3 7 3 3 7 7

Bhatt & Huang [7] 3 3 3 7 7 3 7 3

He et al. [30, Algorithm 1] 3 3 3 7 3 7 7 7

He et al. [30, Algorithm 2] 3 3 3 7 3 7 7 7

Our Algorithm [This Work] 3 3 3 7 7 7 7 7

Table 3.2: Complexity measures for ME algorithms used by some GME algorithms.

Algorithm Space
Complexity

Space
Shareable

Across
Multiple
Objects

Solitary
Request

Step
Complexity

RMR
Complexity

RMW
Instructions

Yang & Anderson’s
Algorithm 1 [65] O(n) 7 O(logn) O(logn) -

Mellor-Crummey & Scott’s
Algorithm [50] O(1) 3 O(1) O(n) FAS

n: number of processes

15

Ta
bl

e
3.

3:
C

om
pl

ex
ity

m
ea

su
re

s
of

G
M

E
al

go
ri

th
m

s
ex

cl
ud

in
g

th
os

e
in

[4
1,

17
]

th
at

us
e

an
ab

or
ta

bl
e

M
E

al
go

ri
th

m
as

a
su

br
ou

tin
e.

A
lg

or
ith

m
M

ul
ti-

O
bj

ec
tS

pa
ce

C
om

pl
ex

ity
So

lit
ar

y
R

eq
ue

st
St

ep
C

om
pl

ex
ity

C
on

cu
rr

en
tE

nt
er

in
g

St
ep

C
om

pl
ex

ity
R

M
R

C
om

pl
ex

ity
B

ou
nd

ed
Sh

ar
ed

Va
ri

ab
le

s

R
M

W
In

st
ru

ct
io

ns

Jo
un

g
[4

3]
O
(m

n)
Ω
(n
)

Ω
(n
)

∞
3

-

K
ea

ne
&

M
oi

r[
45

]
(w

ith
Y

an
g

&
A

nd
er

so
n’

s
A

lg
or

ith
m

1)
O
(m

n)
O
(l

og
n)

–
O
(l

og
n
+

ċ)
3

-

K
ea

ne
&

M
oi

r[
45

]
(w

ith
M

el
lo

r-
C

ru
m

m
ey

an
d

Sc
ot

t’s
A

lg
or

ith
m

)
O
(m

+
n)

O
(1
)

–
O
(n
)

3
FA

S

H
ad

zi
la

co
s

[2
8]

O
(m

n2)
Ω
(n
)

Ω
(n
)

O
(n

+
ċ2)

3
-

Ta
ka

m
ur

a
&

Ig
ar

as
hi

[6
2,

A
lg

or
ith

m
1]

O
(m

+
n)

Ω
(n
)

–
∞

3
-

Ta
ka

m
ur

a
&

Ig
ar

as
hi

[6
2,

A
lg

or
ith

m
2]

O
(m

+
n)

Ω
(n
)

–
O
(n
)

7
-

Ta
ka

m
ur

a
&

Ig
ar

as
hi

[6
2,

A
lg

or
ith

m
3]

O
(m

+
n)

Ω
(n
)

–
O
(n
)

7
-

Ja
ya

nt
ie

ta
l.

[4
1,

A
lg

or
ith

m
1]

O
(m

n)
Ω
(n
)

Ω
(n
)

O
(n

+
ċ2)

3
-

H
e

et
al

.
[3

0,
A

lg
or

ith
m

1]
O
(m

+
n)

Ω
(n
)

Ω
(n
)

O
(n
)

7
-

H
e

et
al

.
[3

0,
A

lg
or

ith
m

2]
O
(m

+
n)

Ω
(n
)

Ω
(n
)

O
(n
)

3
-

B
ha

tt
&

H
ua

ng
[7

]
O
(m

n)
O
(1
)

O
(m

in
{l

og
n,

ċ}
)

O
(m

in
{l

og
n,

ċ}
)

7
L
L

/S
C

O
ur

A
lg

or
ith

m
[T

hi
s

W
or

k]
O
(m

+
n2)

O
(1
)

O
(1
)

O
(ċ
)∗

3
C
A
S

an
d
FA

A

–:
th

e
al

go
ri

th
m

do
es

no
ts

at
is

fy
P4

n:
nu

m
be

ro
fp

ro
ce

ss
es

m
:n

um
be

ro
fG

M
E

ob
je

ct
s

s:
nu

m
be

ro
fd

iff
er

en
tt

yp
es

of
se

ss
io

ns
ċ:

po
in

tc
on

te
nt

io
n

of
th

e
re

qu
es

t
∗:

am
or

tiz
ed

ca
se

16

Ta
bl

e
3.

4:
C

om
pl

ex
ity

m
ea

su
re

s
of

th
e

G
M

E
al

go
ri

th
m

s
in

[4
1,

17
]u

si
ng

th
e

th
re

e
ab

or
ta

bl
e

m
ut

ex
al

go
ri

th
m

s.

A
bo

rt
ab

le
M

E
A

lg
or

ith
m

A
lg

or
ith

m
Sp

ac
e

C
om

pl
ex

ity

So
lit

ar
y

R
eq

ue
st

St
ep

C
om

pl
ex

ity

C
on

cu
rr

en
tE

nt
er

in
g

St
ep

C
om

pl
ex

ity
R

M
R

C
om

pl
ex

ity
B

ou
nd

ed
Sh

ar
ed

Va
ri

ab
le

s
R

M
W

In
st

ru
ct

io
ns

n-
bi

tF
C

FS

Ja
ya

nt
ie

ta
l.

[4
1,

A
lg

or
ith

m
2]

O
(m

n2)
Ω
(n
)

Ω
(n
)

O
(n
)

3
-

Ja
ya

nt
ie

ta
l.

[4
1,

A
lg

or
ith

m
3]

O
(m

n2)
Ω
(n
)

Ω
(n
)

O
(n
)

7
-

D
an

ek
&

H
ad

zi
la

co
s

[1
7,

A
lg

or
ith

m
1]

O
(m

n2)
Ω
(n
)

Ω
(n
)

O
(n
)

3
-

D
an

ek
&

H
ad

zi
la

co
s

[1
7,

A
lg

or
ith

m
2]

O
(m

n2)
Ω
(n
)

Ω
(n
)

O
(n
)

3
C
A
S

an
d
FA

A

D
an

ek
&

H
ad

zi
la

co
s

[1
7,

A
lg

or
ith

m
3]

O
(m

n2 s)
O
(n

lo
g

s)
O
(n

lo
g

s)
O
(n

lo
g

s)
7

C
A
S

an
d
FA

A

m
od

ifi
ed

B
ak

er
y

al
go

ri
th

m

Ja
ya

nt
ie

ta
l.

[4
1,

A
lg

or
ith

m
2]

O
(m

n2)
Ω
(n
)

Ω
(n
)

O
(n
)

7
-

Ja
ya

nt
ie

ta
l.

[4
1,

A
lg

or
ith

m
3]

O
(m

n)
Ω
(n
)

Ω
(n
)

O
(n
)

7
-

D
an

ek
&

H
ad

zi
la

co
s

[1
7,

A
lg

or
ith

m
1]

O
(m

+
n2)

Ω
(n
)

Ω
(n
)

O
(n
)

7
-

D
an

ek
&

H
ad

zi
la

co
s

[1
7,

A
lg

or
ith

m
2]

O
(m

+
n2)

Ω
(n
)

Ω
(n
)

O
(n
)

7
C
A
S

an
d
FA

A

D
an

ek
&

H
ad

zi
la

co
s

[1
7,

A
lg

or
ith

m
3]

O
(m

ns
)

O
(n

lo
g

s)
O
(n

lo
g

s)
O
(n

lo
g

s)
7

C
A
S

an
d
FA

A

Ja
ya

nt
i’s

al
go

ri
th

m

Ja
ya

nt
ie

ta
l.

[4
1,

A
lg

or
ith

m
2]

O
(m

n2)
Ω
(n
)

Ω
(n
)

O
(n
)

7
-

Ja
ya

nt
ie

ta
l.

[4
1,

A
lg

or
ith

m
3]

O
(m

n)
Ω
(n
)

Ω
(n
)

O
(n
)

7
-

D
an

ek
&

H
ad

zi
la

co
s

[1
7,

A
lg

or
ith

m
1]

O
(m

n
+

n2)
Ω
(n
)

Ω
(n
)

O
(n
)

7
-

D
an

ek
&

H
ad

zi
la

co
s

[1
7,

A
lg

or
ith

m
2]

O
(m

n
+

n2)
Ω
(n
)

Ω
(n
)

O
(n
)

7
C
A
S

an
d
FA

A

D
an

ek
&

H
ad

zi
la

co
s

[1
7,

A
lg

or
ith

m
3]

O
(m

ns
)

O
(l

og
s)

O
(

lo
g

s
×

m
in
{l

og
n,

ċ}

)
O
(

lo
g

s
×

m
in
{l

og
n,

ċ}

)
7

C
A
S

an
d
FA

A

n:
nu

m
be

ro
fp

ro
ce

ss
es

m
:n

um
be

ro
fG

M
E

ob
je

ct
s

s:
nu

m
be

ro
fd

iff
er

en
tt

yp
es

of
se

ss
io

ns
ċ:

po
in

tc
on

te
nt

io
n

of
th

e
re

qu
es

t

17

3.1.2 Subroutines

Most of the earlier algorithms use only read and write instructions whereas many of the later

algorithms use atomic instructions as well. As mentioned earlier, different algorithms provide

different fairness, concurrency and performance guarantees.

Many GME algorithms use a traditional or an abortable mutual exclusion (ME) algorithm as

a subroutine. The GME algorithm proposed by Keane and Moir in [45] uses a traditional ME

algorithm as an exclusive lock to protect access to entry and exit sections of the algorithm. As

such, this algorithm does not satisfy bounded exit and concurrent entering properties. The GME

algorithms presented in [17, 7] use an abortable ME algorithm as a subroutine. The main idea is

that a process can enter its critical section using multiple pathways: (i) as a “leader” by establishing

a new session, or (ii) as a “follower” by joining an existing session. The first case occurs if the

process is able to acquire the exclusive lock. The second case occurs if the process learns that a

session “compatible” with its own request is already in progress in which case it aborts the ME

algorithm and joins that session. Both pathways are explored concurrently and, as soon as one of

them allows the process enter its critical section, the other one is abandoned.

3.1.3 Fairness and Concurrency Guarantees

In many (group) mutual exclusion algorithms, the entry section consists of two distinct subsections:

a doorway and a waiting-room. A doorway is the wait-free portion of the entry section that a

process can complete within a bounded number of its own steps. A waiting-room of the entry

section is the portion where a process is blocked until it is its turn to execute its critical section.

We say that two active processes are fellow processes if they are requesting the same session

(of the same GME object) and conflicting processes if they are requesting different sessions (of the

same GME object).

We say that an active process p doorway-preceeds another active process q if p completes the

doorway before q enters the doorway. Besides the four properties listed in Section 2.3.1, a GME

18

algorithm may satisfy one or more of the properties listed below. These properties, which were

defined in [28, 41, 7], describe additional guarantees that a GME algorithm may provide.

(P5) Strong Concurrent Entering If a process p has completed its doorway, and p doorway-

precedes every active conflicting process, then p enters its critical section within a bounded

number of its own steps.

(P6) First-Come-First-Served (FCFS) If p and q are two conflicting processes such that p doorway-

preceeds q, then p enters its critical section before q.

(P7) Relaxed FCFS If p and q are two conflicting processes such that p doorway-preceeds q but

q enter its critical section before p, then there exists another process r whose current attempt

overlaps with that of q such that q and r are fellow processes p does not doorway-preceed r.

(P8) First-In-First-Enabled (FIFE) If p and q are two fellow processes such that p doorway-

preceeds q and q enters its critical section before p, then p can enter its critical section

within a bounded number of its own steps.

(P9) Pulling Suppose p and q are two fellow processes such that p is currently in its critical

section and doorway-preceeds all conflicting processes. If q is currently in the waiting room,

then q can enter its critical section within a bounded number of its own steps.

3.2 Related Work for Concurrent Red Black Tree

Several lock-based algorithms for concurrent search trees have been proposed in [6, 9, 16].

Universal constructions that can be used to derive concurrent lock-free and wait-free data struc-

tures from a sequential version have been proposed in [31, 32, 12, 21]. Due to the general nature

of the constructions, when applied to a binary search tree, the resultant data structures are quite

inefficient. They involve either: (a) applying operations to the data structure in a serial manner,

or (b) copying the entire data structure (or parts of it that will change and any parts that directly

19

or indirectly point to them), applying the operation to the copy and then updating the relevant part

of the shared data structure to point to the copy. The first approach precludes any concurrency.

The second approach, when applied to a tree, also precludes any concurrency since the root node

of the tree indirectly points to every node in the tree. A general wait-free construction for a tree-

based data structure in which all operations work in a top-down manner has been proposed in [64].

Operations are injected into the tree at the root node, and work their way down, toward a leaf

node, by operating on a small contiguous portion or window of the tree. When compared with uni-

versal constructions, the wait-free algorithm obtained using Tsay and Li’s tree-based framework,

hereafter referred to as TL-framework, yields more efficient modify operations (as modify opera-

tions working on different parts of the tree can execute concurrently once their paths diverge) but

less efficient search operations (as search operations also have to copy nodes and execute atomic

instructions).

Natarajan et al. presented an efficient wait-free algorithm for a concurrent red-black tree in

[56] based on modified TL-framework. The TL-framework was modified to remove its practical

limitations such as: (i) using an atomic instruction that is typically not implemented in hardware,

and (ii) storing two addresses in a single word. Furthermore, operations in Natarajan et al.’s

algorithm (search as well as modify) are much more efficient than those obtained directly from

the framework (even the modified framework). Concurrent algorithms for red-black trees using

transactional memory support have been proposed in [25, 15].

A lock-based, relaxed-balanced AVL tree was proposed in [9]. This is a variation of inter-

nal trees, referred to as partially-external trees. An internal tree maintains values in inner nodes

whereas an external tree maintains values only at the leaves and the key of an inner node is used for

routing purposes only. In partially-external trees, a node with two children is marked as logically

removed via a designated flag, and it is not physically removed until its number of children reduces

to one due to another removal or due to rotations. An insert can revive such a node by flipping

this flag to false. Internal trees may suffer more contention in smaller trees since threads contend

20

on nodes more frequently (since there could be up to two times fewer nodes in internal trees than

in external trees). However, delete operations are simpler in external trees than internal trees. Fi-

nally, a non-blocking algorithm for a relaxed variant of red-black trees (namely, chromatic tree)

has been proposed in [10]. In this paper, Brown et al., proposed general primitives for developing

non-blocking algorithms for concurrent search trees, namely LLX, SCX, and VLX. Using these

primitives, they have developed efficient non-blocking algorithms for relaxed external red-black

trees.

In relaxed balanced trees, the mutating operations are decoupled from the rebalancing opera-

tions i.e. the mutating operation is first completed and only sometime afterwards, the rebalance

process is started. Although relaxed balanced trees are guaranteed to be strictly balanced when

there are no ongoing mutating operations [9, 10], the rebalance process may be arbitrarily delayed.

In strictly balanced trees, the balancing takes place after every mutating operation. Balanced trees

provide logarithmic worst-case time complexity guarantees. This becomes crucial as the tree grows

in size or when the values for the operations are picked non-uniformly. Thus, it may be beneficial

to focus on strictly balanced trees if their performance can be shown to be on-par with relaxed

variants.

21

CHAPTER 4

GME ALGORITHM FOR CACHE-COHERENT (CC) MODEL

In this chapter, we present our GME algorithm for the Cache-coherent model. We first discuss Her-

lihy’s algorithm which inspired our work. We then describe our GME algorithm in an incremental

manner. First, we describe a basic GME algorithm that is only deadlock-free (some session request

is eventually satisfied but a given request may be starved), and uses unbounded space. Next, we

enhance the basic algorithm to achieve starvation freedom (every session request is eventually sat-

isfied) using a helping mechanism. Finally, we enhance the algorithm to make it space-efficient by

reusing nodes using a memory reclamation algorithm. Note that all our algorithms are safe in the

sense that they satisfy the group mutual exclusion property. For ease of exposition, we describe the

first two variants followed by Section 4.2 along with a correctness proof and complexity analysis.

We then describe the third (and the final) variant in the section thereafter, Section 4.3.

4.1 The Main Idea

Our GME algorithm is inspired by Herlihy’s universal construction for deriving a wait-free lin-

earizable implementation of a concurrent object from its sequential specification using consensus

objects [31, 32]. Roughly speaking, the universal construction works as follows. The state of the

concurrent object is represented using (i) its initial state and (ii) the sequence of operations that

have applied to the object so far. The two attributes of the object are maintained using a singly

linked list in which the first node represents the initial state and the remaining nodes represent the

operations. To perform an operation, a process first creates a new node and initializes it with all the

relevant details of the operation, namely its type and its input arguments. It then tries to append the

node at the end of the list. To manage conflicts in case multiple processes are trying to append their

own node to the list, a consensus object is used to determine which of several nodes is chosen to

be appended to the list. Specifically, every node stores a consensus object and the consensus object

22

of the current last node is used to decide its successor (i.e., the next operation to be applied to the

object). A process whose node is not selected simply tries again. A helping mechanism is used to

guarantee that every process trying to perform an operation eventually succeeds in appending its

node to the list.

We modify the aforementioned universal construction to derive a GME algorithm that satisfies

several desirable properties. Intuitively, an operation in the universal construction corresponds to a

critical section request in our GME algorithm. Appending a new node to the list thus corresponds

to establishing a new session. However, unlike in the universal construction, a single session in

our GME algorithm can be used to satisfy multiple critical section requests. This basically means

that every critical section request does not cause a new node to be appended to the list. This

requires some careful bookkeeping so that no “useless” sessions are established. Further, a simple

consensus algorithm, implemented using CAS instruction, is used to determine the next session to

be established.

For ease of exposition, we describe the first two variants in the next section, Section 4.2 along

with a correctness proof and complexity analysis. We then describe the third (and the final) variant

in the section thereafter, Section 4.3.

4.2 A Starvation-Free Algorithm

In this section, assume that nodes are never reused. A pseudocode of our GME algorithm is given

in Algorithms 2-7. In the pseudocode, me refers to the identifier of the process (e.g., me for process

pi will evaluate to i).

4.2.1 Data Structures Used

List node: Central to our GME algorithm is a (list) node (Figure 4.1); it is used to maintain

information about a session. As opposed to the linked list in the wait-free construction, which

is a singly linked list, we maintain a doubly linked list. A node stores the following information

23

Algorithm 2: Data types and variables used.

// Node of a list

6 struct Node {
integer session; // session associated with the node

integer instance; // instance identifier of the GME object

integer number; // the next process to be helped

{bool,bool,bool,bool} state; // four flags representing state

integer size; // number of processes currently in the session

NodePtr prev, next; // address of the previous and next nodes

integer owner; // the last process to own the node

};

7 shared variables
8 head: array [1 . . .m] of NodePtr; // to store references to head nodes of

lists

9 announce: array [1 . . .n] of NodePtr, initially [null,. . .,null]; // to announce CS

requests

10 private variables
11 snapshot: array [1 . . .n] of NodePtr; // to store snapshots of the head nodes

// snapshot[i] is a private variable of process pi

initialization
12 begin

// initialize shared variables

13 foreach i ∈ [1 . . .m] do
14 head[i] := new Node; // create a new node

15 head[i]→ state := LEADERLESS ; // session has no leader

16 head[i]→ size := 0; // session has no processes

17 head[i]→ next := null; // node has no successor

// all other fields can be initialized arbitrarily

18 foreach i ∈ [1 . . .n] do
19 announce[i] := null ; // process has no outstanding request

(line 6): (a) the session represented by the node, (b) the instance identifier of the GME object to

which the session belongs, (c) the state of the session, (d) the size of the session, (e) the address of

the previous and next nodes in the (doubly linked) list, and (f) the owner of the node.

24

Algorithm 3: Functions operating on session state.

// returns true if the session is closed and false otherwise

20 bool ISCLOSED(integer state) { return (state & LEADERLESS) and (state & CONFLICT);
}

// returns true if the session is adjourned and false otherwise

21 bool ISADJOURNED(integer state) { return (state & VACANT); }

// returns true if the node is retired and false otherwise

22 bool ISRETIRED(integer state) { return (state & RETIRED); }

// sets a given guard flag (LEADERLESS or CONFLICT) in the session

state

23 SETGUARDFLAG(NodePtr node, bool flag)
24 begin
25 while true do
26 integer state := node→ state ; // read the current state

27 if (state & flag) then return; // flag already set

28 if CAS(node→ state, state, state | flag) then return; // successfully set the

flag

// sets the vacant flag in the state if possible

29 SETVACANTFLAG(NodePtr node)
30 begin
31 integer state := node→ state; // read the current state

32 if not(ISCLOSED(state)) then return; // session is still open

33 if (node→ size 6= 0) then return; // session still has participants

34 CAS(node→ state, state, state | VACANT);

// mark the node as retired

35 MARKASRETIRED(NodePtr node) { node→ state := LEADERLESS | CONFLICT | VACANT
| RETIRED; }

A session (or node) has four possible states: (i) open: it means that the session is currently in

progress and new processes can join in, (ii) closed: it means the session is currently in progress

but no new processes can join in, (iii) adjourned: it means that the session is no longer in progress

and has no participating processes, and (iv) retired: it means that the node is no longer needed to

either establish or maintain an already established session. When a session is first established, it is

25

Algorithm 4: Functions operating on list head.

