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With the rise in development of machine learning models, a lot of progress has also been made in

their applications to real world problems. Healthcare forms one of the most critical area for machine

learning research as it directly impacts the life of the general population. Although a lot of work

has been done and is continuing being done in the area of machine learning for healthcare, a variety

of open problems on handling the underlying noisy structure of the data and multi-modality of data,

still exist.

Classical machine learning requires the data to be in the form of a flat feature vector but with real

world data and especially healthcare, this is seldom the case. The data is almost always multi-modal

i.e. consists of different data types such as, relational (graph), images and text, to name a few.

Naturally, the machine learning models being developed for healthcare are thus expected to take

advantage of the varying types of data provided to it and learn more effectively.

Naive solutions take advantage of a large amount of available data to learn robust models. The

fallacy of such models is generalization, since in healthcare domain the model can be posed with

unseen tasks, such as identifying a new strain of virus, identifying a new drug etc., which can result

in its failure. Thus taking advantage of human experts becomes an important part while developing

models for such high impact tasks. Humans and machines can work in unison to handle the problem

of generalization and can learn from one another.
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This dissertation explores these challenges in depth and tries to address them individually before

presenting a unified view of how to overcome these challenges within a machine learning framework.

We analyse and present detailed solutions to each challenge and also show how they are inter-

connected. We understand the importance of learning machine learning models from different

modalities of data and gain insights about why moving from a propositional setting to a more

general relational setting is important. We also depict the importance of human experts and how

they can be crucial in high impact tasks such as healthcare. One of the chapters clearly shows that

even if the machine learning models are adversarial among themselves, using human expert as an

ally in the adversarial setting can help in learning far more effective models. Thus this dissertation

proposes several methods to overcome the most glaring problems in developing machine learning

models for healthcare tasks and develop effective models. It also outlines several challenges that lie

ahead and need to be overcome in order to realize the complete potential of the changes machine

learning can bring in healthcare.

ix



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Learning from noisy, heterogeneous data . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Learning from multi-relational data . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Dissertation Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Dissertation Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

CHAPTER 2 TECHNICAL BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Learning from Noisy and Heterogeneous data . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Drug-Drug Interaction Prediction and Discovery from Noisy, Heteroge-
neous Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Learning from Relational data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Structure Learning for Local Neighborhood Models from Multi-Relational
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Learning Relational Graph Convolutional Networks . . . . . . . . . . . . 16

2.3 Faithfully Generating Clinical Data . . . . . . . . . . . . . . . . . . . . . . . . . . 18

PART I LEARNING FROM NOISY, HETEROGENEOUS DATA . . . . . . . . . . . . . 21

CHAPTER 3 LEARNING FROM CLINICAL DATA WITH EXPERT ADVICE . . . . . . 22

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 PPMI study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Functional Gradient-Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

CHAPTER 4 LEARNING FROM HETEROGENEOUS SIMILARITIES . . . . . . . . . 36

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

x



4.2 Drug-Drug Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Kernel Learning for Drug Drug Interactions . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Drug-Drug Similarity Measures . . . . . . . . . . . . . . . . . . . . . . . 43

Graph feature: Reachability . . . . . . . . . . . . . . . . . . . . . . . . . 43

Drug Feature: Similarities based on SMILES and SMARTS strings . . . . 46

4.3.2 Notation and Problem Description . . . . . . . . . . . . . . . . . . . . . . 47

4.3.3 Incorporating Neighborhood Information . . . . . . . . . . . . . . . . . . 49

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Conclusion and Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

PART II LEARNING FROM MULTI-RELATIONAL DATA . . . . . . . . . . . . . . . . 58

CHAPTER 5 LEARNING LOCAL NEIGHBORHOOD BASED MODELS . . . . . . . . 59

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Learning Discriminative Gaifman models . . . . . . . . . . . . . . . . . . . . . . 63

5.2.1 Learning Relational Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.2 Feature Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

CHAPTER 6 GRAPH NEURAL MODELS FOR RELATIONAL DATA . . . . . . . . . . 77

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Relational Graph Convolution Networks . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Knowledge Base Extraction from Microsoft Academic Graph . . . . . . . . . . . . 83

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

PART III LEARNING SYNTHETIC HEALTH CARE DATA . . . . . . . . . . . . . . . . 90

CHAPTER 7 HUMAN-GUIDED DEEP GENERATIVE MODELS . . . . . . . . . . . . 91

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2 Human-Allied GANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2.1 Human input as inductive bias . . . . . . . . . . . . . . . . . . . . . . . . 95

xi



7.2.2 Post-advice data generation . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.2.3 Cholesky decomposition captures correlations . . . . . . . . . . . . . . . . 100

7.2.4 Human-Allied GAN training . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.3.1 Providing incorrect advice . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

CHAPTER 8 ADDITIONAL EXPLORATION . . . . . . . . . . . . . . . . . . . . . . . 107

8.1 Motif Based Approximate Counting via Hypergraphs . . . . . . . . . . . . . . . . 107

8.1.1 Conversion to Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.1.2 Approximate Counting via Partially Grounded Structural Motif(s) . . . . . 112

8.1.3 Approximation of clause probability (P) . . . . . . . . . . . . . . . . . . . 114

Summary Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.1.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.2 Knowledge-augmented Column Networks . . . . . . . . . . . . . . . . . . . . . . 115

8.2.1 Knowledge Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.2.2 Knowledge Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.3 Drug-Drug Interaction Prediction from Molecular Structure Images . . . . . . . . 121

8.3.1 Siamese Convolutional Network for Drug-Drug Interactions . . . . . . . . 124

8.3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

CHAPTER 9 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.1.1 Multi-View Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.1.2 Extension of Gaifman Models . . . . . . . . . . . . . . . . . . . . . . . . 133

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

BIOGRAPHICAL SKETCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

CURRICULUM VITAE

xii



LIST OF FIGURES

1.1 Example of heterogeneous, noisy and multi-relational data specified here in the domain
of healthcare. The glucose value is clearly incorrectly entered, creatinine is a missing
value (noisy data) and the patient data has multiple modalities (heterogeneous). . . . . 2

1.2 Example of the different modalities of data considered in this thesis. . . . . . . . . . . 6

3.1 Marek et al. (2011) describe the study organisation . . . . . . . . . . . . . . . . . . . 24

3.2 Relational Functional Gradient Boosting. . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Classifier results. Only the best classifiers among the aggregators are shown. . . . . . . 32

3.4 Propositional classifier performance on aggregated data. . . . . . . . . . . . . . . . . 33

3.5 Combined tree learnt with BoostPark10. . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Combined tree learnt with BoostPark20. . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Complete pipeline for creation of SKID3 . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 A general schema representation of the DrugBank database . . . . . . . . . . . . . . . 43

4.3 Reachability measure generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Instantiation process of a parameterized random walk W (left) is equivalent to sub-graph
matching for a given motif. The graph G (middle) shows a part of the chemical reaction
network (Dx, Cx & Tx indicate drugs, enzymes and transporters resp.). The rightmost
figure shows how 3 different instances/paths (marked in red) have been identified that
satisfy W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Our formulation aims to learn a positive semi-definite kernelZ and combination weights
αm for various similarity measures. These similarities represent interaction scores,
which help determine how likely two drugs are to interact. The similarities can be
constructed from diverse sources (such as molecular, structural, genomic, text). The
similarity measures are expressed through Laplacians, which view the interactions as
a neighborhood graph. In this manner, we can incorporate local information into the
kernel. The loss functions ensure that the learned Z is element-wise consistent with the
labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6 Experimental results, with kernels learned using All similarity measures (SKID3), along
with each similarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 An example Gaifman graph for a drug-drug interaction (DDI) knowledge base. Here
d1, d2, d3 = {Pravastatin, Simvastatin, Acetaminophen}, t1={Bile salt export pump},
t2={Multidrug resistance protein 1} and e1={Cytochrome P450 2C9}. Note that the
dotted line between d1 and d2 is the link we want to predict. . . . . . . . . . . . . . . . 61

5.2 Gaifman neighborhoods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xiii



5.3 A general overview of link prediction using Gaifman models. . . . . . . . . . . . . . . 64

5.4 Learning relational rules with relOCC . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 2-level distance combination for learning relOCC rules. . . . . . . . . . . . . . . . . . 68

5.6 (left) Accuracy, (middle) recall and (right) running time for various values of r, k and
w for the DDI domain. For varying r: w=5 and k=10, for varying w: r=1 and k=10
and for varying k: w=5 and r=1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.7 Comparison of our method with Tuffy with 10% sampled data sets. . . . . . . . . . . . 75

6.1 Graph Convolutional Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Feature and Distance Matrix Construction for Relational One-Class Graph Convolu-
tional Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Counts of the top 5 fields of study (research topics) in the knowledge base, grouped
by the conference name. Here ML=“Machine Learning”, AI=“Artificial Intelligence”,
CS=“Computer Science”, MATH=“Mathematics”, STAT=”Statistics”, PR=“Pattern
Recognition”, ALGO=“Algorithms” and MOPT=“Mathematical Optimization”. . . . . 84

6.4 Count of unique papers, authors and coauthor relations grouped by conference name. . 85

6.5 Snippet of the original Knowledge Base for the coauthor network. The blue nodes
denote the authors, the red nodes denote the institutes and green nodes denote the
institute type, location of institute and the research topic of each author (Best viewed in
color). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.6 Snippet of the original Knowledge Base for the coauthor network focusing on 4 authors
and their research topics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.1 Proposed Human-Allied Generative Adversarial Network architecture. . . . . . . . . . 94

8.1 (left) MotifM1 for C1; (center) Facts used to groundM1; (right) Ground graph, G1.
Ternary predicates Teaches and TA are represented as hyperedges in bothM1 and
G1. The edges AdvisedBy(Deb, Amy) and AdvisedBy(Fei, Amy) also appear in the
grounding of C2 (Fig. 8.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.2 (left) Motif M2 for C2; (center) Facts used to ground M2; (right) Ground graph,
G. The ternary predicate WorksIn are hyperedges in M2 and G2. The edges
AdvisedBy(Deb, Amy) (Deb → Amy) and AdvisedBy(Fei, Amy) (Fei → Amy) also
appear in the grounding of C1 (see Fig. 8.1). . . . . . . . . . . . . . . . . . . . . . . . 110

8.3 The motifM ≡ ra(v1, v3) ∧ rb(v2, v3) ∧ rc(v3, v4) ∧ rd(v4, v5, v6). Note that rd is a
hyperedge for the ternary relation rd(v4, v5, v6). . . . . . . . . . . . . . . . . . . . . . 113

8.4 Proposed K-CLN architecture. Here xi denotes the feature of each entity ei with yi
being the label of each entity. We provide advice in each layer using advice gates and
the prediction informs the advice gradient. . . . . . . . . . . . . . . . . . . . . . . . . 118

xiv



8.5 Performance w.r.t. epochs. Left to Right - Pubmed, Corporate Messages, Debates and
Social Disaster. Leftmost 2 show Micro-F1, (multi-class) & Rightmost 2 show AUC-PR
(binary) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.6 Some example molecular images of different drugs extracted from the PubChem database.123

8.7 An overview of our model for predicting drug-drug interactions . . . . . . . . . . . . . 124

8.8 An example of how two isomers interact differently with a single drug. . . . . . . . . . 126

8.9 Results using Siamese network for predicting drug-drug interactions. . . . . . . . . . . 127

8.10 An example of abstract features learned by a convolutional layer for Sulfisoxazole. . . 128

8.11 An example of abstract features learned by a convolutional layer for Venlafaxine. . . . 129

9.1 Our proposed approach for multi-view learning using graph convolutional networks . . 132

9.2 Conversion of a hypergraph to its corresponding Gaifman graph. . . . . . . . . . . . . 135

xv



LIST OF TABLES

3.1 Summary of classifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Results for BoostPark with and without expert advice . . . . . . . . . . . . . . . . . . 31

4.1 Initial relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Domain knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Few of the groundings generated for the random walk TransporterSubstrate(d0,
t1)∧ Transporter(t1, d1)∧ TargetInhibitor(d1, e1)∧ Enzyme(e1,
d2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Table depicting example drug pairs where the prediction does not match the ground
truth. However, we additionally cite sources (last column) that support our prediction. . 55

5.1 Evaluation domains and their properties. . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Results (≈ 3 decimals) for the relational domains. Note that the first three data sets
are relatively balanced and the last two are highly unbalanced. Thus, the accuracy and
AUC-ROC values for the last two data sets are reported only for completion. . . . . . . 73

6.1 Properties of the extracted knowledge base grouped by conference . . . . . . . . . . . 83

6.2 Properties of the reduced knowledge base for ICML’18 . . . . . . . . . . . . . . . . . 85

6.3 Example rules learned by the density estimation method for +ve and -ve examples.
Here “MO” = Mathematical Optimization and “PR” = Pattern Recognition. . . . . . . 86

6.4 Comparison of our method with state of the art baselines . . . . . . . . . . . . . . . . 88

7.1 Evaluation domains and their properties. . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2 Train on synthetic, test on real (TSTR) Results (≈ 3 decimals) for the medical domains.103

8.1 Results: Performance vs. Efficiency (running time for Learning and Inference in
seconds). ** indicates n-ary predicates. . . . . . . . . . . . . . . . . . . . . . . . . . 115

xvi



CHAPTER 1

INTRODUCTION

Machine learning has gone through significant transformations and has been given different def-

initions and different interpretations from its advent to the present time. Tom Mitchell describes

machine learning as a “A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance at tasks in T, as measured by P,

improves with experience E” (Mitchell, 1997). Right from 1952 when Arthur Samuel coined the

term machine learning while creating a computer program for playing checkers to the the recent

successes in self driving cars, there has been a huge advancement in the field of machine learning.

This emergence of machine learning has had a great deal of effect on taking major steps in

solving several real world problems ranging from oil spill detection in satellite images (Kubat

et al., 1998; Solberg et al., 1999), traffic accident prevention (Hu and Zheng, 2009; Tango and

Botta, 2013), spam filtering and phishing attacks detection (Guzella and Caminhas, 2009; Salihovic

et al., 2018) to several health care related tasks such as cancerous tumor detection (Havaei et al.,

2017), Alzheimer’s detection (Donini et al., 2016; Natarajan et al., 2014) and mortality prediction

(Motwani et al., 2016; Deprez et al., 2017). With an exponential rise in the amount of data and

knowledge available, the need for developing effective machine learning models to tackle real world

problems such as heart attack (Jin et al., 2009; Thirumalai et al., 2017), ER admissions (Hong et al.,

2018; Rojas et al., 2018) and mortality rate (Taylor et al., 2016; Veith and Steele, 2018), to name a

few, is of paramount importance.

Although the amount of available data has been rising exponentially with each passing year,

application of machine learning has not been on the desired scale due to several reasons such as:

1. Most real world data is relational in nature and representing such data as a flat feature vector,

as required by classical machine learning, is often accompanied by loss of information. Thus,

building a machine learning model with such multi-relational data is highly desirable.

1



2. Abstracting down from the representation issues, real world data is noisy i.e. there exist several

spurious relations as well as missing data which can lead to underwhelming performance by

a machine learning model.

3. The modality of data available, for the same real world task to be solved, can be highly

heterogeneous in nature i.e the data modality can vary widely from imaging data to graph

based data to a simple propositional format. Using these different modalities effectively and

more importantly in unison to learn a machine learning model is still an open problem.

4. Human experts can bring in a wealth of information which has shown to improve the training

of machine learning models. As Tom Mitchell writes, “Bias free learning is futile” (Mitchell,

1997), we plan to include human expert to augment machine learning models with knowledge

(bias) to learn more effectively.

Figure 1.1: Example of heterogeneous, noisy and multi-relational data specified here in the domain
of healthcare. The glucose value is clearly incorrectly entered, creatinine is a missing value (noisy
data) and the patient data has multiple modalities (heterogeneous).
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Given: Noisy, heterogeneous, multi-relational healthcare data.

To Do: Developing effective machine learning algorithms while exploiting human expertise.

To demonstrate the above roadblocks in application of machine learning methods to real world

problems, consider a healthcare motivated scenario below:

Scenario 1: Consider a patient, John, who is admitted to a hospital and is complaining of

tremors in the fingers of his hand, having difficulty in sitting and walking in a correct posture. He is

also complaining of suffering episodes of a chronic, abnormal stillness where there is a complete

loss of movement. The physician have an initial diagnosis of Parkinson’s disease and order MRI

scans and several tests such as the Montreal Cognitive Assessment (MoCA), and tests to asses the

motor functions such as speech, facial expression and tremors in the limbs (motor-UPDRS). The

hospital also asks his children to fill out a form that gives personal details about John including

his medical history and his smoking and drinking habits. The physician also collect oral swabs

from him to generate his genomic profile for their records. Typically, using such information

of a heterogeneous nature is vital for a human expert (physician) diagnose and detect diseases

and prescribe medications or develop treatment plans. Such observations are at varied levels

of representation; from low-level propositional values of clinical tests to structured databases

containing multi-relational data with entities, relations and hierarchies. Also, they could be noisy

due to possible errors in observation, data-entry process or implicit lack of samples.

Figure 1.1 clearly depicts the multiple types of data that can be collected from a single patient

in a single visit. This data can be divided into three categories at a high level: (1) medical data,

(2) imaging data and (3) genomic data. Considerable amount of research in developing machine

learning models for health care has resulted in several predictive models being developed (Choi

et al., 2016, 2017; Weiss et al., 2012; Liu et al., 2019).
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1.1 Learning from noisy, heterogeneous data

As depicted in figure 1.1, data collected from a patient can be, and generally is, heterogeneous in

nature. Since classical machine learning models cannot handle these multiple modalities simultane-

ously, the data needs to be converted to a single format (such as extracting propositional features

from images (Förstner, 1994; Chen et al., 2016) or extracting euclidean embeddings from graphical

data (Bordes et al., 2011; Nickel et al., 2016)) which can then be fed to a machine learning model in

different ways such as:

1. Learning multiple kernels from each of the heterogeneous data set and then combine them

together to obtain a prediction using multiple kernel learning (Das et al., 2010; Senechal et al.,

2012; Mariette and Villa-Vialaneix, 2018).

2. Combining the heterogeneous data sets in a Bayesian framework (Troyanskaya et al., 2003;

Sokolov et al., 2013).

3. Using multi-view learning which is a machine learning framework that considers learning

with multiple views to improve the overall generalization performance of a machine learning

model (Sun, 2013; Zhao et al., 2017; Christoudias et al., 2012).

1.2 Learning from multi-relational data

As mentioned earlier, classical machine learning models require the data to be in a flattened

propositional tabular format whereas most of the real world data is relational consisting of entities

and relations between entities. Statistical relational learning (Getoor and Taskar, 2007; Raedt

et al., 2016) combines the power of probabilistic models to capture uncertainty with logic/relational

models to take advantage of the rich domain structure to handle complexity and is used for working

with relational data directly without converting it to a propositional format that leads to loss of

information. Several models have been developed such as markov logic networks (Richardson and
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Domingos, 2006) (for undirected graphs), relational dependency networks (Neville and Jensen,

2007a) (for directed graphs) that can handle relational data. Moreover, boosted versions of these

models have also been developed (Natarajan et al., 2015; Khot et al., 2013) to learn more complex

relational features resulting in more effective models.

Another set of models map the relations and entities in the relational data into a low level

representation based on translational distance models (Xiao et al., 2016; He et al., 2015) or compo-

sitional operators for entities and relations (Yang et al., 2015; Nickel et al., 2016) to perform various

relational learning tasks such as link prediction and node classification.

1.3 Dissertation Statement

Different types of data can reveal different type of properties and patterns about the given task and

thus it is very important to use these different set of data in order to learn better and more effective

models. Our objective is to develop models that can take advantage of noisy, heterogeneous

multi-relational data while using additional knowledge from the human (preferably an expert) for

data generation in data scarce (due to privacy/access/cost issues) and knowledge rich domains.

1.4 Dissertation Contributions

A general overview of the type of the data handled in this thesis is shown in figure 1.2. This

dissertation makes the following contributions:

I. Develop an interpretable machine learning model for predicting Parkinson’s disease in

patients using only the clinical data, also leveraging expert advice for selecting the best

features for the models to learn from.

II. Develop methods that take advantage of different types of data within the medication data

(figure 1.1), such as

(i) Relationships between drugs and the corresponding enzymes,targets and transporters.

5



Figure 1.2: Example of the different modalities of data considered in this thesis.

(ii) Drug structure similarity data, such as molecular fingerprints and string representation

of the drug molecular structure.

(iii) Drug structure images.

to predict and discover novel drug-drug interactions (DDIs) along with learning an effec-

tive representation for the different types of data. One major advantage of our methods

is the ability to discover potential DDIs i.e. methods capable of knowledge refinement as

well as knowledge discovery.

III. Develop methods to take advantage of local neighborhood structure in multi-relational

data to avoid extracting similarity measures from given multi-relational data since using

such similarities for model construction can result in a loss of information.
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1.5 Dissertation Outline

The dissertation has been divided into 3 high-level parts. Part I outlines our approaches to learn

from noisy, heterogeneous data, Part II outlines our approaches to learn from multi-relational data

and Part III highlights our approach to construct synthetic heterogeneous healthcare data which can

otherwise be costly and difficult to access and obtain.

Chapter 2 presents the required technical background and related work for different problems

that have been tackled in this thesis. It also positions our work in the context of recent advances

in the current research directions. First we present the motivations behind solving problems in

healthcare domain that more often than not consists of noisy and heterogeneous data and also

discuss existing research. Next, we present the existing research on methods using multi-relational

data to avoid information loss in various real world domains. We also present related literature on

human knowledge augmented learning and deep adversarial networks to motivate the requirement

of a generative model for healthcare related data generation.

Part I

Chapter 3 presents our first approach that uses only clinical data for identifying Parkinson’s

patients. The work takes advantage of an expert during the feature selection phase to determine the

most important factors involved in patient identification and then uses a gradient boosting technique

to come up with the an interpretable machine learning model for predicting Parkinson’s disease in

patients.

Chapter 4 presents our approach to learn from heterogeneous data to predict as well as discover

new drug-drug interactions. Several machine learning models have been developed for predicting

drug-drug interactions that take advantage of the wealth of bio-medical literature to mine these

interactions but multitudes of data of different modalities are generally ignored. This chapter details
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a novel method for combining different modalities together resulting in a better predictive model

that is also capable of discovering new drug-drug interactions.

Part II

Chapter 5 describes a learning algorithm for relational local neighborhood-based approach that

takes advantage of the fact that local relationships of entities in a graph can be generalized to a

global representation of relationship between the entities. The main idea behind this model is that

“nodes with shared neighbors are more likely to be similar and thus are more likely to have a link

between them”. We show that structure learning (here learning first order rules) for positive and

negative examples in the data separately, using a kernel density estimation method, can result in a

better exploitation of the search space.

Chapter 6 extends the framework of graph convolutional networks (GCN) to relational domains.

Our framework ROCGCN initially uses a density estimation method to learn first order rules from

positive and negative data separately and the creates the feature matrix by counting the number

of satisfied groundings for each query example with respect to each first order rule learned. The

distance matrix is learned by taking a pairwise euclidean distance between the features. Our work

uses the distance matrix in GCN training instead of an adjacency matrix as usually required. Thus

the learned rules are used as the observed layer leading to more abstract and rich latent layers.

Part III

Chapter 7 augments the generative machine learning framework of generative adversarial net-

works with human (expert) knowledge to generate synthetic data sets from real medical data sets

keeping the intrinsic relationships between the individual features intact. Since access to real

medical data is not readily available to researchers due to the presence of unique constraints on

secondary use, our framework can generate synthetic data faithfully to overcome this problem.
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CHAPTER 2

TECHNICAL BACKGROUND

This chapter provides required background on the various problems that this dissertation aims to

address. We first describe the various approaches that have been taken in the literature for handling

noisy, heterogeneous data along with some basic concepts that are essential in understanding the

challenges involved in learning with such data with the focus on various healthcare tasks. Next,

we present the extensive literature on learning from relational data, why is learning in relational

domains difficult and how they form a major focus of this dissertation. Finally, we present and

analyze the existing research that closely relates to the approaches discussed in the subsequent

chapters.

2.1 Learning from Noisy and Heterogeneous data

Vikram Sarabhai, the father of the Indian space program had famously said “He who can listen

to the music in the midst of noise can achieve great things”. This is inherently true in machine

learning since most of the (real-world) data is highly noisy which can be due to several reasons (see

figure 1.2). To understand these reasons more clearly, consider an extension of scenario 1:

Scenario 2: After data has been collected from John the next step is to feed it into an electronic

health record. The physician who is tasked with this data entry has been on call for the last 36

hours and thus, naturally, is very tired. While entering the test results into the system, a value for

the glucose test was entered as 1000 instead of the true value of 100 and the value of creatinine was

not entered thereby resulting in a missed value.

The scenario above depicts a couple of most common ways in which the real data can be noisy,

namely, missing data and incorrectly entered values. A large amount of work exists that deals

with the noisy data (Yang et al., 2004; Sebban and Janodet, 2003; Van Hulse and Khoshgoftaar,

2009; Feng et al., 2018) in several noisy domains such as aerial imaging (Mnih and Hinton, 2012),
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sentiment analysis (Gamon, 2004; Barbosa and Feng, 2010) and healthcare (Gamberger et al., 2000;

Li et al., 2016).

Along with dealing with such noisy data, another big challenge that mars the large scale

adaptation of machine learning methods in real world domains is that of heterogeneity or multi-

modality of the available data for a single task. This challenge was depicted in scenario 1 where

multiple types of data such as clinical data, image data and genomic data could be collected for

a single patient in a single visit. A separate sub-area of machine learning called multimodal

machine learning (Baltrušaitis et al., 2018) exists that deals with heterogeneous data for a single

task in machine learning and consists of several classes of approaches ranging from combining or

fusing multi-modal data effectively for taking advantages of information contained in all modalities

(Srivastava and Salakhutdinov, 2012; Dähne et al., 2015; Ding et al., 2014) to aligning sub-elements

from each modality with each other to abstract out more complex relationship among different

modalities also referred to as manifold alignment (Wang and Mahadevan, 2009; Cui et al., 2014).

2.1.1 Drug-Drug Interaction Prediction and Discovery from Noisy, Heterogeneous Data

In our work for drug-drug interaction (DDI) prediction and discovery, that we define in chapter 4,

we use three different kinds of data, namely, (1) graph data in the form of relationships of various

drugs with different enzymes, transporters and targets, (2) molecular data in form of features and

fingerprints and (3) image data for molecular structure of drug and learn a single representation of

these modalities using an optimization procedure similar to multiple kernel learning (Gönen and

Alpaydın, 2011). We now present a clinical and algorithmic background for the DDI problem.

The interactions of a drug can be specified in two ways: (1) the drug has an adverse effect on

the human body, called adverse drug events (ADEs), and (2) the drug interacts with another drug to

cause an adverse effect called drug-drug interactions (DDIs). Most recent research has focused on

finding ADEs from text. Different approaches have been taken in order to identify and discover

ADEs in the machine learning community, especially from the natural language processing (NLP)
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perspective. Chee et al. (2011) make use of ensemble classifiers to extract ADEs, while Liu and

Chen (2013) used transductive SVMs to extract ADEs from online health forums. Gurulingappa

et al. (2012) use NLP with support vector machines (SVMs) to extract ADEs from MEDLINE

casereports. Karlsson et al. (2013) and Page et al. (2012) perform ADE information extraction from

EHR data. More recently, Kang et al. (2014) took a knowledge-based approach for extracting ADEs

from bio-medical text by using a concept recognition module identifying drugs and consequent

adverse effects in sentences and also consists of a knowledge-base module to decide if a relation

exists between the drugs and effects, while Natarajan et al. (2017) use Markov logic networks for

adverse drug event extraction from text.