// reads the current head pointer of the list

36 READHEAD(integer instance)
37 begin
38 snapshot[me] := head[instance];

// returns true if the head of the list has not moved and false

otherwise

39 bool TESTHEAD(integer instance)
40 begin
41 if (head[instance] 6= snapshot[me]) then return false; // head has advanced

42 else return true;

// advances the head of a list to the given node if the head has not

moved

43 ADVANCEHEAD(integer instance, NodePtr successor)
44 begin
45 CAS(head[instance], snapshot[me], successor);

in open state. It stays open as long as one of the following conditions still holds: (1) there is no

conflicting request in the system, or (2) the request that established the session is still outstanding,

i.e., executing its critical section. Once both the conditions become false, the session moves to

closed state. Note that, in closed state, the session may still have participants executing their

critical sections. Once all such participants have left the session, the session moves to adjourned

state. Finally, the node associated with a request is retired once either the session established by

the node has adjourned and a new session has been established or the node is no longer needed to

establish a session.

session instance number state size prev next owner

Open, Closed, Adjourned, Retired

Figure 4.1: Structure of the node with its contents

26

Algorithm 5: Entry section.

// code for entry section

46 ENTER(integer myinstance, integer mysession)
47 begin

// initialize a node and announce the request to other processes

48 GETNEWNODE(myinstance, mysession);
49 NodePtr mynode := announce[me];

50 while true do
51 READHEAD(myinstance); // read the head pointer of the list

52 NodePtr current := snapshot[me]; // find the last node in the list

53 if (announce[me] = current) then
// join the session as a leader and retire the predecessor

node

54 RETIRENODE(mynode→ prev);
55 return;

56 if (current→ session = mysession) then // my request is compatible with

the current session

57 if not(ISCLOSED(current→ state)) then // the session is open

// attempt to join the session as a follower

58 FAA(current→ size, 1); // increment the session size

59 if not(ISCLOSED(current→ state)) then // the session is still

open

// join the session as a follower and retire own node

60 RETIRENODE(mynode);
61 return;
62 else // the session is no longer open

63 FAA(current→ size, -1); // abort the attempt and decrement

the session size

64 SETVACANTFLAG(current); // set VACANT flag if applicable

65 else // my request conflicts with the current session

66 SETGUARDFLAG(current, CONFLICT); // set CONFLICT flag

67 SETVACANTFLAG(current); // set VACANT flag if applicable

68 while not(ISADJOURNED(current→ state)) do ; // do nothing

69 ; // spin

70 if TESTHEAD(myinstance) then APPENDNEXTNODE(myinstance); // establish

a new session

27

Algorithm 6: Exit section.
// code for exit section

71 EXIT(integer myinstance)
72 begin
73 READHEAD(myinstance); // find the head node of the list

74 NodePtr current := snapshot[me];

75 if (current→ owner = me) then // joined the session as a leader

76 SETGUARDFLAG(current, LEADERLESS); // set the LEADERLESS flag

77 FAA(current→ size, -1); // decrement the session size

78 SETVACANTFLAG(current); // set VACANT flag if applicable

We use four flags to represent session state: (1) LEADERLESS flag to indicate that the session

leader has left its critical section, (2) CONFLICT flag to indicate that some process has made a

conflicting request, (3) VACANT flag to indicate that the session is empty or vacant, and (4) RETIRED

flag to indicate that the node has been retired. For convenience, we refer to the first two flags as

guard flags, the third flag as vacant flag and the fourth flag as retired flag.

The vacant flag is set only after both the guard flags have been set. Thus a session is closed if

both its guard flags are set. It is adjourned if its vacant flag is also set. Finally, a node is considered

retired if its retired flag is set. For convenience, when the retired flag is set, we set the remaining

three flags as well to simplify the algorithm. Thus if the vacant flag is set, then both the guard flags

are also set; if the retired flag is set, then the vacant flag as well as both the guard flags are also set.

All the four flags are stored in a single word hence the value of session state can be easily read and

updated atomically.

The size of a session refers to the number of processes that have joined or trying to join the

session, i.e., still executing their critical sections.

Shared variables: Each GME object has a separate linked list associated with it. Each list has a

head, which points to the last node in the list. Initially, the head of each list points to a “dummy”

28

Algorithm 7: Functions operating on a list node.

// get a new node, initialize it and announce it to other processes

79 GETNEWNODE(integer instance, integer session)
80 begin
81 NodePtr node := get a new node; // invoke dynamic memory manager

82 node→ owner := me; // set the owner as myself

83 node→ instance := instance; // initialize node’s instance

84 node→ session := session; // initialize node’s session

85 node→ size := 1; // initialize session size

86 node→ next := null ; // node has no successor

87 node→ prev := null ; // node has no predecessor

88 node→ state := 0; // session is open with no condition flag set

89 node→ number := 0; // set the sequence number to a sentinel value

90 announce[me] := node; // make the node visible to other processes

// get the next node to be appended to the list

91 NodePtr SELECTNEXTNODE(integer instance)
92 begin
93 NodePtr mine := announce[me]; // my node

94 NodePtr hel pee := announce[snapshot[me]→ number]; // helpee’s node

// ascertain that the helpee’s node is usable

95 if (hel pee = null) then return mine; // process has no outstanding request

96 if (hel pee→ instance 6= instance) then return mine; // request is for a

different GME object

97 if ISRETIRED(hel pee) then return mine; // node has been retired

98 if not(TESTHEAD(instance)) then return mine; // head has moved

99 return hel pee; // helpee’s node passed all the tests

node representing an adjourned session. For ease of exposition, we assume that pointers to all head

nodes are stored in an array with one entry for each GME object, denoted by head (line 8).

To enable helping, each process announces its request by storing address of the node associated

with its request in an array with one entry for each process, denoted by announce (line 9).

Private variables: In addition, each process uses a private variable to maintain a snapshot of the

pointer to the head node of the list associated with the current request (line 11). Note that a private

variable is modeled as an array in our algorithm; the ith entry of each array is private to process pi.

29

Algorithm 8: More Functions operating on a list node.

// append a new node to the list

100 APPENDNEXTNODE(integer instance)
101 begin
102 NodePtr current := snapshot[me]; // get the last node in the list

103 NodePtr successor := SELECTNEXTNODE(instance); // choose a node to append

104 CAS(current→ next, null, successor); // set the next field of the current

last node

105 NodePtr successor := current→ next ; // read the next field

106 if not(TESTHEAD(instance)) then return; // head has moved

107 successor→ prev := current; // set the previous field of the successor

108 successor→ number := (current→ number+1) mod n+1; // set the sequence

number used in helping

109 ADVANCEHEAD(instance, successor); // advance the head

// retire the node

110 RETIRENODE(NodePtr node)
111 begin
112 announce[me] := null; // help is no longer needed

113 MARKASRETIRED(node); // mark the node as retired

Managing session state: Algorithm 3 shows the pseudocode for accessing and manipulating

session state. The methods for reading session state ISCLOSED (line 20), ISADJOURNED (line 21)

and ISRETIRED (line 22) follow from the discussion earlier and are self-explanatory. The method

SETGUARDFLAG repeatedly attempts to set the given guard flag in the session state, if not already

set, using a CAS instruction until it succeeds (lines 25-28). The method SETVACANTFLAG at-

tempts to set the vacant flag in the session state using a CAS instruction provided the session has

closed and has no participants (lines 31-34). The method MARKASRETIRED sets all the four flags

in the session state (line 35).

The following lemma limits the number of times the loop in SETGUARDFLAG method is exe-

cuted:

Lemma 1. The while-do loop in SETGUARDFLAG method (lines 25-28) is executed only O(1)

times per invocation of the method.

30

Algorithm 9: Additional Data types, variables, & Initialization

// add the following field to node structure

114 bool condition; // a boolean flag to indicate whether the node is safe

or unsafe

115 additional shared variables
116 hp: array [1 . . .n][1. . .2] of NodePtr; // to store hazard pointers

117 additional private variables
118 pool: array [1 . . .n][1. . .2][1. . .3n] of NodePtr; // to store pools of nodes

119 which: array [1 . . .n] of integer; // to indicate which of the two pools is

active

120 marker array [1 . . .n] of integer; // pointer to the first safe node in the

active pool

121 initialization of additional variables
122 begin

// initialize shared variables

123 foreach i ∈ [1 . . .n], j ∈ [1. . .2] do hp[i][j] := null;

// initialize private variables

124 foreach i ∈ [1 . . .n] do
125 foreach j ∈ [1. . .2],k ∈ [1. . .3n] do
126 pool[i][j][k] := new Node; // create a new node

127 pool[i][j][k]→ owner := me; // set the owner as myself

128 which[i] := 1; // designate pool[i][1] as active

129 marker[i] := 1; // designate pool[i][1][1] as the first safe node

Proof. A new iteration of the while-do loop is executed only if the CAS instruction performed on

the session state fails. The failure occurs only if one of the two guard flags in the session state has

been set by another CAS instruction. This can only happen at most two times.

Lemma 2. A session can adjourn only after it has closed.

Proof. For a session to adjourn, both the guard flags (LEADERLESS and CONFLICT) must be set in

the session state. This implies that the session must be closed before it can be adjourned.

31

Algorithm 10: Reusing retired nodes.

// changes to ReadHead method - replace line 38 with lines 130-133

130 repeat
131 snapshot[me] := head[instance]; // read the current head pointer of the

list

132 hp[me][1] := snapshot[me]; // declare it as a hazard pointer

133 until (snapshot[me] = head[instance]);

// changes to GetNewNode method - replace lines 81-82 with

lines 134-135

134 NodePtr node := pool[me][which[me]][marker[me]]; // get a safe node from the

active pool

135 node→ condition := UNSAFE; // mark it as unsafe

// changes to SelectNextNode method - insert lines 136-137 after

line 94

136 hp[me][2] := hel pee; // declare reference to the helpee’s node as a hazard

pointer

137 if (announce[snapshot[me]→ number] 6= hel pee) then return mine; // request already

fulfilled

// changes to AppendNextNode method - insert line 138 after line 105

138 hp[me][2] := successor; // declare reference to the successor node as a

hazard pointer

// changes to RetireNode method - insert lines 139-141 before line 113

139 node→ owner := me; // claim the ownership of the node

140 pool[me][which[me]][marker[me]] := node; // replace in case reclaiming the

predecessor node

141 marker[me] := marker[me]+1; // advance the pointer for the safe nodes

Managing list head: Algorithm 4 shows the pseudocode for accessing and manipulating list

head. The method READHEAD reads the pointer to the current head of the list and stores it in

its private variable (line 38). The method TESTHEAD checks whether the head of the list is still

the same since it was declared to be a hazard pointer (lines 41-42). The method ADVANCEHEAD

advances the head of the list to its successor (line 45).

32

Algorithm 11: Cleanup algorithm.

// used to identify safe nodes in the passive pool; executing the

method once corresponds to one epoch

142 CLEANUP()
143 begin
144 integer other := 3−which[me];
145 foreach i ∈ [1,3n] do // mark the condition of all the nodes in the

passive pool as unknown

146 pool[me][other][i]→ condition := UNKNOWN;

147 foreach i ∈ [1,n], j ∈ [1,2] do // scan all the hazard pointers

148 NodePtr node := hp[i][j];
149 if (node→ condition = UNKNOWN) then // node is in a passive pool

150 if (node→ owner = me) then // I own the node

151 if (node→ condition = UNKNOWN) then // node must be in my

passive pool

152 node→ condition := UNSAFE; // mark the node as unsafe

153 let S denote the subset of all nodes in the passive pool whose condition is set to
UNKNOWN;

154 collect all nodes in S toward the end of the passive pool using a method similar to the
partition procedure used in quick sort, which has linear running time, and also change
their condition to SAFE;

// start a new epoch

155 marker[me] := index of the first safe node in the passive pool;
156 which[me] := 3−which[me]; // switch the designations of the pools

4.2.2 Achieving Deadlock-Freedom

Entering critical section: Whenever a process generates a critical section request, it obtains a

new node and initializes it appropriately (lines 83-89). Specifically, all flags in the session state are

cleared, the number of processes in the session is set to one, and the address of the previous and

next nodes are set to null. The process then repeatedly performs the following steps until it is able

to enter its critical section (lines 50-70 in ENTER method):

(1) It locates the current head of the linked list associated with the GME object (line 51).

33

(2) If the head node (of the list) matches its own node (may happen because of helping de-

scribed in Section 4.2.3), it retires its predecessor node (line 54) and enters its critical section

(line 55). Otherwise, if (i) the session is compatible with its own request, and (ii) the session

is open (lines 56-57), it attempts to join the session by incrementing the session size using

an FAA instruction (line 58). It then ascertains that the session is still in open state (line 59).

If so, it retires its own node (line 60) and enters its critical section (line 61). If not, it aborts

the attempt, decrements the session size using an FAA instruction (line 63) and attempts to

adjourn the session if possible (line 64). Finally, if the session is not compatible with its own

request, it sets the CONFLICT flag in the session state (line 66) and attempts to adjourn the

session if applicable (line 67).

(3) If it is unable to join the session in the previous step for any reason (e.g., the session was not

compatible with its own request or was not open or was closed before it could join), it busy

waits for the session state to change to adjourned (lines 68-69).

(4) If the head of the list has not yet moved, then it attempts to establish a new session by

appending a new node to the list (line 70).

(5) To append a new node to the list (lines 102-109), it first obtains a node to be used for ap-

pending (for now assume its own node) (line 103) and attempts to set the next pointer of the

current head to that node using a CAS instruction (line 104). Note that, irrespective of the

outcome (of the CAS instruction), a new node is guaranteed to be appended to the list. It then

sets the previous pointer and the sequence number of the newly appended node (line 107ap-

pendnode:counter). Finally, it attempts to advance the head of the list to the newly appended

node using a CAS instruction (line 109). Figure 4.2 shows a snapshot of this process in

execution.

The following lemmas characterize the working of the entry section:

34

Figure 4.2: Snapshot of a process in execution. Initially, head points to a dummy node. P1 enters
with session request x. Since there are no other processes in the system, P1 establishes its session
in the following sequence of events: it atomically switches the next pointer of the dummny node
to point to its node, sets the previous pointer to point to the dummy node, updates the sequence
number field in its node (1 + dummy node’s number), atomically switches the head pointer to point
to its node, and finally, retires the dummy node. Note: For brevity, the node structure only shows
the following fields: session, state, size (Sz), sequence number (Sn), prev, and next pointers

Lemma 3. A process starts executing its critical section as a follower only if the session it joins is

compatible with its request and the session is still open after it incremented the session size.

Proof. After incrementing the session size, a process joins the session (and starts executing its

critical section) only after ascertaining that the session is still open.

Lemma 4. No new node can be appended to a list until the session associated with the current

head of the list has adjourned.

Proof. Only a process that is unable to join a session tries to append a new node to the list, but

only after it has detected that the session has adjourned.

35

Leaving critical section: We say that a process enters its critical section as a leader if its node

is used to establish a new session. Otherwise, we say that it enters as a follower. On leaving the

critical section, a process performs the following steps (lines 74-78 in EXIT method):

(1) If it owns the head node, then it sets the LEADERLESS flag in the session state.

(2) It then decrements the session size using an FAA instruction (line 77).

(3) It finally attempts to adjourn the session if applicable (line 78).

Lemma 5. If a process has successfully joined a session, then the session cannot adjourn until

after it starts executing its exit section.

Proof. If a process enters its critical section as a leader, then the session size is incremented even

before its node is appended to the list. If a process enters its critical section as a follower, then,

from Lemma 3, the session was open after the process incrementing the session size.

Clearly, when the session closes, the value of the session size is greater than or equal to the

number of processes in the session that are executing their critical sections. And, no process sets

the vacant flag in the session state until the session size reaches zero.

The algorithm is not starvation free since there is no guarantee that a session compatible with

the request of the process is ever established.

4.2.3 Achieving Starvation-Freedom

To achieve starvation-freedom, when selecting a node to append to the list, we use the helping

mechanism used in many wait-free algorithms. This requires making changes to GETNEWNODE,

SELECTNEXTNODE, APPENDNEXTNODE and RETIRENODE methods.

After obtaining a new node and initializing it (lines 81-89 in GETNEWNODE method), the

process announces its request to other processes by storing the node’s address in a shared array,

which has one entry for each process, denoted by announce (line 90).

36

When selecting a node to establish a new session (SELECTNEXTNODE method), instead of

always choosing its own node (line 93), it selects another process to help and chooses its node if

the helpee process has an outstanding request (line 95) for the same GME object (line 96) and the

node has not been retired yet (line 97).

We use a simple round-robin scheme to determine which process to help by storing a sequence

number in every node. Every time a new node is appended to the list (lines 102-109 in APPEND-

NEXTNODE), the sequence number of the (appended) node is set to one more than that of its

predecessor using modulo n arithmetic (line 108).

Finally, in RETIRENODE, the process also revokes its announcement by clearing its entry in

announce array (line 112).

Lemma 6. At the time a node is appended to the list, the request associated with the node is (a) for

the GME object that owns the list and (b) still outstanding.

Lemma 7. After a process has announced its request, at most n+1 new sessions can be established

until its request is fulfilled.

Proof. Every time a new node is appended to the list and its head pointer updated, the sequence

number in the new head node of the list is incremented by one using module n arithmetic. Let the

sequence number of the head node when a process, say pi with i ∈ [1 . . .n], announces its request

be x. Among the next n values, given by {(x+1) mod n+1}, {(x+2) mod n+1}, . . ., {(x+n)

mod n+ 1}, at least one value matches i. Clearly, when the sequence number of the head node

reaches i, every process that tries to append a new node to the list chooses the node for pi as the

one to append unless it is already retired.

Figure 4.3 shows a snapshot of the helping mechanism in execution. The next step for P3 is to

atomically switch pointers to P2’s node and update the sequence number.

Note that the algorithm is still space-inefficient since a new node is allocated for every request.

37

Figure 4.3: Snapshot of a process in execution during helping. Announce array is shown in top
right corner. P1, P2, and P3 have announced their nodes to other processes. Once P1 adjourns the
session, P2 and P3 compete to establish their session. If P2 gets delayed, P3 checks if it should help
P2. Note: For brevity, the node structure only shows the following fields: session, state, size (Sz),
sequence number (Sn), prev, and next pointers

4.2.4 Correctness Proof

In this section, unless explicity mentioned, we focus on a single GME object. Our correctness

proof easily carries over to multiple GME objects. We first prove the group mutual exclusion

property.

Theorem 1 (group mutual exclusion). The GME algorithm satisfies the group mutual exclusion

property.

Proof. Lemma 3 implies that only those processes whose request is compatible with the session

can join the session and execute their critical sections within the session. Lemma 5 implies that,

as long as a process is executing its critical section within a session, the session cannot adjourn.

38

Finally, Lemma 4 implies that no new session can be established until the current session has

adjourned.

We next prove the bounded exit property.

Theorem 2 (bounded exit). The GME algorithm satisfies the bounded exit property.

Proof. The body of exit section (EXIT method) includes up to one invocation of READHEAD,

SETGUARDFLAG and SETVACANTFLAG methods. Only the second method contains a loop;

Lemma 1 implies that the loop is only executed O(1) times.

We now prove the concurrent entering property. To that end, we start by establishing some

properties of our GME algorithm.

Lemma 8. An open session can close only if the system contains a conflicting request.

Proof. For a session to close, CONFLICT flag in the session state must be set. The flag can only be

set by a process whose request conflicts with the current session.

As part of joining a session as a follower, a process first increments the session size and then

rechecks if the session is still open. If not, it decrements the session size immediately without exe-

cuting its critical section. We refer to such an increment as spurious. Note that spurious increments

may prevent a session from moving to adjourned state.

Lemma 9. A process spuriously increments the size of a session at most once.

Proof. After performing a spurious increment followed by a matching decrement, a process busy

waits until the session has adjourned.

Lemma 10. A process spuriously increments the size of a session only if some other process in the

system has a request that conflicts with its own request.

39

Proof. Note that if the increment of session size turns out to be spurious then it implies that the

session closed after the increment step but before the decrement step. Lemma 8 implies that the

system has a conflicting request at the point the session closed.

We consider an iteration of a while-do loop to start just after the boolean condition is evaluated

and end just after the boolean condition is evaluated next or the loop is quit, whichever case applies.

Lemma 11. Consider an execution of one iteration of the outer while-do loop at lines 50-70 in

the entry section. At the end of the iteration, either the process joins the current session or a new

session is established.

We say that a system state is homogeneous if no two requests, current or future, are for different

sessions. Note that homogeneity is a stable property; once the system enters a homogeneous state,

it stays in a homogeneous state.

Lemma 12. Once the system reaches a homogeneous state, at most one new session can be estab-

lished thereafter.

Lemma 13. Assume that the system is in a homogeneous state when a process starts executing

an iteration of the outer while-do loop at lines 50-70. Then the process executes the body of the

while-do loop at most twice.

Proof. Follows from Lemma 6, Lemma 11, and Lemma 12.

For the next lemma, we first define some notation. Given a node U , let s(U) denote the session

hosted by U . Also, given a request ρ , let s(ρ) denote the session that ρ wants to join.

Lemma 14. Assume that the system is in a homogeneous state at the beginning of an iteration of

the inner while-do loop at line 68. Then the process executes the body of the while-do loop at most

once.

40

Proof. Let p denote the process executing the loop mentioned in the lemma statement, t0 the time

at which it starts executing the current iteration and ρ the outstanding request of p at time t0. Also,

let H denote the head of the list when p starts executing the iteration, and U the head of the list

read by p using the READHEAD method most recently before time t0. Note that, by assumption,

the system is in a homogeneous state at time t0, which, in turn, implies that there is no outstanding

request at time t0 that conflicts with ρ . There are two cases to consider:

Case 1 (U 6= H): This implies that U is an old head node of the list and s(U) is already adjourned

at time t0.

Case 2 (U = H): We claim that s(H) 6= s(ρ). Otherwise, s(H) is already closed at time t0. Lemma 8

implies that there exists an outstanding request σ at time t0 such that s(σ) 6= s(H). This is

turn implies that ρ and σ are both outstanding requests at time t0 with s(ρ) 6= s(σ)—a con-

tradiction. Thus, for the rest of this case, assume that s(H) 6= s(ρ).

Now, let q denote the last process to leave s(H); q exists because there are no current or

future requests for s(H) at time t0. Note that both p and q invoke the SETVACANTFLAG

method—p after setting the CONFLICT flag in the state field of H and q after decrementing

the size field of H. Let r ∈ {p,q} denote the process that invoked the method later. Note

that, when r invokes the SETVACANTFLAG method, the following must hold: (a) both the

LEADERLESS and CONFLICT flags are already set in the state field of H, and (b) the size field

of H is zero and stays zero thereafter (i.e., it does not undergo any spurious increments). The

latter holds because, otherwise, it would imply that exists a pending request σ at time t0 such

that s(σ) = s(H) 6= s(ρ). In other words, ρ and σ are both outstanding requests at time t0

with s(ρ) 6= s(σ)—a contradiction. Clearly, when the SETVACANTFLAG method invoked

by r returns, the session hosted by H is guaranteed to be adjourned.

It now remains to argue that the method returns before time t0. If r = p, then it follows

trivially from the code. If r = q, then, by definition, the system cannot be in homogeneous

state until q has finished executing its exit section.

41

In both cases, s(U) is guaranteed to be in adjourned state at time t0 and thus p is guaranteed to quit

the loop after completing the current iteration.

We are now ready to prove the concurrent entering property.

Theorem 3 (concurrent entering). The GME algorithm satisfies the concurrent entering property.

Proof. Lemma 1 and Lemma 14 imply that, once the system is in a homogeneous state, a process

finishes executing an iteration of the outer while-do loop of its entry section within a bounded

number of its own steps. The property then follows from Lemma 13.

For the lockout freedom property, we need the following additional lemmas.

Lemma 15. If the system contains a conflicting request while a session is in progress, then the

session eventually closes.

Proof. All processes with a conflicting request eventually invoke SETGUARDFLAG method to set

CONFLICT flag in the session state, which terminates only after the flag has been set. Further,

when the leader of the session leaves its critical section, it invokes SETGUARDFLAG method to set

LEADERLESS flag in the session state, which terminates only after the flag has been set.

Lemma 16. Once a session is closed, its size can be incremented spuriously at most n times.

Proof. Each process is responsible for at most one spurious increment to the session size.

Lemma 17. Once a session is closed, eventually the session size becomes zero and stays zero

thereafter.

Proof. After a session closes, no new process can join the session. Every process that is in the

session at the point the session closes eventually leaves the session. The result then follows from

Lemma 16.

Lemma 18. A closed session is eventually adjourned.

42

Proof. Whenever a process either sets one of the guard flags in the session state or decrements the

session size, it attempts to set the vacant flag afterward. The result then follows from Lemmas 1-

17.

Lemma 19. Once a session is adjourned, a new session is eventually established.

Proof. A session closes (and hence adjourns) only if there is a conflicting request in the system.

Clearly, this implies that, after a session is adjourned, at least one process in the system tries to

append a new node to the list (and establish a new session).

Finally, we have

Theorem 4 (lockout freedom). The GME algorithm satisfies the lockout freedom property.

Proof. As long as a process has an outstanding request, Lemma 15, Lemma 18, and Lemma 19

imply that eventually either the process is able to join the session or the current session is adjourned

and a new session is established. The lockout freedom then follows from Lemma 7.

4.2.5 Complexity Analysis

In this section, as in the previous section, unless explicity mentioned, we focus on a single GME

object. Our complexity analysis easily carries over to multiple GME objects.

Theorem 5 (worst case context switch complexity). The context switch complexity of a passage π

is at most min{c̄(π),n}+1 in the worst case.

Proof. Lemma 7 implies that at most n+ 1 new sessions can be established after a process has

announced its request and before it is able to enter its critical section. Moreover, if a new session

is established while a process is waiting to enter its critical section, then, clearly, the leader of that

session has a request whose passage overlaps with that of the given process.

The main result in [27] implies that

43

Theorem 6 (amortized case context switch complexity). The context switch complexity of a pas-

sage π is at most ċ(π)+1 in the amortized case.

Lemma 20. Let s denotes the number of sessions that overlap with the entry section of a process.

Then the process performs only O(s) remote references in its entry section.

Proof. Lemma 11 implies that a process performs at most s iterations of the outer while-do loop

at lines 50-70 in its entry section. In every iteration, a process performs at most O(1) instructions

outside of the inner while-do loop at lines 68-69. While spinning in the inner-while loop, it reads

the contents of the session state (of the node pointed to by the head pointer) repeatedly. The session

state consists of four flags which, once set, are never reset (assuming no memory reclamation).

Thus reading the session state repeatedly in the loop is also responsible for only O(1) remote

references per list node.

Lemma 21. A process performs only O(1) remote references in its exit section.

Proof. The only loop in the exit section is in SETGUARDFLAG method, which is invoked only

once. The result then follows from Lemma 1.

Theorem 7 (RMR complexity). The RMR complexity of entry and exit sections of a passage π is

O(min{c̄(π),n}) in the worst-case and O(ċ(π)) in the amortized case.

Proof. The number of sessions that overlap with the entry section of a process is upper-bounded

by one plus the context-switch complexity of the corresponding passage. The result then follows

from Theorem 5, Theorem 6, Lemma 20, and Lemma 21.

Theorem 8 (concurrent entering step complexity). The maximum number of steps a process has

to execute in its entry and exit sections provided all current and future requests are for the same

session is O(1).

44

Proof. Assume that the system is in a homogeneous state. We first analyze the entry section of

the process. Lemma 14 implies that, during one iteration of the outer while-do loop, the process

executes only O(1) iterations of the inner while-do loop. Further, Lemma 13 implies that, the

process executes only O(1) iterations of the outer while-do loop. Thus, the process executes only

O(1) steps in its entry section after the system has entered a homogeneous state. Clearly, a process

executes only O(1) in its exit section.

4.3 Achieving Space Efficiency

To achieve space efficiency, we describe a way to reuse/recycle nodes in a safe manner while

adding only O(1) steps to each passage.

Consider a node that is used to establish a new session. Note that the session may stay “active”

long after the owner of the node (also the leader of the session) has left its critical section. To

address this issue, the leader of a session, on leaving its critical section, relinquishes the ownership

of its node and instead claims the ownership of its predecessor node. This is similar to the approach

used in the well-known queue-based mutual exclusion algorithm presented in [14, 49]. On the other

hand, if a process joins a session as a follower, it retains the ownership of its node. In both cases,

the node is considered to be retired and is not used to establish a new session.

Claiming the ownership of the predecessor node: Claiming the ownership of the predecessor

node is relatively straightforward in [14, 49] because, unlike in our algorithm, only one process

is holding a reference to the predecessor node when it is reclaimed. In our algorithm, multiple

processes may be holding a reference to the predecessor node because of the helping mechanism

used to achieve starvation-freedom. Note that a node may be appended to the list by any process

in the system and not necessarily by its owner.

Note that, when a node is appended to the list, we store a pointer at the node to its predecessor.

When the owner of the appended node (also the leader of the session associated with the node)

45

leaves its critical section, it can use this pointer to access the predecessor node and claim it as its

own node.

Reusing a retired node: To determine when it is safe to reuse a node, we use a variant of the

well known memory reclamation technique based on hazard pointers first presented in [52]. The

technique works as follows. Each process maintains information about the set of objects it is

dereferencing currently or will dereference in the future, and hence it is “hazardous” to reclaim

their memory. A process can reuse or recycle an object only if no process has declared it as a

hazard pointer. To declare a hazard pointer, a process performs the following sequence of steps

repeatedly until it succeeds: it first reads the address of the node it wishes to dereference, it then

writes the address to a shared location (visible to other processes) and finally ascertains that the

node still needs to be dereferenced. If the validation succeeds in the last step, then it implies that

the address of the node has been successfully declared as a hazard pointer.

The above algorithm increases the step complexity of an operation by O(1) in the amortized

case but O(n) in the worst-case (assuming that each process holds only O(1) hazard pointers). One

disadvantage of the algorithm is that, when used to manage memory in a concurrent algorithm

with wait-free operations, it weakens the progress guarantee of an operation from wait-freedom to

lock-freedom. Aghazadeh et al. improve upon the above memory reclamation algorithm in two

ways in [4]. First, their algorithm increases the step complexity of an operation by only O(1) in

the worst-case. Second, it does not degrade the progress guarantee of the underlying concurrent

algorithm; wait-free operations remain wait-free.

In our case, the mechanism used in the previous section to achieve starvation-freedom is not

impacted by the memory reclamation algorithm based on hazard pointers. Thus we only focus on

the lock-free version of Aghazadeh et al.’s algorithm that guarantees the first property only, which

works as follows. Each process maintains a pool of Θ(n) objects; the ownership of an object is

fixed and does not change at run time. To identify which objects in its pool can be reused, a process

46

scans the hazard pointers of processes in a lazy manner; specifically, during each operation, it scans

the hazard pointer(s) of only one process. An object can be reused if the following two conditions

hold: (a) it was retired before the last n operations and (b) no process was found to hold a reference

to it in its list of hazard pointers during the last n operations.

Note that Aghazadeh et al.’s algorithm cannot be directly used to manage memory of nodes

in our case because, in our GME algorithm, the ownership of a node may change over time, and

some nodes, namely the head nodes of lists, are not owned by any process but by their respective

objects. We adapt the lock-free version of their algorithm to work in our case, while adding only

O(1) cost to the complexity of each passage, as follows.

Our lazy memory reclamation approach: Algorithm 10 shows the changes/additions we made

to the pseudocode in Algorithms 2-8 to reclaim memory of retired nodes and, thus, achieve space

efficiency.

We say that a retired node has become safe if no process was found to hold a reference to it

as a hazard pointer (and thus can be reused to establish a new session); otherwise, we say that it

is unsafe. A node now contains an additional field, namely condition, to indicate the status of the

node with respect to memory reclamation—SAFE, UNSAFE or UNKNOWN (line 114).

To enable memory reclamation, each process maintains a small number of (specifically, two)

hazard pointers in an array with one entry for each process, denoted by hp (line 116). Hazard point-

ers of a process contain the addresses of the following nodes associated with its current request:

(i) the last known head of the list (line 132), and (ii) its successor—potential (line 136) or actual

(line 138). Each process also maintains the following private variables: (a) two disjoint pools of

nodes, each consisting of 3n nodes (line 118), (b) which of the two pools is active, i.e., currently

used to service requests (line 119), and (c) the index of the first safe node in the active pool (all

nodes that are safe to resue are guaranteed to be stored toward the end in the pool) (line 120).

47

The method READHEAD now works as follows: it repeatedly reads the pointer to the current

head of the list, declares it as a hazard pointer and then validates the reference, until the validation

succeeds (lines 130-133).

The method SELECTNEXTNODE now includes statements to declare the reference to the helpee

node as a hazard pointer, followed by its validation lines 136-137.

The method APPENDNEXTNODE now includes a statement to declare the reference to the

successor node as a hazard pointer line 138, which is validated at line 106.

The execution of a process is divided into epochs. Each epoch consists of exactly n passages.

During an epoch, one of the pools is designated as active, while the other is designated as passive.

Intuitively, during an epoch, the active pool is used to service critical section requests (line 134),

whereas the passive pool is processed incrementally (in lazy manner) to identify at least n safe

nodes to service requests in the next epoch (lines 144-156). The designation is switched at begin-

ning of each epoch. To identify the subset of nodes in its passive pool that are reusable, a process

first sets the condition field of all the nodes in the passive pool to UNKNOWN (lines 144-146). It

then scans the hazard pointers of all processes (lines 147-148) and changes the condition field of

any node whose condition field is currently set to UNKNOWN, that is owned by it and reference to

which has been declared as a hazard pointer to UNSAFE (lines 149-152). It next collects all nodes

in the passive pool whose condition field is still set to UNKNOWN towards the end of the pool and

also changes their condition field to SAFE (lines 153-154). Finally, it switches the designation of

the two pools (lines 155-156).

To complete the memory reclamation algorithm, we make changes to two more methods. In

the GETNEWNODE method, a node is obtained from the active pool and its condition field is

set to UNSAFE (lines 81-82). Finally, in the RETIRENODE method, when a process releases the

ownership of a node and acquires the ownership of another node (the predecessor of the current

head) (line 139), it replaces the former node with the latter node in its active pool.

Our memory reclamation algorithm satisfies the following properties. First, a retired node is

deemed to be safe to reuse only after none of the processes has declared it as a hazard pointer after

48

the node was retired. Second, a node belongs to at most one pool. Third, the condition of a node

is set to UNKNOWN only if the node belongs to a passive pool. Fourth, if the node belongs to a pool,

then its current owner information is available in the node’s owner field.

The first property helps to guarantee that, once a process has validated a reference after declar-

ing it as a hazard pointer, the node associated with the reference cannot be reused as long as it

is declared to be hazard pointer and, thus, the starvation-free GME algorithm does not interfere

with the memory reclamation algorithm. The last three properties help to guarantee that a process

modifies the condition field of a node at line 152 only if the node belongs to its own passive pool.

The relevant section of the pseudocode is from lines 149-152. Consider a process p executing the

CLEANUP method as part of some epoch. The first if-statement checks that the condition field of

the node is set to UNKNOWN. This implies that the node is in the passive pool of some process, say

q. Note that q may be different from p. The second if-statement checks that the owner field of the

node is set to p. But both if-statements may also evaluate to true if the node has migrated from

the passive pool of q to the active pool of p since the first if-statement was evaluated (recall that

the CLEANUP method is executed incrementally). In this case, however, the condition field of the

node is guaranteed to be set to UNSAFE because the node will stay in the active pool until the end

of the epoch. Thus, the third if-statement ensures that the node is indeed in the passive pool of p.

Step complexity analysis: Note that the CLEANUP method can be executed in O(n) steps be-

cause a pool contains 3n nodes and each process only holds two hazard pointers. By setting the

size of each pool to 3n, we can ascertain that, by the end of an epoch, a process is able to identify

at least n reusable nodes in its passive pool. Clearly, a passive pool can be processed in an incre-

mental manner such that only O(1) steps are added to each passage of a process contained in its

epoch.

The only change to a method that may increase the step complexity (asymptotically) is the

one made to the READHEAD method since it now contains a loop; all other changes only add

49

O(1) steps to their respective methods. We first bound the total number of times the loop in the

READHEAD method is executed over all invocations in the entry section of a process.

The following lemma limits the number of times the loop in READHEAD method is executed:

Lemma 22. The number of times the repeat-until loop in READHEAD method (lines 130-133) is

executed is bounded by one plus the number of nodes appended to the list during the loop execution.

Proof. A new iteration of the repeat-until loop is executed only if the process finds that the pointer

to the head node of the list has changed.

Lemma 23. Let s denote the total number of sessions that overlap with the entry section of a

process. Further, let `i denote the number of iterations of the repeat-until loop at lines 130-133

executed by a process in the ith invocation of the READHEAD method in its entry section. Then,

we have (
∑

i
`i

)
≤ 2s

Proof. The result follows from Lemma 11 and Lemma 22.

Lemma 24. In any invocation of the READHEAD method at line 73 in the exit section of a process,

the repeat-until loop at lines 130-133 is executed only once.

Proof. Note that the head of the list cannot advance until after all processes that joined the session

have also left the session.

All lemma and theorem statements in Section 4.2.4 and Section 4.2.5 still hold. The only

proof that needs to be modified is for Lemma 20; it particular, it needs to incorporate the result of

Lemma 23 (but the statement still holds).

Space complexity analysis: Finally, we analyze the space complexity of our GME algorithm

considering that the system may contain multiple GME objects and a process may hold locks on

multiple GME objects at the same time. Note that our GME algorithm still works without any

modification even if a process needs to hold lock on multiple GME objects at the same time.

50

Theorem 9 (multi-object space complexity). The space complexity of our GME algorithm is

O(m+ n2 + n`) space, where n denotes the number of processes, m denotes the number of GME

objects and ` denotes the maximum number of locks a process needs to hold at the same time.

Proof. Our algorithm uses only O(m + n2) space for managing m GME objects, where O(n2)

space is shared among all m GME objects. In addition, each process needs only O(`) space, where

` denotes the maximum number of GME objects (or locks) a process needs to hold at the same

time.

Theorem 10 (bounded space variables). Our GME algorithm only uses bounded space variables.

51

CHAPTER 5

EXPERIMENTAL EVALUATION

In this section, we present our experimental results of evaluating different GME algorithms.

5.1 Different Group Mutual Exclusion Algorithms

We compare the performance of the following implementations of GME algorithms:

(a) the GME algorithm proposed by Bhatt and Huang [7], which is based on f -array data struc-

ture [40], denoted by BH-GME,

(b) the GME algorithm proposed by He et al. [30], which is a generalization of the classical

Lamport’s Bakery algorithm, denoted by GLB-GME, and

(c) the GME algorithm presented in this work, denoted by FS-GME.

We chose GLB-GME and BH-GME for comparison due to the following reasons. First, to

our knowledge, BH-GME has the best RMR complexity among all existing GME algorithms, and

GLB-GME is the most recently proposed GME algorithm. Second, both algorithms satisfy the

First-Come-First-Serve (FCFS) property—relaxed in the case of BH-GME and strict in the case

of GLB-GME. Additionally, BH-GME also satisfies the pulling property. Third, BH-GME uses

load-linked and store-conditional (LL/SC) RMW instructions whereas GLB-GME does not use

any RMW instruction.

To our knowledge, no current implementations of GLB-GME and BH-GME exist (confirmed

with the authors) so we implemented them ourselves. All implementations were written in C/C++.

5.2 Experimental Setup

System used: We conducted our experiments on a dual socket Intel Xeon E5-2690 v3 processor

consisting of 12 2.6 GHz cores per socket with hyper-threading enabled and 64GB RAM. We used

g++ compiler with optimization flags set to -O3.

52

1 4 8 16 32 48

0.2

0.4

0.6

0.8

1
·106

2 sessions

1 4 8 16 32 48

0.2

0.4

0.6

0.8

1
·106

8 sessions

1 4 8 16 32 48

2

4

6

8

·105
16 sessions

1 4 8 16 32 48

2

4

6

8

·105

Number of Threads

32 sessions

1 4 8 16 32 48

2

4

6

8

·105

Number of Threads

48 sessions

1 4 8 16 32 48

2

4

6

8

·105

Number of Threads

64 sessions

Sy
st

em
T

hr
ou

gh
pu

t
FS-GME GLB-GME BH-GME

(a) Uniform session distribution

1 4 8 16 32 48

0.5

1

·106
2 sessions

1 4 8 16 32 48

0.5

1

·106
8 sessions

1 4 8 16 32 48

0.5

1

·106
16 sessions

1 4 8 16 32 48

0.5

1

·106

Number of Threads

32 sessions

1 4 8 16 32 48

0.5

1

·106

Number of Threads

48 sessions

1 4 8 16 32 48

0.5

1

·106

Number of Threads

64 sessions

Sy
st

em
T

hr
ou

gh
pu

t

(b) Non-uniform session distribution

Figure 5.1: Comparison of system throughput of different algorithms. Higher the throughput,
better the performance of the algorithm.