In comparison to the extraction of ADEs, the problem of DDI prediction and discovery has

received far less attention, although similarity-based methods have proven to be very popular. The

problem of DDI discovery is a pairwise classification task, which lends itself very well to kernel-

based methods (Shawe-Taylor and Cristianini, 2004). Kernels are naturally suited to representing

pairwise similarities, and are constructed directly from the data vectors during pre-processing. Most

similarity-based methods for DDI discovery/prediction also use text sources such as biomedical

research literature as the underlying data source, and construct NLP-based kernels from these

medical documents (Segura-Bedmar et al., 2011; Chowdhury and Lavelli, 2013). Our work differs

considerably from such approaches as we do not restrict ourselves to corpus-based NLP kernels for

similarity, but rather focus on molecular and structural similarities. It should be noted, however,

that our framework can easily support such NLP-based similarities as it is designed to work with

such heterogeneous similarity measures, including NLP, and will be an interesting next step.

Fusing multiple kernels has also been studied as a viable approach for DDI discovery. Chowd-

hury and Lavelli (2011) combined linguistic and NLP kernels for the DDIExtraction2011 challenge

(Segura Bedmar et al., 2011). While this work used multiple similarities (kernels), they were

all constructed from the same data, making their approach homogeneous. The work of Cheng

and Zhao (2014) is closest to our heterogeneous approach; they consider four types of drug-drug
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similarities (phenotypic, therapeutic, structural and genomic). However, a significant difference

from our approach is that they treat pairwise similarities directly as features for use with standard

machine-learning models such as SVMs and k-nearest neighbor classifiers. This approach destroys

the structural and neighborhood information inherent in drug-drug similarity matrices; this means

that their model does not capture the true complexity of the DDI manifold. Our method differs from

Cheng et al’s as we combine heterogeneous similarities jointly and (locally) optimally, rather than

combining kernels into a single feature set and running propositional classifiers.

It should also be noted that other multiple kernel approaches do not learn relative weights of

similarities, that is, kernel combination is not a part of the learning process and is performed a

priori using fixed weights. This is a significant difference, as our approach learns a kernel as well as

relative weights between similarities to show which ones have the most influence on the final kernel.

Molecular structure similarity analysis has been studied in the context of DDIs before, where Vilar

et al. (2012) used SMILES code and MACCS fingerprints, with a matrix multiplication method

thresholded by a Tanimoto coefficient cutoff to predict new DDIs. Similarity-based kernels were

also used in the different task of drug-target interactions prediction (Ding et al., 2013). The work

of Tatonetti et al. (2011), Thomas et al. (2011) and Percha et al. (2012) are also relevant, though

applied to drug-target interaction prediction since their prediction task is very close to ours and

some of their features constructed from adverse event reporting system can be seamlessly integrated

into our work.

From a machine-learning standpoint, our work is closely related to multiple kernel learning,

which combines the power of multiple kernels together to learn a linear or non-linear kernel

combination. The work of Lanckriet et al. (2004) optimizes over a linear combination of multiple

kernels through semidefinite programming. In this seminal work, Lanckriet et al. (2004), test their

method on two data sets and demonstrate that learning a combination of kernels is indeed better

than learning single kernels for classification. Bach et al. (2004) built upon this work and proposed

more efficient algorithms for multiple kernel learning. Sonnenburg et al. (2006) further generalized
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the formulation in (Lanckriet et al., 2004) by posing the multiple kernel learning problem as an

semi-infinite linear program that is easier to solve. In recent years, multiple kernel learning has

also been extended to multi-class problems (Zien and Ong, 2007) and localized kernels (Gönen and

Alpaydin, 2008), where kernels are learned more precisely using the local information available.

Other methods such as those proposed by Rakotomamonjy et al. (2007) and Varma and Babu (2009)

led to efficiency improvements.

These and other methods are discussed in Gönen and Alpaydın (2011). These approaches all

rely on the fact that multiple kernel learning can be equivalently cast in terms of the SVM dual;

thus these approaches are used for individual classification of training examples. Our framework is

considerably different, however, as we are interested in pairwise classification of training examples

to identify interactions.

Our framework, relies on kernel alignment, which serves to regularize a kernel learning problem.

Specifically, we seek to learn a single kernel from multiple similarities by aligning the kernel with

the labels (Cortes et al., 2012) as well as local neighborhood (Hoi et al., 2007). At a high level,

our approach seeks to perform manifold regularization (Belkin et al., 2004) and alignment, to fuse

information from various similarity measures into one kernel.

2.2 Learning from Relational data

Although extracting similarity measures from given data and using the similarities for model

construction has been used widely in machine learning, most of the real world data is relational

in nature. Representing such data in form of flat feature vectors results in loss of information.

Examples include important relationships not being captured while the transformation process at

one end to the creation of spurious relationships in the transformed data at the other end, which

can adversely impact the task at hand. For instance, since we cannot pre-determine the number of

chemical and biological compounds that are related to or lead to an interaction of a drug (i.e. there

is no pre-determined process that can be generalized to every drug thereby introducing uncertainty),
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it becomes difficult if not impossible to represent them as fixed length feature vectors. Even if we

are able to obtain this feature vector representation, it is with respect of each drug which makes it

difficult to generalize over the various type of reactions that might happen with other drugs. This

presents us with two primary problems of a flat feature vector representation of relational domains,

namely linkage and autocorrelation (Jensen and Neville, 2002).

To deal with relational data directly and avoid the above mentioned problems, we need to handle

the uncertainty and generalizability issues and to do so we turn to two of the oldest fields of study

within mathematics and computer science, probability and first-order logic. Statistical Relational

Learning (SRL) (Getoor and Taskar, 2007; Raedt et al., 2016) harnesses the power of probability

(that handles noise and uncertainty) and first-order logic (that handles generalizability by capturing

the rich underlying relational structure). Although an already vast yet still evolving field, SRL

models can be categorized based on the underlying structure, whether it is undirected or directed.

Undirected SRL models include Markov logic networks (Richardson and Domingos, 2006; Singla

and Domingos, 2005) with the structure learning (Kok and Domingos, 2005) and parameter learning

(Lowd and Domingos, 2007) and the respective boosted model, MLN-Boost (Khot et al., 2011).

Directed SRL models include relational dependency networks (Neville and Jensen, 2007b) and the

respective boosted model, RDN-Boost (Natarajan et al., 2012a). Recently, a lot of effort is also

taking place to combine deep learning with relational methods to take advantage of the scalability

of deep learning models and interpretibility of relational models (Sourek et al., 2015; Kaur et al.,

2017a; Kazemi and Poole, 2018a; Kaur et al., 2019).

2.2.1 Structure Learning for Local Neighborhood Models from Multi-Relational Data

Graph data is naturally multi-relational and algorithms that can directly operate on the graph data

without resorting to similarity generation are highly desirable. In our work we take advantage

of the underlying local-neighborhood structure while dealing with such graph data and learn a

representation for the graph entities based on their local neighborhoods. Learning embeddings from
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a given knowledge graph, or graph embedding, is a well-studied problem in machine learning. A

large body of recent work in this area can be categorized broadly by the underlying approaches:

matrix factorization, deep learning, edge reconstruction, graph kernels and generative models. These

approaches have been extensively surveyed recently; see for instance, Nickel et al. (2016), Wang

et al. (2017a) and Cai et al. (2018). In general, Gaifman models tend to scale better than many

such approaches to higher-arity relations and target-query complexity (Niepert, 2016) owing to

their local view and incorporation of count-based features, as opposed to the global view of (say)

neural network or factorization methods, which are forced to look at the entire graph to construct

effective embeddings. While highly effective, a key drawback of these approaches is their inability

to incorporate new data easily, often requiring a new model to be trained.

Bordes et al. (2011) use a neural network architecture to create embeddings from any knowledge

base. In more recent work (Dettmers et al., 2018), deep learning has been employed to learn such

embeddings. Other recent methods such as HOLE (Nickel et al., 2016) uses circular correlation of

the vector representations of entities to create holographic embeddings for binary relational data

and Poincare embeddings (Nickel and Kiela, 2017) embeds the underlying knowledge graph into a

Poincare ball.

Relational Learning Relational learning is the task of predicting values of a relation, given a

relational database of entities and the observed relations among the given entities. One of the most

important tasks in relational learning is that of link prediction which determines whether a relation

(link) exists between entities based on the given relational database. Taskar et al. (2004) use Markov

Logic Network to predict links between entities in relational domains with a focus on collective link

classification. Martı́nez et al. (2017) and Al Hasan and Zaki (2011) present a comprehensive survey

on link prediction problems in complex networks and social networks respectively. Deep learning

methods have also been used for link prediction problems especially using graph neural networks

(Harada et al., 2018). Chuan et al. (2018) present a metric learning based method for link prediction

in online social networks. More such recent methods are surveyed in Goyal and Ferrara (2018).
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Structure Learning Structure learning has been a well-studied problem in graphical models

and can be defined as is the problem of estimating a graph structure i.e. model learning, that can

principally summarize the dependencies in a given data set. For our purpose, structure learning (in

relational domains and probabilistic graphical models) can be interpreted as learning first-order

rules from the given graph and/or the data. Structure learning for Bayesian networks has been

especially well studied and various methods exist such as genetic algorithms (Larrañaga et al.,

1996), linear programming (Jaakkola et al., 2010) and constraints (De Campos et al., 2009). For

undirected graphical models, Kok and Domingos (2005) optimize a weighted likelihood function

while searching through a space of clauses to learn a Markov logic network structure. Natarajan et al.

(2012a) present an end-to-end algorithm i.e structure and parameter learning algorithms for boosting

relational dependency networks. Several other methods also exist such as using L1 regularization

(Lee et al., 2007), hypergraph lifting (Kok and Domingos, 2009), relational logistic regression

(Ramanan et al., 2018) and decision trees (Lowd and Davis, 2010). A more comprehensive survey

for structure learning in graphical models is provided in Zhou (2011).

2.2.2 Learning Relational Graph Convolutional Networks

Recently, several successful methods for learning embeddings of large knowledge bases have been

developed. They have been motivated through the inevitability of learning and reasoning about

various entities, their attributes and relations present in the knowledge bases. Several of these

approaches such as TransE (Bordes et al., 2013), TransH (Wang et al., 2014), TransG (Xiao et al.,

2016) and KG2E (He et al., 2015), to name a few, can be grouped into translational distance models

that focus on minimizing a distance based function under some constraints or using regularizing

factors between entities and relations. More recent approaches propose to extend these translation

approaches by embedding the knowledge graphs into more complex spaces such as the hyperbolic

space (Balazevic et al., 2019; Kolyvakis et al., 2019) and the hypercomplex space (Zhang et al.,

2019; Sun et al., 2019). Another important class of approaches such as RESCAL (Nickel et al.,
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2011), DistMult (Yang et al., 2015) and HolE (Nickel et al., 2016) focus on various compositional

operators for the entities and relations in the knowledge graph. A more complete survey on the

different types of knowledge graph embeddings is given in (Wang et al., 2017b).

While several methods have focused on applying neural networks to extract relational embed-

dings on large networks such as knowledge graphs, a potential limitation of much of this line of

research is that the inherent semantic structure of the network is not exploited. To overcome this

limitation, graph convolutional networks (GCNs) (Kipf and Welling, 2017) were proposed that

generalized neural network models to multi-relational, graph-structured data sets. A GCN (Kipf

and Welling, 2017) generalizes neural network models to multi-relational, graph-structured data

sets where each convolution layer in the GCN applies a graph convolution i.e. a spectral filtering of

the graph signal (the feature matrix of the graph) via the Graph Fourier Transform.

Similar to the convolution operators in convolutional neural networks (CNNs) that extract locally

stationary features in the inputs data, GCNs utilize the graph convolution operator defined with

respect to the adjacency matrix A to extract local features from a semantic point of view. The

fundamental difference between CNNs and GCNs is that, while CNNs apply spatial convolutional

filters, GCNs apply spectral convolutional filters or similar aggregational filters (Hamilton et al.,

2017; Ying et al., 2018) to incorporate the neighborhood information in the underlying model

which leads to a better generalization. Similar to a CNN which can, and generally has, multiple

convolutional layers, successive application of graph convolution is possible, with each application

(layer) producing a successively more informative node embeddings, while possibly simplifying the

network structure.

While successful, GCNs still have a limitation in that they cannot directly be applied on multi-

relational data/networks. To alleviate this, a recent extension to the relational data for GCNs was

proposed (Schlichtkrull et al., 2018) where a latent representation of the entities are explicitly

constructed and a tensor factorization then exploits these representations for the prediction tasks.

We take an alternative approach – we consider the more recent successes inside SRL (Khot et al.,
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2014; Lao and Cohen, 2010a) to develop novel combinations of the entities and their relationships

to construct richer latent representations. As we demonstrate empirically, this leads to superior

predictive performance.

While our work can be used for entity attribute prediction and link prediction, we focus on the

more interesting link prediction task to demonstrate the utility of our approach.

2.3 Faithfully Generating Clinical Data

Generative Aversarial Networks While GANs have proven to be powerful frameworks for esti-

mating generative distributions, convergence dynamics of a naive mini-max algorithm for learning

GANs has been shown to be unstable. Some recent learning approaches, among many others,

augment learning either via statistical relationships between the true and the learned generative

distribution such as Wasserstein-1 distance (Arjovsky et al., 2017), MMD (Li et al., 2015) etc. or

via spectral normalization of the parameter space of the generator model (Miyato et al., 2018) which

controls the generator distribution from drifting too far.

Most of the work in the space of GAN models has been dedicated towards applying them to image

data. Since the generator and discriminator used in GANs are (deep) neural networks which have

proven to be very efficient in computer vision tasks, using GANs on such tasks seem a natural

approach although GANs have been previously applied to generating medical records. Choi et al.

(2017) propose an approach that extends the GANs models to be applied to patient’s electronic

health record (EHR) data to generate synthetic patient records. The authors present a model that is

similar to (Li et al., 2015) in nature as it is a combination of auto-encoders and GANs but instead

of learning in the auto-encoder space, the auto-encoder assists GANs to learn in the true data

space by decoding the generated distribution into synthetic EHR records. The authors also propose

mini-batch averaging to prevent mode collapse, a recurrent problem in training of GANs.

Most of the architectures proposed for GANs make use of neural networks for the discriminator

and generator models. Esteban et al. (2017) use recurrent neural networks, specifically long-short
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term memory networks, for the discriminator and generator models and focus their approach on

medical data-sets. They propose two models, Recurrent GAN (RGAN) and Recurrent Conditional

GAN (RCGANs) that make use of recurrent neural network (long-short term memory networks,

to be specific) for the discriminator and generator models and focus their approach on medical

data-sets. RCGAN and RGAN differ in the number of inputs each of the model takes as RGAN takes

a unique random seed at every (temporal) input to produce the synthetic data, whereas RCGAN

takes additional inputs that condition the produced outputs. The authors also propose two interesting

ways to evaluate the GAN output, namely, train on synthetic, test on real (TSTR) and train on real,

test on synthetic (TRTS). These are important since the real quality of learned examples can be

judged if the features learned in one distribution can be generalized to the other distribution.

As mentioned above, privacy is an important issue in the sharing of medical data sets for research

purposes. Some previous approaches have been proposed that reserve privacy while generating

synthetic patient records (Howe et al., 2017; Beaulieu-Jones et al., 2019; Jordon et al., 2019). Howe

et al. (2017) propose DataSynthesizer, a tool to generate synthetic data from sensitive real medical

data with strong privacy guarantees. The tool works in three different modes and an important

functionality of each mode is that special care has been taken to preserve privacy of sensitive medical

data by adding Laplacian noise while constructing the distribution. Since the noise is known, the

resulting attributes can be de-noised to obtain the true values. Most of these models added random

noise based on differential privacy i.e. no one patient (example) should have a significant influence

on the learned model. The random noise added is directly proportional to the effect an example has

on the learned model.

Human Expert Advice based Models In his seminal monograph, “The Need for Biases in

Learning Generalizations” Mitchell shows that inductively biasing learners is necessary in order

achieve true generalization over new instances (Mitchell, 1980). One, albeit traditional, view of

such inductive bias is of “generality via simplicity” where regularization strategies aim to control
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the complexity of a model. However, another form of inductive bias is incorporating “knowledge of

the domain”. The goal of a system that implements such a bias (with domain knowledge typically

obtained from human domain experts) is to learn a model that is consistent with the training

examples as well as with known facts about the domain.

One typical approach to incorporate human guidance in model learning is by providing rules

over training examples and features. Some of the earliest such approaches were explanation-based

learning (EBL-NN, (Shavlik and Towell, 1989)) or ANNs augmented with symbolic domain rules

(KBANN, (Towell and Shavlik, 1994)). Substantial research in this area have studied various

techniques of leveraging domain knowledge for optimal model generalization, such as, polyhedral

constraints as in the case of knowledge-based SVMs, (Cortes and Vapnik, 1995; Schölkopf et al.,

1998; Le et al., 2006; Fung et al., 2002; Kunapuli et al., 2010)), preferences which has been

studied extensively within the preference-elicitation frameworks (Braziunas and Boutilier, 2006;

Kunapuli et al., 2013b) or qualitative constraints such as monotonicities and synergies (Yang

and Natarajan, 2013) or quantitative relationships and constraints (Ganchev et al., 2010). Our

knowledge augmented learning framework most closely resembles qualitative constraints in spirit.

While widely successful in building optimally generalized models in presence of systematic

noise (or sample biases), knowledge-based approaches have mostly been explored in the context of

discriminative modeling. In the generative setting, a recent work extends the principle of posterior

regularization from bayesian modeling to deep generative models in order to incorporate structured

domain knowledge (Hu et al., 2018). Traditionally, knowledge based generative learning have

been studied as a part of learning probabilistic graphical models with structure/parameter priors

(Mansinghka et al., 2006).
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PART I

LEARNING FROM NOISY, HETEROGENEOUS DATA
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CHAPTER 3

LEARNING FROM CLINICAL DATA WITH EXPERT ADVICE

Parkinson’s, a progressive neural disorder, is difficult to identify due to the hidden nature of the

symptoms associated. This difficulty in identification of progressive neural disorders can result in

the full fledged development of the disorder in patients. Since these disorders have no cure, the

only method to prevent the onset of such disorders is early diagnosis can significantly improve the

quality of life for the patients. This chapter presents our work (Dhami et al., 2017) that considers

the data collected as part of the Parkinson’s Progression Marker Initiative (PPMI) (Marek et al.,

2011) and aims to predict the presence of Parkinson’s disease in a patient based on clinical data.

There exist few important challenges for this task such that the data is inherently noisy and that

there seem to be no real strong indicator that explains the progression clearly.

3.1 Introduction

We consider the problem of predicting the incidence of Parkison’s disease, a progressive neural

disorder. Specifically, we consider the data collected as part of the Parkisons Progression Marker

Initiative (PPMI) and aim to predict if a subject has Parkinson’s based on clinical data - particularly,

motor assessments (motor functions) and non-motor assessments (neurobehavioral and neuropsy-

chological tests). One of the most important challenges for this task is that there appears to be no

real strong indicator that explains the progression clearly (Marek et al., 2011).

Our hypothesis, that we verify empirically in this work is that instead of considering a small

set of strongly influencing risk factors, it might be more effective to consider a large set of weakly

influencing risk factors. To enable learning with this large set of weak influences, we adapt the

recently successful gradient-boosting algorithm (Friedman, 2001) for this task. We exploit the use

of a domain expert in identifying the right set of features and consider learning from the longitudinal

data. Unlike standard methods that require projecting the data to a feature vector format (using what
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are called aggregation or propositionalization methods), our proposed approach models the data

faithfully using time as a parameter of a logical representation. In addition, use of the state-of-the-art

boosting technique allows for learning flexible models. We evaluate our proposed approach on

≈ 1200 patients from the PPMI study and demonstrate the effectiveness and efficiency of the

proposed approach.

In this chapter, we make the following key contributions: we consider the challenging task

of predicting Parkinson’s from 37 different risk factors (features in machine learning terminol-

ogy). These features were chosen by interacting with the domain expert. The key advantage of

this approach is that it models the underlying data faithfully without converting the data into a

standardized feature vector format. We evaluate our approach on the real data from PPMI study

where we compare our proposed method against several baselines.

The rest of the chapter is organized as follows: after introducing the necessary background, we

present the boosting for Parkinson’s approach. Then we present detailed experimental evaluation

before concluding the chapter by outlining areas of future research.

3.2 PPMI study

Parkinson’s Progression Markers Initiative(PPMI) is an observational study with the main aim of

identifying features or biomarkers that impact Parkinson’s disease progression. Marek et al. (Marek

et al., 2011) defines one of the goals of the PPMI study as recognizing key features that will help in

identifying the progression of the disease. Since Parkinson’s is a gradually increasing disease and

does not have a specific known cause, any pointers about the features that can help in identifying the

progression can be critical to developing treatment for the condition. The study collects data using a

variety of clinical and imaging assessments 1. Figure 3.1 shows the structure of the PPMI study.

The collected data can be divided broadly into four distinct categories:

1The data can be accessed from the website of Laboratory of NeuroImaging (LONI) (https://ida.loni.usc.edu)
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Figure 3.1: Marek et al. (2011) describe the study organisation

1. Imaging data: MRI and DaTSCAN images of a subject. DaTSCAN images are constructed as

the including criteria of the subject since these images can confirm or refute a doctor’s initial

diagnosis whereas MRI of the subject is taken during the baseline visit after the inclusion in

the study.

2. Clinical data: medical history and various clinical assessments carried out during the study.

3. Biospecimens: physical samples taken from the subject’s body, e.g. urine, plasma, blood and

serum.

4. Subject demographic data: race, gender and ethinicity of the subject.

In our work we focus primarily on the clinical data which mainly consists of 2 types of assessments:

1. Motor assessments: everyday motor function characteristics.

2. Non-motor assessments: neurobehavioral and neuropsychological tests.

24



Since Parkinson’s mainly affect the motor system (i.e. the part of the nervous system associated

with movement) and the initial symptoms are mostly movement related, using motor assessment

data seems a natural approach. A subset of the clinical data is selected based on the expert input

after which a set of 37 features are obtained. These can be broadly defined in these categories:

1. Motor-UPDRS (consists of 34 features). (Goetz et al., 2008)

2. Montreal Cognitive Assessment (MoCA), a non-motor assessment.

The MoCA score of a patient for a single visit.

Difference in MoCA scores of the patient from the last visit.

3. Total UPDRS score.

MoCA consists of series of questions assessing various parameters of a subject such as the

visual capability, capacity of recognizing objects, the attention span and memorizing words to name

a few. Each of the questions are scored with the total score being 30. A subject with score of ≥ 26

is considered to be normal.

Unified Parkinson Disease Rating Scale (UPDRS) is a rating scale used for determining the

extent of Parkinson’s disease progression in a subject. Each assessment in a UPDRS scale ranges

from 0 to 4, with 0 being the absence of an abnormal behavior and 4 representing severe abnormal

behavior with respect to the assessment. Motor-UPDRS refers to the value of motor assessments in

the UPDRS scale. Total UPDRS score refers to the sum of all the assessments of the 34 features

used.

3.3 Functional Gradient-Boosting

Dependency networks (Heckerman et al., 2001) are graphical models that learn a joint distribution

over the variables using independently learned conditional distributions for each variable in the

model. These models have proved to be quite effective in the task of probabilistic inference.
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Relational dependency networks (Neville and Jensen, 2007a) extend the dependency networks to a

relational setting where the joint distribution is learned as a product of conditional distributions over

ground atoms. In our work, we are interested in estimating the conditional distribution - P (par|x)

where x represents the set of motor and non-motor assessments (called features in machine learning

terminology) and par denotes the incidence of Parkinson’s disease for the particular patient. Given

this aim, one could apply any machine learning algorithm for learning this distribution. We focus

on the gradient-boosting technique which has had success in medical applications (Natarajan et al.,

2012, 2013; Weiss et al., 2012).

Gradient-boosting is a gradient-ascent technique performed on the functional space. Standard

gradient-descent techniques maximize an objective such as log-likelihood or mean-squared error

and derive the gradients w.r.t the parameters that are being learned. They typically start with initial

parameters θ0 and compute the gradient (δ1) of an objective function w.r.t. θ0. The obtained gradient

is used to update the parameters by adding the gradient to the previous parameters (i.e. the updated

parameter θ1 = θ0 + δ1) and this process is repeated until convergence. For probabilistic models, an

alternate method is that of gradient-boosting that represents the conditional distributions using a

functional representation, for instance a sigmoid function. Then the gradients are calculated w.r.t to

this function. For instance, one could represent P (par|x) = eψ(y|x)

1+eψ(y|x) .

Now, the gradients of the loglikelihood can be taken w.r.t ψ. Friedman (2001) suggested that

instead of obtaining the gradients w.r.t the global function ψ, one could obtain the gradient for

each example 〈xi, yi〉, where y denotes the target i.e., presence of Parkinson’s. The key idea is that

while these set of gradients are an approximation of the overall gradient, they are, generally, good

approximations because the direction of these gradients point to the same direction as that of the

true gradient.

This functional gradient of likelihood w.r.t. φ for each example i is

∂log(P (yi|xi)
∂φ(yi|xi)

= I(yi = 1)− P ((yi = 1|xi) (3.1)
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where I is the indicator function (equal to 1 if yi = 1 and equal to 0 if yi = 0). The gradient is the

difference between the true label and the current prediction and is positive for positive examples

and negative for negative examples. In simpler terms, the negative examples are pushed towards 0

and the positive examples are pushed to 1 resulting in a well defined decision boundary.

The approach proposed by Friedman (2001) represents the objective function as a regression

function of the given examples, φ(x) and the gradients are calculated with respect to this regression

function. These gradients are termed as functional gradients and analogous to the parametric gradient

descent, the functional gradient descent’s final function is the sum of the initial regression function

with all the functional gradients i.e. after n steps φn(x) = φ0(x) + δ1(x) + δ2(x) + ...+ δn(x).

Functional gradient descent fits a regression function φ̂(m), (generally regression trees) to the

gradients δm at each step m. The final model is given by φm = φ0 + δ̂1 + δ̂2 + δ̂3 + ... + δ̂m

i.e. the sum over the regression trees. Due to this sequential nature of learning models based on

the previous iteration, functional gradient ascent is also known as functional-gradient boosting

(FGB). Natarajan et al. (2012b) extend FGB to the relation setting to overcome the assumption of

a propositional representation of the data in standard FGB and we employ this relational version,

relational functional gradient boosting (RFGB) as our method. A standard objective function used

in RFGB is the log-likelihood and the probability of an example is represented as a sigmoid over

the φ function. The above process can be shown in figure 3.2.

We use a predicate logic representation for modeling examples as groundings/instantiations

(e.g. mcstest(3001,302,”29”)) of the features. The φ function is represented by relational regression

trees (RRT) (Blockeel and De Raedt, 1998) which uses the relational features as input to the trees.

The key reason for using this relational version is that this particular method has an efficient search

strategy that can be easily guided by the domain expert who could provide preference information.

These preferences have been shown to be particularly useful in presence of noisy data (Odom et al.,

2015; Odom and Natarajan, 2018).
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Figure 3.2: Relational Functional Gradient Boosting.

3.4 Proposed Approach

The aim of the PPMI study is to determine the most predictive features for the disease progression,

the involvement of a domain expert during the feature selection process becomes beneficial. Our

specific aim is to predict the incidence of Parkinson’s in a patient. Since the data is longitudinal

in nature, it is important that we model time faithfully. We view time as a special type of relation

and hence we create features in the predicate logic format as feature name(patient id, time, feature

value). This allows time to be an argument of the predicate which indicates the number of days

after the first record, the given study data was included. We take the start date of the study to be day

0. As an example consider that the records of patient A were entered on January 1, 2016 and these

are the oldest records for any patient that can be found in the study. Also say, the records of patient

B were entered on January 1, 2017. The variable time for patient A will then be assigned as 0 and

for patient B will be assigned as 365.