Experimental parameters: To comparatively evaluate different implementations, we consid-

ered the following parameters:

53

1 4 8 16 32 48

0

1

2

3
·109

2 sessions

1 4 8 16 32 48

0

1

2

·109
8 sessions

1 4 8 16 32 48

0

1

2

·109
16 sessions

1 4 8 16 32 48

0

1

2

·109

Number of Threads

32 sessions

1 4 8 16 32 48

0

1

2

·109

Number of Threads

48 sessions

1 4 8 16 32 48

0

1

2

·109

Number of Threads

64 sessions

N
um

be
ro

fL
3

C
ac

he
R

ef
er

en
ce

s
FS-GME GLB-GME BH-GME

(a) Uniform session distribution

1 4 8 16 32 48

0

1

2

3
·1010

2 sessions

1 4 8 16 32 48

0

1

2

3

·1010
8 sessions

1 4 8 16 32 48

0

1

2

3

·1010
16 sessions

1 4 8 16 32 48

0

1

2

3

·1010

Number of Threads

32 sessions

1 4 8 16 32 48

0

1

2

3

·1010

Number of Threads

48 sessions

1 4 8 16 32 48

0

1

2

3

·1010

Number of Threads

64 sessions

N
um

be
ro

fL
3

C
ac

he
R

ef
er

en
ce

s

(b) Non-uniform session distribution

Figure 5.2: Comparison of L3 cache references of different algorithms.

1. Number of Different Sessions: We considered six different values of 2, 8, 16, 32, 48 and 64.

2. Distribution of Sessions: We considered two different session distributions: (a) uniform: all

session types are requested with the same probability. (b) non-uniform: different session types

54

1 4 8 16 32 48
0

2

4

·1011
2 sessions

1 4 8 16 32 48
0

2

4

6

·1011
8 sessions

1 4 8 16 32 48
0

2

4

6

·1011
16 sessions

1 4 8 16 32 48
0

2

4

6

·1011

Number of Threads

32 sessions

1 4 8 16 32 48
0

2

4

6

·1011

Number of Threads

48 sessions

1 4 8 16 32 48
0

2

4

6

·1011

Number of Threads

64 sessions

N
um

be
ro

fB
ra

nc
h

In
st

ru
ct

io
ns

FS-GME GLB-GME BH-GME

(a) Uniform session distribution

1 4 8 16 32 48
0

2

4

6
·1012

2 sessions

1 4 8 16 32 48
0

2

4

6

·1012
8 sessions

1 4 8 16 32 48
0

2

4

6

·1012
16 sessions

1 4 8 16 32 48
0

2

4

6

·1012

Number of Threads

32 sessions

1 4 8 16 32 48
0

2

4

6

·1012

Number of Threads

48 sessions

1 4 8 16 32 48
0

2

4

6

·1012

Number of Threads

64 sessions

N
um

be
ro

fB
ra

nc
h

In
st

ru
ct

io
ns

(b) Non-uniform session distribution

Figure 5.3: Comparison of branch instructions of different algorithms.

are requested with different probabilities. In our experiments, we assumed that two session

types are requested 90% of the time and the remaining 10% of the time (90/10 distribution) [57].

55

1 4 8 16 32 48
0

2

4

6

8

·1010
2 sessions

1 4 8 16 32 48

2

4

6
·1010

8 sessions

1 4 8 16 32 48

2

4

·1010
16 sessions

1 4 8 16 32 48

1

2

3

4
·1010

Number of Threads

32 sessions

1 4 8 16 32 48

1

2

3

4
·1010

Number of Threads

48 sessions

1 4 8 16 32 48

1

2

3

·1010

Number of Threads

64 sessions

N
um

be
ro

fS
to

re
M

ic
ro

-o
pe

ra
tio

ns
FS-GME GLB-GME BH-GME

(a) Uniform session distribution

1 4 8 16 32 48
0

0.5

1

·1012
2 sessions

1 4 8 16 32 48
0

0.5

1
·1012

8 sessions

1 4 8 16 32 48

0.2

0.4

0.6

0.8

1
·1012

16 sessions

1 4 8 16 32 48

2

4

6

8

·1011

Number of Threads

32 sessions

1 4 8 16 32 48

2

4

6

8

·1011

Number of Threads

48 sessions

1 4 8 16 32 48

2

4

6

8

·1011

Number of Threads

64 sessions

N
um

be
ro

fS
to

re
M

ic
ro

-o
pe

ra
tio

ns

(b) Non-uniform session distribution

Figure 5.4: Comparison of store micro-operations of different algorithms.

3. Maximum Degree of Contention: This depends on number of threads that can concurrently

request entry to their critical sections. We varied the number of threads from 1 to 48 in suitable

increments.

56

1 4 8 16 32 48
0

2

4

6

8

·1010
2 sessions

1 4 8 16 32 48

2

4

6
·1010

8 sessions

1 4 8 16 32 48

2

4

·1010
16 sessions

1 4 8 16 32 48

1

2

3

4
·1010

Number of Threads

32 sessions

1 4 8 16 32 48

1

2

3

4
·1010

Number of Threads

48 sessions

1 4 8 16 32 48

1

2

3

·1010

Number of Threads

64 sessions

N
um

be
ro

fd
T

L
B

-s
to

re
In

st
ru

ct
io

ns
FS-GME GLB-GME BH-GME

(a) Uniform session distribution

1 4 8 16 32 48
0

0.5

1

·1012
2 sessions

1 4 8 16 32 48
0

0.5

1
·1012

8 sessions

1 4 8 16 32 48

0.2

0.4

0.6

0.8

1
·1012

16 sessions

1 4 8 16 32 48

2

4

6

8

·1011

Number of Threads

32 sessions

1 4 8 16 32 48

2

4

6

8

·1011

Number of Threads

48 sessions

1 4 8 16 32 48

2

4

6

8
·1011

Number of Threads

64 sessions

N
um

be
ro

fd
T

L
B

-s
to

re
In

st
ru

ct
io

ns

(b) Non-uniform session distribution

Figure 5.5: Comparison of data TLB store instructions of different algorithms.

Testing framework: In each run of the experiment, every thread repeatedly generated requests

for a (single) GME lock. Upon obtaining the lock, in its critical section, each thread executed an

RMW instruction (FAA) on one shared variable and a simple write instruction on a certain number

57

of local variables (chosen randomly between 1 and 100 each time). The non-critical section was

essentially empty.

Run details: For the uniform distribution, each experiment was run for eight seconds and the

results were averaged over ten runs. For the non-uniform distribution, each experiment was run

for two minutes and the results were averaged over five runs. Longer running time was required

to conform to the desired probability distribution. To generate random numbers, we used the

Mersenne Twister pseudo-random number generator. For both experiments, each run had a two

second “warm-up” phase whose numbers were excluded from the calculations to minimize the

effect of initial caching on the computed statistics.

Evaluation metric: We compared the performance of different implementations with respect to

system throughput, which is given by the number of critical section executions completed per unit

time.

5.3 Results

Figure 5.1 depicts the system throughput of the three GME algorithms for the parameter values

discussed above. As the graphs clearly show, FS-GME outperformed the other two GME algo-

rithms in almost all the cases. The difference was really stark at medium and larger thread count

values when the throughput of FS-GME was sometimes as much as 189% (almost three times)

higher than the next best performer. Even though, BH-GME has the lowest (worst-case) RMR

complexity among the three algorithms, it had the worst performance.

To understand the reasons for the differences in the performance, we used Linux performance

analyzing tool perf. Figure 5.2 shows the number of L3 cache references generated by the three

GME algorithms. Also, Figure 5.3 shows the number of branch instructions generated by the three

GME algorithms.

58

Recall that GLB-GME has Ω(n) RMR complexity. In the entry section of GLB-GME, a thread

examines the request of every other thread and busy waits on that request to complete if it con-

flicts with its own and has a higher priority. As the graphs in 5.2 confirm, GLB-GME generates

significantly larger number of L3 cache references than the other two algorithms and, moreover,

the gap grows with the number of threads. Also, note that, as either the number of threads or the

number of different sessions increases, the probability that requests of different threads conflict

also increases. Recall that GLB-GME satisfies the strict FCFS property. Joung proved analytically

in [43] that, as the likelihood of conflicts increases, a GME algorithm that satisfies strict FCFS

property will degenerate to a traditional ME algorithm in which only one thread is able to execute

its critical section at a time.

In the entry section of BH-GME, a thread has to perform many checks before it can enter its

critical section. As the graphs in Figure 5.3 show, the execution history of BH-GME exhibited

higher branching compared to that of FS-GME and GLB-GME. Excessive branching is undesir-

able and may adversely impact the performance of an algorithm significantly because branching

inhibits many of the compiler and hardware optimizations. BH-GME uses the f -array data struc-

ture to implement a global counter and a wait-free queue. f -array has a tree-like structure. When-

ever there is any change to the queue or global counter, that change is propagated from the leaf

node to the root node invalidating cached values of these nodes. Thus, BH-GME also exhibits very

high cache activity which is evident in the graphs for Figure 5.4. This graph shows the number

of store micro-operations across the entire cache hierarchy. Further evidence of this is indicated

in Figure 5.5 which shows the graphs for store operations in the data TLB. Finally, perf-record

and perf-annotate tools also indicated that f -array based queue operations were the bottleneck

and responsible for a large fraction of the execution time (of BH-GME). A more efficient imple-

mentation of a concurrent priority queue may help improve the performance of BH-GME.

For the non-uniform case, we conducted experiments using 80/20 and 70/30 session distribu-

tions as well. The gap between our GME algorithm and the other two GME algorithms narrowed

by 10-15%, but the trend was still the same.

59

We also conducted experiments in which threads were bound to cores using

pthread setaffinity np() function available in sched.h library. We observed that binding

threads to cores had no significant impact on the performance and, thus, we have not included

those results here.

60

CHAPTER 6

GME ALGORITHM FOR DISTRIBUTED SHARED

MEMORY (DSM) MODEL

The GME algorithm for the CC model can be modified to work for the DSM model as well. The

DSM model algorithm is similar to the algorithm for the CC model. However, we have to modify

it so that it is asymptotically optimal in terms of the number of remote memory references that are

generated in the DSM model (which is known to be Ω(n) in the worst case [17]).

6.1 Overview

We show how to modify our GME algorithm for the CC model to achieve the optimal RMR

complexity of O(n) for the DSM model, while maintaining all the other desirable properties.

We present the complete algorithm for the DSM model. However, Algorithm 21 shows the

main changes/additions we made to the pseudocode in Algorithms 2-11 to adapt our GME algo-

rithm for the DSM model.

The main idea is that, instead of busy waiting on session state until the session adjourns, a pro-

cess busy waits on a variable in its local memory (but which is still accessible to other processes).

We use ready[i] to denote the local memory of process pi (line 299). We refer to the node hosting

the session that a process needs to wait on until it is adjourned as the anchor node. In order to

busy wait, a process pi writes the address of the anchor node in ready[i]; pi then spins until some

process clears that address from ready[i] (lines 300-303). A process p j notifies a spinning process

pi that the “relevant” session has adjourned (by clearing ready[i]) under the following conditions:

(1) if p j is the last process to leave the session provided it is also responsible for adjourning the

session (line 311), (2) if p j is trying to establish the next session and pi is the leader of the newly

established session (line 312), and (3) if p j is the leader of the immediate next session (line 310).

We also say that p j releases pi. We refer to the node hosting the session that was most recently

61

Algorithm 12: Data types and variables used.

// Node of a list

157 struct Node {
integer session; // session associated with the node

integer instance; // instance identifier of the GME object

integer number; // the next process to be helped

{bool,bool,bool,bool} state; // four flags representing state

integer size; // number of processes currently in the session

NodePtr prev, next; // address of the previous and next nodes

integer owner; // the last process to own the node

158 bool condition; // a boolean flag to indicate whether the node is safe

or unsafe

};

shared variables
159 head: array [1 . . .m] of NodePtr; // to store references to head nodes of

lists

160 announce: array [1 . . .n] of NodePtr, initially [null,. . .,null]; // to announce CS

requests

161 hp: array [1 . . .n][1. . .2] of NodePtr; // to store hazard pointers

private variables
162 snapshot: array [1 . . .n] of NodePtr; // to store snapshots of the head nodes

// snapshot[i] is a private variable of process pi
163 pool: array [1 . . .n][1. . .2][1. . .3n] of NodePtr; // to store pools of nodes

164 which: array [1 . . .n] of integer; // to indicate which of the two pools is

active

165 marker array [1 . . .n] of integer; // pointer to the first safe node in the

active pool

adjourned in the above three conditions as the consumed node. Finally, to ensure that only relevant

processes are notified, a process p j clears the local memory of a spinning process pi using a CAS

instruction, which succeeds only if the address of the anchor node in ready[i] matches the address

of the consumed node (line 306).

Note that a process invokes the RELEASEALL method at most two times during its passage.

Moreover, a process invokes the RELEASE method (directly) only when a new session is estab-

lished. Thus the RMR complexity of a passage increases by only O(n).

62

Algorithm 13: Initialization.
initialization
begin

// initialize shared variables

166 foreach i ∈ [1 . . .m] do
167 head[i] := new Node; // create a new node

168 head[i]→ state := LEADERLESS ; // session has no leader

169 head[i]→ size := 0; // session has no processes

170 head[i]→ next := null; // node has no successor

// all other fields can be initialized arbitrarily

171 foreach i ∈ [1 . . .n] do
172 announce[i] := null ; // process has no outstanding request

// initialize shared variables

173 foreach i ∈ [1 . . .n], j ∈ [1. . .2] do hp[i][j] := null;

// initialize private variables

174 foreach i ∈ [1 . . .n] do
175 foreach j ∈ [1. . .2],k ∈ [1. . .3n] do
176 pool[i][j][k] := new Node; // create a new node

177 pool[i][j][k]→ owner := me; // set the owner as myself

178 which[i] := 1; // designate pool[i][1] as active

179 marker[i] := 1; // designate pool[i][1][1] as the first safe node

6.2 Proof And Complexity Analysis

We show that our GME algorithm for the DSM model satisfies the following two properties. First,

every process that is busy waiting for a session to be adjourned stops spinning eventually once that

happens. Second, if the system is in a homogeneous state, a process executes at most one iteration

of its busy wait loop at line 303. With the two properties, assuming no memory reclamation, the

correctness proof and complexity analysis of the GME algorithm for the CC model also carries

over to the DSM model.

To prove the first property, it suffices to show that, once the current session has adjourned, some

process eventually establishes a new session. This in turn guarantees that the leader of this new

63

Algorithm 14: Functions operating on session state.

// returns true if the session is closed and false otherwise

180 bool ISCLOSED(integer state) { return (state & LEADERLESS) and (state & CONFLICT);
}

// returns true if the session is adjourned and false otherwise

181 bool ISADJOURNED(integer state) { return (state & VACANT); }

// returns true if the node is retired and false otherwise

182 bool ISRETIRED(integer state) { return (state & RETIRED); }

// sets a given guard flag (LEADERLESS or CONFLICT) in the session

state

183 SETGUARDFLAG(NodePtr node, bool flag)
184 begin
185 while true do
186 integer state := node→ state ; // read the current state

187 if (state & flag) then return; // flag already set

188 if CAS(node→ state, state, state | flag) then return; // successfully set the

flag

// sets the vacant flag in the state if possible

189 SETVACANTFLAG(NodePtr node)
190 begin
191 integer state := node→ state; // read the current state

192 if not(ISCLOSED(state)) then return; // session is still open

193 if (node→ size 6= 0) then return; // session still has participants

194 CAS(node→ state, state, state | VACANT);

// mark the node as retired

195 MARKASRETIRED(NodePtr node) { node→ state := LEADERLESS | CONFLICT | VACANT
| RETIRED; }

session eventually stops spinning (if applicable), that, in turn, releases all processes busy waiting

on the previous session to be adjourned. We have,

Lemma 25. Once the current session has adjourned, some process eventually establishes a new

session.

64

Algorithm 15: Functions operating on list head.

// reads the current head pointer of the list

196 READHEAD(integer instance)
197 begin
198 repeat
199 snapshot[me] := head[instance]; // read the current head pointer of the

list

200 hp[me][1] := snapshot[me]; // declare it as a hazard pointer

201 until (snapshot[me] = head[instance]);

// returns true if the head of the list has not moved and false

otherwise

202 bool TESTHEAD(integer instance)
203 begin
204 if (head[instance] 6= snapshot[me]) then return false; // head has advanced

205 else return true;

// advances the head of a list to the given node if the head has not

moved

206 ADVANCEHEAD(integer instance, NodePtr successor)
207 begin
208 CAS(head[instance], snapshot[me], successor);

Proof. Note that, if some process is busy waiting on a session to be adjourned, then the CONFLICT

flag in the session state is guaranteed to be set before that process examines the session state (at

line 301). If the last process to leave the session is not able to adjourn the session, then it implies

that the session size was incremented spuriously. In that case, the session is guaranteed to be

adjourned by the time the SETVACANTFLAG method—invoked by the last process to increment the

session size spuriously—completes. Thus there is at least one process in the system that attempts

to establish a new session.

We now prove the second property. For the next lemma, we use the same notation as used

in the proof of Lemma 14 and the following additional notation. Given a node U whose session

has adjourned, let f(U) denote the first process to join the session (i.e., the leader of the session).

Likewise, let `(U) denote the last process to leave the session. We have,

65

Algorithm 16: Entry section.

// code for entry section

209 ENTER(integer myinstance, integer mysession)
210 begin

// initialize a node and announce the request to other processes

211 GETNEWNODE(myinstance, mysession);
212 NodePtr mynode := announce[me];

213 while true do
214 READHEAD(myinstance); // read the head pointer of the list

215 NodePtr current := snapshot[me]; // find the last node in the list

216 if (announce[me] = current) then
// join the session as a leader and retire the predecessor

node

217 RETIRENODE(mynode→ prev);
218 return;

219 if (current→ session = mysession) then // my request is compatible with

the current session

220 if not(ISCLOSED(current→ state)) then // the session is open

// attempt to join the session as a follower

221 FAA(current→ size, 1); // increment the session size

222 if not(ISCLOSED(current→ state)) then // the session is still

open

// join the session as a follower and retire own node

223 RETIRENODE(mynode);
224 return;
225 else // the session is no longer open

226 FAA(current→ size, -1); // abort the attempt and decrement

the session size

227 SETVACANTFLAG(current); // set VACANT flag if applicable

228 else // my request conflicts with the current session

229 SETGUARDFLAG(current, CONFLICT); // set CONFLICT flag

230 SETVACANTFLAG(current); // set VACANT flag if applicable

231 while not(ISADJOURNED(current→ state)) do ; // do nothing

232 ; // spin

233 if TESTHEAD(myinstance) then APPENDNEXTNODE(myinstance); // establish

a new session

66

Algorithm 17: Exit section.
// code for exit section

234 EXIT(integer myinstance)
235 begin
236 READHEAD(myinstance); // find the head node of the list

237 NodePtr current := snapshot[me];

238 if (current→ owner = me) then // joined the session as a leader

239 SETGUARDFLAG(current, LEADERLESS); // set the LEADERLESS flag

240 FAA(current→ size, -1); // decrement the session size

241 SETVACANTFLAG(current); // set VACANT flag if applicable

Lemma 26. Assume that the system is in a homogeneous state at the beginning of an iteration of

the inner while-do loop at line 303. Then the process executes the body of the while-do loop at

most once.

Proof. Let p denote the process executing the loop mentioned in the lemma statement, t0 the time

at which p starts executing the current iteration of the loop, and ρ the outstanding request of

process p at time t0. Also, let H denote the head of the list at the time when p starts executing the

iteration, and U the head of the list read by p using the READHEAD method most recently (before

time t0). Note that U is also the anchor node of p.

By assumption, the system is in a homogeneous state at time t0, which, in turn, implies that

there is no outstanding request at time t0 that conflicts with ρ . There are two cases to consider:

Case 1 (U = H): In this case, we claim that s(ρ) 6= s(H). Otherwise, if s(ρ) = s(H), then it

would imply that s(H) is already closed at time t0. Lemma 8 implies that there exists an

outstanding request σ at time t0 such that s(σ) 6= s(H). This is turn implies that ρ and σ are

both outstanding requests at time t0 with s(ρ) 6= s(σ)—a contradiction. Thus, for the rest of

this case, assume that s(ρ) 6= s(H).

Since the system is in a homogeneous state at time t0, we can infer that there are no spurious

increments on the size field of H. Otherwise, it would imply that exists a pending request

67

Algorithm 18: Functions operating on a list node.

// get a new node, initialize it and announce it to other processes

242 GETNEWNODE(integer instance, integer session)
243 begin
244 NodePtr node := pool[me][which[me]][marker[me]]; // get a safe node from the

active pool

245 node→ condition := UNSAFE; // mark it as unsafe

246 node→ instance := instance; // initialize node’s instance

247 node→ owner := me; // set the owner as myself

248 node→ session := session; // initialize node’s session

249 node→ size := 1; // initialize session size

250 node→ next := null ; // node has no successor

251 node→ prev := null ; // node has no predecessor

252 node→ state := 0; // session is open with no condition flag set

253 node→ number := 0; // set the sequence number to a sentinel value

254 announce[me] := node; // make the node visible to other processes

// get the next node to be appended to the list

255 NodePtr SELECTNEXTNODE(integer instance)
256 begin
257 NodePtr mine := announce[me]; // my node

258 NodePtr hel pee := announce[snapshot[me]→ number]; // helpee’s node

259 hp[me][2] := hel pee; // declare reference to the helpee’s node as a

hazard pointer

260 if (announce[snapshot[me]→ number] 6= hel pee) then return mine; // request

already fulfilled

// ascertain that the helpee’s node is usable

261 if (hel pee = null) then return mine; // process has no outstanding request

262 if (hel pee→ instance 6= instance) then return mine; // request is for a

different GME object

263 if ISRETIRED(hel pee) then return mine; // node has been retired

264 if not(TESTHEAD(instance)) then return mine; // head has moved

265 return hel pee; // helpee’s node passed all the tests

σ at time t0 such that s(σ) = s(H) 6= s(ρ). In other words, ρ and σ are both outstanding

requests at time t0 with s(ρ) 6= s(σ)—a contradiction.