Algorithm 1 shows our proposed approach. The first step of the process starts with the correlation

analysis of the raw data obtained. The raw clinical data consists of 81 features. A correlation

matrix is constructed with each entry representing the correlation coefficient (we use the Pearson

correlation coefficient) between each variable and the others. The 50 features with low mutual
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correlation and high correlation to the class label are selected. The second step consists of the expert

evaluating the obtained features giving us a further pruned set of 34 features and thus the final data

to be used for the classification task. The key reason for considering a relational representation is

two fold:

1. Relational models allow learning using the natural representation of the data.

2. Data is longitudinal i.e. a patient has multiple entries in the data. Propositional classifiers

have limitations in learning such data (require aggregators) (Perlich and Provost, 2006).

Algorithm 1 BoostForParkinson’s
1: function BOOSTPARK(Data)
2: C = CalcCorr(Data)
3: E = Expert(C)
4: M = FGBoost(Tar, F,E) . Tar is the target predicate and F is the set of features in E
5: end function
6: ———————————————————————————————————-
7: function FGBOOST(Tarf , F,Data)
8: Modf0 = InitialFunction . f denotes index of current target
9: for 1 ≤ s ≤ |S| do . S is the number of gradient steps

10: EGf = GenExamples(f ;Modfs−1, Data) . Mod is the current model
11: ∆m(f) = FitRelRegressTree(EGf , f) . Fit trees to the functional gradient
12: Modfs = Modfs−1 + ∆m(f) . Updating the model
13: end for
14: P (Xf = xf |Ne(xf )) ∝ModfS(xf ) . Ne(xf ) represents the neighbors of xf that influence xf
15: return Mod . Return the final model
16: end function
17: ———————————————————————————————————-
18: function CALCCORR(Data)
19: for 1 ≤ i ≤ |IF | do . IF are the initial features
20: corCoeff(i) = PCC(1 : IF 6= i) . PCC refers to the calculation of Pearson correlation

coefficint
21: corMatrix.add(corCoeff(i))
22: end for
23: ReducedFeatureSet = LeastCorrelatedFeatures(corMatrix)
24: return ReducedFeatureSet
25: end function

The learner is provided with the training data which it uses to learn a relational regression tree.

The last step is the prediction phase where the learned model can be queried to return the probability
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Table 3.1: Summary of classifiers.

Classifier Summary
BoostPark10 Functional gradient boosting with 10 RRT’s
BoostPark20 Functional gradient boosting with 20 RRT’s
LR-min, LR-max and LR-mean Logistic regression on the min, max and mean aggregation of

propositional data
GB-min, GB-max and GB-mean Gradient boosting with tree depth of 5 on the min, max and mean

aggregation of propositional data
SVM-L-min, SVM-L-max and
SVM-L-mean

Support vector machines with linear kernel on the min, max and
mean aggregation of propositional data

SVM-P-min, SVM-P-max and
SVM-P-mean

Support vector machines with polynomial kernel on the min, max
and mean aggregation of propositional data

SVM-RBF-min, SVM-RBF-max
and SVM-RBF-mean

Support vector machines with radial basis function kernel on the
min, max and mean aggregation of propositional data

of the target being true given the evidence. Since all the evidence is observed, inference requires

simply querying all the relational regression trees, summing up their regression values and returning

the posterior estimates i.e. the probability that the given test example belongs to the positive class.

Interpretability: One key limitation of the proposed approach is the interpretability of the

final model. While each boosted tree in itself is interpretable, given that they are not learned

independently of each other other makes the model difficult to interpret. To make the model

comprehensible, we take an approximate approach that we call the Craven approach (Craven and

Shavlik, 1996) which was originally developed for making neural networks interpretable. The key

idea is to relabel the training data based on the boosted model that we have learned and then train

an overfitted tree to this labeled data. The intuition is that this new large tree will represent the

decisions made by the original set of trees due to its performance on the training data. Recall that

our original training data consists of Boolean labels (Parkinson’s vs negative). But the relabeled

data consists of regression values that are being learned in the new tree. Hence, the resulting tree is

closer to the original learned model as we show in our experiments.
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3.5 Experiments

In our empirical evaluations, we aim to explicitly ask the following questions:

Q1: How effective is the feature selection with expert in predicting Parkinson’s?

Q2: Given the longitudinal nature of the data, is our method more effective than using standard

classifiers in this prediction task?

Q3: Do the initial number of regression trees makes any difference in the learning of the model?

Q4: Does the method of aggregation make a difference in learning a model?

We compare our method, BoostPark, to three propositional classifiers: Logistic Regression,

Gradient-Boosting and Support Vector Machines. The propositional data is aggregated using three

aggregator functions: min, max and mean over time. Table 3.1 gives an overview of all the classifiers

considered in our work.

Our data consists of records for 1194 patients, with 378 positive examples (i.e. Parkinson’s

patients) and 816 negative examples. Regression trees are learned on the given data which form

the training model. The data is split into training and testing data with a ratio of 60%− 40%. The

training data has 226 positive and 489 negative examples whereas the testing data has 152 positive

and 327 negative examples. We perform 10-fold cross validation and present the results.

Table 3.2: Results for BoostPark with and without expert advice

With Expert Without Expert
Classifier Accuracy AUC-ROC AUC-PR F1 score Accuracy AUC-ROC AUC-PR F1 score
BoostPark10 0.889 0.973 0.937 0.808 0.854 0.932 0.9 0.797
BoostPark20 0.901 0.977 0.947 0.851 0.881 0.94 0.87 0.832

Table 3.2 shows the result of learning from 50 features obtained after correlation and 37 features

after the expert advice. This helps us in answering Q1 affirmatively. Feature selection with expert is

effective in our classification task.
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Figure 3.3: Classifier results. Only the best classifiers among the aggregators are shown.

Since we aggregate the propositional data using 3 aggregators, the best performing aggregator

for all the propositional classifiers is selected and compared to our methods BoostPark10 and

BoostPark20. BoostPark10 and BoostPark20 perform considerably better than the propositional

counterparts in terms of AUC-ROC and AUC-PR and performs equally well in terms of accuracy.

This helps answer Q2 positively. Our method is more effective than the standard classifiers in this

prediction task.

As mentioned in the previous section, we obtain an approximate combined tree. Specifically, we

combine two different number of trees - 10 and 20 trees - and these are presented in figure 3.5 and

figure 3.6 respectively. As seen from the resulting trees, a few of the features do remain the same,

most evidently the feature constituting the root of the tree, although some features do change. Thus

Q3 can be answered affirmatively. The initial number of regression trees makes some difference

in the learning of the model. However, the prediction ability of both the trees are similar. This

indicates that there could be multiple ways in which the risk factors could interact to yield similar
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(a) Aggregator = max (b) Aggregator = min (c) Aggregator = mean

Figure 3.4: Propositional classifier performance on aggregated data.

performance results. This also validates our claim that most risk factors have a weak influence on

the target disease. The similarity in the trees also indicate the consistency of our learning algorithm

in extracting these predictive features.

Figure 3.4 presents the performance of all the propositional algorithms on all the aggregators.

As we can see, the max aggregator generally performs better than the other two aggregators. This

result answers Q4. The method of aggregation does make a difference in learning a propositional

model.

3.6 Conclusion

Identifying important features responsible for the progression in Parkinson’s disease in a patient

remains a compelling challenge. We use a human domain expert to guide our method with

identifying a relatively large set of influencing risk factors. We then present a learning method that

can consider this large set of weak influences in learning a probabilistic model. We evaluated our

results on the PPMI data and demonstrated that our learning approach significantly outperforms the

standard machine learning classifiers. Since Parkinson’s is a progressive disease, developing robust

temporal models for this task remains an interesting challenge. Extending our learning algorithm to

handle hybrid temporal models will allow for modeling the continuous data more faithfully. Finally,
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Figure 3.5: Combined tree learnt with BoostPark10.

Figure 3.6: Combined tree learnt with BoostPark20.
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scaling up the learning algorithm to learn from a broader set of population data rather than be

limited by a single study remains an interesting open problem.
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CHAPTER 4

LEARNING FROM HETEROGENEOUS SIMILARITIES

In this chapter, we present our similarity function-based approach (Dhami et al., 2018) for predicting

and discovering potential drug-drug interaction (DDIs) by combining two different kinds of data,

namely, graph data in the form of relationships of various drugs with different enzymes, transporters

and targets and molecular data in form of features and fingerprints. The idea of our approach is not

just to predict such DDIs but also to discover potential new interactions by incorporating elements

of both classification and similarity based algorithms.

4.1 Introduction

Drug-drug interactions (DDIs) occur when multiple medications are co-administered and can

potentially cause adverse effects on the patients. DDIs have emerged, around the world, as a major

cause of hospital admissions, rehospitalizations, emergency room visits, and even death (Becker

et al., 2007). These numbers are even more stark among older adults, who are more likely to be

prescribed multiple medications; the study by Becker et al. (2007) which identifies that the elderly

have an increased risk factor of as much as 8.5 times over the general population. Consequently,

DDIs contribute to increased hospital stays and increasing costs of health care, even though up to

50% of these adverse drug effects (ADEs) are preventable (Gurwitz et al., 2003).

While regulatory agencies such as the U. S. Food and Drug Administration have rigorous

approval processes for new drugs, controlled clinical trials do not always uncover all possible

drug interactions. For example, the last stage of the FDA approval process involves a Phase III

clinical trial, which typically enrolls 1000–5000 individuals, while the drug may be prescribed to

millions of patients after approval. In addition to clinical trials, in vitro and in vivo experiments

are also used to identify DDIs. However, these approaches are highly labor-intensive, costly

and time-consuming. Another factor is that many known DDIs involve medications such as anti-

inflammatories or anticoagulants, which are prescribed for common and chronic conditions. Other
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confounding factors that make studying DDIs a difficult challenge include dosage variations and

demographic variability.

All of these challenges have led to a shift in research towards in silico approaches that leverage

advances in AI and machine learning (Percha and Altman, 2013) for DDI discovery. These

approaches for DDI can be viewed in one of two ways:

1. The feature-based view, which roughly categorizes the approaches based on the type of DDI

features used. These are either text-based (which involves the analysis of abstracts or EHRs)

or structure-based (which involve the study of chemical, molecular and pharmacological

properties). Our approach is structure-based.

2. The algorithm-based view distinguishes between approaches as classification (which treat

DDI discovery as a binary classification problem) and clustering (which assume that similar

drugs may interact with a same drug). Our approach is a hybrid of both these paradigms.

In prior work, our group has performed ADE discovery and subgroup discovery from Electronic

Health Records (EHR) (Page et al., 2012) and text-mining of medical journal abstracts (Odom et al.,

2015). These approaches address the problem of post-marketing surveillance, that is, they seek to

exploit the new information available after a drug has been approved and has been prescribed to

larger, more diverse populations. In this work, we address pre-trial discovery, that is, we reframe

the problem as one of studying drug-drug interactions, rather than taking a single drug and finding

adverse events associated with it. The primary motivation is to preemptively identify potential DDI

and ADE risks during drug design. As we show in this work, our novel formulation incorporates

elements of both classification and similarity based algorithms, which improves discovery as well

as explainability. The result is a kernel that we call SKID3 (Similarity-based Kernel for Identifying

Drug-Drug interactions and Discovery).

Our problem setting differs from current approaches in three significant ways, that motivated us

to develop SKID3:
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• A majority of current work focuses on drug-interaction discovery through information extrac-

tion, specifically through text mining. These approaches attempt to identify drug interactions

from various unstructured text-based sources such as biomedical journals and semi-structured

sources such as EHRs.

We approach the problem by looking at structured sources of information for insights into

drug interactions. Specifically, we characterize drug similarities using different properties of

drugs such as molecular structure and pharmacological interaction pathways. This allows us

to pose the DDI discovery problem as a structure prediction (Bakir et al., 2007) task.

• The approaches that do use structural information generally aim to extract explicit vector

representations of properties such as 3-d structure, which allows the application of off-the-

shelf machine-learning techniques such as support vector machines and kernel learning

(Shawe-Taylor and Cristianini, 2004).

We, instead, analyze structural similarities between drugs in ways that are natural and

intuitive to their representation (such as random walks on chemical interaction pathways),

rather than forcing an artificial and uninterpretable embedding in a vector space.

• Finally, many current approaches focus on a single type of interaction or similarity, whether it

is discovered from text sources or from structural analysis. This is a significant drawback, as

this analysis approach ignores the diverse pharmacological facets to drug-drug interaction to

look at one (or a few) interaction types in isolation.

We develop a general and extensible framework that admits heterogeneous characterizations

arising from any source including text-based, molecular structure, pharmacological, pheno-

typic, genomic, therapeutic similarities. This allows us to exploit diverse characterizations

of drug similarities from various perspectives, fusing them into one coherent, interpretable

model.

We make the following contributions with our proposed solution to address the above limitations:
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• We characterize molecular similarity between two drugs using a novel approach: knowledge-

refined random walks to measure the reachability of one drug from another; reachability

informs the intuition that drugs that are more reachable are more interactive. As far as we are

aware, this is the first work on exploiting bias knowledge to characterize drug similarities for

DDI discovery.

• We develop a novel framework that combines multiple similarity measures into unified kernel

that exploits and fuses their potential. In addition to our novel reachability measure, we also

use four other measures that capture molecular and chemical similarities through SMILES

strings and MACCS fingerprints.

• We formulate DDI as a kernel-learning problem that fuses heterogeneous similarity measures.

Our formulation enables us to treat each similarity as a different view of drug interactions.

By fusing similarities from different sources, our formulation aims to reconcile various

(molecular, pharmacological etc.,) views into a single model. Further, our formulation

incorporates terms to capture both individual as well as neighborhood interactions, leading to

greater robustness.

• From a machine-learning standpoint, our formulation is general in that it admits a variety

of regularization and loss functions. In this work, we show our approach for a specific

formulation that attempts to simultaneously align the optimal kernel with the heterogeneous

similarity measures as well as predict the drug-drug interactions.

• From an optimization standpoint, our formulation is a bilinear program, which is a non-

convex optimization problem. We illustrate an alternating minimization approach for solving

this problem; this approach identifies robust and relevant local solutions for DDI discovery

and scales well with the underlying drug database size.
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• Our empirical evaluation on a data set constructed from DrugBank uncovers previously known

drug-drug interactions with high accuracy. Furthermore, a closer inspection of “false positives”

and “false negatives” identified by SKID3 reveals that it has identified drug-drug interactions,

missing from DrugBank, but existing in other independent sources. This clearly demonstrates

the potential of our approach to perform DDI discovery. More specifically, it also offers us

a path forward: DDI discovery via active learning with semi-supervised data, which is the

real-world problem setting.

The complete pipeline of our method is shown in figure 4.1. The rest of this chapter is

organized as follows: after reviewing related work in the next section, we define the problem of

DDI prediction/discovery. We then present similarity measures and formulate kernel learning for

DDI discovery. Next, we present our comprehensive experimental evaluation before concluding the

chapter by motivating interesting research directions.

Figure 4.1: Complete pipeline for creation of SKID3
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4.2 Drug-Drug Interactions

Before we define the DDI task, we give terse definitions of various entities involved when two

or more drugs interact. The target or drug target is the protein modified by the drug in order to

achieve the desired effect once the drug is administered to the body. Enzymes are catalysts that

accelerate biological reactions, while transporters are proteins that help drugs reach the intended

target (Nigam, 2015), and also help in determining whether the drug will be absorbed, distributed or

eliminated.

DDIs can be either synergistic (positive, and help increase the effect of the drugs) or antagonistic

(negative, cause serious side effects). We do not differentiate between these two types of interactions.

DDIs themselves can be inherently classified into two categories (August et al., 1997):

• Pharmacokinetic: This is the effect that a drug goes through when administered, for example,

it is absorbed or metabolized. In case of DDIs, pharmacokinetic refers to the (synergystic or

antagonistic) effect of one drug on the other drug’s absorption, distribution, metabolism and

excretion when administered simultaneously or within a short time span of one another.

• Pharmacodynamic: This is the effect that body goes through when a drug is administered.

In case of DDIs, pharmacodynamic refers to the effect of one drug on another drug when they

are operating on the same target or even different targets, but with similar behaviour towards

the different targets i.e do they inhibit the tendency of the the target to act which can cause an

unwanted interaction.

The pharmacokinetic category consists of metabolism interactions like enzyme inhibitors and

substrates. Target, enzyme and transporter inhibitors are chemical molecules that bind to the

target (or enzyme, or transporter resp.), and inhibit its activity. Enzyme/transporter substrates are

molecules which react with the enzyme/transporter, and are converted into different molecules

called products. The pharmacodynamic category, on the other hand, occurs due to the agonists and
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antagonists. An agonist binds to a target, and evokes a response, while an antagonist binds to the

target and inhibits a response.

We build our approach based on these two categories with the motivation that if two drugs

interact, then there should exist a “path of relationships” describing the molecular and structural

properties of the drugs, especially when there is an interaction. Thus, we extract relations as shown in

Table 4.1 from the DrugBank database, whose general schema is shown in figure 4.2. These relations

ensure that we are in the domain of pharmacokinetic and pharmacodynamic categories of the DDIs.

Another motivation for using these relations is that the effect of enzymes on DDIs, especially the

cytochrome P450, have been well studied extensively in medical literature (Guengerich, 1997; Ogu

and Maxa, 2000). Thus, the use of such relations becomes natural in DDI prediction, and can be

considered a form of domain expertise.

Table 4.1: Initial relations

Initial Relations
EnzymeSubstrate(drug, enzyme)

EnzymeInhibitor(drug, enzyme)

EnzymeInducer(drug, enzyme)

TargetSubstrate(drug, target)

TargetAntagonist(drug, target)

TargetInducer(drug, target)

TargetAgonist(drug, target)

TransporterSubstrate(drug, transporter)

TransporterInhibitor(drug, transporter)

TransporterInducer(drug, transporter)

4.3 Kernel Learning for Drug Drug Interactions

In classical multiple kernel learning (Bach et al., 2004; Lanckriet et al., 2004), kernels are typically

constructed in two different ways. First, multiple kernels can be constructed from the same data

source (homogeneous), or from different data sources (heterogeneous). These multiple kernels are

then combined in a linear or non-linear fashion. It is important to note that in such a multiple-kernel
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learning setting, the assumption is that we have the complete data vectors xi from which we can

construct multiple kernels. Our method diverges considerably from this representation since we do

not have an explicit representation or embedding of the drugs. Instead, we have several different

similarity measures, from which we construct a single kernel for our prediction/discovery task.

Figure 4.2: A general schema representation of the DrugBank database

4.3.1 Drug-Drug Similarity Measures

Graph feature: Reachability

A key component describing drug-drug interactions is the charaterization of how two drugs react

with each other. This is captured using a directed graph of known chemical reactions between drugs

and enzymes, transporters etc. using ADMET (absorption, distribution, metabolism, excretion and

toxicity) features. The idea of reachability follows from the intuition that two drugs are likely to

interact with one another if one is reachable from the other via one or more paths in an ADMET

knowledge graph.
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Figure 4.3: Reachability measure generation

Table 4.2: Domain knowledge

EnzymeInhibitor(drug, enzyme) ∧ EnzymeInducer(enzyme, drug)

EnzymeInhibitor(drug, enzyme) ∧ TransporterInhibitor(transporter, drug)

EnzymeInhibitor(drug, enzyme) ∧ EnzymeInhibitor(enzyme, drug)

EnzymeInhibitor(drug, enzyme) ∧ EnzymeInhibitor(enzyme, drug) ∧ EnzymeInhibitor(drug, enzyme)

While there exist numerous approaches in graph theory for reachability analysis on graphs (Lü

and Zhou, 2011; Taskar et al., 2004), our choice is guided by the fact that we operate on multi-

relational, directed, relatively sparse graphs involving several thousands of entities/nodes represent-

ing drugs, enzymes, targets etc. An iterative search within such a large graph may be intractable.

We are inspired by the success of randomized approaches in computational statistics and the seminal

work on the path ranking algorithm (PRA, (Lao and Cohen, 2010b)). These approaches show that

random walks on a knowledge graphs can be used to generate robust predictive models for relation

extraction and reachability analysis. We adapt a similar approach to construct our reachability

measure. The estimation of reachability between 2 drugs in a given drug pair proceeds as follows

(Figure 4.3):
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(a) Parameterized Walk ‘W’ (b) Network of reactions ‘G’ (c) Identified paths/instances in the graph

Figure 4.4: Instantiation process of a parameterized random walk W (left) is equivalent to sub-graph
matching for a given motif. The graph G (middle) shows a part of the chemical reaction network
(Dx, Cx & Tx indicate drugs, enzymes and transporters resp.). The rightmost figure shows how 3
different instances/paths (marked in red) have been identified that satisfy W.

(a) Preprocessing: A knowledge graph is constructed for known chemical reactions using

ADMET features.

(b) Guided (Parameterized) Random Walk Generation: Parameterized random walks are se-

quences of relations with shared arguments, where the arguments are entity classes (not entity

instances) starting and ending in the drug entity. Essentially, parameterized random walks

are paths in the relational schema of chemical reactions (Figure 4.2). Similar to PRA (Lao and

Cohen, 2010b), our random-walk generation allows for walking against the implicit direction

of the relation. Thus, the relations prefixed with represent the inverse of a given relation. An

example of a random walk through an ADMET graph looks like: TargetInhibitor(d0,

t0) ∧ TargetInhibitor(t0, d1) ∧ TransporterSubstrate(d1, t2) ∧

Transporter Inhibitor(t2, d3). We impose certain restrictions on the walks,

including disallowing same relation types from following each other (a relation and its inverse

are considered different types). We generate several random walks of varying length. Guid-

ance is induced via refining the parameterized walks using domain knowledge (US Food and

Drug Administration, 2012) (Table 4.2) that indicate certain types of chemical reactions (or a
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series), which when present in the walks, increases the likelihood of an interaction between

the two drugs at the start and end of the path.

(c) Instantiation: Instantiation of a parameterized walk, W, is the process of finding all possible

paths, satisfying W, that exist in the network of chemical reactions G between two drugs of

a given pair 〈d1, d2〉 (Figure 4.4). If we consider paths as subgraphs, and W a motif, then

set of instances I〈d1,d2〉 = { ∀g | g ⊆ G, g |= W, d1 ∧ d2 ∈ g }. Searching for the set of

instances is a combinatorially hard problem (#P -complete). We exploit the power of graph

databases to compute this. The network of reactions is represented as an RDF1 graph and the

parameterized walks are posed as SPARQL queries (Grobe, 2009).

(d) Measure/Score generation: The reachability measure is generated for every drug pair

〈d1, d2〉 by obtaining the cardinality (count) of the instance set I〈d1,d2〉.

Table 4.3: Few of the groundings generated for the random walk TransporterSubstrate(d0,
t1) ∧ Transporter(t1, d1) ∧ TargetInhibitor(d1, e1) ∧ Enzyme(e1, d2)

Pravastatin,Multidrug resistance protein 1,Acetaminophen,H synthase 1,Hydromorphone

Metoprolol,Multidrug resistance protein 1,Diclofenac,H synthase 2,Ibuprofen

Venlafaxine,Multidrug resistance protein 1,Acetylsalicylic acid,H synthase 1,Diphenhydramine

Cephalexin,Solute carrier family 22 member 6,Naproxen,H synthase 1,Zolpidem

Levothyroxine,Solute carrier organic anion transporter family member 1C1,Diclofenac,H synthase 1,Hydromorphone

Drug Feature: Similarities based on SMILES and SMARTS strings

The simplified molecular-input line-entry system (SMILES) is a commonly-used specification for

describing chemical and molecular structure using ASCII strings. The SMILES arbitrary target

specification (SMARTS) is an extension of SMILES that is also commonly used for specifying

molecular sub-structures precisely. We extract four similarity measures based on molecular and

chemical properties of the drug (specified by SMILES and SMARTS strings) using the package

1The Resource Description Framework (RDF) was developed by the WWW Consortium (W3C) for knowledge
representation and management on the web.
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rdkit2. We compute four similarity measures from SMILES strings (Anderson et al., 1987),

which have been previously proven useful in various bio-computing tasks (Helma et al., 2004;

Arimoto et al., 2005; Cao et al., 2012):

(S1) Molecular Feature Similarity (FS) compares the chemical properties of two drugs using 19

features extracted from their SMILES strings. These features include the number of valence

electrons, number of aromatic rings and number of hydrogen donors and receptors, which

are important for determining the reactiveness of a molecule. We use the Jaccard distance

between all features as the similarity between two drugs.

(S2) SMILES String Similarity (SS) is the similarity between the SMILES strings themselves,

which is calculated using edit distance between the strings.

(S3) Molecular Fingerprint (FP) similarity is computed between the fingerprints, which are

bit-string representations of the molecular structure.

(S4) Molecular ACCess System (MACCS) keys are a particular type of fingerprint generated

from SMARTS strings. Similarities on MACCS are commonly used in the drug discovery

domain, though they have been proven to be useful on the DDI domain as well (Vilar et al.,

2014).

4.3.2 Notation and Problem Description

Before describing our approach in detail, we formalize our notations. Given a drug database with N

drugs, our goal is to discover whether a pair of drugs di and dj interact with each other. Recall

that we do not distinguish between synergistic and antagonistic interactions. Let all possible drug

pairs in the database be P = { (di, dj) | 1 ≤ i, j ≤ N }. We use the short-hand notation ij to

denote the drug-drug pair (di, dj). As mentioned previously, our problem setting is considerably

2http://www.rdkit.org/
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different from the classical multiple kernel learning framework. We do not attempt to construct an

explicit vector representation or embedding of a drug di. Instead, given N drugs, we construct M

pairwise similarity matrices Sm, for m = 1, . . . ,M . As described above, these similarities can

be constructed using various drug properties that represent the potential for interactions such as

molecular structure, pharmacological attributes etc. Since these “similarities” represent potential

for interactions, they can also be constructed from natural language text extracted from such diverse

sources as electronic health records (Page et al., 2012) and journal abstracts (Odom et al., 2015).

Our approach seeks to combine different interaction measures and similarities, Sm, from various

sources into one coherent kernel. Note that the only requirement on the similarity matrices is that

Sm ∈ SN , the space of all N ×N symmetric matrices. We do not assume positive semi-definiteness

(psd3) of similarity measures; as we show below, it is possible to align a psd kernel with non-psd

similarity matrices. Thus, any symmetric scoring function σm(di, dj) can be used to generate a

similarity matrix Sm. This allows our approach to be agnostic to multiple representations of a drug.

For example, σ1 can be string alignment similarity of the genomic strings of two drugs, while σ2

can be the bag-of-words co-occurence count of the two drugs in a biomedical corpus. Broadly, any

scoring function that measures similarity of a potential for interaction can be considered a candidate

similarity measure.

The (i, j)-th element of Sm is denoted sijm, and describes the interaction between di and dj

according to interaction measure Sm. The interaction label yij = +1 if the drugs di and dj

interact adversely with each other and yij = −1 otherwise. We denote the matrix of all drug-drug

interactions as Y ∈ SN , the symmetric matrix whose (i, j)-th entry is the interaction label yij .

Generally, we only know the true labels for a small subset of drug pairs, L ⊂ P , and our goal is to

learn a model on L in order to discover drug-drug interactions in the remaining pairs U = P \ L.

Our problem can be formulated as follows:

3A symmetric matrix is positive semi-definite if its eigenvalues are all non-negative (≥ 0), and positive definite if its
eigenvalues are strictly positive (> 0). Positive semi-definiteness allows us to manipulate kernels instead of explicitly
transforming the data into a higher dimensional space.
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Given: For N drugs, M interaction similarities Sm, a small subset of known interactions yij for

pairs ij ∈ L ⊂ P ,

Learn: A kernel Z � 0, and interaction similarity combination weights αm ≥ 0,
∑M

m=1 αm = 1,

Predict/Discover: Previously unknown pairwise drug-drug interactions ŷij = sign(zij), for pairs

ij ∈ U = P \ L.

Our novel formulation addresses kernel learning at an element-wise, local and global level,

enabling us to learn robust models for discovery of new drug-drug interactions.

4.3.3 Incorporating Neighborhood Information

We view each interaction/similarity measure as a graph that provides a different view of the

neighborhood of a drug. That is, each similarity matrix Sm represents a fully-connected graph with

sijm representing the edge weight between drugs di and dj . Since each Sm measures similarities

differently, the neighborhood of a drug Nm(di) with respect to different Sm will be different. In

order to effectively incorporate this multi-view neighborhood information, we construct graph

Laplacians Lm, m = 1, . . . , M , for each similarity. Laplacians are naturally locality-preserving

(He and Niyogi, 2003; Belkin and Niyogi, 2003), that is, they preserve the neighborhood structure

in the data. This allows us to learn a kernel that fuses neighborhood information Nm from multiple

interaction types. Without loss of generality, we set the diagonal of Sm to zero: diag(Sm) = 0,

reflecting that drugs do not interact with themselves. The Laplacian can be constructed as

Lm = (1 + δ)IN − D−
1
2SmD

− 1
2 , (4.1)

where IN is an N ×N identity matrix and D is a diagonal matrix with entries dii =
∑N

j=1 s
m
ij (the

row sum of the similarity matrix Sm).
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Figure 4.5: Our formulation aims to learn a positive semi-definite kernel Z and combination weights
αm for various similarity measures. These similarities represent interaction scores, which help
determine how likely two drugs are to interact. The similarities can be constructed from diverse
sources (such as molecular, structural, genomic, text). The similarity measures are expressed
through Laplacians, which view the interactions as a neighborhood graph. In this manner, we
can incorporate local information into the kernel. The loss functions ensure that the learned Z is
element-wise consistent with the labels.

We formulate the following kernel learning problem:

minimize
L,Z,α

alignment︷ ︸︸ ︷
〈L, Z〉 + 〈L, Y 〉 +

regularization︷ ︸︸ ︷
λ1r(α)

λ2 (`1(Z, Y ) + `2(L, Y ))︸ ︷︷ ︸
loss functions

subject to L =
M∑
m=1

αmLm, α ≥ 0, e′α = 1, Z � 0.

(4.2)

We highlight the various components of the formulation (4.2):

The variable L =
∑M

m=1 αmLm is a convex combination of the Laplacians Lm arising from

the various interaction similarities. The matrix variable L is introduced purely for convenience

of notation and can easily be eliminated from the objective function of (4.2). We select a convex

combination as against a linear or conic combination in order to improve interpretability (Gönen

and Alpaydın, 2011). That is, positive αm enable us to intuitively interpret the importance of one
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similarity relative to the others. The formulation attempts to identify a combination weights α as

well as a kernel Z � 0, which ensures that Z is psd.

The alignment terms are inspired by the success of alignment-based regularization for kernel

learning (Cortes et al., 2012). Hoi et al. (2007) observe that these alignment terms essentially

perform manifold regularization (Belkin et al., 2004), which has the effect of incorporating local

neighborhood information encoded in the different Laplacians as well as the labels into learning α

and Z. Specifically, 〈L, Y 〉 encourages the weights on the Laplacians α to be consistent with the

labels Y . The impact of labels is also propagated into Z by the 〈L, Z〉 term.

The entries of the learned kernel zij directly provide a unified interaction score and we predict

drug interactions as

ŷij = sign(zij). (4.3)

While the unified kernel Z is positive semi-definite, it’s entries can still be negative, which is a fact

that we exploit here. Enforcing positive semi-definiteness also naturally imposes symmetry on the

learned kernel.

In order that the elements of Z capture interactions effectively into a score, we require a loss

function that ensures that the interaction margin is maximized. We use the hinge loss to ensure

that yijzij ≥ 1 holds. Intuitively, these constraints ensure that zij ≥ 1 when yij = +1 and

zij ≤ −1 when yij = −1. The interaction margin behaves very similarly to the margin in SVMs

(Shawe-Taylor and Cristianini, 2004). Thus, we select `1 to be the hinge loss in (4.2), which is

applied to the drug pairs with known labels (indexed by) ij ∈ L:

`1(Z, Y ) =
∑
ij∈L

max(1− yijzij, 0). (4.4)

The loss function `1 ensures element-wise consistency between the learned kernel Z and the labels

Y . In a similar vein, the loss function `2 aims to propagate this consistency into the combination

weights α. To this end, we measure the element-wise deviation of the weighted Laplacian with the
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labels as well, through the Frobenius norm:

`2(L, Y ) =
1

2
‖L − Y ‖2

F . (4.5)

Finally, we also add a regularization term over α, typically to ensure robustness in weight learning.

We chose the classical L2 regularizer, r(α) = 1
2
‖α‖2

2. Other norms can also be used, depending on

what properties ofα are desired. For instance, the L1 regularizer, r(α) = ‖α‖1 encourages sparsity,

while the L∞ regularizer, r(α) = ‖α‖∞ encourages the model to select the single best kernel. We

use L2 regularization here, and defer the exploration of the properties of the other regularizers to

future work.

We formulate the following kernel learning problem:

minimize
L,Z,α

〈L, Z〉 + 〈L, Y 〉 +
λ1

2
‖α‖2

2

λ2

∑
ij∈L

ξij +
λ2

2
‖L − Y ‖2

F

subject to yijzij − 1 + ξij ≥ 0, ξij ≥ 0, ∀ ij ∈ L,

L =
M∑
m=1

αmLm, α ≥ 0, e′α = 1, Z � 0.

(4.6)

The slack variables ξij ≥ 0 measure the hinge loss of the pairwise interaction fit between the

labels and the entries of Z as shown in equation (4.4). These slack variables function in a manner

very similar to the slack variables in SVMs: if the prediction zij and the label yij have the same

sign, then the model correctly identifies the interaction for drugs di and dj . In this case, we

will have, yijzij > 0 and consequently, ξij = 0. However, for misidentified interactions, ξij =

1 − yijzij > 0. Thus, by minimizing ξij , we are able to minimize the misclassification of drug-

drug interactions. The formulation (4.6) is an instance of a bilinear program, owing to the terms

〈L, Z〉 =
∑M

m=1 αm 〈Lm, Zm〉.

We solve (4.6) using alternating minimization (Csiszár and Tusnády, 1984). At the t-th iteration,

we fix the current estimate of the similarity weights α̂t (note that when α are fixed, this also fixes L,
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owing to the equality constraint in eq. 4.6). This allows us to infer the new interactions scores Ẑt+1
ij

by solving the following sub-problem, which we denote SubProbE(Z | α̂t). This can be interpreted

as the expectation step of an EM procedure, where we identify the hidden variables, in this case, the

drug-drug interactions Z. We can now fix Z = Ẑt+1 in (4.6), which gives us a sub-problem we

denote SubProbM(α | Ẑt+1). Again, this step can be considered equivalent to the maximization

step of an EM procedure, where we estimate the parameters (here, α, which parameterize the

influence of the various similarities on the final kernel). This procedure is summarized in Algorithm

10. Both sub-problems were solved using SDPT3 (Toh et al., 1999).

Algorithm 2 Alternating Minimization for Learning SKID3

1: α̂0 = 1/m B Initialize weights uniformly
2: Ẑ0 = IN B Initialize kernel to identity matrix
3: for t ≤ tmax do
4: Ẑt+1 ← SubProbE(Z | α̂t) B Update Z
5: α̂t+1 ← SubProbM(α | Ẑt+1) B Update α
6: if 1

N2 ‖Ẑt+1 − Ẑt‖2
F + 1

m
‖α̂t+1 −αt‖2

2 ≤ τtol then
7: break B Converged to tolerance
8: end if
9: t← t+ 1

10: end for

4.4 Experiments

In this section, we aim to answer the following questions, which address the effectiveness of our

proposed approach:

(Q1) How effective are the similarity measures on their own for the task of identifying drug-drug

interactions?

(Q2) Is kernel learning effective for the DDI task?

(Q3) Is combining multiple similarity measures more advantageous than using a single similarity

measure? How do the learned weights change with increasing database size?
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(Q4) Does our work motivate further clinical investigations?

(Q5) How scalable is our method?

Our data set consists of 78 drugs obtained from DrugBank4. This gives rise to 3003 possible

interactions5. All our reported results were obtained across five runs with a held-out test set of 600

drug pairs. Different methods were trained with increasing number of drug pairs ranging from 400

to 2400, chosen randomly for each run.

The results of our experiments are shown in Figure 4.6. Figures 4.6(a)–4.6(d) show that a

kernels learned from each individual similarity measure (described in Sec. 4.3.1 and 4.3.1) are able

to perform reasonably well on the DDI prediction task, thereby answering Q1 affirmatively.

We also learn a single kernel (Z ≡ SKID3) as well as the weights for the five similarity

measures (αm). It is evident that learning from multiple similarity measures provide a more stable

learning curve that performs well. Our initial hypothesis was that the similarities generated from

molecular structures (SS, FS, FP and MACCS) and chemical reaction pathways (RW) fused into a

single kernel could combine the advantages of both. That is, our hypothesis was that similarity fusion

should achieve the high precision of the molecular structures similarity as well as the high recall

of the chemical reaction pathways similarity. The results clearly confirm this, thereby answering

Q2 and Q3 affirmatively. Figure 4.6(e) shows the change of the learned weights as the number

of training drug pairs increases. A key observation from Figure 4.6(e) is that the influence of the

random walk (RW) similarity decreases, while the weight of the molecular structure similarities

increases. This suggests that RW similarities are particularly effective in smaller databases, for

targeted identification of interactions.

Q1–Q3 evaluate the performance of our approaches and confirm existing interactions as provided

by DrugBank. Our goal with Q4 was to see if SKID3 is able to discover new interactions. In order

4https://www.drugbank.ca/

5Given n drugs, since each drug can interact with every other drug except itself, there will be a total of
(
n
2

)
= n(n−1)

2
interactions.
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to answer Q4, it is necessary that our analysis goes beyond ground truth that we are considering in

constructing the model. Thus, we look closely at the false positives and false negatives, under the

intuition that DrugBank (or any other database) is never fully complete or accurate.

Table 4.4: Table depicting example drug pairs where the prediction does not match the ground truth.
However, we additionally cite sources (last column) that support our prediction.

Drug 1 Drug 2 DrugBank Ground Truth Predicted Classification Independent Source
Amitriptyline Tamsulosin Not interacting Interacting Drugs.com (Multiple, a)
Omeprazole Metformin Not interacting Interacting Nies et al. (Nies et al., 2011), rxlist.com (Multiple, c)
Salbutamol Clonidine Not interacting Interacting Thoolen et al. (Thoolen et al., 1984)
Cephalexin Diclofenac Not interacting Interacting Ali et al. (Ali et al., 2015)
Amoxicillin Metronidazole Not interacting Interacting Pavicic et al. (Pavicić et al., 1991)

Amphetamine Salbutamol Not interacting Interacting DrugBank
Cephalexin Methadone Interacting Not interacting Drugs.com (Multiple, b)

In Table 4.4 we present a few drug pairs that are supposedly “incorrectly classified” by our

method using the DrugBank ground truth6. Table 4.4 shows that the interactions discovered by

our approach can be supported by independent sources or research. Specifically, according to the

ground truth, 6 interactions were flagged as false positives. On the contrary, according to literature,

these are likely true interactions. Thus, we answer Q4 affirmatively. This is a crucial observation

in the task of drug surveillance: many sources of DDIs need to be carefully and continuously

curated for updating this ground truth. This result highlights the fact that SKID3 can indeed not only

classify DDIs, but can help in knowledge refinement as well as knowledge discovery. Validating this

hypothesis more fully requires large-scale evaluation, which is an interesting direction for future

research.

Finally, Figure 4.6(f) shows the time taken by our method. The training time increases linearly

with the number of drug pairs, showing the scalability of our method and answering Q5 affirmatively.

This result has practical implications for scalable DDI discovery with full drug databases.

6In the previous instance of the Drugbank database download in April 2017, this instance was not present whereas
in February 2018, when checked again, this interaction was added. We use the previous instance as ground truth.

55



4.5 Conclusion and Future work

We consider the problem of drug-drug interaction discovery, and develop a framework to exploit

deeper structures and drug features using kernel learning. Our extensible framework can fuse

information from multiple views including chemical reaction pathways and molecular structure,

which we have demonstrated here. Furthermore, our formulation can easily admit other types of

interactions as similarities including phenotypic, pharmacological, genomic and text, to name a few.

Our evaluations on the DrugBank database established the superiority of our proposed approach,

which is distinct from many current approaches that generally ignore drug properties and instead

seek interactions through text mining of existing literature. A potential limitation of our approach is

that our optimization function is inherently noisy owing to its non-convex nature. Extending this

work to include more features including other semantic similarity metrics is an interesting direction.

Combining the results of learning from DrugBank with other NLP based extraction techniques

is another direction. Finally, using other labeling techniques such as weak supervision or distant

supervision can potentially lead to larger training sets and can make the discovery process more

effective.
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(a) Accuracy, averaged over 5 runs on a hold-out test set (b) Precision, averaged over 5 runs on a hold-out test set

(c) Recall, averaged over 5 runs on a hold-out test set (d) F1-score, averaged over 5 runs on a hold-out test set

(e) Similarity matrix weights, α (f) Training Time for learning the combined kernel, SKID3

Figure 4.6: Experimental results, with kernels learned using All similarity measures (SKID3), along
with each similarity.
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PART II

LEARNING FROM MULTI-RELATIONAL DATA

58



CHAPTER 5

LEARNING LOCAL NEIGHBORHOOD BASED MODELS

In this chapter we consider, the problem of structure learning for Gaifman models as learning

relational features that can be used to derive feature representations from a given knowledge

base. These relational features are first-order rules that are then grounded and counted over local

neighborhoods of a Gaifman model to obtain the feature representations. We propose a method

(Dhami et al., 2020) for learning the relational features for a Gaifman model by using relational tree

distances.

5.1 Introduction

Learning embeddings of large knowledge bases has become a necessity due to the importance

of reasoning about objects, their attributes and relations in large graphs. Statistical Relational

AI/Learning (StaRAI) (Raedt et al., 2016; Getoor and Taskar, 2007), addresses the problem of

learning and reasoning with multi-relational data in the presence of uncertainty. While specific

models such as Markov Logic (Richardson and Domingos, 2006), ProbLog (De Raedt et al., 2007)

and PSL (Bröcheler et al., 2010) (to name a few) exist, a more scalable model (Niepert, 2016)

was proposed recently. This work built on Gaifman’s locality theorem (Gaifman, 1982; Grohe and

Wöhrle, 2004), which states that every first-order sentence is equivalent to a Boolean combination

of sentences whose quantifiers range over local neighborhoods of the Gaifman graph. The key idea

is that if one could identify effective representations from local neighborhoods (of objects or tuples

of objects), one could learn machine learning models that can be used for reasoning in large graphs.

This “local representation” approach was inspired by the success and scalability of convolutional

neural networks (CNNs, (Goodfellow et al., 2016a)), specifically, the ability of CNNs to engineer

complex features from locally-connected image neighborhoods.

In a similar manner, relational Gaifman models seek to identify locally-connected relational

neighborhoods within knowledge bases for effective representation, learning and inference. While
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effective, the relational learning model recently proposed by Niepert (Niepert, 2016), called Dis-

criminative Gaifman Models, used relational features that were hand-crafted rather than learned.

That is to say that, structure learning (to use the terminology from probabilistic graphical models)

was not performed.

We address this problem of structure learning: learning relational features for training the

Gaifman model. We consider three different approaches. (1) As suggested by Niepert (2016), we

employ Inductive Logic Programming (ILP) (Muggleton, 1991) to learn discriminative first-order

rules; (2) Inspired by the success of random walks in deep relational models (Lao and Cohen,

2010a; Lao et al., 2011; Kaur et al., 2017a), we employ relational random walks; (3) Finally, as a

novel contribution, we propose the use of paths from relational trees learned via relational one-class

classification (Khot et al., 2014); specifically, each path from root to leaf of a relational tree can be

considered a relational feature. Given these relational features, we apply traditional discriminative

learning algorithms such as Gradient Boosting and Logistic Regression.

We make the following key contributions. (1) We present a method for learning relational

embeddings for reasoning over large graphs. (2) We adapt a recently developed relational learning

method for constructing relational features. (3) We adapt well-known relational rule learners for

learning local neighborhood representations. (4) We combine these relational features with discrim-

inative classifiers to learn discriminative Gaifman models. (5) We demonstrate that combining the

more novel relational trees with a discriminative classifier is more effective in learning on large

graphs compared to a standard ILP learner. (6) Our empirical evaluation reveals an important

characteristic of our approach: high recall without sacrificing precision in both medical and im-

balanced data sets. This is the first work on structure learning for Gaifman models. Given the

importance of local neighborhoods in graphs, this is an important direction.

Discriminative Gaifman Models: We first introduce some basic notation and concepts in first-

order logic. An atom is of the form R(t1, . . . , tk) where R is a functor and the arguments ti are terms.
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TransportSubstr(Pravastatin, BileSaltExportPump)
TransportInhib(Simvastatin, MultidrugResProt1)
EnzymeInhib(Pravastatin, CytochromeP4502C9)
EnzymeSubstr(Acetaminophen, CytochromeP4502C9)
EnzymeInhib(Simvastatin, CytochromeP4502C9)

Figure 5.1: An example Gaifman graph for a drug-drug interaction (DDI) knowledge base. Here
d1, d2, d3 = {Pravastatin, Simvastatin, Acetaminophen}, t1={Bile salt export pump}, t2={Multidrug
resistance protein 1} and e1={Cytochrome P450 2C9}. Note that the dotted line between d1 and d2

is the link we want to predict.

A substitution is of the form θ = {〈x1, . . . , xk〉/〈t1, . . . , tk〉} where xis are logical variables and

tis are terms. A grounding of a predicate with logical variables x1, . . . , xk is a substitution

{〈x1, . . . , xk〉/〈X1, . . . , Xk〉} mapping each of its variables to a constant in the population of that

variable. A literal is an atom or its negation. A formula ϕ is a literal, the conjunction of two

formulae ϕ1 ∧ ϕ2, or a disjunction of two formulae ϕ1 ∨ ϕ2. The application of a substitution

θ = {〈x1, . . . , xk〉/〈t1, . . . , tk〉} on a formula ϕ is represented as ϕθ and replaces each xi in ϕ

with ti. An instance of a formula ϕ is obtained by replacing each logical variable x in ϕ by one

of the objects in its domain. A conjunctive formula contains no disjunction. For a predicate,

R(v1, . . . , vk), the predicate counts are the number of true instances of that predicate, given the

grounding θ of the its variables; we denote such predicate counts as #(R | θ). For a clause C, the

clause counts are the number of true instances of C in database F , given the partial groundings θ of

the variables in the clause. We denote the clause counts for a clause C as nC = #(C | θ).

A knowledge base B consists of (1) a finite domain of objects D (also known as entities), (2) a set

of predicatesR that describe the attributes and relationships of the objects, and (3) an interpretation

that assigns a truth value to every grounded predicate. The Gaifman graph G, also known as the

primal graph, of a knowledge base B is an undirected graph, where the nodes are the entities

e ∈ D. G contains edges joining two nodes only if the entities a and b corresponding to those

nodes are present in a relation together R(. . . , a, . . . , b, . . .) ∈ B. G can be used to easily identify

co-occurrences (or lack thereof) among every pair of entities in B. Furthermore, cliques in G group
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Figure 5.2: Gaifman neighborhoods.

entities that co-occur pairwise through shared relationships, and such cliques capture the local

structure of a knowledge base. We illustrate this in Figure 5.1, which shows a knowledge-base

fragment and the corresponding Gaifman graph for drug-drug interaction (DDI). Given entities

(drugs, enzymes, transporters) and relations between them, the underlying machine-learning task is

to predict if two drugs interact. The dotted line represents the target predicate, and identifying it is

link prediction.

The distance d(a, b) between two nodes (a, b) ∈ G is the minimum number of hops required

to reach node b from node a. For example, in Fig. 5.1, d(d1, t1) = 1 and d(d1, d2) = 2.

The r-neighborhood of a a ∈ G is the set of all nodes that are at most a distance r from a in

the Gaifman graph: NGr (a) = {ā ∈ G | d(a, ā) ≤ r}. For example, N1(d1) = {t1, e1} and

N2(d1) = {t1, e1, d2, d3}. Figure 5.2 shows the 1 and 2-neighborhood of a node (colored red) in a

given Gaifman model. When a first-order rule/clause ϕ(x) is relativized by the neighborhood of the

free variable x, the resulting first-order rule ψNr(x)(x) is called r-local. A Gaifman neighborhood

can be thought of as representing second-order proximity between nodes. The interpretation is that

nodes with shared neighbors are more likely to be similar and as a result more likely to have a link

between them.

Discriminative Gaifman Models (DGMs, (Niepert, 2016)) are relational models that can ex-

ploit structural features of a local neighborhood of a knowledge base. These structural features

are aggregated from locally-sampled neighborhoods, and the aggregation is based on the Gaif-
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man locality theorem (Gaifman, 1982) stated as: Every first-order sentence is logically equiv-

alent to a Boolean combination of basic r-local sentences. An r-local sentence is of the form

∃x1 . . . ∃xk
(∧

1≤i<j≤k d(xi, xj) > 2r ∧
∧

1≤i≤j ϕ(xi)
)

, where r, j ≥ 1 and ϕ is an r-local first

order formula. In simpler terms, the locality theorem states that only a small part of a given structure

is relevant for evaluating a query statement and thus a global structure search is not required. For

example, if querying about the drug d1 in Figure 5.1, a search within the 1-neighborhood of e1 (say),

that is {t1, e1} is more relevant than searching through the complete graph which can be greatly

computationally inefficient. Another way to look at the theorem is: a first-order rule is true if it is

true in the local r-neighborhoods of a given graph. The DGM approach uses the Gaifman locality

theorem to generate low-level embeddings for a given knowledge graph, which can then be used as

propositional features in a standard classifier.

5.2 Learning Discriminative Gaifman models

Given: A knowledge base B, facts Fs, and its corresponding Gaifman graph G;

Output: A DGMM that is trained for a particular link prediction task T ;

To Do: Construct a set of relational features Φ, and train a discriminative learner to predict T .

Our approach, Learning Gaifman Embeddings (LGE), (1) constructs rules Φ that form the base

set of relational features; (2) instantiates rules and performs counting based on task T to construct

propositional features F ; and finally, (3) learns a discriminative classifier with F (Figure 5.3).

5.2.1 Learning Relational Rules

Given a knowledge base B, the Gaifman graph G is obtained by instantiating the entities that are

connected by an edge type (relation) together in the form R(e1, e2), that is, relation(type1, type2).

The relation (link) to be predicted, defined by the target predicate, forms the set of positive examples.

We make the closed-world assumption, that is, unobserved edges in the graphs are negative examples.

Each relational example also has facts associated with it, which are the ground predicates in B that

describe relational example, its attributes and relationships. All such facts are denoted Fs.
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Figure 5.3: A general overview of link prediction using Gaifman models.

Features via Relational Rule Learning. Our first solution is inspired by Niepert (Niepert,

2016), who suggested the use of an Inductive Logic Programming (ILP) style learning method.

This method learns a set of discriminative Horn clauses (implications of the form if ¡condition¿

then ¡consequence¿). Specifically, we use an ILP system called WILL (Walker T., 2009) to learn

the relational features1. WILL first selects an example from the set of all examples and then finds

a clause (rule) that best covers the examples. The best covering is the most general clause that

maximizes the difference between the number of positive and negative examples covered 2. Each

best covering clause becomes a relational rule in our model. The examples covered by the clause are

then removed and the process is repeated till a stopping criterion is satisfied; for example, we have

extracted a maximum number of rules/clauses. Note that when a stopping criterion requires n rules

to be extracted, it is sometimes possible to extract m < n rules that cover the examples adequately.

Features via Relational Random Walks. Relational data is often represented using a graph

that defines a domain’s schema; in such a representation, a relation R(e1, e2) is a predicate edge

between two entity type nodes: e1
R−→ e2. A relational random walk (RW) through a graph is

1Any other ILP learner such as (Srinivasan, 2001), (Quinlan, 1990) or (Muggleton, 1995) could be used.

2Ideal coverage means all positive examples and no negative examples which can easily overfit.
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a chain of such edges corresponding to a conjunction of predicates. For a random walk to be

semantically sound, we should ensure that the input type (domain) of the i+ 1-th predicate is the

same as the output type (range) of the i-th predicate. An example relational random walk from the

drug-discovery domain is:

Interacts(d0, d3) ⇐ TargetInhib(d0, t0)

∧ TargetInhib(t0, d1) ∧ TransporterSubstr(d1, t2)

∧ TransporterInhib(t2, d3).

This is a semantically sound random walk as it is possible to chain the second argument of each

predicate to the first argument of the succeeding predicate. This random walk also contains inverse

predicates (prefixed by an underscore, such as Transporter). Inverse predicates are distinct from

their corresponding predicates as their arguments are reversed. Thus, this relational random walk

chains the first variable d0 in the target predicate Interacts(d0, d3) with the second variable d3.

The chain represents a relational feature and constitutes a random local structure of the form:

d0
TargetInhibitor−−−−−−−−−→ t0

TargetInhibitor−−−−−−−−−→· · ·

d1
TransporterSubstrate−−−−−−−−−−−−→ t2

TransporterInhib−−−−−−−−−−→ d3.

Thus, to construct a relational random walk, only the schema describing the knowledge base is

required. We adapt path-constrained random walks (PCRW, (Lao and Cohen, 2010a)) to construct

relational random walks. The algorithm starts at the first entity in the target relation, and makes a

walk over the (parameterized) graph to end at the second entity present in the target relation. One

limitation of PCRW is that the random walks are only performed over binary relations. However,

since we employ a predicate representation, we generalize and learn with arbitrary n-ary relations.

Features via Relational One-Class Classification (relOCC) Features. A common issue in

many real-world relational domains, especially knowledge bases, is that only “positive” instances

of a relation are annotated, while “negative” instances are not explicitly identified. This is because

the number of instances where the relation does not hold is very large, and annotation can be
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(a) An illustration of Least common ancestor. (b) Structure learning of Gaifman models using relational
distance. Each left branch of the learned tree represents a
relational feature.

Figure 5.4: Learning relational rules with relOCC

prohibitively expensive. Learning with highly imbalanced data sets requires reasoning over just the

positive instances, commonly referred to as one-class classification. Intuitively, if we can construct

a relational one-class classifier describing the positive examples, then rules characterizing this

classifier are essentially features that describe positive examples. One-class classification typically

requires a distance measure to characterize the density of the positive class. While, for standard

vector and matrix data, many different distance measures exist, the issue is far more challenging for

relational data, and depends on the underlying representation of the classifier.

Suppose we use an off-the-shelf learner to learn relational trees (Blockeel and Raedt, 1998) to

describe each class in the data. Such relational trees form a decision-list of relational rules. These

trees can then be used to compute the relational distance between a pair of examples x1 and x2,

d(x1, x2) =


0, LCA(x1, x2) is leaf;

e−λ·depth(LCA(x1,x2)), otherwise,
(5.1)

where LCA refers to the least common ancestor of the examples x1 and x2. Figure 5.4(a) shows

examples x1 ≡ advisedBy(Tom, Mary) and x2 ≡ AdvisedBy(Tom, John); they both

follow the same path down the tree before diverging at a node at depth 2. Now, consider x1 and
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x3 ≡ AdvisedBy(Ada, Dan). In this case, we have that the least common ancestor is at depth

1. Since the distance measure is inversely related to depth of the least common ancestor, we have

that x1 and x2 are closer together than x1 and x3. Typically, more than one tree is learned (say,

via functional gradient boosting), and the one-class classifier is a weighted combination of these

trees. Then, the overall distance function is simply the weighted combination of the individual

tree-level distances: D(x1, x2) =
∑

i βi di(x1, x2) where βi is the weight of the ith tree and∑
i βi = 1, βi ≥ 0. The non-parametric function D(·, ·) is a relational distance measure learned

on the data. The distance function can then be used to compute the density estimate for a new

relational example z as a weighted combination of the distance of z from all training examples

xj , E(z 6∈ class) =
∑

j αjD(xj, z), where αj is the weight of the labeled example xj and∑
αj = 1, αj ≥ 0. Note that expectation above is for z 6∈ class, since the likelihood of class

membership of z is inversely proportional to its distance from the training examples describing that

class.