Now, let q = `(H); q exists because there are no current or future requests for s(H) at time

t0. Note that both p and q invoke the SETVACANTFLAG method on U—p after setting

68

Algorithm 19: More Functions operating on a list node.

// append a new node to the list

266 APPENDNEXTNODE(integer instance)
267 begin
268 NodePtr current := snapshot[me]; // get the last node in the list

269 NodePtr successor := SELECTNEXTNODE(instance); // choose a node to append

270 CAS(current→ next, null, successor); // set the next field of the current

last node

271 NodePtr successor := current→ next ; // read the next field

272 hp[me][2] := successor; // declare reference to the successor node as a

hazard pointer

273 if not(TESTHEAD(instance)) then return; // head has moved

274 successor→ prev := current; // set the previous field of the successor

275 successor→ number := (current→ number+1) mod n+1; // set the sequence

number used in helping

276 ADVANCEHEAD(instance, successor); // advance the head

// retire the node

277 RETIRENODE(NodePtr node)
278 begin
279 announce[me] := null; // help is no longer needed

280 node→ owner := me; // claim the ownership of the node

281 pool[me][which[me]][marker[me]] := node; // replace in case reclaiming the

predecessor node

282 marker[me] := marker[me]+1; // advance the pointer for the safe nodes

283 MARKASRETIRED(node); // mark the node as retired

the CONFLICT flag in the state field of H and q after decrementing the size field of H. Let

r ∈ {p,q} denote the process that invoked the method later. Note that, when r invokes the

SETVACANTFLAG method, the following must hold: (a) both LEADERLESS and CONFLICT

flags are already set in the state field of H, and (b) the size field of of H is zero and stays

zero thereafter. Clearly, when the SETVACANTFLAG method invoked by r returns, s(H) is

guaranteed to be adjourned.

It now remains to argue that ready entry of p is clear at time t0. If r = p, then it follows

trivially from the code. In this case, p itself clears the entry before it starts executing the

69

Algorithm 20: Cleanup algorithm.

// used to identify safe nodes in the passive pool; executing the

method once corresponds to one epoch

284 CLEANUP()
285 begin
286 integer other := 3−which[me];

// mark all nodes in the passive pool as retired and safe

287 foreach i ∈ [1 . . .3n] do
288 MARKASRETIRED(pool[me][other][i]);
289 pool[me][other][i]→ condition := SAFE;

// scan all the hazard pointers

290 foreach i ∈ [1 . . .n], j ∈ [1. . .2] do
291 NodePtr node := hp[i][j];
292 if ISRETIRED(node) then // node is retired

293 if (node→ owner = me) then // I own the node

294 node→ condition := UNSAFE; // mark the node as unsafe

295 collect all safe nodes in the passive pool toward the end of the array using a method
similar to the partition procedure used in quick sort, which has linear running time;
// start a new epoch

296 marker[me] := index of the first safe node in the passive pool;
297 which[me] := 3−which[me]; // switch the designations of the pools

loop. On the other hand, if r = q, then, by definition, the system cannot be in homogeneous

state until q has finished executing its exit section. At the end of its exit section, q releases

all processes with H as their anchor node by clearing their ready entries. This is because, as

mentioned earlier, s(H) is guaranteed to be adjourned when the SETVACANTFLAG method

invoked by q returns.

Case 2 (U 6= H): Let Hp denote the predecessor node of H. There are two subcases to consider:

Case 2.1 (U = Hp): There are possible scenarios:

Case 2.1(a) (s(ρ) = s(H)): The proof for this case is similar to the proof for Case 1

with H replaced by Hp.

70

Algorithm 21: Changes for the DSM Model.

298 additional shared variables
299 ready: array [1 . . .n] of NodePtr; // used for spinning - ready[i] is local to

process pi

// changes to Enter method - replace lines 231-232 with lines 300-303

300 ready[me] := current; // the node hosting the current session

301 if ISADJOURNED(current→ state) then
302 ready[me] := null; // session already adjourned - no need to spin

303 while (ready[me] 6= null) do // spin until the entry contains null pointer

; // do nothing

// notify a specific process to stop spinning

304 RELEASE(integer i, NodePtr node)
305 begin
306 CAS(ready[i], node, null); // signal the process to stop spinning

// notify all processes to stop spinning

307 RELEASEALL(NodePtr node)
308 begin
309 foreach i ∈ [1,n] do RELEASE(i, node);

// changes to the Enter method - insert line 310 just before line 217

310 RELEASEALL(mynode→ prev);

// changes to the Exit method - insert line 311 just after line 241

311 if ISADJOURNED(current→ state) then RELEASEALL(current);

// changes to the AppendNextNode method - insert line 312 just after

line 276

312 RELEASE(successor→ owner, current);

Case 2.1(b) (s(ρ) 6= s(H)): Let q = f(H). Also, let te denote the time when q com-

pletes its entry section. Clearly, te < t0. By design, q releases all processes busy

waiting with Hp as their anchor node before completing its entry section.

Case 2.2 (U 6= Hp): Let Us denote the successor node of U . Note that, in this case, Us is

either Hp or its ancestor. In either case, the session hosted by Us adjourns before time

t0. Let q = f(Us). Also, let te denote the time when q completes its entry section.

71

Clearly, te < t0. By design, q releases all processes busy waiting with Hp as their

anchor node before finishing its entry section.

In all cases, the ready entry of p is guaranteed to be clear at time t0 (and thereafter), and thus p

is guaranteed to quit the loop after completing the current iteration.

Note that, before a process starts busy waiting by spinning on its entry in ready, it would have

already declared the reference to the anchor node as a hazard pointer (and then examined its session

state field). This ensures that the anchor node cannot be reused until the process stops spinning.

Also, before a process releases a spinning process, it (the former) either would have declared the

reference to the consumed node as a hazard pointer or would become its new owner. In either case,

the consumed node cannot be reused until the RELEASE or RELEASEALL method has completed.

Thus the modified GME algorithm also works in the presence of memory reclamation.

72

CHAPTER 7

LOCK-BASED CONCURRENT RED BLACK TREE

In the previous chapters, we described advanced concurrency techniques such as Group Mutual

Exclusion which can be applied to concurrent data structures such as Skip Lists, Unrolled Linked

Lists, etc. In this chapter, we focus our attention on a concurrent algorithm for a balanced binary

search tree data structure, viz., a concurrent red black tree. We first describe the background needed

to understand our work - mainly, the top-down framework which lies at the core of the algorithm.

We then present a lock-based algorithm for a concurrent, strictly-balanced red black tree data

structure that supports search, insert, and delete operations followed by its proof of correctness

and experimental evaluation.

7.1 Top-Down-Framework

7.1.1 Tsay and Li’s Framework

Tsay and Li described a general framework for deriving a wait-free algorithm for a tree-based data

structure from its sequential version provided all operations on the tree work in a top-down manner,

modifying the tree as they move down. The framework is based on the concept of window, which

is basically a small rooted subtree of the tree. When an operation starts, its window is rooted at the

root of the tree. As the operation proceeds, it modifies the portion of the tree within its window, and

then the window slides down. To modify the portion of the tree within its window, the operation

copies the nodes in its window to its local memory, modifies the local copy as appropriate and

then replace the portion of the tree within its window with the one its local memory. We refer

to the actions performed by an operation to move its window down once as a transaction. Also,

as mentioned before, we refer to the framework as the TL-framework. More details about the

framework are available in [64].

73

The TL-framework has some limitations that makes it impractical or inefficient to use: (a) It

assumes the existence of check valid instruction that is not currently implemented in hardware.

(b) A single word is required to store two distinct addresses. (c) It uses a dual node structure for a

tree node: pointer node and data node. The pointer node contains the address of the data node. The

data node in turn contains the addresses of the pointer node of left and right children. As a result,

to visit a tree node, a process has to dereference two addresses. (d) The window of every operation

is initially rooted at the root of the tree. As a result, the root of the tree becomes a single point of

contention. (However, operations can execute concurrently on the tree once their paths diverge.)

In [56], on a wait-free algorithm for a concurrent red-black tree, Natarajan et al. modified the

TL-framework to remove the first two limitations. In this work on a lock-based algorithm for a

concurrent red-black tree, we make further modifications to the framework to remove the last two

limitations to give better performance in practice. Specifically, (i) A tree node now consists of a

single physical node and not two physical nodes (a pointer node and a data node) as in [64, 56]),

thereby making the traversal of the tree faster. (ii) An operation can now start performing window

transactions from the middle of the tree and not necessarily from the root of the tree again as

in [64, 56], thereby reducing contention among operations that work on different regions of the tree.

Both modifications are non-trivial and require careful synchronization among modify operations

to ensure correct behavior.

7.1.2 Tarjan’s Sequential Top-Down Algorithm for Red-Black Tree

Traditional algorithm for maintaining a red-black tree involves a top-down phase (to add or remove

the key) followed by a bottom-up phase (to rebalance the tree). Tarjan presented an algorithm

for maintaining an external red-black tree that involves traversing the tree once in a top-down

manner [63].

In Tarjan’s algorithm, an operation works on a constant size window of the tree at a time such

that some invariant property holds at the root of the window. To avoid confusion, we refer to the

74

root node of a window as the anchor node of the window. For an insert operation, the invariant

property is that the anchor node of the window is black and has a black child. For a delete operation,

the invariant property is that either the anchor node is red or has a red child or has a red grandchild.

Note that an anchor node of an operation’s window is always a node on the access-path induced

by the operation’s key. Also, note that, if the invariant property does not hold at the root of the

tree (which is the starting point of every operation), then a simple recoloring of the root node of

the tree can be used to guarantee that the invariant property holds when the operation starts. To

slide its window down, an operation applies one or more transformations (e.g., recoloring of nodes,

left or right rotation) to the nodes in the window to ensure that the invariant property now holds

at some descendant node of the anchor node along the access path. This allows the window to

move down to this descendant node, which now becomes the new anchor node of the operation’s

window. More details about the algorithm are available in [63].

Note that Tarjan’s top-down algorithm, which is window-based, is a natural fit for Tsay and

Li’s framework, which is also window-based. It can be verified that, in Tarjan’s algorithm, when

a window transaction is applied to a red-black tree at a node that satisfies the operation-specific

invariant property, the resultant tree is also a valid red-black tree. This leads us to observe that it is

not necessary to start executing the Tarjan’s algorithm from the root node of the tree. In fact, we can

start executing the algorithm from any internal node of the tree that satisfies the operation-specific

invariant property.

Consider a red-black tree T . Given a node X in T that satisfies an operation-specific invariant

property, we use i-path(X) to denote the path in T , starting from X , that consists of all the nodes

over which the invariant property is evaluated. Note that i-path(X) contains at most three nodes.

We use p-path(X) to denote the path consisting of the parent nodes of the nodes in i-path(X).

Finally, we use c-path(X) to denote the union of the nodes in i-path(X) and p-path(X). Note

that c-path(X) contains at most four nodes. Further, p-path(X) and c-path(X) have the same

head node, and i-path(X) and c-path(X) have the same tail node. We refer to the head node of

75

A

B C

C E

F G

H I

J K

L M

N O

W

(a)

A

B C

D E

F G

H ′ I

J

L M

M OP

Q K′

W ′

(b)

Figure 7.1: An illustration of a red-black tree. Shaded nodes represent black nodes and unshaded
nodes represent red nodes.

i-path(X), which is same as node X , as an anchor node (because it can act as the root node of a

window). We refer to the head node of p-path(X) as a guardian node (because replacing a window

will involve changing a child pointer at a guardian node). Basically, guardian node is the parent

node of anchor node. Also, note that we do not consider guardian node to be part of the window.

The window technically starts from the anchor node.

As an illustration, consider the red-black tree shown in Figure 7.1. Consider an operation

with the access-path consisting of nodes A, C, H, J and L. If the operation is an insert operation,

then nodes A and H satisfy the invariant property. On the other hand, if the operation is a delete

operation, then nodes A, C, H and J satisfy the invariant property. Assume that the operation is an

insert operation. Now, consider node H, which satisfies the invariant property. Then, i-path(H) =

{H,K}, p-path(H) = {C,H} and c-path(H) = {C,H,K}. For a window rooted at H, H is its

anchor node and C its guardian node.

7.1.3 Optimizations on the Top-Down Framework

We further modify the framework to minimize copying of nodes, decrease interaction with the dy-

namic memory management system, and include a fast-path optimization to boost the performance

of our algorithm. To minimize copying of nodes, we analysed certain cases of Tarjan’s algorithm

wherein we would not need to copy nodes since those nodes do not undergo any structural changes.

76

To minimize calls to new, we are able to reuse external nodes that will be discarded as part of an

insert or delete operation. The fast-path optimization allows us to do a quick traversal down the

tree to find the leaf node, its parent, and its grandparent, and if they satisfy certain conditions, then

we are able to avoid doing a more expensive lookup (wherein we have to check for the invariant

property as we traverse the tree down to the leaf node) to find the starting point of the operation

i.e. the closest internal node that satisfies the invariant property.

7.2 A Lock-Based Algorithm

7.2.1 Overview of the Algorithm

Search Operation: A search operation simply traverses the tree from the root node to a leaf node

along the access-path induces by the target key. On reaching a leaf node, the operation returns true

if the target key matches the key stored at the leaf node; otherwise, it returns false.

Modify Operation: A modify operation consists of multiple phases as explained below:

1) LightSeek: This is the fast-path optimization that is crucial to the design of the algorithm. A

modify operation proceeds by first finding the injection point in the tree by doing a traversal

starting at the root node. We have identified cases in Tarjan’s algorithm wherein it would

suffice to do a quick traversal down to the leaf node (without checking the invariant at each

step) and if the leaf node or its parent satisfy certain conditions, then we can proceed to the

Execution phase directly. In this phase, the operation traverses the tree from the root node

to a leaf node along the access path induced by the operation’s key. At the end of this phase,

the leaf node, its parent, and grandparent are stored in the operation’s CandidateRecord.

This record’s elements are inspected to check for satisfaction of the invariant property. For

an insert operation, if the leaf node is a black leaf node, or for a delete operation, if the

leaf’s parent satisfies the delete invariant, then the HeavySeek phase can be skipped and

77

the operation can proceed directly to the Execution phase. We call these cases the Fast-

Insert case and the Fast-Delete case respectively. Note that the cases are fast because no

rebalancing takes place during the operation. Nodes may only undergo color changes. The

rest of the insert & delete operations are called Slow-Insert & Slow-Delete, respectively.

2) HeavySeek: In this phase, the operation traverses the tree from the root node to a leaf node

along the access path induced by the operation’s key. On the way, it keeps track of the

deepest node in the access-path (i.e., closest to the leaf node) at which the operation-specific

invariant property holds. Let that node be denoted by X . A heavyseek phase, on termination,

returns the address of the leaf node in the access-path along with information about all the

nodes in c-path(X). Each operation is associated with a data record that contains various

items of information about the operation (e.g., its type, its target key, its injection point, and

so on). It is created before the injection phase.

3) Injection: In this phase, the operation attempts to inject itself into the tree by obtaining

ownership of all the nodes in p-path(X) in a top-down manner by acquiring locks on those

nodes. If the CAS instruction in the TTAS lock fails, then it implies that there is another

conflicting operation in progress concurrently. The currently executing operation needs to

wait for the conflicting operation to finish before it can proceed further. Locking nodes in

p-path(X) ensures that that the operation-specific invariant property continues to hold when

the first window transaction is executed. After Injection, we again check to make sure that

the locked nodes have not changed just before they were locked.

4) Execution: In this phase, the operation performs a sequence of window transactions simi-

lar to those in the TL-framework until the window reaches a leaf node, at which point the

operation completes. More details about the execution phase are presented later.

We analyzed Tarjan’s algorithm and classified nodes into 3 categories to help decide which

nodes will undergo structural & color changes that may affect concurrent operations. This helped

78

us reduce the number of nodes that needed to be copied per modify operation instead of copying

all nodes in the window. The types are as follows:

1) Type-1 Nodes: These are access path nodes and have to be locked, marked, and copied during

the execution phase because their pointers may change as part of the rebalancing process.

Only during the Fast-Delete case, we do not copy the root node because it will be deleted

from the tree alongwith the leaf node of the delete operation.

2) Type-2 Nodes: These are children of access path nodes. Their color may change during the

rebalancing process. For a delete operation, they need to be locked, marked, and copied to

ensure the window does not change due to a concurrent operation. The parent of a Type-

2 node is always a Type-1 node. Thus, for an insert operation, these need not be locked,

marked, or copied.

3) Type-3 Nodes: These are nodes whose color field is examined to decide which rebalancing

operation needs to be applied. No changes occur to these types of nodes. The parent of a

Type-3 node is always a Type-1 or Type-2 node.

As explained earlier, in the execution phase, an operation performs repeated window transac-

tions until the window reaches a leaf node, at which point the execution phase terminates and the

operation completes. The execution of a single window transaction by an operation consists of the

following steps (assume that the window is anchored at node x):

4a) Expand-Lock-Mark-And-Copy: In this step, the operation expands its window in a depth-

first manner based on the Tarjan’s algorithm, which, at the beginning, consists of only nodes

in p-path(X). Upon visiting a node, the operation locks the node (if it is not already locked

during injection), marks it by setting the LSB bit of the scm field, and then makes a copy

of the node in its local memory. After this step, all Type-1 nodes in the operation’s window

are guaranteed to be locked & marked. This locking ensures that the window cannot change

any more because no operation can now be injected at any node in the window. The marking

79

ensures that other concurrent operations do not try to inject onto a marked node since it will

be removed from the tree. If the Fast-Delete case applies, then the root node of the window

is not copied or marked. For an insert operation, the leaf node is replaced with 3 new nodes -

an internal node and 2 external nodes. The leaf node is added to the reuse stack so that it can

be reused as one of the 2 external nodes described above for future operations. For a delete

operation, the leaf node that is to be deleted is added to the reuse stack as well.

4b) Transform-And-Acquire: In this step, the operation applies Tarjan’s transformations to

its local window. Let the next window of the operation be anchored at node Y . We use a

slightly larger window than the one used in Tarjan’s algorithm to guarantee that all the nodes

in p-path(Y) are part of the local window. The operation then locks the nodes in p-path(Y).

As explained before, this ensures that that the operation-specific invariant property continues

to hold when the next window transaction is executed.

4c) Replace: In this step, the operation replaces the window in the tree with its local copy. This

step involves updating a child pointer at the guardian node to point to the root node of the

local window. Note that this step slides the window down from its current anchor node to its

next anchor node.

4d) Release: In this step, the operation releases locks on all nodes that it had locked as part of

the window transaction. Thus, all marked nodes in the original window are removed from

the tree. The external node that was removed in the delete operation is added to a stack of

nodes that are reused when allocating new external nodes during an insert operation.

As an illustration, consider the red-black tree shown in Figure 7.1a. Consider the window W

consisting of nodes {H,K}; H is the anchor node of W . Figure 7.1b shows the same red-black tree

in which the window W has been replaced with the window W ′; W ′ consists of nodes {H ′,K′,P,Q}.

Note that nodes H ′ & K′ are copies of nodes H & K, respectively. To replace W with W ′, the pointer

at C, the guardian node of W , is switched from H to H ′.

80

7.2.2 Details of the Algorithm

For convenience, we assume that the tree contains two sentinel keys, denoted by ∞1 and ∞2, such

that both ∞1 and ∞2 are larger than any other key and ∞1 < ∞2. These keys are never removed

from the tree. The topmost node in the tree is a special sentinel node, denoted by R, which is an

internal/routing node and contains the key ∞1. The sentinel node R is never removed from the tree,

and the actual red-black tree is given by the left subtree of R. The right child of R is the node with

the key ∞2.

Algorithm 1: Algorithm for Quick Traversal of Tree (without checking Invariant)

QUICKTRAVERSE(type, key, candidateRecord)
begin

// initialize the variables used in the traversal

1 node := R→ le f t;
2 pNode := R;
3 gpNode := null;

4 while true do
// check if the current node is a leaf node

5 if node→ le f t = null then break;

// keep track of parent & grandparent of

// current node to store in candidateRecord

6 gpNode := pNode;
7 pNode := node;

// visit the next node in the access-path

8 node := key≤ node→key ? node→ le f t : node→right;

// read the node’s timeStamp field, its key, and its timeStamp again

// If timeStamps do not match, then this node will be reused soon

9 initialize the entries of the candidate record with node, pNode, & gpNode accordingly;

Data Structures Used

We use six different types of objects in our algorithm: tree node, segment record, seek record,

candidate record, reuse stack and data record.