We learn a tree-based distance iteratively (Khot et al., 2014) to introduce new relational features

that perform one-class classification. The left-most path in each relational tree is a conjunction of

predicates, that is, a clause, which can be used as a relational feature. The splitting criteria is the

squared error over the examples and the goal is to minimize squared error in each node as shown in

equation 5.2.

min
∑

y∈xr

[
I(z)− E(z /∈ class)− Σj:xj∈xl

αjβidi (xj , z)
]2

+
∑

y∈xl

[
I(z)− E(z /∈ class)− Σj:xj∈xrαjβidi (xj , z)

]2 (5.2)

I(z) is the indicator function and returns 1 if z is an unlabeled example or 0 otherwise. Also, xl

and xr are the examples that take the left and right branch respectively. A greedy search approach

is employed for tree learning thereby providing a non-parametric approach for learning these

relational trees. Algorithm 3 shows our structure learning method for DGMs using relOCC.

As mentioned above, in relOCC rule learning, there is a necessity to learn 2 different set of

weights – α and β, where α is the weight of the example and β is the weight of the tree since while

calculating the E(z /∈ class) i.e. P (z /∈ class) we need to combine distances in two levels, tree
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Algorithm 3 Structure Learning using relOCC; Input: fact base Fs, positive ex. pos, negative ex. neg

1: function LearnGaifmanStruct(Fs, pos, neg)
2: for every x1,x2 in pos do
3: Calculate d(x1, x2) according to equation 5.1
4: D(x1, x2) =

∑
i βi di(x1, x2) . Compute weighted distance between x1, x2

5: end for
6: for a given new unlabeled example z do
7: E(z 6∈ class) =

∑
j αjD(xj , z) . Calculate the density estimate

8: end for
9: Learn the tree T iteratively by minimizing equation 5.2

10: return LeftBranch(T)
11: end function

level and instance level as shown in figure 5.5. These weights are learnt iteratively by minimizing

the squared loss function:

L =
∑
y∈x

[I(z /∈ class)− E(z /∈ class)]2 (5.3)

Figure 5.5: 2-level distance combination for learning relOCC rules.
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The different gradients with respect to α and β can be calculated as:

∂L

∂α
=

∂L

∂αj

∑
z

[I(z)− E(z /∈ class)]

=
∂

∂αj

∑
z

[I(z)− Σiαjβidi (xj, z)]
2

= 2
∑
z

[I(z)− Σiαjβidi(xj, z)]×−Σiβidi(xj, z)

∂L

∂α
= −2

∑
z

[I(z)− E(z /∈ class)]Σiβidi(xj, z) (5.4)

∂L

∂β
=
∂L

∂βi

∑
z

[I(z)− E(z /∈ class)]

=
∂

∂βi

∑
z

[I(z)− Σjαjβidi (xj, z)]
2

= 2
∑
z

[I(z)− Σiαjβidi(xj, z)]×−Σjαjdi(xj, z)

∂L

∂β
= −2

∑
z

[I(z)− E(z /∈ class)]Σjαjdi(xj, z) (5.5)

In the tree level combination, we calculate the LCA based distance between all the labeled

examples (x1, x2....xt) and the unlabeled example z in every learned relational tree which are then

combined to yield a combined distance D between each example and the unlabeled example. After

calculating the distance between each each example with the unlabeled example, a second level of

combination is performed to yield the probability of the unlabeled example to belong to a certain

class.

5.2.2 Feature Construction

Once extracted, relational rules are instantiated (grounded) to obtain graphs Gpos and Gneg. While

several feature aggregations exist, we employ counts since they have been successfully employed in

many relational models. For every relational feature ϕ ∈ Φ, the first and last entity are instantiated
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corresponding to the tuples satisfying the query. For example, consider the knowledge base snippet in

Fig. 5.1; let the positive example be Interacts(Pravastatin, Simvastatin). For a re-

lational feature, say EnzymeInhib(d0, t0) ∧ EnzymeInhib(t0, d1), and the substitu-

tion {d0/Pravastatin, d1/Simvastatin} we obtain the partially-grounded relational feature

EnzymeInhib(Pravastatin, t0) ∧ EnzymeInhib(t0, Simvastatin). Next, all

the entities that completely satisfy this partially grounded feature are obtained. The features for

each query variable are then obtained as counts of the number of entities in the satisfied grounded

features that are also present in the neighborhood of the query entities in the Gaifman graph G.

For example, in the Gaifman graph in Figure 5.1, we check if EnzymeInhib(Pravastatin,

CytochromeP4502C9)∧ EnzymeInhib(CytochromeP4502C9, Simvastatin) sat-

isfies the given relational feature i.e. this grounding ∈ G. If the grounding satisfies the relational fea-

ture and since CytochromeP4502C9 is present in the Gaifman neighborhood of Pravastatin

(as well as Simvastatin), the count of the relational feature is increased by 1. Thus, for every

query variable q we obtain a propositional feature f = [f1, ...., f|Φ|] of length |Φ|:

fi =


|ψNr(q)(q)|, if q(e1, e2) partially grounds Φi,

0, otherwise.
(5.6)

Recall that ψ refers to the relativized first-order formula, and consequently ψNr(q)(q) is the r-local

formula for a neighborhood N of depth r. Thus, we count the number of entities in the satisfied

grounded features that are also satisfied in the neighborhood structure of the Gaifman graph.

Table 5.1: Evaluation domains and their properties.

Data set #Entities #Relations #Pos #Neg #RW rules #ILP rules #relOCC rules
DDI 355 15 2832 3188 68 36 25
PPI 797 7 1915 1915 42 5 15
NELL Sports 4147 6 300 600 36 15 13
Financial NLP 650 7 186 1029 222 6 25
ICML Co-Author 558 5 155 6498 7 15 7

Algorithm 4 presents our method, LGE for extracting embeddings from DGMs. In [Line 2–3]:

we build the initial Gaifman graph G. In [Line 4]: we learn the relational features from one of the

70



methods defined in 5.2.1, which are then grounded using both the positive and negative examples

[Line 5]; in addition, tuples of the positive and negative examples are also obtained [Line 6].

For both positive (T pos
q ) and negative tuples (T pos

q ), the neighborhood of each entity in the tuple

is obtained, and each relational feature is partially grounded with the entities ∈ t [Line 8, 16].

GenerateNeighbors (Niepert, 2016) generates entity neighborhoods for a tuple t ∈ Tq.

Algorithm 4 Learning Embeddings from Discriminative Gaifman Models; Input: target query q, knowledge
base B, positives pos, negatives neg; Params: depth r, size k and number of Gaifman neighborhoods w

1: function LGE(q, B, pos, neg)
2: G = MakeGaifmanGraph(B) . construct Gaifman graph from facts
3: Fs = MakeFactBase(B)
4: Φ = LearnGaifmanStruct(Fs, pos, neg) . extract relational features (section 5.2.1)
5: Gpos, Gneg = Ground(Φ, Fs, pos) . ground positive and negative examples
6: T pos

q , T neg
q = GetQueryTuples(q, Fs) . all tuples satisfying q ∈ Fs (pos), ¬q ∈ Fs, (neg)

7: for every t in T pos
q do

8: N = GenerateNeighborhoods(t, r, k, w) . generate w neighborhoods of depth r and size k
9: for every ϕ in Φ do

10: θ = ϕ/t . substitute query tuple t in feature ϕ
11: xϕt = Count(θ, N , Gpos) . count groundings satisfied in the neighborhoods
12: end for
13: xpos

t = [. . . , xϕt , . . . , x|Φ|] . embedding for tuple t
14: end for
15: for every t in T neg

q do
16: N = GenerateNeighborhoods(t, r, k, w) . generate w neighborhoods of depth r and size k
17: for every ϕ in Φ do
18: θ = ϕ/t . substitute query tuple t in feature ϕ
19: xϕt = Count(θ, N , Gneg) . count groundings satisfied in the neighborhoods
20: end for
21: xneg

t = [. . . , xϕt , . . . , x|Φ|] . embedding for tuple t
22: end for
23: return F = {xpos

t }, {x
neg
t } . return embeddings

24: end function

Neighborhood generation relies on three parameters: (1) r, the depth of neighborhood when

counting, (2) k, the number of neighbors to sample, and (3) w, the number of neighborhoods to be

generated. For each entity in tuple t, all neighbors at a maximum distance of r form the neighborhood

(Fig. 5.2, the outer region). This process is repeated until we obtain w neighborhoods for each

training example. For example, if r = 1, w = 5 and k = 10 and we have 10 relational features
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(|Φ| = 10), we obtain 50 propositional examples with 10 features by looking at 1-neighbors for each

entity. The Count function [Line 11, 19] counts how many entities in the neighborhood of each

query satisfy the partially-grounded relational features. Each such count becomes a propositional

feature. In this manner, we can construct a propositionalized data set of k × w positive examples

and k × w negative examples.

Learning a Discriminative Model: After learning the propositional features, any standard

classifier can be used for link prediction. In our experiments, we employ gradient-boosting (Fried-

man, 2001) and logistic regression. Results using more algorithms are given in the Appendix.

The classification algorithm itself is not a key contribution of our work and as we demonstrate

empirically next, a standard classifier suffices for learning an effective discriminative model.

5.3 Experiments

We consider 5 novel, real-world relational data sets (Table 7.1). We aim to answer the following

questions: Q1: How do different structure learning strategies compare across diverse domains from

different applications? Q2: Does choice of the discriminative algorithm impact the performance?

Q3: How do different structure learning strategies impact performance in the presence of high

class imbalance? Q4: What are effects of Gaifman locality parameters r, w and k? Q5: How does

our method compare with state-of the art probabilistic ILP systems? Q6: How does our method

compare with Niepert’s original approach (Niepert, 2016) of using hand-crafted rules?

Data sets: Drug-Drug interactions (DDI) (Dhami et al., 2018) consists of 78 drugs obtained

from DrugBank. The data set has 15 relations and the target is Interactions between drug entities.

Protein-Protein interactions (PPI) (Kok et al., 2009) has 7 relations and is obtained from Alchemy.

The target is interaction relation between two protein entities. NELL Sports was generated by the

Never Ending Language Learner (Mitchell et al., 2018) consisting of information about players

and teams. It has 6 relations and the task is to predict whether a team plays a particular sport

i.e teamplayssport. Financial NLP is obtained by extracting information from SEC Form S-1
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documents, which were scraped and converted into relational format. This data set has 7 relations

and the target the relation sentenceContainsTarget between sentence and word entities. ICML

Co-Author is obtained by mining publication data from ICML 2018; the data set has 5 relations

and the target is the CoAuthor relation between persons.

Results: Table 7.1 also shows the number of relational rules learned by different techniques.

Table 5.2 present the results for all the relational domains, after 5-fold cross validation, with logistic

regression (LR) and gradient boosting (GB). All experiments were run on a 64-bit Intel(R) Xeon(R)

CPU E5-2630 v3 server with parameter values r=1, k=10 and w=5.

Table 5.2: Results (≈ 3 decimals) for the relational domains. Note that the first three data sets
are relatively balanced and the last two are highly unbalanced. Thus, the accuracy and AUC-ROC
values for the last two data sets are reported only for completion.

Data set Methods Accuracy Recall F1 AUC-ROC AUC-PR
LR GB LR GB LR GB LR GB LR GB

DDI

RW 0.657 0.669 0.469 0.530 0.564 0.602 0.647 0.662 0.581 0.593
ILP 0.696 0.774 0.467 0.674 0.592 0.729 0.684 0.767 0.710 0.765

relOCC 0.860 0.897 0.939 0.991 0.864 0.901 0.864 0.902 0.797 0.853
Niepert (Niepert, 2016) 0.534 0.534 0.0 0.0 0.0 0.0 0.5 0.5 0.466 0.466

MLN-Boost 0.638 0.504 0.618 0.798 0.784
RDN-Boost 0.755 0.662 0.718 0.828 0.831

PPI

RW 0.700 0.785 0.586 0.707 0.661 0.767 0.699 0.785 0.651 0.740
ILP 0.613 0.661 0.397 0.553 0.506 0.620 0.613 0.661 0.579 0.614

relOCC 0.727 0.733 0.996 0.999 0.785 0.789 0.727 0.733 0.647 0.652
Niepert (Niepert, 2016) 0.608 0.652 0.382 0.524 0.499 0.606 0.613 0.654 0.591 0.619

MLN-Boost 0.548 0.453 0.571 0.743 0.733
RDN-Boost 0.671 0.615 0.652 0.728 0.740

NELL Sports

RW 0.783 0.822 0.414 0.569 0.569 0.689 0.696 0.762 0.565 0.594
ILP 0.782 0.824 0.431 0.590 0.578 0.699 0.699 0.769 0.530 0.564

relOCC 0.793 0.833 0.431 0.6 0.59 0.731 0.708 0.778 0.574 0.643
Niepert (Niepert, 2016) 0.756 0.780 0.314 0.485 0.465 0.597 0.648 0.707 0.512 0.549

MLN-Boost 0.605 0.533 0.667 0.894 0.853
RDN-Boost 0.812 0.756 0.714 0.884 0.834

Financial NLP

RW 0.833 0.833 0.0 0.0 0.0 0.0 0.5 0.5 0.168 0.168
ILP 0.838 0.921 0.068 0.633 0.112 0.727 0.530 0.806 0.200 0.6023

relOCC 0.965 0.967 0.788 0.800 0.882 0.889 0.867 0.879 0.826 0.833
Niepert (Niepert, 2016) 0.827 0.914 0.0 0.59 0.0 0.705 0.5 0.787 0.173 0.587

MLN-Boost 0.928 0.764 0.757 0.989 0.807
RDN-Boost 0.975 0.963 0.929 0.989 0.901

ICML CoAuthor

RW 0.977 0.977 0.0 0.0 0.0 0.0 0.5 0.5 0.023 0.023
ILP 0.983 0.985 0.272 0.339 0.427 0.506 0.636 0.669 0.289 0.356

relOCC 0.986 0.997 0.346 0.386 0.517 0.557 0.653 0.693 0.370 0.40
Niepert (Niepert, 2016) 0.981 0.984 0.195 0.327 0.326 0.493 0.597 0.664 0.214 0.343

MLN-Boost 0.938 0.326 0.214 0.294 0.210
RDN-Boost 0.940 0.434 0.231 0.153 0.157
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To answer Q1, we note that relOCC outperform ILP and relational RWs across a majority of the

domains. This is expected since relOCC considers the density of the positive and negative examples

separately, allowing the features it generates to discriminate better. To answer Q2, we note from

Table 5.2 that the choice of classifier does not result in significant differences in performance after

learning relational rules, though the performance of GB is almost always higher than LR.

The ICML CoAuthor (neg-to-pos ratio of 42:1) and Financial NLP (neg-to-pos ratio of 6:1)

data sets are highly imbalanced; consequently, we report AUC-PR. In both domains, AUC-PR

for relOCC outperforms the other structure-learning methods by a large margin. Random walk

rules, in particular, cause all the examples to be classified as negative, resulting in recall and

F1-scores of 0 in both domains. Thus, we can answer Q3: highly-imbalanced domains benefit from

density-estimation-based structure learning.

Fig. 5.6 show the effects of varying r (depth of neighborhoods), k (number of neighbors)

and w (number of neighborhoods) on the DDI data set. Generally, k does not affect performance

significantly, but increasing r causes recall report to drop sharply. This is because, with r = 1,

entities in the query neighborhood are more tightly coupled with entities in the query variables.

This parametric sensitivity analysis addresses Q4. Also, another important takeaway is that relOCC

rules exhibit high clinically-relevant recall (≈ 1) on medical data sets: DDI and PPI. This has

considerable implications for bioinformatics domains as recall is the most important metric; this is

because a false negative (such as a misdiagnosis) could result in much more serious consequences

(Dhami et al., 2018) than a false positive. Finally, from Fig. 5.6 (right), we note that varying r and k

does not affect training time, as these parameters do not affect the search space. However, increasing

w increases the run time since the size of the neighborhood graph to be searched increases.

To answer Q5, we compare our approaches to three probabilistic ILP systems, MLN-Boost

(Khot et al., 2011), RDN-Boost (Natarajan et al., 2012a) and Tuffy (Niu et al., 2011). Our core

contribution is end-to-end learning of Gaifman models that requires only data and no domain

knowledge and thus we focus on comparison with a full model learning methods of MLN-Boost

74



Figure 5.6: (left) Accuracy, (middle) recall and (right) running time for various values of r, k and w
for the DDI domain. For varying r: w=5 and k=10, for varying w: r=1 and k=10 and for varying k:
w=5 and r=1.

and RDN-Boost. Table 5.2 shows that our method outperforms MLN-Boost by a significant margin

and outperforms/is comparable to the performance of RDN-Boost in 4 out of 5 domains. We also

note that Tuffy3 could not effectively scale to the amount of data that we have used in our learning

framework, and could not learn the structure. Instead, we tried using the ILP rules that we learned,

and learned the weights. In this case as well, Tuffy could not complete training after a few hours.

To put this in perspective, we sampled 10% data from all the data sets and the results for the same

are presented in Fig. 5.7 which shows that our method is significantly better than Tuffy.

(a) Comparison of our method
with Tuffy on balanced data sets.

(b) Comparison of our method
with Tuffy on unbalanced data
sets.

(c) Comparison of learning + in-
ference time taken by our method
with Tuffy.

Figure 5.7: Comparison of our method with Tuffy with 10% sampled data sets.

3We also tried other systems: Alchemy, Problog, ProbCog.
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Finally, to answer Q6, we compared against Niepert (2016). We created generic relational

features as suggested by Niepert and of the form: r(e1, e2); r(e2, e1); ∃x r(x, e), ∃x r(e, x),

∃x r(e1, x) ∧ r(x, e2), ∃x r(e2, x) ∧ r(x, e1) . These relational features are very simple, and do

not cover the relational search space sufficiently, resulting in significantly poor perforamance. And

hence, we created more domain-specific rules to enhance the score. It is clear from the results, that

even after enhancing the hand-crafted rules, learning the structure leads to much better predictive

models. Combining the human-guided rules with learning remains an interesting future direction.

5.4 Conclusion

Our proposed approach, LGE, is the first algorithm for learning the structure of Gaifman

models for relational data. Given the increasing importance of local neighborhoods in graph data,

automatic learning of these neighborhoods is an important direction and contribution, and we hope

to encourage more widespread adoption of this powerful learning approach. Our learned rules, or

relational features, are instantiated and aggregated over a Gaifman graph to produce raw features,

which are used to train a discriminative classifier. Our work provides an efficient and effective

method of constructing local-neighborhood-based relational embeddings.

Beyond structure learning, there are several avenues to explore such as joint learning of Gaifman

models, generating explanations for a given prediction and extending Gaifman locality to hyper-

graphs. Another direction is employing more graph based embedding methods that can integrate

with Gaifman’s locality principle.
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CHAPTER 6

GRAPH NEURAL MODELS FOR RELATIONAL DATA

In this chapter we consider the problem of knowledge base population (KBP) of a coauthor network.

Specifically, we consider the link prediction problem as a relational modeling task. We develop a

relational extension of graph convolutional networks (GCNs) that exploits recent success inside

relational probabilistic models. As a result of this extension, we present a novel knowledge base

consisting of knowledge for four major machine learning conferences extracted from the Microsoft

Academic Graph (Under Review).

6.1 Introduction

Statistical Relational Learning (SRL) (Getoor and Taskar, 2007; Raedt et al., 2016) combines the

power of probabilistic models to capture uncertainty with logic/relational models to take advantage

of the rich domain structure. One of the key successes of these models lie in the task of Knowledge

Base Population (KBP), specifically, in link prediction or relation extraction tasks. While successful,

most methods make several simplifying assumptions – presence of supervision in the form of labels,

closed world assumption, presence of only binary relations and most importantly, the presence of

hand-crafted rules.

We go beyond these assumptions and inspired by the recent success of Graph Convolutional

Networks (GCNs) (Defferrard et al., 2016; Kipf and Welling, 2017), and develop a new relational

extension of GCNs. The proposed method is capable of (1) automatically learning rules from

one-class data, i.e., only from the positive annotations of the relation (in our case, coauthor) (2)

automatically converting these rules into observed features and (3) training a GCN that is specific to

the task of link prediction. Our method employs a one-class density estimation method that uses a

tree-based distance metric to learn relational rules iteratively. We call this method as Relational

One-Class GCN (ROCGCN). Since the two different steps of learning the relational rules and the
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GCN training both employ the same set of positive examples, they allow for richer representation

of the combination of the attributes, entities and their relations. While previous methods simply

used the observed features as the observed layer, our method uses the combinations (rules) as the

observed layer. This has the added advantage of the latent layer being richer – it combines the

combinations (rules) themselves allowing for a more richer representation. As we show empirically,

this is specifically useful when employed on large-scale KBP tasks such as link prediction.

We make a few key contributions: (1) We develop the first relational GCN capable of learning

from positive and unlabeled data. (2) Instead of employing hand-crafted rules, our method learns

these rules automatically by focusing on the link prediction task and then constructs the GCN for

the same task. These two steps that are conditioned on the link prediction task allows for a better

classifier. (3) ROCGCN can handle arbitrary relations – we do not make the assumption of binary

relations that most methods make. Given that our base learner is a logic-based one, the predicates

can include arbitrary number of parameters. (4) Finally, an important contribution of this work is

the release of Microsoft Knowledge Graph in the form of first-order logic factbase. This will

allow for benchmarking several SRL models in the immediate future.

Figure 6.1: Graph Convolutional Networks
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6.2 Relational Graph Convolution Networks

The main reason behind the success of GCNs is that they exploit two key types of information:

node feature descriptions (xi) and node neighborhood structure (captured through the adjacency

matrix A of the graph). The basic idea behind GCNs is shown in figure 6.1. As mentioned earlier,

GCNs by themselves cannot fully exploit the inherent structures inside a multi-relational graph.

Motivated by this, we propose an extension to the graph convolutional network that can handle

large multi-relational networks. Although a recent work (Schlichtkrull et al., 2018) that extends the

GCN framework to relational domains exists, this approach is still limited to graphs represented

as (subject; predicate; object) triples. We propose a novel and a more general approach that is

not limited by assumptions regarding the multirelationality of the data and can handle general

multi-graphs and hypergraphs implicitly and without loss of information. Figure 6.2 shows a

representation of our approach, Relational One Class Graph Convolutional Networks (ROCGCN),

to construct the feature matrix X containing the node feature descriptors xi and the distance matrix

D.

Figure 6.2: Feature and Distance Matrix Construction for Relational One-Class Graph Convolutional
Networks
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Before we define the process of obtaining D and X we present some required background.

We first introduce some basic notation and concepts in first-order logic. An atom is of the form

R(t1, . . . , tk) whereR is a functor and the arguments ti are terms. A substitution is of the form

θ = {〈x1, . . . , xk〉/〈t1, . . . , tk〉} where xis are logical variables and tis are terms. A grounding of

an atom with logical variables x1, . . . , xk is a substitution {〈x1, . . . , xk〉/〈X1, . . . , Xk〉} mapping

each of its variables to a constant in the population of that variable. A knowledge base B consists of

(1) entities: a finite domain of objectsD, (2) relations: a set of predicatesR describing the attributes

and relationships between objects ∈ D, and (3) an interpretation assigning a truth value to every

grounding.

Given a knowledge base B, we first learn a set of first-order rules that represent the relational

search space effectively. The intuition is that these relational rules can be viewed as meta-features

that connect entities and their attributes. Particularly, when learned for a specific task, these

features can be both predictive and informative. Given that they are typically conjunctions of

relational features (attributes of entities and relationships), they have the added advantage of being

interpretable. Our hypothesis, that we verify empirically is that these rules can potentially yield

richer latent representations than a relational GCN that simply uses the entity and relationship

information.

A common issue in many real-world relational knowledge bases is that only true instances of any

relation(s) are present while the false instances are not explicitly identified as they are prohibitively

expensive. Consequently closed world assumption is applied to sample negative instances from the

set of unobserved ones. While successful, this is a strong assumption particularly when the number

of positively labeled examples are sparse such as our coauthor network. Inspired by the success of

learning only from positive examples in relational domains (Khot et al., 2014), we learn first-order

rules using relational density estimation. The intuition behind using a density estimation method is

as follows: Learning first order rules for positive and sampled negative examples independently can

result in better utilization of the search space thereby learning more discriminative features. The
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density estimation approach uses a tree-based distance measure that iteratively introduces newer

features (as short rules) that covers more positive examples. These rules at the end of the density

estimation step form the relational features for our model.

The learned first order rules are then grounded to obtain all instantiations of these rules. The

counts of each feature, i,e., the count of the number of times a target example (the coauthor relation

between the target entities) is satisfied in every first order rule is obtained which forms our feature

matrix X . For example, the learned first order rule from true instances

CoAuthor(person1, person2) ⇐ Affiliation(person1, university1)

∧Affiliation(person2, university1) ∧ ResearchTopic(person1, topic1)

∧ResearchTopic(person2, topic1).

implies that if 2 people have the same affiliation and their research interests lie in similar topics then

they are more likely to coauthor. Suppose the given target entities are person1 = “Pieter Abbeel”

and person2 = “Sergey Levine”. The partially grounded first order rule can then be written as

CoAuthor(Pieter Abbeel, Sergey Levine) ⇐ Affiliation(Pieter Abbeel, university1)

∧Affiliation(Sergey Levine, university1) ∧ ResearchTopic(Pieter Abbeel, topic1)

∧ResearchTopic(Sergey Levine, topic1).

Then substitutions for all the other entities within the first order rule is performed and checked

whether the substituted first order rule is satisfied in the groundings. For example, the substitution

θ = {〈university1, topic1〉/〈University of California Berkeley, Artificial

Intelligence〉} is satisfied but the substitution θ = {〈university1, topic1〉/〈University of

California Berkeley, Computer Networks〉} is not satisfied. Since there can be multiple values

taken by topic1 that can satisfy the first order rule, the count of all such satisfied groundings becomes

a feature value for the target query CoAuthor(Pieter Abbeel, Sergey Levine). Thus

we obtain a feature set X of size n× k where n is the number of target queries and k is the number

of first order rules.
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In order to obtain the distance matrix D a pairwise euclidean distance of all the node feature

descriptors i.e. the counts xi ∈ X is computed. Thus, every element dij ∈ D,

dij = ‖xi − xj‖ =
√
‖xi‖2 + ‖xj‖2 + 2 · xi · xj (6.1)

The original formulation of graph convolutional networks (Kipf and Welling, 2017) require an

adjacency matrix A to perform the layer wise propagation. Instead of building the adjacency matrix

from the relation triples, we use the computed distance matrix D and use it as an approximation to

the adjacency matrix for the GCN. To obtain this approximation, we perform the following steps:

1. A threshold, t, is set as the average of all the distances (since the distance matrix is symmetric,

the average is calculated from the upper-right part of the distance matrix). This case is considered

as far-away case.

2. ∀dij ∈ D, new distances are computed as d̂ij = dij/t and max(d̂ij) is set as 1.

3. Since the higher values in D represent nodes that are far way as opposed to the A where the

higher values i.e. 1 represents the nodes adjacent to each other, the distance between nodes is

subtracted from 1 i.e. d̂ij = 1− d̂ij . This is similar to A with dij= 1 representing that two nodes

are connected and dij= 0 representing that two nodes are not connected with the only difference

being the presence of values 0 < dij < 1 that denote the closeness of two nodes.