81

Algorithm 2: Algorithm to Search for key in tree

Boolean SEARCH(key)
begin

10 QUICKTRAVERSE(SEARCH, key, candidateRecord);
11 return (candidateRecord→ leaf)→key = key;

Algorithm 3: Algorithm for Slow traversal of tree (with checking of invariant)

SLOWTRAVERSE(type, key, seekRecord)
begin

// initialize the variables used in the traversal

12 node := R→ le f t;
13 candidate := node;

14 while true do
// check if the current node is a leaf node

15 if node→ le f t = null then break;

16 if node satisfies the operation-specific invariant property then candidate := node ;

// visit the next node in the access-path

17 node := key≤ node→key ? node→ le f t : node→right;

// initialize the entries of the seek record

18 seekRecord→ leaf := node;
19 initialize seekRecord→segmentRecord with nodes in c-path(candidate);

Algorithm 4: Algorithm to abort operation

ABORT(segmentRecord)
begin

// release the ownership of all the nodes owned in a bottom-up

manner

20 index := segmentRecord.length−2;
21 while index≥ 0 do
22 node := segmentRecord[index]→address;

// release the ownership of the node

23 node.unlock();
24 index := index−1;

82

Algorithm 5: Algorithm to Check presence of key based on operation type

Boolean CHECKTYPEMATCH(type, match)
begin

25 if (type = INSERT) and match then
// key already present in the tree

26 return false;

27 if (type = DELETE) and not(match) then
// key not present in the tree

28 return false;

Algorithm 6: Procedure to check if Fast case applies

Boolean CHECKFASTCASE(type, match)
begin

29 if (type = INSERT) and (candidateRecord→ lea f)→color = BLACK then
// Fast-Insert case applies

30 initialize segmentRecord with nodes in c-path(candidateRecord→ lea f);
31 skipSeek := true;

32 else if (type = DELETE) and checkDeleteInvariant(candidateRecord→ pLea f) =
true then
// Fast-Delete case applies

33 initialize segmentRecord with nodes in c-path(candidateRecord→ lea f);
34 skipSeek := true;

A tree node consists of the following fields: (a) key: the key stored at the node, (b) color:

the color (red or black) of the node, (c) le f t and right: reference to the left and right child node,

respectively, (d) parent: reference to a node’s parent, only used during rebalancing, (e) scm: An

AtomicInteger used to implement the TTAS lock. The LSB bit of this field, if set, indicates that

the node is marked for removal. In the algorithm, we will refer to the mark field as scm.mark,

(f) timeStamp: an integer used to indicate to concurrent operations traversing the same window

that this node will be reused and so, the concurrent operation must not save this node as part of its

seek record. This is checked as part of the fast-path optimization.

83

Algorithm 7: Core Algorithm for Update operations

Boolean MODIFY(type, key)
begin

35 while true do
// Phase 1: LightSeek Phase

36 QUICKTRAVERSE(type, key, candidateRecord);
// find if the target key matches the stored key

37 match := (candidateRecord→ leaf)→key = key;
38 if !CHECKTYPEMATCH(type, match) then
39 return false;

// Check for fast cases

40 CHECKFASTCASE(type, candidateRecord, skipSeek);
41 if !skipSeek then

// Phase 2: HeavySeek Phase

42 SLOWTRAVERSE(type, key, seekRecord);
// find if the target key matches the stored key

43 match := (seekRecord→ leaf)→key = key;
44 if !CHECKTYPEMATCH(type, match) then
45 return false;

46 dataRecord := create a new data record and initialize it;
// Phase 3: Injection Phase

// attempt to inject the operation into the tree

47 INJECT(segmentRecord, dataRecord);
48 if dataRecord→status = INJECTED then

// Phase 4: Execution Phase

// find the current location of the window

49 node := dataRecord→ location;
50 while node 6= null do

// execute one window transaction

51 EXECUTEONE(node, state);
// find the new location of the window

52 node := dataRecord→ location;

53 return dataRecord→outcome;

84

Algorithm 8: Algorithm to Inject Insert/Delete operation in tree

INJECT(segmentRecord, dataRecord)
begin

// try to acquire the ownership of all the nodes in the p-path
54 index := 0;
55 while dataRecord→status = TRYING do

// find the node whose ownership should be acquired next

56 node := segmentRecord[index]→address;
// find the next node in the c-path

57 next := segmentRecord[index+1]→address;
// find the relevant child field of the node; used to verify that

the link from node to next still exists

58 which := segmentRecord[index]→which;
59 child := which = 0 ? node→ le f t : node→right;

// try to acquire the ownership of the node

60 if (child.address 6= next) or state.mark then
// the link from node to next no longer exists or node has been

marked for removal

61 dataRecord→status := ABORTED; break;

// try to own the node

62 node.lock()
63 if index < segmentRecord.length−2 then

// advance to the next node

64 index := index+1;
65 else dataRecord→status := INJECTED ;

66 if dataRecord→status = ABORTED then
// release ownership of all the owned nodes

67 ABORT(segmentRecord);

85

Algorithm 9: Algorithm to Unlock nodes in tree

UNLOCKNODES(guardian, dataRecord)
begin

68 if dataRecord→ type = INSERT then
69 unlock nodes along access path starting with the guardian node;

70 else
71 guardian.unlock();
72 if Fast-Delete case applies then
73 unlock root node & sibling of leaf node if it was locked;

74 else
75 unlock nodes in window starting with wRoot;

Algorithm 10: Algorithm to execute one iteration of the execution phase

EXECUTEONE(guardian, targetKey, dataRecord)
begin

// read the contents of the window root

76 wRoot := guardian→key≤ targetKey ? guardian→ le f t : guardian→right;
77 guardianChild := guardian→key≤ targetKey ? 0 : 1;

// Step 4a: Expand-And-Copy

78 EXPANDANDCOPY(wNode, dataRecord);
// Step 4b: Transform-And-Acquire

79 TRANSFORMANDACQUIRE(wNode, current, dataRecord);

// Step 4c: Replace

// install the new window

80 if guardianChild = 0 then
81 guardian→ le f t := current;

82 else
83 guardian→right := current;

// unlock all locked nodes in the window

84 UNLOCKNODES(node, dataRecord);

86

Algorithm 11: Algorithm to expand, lock, mark, and copy

EXPANDANDCOPY(wNode, dataRecord)
begin

85 wNode := wRoot;
86 while true do

// lock & mark the node

87 wNode.lock();
88 wNode→scm.mark := 1;
89 add a copy of wNode to local memory;

// Unless (dataRecord→ type = DELETE) and (Fast-Delete case

applies)

90 if should expand the window further then
91 wNode := next node to visit;
92 else break ;

Algorithm 12: Algorithm to transform local window as per Tarjan’s algorithm

TRANSFORMANDACQUIRE(wNode, current, dataRecord)
begin

93 apply transformations to the local window as per Tarjan’s algorithm;
94 if dataRecord→ type = DELETE then
95 reuseStack.push(wNode);
96 wNode→ timeStamp++;

97 current := address of the root node of the local window;
98 if not(last transaction) then
99 next := address of the anchor node of the next window;

100 parent := address of the parent node of next;
101 foreach X ∈ p-path(next) do
102 acquire ownership of X with flags in state field set appropriately;

103 else
104 parent := null;
105 dataRecord→outcome := return value of the operation;

106 dataRecord→ location := parent;

87

A segment record contains information about nodes in a c-path. It is an array consisting of four

entries, where each entry is a 3-tuple; the first value of the tuple specifies the address of a node in

c-path, its second value specifies the color of the node at the time of populating the seek record,

and its third value indicates which child of the node (left or right) is the next node in c-path (if it

exists).

A seek record consists of the following fields: (a) leaf: the address of the leaf node at which

the traversal of the tree ended, and (b) segmentrecord: information about all the nodes in a c-path.

A candidate record consists of 3 fields: (a) leaf: the address of the leaf node at which the

traversal of the tree ended, (b) pLea f : parent of the leaf node, (c) gpLea f : grandparent of the leaf

node,

A reuse stack is a per thread stack that stores the leaf node with the target key that is deleted

during each delete operation. Once nodes are stored on this stack, each thread will try to reuse

nodes from this stack instead of making a call to new to allocate an external node during an insert

operation.

A data record consists of the following fields: (a) type: the type of the operation (search,

insert or delete), (b) key: the key associated with the operation, (c) location: the address of the

guardian node of the operation’s current window, and (d) status: indicates whether the operation

has been injected into the tree; it has three possible values: TRYING, INJECTED and ABORTED,

and (e) outcome: the return value of the operation.

Tree Operations

A formal description of our algorithm is given In the pseudocode, we use ‘→’ to refer to a field

of an object (e.g., node→ key, node→ color) and ‘.’ to refer to a subfield of a word/field (e.g.,

scm.mark).

As explained earlier, a search operation simply traverses the tree from the root node to a leaf

node along the access-path induced by the target key. So we mainly focus on a modify operation.

As explained earlier, the execution of a modify operation (lines 35-53) consists of multiple phases.

88

LightSeek Phase: In the lightseek phase (lines 35-34), the operation first invokes QUICKTRA-

VERSE function (line 39). In QUICKTRAVERSE function (lines 1-9), it traverses the tree from the

root node to leaf node along the access-path induced by the target key (lines 4-8). During the

traversal, it keeps track of the parent & grandparent of last node it visited in the access-path. At

the end of the lightseek phase, the operation checks for the Fast-Insert or Fast-Delete case, and

either terminates or advances to the injection phase (lines 37-39) (skipping the heavyseek phase).

In the latter case, it creates a new data record and initializes all its fields (line 46).

HeavySeek Phase: In the heavyseek phase (lines 42-46), the operation first invokes SLOWTRA-

VERSE function (line 42). In SLOWTRAVERSE function (lines 12-19), it travels the tree from the

root node to a leaf node along the access-path induced by the target key (lines 13-17). During

the traversal, it keeps track of the last node it visited in the access-path for which the operation-

specific invariant property evaluated to true (line 16). It also keeps track of the set of nodes that

are involved in satisfying the invariant property (not shown in the pseudocode). At the end of the

heavyseek phase, the operation compares its target key with the key stored in the leaf node of the

access-path and, depending on its type, either terminates (lines 43-45) or advances to the injection

phase. In the latter case, it creates a new data record and initializes all its fields (line 46).

Injection Phase: In the injection phase (line 47), the operation invokes INJECT function (line 47).

In INJECT function (lines 54-67), the operation tries to acquire the ownership of all the nodes in

the p-path of the anchor node found in the heavyseek phase in a top-down manner (lines 61-62).

Prior to obtaining ownership of the node, it verifies that the next link in the path still exists and

the node has not been marked for removal by another operation (line 60). If the verification fails,

then it aborts the injection phase (line 61); otherwise it continues further. Finally, it tries to obtain

the ownership of the node by locking it (lines 61-62). If the operation successfully locks the node,

then it moves to the next node in the p-path if one exists (line 64) and stop otherwise (line 65).

89

Execution Phase: In the execution phase (lines 49-52), the operation executes window transac-

tions by repeatedly invoking EXECUTEONE function (line 51) until it completes. In EXECUTEONE

function (lines 76-84), the operation first expands the window (lines 85-92) starting from its an-

chor node (line 85). To that end, it first marks the node by setting the LSB bit of the node’s scm

field (line 88). Lastly, it makes a local copy of the node (line 89). Next, the operation applies

appropriate transformations to its local copy of the window (line 93) and acquires the ownership

of all the nodes in the next p-path (lines 100-102). Then, it replaces the window in the tree with its

local copy (lines 79-83). It updates the data record with the new location of the window (line 105).

Finally, it invokes UNLOCKNODES function (line 84) to unlock all nodes that were locked in the

operation’s window.

7.3 Correctness Proofs

In this section, we prove the correctness of our algorithm. Specifically, we show that our algorithm

is linearizable (the outcome is equivalent to that of some sequential execution of operations) [34]

and deadlock-free.

If a node is reachable from the topmost sentinel node of the tree, then we say that it is an active

node; otherwise we say that it is a passive node. Also, we refer to the anchor node returned by the

heavyseek phase of a modify operation as the injection point of the operation.

7.3.1 The Main Idea

Linearizability: This proof consists of two parts. We describe them one-by-one.

First, we prove that modify operations are injected correctly.

Note that our algorithm tries to maintain a red-black tree on the set of active nodes. We refer

to this tree as the global tree. When a modify operation starts its heavyseek phase, it starts by

traversing this global tree. As it is traverses the tree, the global tree may undergo structural changes.

Depending on the current position of the operation, it may only see a subset of these structural

90

changes. As a result, the tree as seen by an operation traversing nodes may be different from the

global tree. We refer to the tree as seen by a modify operation during its heavyseek phase as its local

tree. As window transactions are performed, the global tree and the local tree of a modify operation

may “evolve” in different manner. Specifically, the local tree only sees a subset of the window

transactions seen by the global tree. We prove, however, the two trees stay “consistent” with each

other throughout this “evolution” period (which lasts until the modify operation dereferences a

leaf node). This property, in turn, allows us to deduce the following. First, if the injection point

of a modify operation is correct with respect to the global tree and the injection point is visible to

the local tree, then it is also correct with respect to the local tree. Second, if the injection point

of a modify operation is correct with respect to the local tree and the injection point is an active

node, then it is also correct with respect to the global tree. Using these properties, we prove the

following. First, the global tree is always a valid red-black tree. Second, a modify operation in the

heavyseek phase traverses a valid red-black tree. This result can be easily extended to show that a

search operation traverses a valid red-black tree as well.

Second, we prove that operations yield correct results. We use linearizability as the correctness

condition for executions of our algorithm [34]. Intuitively, a sequence of operations is linearizable

if each of the operations appears to take effect at a single moment between the time that the appli-

cation invoked the operation and the time that the application received the response, referred to as

the linearization point. Further, the result of all operations is the same as it would be if the oper-

ations were performed sequentially on the data structure in the order of their linearization points.

In our proof, we define the linearization point of a “completed” operation as follows. Consider an

operation α . If α is a modify operation that completes in execution phase, then the linearization

point of α is taken to be the time when α performed its terminal window transaction. If α is a

search operation or a modify operation that completes in heavyseek phase, the linearization point

of α is taken to be the time when the last terminal window transaction that is visible to α is per-

formed by some modify operation working on the same key as α . If no such modify operation

91

exists, then the linearization point of α is taken to be the time when α began its traversal. We use

these linearization points to establish that every execution of our algorithm is correct.

Deadlock-Freedom: A common technique for ensuring that a set of concurrent operations is

deadlock-free is to impose a total order on locks. If all operations acquire locks in the same order,

then we are guaranteed that the concurrent operations are deadlock-free. Our search operations are

lock-free. However, our modify operations require locks. Our algorithm assumes a tree-ordering

on locks i.e. it uses the property of the binary search tree to define an order on lock acquisition.

A thread that holds no locks may acquire a lock on any node. A thread that has already locked

a node may lock only one of the children of the node it previously locked at a time. Once a

node is locked, it may undergo structural as well as color changes. Each modify operation, after

identifying its injection point, acquires a lock on the operation’s guardian node followed by the

anchor node (which is a child of the guardian node). A delete operation may require a lock on

one of the children of the anchor node as well. Thereafter, the modify operation can acquire locks

on only descendants of the initial set of nodes locked during injection. Consider a thread Ti that

holds a lock on a node. Let bi be the node most recently locked by Ti and let zi be the node least

recently locked by Ti. Either bi & zi are the same node or bi is a descendant of zi. Let Ti & Tj try to

acquire a lock on ai which is a child of bi. If Ti succeeds, Tj will wait until Ti releases all locks in a

top-down manner and vice-versa. Since there are no cycles possible in the tree, the locks cannot be

acquired in a cyclic manner. Thus, in spite of concurrent changes to the tree structure, our protocol

is deadlock-free.

7.3.2 Executions are Linearizable

In our algorithm, nodes in the tree are replaced by their copies as operations perform window

transactions. We treat copies of the same node in the tree as different nodes. So, when we speak

of a node, we are referring to a specific copy of a node. We assume that the pointer node of the

92

70

20 80

10 50

[0,100]

[0,70) [70,100]

[0,20) [20,70)

Figure 7.2: An illustration of the coverage sets of various nodes in a binary search tree assuming
that the range of keys is [0,100].

root of the tree is a special node that is never replaced or removed from the tree. This can be easily

ensured by assuming that the tree contains a special key initially that is never removed from the

tree, and is larger than any other key. For ease of exposition, we also assume that initially the tree

contains no other key besides the special key.

Modify Operations are Injected Correctly

We first provide a few definitions that we use in our proof. Given a tree T , we use nodes(T) to

denote the set of nodes in T .

Definition 1 (coverage-set of a node). Given a tree T and a node X ∈ nodes(T), the coverage-set

of X in T , denoted by coverage-set(X ,T) is defined as the set of keys k such that the search (or

access) path for k in T contains X.

For an illustration, please refer to Figure 7.2. Note that the coverage-set of a node in a tree is a

function of the set of keys stored at its anscestor nodes in the tree.

Definition 2 (extant operation). Consider a tree T and a modify operation α . We say that α is

extant in T , denoted by extant(α,T), if α has been successfully injected into the tree (the status

field of its most recent data record has the value INJECTED).

Definition 3 (anchor node of an operation). Consider a tree T and a modify operation α such that

α is extant in T . The anchor node of α in T , denoted by anchor(α,T), is the node that is currently

owned by α , is unmarked and satisfies the operation-specific invariant property.

93

Note that, in the trees we consider in this proof, the anchor node of an operation is uniquely

defined. The next definition describes what it means for an extant operation to be “correctly posi-

tioned” in a tree. Given a modify operation α , let key(α) denotes its key.

Given a tree T , a node X in T and a modify operation α , we use invariant(α,X ,T) to denote

the fact that the invariant property required by the Tarjan’s algorithm for α holds at X in T .

Definition 4 (admissible operation). Consider a tree T and a modify operation α such that α is

extant in T . We say that α is admissible with respect to T , denoted by admissible(α,T), if (i) the

invariant required by the Tarjan’s algorithm for α holds at α’s anchor node in T , and (ii) α’s key

lies within the coverage-set of α’s anchor node in T . Formally,

admissible(α,T)
4
= extant(α,T)∧ invariant(α,A,T)∧ (key(α) ∈ coverage-set(A,T))

where A = anchor(α,T).

Given a tree T and a modify operation α that is admissible with respect to T , we use W (α,T)

to denote the set of nodes in T that lie in the window of α rooted at anchor(α,T) as specified by

the Tarjan’s algorithm.

Definition 5 (enabled operation). Consider a tree T and a modify operation α such that α is

admissible with respect to T . We say that α is enabled in T , denoted by enabled(α,T), if the

window of α in T does not contain any guardian node owned by some other operation. Formally,

enabled(α,T)
4
= admissible(α,T) ∧

〈∀X : X ∈W (α,T) : X is not owned by any other

operation as its guardian node〉

We now define the concept of a tree which is basically is a red-black tree with a (possibly

empty) set of “partially executed” modify operations.

94

Definition 6 (legal tree). A tree T is said to be legal, denoted by legal(T), if it satisfies the following

properties:

1. T is a valid red-black tree.

2. Every extant operation in T is admissible with respect to T .

We use the next concept to relate two different trees that may have one or more nodes in

common.

Definition 7 (consistent trees). We say that two trees S and T are consistent with each other,

denoted by S
c
≈ T , if every node that is common to both S and T has identical coverage-sets in

both the trees. Formally,

S
c≈ T

4
= 〈∀X : X ∈ nodes(S)∩nodes(T) : coverage-set(X ,S) = coverage-set(X ,T)〉

The following axiom essentially captures the functioning of the Tarjan’s algorithm modified

slightly as follows: the terminal window of a delete operation is extended to include the children

of the sibling of the leaf node being removed, if they exist. Note that, in an external red-black tree,

the sibling of a leaf node is either a leaf node or the parent of two leaf nodes. As a result, this

modification increases the size of a window by at most two nodes only.

Axiom 1. A window transaction applied to a legal tree yields a legal tree. Moreover, it does not

change the coverage-set of nodes outside the window. Formally, consider a legal tree T and a

modify operation α such that α is enabled in T . Let S denote the tree obtained by executing one

window transaction of α in T . We have:

legal(T)∧ enabled(α,T) =⇒ legal(S)∧ (S c≈ T)

The consistency of the two trees follows from the fact that recoloring some nodes or performing

a left or right rotation at a node can change the coverage-set of the nodes in the window only (if at

95

all). Moreover, it can be verified that, with the modification described above, this holds even if a

leaf node is added to or removed from the tree.

We are now ready to show that a modify operation is never injected at a “wrong” node in the

tree. We first define what it means for a modify operation to be injected correctly in a tree. Given

a modify operation α that eventually completes its injection phase successfully, we use ip(α) to

denote the node that act as the injection point of α . Specifically, ip(α) is the primary node of the

invariant path returned by the seek phase of α .

Definition 8 (correct injection). Consider a modify operation α that eventually completes its in-

jection phase successfully. Let T be a tree such that ip(α) ∈ nodes(T). We say that α is injected

correctly in T if key(α) ∈ coverage-set(ip(α),T).

Note that our algorithm tries to maintain a red-black tree on the set of active nodes. We refer to

this tree as the global tree. When a modify operation starts its seek phase, it starts by traversing this

global tree. As it is traverse the tree, the global tree may undergo structural changes. Depending

on the current position of the operation, it may only see a subset of these structural changes. As a

result, the tree as seen by an operation traversing nodes may be different from the global tree. We

refer to the tree as seen by a modify operation during its seek phase as its local tree. (Note that the

same discussion is also applicable to search operations.) As window transactions are executed, the

global tree and the local tree of a modify operation may “evolve” in different manner. Specifically,

the local tree only sees a subset of the window transactions seen by the global tree. We prove,

however, the two trees stay consistent with each other throughout this “evolution” period (which

lasts until the operation dereferences a leaf node). This property, in turn, allows us to deduce the

following. First, if the injection point of a modify operation is correct with respect to the global

tree and the injection point is visible to the local tree, then it is also correct with respect to the local

tree. Second, if the injection point of a modify operation is correct with respect to the local tree

and the injection point is an active node, then it is also correct with respect to the global tree.

96

We now formalize the ideas explained above. Consider a modify operation α . Let G denote the

current global tree and let L denote the current local tree (for α). Note that G and L are identical

when α starts its seek phase. Let c denote the current location of α in L and is given by the node L

that was most recently derefenced by α . (In the beginning, when α has not deferenced any node,

c is set to ⊥.) We use α-〈G,L,c〉 to model the current configuration of the system with respect to

α . The configuration with respect to α “evolves” by performing an action. An action may be one

of the three types:

1. movement: α dereferences the next node and moves to a new location in its local tree.

2. injection: a new modify operation, say β , is injected into the global tree.

3. transaction: a modify operation extant in the global tree, say β , performs a window transac-

tion.

Depending on the current location of α , the last two actions may or may not be visible to α .

Each action has a point-of-occurrence. For an action of type movement, the point-of-occurence

is defined to be the new location of α . For an action of type injection, the point-of-occurence

is defined to be the injection point of β . Finally, for an action of type transaction, the point-of-

occurence is defined to be the anchor node of β (same as the root of the window transaction). For

an action t, let occurAt(t) denote the point of occurence of t. Now, an action t performed in the

configuration α-〈G,L,c〉 is visible to α if and only if occurAt(t) is reachable from c in L using

one or more edges. Note that, by definition, the action of type movement is always visible to α (as

expected).

Note that we can order modify operations that are eventually injected into the tree by the time

at which their injection phase completes. Let αx denote the xth modify operation to be injected

into the global tree. To prove that a modify operation is injected correctly, we use induction on x.

Clearly, the first modify operation is always injected at a correct node into the global tree because,

97

until the first modify operation is injected, the global tree does not undergo any structural changes

whatsoever (as a result the local tree of α1 is identical to the global tree at all times). For induction

hypothesis, we have:

Induction Hypothesis: the first x−1 modify operations are injected at correct nodes in

the global tree

Using the above induction hypothesis and Axiom 1 possibly multiple times, it can be easily

verified that:

Proposition 1. The global tree remains legal at all times until (but not including) the injection of

αx into the tree.

To complete the proof, it only remains to show that αx is also injected correctly into the global

tree. To that end, we model the “evolution” of the configuration of the system with respect to αx

using a sequence of configurations αx-〈Gi,Li,ci〉 for i = 0,1, . . . ,s, where αx-〈G0,L0,c0〉 denotes

the initial configuration and αx-〈Gs,Ls,cs〉 denotes the final configuration (at the time αx completes

its seek phase). Note that, for the initial configuration, L0 = G0 and c0 = ⊥. Let ti denote the ith

action performed on the configuration. In other words, αx-〈Gi,Li,ci〉 is obtained by performing

ti on αx-〈Gi−1,Li−1,ci−1〉. Intuitively, Ls represents the local tree traversed by αx during its seek

phase and is the result of performing actions t1, t2, . . ., ts one-by-one to L0.

Lemma 27. Ls is a legal tree and is consistent with Gs.

Proof. We prove a stronger property, namely, for each i ∈ [0,s], Li is a legal tree and is consistent

with Gi. The proof is by induction on i. We have:

Base Case (i = 0): From Proposition 1, G0 is a legal tree. Since L0 = G0, L0 is also a legal tree.

Also, since L0 = G0, trivially, L0 is consistent with G0.

98

Induction Step: Assume that the property holds for Li−1 for i ≥ 1. We need to prove that the

property also holds for Li. Before continuing with our proof, we first prove the following

claim:

Claim 1. Consider the four trees Gi−1, Li−1, Gi and Li such that: (i) Gi
c≈ Gi−1, and

(ii) Li
c≈ Li−1. Then

〈∀X : X ∈ nodes(Gi)∩nodes(Li) :X ∈ nodes(Gi−1)∩nodes(Li−1) =⇒

coverage-set(X ,Gi) = coverage-set(X ,Li)〉

Proof. Consider a node X ∈ nodes(Gi)∩nodes(Li). We have:

X ∈ nodes(Gi−1)∩nodes(Li−1)

=⇒ coverage-set(X ,Gi−1) = coverage-set(X ,Li−1) ∵ Gi−1
c
≈ Li−1(induction step)

=⇒ coverage-set(X ,Gi) = coverage-set(X ,Li−1) ∵ Gi
c≈ Gi−1

=⇒ coverage-set(X ,Gi) = coverage-set(X ,Li) ∵ Li
c≈ Li−1

This establishes the claim.

Now, continuing with our proof, there are three cases to consider depending on what type of

action ti is.

• Case 1 (ti is of type movement): Note the primary impact of this action is on the

visibility of future actions to αx. It does not change Gi−1 or Li−1 in any way, that is,

Gi = Gi−1 and Li = Li−1. Since Li−1 is legal and is consistent with Gi−1, trivially, Li is

legal and is consistent with Gi.

• Case 2 (ti is of type injection): Note the primary impact of this action is to change the

set of extant modify operations in the global tree and possibly the local tree in case ti is

visible to αx. But otherwise the two trees do not undergo any structural changes. Let

99

β be the new modify operation injected into the global tree on performing ti. By our

assumption, β is among the first x−1 modify operations to be injected into the global

tree, and, is therefore, injected correctly.

Legality: If ti is not visible to αx, then Li is identical to Li−1. Since Li−1 is a legal

tree, it follows that Li is also a legal tree. On the other hand, if ti is visible to αx, then we

have to show that β is injected correctly in Li, that is, key(β)∈ coverage-set(ip(β),Li).

Note that, in this case, ip(β) is present in all the four trees Gi−1, Gi, Li−1 and Li.

Trivially, Gi is consistent with Gi−1 and Li is consistent with Li−1. Therefore, us-

ing the claim proved above, coverage-set(ip(β),Gi) = coverage-set(ip(β),Li). Since

key(β) ∈ coverage-set(ip(β),Gi), it follows that key(β) ∈ coverage-set(ip(β),Li).

Consistency: Note that, every node that is common to Gi and Li is also common to

Gi−1 and Li−1. Also, trivially, Gi is consistent with Gi−1 and Li is consistent with Li−1.

Therefore, using the claim proved above, it can be easily verified that Gi is consistent

with Li.

• Case 3 (ti is of type transaction): Note that this action will cause structural changes

to the global tree and possibly the local tree in case ti is visible to αx.

Legality: If ti is not visible to αx, then Li is identical to Li−1. Since Li−1 is a legal

tree, it follows that Li is also a legal tree. On the other hand, if ti is visible to αx, then

using Axiom 1 and the fact that Li−1 is a legal tree, we can conclude that Li is also a

legal tree.

Consistency: Using Axiom 1 and the fact that Gi−1 is a legal tree (using Proposi-

tion 1), it follows that Gi is consistent with Gi−1. If ti is not visible to αx, then Li = Li−1

100

and thus Li is consistent with Li−1. Otherwise, using Axiom 1, it follows that Li is con-

sistent with Li−1. In either case, Li is consistent with Li−1. Now, there are two subcases

to consider:

– Subcase (a) (ti is not visible to αx): Consider a node X ∈ nodes(Gi)∩nodes(Li).

Note that X is outside the window because it belongs to Li. Therefore it also be-

longs to Gi−1 and Li−1. We can now use the claim proved above to infer that

coverage-set(X ,Gi) = coverage-set(X ,Li). Since X was chosen arbitratily, it fol-

lows that Gi is consistent with Li.

– Subcase (b) (ti is visible to αx): Consider a node X ∈ nodes(Gi)∩ nodes(Li).

There are two possibilities: either X is outside the window or is part of the win-

dow. If X is outside the window, then, as in subcase (a), it can be verified that

coverage-set(X ,Gi) = coverage-set(X ,Li). If X is part of the window, then ob-

serve that the root of the window lies outside the window and thus has identical

coverage sets in Gi and Li. Due to the tree structure, the coverage sets of nodes

in the window are derived from the coverage set of the root of the window. Since

both Gi and Li see identical transformations, it follows that, in this case as well, X

has coverage sets in Gi and Li.

Therefore, using induction, we can conclude that Ls is legal and is consistent with Gs.

Recall that ip(αx) denotes the injection point of αx, which αx finds by traversing its local tree

Ls. Note that Gs denotes the global tree at the time αx completes its seek phase. Let Gs′ denote

the global tree at the time αx completes its injection phase. Again, using the induction hypothesis

(first x−1 modify operations are injected correctly), Axiom 1 and Proposition 1 possibly multiple

times, it can be easily verified that:

Proposition 2. Gs and Gs′ are consistent with each other.

101

Note that a modify operation can only be injected at an active node. Hence, we have:

ip(αx) ∈ nodes(Ls)∩nodes(Gs)∩nodes(Gs′) (7.1)

Using Lemma 27, αx traverses a valid red-black tree (namely Ls to locate ip(αx)). Thus key(αx)

∈

coverage-set(ip(αx),Ls). We have:

key(αx) ∈ coverage-set(ip(αx),Ls)

=⇒ key(αx) ∈ coverage-set(ip(αx),Gs) ∵ ip(αx) ∈ nodes(Gs)∩nodes(Ls) (using 7.1) and

Gs
c≈ Ls (using Lemma 27)

=⇒ key(αx) ∈ coverage-set(ip(αx),Gs′) ∵ ip(αx) ∈ nodes(Gs)∩nodes(Gs′) (using 7.1) and

Gs
c
≈ Gs′ (using Proposition 2)

Finally, using induction, we can conclude that:

Theorem 11 (correct injection). Every modify operation is injected at a correct node in the global

tree.

As mentioned earlier, the notion of local tree for a modify operation can also be extended to a

search operation, which, in turn, implies from Lemma 27 that:

Theorem 12. Every search operation traverses a valid red-black tree.

Operations Yield Correct Results

We use linearizability as the correctness condition for executions of our algorithm [34]. Intuitively,

a sequence of operations is linearizable if each of the operations appears to take effect at a single

102

moment between the time that the application invoked the operation and the time that the applica-

tion received the response, referred to as the linearization point, and the result of all operations is

the same as it would be if the operations were performed sequentially on the data structure in the

order of their linearization points.

As is usually the case, we model an operation using two events: invocation and response. The

invocation event of an operation occurs when the operation is initiated by an application, and its

response event occurs when its result is returned to the application. Given an operation α , its

invocation and response events are denoted by inv(α) and resp(α), respectively. Note that there

may be a delay between when an operation completes and when its response event is generated

because the process to which the operation belongs may still be helping other operations complete.

If an event e occurs before an event f , then we denote it by e @ f . If an event e occurs before or

at the same time as an event f , then we denote it by ev f . It can be verified that @ is a transitive

relation.

We are now ready to prove that every execution of our algorithm is linearizable. We use the

locality property of linearizability [34]. For an execution history H and an object x, let H|x consists

of only those operations of H that involve x. The locality property states that [34]:

A history H is linearizable if and only if, for each object x, H|x is linearizable.

Therefore, if we can prove that an execution of our algorithm projected on an arbitrary key is

linearizable, then we have proven that the entire execution is linearizable. For the remainder of

the proof, we fix an execution of our algorithm as well as a key, and consider the projection of the

execution on that key.

To simplify the proof, we treat a modify operation that completes after its seek phase only as

a search operation. Specifically, an insert operation that finds the key it is looking for during its

seek phase as well as a delete operation that does not find the key it is looking for during its seek

phase is treated as a search operation. Note that the concept of local tree of a modify operation

defined in Section 7.3.2 can be extended to that for a search operation as well. If an operation is

103

still pending in the history (that is, it has no response event yet), then we discard it if it is either a

search operation or a modify operation that has not performed its terminal window transaction yet.

To capture dependencies between operations, we associate a rank with each operation. The

rank of an operation α , denoted by rank(α), is defined as follows:

• Case 1 (α is a modify operation): Note that we can order all modify operations by the time

at which they performed their terminal window transaction. Thus rank(α) is given by the

position of α in this sequence (the first operation has the rank of one, the next has the rank

of two, and so on). For convenience, we assume the existence of a fictitious delete operation

with the rank of zero.

• Case 2 (α is a search operation): Consider the local tree of α as described in Section 7.3.2.

We need to identify the modify operation that α “reads-from”. Let M (α) denote the set of

all modify operations (with the same key as that of α) that contains: (a) all modify opera-

tions that performed their terminal window transaction on the local tree of α , (b) all modify

operations that performed their terminal window transaction on the global tree before α be-

gan its traversal, and (c) the fictitious delete operation. Clearly, M (α) is non-empty. The

modify operation that α “reads-from” is given by the largest rank operation in M (α), say

β . Further, rank(α) is defined to be same as rank(β). It can be verified that the type of β

(insert or delete) is compatible with the result returned by α .

Clearly, we have:

Proposition 3. No two modify operations have the same rank.

To obtain a total ordering on operations, we construct a graph on operations, referred to as

dependency graph. The graph has a vertex for each operation in the history. (Recall that, by our

assumption, the history contains operations belonging to a single key only.) The graph has two

types of edges:

104

• Rank-based edge: there is a rank-based edge from operation α to operation β , denoted

by α
r−→ β , if either: (i) rank(α) < rank(β) or (ii) rank(α) = rank(β) and α is a modify

operation.

• Time-based edge: there is a time-based edge from operation α to operation β , denoted by

α
t−→ β , if resp(α)@ inv(β).

The next lemma relates rank-based edges with invocation and response events.

Lemma 28. Given two operations α and β , we have:

α
r−→ β =⇒ inv(α)v resp(β)

Proof. There are two cases to consider:

• Case 1 (α and β have the same rank): It implies that α is the modify operation, β is

a search operation, and β “reads-from” α . From the way α was selected when defining

rank(β), inv(α)@ resp(β).

• Case 2 (α and β have different ranks): It implies that rank(α) < rank(β). Let γ be the

modify operation such that rank(γ) = rank(α). Likewise, let δ be the modify operation

such that rank(δ) = rank(β). Clearly, rank(γ) < rank(δ). (Note that γ may be same as α

and δ may be same as β .) Given a modify operation τ , let last(τ) denote the event when τ

completes its terminal window transaction.

If δ = β , clearly, then last(δ)@ resp(δ) = resp(β). Otherwise, β is a search operation that

“reads-from” δ . By definition, last(δ)@ resp(β). In either case, we have:

last(δ)@ resp(β) (7.2)

105

Assume, on the contrary, that resp(β)@ inv(α). Then, we have:

(inv(γ)@ last(γ)) ∧ (resp(β)@ inv(α))

=⇒ (inv(γ)@ last(γ)@ last(δ)) ∧ (resp(β)@ inv(α)) ∵ rank(γ)< rank(δ)

=⇒ (inv(γ)@ last(γ)@ last(δ)@ resp(β)) ∧ using 7.2

(resp(β)@ inv(α))

=⇒ (inv(γ)@ inv(α)) ∧ (last(γ)@ last(δ)@ inv(α))

=⇒ (γ 6= α) ∧ (last(γ)@ last(δ)@ inv(α))

=⇒ (α is a search operation) ∧ ∵ rank(α) = rank(γ) and

(last(γ)@ last(δ)@ inv(α)) γ is a modify operation

=⇒ (α is a search operation) ∧ ({γ,δ} ⊆M (α)) definition of M (α)

=⇒ rank(α)≥ rank(δ) definition of rank(α)

=⇒ rank(α)≥ rank(β) ∵ rank(δ) = rank(β)

=⇒ a contradiction

This estalishes the lemma.

The next two lemmas prove a useful property about rank-based and time-based edges:

Lemma 29. The relation induced by rank-based edges is transitive.

Proof. Consider three distinct operations α , β and γ such that α
r−→ β and β

r−→ γ . By definition of
r−→, rank(α)≤ rank(β)≤ rank(γ). We claim that either rank(α)< rank(β) or rank(β)< rank(γ).

Otherwise, rank(α) = rank(β), which implies that α is a modify operation, and rank(β) =

rank(γ). which implies that β is a modify operation. Combining the two, we obtain that rank(α) =

rank(β) and both α and β are modify operations. This contradicts Proposition 3.

Lemma 30. The relation induced by time-based edges is transitive.

106

Proof. Consider three operations α , β and γ such that α
t−→ β and β

t−→ γ . By definition of t−→,

resp(α)@ inv(β) and resp(β)@ inv(γ). Clearly, inv(β)@ resp(β). Combining all three inequal-

ities, we obtain that resp(α) @ inv(γ). This, in turn, implies that there is a time-based edge from

α to γ .

A smallest cycle in the graph is defined as a cycle with the least number of edges. The following

lemma follows from the transitive property of rank-based and time-based edges:

Lemma 31. A smallest cycle in the dependency graph consists of alternating rank-based and time-

based edges.

Proof. If a cycle contains a rank-based edge from operation α to operation β and a rank-based

edge from operation β to operation γ , then two edges can be replaced with a single rank-based

edge from α to γ , thereby yielding a smaller cycle. A similar reasoning can be applied to time-

based edges.

We next show that the dependency graph does not contain any cycles.

Lemma 32. The dependency graph is acyclic.

Proof. Assume, by the way of contradiction, that the dependency graph contains a cycle. Consider

a smallest cycle in the graph. From Lemma 31, the cycle is of the form α1
r−→ α2

t−→ α3
r−→ α4

t−→

·· · r−→ α2x
t−→ α1, for some x. From Lemma 28, inv(α1) v resp(α2). Also, from the definition

of t−→, resp(α2) @ inv(α3). Combining the two, we obtain that inv(α1) @ inv(α3). By repeating

this argument, we can show that inv(α1)@ inv(α3)@ inv(α5)@ · · ·@ inv(α2k−1)@ inv(α1). This

implies that inv(α1)@ inv(α1)—a contradiction.

As the dependency graph is acyclic, we can sort all operations in some topological order. Note

that, in the topological sort, all operations with the same rank occur contiguously with the first

operation being a modify operation. It can be verified that the resulting sequence of operations

107

satisfies all the correctness conditions of linearizability: (i) the sequence respects the real-time

order between operations, which is captured by real-time edges, and (ii) all operations are legal,

which is captured by the rank-based edges. Formally,

Theorem 13 (linearizability). Consider a history H generated by our algorithm. Given a key k,

let H|k denote the projection of H on k with incomplete operations removed as described earlier.

Further, let DG(H|k) denote the dependency graph constructed as described earlier. Then any

topological sort of the operations in DG(H|k) yields a sequential history that (i) is legal, (ii) is

equivalent to H|k and (iii) respects the order of non-overlapping operations in H|k.

7.4 Experimental Evaluation

Other Implementations Considered: For our experiments, we considered two other implemen-

tations of concurrent balanced BST besides the one based on this work, denoted by LBRBT. They

are: (i) the lock-based relaxed balanced AVL tree implementation based on Bronson et al.’s algo-

rithm [9], denoted by OPTTREE, and (ii) the lock-free relaxed balanced Chromatic tree imple-

mentation based on Brown et al.’s algorithm described in [10], denoted by CHROMATIC, with

rebalancing taking place after 0 violations.

All implementations were compiled using Java SE 8 compiler.

Experimental Setup: To compare the performance of different implementations, we considered

3 common workload distributions for read-dominated workloads consisting of (a) 98% search, 1%

insert and 1% delete operations, (b) 90% search, 9% insert and 1% delete operations, and (c) 90%

search, 5% insert and 5% delete operations which are considered to be typical workloads likely to

be encountered in practice. We varied the maximum size of the tree by considering three different

key space sizes consisting 5K keys, 50K keys and 500K keys. Finally, we varied the maximum

degree of contention by varying the number of threads from 1 to 272 in appropriate increments. To

108

1 34 68 136 272
0

0.5

1
·108

5K keys

1 34 68 136 272
0

2

4

6

·107
50K keys

1 34 68 136 272
0

2

4

6
·107

500K keys

Sy
st

em
T

hr
ou

gh
pu

t
LBRBT OPTTREE CHROMATIC

(a) Graphs for Workload: 98-1-1

1 34 68 136 272
0

2

4

6

8

·107
5K keys

1 34 68 136 272
0

2

4

6

·107
50K keys

1 34 68 136 272
0

2

4

·107
500K keys

Sy
st

em
T

hr
ou

gh
pu

t

(b) Graphs for Workload: 90-9-1

1 34 68 136 272
0

2

4

6

8
·107

5K keys

1 34 68 136 272
0

2

4

6

·107
50K keys

1 34 68 136 272
0

2

4

·107
500K keys

Sy
st

em
T

hr
ou

gh
pu

t

(c) Graphs for Workload: 90-5-5

Figure 7.3: Comparison of system throughput of different algorithms. Higher the throughput,
better the performance of the algorithm.

ensure consistent results, as in [10], rather than starting with an empty tree, we pre-populated the

tree prior to starting the simulation run.