4. Since the above operator sets the diagonals of the distance matrix D to 1, in order to approximate

the adjacency matrix, the values in the diagonals are reverted to 0.

For a GCN with M layers, the layer wise propagation rule for the layer l ∈M can now be written as,

f(H(l),D) = σ(DH(l)W (l)) (6.2)

where H(0) is the input layer i.e. the feature matrix X with H(1) . . . H(M − 1) being the hidden

layers. Since we replace A with D before the symmetric normalization and addition of self loops,

these operations are now be performed on D thereby giving the updated propagation rule as,

f(H(l),D) = σ(N̂
−1
2 D̂N̂

−1
2 H(l)W (l)) (6.3)
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such that D̂ = D + I where I is the identity matrix and N̂ is the diagonal node degree matrix of D̂.

Given that we have outlined the procedure for constructing our ROCGCN, we now proceed to

discuss the KBP construction using ROCGCN.

6.3 Knowledge Base Extraction from Microsoft Academic Graph

To create our knowledge base (KB), we extract data from Microsoft Academic Graph (MAG)

(Sinha et al., 2015) for 4 major AI/ML conferences, namely International Conference on Machine

Learning (ICML), International Conference on Learning Representations (ICLR), International

Joint Conference on Artificial Intelligence (IJCAI) and Neural Information Processing Systems

(NeurIPS). The data is extracted by querying the academic graph with the keyword ‘venue’. For each

conference, we extract title, #citations, year, author(s), affiliation of the author(s), every author’s

field of study i.e. the research topic and the citation of each paper. All the obtained information is

then converted into a first order logic representation which are collectively referred to as facts. Thus

a set of facts ∈ B describe relational examples through their attributes and relationships. The citation

information is then used as the positive examples in the KB. To generate the negative examples

for the baselines, the closed world assumption was used. First, all pairs of citation (relations

of the form citations(citing paper id, cited paper id)) were collected and the cross-product of

these combinations were generated. The pairs not in the positive examples constitute the negative

examples thereby completing the construction of the KB. The number of facts, positive and negative

examples grouped by each conference is shown in the table 6.1.

Table 6.1: Properties of the extracted knowledge base grouped by conference

Conference # facts in Knowledge Base #Positive examples #Negative examples
ICML 71277 77526 142079901
ICLR 2764 4086 424937
IJCAI 115575 98730 383165323

NeurIPS 107368 110926 308649177

Figure 6.3 shows the top 5 fields of study for the papers accepted in the 4 major conferences

and figure 6.4 shows the count of the number of authors, unique papers and the coauthor relations
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Figure 6.3: Counts of the top 5 fields of study (research topics) in the knowledge base,
grouped by the conference name. Here ML=“Machine Learning”, AI=“Artificial Intelligence”,
CS=“Computer Science”, MATH=“Mathematics”, STAT=”Statistics”, PR=“Pattern Recognition”,
ALGO=“Algorithms” and MOPT=“Mathematical Optimization”.

in the extracted knowledge base respectively. Not surprisingly, “Machine Learning” is the field of

study for most of the papers in all the conferences except IJCAI since these are primarily machine

learning conferences. In IJCAI, papers with “Computer Science” as the field of study outnumber

the other fields showing that papers with a more general focus are accepted in the conference.

Also papers with the field of study as “Mathematics” appear in every conference thereby

depicting the connection of the areas of mathematics and ML/AI. Some more interesting patterns

are visible such as the presence of a lot of “Mathematical optimization” papers in NeurIPS and

“Algorithms” papers in IJCAI thereby showing the difference in focus of these conferences.
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Figure 6.4: Count of unique papers, authors and coauthor relations grouped by conference name.

6.4 Experimental Results

Recall that our original goal is to perform link prediction on the generated KB. To evaluate the

algorithm, we use a reduced KB consisting of papers from ICML 2018 and predicted coauthor

relation. The properties of this reduced KB is shown in table 6.2.

Table 6.2: Properties of the reduced knowledge base for ICML’18

# facts in Knowledge Base #Positive examples #Negative examples
1395 155 6498

The reduced KB is shown in Figure 6.5 with a smaller snippet of 4 authors and their field of

study (research topics) is shown in Figure 6.6. Note that some interesting properties about the

entities in the KB can be extracted. For example, “Yann LeCun” and “Pieter Abbeel” have not

coauthored and do not share the same affiliation but the KB suggests that their fields of study highly

intersects with one another.
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As the first step in the coauthor link prediction, we learn the first order logic rules using the

density estimation method of (Khot et al., 2014) using relational trees from positive examples. The

number of rules learned is 7. Some examples of the learned rules are given in table 6.3. The feature

matrix X and the distance matrix D are then obtained following the method described in section

6.2.

Table 6.3: Example rules learned by the density estimation method for +ve and -ve examples. Here
“MO” = Mathematical Optimization and “PR” = Pattern Recognition.

ResearchTopic(B, "MO") ∧ ResearchTopic(A, "PR") ∧ ResearchTopic(A,C) ∧ ResearchTopic(B,C)
Affiliation(A, C) ∧ Affiliation(B, C)

ResearchTopic(A, C) ∧ ResearchTopic(B, C)

Figure 6.5: Snippet of the original Knowledge Base for the coauthor network. The blue nodes
denote the authors, the red nodes denote the institutes and green nodes denote the institute type,
location of institute and the research topic of each author (Best viewed in color).
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6.4.1 Baselines

We compare our method, ROCGCN, to 3 relational embedding baselines.

1. Gaifman models (Niepert, 2016): This model makes use of the Gaifman locality principal

(Gaifman, 1982) to simply enumerate all hand-written first order rules (relational features)

of the specific kind within the neighborhood of the target/query variables. For our experiments

handwritten rules for the reduced knowledge base are constructed. After obtaining the counts

for the satisfied grounded handwritten rules, which serve as propositional features, logistic

regression is used for prediction.

2. Relational GCN (Schlichtkrull et al., 2018): This model extends the GCN to the relational setting.

This method can handle different weighted edge types i.e. relations and uses a two step message

passing techniques to learn new node representations. For the task of link prediction these node

representations are fed to a factorization method, DistMult (Yang et al., 2015), to predict the

possible link between the nodes. We use the tenserflow implementation1 for our baseline.

3. ComplEx (Trouillon et al., 2016): This model proposes a latent factorization approach for the

problem of link prediction in multi-relational graphs and uses vectors with complex values for

entities and relations. The scoring function for each example (a triple) is a combination of the

real and imaginary parts of the vectors of both the entities and the relations. We use the ComplEx

implementation in the AmpliGraph python library2 for our baseline.

A comparison of our method, ROCGCN, with the baselines is shown in table 8.1.

For ROCGCN, the examples for training, validation and testing are randomly sampled without

replacement from the KB while for R-GCN and ComplEx, since they are trained on true relations,

the positive examples are randomly split with 80, 20 and 55 examples in training, validation and

1https://github.com/MichSchli/RelationPrediction

2https://github.com/Accenture/AmpliGraph
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Table 6.4: Comparison of our method with state of the art baselines

Methods Recall F1 AUC-PR
Gaifman (Niepert, 2016) 0.10 0.186 0.127

R-GCN (Schlichtkrull et al., 2018) 0.636 0.13 0.13
ComplEx (Trouillon et al., 2016) 0.85 0.03 0.04

ROCGCN (Our method) 0.389 0.561 0.556

Figure 6.6: Snippet of the original Knowledge Base for the coauthor network focusing on 4 authors
and their research topics.

testing respectively. To obtain the recall, F1 and AUC-PR values for the baselines (R-GCN and

ComplEx), the scores for each pair of nodes in the test examples were thresholded by the average of

the obtained scores. If the score obtained between a pair of nodes is greater than average score we

predict the link else we predict no link. As can be seen from the results, our method outperforms the

baselines significantly in the F1 and AUC-PR metrics. Note that although the recall is high for the

neural embedding baselines, the corresponding F1 score and AUC-PR is very low which implies

that these methods have a high rate of false positives. This clearly demonstrates that ROCGCN is

significantly better than the strong baselines for the link prediction task.
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6.5 Conclusion

We presented the first GCN method that can learn from positive only multi-relational data. Our

ROCGCN does not make assumptions on the supervision or the arity of predicates and automatically

constructs rules that allow for a rich latent representation. ROCGCN significantly outperforms

the recently successful methods on link prediction task in the knowledge base extracted from

the Microsoft Academic Graph. Extensive evaluations on other data sets including drug-drug

interactions is an interesting direction of research. Allowing for joint learning and inference

over multiple types of relations is another future direction. Finally, learning with the presence of

hidden/latent data is essential for deploying SRL methods in real tasks.
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PART III

LEARNING SYNTHETIC HEALTH CARE DATA
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CHAPTER 7

HUMAN-GUIDED DEEP GENERATIVE MODELS

A key major challenge when learning from health care data is the difficulty in obtaining health

care related data due to privacy and cost issues. This has, to an extent, limited the use of powerful

machine learning models that can help reveal various underlying patterns in the data that the human

experts could potentially miss. Thus, the use of generative machine learning models to generate

synthetic data becomes of utmost importance. Also, since machine learning models benefit by using

domain knowledge incorporating such knowledge in generative models can help generate better

quality data. To this extent, we propose knowledge based deep generative models that can be used

to create synthetic health care data which can mitigate the above issues and encourage high level

machine learning research in health care.

7.1 Introduction

Although a huge amount of medical data is generated around the world (Dinov, 2016; Groves et al.,

2016) a number of issues exist. These issues can primarily categorized into the following:

1. Obtaining medical data sets may be difficult and coslty.

2. Privacy issues (Barrows Jr and Clayton, 1996): Utmost care needs to be taken such that the

identification of the patient from the corresponding medical records cannot be done.

3. Access issues (Doshi et al., 2016): Even if a medical data set is affordable, there are a lot of

permissions needed to access it. HIPAA guidelines must be closely followed, thereby making

the use of real medical data sets for research purposes difficult.

Due to all this existing issues, generation of synthetic data sets has been studied extensively (Jeske

et al., 2006; Buczak et al., 2010; Shamsuddin et al., 2018) and this area of research has received

a significant push (Guibas et al., 2017; Mahmood et al., 2018; Frid-Adar et al., 2018) after the
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introduction of generative adversarial networks (GANs) (Goodfellow et al., 2014). If we generate

synthetic medical data addressing all the above mentioned issues, the application of technologies

such as machine learning can become more prevalent. Real world medical data is highly multimodal

i.e. the probability distribution which describes the data has multiple “peaks” where different

sub-groups of samples are concentrated (Beam et al., 2018). Creation of a synthetic data set will

remove the cost and privacy issues associated with real data thereby making medical data sets

more accessible to researchers in different communities. Though it has to be made sure that the

synthetic data distribution is as close to the real data distribution as possible without giving the

patient information away.

Most clinical models are built on confidential patient records, so data sharing is rare. Synthetic

medical data could enable researchers to design a new generation of reproducible clinical decision

support models, along with standardized performance benchmarks for new methods. Thus, the

problem of generating synthetic data sets from real medical data sets keeping the intrinsic relation-

ships between the features intact becomes important. In medical domain, such relationships are

important and can be provided as additional knowledge or advice to the model in order to faithfully

generate data. Incorporation of extra knowledge into systems has shown to create better performing

and more explainable models (Towell and Shavlik, 1994; Fung et al., 2002; Kunapuli et al., 2010)

and thus incorporating advice providing extra knowledge to the model regarding these relationships

can help in generating better quality data.

Inspired by these, we consider the hugely successful generative adversarial networks (GAN) and

propose the Human-Allied Generative Adversarial Networks (HA-GAN) model where correlations

between different features are captured and used to create a new generated data using the Iman-

Conover method (Iman and Conover, 1982) which is then passed back to the GAN for training. We

make the following contributions: (1) We present the first work on incorporating human advice

to generate better quality data, (2) We present the first work using GANs for creation of synthetic

data from small clinical data sets, (3) Finally, our experiments show that including extra knowledge

92



about the feature relationships produce higher quality synthetic data as can be seen by the higher

performance of prediction models on synthetic data with advice when compared to synthetic data

without advice.

7.2 Human-Allied GANs

The key principle behind Generative Adversarial Networks (Goodfellow et al., 2014) is a zero-sum

game (Kuhn and Tucker, 1953), from game theory, which is a mathematical representation of a

situation where each participant’s gain or loss is exactly balanced by the losses or gains of the

other participants and is generally solved by a minimax algorithm. GANs leverage this concept to

estimate generative distributions by emulating such a zero-sum game between 2 models, namely, the

generator and the discriminator (can also be considered as an actor-critic model). The generator tries

to generate examples as close to the real distribution as possible starting from a random distribution

to fool the discriminator and the discriminator tries to correctly distinguish real examples from

the generated examples. The generator tries to maximize the probability that the discriminator

makes a mistake and the discriminator tries to minimize its mistakes thereby resulting in a min-max

optimization problem which can be solved as any mini-max algorithm. Following the notations in

(Goodfellow et al., 2014), let G and D represent the generator and the discriminator respectively.

To learn the generator distribution pdata(x) over the given data x, samples z are obtained from

a random distribution pz(z). This random distribution was initially proposed to be a uniform

distribution but research has shown that a Gaussian distribution works better (Arjovsky and Bottou,

2017). The zero-sum game played between the discriminator D and the generator G can then be

formulated as the following optimization problem:

min
G

max
D

V (D,G) = Ex∼p data (x)[logD(x)]+

Ez∼pz(z)[log(1−D(G(z)))]

(7.1)

One of the many disadvantages of an adversarial training formulation is that the training is slow

and very unstable, leading to the problem of mode collapse (Arjovsky and Bottou, 2017) where
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Figure 7.1: Proposed Human-Allied Generative Adversarial Network architecture.

the generator starts generating data of only a single modality. As a result, generative adversarial

networks have not been exploited to their full potential in generating synthetic non-image medical

data sets. Since human advice can force a model to concentrate on different areas of the feature

space and helps learn more stable models (Odom and Natarajan, 2018), we propose a human-allied

generative adversarial network (HA-GAN) architecture (figure 7.1). The architecture consists of

human advice in form of feature correlations since such intrinsic relationships between the features

in medical data sets are important and thus become a natural candidate to be provided as additional

knowledge or advice to the model in order to faithfully generate data.

Our proposed approach starts with a simple generative adversarial network (GAN) architecture

(Goodfellow et al., 2014) where a random noise vector is provided to the generator which tries

to generate examples as close to the real distribution as possible. The discriminator then tries to

identify examples from the real data from examples generated by the generator. The generator

tries to maximize the probability that the discriminator makes a mistake and the discriminator
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tries to minimize its mistakes thereby resulting in a min-max optimization problem which can

be solved as a mini-max algorithm. In our work we use the Wasserstein generative adversarial

network (WGAN) architecture (Arjovsky et al., 2017; Gulrajani et al., 2017) that focuses on defining

a distance/divergence (Wasserstein or earth movers distance) to measure the closeness between

the real distribution and the model distribution i.e. the distribution of the data and the examples

generated by the generator.

7.2.1 Human input as inductive bias

There are two major ways of using human input to induce bias in a machine learning model. One

way is to provide advice on the labels, as hard constraints or preferences) to constrain the search

space. For example, while predicting heart attack some example advice rules on the labels might

include:

1. (200 ≤ cholesterol level ≤ 300)⇒ label = 1

2. (80 ≤ cholesterol level ≤ 100) ∧ (80 ≤ diabetes ≤ 100)⇒ label = 0

These types of advice make more sense in an discriminative setting since the goal is to not change

the real data in the GAN setting. Since GANs are shown to be sensitive to the training data and the

labels are getting generated, it is desirable to not change these during the training process. Another

way of providing advice is to use correlations between features as preferences.

After a fixed number of iterations, N, we calculate the correlation matrix of the generated data

and provide a set of advice ψ on the correlation’s between different features. We first motivate the

use of correlations as a form of advice with an example.

Example: Consider a heath care data set to predict heart attack, with 3 features say, cholesterol

level, blood pressure, income level. The values of the given features can vary (sometimes widely)

between different patients due to several latent factors that might not be captured in the data set

(say smoking habits), it is difficult to come up with a distributional assumption for the given features.
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In other words, it is difficult to deduce whether the values for the features come from the same

distribution (even though the feature values in the data set are similar).

We propose to increase the co-variance coefficient between the features if the advice suggests that

two features are highly correlated. Conversely, we decrease the co-variance coefficient if the advice

says otherwise.

Example: Continuing the above example, since raise in the cholesterol level can cause a rise

in blood pressure and vice versa, an expert advice here can be that cholesterol level and blood

pressure should be highly correlated. Also, since income is (generally) not a factor in one’s blood

pressure and cholesterol levels, another advice here can be to decrease the correlation between

both cholesterol level and blood pressure with the income level (note that these are for illustrative

purposes only).

Thus some example advice rules ∈ ψ are:

1. Correlation(“cholesterol level”,“blood pressure”)↑

2. Correlation(“cholesterol level”,“income level”)↓

3. Correlation(“blood pressure”,“income level”)↓

Based on the 1st advice we need to increase the correlation coefficient between cholesterol level

and blood pressure. Then

C =


1 0.2 0.3

0.2 1 0.07

0.3 0.07 1

A =


1 λ 1

λ 1 1

1 1 1

 (7.2)

Ĉ = C � A =


1 0.2 0.3

0.2 1 0.07

0.3 0.07 1

�


1 λ 1

λ 1 1

1 1 1

 (7.3)
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Here C is the correlation matrix, A is the advice matrix, Ĉ is the new correlation matrix and λ is

the factor by which the correlation value has to be increased or decreased. In case of our example,

we need to increase the value of the correlation coefficient, and thus λ should be > 1. We keep

the value of λ = 1
max(|C|) . Since -1.0 ≤ ∀c ∈ C ≤ 1.0, in this case, the value of λ ≥ 1.0 and thus

multiplying by λ will increase the correlation value. Thus,

Ĉ = C � A =


1 0.2 0.3

0.2 1 0.07

0.3 0.07 1

�


1 1
0.3

1

1
0.3

1 1

1 1 1



=


1 0.667 0.3

0.667 1 0.07

0.3 0.07 1


(7.4)

In case of negative correlations, the process remains the same. If the advice says that features

have low correlations (the 2nd advice in our example), then we need to decrease the correlation

coefficient and in that case we need λ to be< 1 and we choose λ = max(|C|). Since -1≤ ∀c ∈ C ≤

1.0, in this case, the value of λ ≤ 1.0 and thus multiplying by λ will decrease the correlation value,

and the new correlation matrix becomes,

Ĉ1 = Ĉ � A =


1 0.667 0.3

0.667 1 0.07

0.3 0.07 1

�


1 1 0.3

1 1 0.3

0.3 0.3 1



=


1 0.667 0.09

0.667 1 0.021

0.09 0.021 1


(7.5)

which can the be used to create the new generated data G̃1 as described next. As with the earlier

case, the process of generating data with negative correlations remains the same.
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7.2.2 Post-advice data generation

After we obtain the new correlation matrix, Ĉ1, the next step is to generate data that is faithful to the

modified correlation matrix based on the expert advice. To achieve this we use the Iman-Conover

method (Iman and Conover, 1982) which is a distribution free method, to define dependencies

between distributional variables based on rank correlations such as Spearman or Kendell Tau

correlations. Since we deal with linear relationships between the features and since Pearson

coefficient has shown to perform better with the Iman-Conover method (Naveršnik and Rojnik,

2012), we use the Pearson correlations between features. Also note that we assume that the features

in our data sets follow a Gaussian distribution. This might seem a strong assumption at first, but

since we are making use of only the clinical data (mostly lab test values), the data can safely be

assumed to be following the Gaussian distribution. The Iman-Conover method consists of the

following steps:

1. Create a random standardized matrixM with values x ∈M ∼ Gaussian distribution. This

is obtained by the process of inverse transform sampling described as follows. Let V1 be

a uniformly distributed random variable and CDF be the cumulative distribution function

of the distribution to be sampled from which takes a value v and defines the probability of

obtaining a value less than the given value v.

CDF(v) = P(V ≤ v) (7.6)

Thus, to generate samples from a desired distribution, the values v ∼ V are passed through

CDF−1 to obtain the desired values x.

CDF−1(v) = inf{x|CDF(x) ≤ v, v ∈ [0, 1]} (7.7)
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where inf is the inverse function. For Gaussian distribution,

CDF(x) =
1√
2π

∫ x

−∞
exp

−x2
2 dx

=
1√
2π

∫ x

0

exp
−x2
2 dx

= [− exp(
−x2

2
)]x0

CDF−1(v) = 1− exp(
−x2

2
) ≤ v

(7.8)

Thus, the desired values x ∈M can be obtained as,

x =
√

2ln(1− v) (7.9)

2. Calculate the correlation matrix E ofM.

3. Calculate the Cholesky decompositionF of the correlation matrix E . Cholesky decomposition

(Scheuer and Stoller, 1962) of a positive-definite matrix is given as the product of a lower

triangular matrix and its conjugate transpose. Note that for Cholesky decomposition to be

unique, the matrix being decomposed should be positive definite, such as the co-variance

matrix whereas the correlation matrix, used in our algorithm, is only positive semi-definite.

We convert the correlation matrix into a positive-definite matrix by adding very small values

to the diagonal of the correlation matrix. Specifically, we keep adding 0.01 to the diagnol

until the matrix is positive definite. Given a symmetric and positive definite matrix. E in our

case, its Cholesky decomposition F is such that E = F · F>.

4. Calculate the Cholesky decomposition Q of the correlation matrix obtained after modify-

ications based on human advice, Ĉ. As above, the Cholesky decomposition is such that

Ĉ = Q · Q>.

5. Calculate the reference matrix T by transforming the sampled matrixM from step 1 to have

the desired correlations of Ĉ, by using their Cholesky decompositions.

6. Rearrange values in columns of the generated data G1 to have the same ordering as corrre-

sponding column in the reference matrix T .
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7.2.3 Cholesky decomposition captures correlations

Given an randomly generated data set with no correlations P , a correlation matrix C and its Cholesky

decomposition Q, data that faithfully follows the given correlations ∈ C can be generated by mul-

tiplication of the obtained lower triangular matrix with the original uncorrelated data i.e. P̂=QP .

The correlation of the newly obtained data, P̂ is,

Corr(P̂) =
Cov(P)

σP̂

=
E[P̂P̂>]− E[P̂ ]E[P̂ ]>

σP̂

(7.10)

Since we consider uncorrelated data P with zero mean and unit variance,

Corr(P̂) =
E[P̂P̂>]− E[P̂ ]E[P̂ ]>

σP̂

= E[P̂P̂>] = E[(QP)(QP)>]

= E[QPQ>P>] = QE[PP>]Q>

= QQ> = C

(7.11)

Thus Cholesky decomposition can capture the desired correlations faithfully and can be used for

generating correlated data. Since we already have a normal sampled matrixM and a calculated

correlation E ofM, we need to calculate a reference matrix (step 5).

7.2.4 Human-Allied GAN training

Since the human expert advice is provided independent of the GAN architecture, our method is

agnostic of the underlying GAN architecture. As mentioned earlier, we make use of Wassertein

GAN (WGAN) architecture since its shown to be more stable while training and can handle mode

collapse (Arjovsky et al., 2017). Only the error backpropagation values differ when we are using

the data generated by the underlying GAN or the data generated by the Iman-Conover method.

Algorithm 5 shows the overall process of Human-Allied GANs.
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Algorithm 5 HA-GAN: Human-Allied Generative Adversarial Networks
1: procedure HA-GAN(Data G, Generator G, Discriminator D, Correlation Advice ψ)
2: for epochs k=1 to K do
3: Sample Zm, m examples from noise vector Z
4: Sample Xm, m examples from real data X
5: G1=G(Zm) . generate data from noise using generator
6: if k mod N is 0 then . number of epochs 1 ≤ N ≤ K
7: G̃1 = IMAN-CONOVER(G)
8: ŷ = D(Xm, G̃1) . pass generated data after advice and real data to discriminator;

backpropagate error
9: else

10: ŷ = D(Xm,G1) . backpropagate error; no advice
11: end if
12: end for
13: end procedure

14: procedure IMAN-CONOVER(Generated data G1)
15: C = CALCCORR(G1) . calculate correlation matrix
16: λinc= 1

max(C) . calculate correlation increasing factor
17: λdec= max(C) . calculate correlation decreasing factor
18: A=CREATEADVICEMAT(ψ) . See section 7.2.1
19: Ĉ = C � A . λ ∈ A. See section 7.2.1
20: for t epochs do
21: M = INVSAMP(m, d) . m: #examples, d:#features
22: E = M

>·M
m . correlation matrix ofM

23: calculate F s.t. E=F · F> . Cholesky decomp of E
24: calculate Q s.t. Ĉ=Q · Q> . Cholesky decomp of Ĉ
25: calculate T =MF−1Q . reference matrix with desired correlations
26: R = RANK(T )
27: G̃1 = REORDER(R,G1)
28: end for
29: return G̃1

30: end procedure

31: procedure INVSAMP(number of sampled examples m, number of features in data d)
32: a=generate m random numbers
33: p = QUALTILEFUNCTION(a) . induce Gaussian dist
34: p̂ = NORMALISE(p)
35: M = PERMUTE(p̂) . shuffle the sampled numbers
36: end procedure

Our algorithm starts with the general process of training a GAN where the generator takes

random noise as an input and generates data which is then passed, along with the real data, to
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the discriminator. The discriminator tries to identify the real and generated data and the error

is back propagated to the generator. After every specified number of iterations the correlations

between features C in the generated data is obtained and a new correlation matrix Ĉ, is obtained

with respect to the expert advice (section 7.2.1). A new data set is generated with respect to Ĉ using

the Iman-Conover method (Section 7.2.2) which is then passed to the discriminator along with the

real data set. We discuss our results next.

7.3 Experiments

We aim to answer the following questions:

Q1: Does providing advice to generative adversarial networks help in generating better quality

data?

Q2: Are GANs with advice effective for data sets that are not exhaustive i.e. have less examples?

Q3: How does bad advice effect the quality of generated data?

Q4: How well does human advice handle class imbalance?

Data sets: We consider 3 novel clinical data sets to test our method. Table 7.1 contains the

properties of these domains.

Table 7.1: Evaluation domains and their properties.

Data set #Features #Positive examples #Negative examples
Nephrotic Syndrome 19 44 6
Parkinson’s 35 554 919
Alzheimer’s 68 76 260

1. Nephrotic Syndrome: Nephrotic syndrome is a collection of symptoms that indicate kidney

damage. Some of the symptoms include: albuminuria (large amounts of protein in the urine),

hyperlipidemia (higher than normal fat and cholesterol levels in the blood) and hypoalbuminia

(low levels of albumin in the blood). This novel data set consists of 50 kidney biopsy images
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along with the clinical reports sourced from Dr Lal PathLabs, India 1. In this work we

make use of the clinical reports that consists of the values for kidney tissue diagnosis which

can confirm the clinical diagnosis. The analysis will help to identify high-risk patients and

influence treatment decisions and will help medical practitioners to plan and prognosticate

treatments.

2. Parkinson’s: data is defined in chapter 3 and consists of aggregated clinical data for predic-

tion of Parkinson’s disease and is obtained from an observational study with the main aim of

identifying features or biomarkers that impact Parkinson’s disease progression.

3. Alzheimer’s: data is obtained from the Alzheimer’s Disease Neuroimaging Initiative(ADNI)

study aimed to find progression markers for Alzheimer’s disease and develop treatments that

can slow the progression. The ADNI database consists of a variety of data ranging from

imaging data to genetic and bio-specimen markers. For this work we consider data obtained

by processing the MRI images of 336 patients.

Table 7.2: Train on synthetic, test on real (TSTR) Results (≈ 3 decimals) for the medical domains.

Data set Methods Accuracy Recall F1 AUC-ROC AUC-PR

Nephrotic Syndrome
GAN (no advice) 0.566 0.584 0.666 0.509 0.911
GAN (bad advice) 0.44 0.42 0.511 0.518 0.886
GAN (with advice) 0.894 0.998 0.943 0.566 0.947

Parkinson’s
GAN (no advice) 0.684 0.316 0.429 0.611 0.622
GAN (bad advice) 0.593 0.046 0.079 0.484 0.258
GAN (with advice) 0.737 0.576 0.622 0.705 0.706

Alzheimer’s
GAN (no advice) 0.319 0.855 0.362 0.509 0.559
GAN (bad advice) 0.755 0.011 0.017 0.491 0.197
GAN (with advice) 0.363 0.879 0.388 0.545 0.58

To measure the quality of the generated data we make use of the train on synthetic, test on real

(TSTR) method as proposed in (Esteban et al., 2017). We use gradient boosting with 100 estimators

1https://www.lalpathlabs.com/
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(decision stumps) as the underlying machine learning model. Table 7.2 shows the results of the

TSTR method with data generated with and without advice and the data generated with advice has

higher TSTR performance than the data generated without advice. Thus, to answer Q1, providing

advice to generative adversarial networks does help in generating better quality data.

As results show in table 7.2 the TSTR results for GANs with advice are especially impressive

in the nephrotic syndrome domain which consists of only 50 examples with a big jump across all

metrics. In fact, all the considered data sets are small in size when compared to the large number of

samples required to train a GAN model. Thus Q2 can be answered affirmatively, GANs with advice

are effective for data sets with less samples.

7.3.1 Providing incorrect advice

Table 7.2 also shows the results for data generated with incorrect advice. To incorporate the bad

advice in the correlations we follow a simple process: if the advice says that the correlation between

features should be high, we set the correlations in Ĉ to 0 and if the advice says that the correlation

should be low, we set the correlations in Ĉ to be either 1 or -1. Continuing our example from section

7.2.1, the advice says that we need to increase the correlation coefficient between cholesterol level

and blood pressure. Then the new correlation matrix after incorrect advice can be calculated as:

C =


1 0.2 0.3

0.2 1 0.07

0.3 0.07 1

A =


1 λ 1

λ 1 1

1 1 1

 (7.12)

Ĉ = C � A =


1 0.2 0.3

0.2 1 0.07

0.3 0.07 1

�


1 λ 1

λ 1 1

1 1 1

 (7.13)

Since we need to set the correlations to 0, the value of λ is set to 0.
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Ĉ =


1 0.2 0.3

0.2 1 0.07

0.3 0.07 1

�


1 0 1

0 1 1

1 1 1



=


1 0 0.3

0 1 0.07

0.3 0.07 1


(7.14)

As results show in 7.2, giving bad advice adversely affects the TSTR performance of the machine

learning algorithm thereby answering Q3.

The nephrotic syndrome and Alzheimer’s data sets are relatively unbalanced with a pos to neg

ratio of ≈ 8:1 and 1:3.5 respectively. Most of the medical data sets, except highly curated data

sets, are expected to be unbalanced and thus a data generator model should be able to handle this

imbalance. Since our method explicitly focuses on the correlations between features and generates

better quality data based on such relationships between features, our method is more robust to the

imbalance in the underlying data set. This can be seen in the results in table 7.2 where advice based

data generation outperforms the non-advice and bad advice based data generation. Thus, we can

answer Q4, human advice does handle class imbalance robustly.

7.4 Conclusion

We present a new GAN formulation by incorporating correlation information between features as

advice to generate a new correlated data and train the underlying GAN model. We test our model

on real clinical data sets and show that incorporating advice helps generate good quality synthetic

medical data. We also consider a specific method to test the quality of synthetic data generated,

namely, train on synthetic, test on real (TSTR) and show that the generated data with advice is more

aligned with the real data than the generated data without any advice component.
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There can be multiple future directions for our work. First, there can be multiple advice options

that can be used, that can capture feature relationships explicitly. Second, posterior regularization

(Ganchev et al., 2010) can be used on the generator as advice or an advice on the generator regarding

the label can be used. Third, although in this work we do not have identifiers in the data we use,

thereby eliminating the need of differential privacy (Dwork, 2008), a general framework that can

uphold the privacy of patient data can be a natural next step.
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CHAPTER 8

ADDITIONAL EXPLORATION

This chapter outlines additional research work that I was involved in and made significant contribu-

tions. Section 8.1 presents our graph-based approach (Das et al., 2019) for approximating counts of

satisfied instances of generalized patterns which can be used for obtaining the counts of the satisfied

first order features by extending many of our approaches such as Gaifman models in chapter 5 and

ROCGCN in chapter 6.

Section 8.2 presents our work (Das et al., 2019) on augmenting a relational deep learning model

with human advice inspired by the success of human-knowledge guided learning in AI, especially

in data-scarce domain. In this work, we propose Knowledge-augmented Column Networks that

leverage human advice/knowledge for better learning with noisy/sparse samples. This work can be

used for the prediction task in our multi-relational domains such as drug-drug interactions (chapter

4) and can be used for comparison with our ROCGCN approach (chapter 6). This also aligns well

with our approach in chapter 7 where we also augment a deep learning model (generative in this

case) with expert human knowledge.

Predicting and discovering drug-drug interactions (DDIs) is an important problem and has

been studied extensively both from medical and machine learning point of view. Almost all of the

machine learning approaches have focused on text data or textual representation of the structural

data of drugs. In section 8.3, we present the first work (Dhami et al., 2019) that uses drug structure

images as the input and utilizes a Siamese convolutional network architecture to predict DDIs and

is an important step in the path of using heterogeneous data for important healthcare problems.

8.1 Motif Based Approximate Counting via Hypergraphs

Significant advancements in research on Statistical Relational Learning (SRL) and AI (Raedt et al.,

2016) and in lifted inference (Poole, 2003; Kersting et al., 2009) have allowed for exploiting
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the symmetries of the data and model during learning and inference. The advantage of these

algorithms is that they can succinctly represent and reason with dependencies among the attributes

and relations of related objects. One of the key operations inside most, if not all, algorithms is

counting the satisfied groundings (instances) of a partially instantiated relational rule (a first-order

clause). For instance, when learning the parameters or structure of a Markov Logic Network (MLN)

(Domingos and Lowd, 2009; Khot et al., 2011), or when performing lifted inference (Poole, 2003)

one has to compute the expected/true counts in the model/data and inside a given cluster of objects.

Counting is a hard combinatorial search problem (#P -complete). Consequently, algorithms for

fast, approximate counting have been developed (Das et al., 2016; Sarkhel et al., 2016). The

key observation is that computing exact counts is not essential, particularly when the number of

groundings for an object/relation is high. For instance, knowing whether a Professor published 300

papers or 319 papers does not significantly change the belief over the popularity of the Professor.

While reasonably successful, they make a few assumptions – including MLN-specific formulation

and lack of support for partial groundings (Sarkhel et al., 2016) or restricted arity of relations (Das

et al., 2016). We relax these assumptions and present a general approximate counting technique that

transforms the problem of counting partially instantiated clauses to motif-matching in equivalent

hypergraph.

Provably, counting in the original data corresponds to computing the expected counts of the

motif occurrences in the transformed hypergraph: When this expectation is computed exactly, one

can retrieve the true counts. In large data sets, this motivates the approximation of the expectation

using summary statistics on the hypergraph. Our experimental results across several domains on

both learning and inference tasks demonstrate clearly that this approximation indeed relaxes the

assumptions of the previous methods and results in more efficient counting while exhibiting on-par

performance to exact counting.

Our goal is to compute the counts of a potentially partially instantiated clause given a database

of ground assertions. We proceed by transforming a SRL model into a directed graph notation.
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Trivial conversion from a logic statement (essentially a conjunctive rule) to a simple directed graph

has an important limitation of assumimng binary relations. Such graphs, however, cannot represent

n-ary relations, which are very common. We employ hypergraphs (Berge and Minieka, 1973),

generalization of graphs in which a hyperedge joins an arbitrary number of nodes/vertices, in

contrast to a graph in which an edge joins two vertices. Formally, a hypergraph is a pair of sets of

vertices and hyperedges. Since a hypergraph has hyperedges that connect an arbitrary number of

nodes, a hyperedge itself is a set of nodes. Our problem is.
Given: A set of grounded assertions (facts) F , a conjunctive rule/clause C from a SRL model

and a (possibly partial) substitution (instantiations) θ of variables C,

To Do: Return the counts of true groundings #(C | θ) of the clause C,

Construct: A partially grounded structural hypergraph motif,M ≡ (VM, EM) representing

clause C and fully grounded hypergraph, G ≡ (VG, EG) representing grounded assertions (F) -

count instances ofM in G yields an approximation to #(C | θ).

Example 1. A university domain has entity types (variables) Professor (p), Student (s),

Course (c), Term (t), ResearchProject (r) and Year (y). We consider two conjunc-

tive rules in this domain:

AdvisedBy(s, p) ∧ Teaches(p, c, t) ∧ TA(s, c, t) (C1)

AdvisedBy(s, p) ∧ WorksIn(p, r, y) ∧ WorksIn(s, r, y) (C2)

The first clause states that s is advised by p and is a TA for c that =p teaches in t. The second

states that s advised by p works on r in a y. In SRL they are soft statements.

Definition 1 (Counts). For Relation(v1, . . . , vt), the predicate counts are the number of true

instances of that predicate due to the assertions/facts F , given the (partial) grounding θ of the its

variables. We denote the predicate counts of Relation (R) as nR = #(R | θ).

For a clause C, the clause counts are the number of true instances of C in database F , given the

partial groundings θ of the variables in the clause. We denote the clause counts for a clause C as

nC = #(C | θ).
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Teaches(Amy, AI, Fa17),
Teaches(Amy, ML, Fa17)
Teaches(Amy, AI, Sp18),
Teaches(Amy, Opt, Sp18)
TA(Ben, AI, Fa17),
TA(Ena, ML, Fa17)
TA(Cam, AI, Sp18),
TA(Deb, Opt, Sp18)
AdvisedBy(Ben, Amy),
AdvisedBy(Deb, Amy),
AdvisedBy(Fei, Amy)

Figure 8.1: (left) MotifM1 for C1; (center) Facts used to groundM1; (right) Ground graph, G1.
Ternary predicates Teaches and TA are represented as hyperedges in bothM1 and G1. The edges
AdvisedBy(Deb, Amy) and AdvisedBy(Fei, Amy) also appear in the grounding of C2 (Fig. 8.2).

WorksIn(Amy, MLNs, 2017),
WorksIn(Amy, PRMs, 2017)
WorksIn(Hal, MLNs, 2018)
WorksIn(Ben, PRMs, 2017),
WorksIn(Fei, PRMs, 2017)
WorksIn(Fei, MLNs, 2018),
AdvisedBy(Ben, Amy),
AdvisedBy(Deb, Amy),
AdvisedBy(Fei, Amy),
AdvisedBy(Fei, Hal),

Figure 8.2: (left) MotifM2 for C2; (center) Facts used to groundM2; (right) Ground graph, G.
The ternary predicate WorksIn are hyperedges inM2 and G2. The edges AdvisedBy(Deb, Amy)
(Deb→ Amy) and AdvisedBy(Fei, Amy) (Fei→ Amy) also appear in the grounding of C1 (see Fig.
8.1).

Example 2 (continued). Consider the facts in Figure 8.1 (center), where Amy teaches 3 courses

{AI, ML, Opt}, teaching AI twice in the Fa17 and Sp18 terms. Ben, is a TA for AI, then the count

for clause C1 given a partial grounding θ1 = { p/Amy, s/Ben } is #(C1 | θ1) = 1, since Ben is

a TA for only one class. The count for C1 given a partial grounding θ2 = { P/Amy, T/Fa17 } is

#(C1 | θ2) = 1.
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Our approach has 3 steps – (i) convert the ground assertions (F ) to a hypergraph G, (ii) convert

a partially-grounded clause to a partially-grounded structural motif (M), and (iii) count the number

of subgraphs matchingM in G.

Definition 2 (Partially Grounded Structural Motif). A motifM is a Partially Grounded Struc-

tural Motif (PGSM) if it is a hypergraph representation of a clause C, where some of the nodes

are parameterized, while others are instantiated to their respective values. That is, a PGSM is a

structural motif arising from a partial grounding.

8.1.1 Conversion to Hypergraphs

Given a clause C, we construct a hypergraph motifM as follows. Each variable in every predicate

of C is added as a vertex to VM, the vertex set ofM. Next, all the arguments of a predicate are

connected by a hyperedge, which is added to EM, the edge set of M. Directed edges connect

variables appearing in binary predicates in the order in which they appear, while an n-hyperedge

connects the n variables appearing in a n-ary predicate. The nodes ofM correspond to the variables

in C (which can be partially grounded) and the edges correspond to the predicates that contain

the respective variables. Given facts (F), a fully-grounded hypergraph G is similarly constructed.

Each constant in F is added as a vertex to VG , vertex set of G. Then, all constants appearing in

a fact in F are connected by a hyperedge, and added to EG , the edge set of G. The construction

of G essentially amounts to parsing assertions (in predicate logic), indexing and insertion into a

hypergraph database (Iordanov et al., 2010).

Example 3 (continued). Figs. 8.1 and 8.2 (left) show motifsM1 andM2 for C1 and C2 respectively.

Amy advises three students: Deb, who is a teaching assistant, Fei, who is a research assistant and

Ben who is both. Thus, G1, the ground graph for the given assertions (Fig. 8.1, middle & right)

Similarly, G2 (Fig. 8.2) based on the given assertions. Note that, Ben is both a teaching and a

research assistant and appears in both G1 and G2. Also, a student may have more than one advisors
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(Ex: Fei – 2 advisors: Amy and Hal). This highlights various complex interactions among entities

and attributes; counting these is critical in inference and learning.

8.1.2 Approximate Counting via Partially Grounded Structural Motif(s)

We consider the case of counts of conjunctive clauses. Partial grounding in a clause C has 2 scenarios

based on number of substitutions. Let number of variables in C be `C.

(Case 1) When |θ| = `C, that is, when the clause is fully grounded, #(C | θ) = 1 ifM∈ G else

0. Thus counting, here, is equivalent to checking that the grounded motifM is a subgraph of G.

(Case 2) When 0 ≤ |θ| < `C, that is, when the clause is either fully lifted (`C = 0) or is partially

grounded (|θ| < `C), counting is considerably harder. This is the case we address in the rest of this

chapter.

Now, for clause C with `C variables, we assume that mC of these variables are not grounded,

and `C −mC variables are grounded. Then, the task is to count the number of groundings of mC,

termed as query variables, given assignments (θ) to the `C−mC ground variables. Ex: For clause C1,

`C1 = 4 and given a partial grounding θ = { p/Amy, s/Ben }, we have mC1 = 2 lifted variables

(courses c and terms t) which we want to count over.

Without loss of generality, let the firstmC variables in C be the the ungrounded or query variables;

that is, vi, i = 1, . . . ,mC. Given a motifM constructed from C, the maximum number of possible

subgraphs that matchM in G is
∏mC

i=1 ni, where ni is the number of possible groundings for query

variable vi. Let P (e | G) denote the probability of a hyperedge being present in G, then the count of

the number of matches ofM in G is also the clause count, #(C | θ):

P (M)
∏

v ∈VM

nv =

[ ∏
e∈EM

P (e | G)

]
·

[ ∏
v ∈VM

nv

]
(1)

Intuitively, P (e | G) is the fractional predicate count that is the ratio of the predicate count given

the partial substitutions, to number of groundings of non-substituted variables.
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Figure 8.3: The motifM ≡ ra(v1, v3) ∧ rb(v2, v3) ∧ rc(v3, v4) ∧ rd(v4, v5, v6). Note that rd is a
hyperedge for the ternary relation rd(v4, v5, v6).

Example 4. The probability P (Teaches(Amy, c, t) | G) can be computed as the number of courses

that Amy has taught across all terms divided by the cross-product of the free variables (c and t)

(total number of possible courses times the number of possible terms). Using the partial substitution

θ = { p/Amy } we have, P (Teaches(Amy, c, t) | G) = #(Teaches(p,c,t)|θ)
#(c)·#(t)

. In Fig. 8.1, this is

4/(3 · 2) = 2/3.

Expression (1) presents the expected count. If P (M) is computed exactly, we retrieve the true

counts. Since that is intractable we find an approximation.

To understand the intuition behind approximating P , consider the motif in Figure 8.3. The

maximum number of times this motif can be present in the ground graph is
∏

v ∈VM nv. The

presence of each hyperedge e ∈ G is a Boolean concept (i.e., present or absent in G). Without loss

of generality, the joint distribution P (ra, rb, rc, rd) for Fig 8.3 is,∏
e∈M

P (e | G) = P (ra) · P (rb) · P (rc | ra, rb) · P (rd | rc).

Thus, we now view identifying a motif in a graph as a search in a directed model with Boolean

variables, where finding an edge depends on the previous edge being found. Note that when any of

the edges is absent, the motif will not be present in the grounded graph, and this joint probability

is automatically driven to 0. The above expression resembles estimating local models, which is

commonly done in standard graphical model estimation. In our case, we further approximate each

of these conditional distributions using summary statistics.

Reverting to (1), the first term is the product of the individual edge distributions conditioned on

the incoming edge, and the second term is the cross-product of the total number of groundings of
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the query (ungrounded) variables in the motif. The second term is computed a single pre-processing

step, followed by caching. For the first term summary statistics are employed for approximation.

8.1.3 Approximation of clause probability (P)

Summary Computation

In order to approximate the joint distribution P , we employ graph summaries similar to the ones

used in relational database query engines for cardinality estimation (Schiefer et al., 1998; Neumann

and Moerkotte, 2011; Seputis, 2000). Note that these summaries must be selected at the appropriate

level of granularity. For instance, finely-grained summaries will correspond to searching the entire

database, while highly-aggregated summaries, on the other hand, such as average in-degree and

out-degree can lead to poor approximations. Thus, we compute three summaries: (1) node and edge

frequencies, (2) node in- and out-degrees, and (3) dependency summaries from hypergraph:

TYPESUM: The type summary captures frequencies of node and edge types.

DEGREESUM: Degree summaries are the frequencies of incoming and outgoing edges of every

node grouped by edge labels.

DEPENDENCYSUM: Most broadly, we seek to summarize all the possible dependencies for a

relationRj: P (Rj | R \ Rj), that is, the dependency of a Rj on all other relationsR \Rj , which

is computationally expensive. Given z relation types inR, we instead construct a z × z pairwise

dependency matrix, ∆, whose (i, j)-th element is δij = P (Ri | Rj), ∀ i, j = 1, . . . , z. For a pair

of relationsRi andRj , P (Ri | Rj) is estimated by sampling paths of length 2 fromRj → Rk.

8.1.4 Experiments

We used three standard SRL data sets: UW-CSE, Citeseer and WebKB, a biomedical data set

Carcinogenesis (Srinivasan et al., 1997), and an NLP/Information-Extraction(IE) data set NELL-

Sports for evaluation.
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Table 8.1: Results: Performance vs. Efficiency (running time for Learning and Inference in seconds).
** indicates n-ary predicates.

Performance Efficiency
Data Sets Methods AUC–ROC AUC–PR CLL F1 L-Time [s] I-Time [s]

UWCSE∗∗
MACH 0.981 0.337 -0.133 0.217 13.2 5.1
FACT 0.500 0.0068 -0.061 NaN 7.48 2.8

MLN-Boost 0.998 0.361 -0.134 0.227 27.5 9.4

Citeseer**
MACH 0.998 0.989 -0.173 0.973 10837 12.52
FACT 0.97 0.92 -0.256 0.934 11042 12.45

MLN-Boost 0.999 0.998 -0.059 0.977 42499 27.42

Carcinogenesis**
MACH 0.525 0.568 -0.811 0.328 108.48 1.8
FACT 0.500 0.550 -0.704 NaN 102.5 1.5

MLN-Boost 0.587 0.572 -0.902 0.489 153.84 2.37

WebKB
MACH 1.0 1.0 -0.049 1.0 5.8 0.757
FACT 1.0 1.0 -0.076 1.0 5.97 0.797

MLN-Boost 1.0 1.0 -0.075 1.0 8.13 0.896

NELL-Sports
MACH 0.78 0.65 -1.43 0.65 253.92 1.03
FACT 0.76 0.64 -1.38 0.65 238.07 2.01

MLN-Boost 0.78 0.66 -0.55 0.68 396.24 2.20

Table 8.1 summarizes the performance and efficiency results of MACH against the baselines

for structure and parameter learning of MLNs. It is clearly evident that there is no real deterioration

in predictive performance due to count approximation in MACH (across all data sets) compared

to MLN-Boost. However, MACH substantially beats the baselines on efficiency (learning time),

especially on larger data sets such as Citeseer, where it is about 4 times faster. Even on smaller data

sets such as UW-CSE and WebKB, the difference in learning times is sizable. Several other data sets

can be used to test the effectiveness of this method such as the drug-drug interactions (chapter 4)

and co-author network (chapter 6).

8.2 Knowledge-augmented Column Networks

The re-emergence of Deep Learning (Goodfellow et al., 2016b) has found significant and successful

applications in difficult real-world domains such as image (Krizhevsky et al., 2012), audio (Lee

et al., 2009) and video processing. However, the combinatorial complexity of reasoning in relational

domains over a large number of relations and objects has remained a significant bottleneck to
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overcome. Recent work in relational deep learning has sought to address this particular issue(Kazemi

and Poole, 2018b; Šourek et al., 2015; Kaur et al., 2017b; França et al., 2014). We consider Column

Networks (CLNs) (Pham et al., 2017) that are composed of several (feedforward) mini-columns

each of which represents an entity in the domain. CLNs are attractive for a few reasons (1) hidden

layers of a CLN share parameters, which means that making the network deeper does not introduce

more parameters, (2) as the depth increases, the CLN can begin to model feature interactions of

considerable complexity, which is especially attractive for relational learning, and (3) learning and

inference are linear in the size of the network and the number of relations, which makes CLNs

highly efficient. However, like other deep learning approaches, CLNs rely on vast amounts of data

and incorporate little to no knowledge about the problem domain.

It is well known that biasing learners is necessary in order to allow them to inductively leap

from training instances to true generalization over new instances (Mitchell, 1980). While deep

learning does incorporate one such bias in the form of domain knowledge (for example, through

parameter tying or convolution, which exploits neighborhood information), we are motivated to

develop systems that can incorporate richer and more general forms of domain knowledge. One

way in which a human can guide learning is by providing rules over training examples and features.

The earliest such approaches combined explanation-based learning (EBL-NN, (Shavlik and Towell,

1989)) or symbolic domain rules with ANNs (KBANN, (Towell and Shavlik, 1994)). Another natural

way a human could guide learning is by expressing preferences and has been studied extensively

within the preference-elicitation framework due to Boutilier et al. (2006). We are inspired by this

form of advice as they have been successful within the context of inverse reinforcement learning

(Kunapuli et al., 2013a) and planning (Das et al., 2018).

These approaches span diverse machine learning formalisms, and they all exhibit the same re-

markable behavior: better generalization with fewer training examples because they effectively

exploit and incorporate domain knowledge as an inductive bias. This is the prevailing motivation

for our approach: to develop a framework that allows a human to guide deep learning by incorpo-

rating rules and constraints that define the domain and its aspects. Incorporation of prior knowledge
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into deep learning has begun to receive interest recently (Ding et al., 2018), however, in many such

approaches, the guidance is not through a human. Our framework is much more general in that a

human provides guidance during learning. Furthermore, the human providing the domain advice is

not an AI/ML expert but rather a domain expert who provides rules naturally. We exploit the rich

representation power of relational methods to capture, represent and incorporate such rules into

relational deep learning models. In our work we use first-order logic as a representation language

for human advice and employ it in the context of CLNs.
Given: A sparse multi-relational graph G, attributes xi of each entity (sparse or noisy) in G,

equivalent Column-Network C and access to a Human-expert

To Do: More effective and efficient collective classification by knowledge augmented training of

C(θ), where θ = 〈{W t}T1 , {V t
r }t=Tr∈R;t=1, {W`}`∈L〉 is the set of all the network parameters of C.

We develop Knowledge-augmented CoLumn Networks (K-CLN), that incorporates human-

knowledge, for more effective and efficient learning from relational data (Figure 8.4 illustrates

the overall architecture). While knowledge-based connectionist models are not entirely new, our

formulation provides - (1) a principled approach for incorporating advice specified in an intuitive

logic-based encoding/language (2) a deep model for collective classification in relational data.

8.2.1 Knowledge Representation

Any model specific encoding of domain knowledge, such as numeric constraints or modified loss

functions etc., has limitations, namely (1) counter-intuitive to the humans since they are domain

expert (2) the resulting framework is brittle and not generalizable. Consequently, we employ

preferences (akin to IF-THEN statements) to capture human knowledge.

Definition 3. A preference is a modified Horn clause, ∧k,xAttrk(Ex) ∧ . . . ∧r∈R,x,y r(Ex, Ey) ⇒

[label(Ez, `1) ↑; label(Ek, `2) ↓] where `1, `2 ∈ L and the Ex are variables over entities, Attrk(Ex)

are attributes of Ex and r is a relation. ↑ and ↓ indicate the preferred non-preferred labels

respectively. Quantification is implicitly ∀ and hence dropped. We denote a set of preference rules

as P.
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Figure 8.4: Proposed K-CLN architecture. Here xi denotes the feature of each entity ei with yi
being the label of each entity. We provide advice in each layer using advice gates and the prediction
informs the advice gradient.

Note that we can always, either have just the preferred label in head of the clause and assume all

others as non-preferred, or assume the entire expression as a single literal. Intuitively a rule can be

interpreted as conditional rule, IF [conditions hold] THEN label ` is preferred. A preference rule

can be partially instantiated as well, i.e., or more of the variables may be substituted with constants.

8.2.2 Knowledge Injection

Given that knowledge is provided as partially-instantiated preference rules P, more than one entity

may satisfy a preference rule. Also, more than one preference rules may be applicable for a single

entity. The main intuition is that we aim to consider the error of the trained model w.r.t. both the

data and the advice. Consequently, in addition to the “data gradient” as with original CLNs, there is

a “advice gradient”. This gradient acts a feedback to augment the learned weight parameters (both

column and context weights) towards the direction of the advice gradient. It must be mentioned that

not all parameters will be augmented. Only the parameters w.r.t. the entities and relations (contexts)

that satisfy P should be affected. Let P be the set of entities and relations that satisfy the set of
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preference rules P. The hidden nodes can now be expressed as,

hti = g

(
bt +W tht−1

i Γ
(W )
i +

1

z

∑
r∈R

V t
r c

t
irΓ

(c)
ir

)

s.t. Γi,Γi,r =


1 if i, r /∈ P

F(α∇P
i ) if i, r ∈ P

(2)

where i ∈ P and Γ
(W )
i and Γ

(c)
ir are advice-based soft gates with respect to a hidden node and its

context respectively. F() is some gating function,∇P
i is the “advice gradient” and α is the trade-off

parameter explained later. The key aspect of soft gates is that they attempt to enhance or decrease

the contribution of particular edges in the column network aligned with the direction of the “advice

gradient”. We choose the gating function F() as an exponential [F(α∇P
i ) = exp (α∇P

i )]. The

intuition is that soft gates are natural, as they are multiplicative and a positive gradient will result in

exp (α∇P
i ) > 1 increasing the value/contribution of the respective term, while a negative gradient

results in exp (α∇P
i ) < 1 pushing them down. We now present the “advice gradient” (the gradient

with respect to preferred labels).

Proposition 1. Under the assumption that the loss function with respect to advice / preferred

labels is a log-likelihood, of the form LP = logP (y
(P)
i |hTi ), then the advice gradient is, ∇P

i =

I(y
(P)
i ) − P (yi), where y(P)

i is the preferred label of entity and i ∈ P and I is an indicator

function over the preferred label. For binary classification, the indicator is inconsequential but for

multi-class scenarios it is essential (I = 1 for preferred label ` and I = 0 for L \ `).