We compared the performance of different implementations with respect to system throughput,

which is given by the number of operations executed per unit time.

We conducted our experiments on a Intel Xeon Phi 7250 system containing 68 physical cores

each operating at 1.4 GHz with 4 hardware threads per core (272 hardware threads total). The

109

system contains 16 GB of “near” Multi-Channel DRAM and 112 GB of “far” DDR4 RAM running

Linux version 3.1.0.

Simulation Results: Each simulation run was carried out for 8 seconds with a warm up time of

2 seconds and the results were averaged over multiple runs. Figure 7.3 shows the results of our

experiments. As all the graphs show, the concurrent AVL tree implementation (OPTTREE) has the

worst performance. This is because traversing the search operations are blocking. In the presence

of a concurrent write (insert or delete) operation in the same window as the search operation,

the write operation may set a Growing or Shrinking bit associated with a link that the search

operation is trying to traverse. During this interval, the search operation has to wait until the bit

is cleared. For smaller key space of 5K keys, LBRBT has the best performance. However, as the

key space grows to 50K and 500K keys, the gap between LBRBT and CHROMATIC decreases.

At its peak in highly read-dominated workloads (98−1−1), LBRBT performs as much as 18.5%

better than CHROMATIC and 39.5% better than OPTTREE. Also, for a workload of 90−5−5,

it performs 8.2% better than OPTTREE. On the other hand, CHROMATIC performs 4.8% better

than LBRBT. However, as the proportion of insert & delete operations increases (esp. beyond 5%

of modify operations, the throughput of LBRBT decreases. One of the main reasons for lower

throughput of LBRBT is the overhead of the complex insert & delete operations which involves

dereferencing up-to 4 pointers for insert operations and up-to 6 pointers for delete operations,

combined with locking of more nodes as compared to the simple insert & delete operations. This

adversely impacts the performance. However, for read-dominated workloads which are the most

common workloads found in practice, LBRBT does have a performance advantage.

Clearly, our experimental results indicate that our lock-based algorithm for a strictly balanced

binary search tree performs quite competitively against a lock-free algorithm for a relaxed balanced

binary search tree for larger trees, and, in some cases, even beats the latter. This is especially

surprising because a red-black tree has generally been considered hard to parallelize because of

110

its strict balancing requirements. We believe that further research can yield even more efficient

concurrent red-black tree algorithms.

111

CHAPTER 8

CONCLUSION

In this dissertation, we presented a suite of Group Mutual Exclusion algorithms for an asyn-

chronous shared memory system for the cache-coherent model and the distributed shared memory

models. Both algorithms use bounded space variables and satisfy the four most important prop-

erties of the GME problem, namely group mutual exclusion, lockout freedom, bounded exit and

concurrent entering. At the same time, the algorithms have O(1) step-complexity in the absence

of any conflicting requests, and O(1) space-complexity per GME object when the system contains

Ω(n) GME objects. To the best of our knowledge, our algorithms are the first GME algorithms that

have constant complexity for both metrics. Finally, the RMR complexity of our GME algorithm

in the cache coherent model depends on the contention encountered by a request, whereas it is

optimal for the distributed shared memory model. In our experimental results, our GME algorithm

vastly outperformed two of the well-known existing GME algorithms especially for higher thread

counts.

We also presented a lock-based algorithm for concurrent manipulation of a red black tree in

an asynchronous shared memory system that supports search, insert and delete operations. An

important property of our algorithms is that the tree is strictly balanced, in other words it is always

a valid red black tree. The insert and delete operations require locks but the search operations are

lock-free. However, using a combination of several ideas (e.g. minimizing copying, reusing nodes,

fast-path-slow-path optimization), we have reduced the overhead of modify (insert and delete)

operations. Our experimental results indicate that our algorithm has very competitive performance

when compared to other concurrent algorithms for binary search trees that provide only relaxed

(rather than strict) balancing guarantees. Thus, it may be worth investing time in further research

on strictly balanced binary search trees since they are shown to give on-par performance with

relaxed variants at least for read-dominated workloads.

112

For avenues of future work, we plan to extend our GME algorithm so that it provides stronger

fairness or concurrency guarantees such as some combination of first-come-first-served (FCFS) [28],

first-in-first-enabled (FIFE) [41], strong concurrent entry [41] and pulling [7] among others. We

also plan to investigate the trade-off between the RMR complexity of a GME algorithm (in the

presence of conflicting requests) and its space complexity with large number of GME objects un-

der the CC model. At this point, it is not clear to us if we can design a GME algorithm that has O(1)

complexity for both the metrics. We plan to introduce these techniques to other hierarchical data

structures such as k-ary trees, B-trees, and other types of hash tables to improve their performance.

For the red black tree algorithm, we plan to provide support for other tree operations such as

the (a) replace [58] operation, which inserts a new key in place of an existing key, (b) snapshot [60]

operation, which returns a consistent view of the data-structure, and, (c) predecessor and successor,

which return the next smallest and largest keys, respectively

113

REFERENCES

[1] AMD64 Architecture Programmerś Manual Volume 3: General Purpose and System Instruc-
tions. URL: http://support.amd.com/us/Processor_TechDocs/24594_APM_v3.pdf.

[2] Intel 64 and IA-32 Architectures Software Developerś Manual, Volume 2A: Instruction Set
Reference, A-M. URL: http://www.intel.com/Assets/en_US/PDF/manual/253666.
pdf.

[3] Y. Afek, H. Kaplan, B. Korenfeld, A. Morrison, and R. E. Tarjan. CBTree: A Practical
Concurrent Self-Adjusting Search Tree. In Proceedings of the Symposium on Distributed
Computing (DISC), pages 1–15, 2012.

[4] Z. Aghazadeh, W. M. Golab, and P. Woelfel. Making Objects Writable. In Proceedings of
the ACM Symposium on Principles of Distributed Computing (PODC), pages 385–395. ACM
Press, July 2014.

[5] R. Bayer and M. Schkolnick. Concurrency of Operations on B-Trees. Acta Informatica,
9:1–21, 1977.

[6] M. A. Bender, J. T. Fineman, S. Gilbert, and B. C. Kuszmaul. Concurrent Cache-Oblivious
B-Trees. In Proceedings of the 17th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 228–237, July 2005.

[7] V. Bhatt and C. C. Huang. Group Mutual Exclusion in O(logn) RMR. In Proceedings of the
29th ACM Symposium on Principles of Distributed Computing (PODC), pages 45–54, July
2010.

[8] A. Braginsky and E. Petrank. A Lock-Free B+tree. In Proceedings of the 24th ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA), pages 58–67, 2012.

[9] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. A Practical Concurrent Binary Search
Tree. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), pages 257–268, January 2010.

[10] T. Brown, F. Ellen, and E. Ruppert. A General Technique for Non-blocking Trees. In Pro-
ceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP), 2014.

[11] D. Cederman, B. Chatterjee, N. Nguyen, Y. Nikolakopoulos, M. Papatriantafilou, and P. Tsi-
gas. A Study of the Behavior of Synchronization Methods in Commonly Used Languages
and Systems. In Proceedings of the 27th International Parallel and Distributed Processing
Symposium (IPDPS), May 2013.

[12] P. Chuong, F. Ellen, and V. Ramachandran. A Universal Construction for Wait-Free Trans-
action Friendly Data Structures. In Proceedings of the 22nd ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), pages 335–344, 2010.

114

http://support.amd.com/us/Processor_TechDocs/24594_APM_v3.pdf
http://www.intel.com/Assets/en_US/PDF/manual/253666.pdf
http://www.intel.com/Assets/en_US/PDF/manual/253666.pdf

[13] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT Press,
1991.

[14] T. S. Craig. Building FIFO and Priority-Queueing Spin Locks from Atomic Swap. Technical
report, Department of Computer Science, University of Washington, 1993.

[15] T. Crain, V. Gramoli, and M. Raynal. A Speculation-Friendly Binary Search Tree. In Pro-
ceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP), pages 161–170, 2012.

[16] T. Crain, V. Gramoli, and M. Raynal. A Contention-Friendly Binary Search Tree. In Proceed-
ings of the European Conference on Parallel and Distributed Computing (Euro-Par), pages
229–240, Aachen, Germany, 2013.

[17] R. Danek and V. Hadzilacos. Local-Spin Group Mutual Exclusion Algorithms. In Proceed-
ings of the 18th Symposium on Distributed Computing (DISC), pages 71–85, October 2004.

[18] T. Davis and R. Guerraoui. Concurrent Search Data Structures Can Be Blocking and Practi-
cally Wait-Free. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 337–348, July 2016.

[19] F. Ellen, P. Fataourou, E. Ruppert, and F. van Breugel. Non-Blocking Binary Search Trees. In
Proceedings of the 29th ACM Symposium on Principles of Distributed Computing (PODC),
pages 131–140, July 2010.

[20] C. Ellis. Concurrency in Linear Hashing. ACM Transactions on Database Systems (TODS),
12(2):195–217, 1987.

[21] P. Fatourou and N. D. Kallimanis. A Highly-Efficient Wait-Free Universal Construction. In
Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 325–334, 2011.

[22] F. E. Fich, D. Hendler, and N. Shavit. On the Inherent Weakness of Conditional Primitives.
Distributed Computing (DC), 18(4):267–277, 2006.

[23] M. Fomitchev and E. Ruppert. Lock-Free Linked Lists and Skiplists. In Proceedings of the
23rd ACM Symposium on Principles of Distributed Computing (PODC), pages 50–59, July
2004.

[24] D. J. Frank, R. H. Dennard, E. Nowak, Solomon, Y. P. M., Taur, and H. S. P. Wong. Device
scaling limits of si mosfets and their application dependencies. In Proceedings of theInstitute
of Electrical and Electronics Engineers, volume 89, pages 259–288. IEEE, 2001.

[25] K. Fraser. Practical Lock-Freedom. PhD thesis, University of Cambridge, September 2003.

[26] K. Fraser and T. L. Harris. Concurrent Programming Without Locks. ACM Transactions on
Computer Systems, 25(2), May 2007.

115

[27] J. Gibson and V. Gramoli. Why Non-Blocking Operations Should be Selfish. In Proceed-
ings of the Symposium on Distributed Computing (DISC), pages 200–2014. Springer-Verlag,
October 2015.

[28] V. Hadzilacos. A Note on Group Mutual Exclusion. In Proceedings of the 20th ACM Sympo-
sium on Principles of Distributed Computing (PODC), August 2001.

[29] T. Harris. A Pragmatic Implementation of Non-blocking Linked-lists. Distributed Computing
(DC), pages 300–314, 2001.

[30] Y. He, K. Gopalakrishnan, and E. Gafni. Group Mutual Exclusion in Linear Time and Space.
In Proceedings of the 17th International Conference on Distributed Computing And Network-
ing (ICDCN), January 2016.

[31] M. Herlihy. Wait-Free Synchronization. ACM Transactions on Programming Languages and
Systems (TOPLAS), 13(1):124–149, January 1991.

[32] M. Herlihy. A Methodology for Implementing Highly Concurrent Data Objects. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 15(5):745–770, 1993.

[33] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-Free Synchronization: Double-Ended
Queues as an Example. In Proceedings of the 23rd IEEE International Conference on Dis-
tributed Computing Systems (ICDCS), pages 522–529, 2003.

[34] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann,
2008.

[35] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming, Revised Reprint. Morgan
Kaufmann, 2012.

[36] M. Herlihy, N. Shavit, and M. Tzafrir. Concurrent Cuckoo Hashing. Technical report, Brown
University, Providence, Rhode Island, USA, 2007.

[37] M. Herlihy and J. M. Wing. Linearizability: A Correctness Condition for Concurrent Objects.
ACM Transactions on Programming Languages and Systems (TOPLAS), 12(3):463–492, July
1990.

[38] S. V. Howley and J. Jones. A Non-Blocking Internal Binary Search Tree. In Proceedings
of the 24th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
161–171, June 2012.

[39] M. Hsu and W. P. Yang. Concurrent Operations in Extendible Hashing. In Proceedings of the
International Conference on Very Large Data Bases (VLDB), pages 241–247, San Francisco,
California, USA, 1986.

[40] P. Jayanti. f -arrays: Implementation and Applications. In Proceedings of the 21st ACM
Symposium on Principles of Distributed Computing (PODC), pages 270–279, July 2002.

116

[41] P. Jayanti, S. Petrovic, and K. Tan. Fair Group Mutual Exclusion. In Proceedings of the
22nd ACM Symposium on Principles of Distributed Computing (PODC), pages 275–284,
July 2003.

[42] M. T. Jones. Inside the Linux 2.6 Completely Fair Scheduler, December 2009. URL: http:
//www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler/.

[43] Y.-J. Joung. Asynchronous Group Mutual Exclusion. Distributed Computing (DC),
13(4):189–206, 2000.

[44] Y.-J. Joung. The Congenial Talking Philosophers Problem in Computer Networks. Dis-
tributed Computing (DC), pages 155–175, 2002.

[45] P. Keane and M. Moir. A Simple Local-Spin Group Mutual Exclusion Algorithm. In ACM
Symposium on Principles of Distributed Computing (PODC), pages 23–32, 1999.

[46] J. H. Kim, H. Cameron, and P. Graham. Lock-Free Red-Black Trees Using CAS. Concur-
rency and Computation: Practice and Experience, pages 1–40, 2006.

[47] V. Kumar. Concurrent Operations on Extendible Hashing and its Performance. Communica-
tions of the ACM (CACM), 33(6):681–694, 1990.

[48] Y. Lev, M. Herlihy, V. Luchangco, and N. Shavit. A Simple Optimistic Skiplist Algorithm.
In Proceedings of the 14th International Colloquium on Structural Information and Commu-
nication Complexity (SIROCCO), pages 124–138, Castiglioncello, Italy, June 2007.

[49] P. Magnussen, A. Landin, and E. Hagersten. Queue Locks on Cache Coherent Multiproces-
sors. In Proceedings of the International Parallel and Processing Symposium (IPPS), pages
165–171. ACM Press, April 1994.

[50] J. Mellor-Crummey and M. L. Scott. Algorithms for Scalable Synchronization on Shared-
memory Multiprocessors. ACM Transactions on Computer Systems, 9(1):21–65, 1991.

[51] M. M. Michael. High Performance Dynamic Lock-Free Hash Tables and List-Based Sets.
In Proceedings of the 14th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 73–82, 2002.

[52] M. M. Michael. Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects. IEEE
Transactions on Parallel and Distributed Systems (TPDS), 15(6):491–504, 2004.

[53] M. M. Michael and M. L. Scott. Simple, Fast, and Practical Non-Blocking and Blocking
Concurrent Queue Algorithms. In Proceedings of the 15th ACM Symposium on Principles of
Distributed Computing (PODC), pages 267–275, 1996.

[54] A. Natarajan and N. Mittal. Brief Announcement: A Concurrent Lock-Free Red-Black Tree.
In Proceedings of the 27th Symposium on Distributed Computing (DISC), Jerusalem, Israel,
October 2013.

117

http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler/
http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler/

[55] A. Natarajan and N. Mittal. Fast Concurrent Lock-Free Binary Search Trees. In Proceedings
of the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), Orlando, Florida, USA, February 2014.

[56] A Natarajan, L. H. Savoie, and N. Mittal. Concurrent Wait-Free Red-Black Trees. In Proceed-
ings of the 15th International Symposium on Stabilization, Safety, and Security of Distributed
Systems (SSS), pages 45–60, Osaka, Japan, November 2013.

[57] K. Platz. Saturation in Lock-Based Concurrent Data Structures. PhD thesis, Department of
Computer Science, The University of Texas at Dallas, 2017.

[58] A. Prokopec, N. G. Bronson, P. Bagwell, and M. Odersky. Concurrent Tries with Efficient
Non-Blocking Snapshots. In Proceedings of the 17th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming (PPoPP), pages 151–160, 2012.

[59] R. Sedgewick. Left-leaning Red-Black Trees. URL: http://www.cs.princeton.edu/
~rs/talks/LLRB/LLRB.pdf.

[60] N. Shafiei. Non-blocking Patricia Tries with Replace Operations. In Proceedings of the 33rd
IEEE International Conference on Distributed Computing Systems (ICDCS), pages 216–225,
JUL 2013.

[61] H. Sundell and P. Tsigas. Scalable and Lock-Free Concurrent Dictionaries. In Proceedings
of the 19th Annual Symposium on Selected Areas in Cryptography, pages 1438–1445, March
2004.

[62] M. Takamura and Y. Igarashi. Group Mutual Exclusion Algorithms Based on Ticket Orders.
In Proceedings of the Annual International Conference on Computing and Combinatorics
(COCOON), pages 232–241, July 2003.

[63] R. E. Tarjan. Efficient Top-Down Updating of Red-Black Trees. Technical Report TR-006-
85, Department of Computer Science, Princeton University, 1985.

[64] J.-J. Tsay and H.-C. Li. Lock-Free Concurrent Tree Structures for Multiprocessor Systems. In
Proceedings of the International Conference on Parallel and Distributed Systems (ICPADS),
pages 544–549, December 1994.

[65] J.-H. Yang and J. Anderson. A fast, scalable mutual exclusion algorithm. Distributed Com-
puting (DC), 9(1):51–60, 1995.

118

http://www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf
http://www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf

BIOGRAPHICAL SKETCH

Shreyas Sanjeev Gokhale was born on March 15, 1989 in Maharastra, India. He spent a large part

of his childhood in the United States before moving back to India for his high school education.

He received his Bachelor of Engineering in Computer Engineering from the University of Pune at

Pune in 2012. Thereafter, he moved back to the United States to pursue his Master of Science in

Computer Science at The University of Texas at Dallas in 2012. He continued his education there

and entered the PhD program in Computer Science at The University of Texas at Dallas in 2014.

In his free time, he enjoys watching movies, tv shows, and playing squash.

119

CURRICULUM VITAE

Shreyas Sanjeev Gokhale
June 28, 2019

Contact Information:
Department of Computer Science
The University of Texas at Dallas
800 W. Campbell Rd.
Richardson, TX 75080-3021, U.S.A.

Email: shreyas.gokhale@utdallas.edu

Educational History:
B.E., Computer Engineering, University of Pune, 2012
M.S., Computer Science, University of Texas at Dallas, 2014
Ph.D., Computer Science, University of Texas at Dallas, 2019

Advanced Concurrency Techniques for Concurrent Data Structures
Ph.D. Dissertation
Computer Science Department, University of Texas at Dallas
Advisor: Dr. Neeraj Mittal

Employment History:
Research Assistant, The University of Texas at Dallas, August 2014 – present
Teaching Assistant, The University of Texas at Dallas, August 2014 – May 2019
Software Developer Intern, The MathWorks, Inc., May 2016 – August 2016
Research Intern, Tata Research Development & Design Centre, Pune, August 2011 – May 2012

Professional Recognitions and Honors:
Outstanding Teaching Assistant Award, Engineering and Computer Science, UTD, 2016
Best Project - Research, Tata Research Development & Design Centre, Pune, 2012

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Our Contributions
	Dissertation Roadmap

	System Model And Problem Specification
	Shared Memory Model Types
	Synchronization Primitives
	GME Problem Specification
	Properties
	Complexity Measures

	Red Black Tree Preliminaries
	Correctness Conditions

	Background And Related Work
	Related Work for Group Mutual Exclusion
	Previous Work Drawbacks
	Subroutines
	Fairness and Concurrency Guarantees

	Related Work for Concurrent Red Black Tree

	GME algorithm for Cache-Coherent (CC) Model
	The Main Idea
	A Starvation-Free Algorithm
	Data Structures Used
	Achieving Deadlock-Freedom
	Achieving Starvation-Freedom
	Correctness Proof
	Complexity Analysis

	Achieving Space Efficiency

	Experimental Evaluation
	Different Group Mutual Exclusion Algorithms
	Experimental Setup
	Results

	GME algorithm for Distributed Shared Memory (DSM) Model
	Overview
	Proof And Complexity Analysis

	Lock-Based Concurrent Red Black Tree
	Top-Down-Framework
	Tsay and Li's Framework
	Tarjan's Sequential Top-Down Algorithm for Red-Black Tree
	Optimizations on the Top-Down Framework

	A Lock-Based Algorithm
	Overview of the Algorithm
	Details of the Algorithm

	Correctness Proofs
	The Main Idea
	Executions are Linearizable

	Experimental Evaluation

	Conclusion
	References
	Biographical Sketch
	Curriculum Vitae