Since an entity can satisfy multiple advice rules we take the most preferred label, i.e., we take

the label y(P)
i = ` to the preferred label if ` is given by most of the advice rules that ej satisfies. In

case of conflicting advice (i.e. different labels are equally advised), we simply set the advice label

to be the label given by the data, y(P)
i = yi.

As illustrated in the K-CLN architecture (Figure 8.4), at the end of every epoch of training the

advice gradients are computed and soft gates are used to augment the value of the hidden units as

shown in Equation 2.
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Proposition 2. Given that the loss functionHi of original CLN is cross-entropy (binary or sparse-

categorical for the binary and multi-class prediction cases respectively) and the objective w.r.t.

advice is log-likelihood, the functional gradient of the modified objective is,

∇(H′i) = (1− α)
(
yiI − P (yi|hT )

)
+ α

(
IPi − P (yPi |hT )

)
= (1− α)∇i + α∇P

i (3)

where 0 ≤ α ≤ 1 is the trade-off parameter between the effect of data and effect of advice, Ii and

IPi are the indicator functions on the label w.r.t. the data and the advice respectively and∇i and

∇P
i are the gradients, similarly, w.r.t. data and advice respectively (Proof in appendix).

Hence, it follows that the data and the advice balances the training of the K-CLN network

parameters θP via the trade-off hyperparameter α. When data is noisy (or sparse with negligible

examples for a region of the parameter space) the advice (if correct) induces a bias on the output

distribution towards the correct label. Even if the advice is incorrect, the network still tries to learn

the correct distribution to some extent from the data (if not noisy). The contribution of the effect

of data versus the effect of advice will primarily depend on α. If both data and human advice are

sub-optimal, correct label distribution is not learnable.

8.2.3 Experiments

Experiments are conducted on four relational domains – Pubmed Diabetes (multi-class), Corporate

Messages (multi-class), Internet Social Debates (binary) and Social Network Disaster Relevance

(binary). Following (Pham et al., 2017), macro-F1 and micro-F1 scores for the multi-class problems,

and F1 scores and AUC-PR for the binary ones are reported. Macro-F1 computes the F1 score

independently for each class and takes the average whereas a micro-F1 aggregates the contributions

of all classes to compute the average F1 score. Here, we show only the Micro-F1 and the AUC-PR

results with all results averaged over 5 runs.
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Figure 8.5: Performance w.r.t. epochs. Left to Right - Pubmed, Corporate Messages, Debates and
Social Disaster. Leftmost 2 show Micro-F1, (multi-class) & Rightmost 2 show AUC-PR (binary)

We present the aforementioned metrics with varying sample size and with increasing epochs

and compare our model against Vanilla CLN. We split the data sets into a training set and a hold-out

test set with 60%-40% ratio. For varying epochs we only learn on 40% of our pre-split training

set (i.e., 24% of the complete data) to train the model and test on the hold-out test set. Figure 8.5

shows that, although both K-CLN and Vanilla CLN converge to the same predictive performance

(Micro-F1 for PubMed & Corporate and AUC-PR for the rest), K-CLN converges significantly

faster (less epochs). Also. for the corporate and the debate, K-CLN not only converges faster but

also has a better predictive performance than Vanilla CLN (Figure 8.5- 2nd, 3rd).

8.3 Drug-Drug Interaction Prediction from Molecular Structure Images

Adverse drug events (ADEs) are “injuries resulting from medical intervention related to a drug”

(Nebeker et al., 2004), and are distinct from medication errors (inappropriate prescription, dispens-

ing, usage etc.) as they are caused by drugs at normal dosages. According to the National Center

for Health Statistics (NCHS, 2014), 48.9% of Americans took at least one prescription drug in the

last 30 days, 23.1% took at least three, and 11.9% took at least five. These numbers rise sharply to

90.6%, 66.8% and 40.7% respectively, among older adults (65 years or older). This means that the

potential for ADEs is very high in a variety of health care settings including inpatient, outpatient

and long-term care settings. For example, in inpatient settings, ADEs can account for as many

121



as one-third of hospital-related complications, affect up to 2 million hospital stays annually, and

prolong hospital stays by 2–5 days (DHHS, 2010).

The economic impact of these issues is as widespread as the various healthcare settings and

can be staggering. Estimates suggest that ADEs contributed to $3.6 billion in excess healthcare

costs in the US alone (Aspden et al., 2007). Unsurprisingly, older adults are at the highest risk

of being affected by an ADE, and are seven times more likely than younger persons to require

hospital admission (Budnitz et al., 2006). In the US, as a large number of older adults are Medicare

beneficiaries, this economic impact is borne by an already overburdened Medicare system and

ultimately passed on to taxpayers and society at large. Beyond older adults, there are several

other patient populations that are also vulnerable to ADEs including children, those with lower

socio-economic means, those with limited access to healthcare services, and certain minorities.

Recent research has identified, somewhat surprisingly, that many of these ADEs can be attributed

to very common medications (Budnitz et al., 2011) and many of them are preventable (Gurwitz

et al., 2003) or ameliorable (Forster et al., 2005). This issue motivates our long-term goal of

developing accessible and robust means of identifying ADEs in a disease/drug-agnostic manner and

across a variety of healthcare settings. Here, we focus on the problem of drug-drug interactions

(DDIs), which are a type of ADE. An ADE is characterized as a DDI when multiple medications

are co-administered and cause an adverse effect on the patient. DDIs, often caused by inadequate

understanding of various drug-drug contraindications, are a major cause of hospital admissions,

rehospitalizations, emergency room visits, and even death (Becker et al., 2007).

Identifying DDIs is an important task during drug design and testing, and regulatory agencies

such as the U. S. Food and Drug Administration require large controlled clinical trials before

approval. Beyond their expense and time-consuming nature, it is impossible to discover all possible

interactions during such clinical trials. This necessitates the need for computational methods for DDI

prediction. A substantial amount of work in DDI focuses on text-mining (Liu and Chen, 2013; Chee

et al., 2011) to extract DDIs from large text corpora; however, this type of information extraction
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does not discover new interactions, and only serves to extract in vivo or in vitro discoveries from

publications.

(a) Aliskiren (b) Amoxicillin (c) Apalutamide

Figure 8.6: Some example molecular images of different drugs extracted from the PubChem
database.

Our goal is to discover DDIs in large drug databases by exploiting various properties of the

drugs and identifying patters in drug interaction behaviors. Recent approaches consider phenotypic,

therapeutic, structural, genomic and reactive properties of drugs (Cheng and Zhao, 2014) or their

combinations (Dhami et al., 2018) to characterize drug interactivity. We take a fresh and completely

new perspective on DDI prediction through the lens of molecular images, a few examples shown in

figure 8.6, via deep learning. Our work is novel in the following significant ways:

• we formulate DDI discovery as a link prediction problem;

• we aim to perform DDI discovery directly on molecular structure images of the drugs

directly, rather than on lossy, string-based representations such as SMILES strings and

molecular fingerprints; and

• we utilize deep learning, specifically Siamese networks (Chopra et al., 2005) in a con-

trastive manner to build a DDI discovery engine that can be integrated into a drug database

seamlessly.
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Figure 8.7: An overview of our model for predicting drug-drug interactions

8.3.1 Siamese Convolutional Network for Drug-Drug Interactions

A discriminative approach for learning a similarity metric using a Siamese architecture was intro-

duced in (Chopra et al., 2005) which maps the input (pair of inputs) into a target space such that

the distance between the mappings is minimized in the target space for similar pair of examples

and maximized in case of dissimilar examples. We adapt the Siamese architecture for the task of

link prediction where the link is whether two drugs interact or not. Since the Siamese architecture

results in a measure of similarity between the pair of given inputs it can be thresholded in order to

obtain a classification. We use contrastive loss (Hadsell et al., 2006), based on a distance metric

(Eucledian distance in our case), to learn a parameterized function F to obtain the mapping from the

input space to the target space whose minimization can result in pushing the semantically similar

examples together. An important property of the loss function is that it calculated on a pair of

examples. The loss function is formulated as as follows: Let X1 and X2 are a pair of drug images

and Y is the label assigned to each of the pairs. The label Y = 0 if the pair of drug images do

not interact and Y = 1 if the pair of drug images interact. Also, let D be the Eucledian distance
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between the vector of the image pairs after being processed by the underlying Siamese network and

P are the parameters of the function F. The contrastive loss function can then be given as

L(P,X1, X2, Y ) =
(1− Y )

2
DP

2 +
Y

2
{max(0,m−DP )}2 (4)

where DP = ‖FP (X1)− FP (X2)‖2
2 is the Eucledian distance between the obtained outputs after

the input pairs are processed by the sub-networks. Also m is a margin such that m ≥ 0 that signifies

that dissimilar pairs beyond this margin will not contribute to the loss.

Figure 8.7 shows our complete architecture. It consists of two identical sub-networks i.e.

networks having same configuration with the same parameters and weights. Each sub-network takes

a gray-scale image of size 500 × 500 × 1 as input (we initially have color images that we convert

to gray-scale before feeding to sub-networks as input) and consists of 4 convolutional layers with

number of filters as 64, 128, 128 and 256 respectively. The kernel size for each convolutional layer

is (9 × 9) and the activation function is relu. The relu is a non-linear activation function is given as

f(x) = max(0, x). Each convolutional layer is followed by a max-pooling layer with pool size of

(3 × 3) and a batch normalization layer. After the convolutional layers, the sub-network has 3 fully

connected layers with 256, 128 and 20 neurons respectively. Thus after an image pair is processed

by the Siamese sub-networks two vectors of dimension 20 × 1 are obtained. Contrastive loss is

then applied to the obtained pair of vectors to obtain a distance between the input pair which can

then be thresholded to obtain a prediction.

Initially, we keep the threshold at 0.5 and then use precision recall curve to identify the best

threshold = 0.65. Note that the convolutions in the convolutional sub-network provide translational

in-variance property but rotational in-variance is also important in our problem domain. This is

because isomers (one of the chiral forms) of drugs are expected to react differently when interacting

with a certain drug (Nguyen et al., 2006; Chhabra et al., 2013). For example, Fenfluramine and

Dexfenfluramine are isomers of each other and where Fenfluramine interacts with Acebutolol but

Dexfenfluramine does not (Figure 8.8). Another example is that the L-isomer of methorphan,
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Figure 8.8: An example of how two isomers interact differently with a single drug.

Levomethorphan, is an opioid analgesic, while the D-isomer, Dextromethorphan, is a dissociative

cough suppressant1. We discuss our results next.

8.3.2 Experiments

Figure 8.9 shows the results for using Siamese network for predicting drug-drug interactions using

drug molecular structure images. Our data set consists of images of 373 drugs downloaded from the

PubChem database 2 and generate a data set of 19936 drug pairs that interact with each other (Y

= 1) and 47424 drug pairs that do not interact with each other (Y = 0). We optimize our Siamese

network using the Adam optimization algorithm (Kingma and Ba, 2014) with a learning rate of

5 × 10−5. The best learning rate was obtained using line search. We also tried the Root Mean

1https://en.wikipedia.org/wiki/Enantiopure drug

2https://pubchem.ncbi.nlm.nih.gov/
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Square Propagation (RMSprop) optimizer (Hinton, 2012) that is an adaptive learning rate method

but the results were not encouraging and thus we make use of the Adam optimizer. As mentioned

before, we also keep an initial threshold of 0.5 to obtain the predictions after obtaining a distance

between pair of drug images using the Siamese convolutional network. We divide the data set into

44457 training and 22903 testing examples. To introduce rotational in-variance we rotate the drug

images by 90◦ and 180◦ and use them to train and test the Siamese network. After including the

rotated images the data set size increases to 88914 training and 45806 testing examples. Figure

8.9(a) shows the accuracy after thresholding the obtained distance at 0.5 and training the network

for 20 epochs. The results show that at 0.5 threshold, if the data set includes rotated drug images

the network shows better results than if the data set does not include the rotated drug images. We

also tried Earth movers or Wassertein distance 3 as the distance metric (Yu and Herman, 2005) for

the Siamese architecture but it did not make much difference in the final results.

(a) Accuracy of the network with
threshold = 0.5 and epochs = 20

(b) Results with threshold = 0.65 and
epochs = 20

(c) Results with threshold = 0.65 and
epochs = 50

Figure 8.9: Results using Siamese network for predicting drug-drug interactions.

We then pick a best threshold using a precision-recall curve such that the best intuitive trade-off

between Precision and Recall can be represented and obtain a value of 0.65 as the best threshold.

Figures 8.9(b) and 8.9(c) present different metrics after training the network for 20 and 50 epochs

respectively. The results show that even when the number of epochs are increased the results do

3https://en.wikipedia.org/wiki/Wasserstein metric
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Figure 8.10: An example of abstract features learned by a convolutional layer for Sulfisoxazole.

not vary much. We present the results with the data set including the images rotated by 180◦ since

it gives the best accuracy result as seen in figure 8.9(a). Another important thing to note here is

that in our problem formulation recall is the most important factor that should be considered. The

simple reason is that we do not want to miss any interaction i.e. a false negative results in much

more serious consequences (fatalities in patients) than false positives (monetary losses such as new

clinical trials) (Dhami et al., 2018). Our network achieves a recall of ≈ 85% thereby showing the

effectiveness of using a Siamese architecture for predicting DDIs. Along with the high recall we

also obtain a high precision of≈ 75% thereby showing that the Siamese architecture can also extract

relevant DDIs.

An important factor also to consider here is the effect of the threshold on the obtained results.

With the threshold of 0.5 the effect of rotational in-variance becomes evident as the network when

trained with rotated images performs better than when trained without the rotated drug images.

After we find the best threshold the effect of rotational in-variance becomes negligible.

Examples of features learned by the convolutional layer for 2 drugs, namely, Sulfisoxazole and

Venlafaxine are shown in figure 8.10 and 8.11 respectively.
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Figure 8.11: An example of abstract features learned by a convolutional layer for Venlafaxine.

8.4 Conclusion

We present several methods that directly relate to and/or extend the different algorithms presented in

this dissertation. We present methods to incorporate human knowledge in deep models, extending

and developing more efficient statistical relational learning counting methods using hypergraphs

and presenting the first method using drug structure image data to predict drug-drug interactions.

We show that the methods presented int his chapter are closely connected to the work explained in

previous chapters and can result in improving the proposed models in this thesis and learning of

new and more efficient machine learning models for healthcare.
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CHAPTER 9

CONCLUSION

Developing models which are effective while dealing with thye inherent noisy structure and multi-

modality of data, especially in a sensitive domain such as healthcare, is a challenging and an

important task to be solved. We have approached this problem in three different yet interconnected

ways. In chapter 3 we deal with data from a clinical study and as expected has lot of noise in the

data including several uninformative features. To overcome these problems, a human expert advice

is utilised which constraints our search space to the most informative feature set. In chapter 4 we

consider data that is heterogeneous in nature. Specifically, we deal with data in different forms

of first order factbase and strings representing underlying structure of the examples in the data.

Our solution consisted of converting all the different modalities into the corresponding similarity

matrices and then combining these matrices into a single kernel for the sake of prediction. One key

advantage of our approach is that we are able to not just predict but also discover new knowledge.

Since most of the real world data is relational in nature, methods that deal with such relational

data directly, instead of first constructing a lossy propositional representation from the relational

data, are highly desirable. To achieve this, chapters 5 and 6 present different methods combined

by the underlying principle of taking advantage of local neighborhood information. Although

neighborhood methods have been widely adapted in deep learning (convolution operation captures

neighborhood information) and in classical machine learning (using Laplacians), generalizing any

of these to a graphical data is still in its nascent stage. To overcome this we propose a novel method

of learning structure for the underlying relational data and using the Gaifman locality theorem

to incorporate relational neighborhood information in the underlying machine learning model.

We also propose to extend graph convolutional networks to a relational realm by proposing the

ROCGCN method. Since capturing local neighborhood information can result in construction of

richer abstractions and capturing richer latent representations, we envision a wider adaptation of

such methods within graph machine learning in the coming future.

130



The final part of our thesis deals with generate synthetic medical data while faithfully capturing

relationships between different features with the help of a human expert. This problem is very

crucial considering the high cost and several restrictions that accompany with acquiring medical data

for research purposes. We propose the first human-allied generative adversarial network architecture

that uses human expert to get advice on feature correlations and generates data capturing these

correlations.

Although the above methods make a significant amount of progress in dealing with the various

challenges posed by noisy, heterogeneous and multi-relational healthcare data, several challenges

still remain and are discussed next as being the immediate future directions along with providing a

more long term view and requirements of these challenges.

9.1 Future Directions

9.1.1 Multi-View Learning

In our work we have learned multi-relational models and have combined them with deep learning

models to seamlessly take advantage of the rich underlying structure of the relational data as well as

learn more richer abstract features using a graph convolutional network. Multi-view learning is area

of machine learning from data concerned with learning with data represented by multiple distinct

feature sets and each such feature set forms a view of the data. The distinct feature set signifies that

the feature sets are conditionally independent given the class. Another required property is that each

view is sufficient for predicting the class of an instance. We propose to extend our ROCGCN model

to a multi-view learning setting by using different modalities of data to construct the feature and the

distance matrix.

Example: As we have already shown in our work, we can represent a drug using a graphical

structure such as a first order factbase or by its molecular image. In the classical multi-view setting,

we learn separate classifiers for both views. Suppose we use a convolutional neural network for the
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Figure 9.1: Our proposed approach for multi-view learning using graph convolutional networks

image and any statistical relational learning method for the factbase representation. In both the case

the network, in each view, will learn from a single example at a time with other examples having no

direct effect on the current example. This leads to some vital information about the relationship of the

current example with other examples, in each view, that can help learn a better model not being used.

Continuing our example of drug-drug interactions, as can be seen in Figure 9.1, data can be

represented by either in the form of graphs (as used in the Gaifman model discussion) or in the form

of images (as used in the Siamese architecture for drug-drug interaction discussion). We propose

to use a twin Siamese network architecture to create the distance/adjacency matrix and use the

same method as discussed in 6 to obtain the feature matrix for inputting to the graph convolutional

network. We differ from the classical multi-view learning setting since we use examples from

the same view together whereas in the classical multi-view setting, in both the co-training and
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co-regularization type techniques, a single data point from each view is considered at a time. Thus,

although there is an information flow between the examples from different views (because of the

matrix factorization style optimization function), the examples from the same view are not used

together. We present a rough sketch of our approach next.

1. Use the method described in chapter 6 to obtain the node feature matrix. To use the drug-

drug interactions example, every row in the feature matrix represents the feature set for the

Interacts relation between a pair of drugs.

2. To obtain the distance matrix between a pair of Interacts relation we make use of a twin

Siamese neural network. Every Siamese neural network provides a pair of embedding for

the pair of input drugs and to obtain the embedding capturing the pair of drugs, the obtained

embeddings are averaged since the average embeddings have shown promising results (Coates

and Bollegala, 2018).

3. The features and distance matrix can then be used in the graph convolutional network

architecture.

Multi-view learning has also been used in various sub-fields of machine learning such as transfer

learning (Yang and Gao, 2013; Tan et al., 2013), dimensionality reduction (Ding and Fu, 2014; Guo,

2013), clustering (Li et al., 2015, 2014; Xia et al., 2014) and multi-task learning (Zhang et al., 2015;

Jin et al., 2013). One of the common theme in majority of these methods is the use of non-negative

matrix factorization type technique for ensuring the information flow between different views. Since

heath care data has multiple views of data applying multi-view learning on the same seems to be a

natural fit.

9.1.2 Extension of Gaifman Models

Joint Learning of Gaifman Models In our previous work in chapter 5 we presented a structure

learning method for learning of discriminative Gaifman models, a class of relational models that
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take advantage of the local neighborhood information present in the underlying graph data. A major

limitation of our previous work is that the prediction is done only a single relation i.e. we have only

a single query variable and thus perform a single conditional probability operation. As a natural

extension we propose to perform joint learning of Gaifman models which can handle multiple query

variables. In theory joint learning can be achieved by multiplying the set of conditionals using the

chain rule of probability and has been used extensively in joint learning of several probabilistic

graphical models (Koller and Friedman, 2009). This simple method can be extended to obtain

the joint learning of Gaifman models as well. Given the set of all relations R in the underlying

relational data set and a set of query relations Q ∈ R, the joint probability of the query relations

R1,R2....Rn ∈ Q can be written as:

P (R1,R2....Rn) ≈ P (R1|R/R1)× P (R2|R/R2)× · · · × P (Rn|R/Rn)

≈
n∏
i=1

P (Ri/R/Ri)
(1)

where all the conditional probabilities can be interpreted as the pseudo likelihoods and thus provide

a principled approximation to the joint probability.

Hypergraph Embeddings using Gaifman Models A natural extension of Gaifman models can

be in obtaining hypergraph embeddings. Although a lot of relational embedding techniques exist

(Xiao et al., 2016; Bordes et al., 2013) these are limited to binary graphs i.e. graphs with edges

connecting only 2 vertices and cannot handle the family of hypergraphs.

Some of the recent work such as m-TransH (Wen et al., 2016) extends the binary relational

embedding model TransH (Wang et al., 2014) to the hypergraph space. Developing embedding

models that can directly handle hypergraphs is one way to approach the problem. Another way to

tackle this problem, one with more theoretical underpinnigs, is to convert the hypergraph into a

binary graph and then apply one of the various binary relational embedding techniques to perform

the required task, such as node classification or link prediction.
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Figure 9.2: Conversion of a hypergraph to its corresponding Gaifman graph.

Although these relational embeddings can be used after converting the hypergraph to a binary

graph, this conversion can lead to loss of information which can adversely effect the quality of the

embeddings generated. We propose to use the Gaifman locality theorem to capture the sensitive

neighborhood information and using the Gaifman graph of the hypergraph as a conversion to a

binary graph as shown in figure 9.2.

We can use any of the techniques defined in chapter 5 to learn the structure of the Gaifman

models since all the methods are capable of handling n-ary predicates. To obtain the features i.e. the

counts over the neighborhoods of the query variables satisfying the first order rules, the Gaifman

graph of the hypergraph can be used. The rest of the process remains the same as described in

chapter 5.

Considering the work we have already done previously in the space of Gaifman models, the

joint learning and hypergraph embeddings are the two most natural extensions.
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NIPS.
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Deprez, P., P. V. Shevchenko, and M. V. Wüthrich (2017). Machine learning techniques for mortality
modeling. European Actuarial Journal.

Dettmers, T., P. Minervini, P. Stenetorp, and S. Riedel (2018). Convolutional 2d knowledge graph
embeddings. In AAAI.

Dhami, D. S., G. Kunapuli, M. Das, D. Page, and S. Natarajan (2018). Drug-drug interaction
discovery: Kernel learning from heterogeneous similarities. Smart Health.

Dhami, D. S., G. Kunapuli, D. Page, and S. Natarajan (2019). Predicting drug-drug interactions
from molecular structure images. AAAI Fall Symposium on AI for Social Good.

Dhami, D. S., A. Soni, D. Page, and S. Natarajan (2017). Identifying parkinson’s patients: A
functional gradient boosting approach. In AIME.

Dhami, D. S., S. Yen, G. Kunapuli, and S. Natarajan (2020). Non-parametric learning of gaifman
models. STARAI workshop @ AAAI.

DHHS (2010). U.S. Department of Health and Human Services, Office of Inspector General
(OIG). Adverse Events in Hospitals: National Incidence Among Medicare Beneficiaries, Report
No.: OEI-06-09-00090. https://oig.hhs.gov/oei/reports/oei-06-09-00090.
pdf. [Online; accessed 21-April-2019].

Ding, G., Y. Guo, and J. Zhou (2014). Collective matrix factorization hashing for multimodal data.
In CVPR.

Ding, H., I. Takigawa, H. Mamitsuka, and S. Zhu (2013). Similarity-based machine learning
methods for predicting drug–target interactions: a brief review. Briefings in Bioinformatics.

Ding, X., Y. Luo, Q. Li, Y. Cheng, G. Cai, R. Munnoch, D. Xue, Q. Yu, X. Zheng, and B. Wang
(2018). Prior knowledge-based deep learning method for indoor object recognition and application.
Systems Science & Control Engineering.

Ding, Z. and Y. Fu (2014). Low-rank common subspace for multi-view learning. In ICDM.

Dinov, I. D. (2016). Volume and value of big healthcare data. Journal of medical statistics and
informatics.

Domingos, P. and D. Lowd (2009). Markov Logic: An Interface Layer for AI. San Rafael, CA:
Morgan & Claypool.

140

https://oig.hhs.gov/oei/reports/oei-06-09-00090.pdf
https://oig.hhs.gov/oei/reports/oei-06-09-00090.pdf


Donini, M., J. M. Monteiro, M. Pontil, J. Shawe-Taylor, and J. Mourao-Miranda (2016). A
multimodal multiple kernel learning approach to alzheimer’s disease detection. In MLSP.

Doshi, J. A., F. B. Hendrick, J. S. Graff, and B. C. Stuart (2016). Data, data everywhere, but access
remains a big issue for researchers: a review of access policies for publicly-funded patient-level
health care data in the united states. eGEMs.

Dwork, C. (2008). Differential privacy: A survey of results. In TAMS.
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Sonnenburg, S., G. Rätsch, C. Schäfer, and B. Schölkopf (2006). Large scale multiple kernel
learning. JMLR.

151



Sourek, G., V. Aschenbrenner, F. Zelezny, and O. Kuzelka (2015). Lifted relational neural networks.
arXiv preprint arXiv:1508.05128.

Srinivasan, A. (2001). The aleph manual.

Srinivasan, A., R. D. King, S. H. Muggleton, and M. Sternberg (1997). Carcinogenesis predictions
using ILP. Inductive Logic Programming.

Srivastava, N. and R. R. Salakhutdinov (2012). Multimodal learning with deep boltzmann machines.
In NIPS.

Sun, S. (2013). A survey of multi-view machine learning. Neural computing and applications.

Sun, Z., Z.-H. Deng, J.-Y. Nie, and J. Tang (2019). Rotate: Knowledge graph embedding by
relational rotation in complex space. ICLR.

Tan, B., E. Zhong, E. W. Xiang, and Q. Yang (2013). Multi-transfer: Transfer learning with multiple
views and multiple sources. In SDM.

Tango, F. and M. Botta (2013). Real-time detection system of driver distraction using machine
learning. IEEE Transactions on Intelligent Transportation Systems.

Taskar, B., M.-F. Wong, P. Abbeel, and D. Koller (2004). Link prediction in relational data. In
NIPS.

Tatonetti, N. P., G. H. Fernald, and R. B. Altman (2011). A novel signal detection algorithm for
identifying hidden drug-drug interactions in adverse event reports. JAMIA.

Taylor, R. A., J. R. Pare, A. K. Venkatesh, H. Mowafi, E. R. Melnick, W. Fleischman, and M. K.
Hall (2016). Prediction of in-hospital mortality in emergency department patients with sepsis: a
local big data–driven, machine learning approach. Academic emergency medicine.

Thirumalai, C., A. Duba, and R. Reddy (2017). Decision making system using machine learning
and pearson for heart attack. In ICECA.

Thomas, P., M. Neves, I. Solt, D. Tikk, and U. Leser (2011). Relation extraction for drug-drug
interactions using ensemble learning. Training.

Thoolen, M., B. Wilfert, A. Jonge, P. Timmermans, P. Zwieten, et al. (1984). Effect of salbutamol
and the pde-inhibitor ra 642 on the clonidine withdrawal syndrome in rats. Auton Autacoid
Pharmacol.

Toh, K. C., M. J. Todd, and R. H. Tütüncü (1999). SDPT3 – A Matlab software package for
semidefinite programming, v. 1.3. OMS.

152



Towell, G. and J. Shavlik (1994). Knowledge-based artificial neural networks. Artificial intelli-
gence 70(1-2), 119–165.
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