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ABSTRACT 

 
 
 Supervising Professor:  I-Ling Yen 
 
 
 
 
Service-oriented architecture (SOA) has been widely adopted by government and industry to 

enable rapid systems development and deployment via composing existing services. To further 

reduce manual efforts in service composition, planning techniques are used to automate the 

service composition process. However, some gaps still exist in automated service composition 

research. First, real world systems are complex and need to consider multiple functionalities. 

Existing service composition models do not support the specification of multiple functionalities 

and existing planning techniques cannot be used directly to generate a composite service with 

multiple functionalities. Secondly, a lot of work exists for improving the performance of 

planners for automated service composition, but none of them consider the scalability problem 

due to the number of services. With the growing adoption of SOA and open source development, 

more and more concrete services are becoming available, which makes the scalability issue 

highly pressing. Thirdly, existing service models are based on software services, while physical 

services have quite different characteristics. Though some works consider modeling physical 
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services, they are still confined to the same issues of the software services. When considering 

automated service composition, these models are insufficient. 

In this dissertation, the three issues in automated service composition are thoroughly investigated 

and methods for coping with them are developed. For the first issue, we extend existing service 

models to support multi-functionality specification and develop planning techniques to facilitate 

service composition for multi-functionality systems. To cope with the second issue, we develop 

an approach that integrates service clustering and planning techniques to improve the 

performance of the automated service composition process and make it scalable with the number 

of services. We also develop a specification model for physical services and their compositions 

to ensure that automated service composition can be correctly applied to cyber physical systems 

and Internet of things applications. Our work significantly enhances the state-of-the-art 

technologies in automated service composition, making it more efficient and more applicable to 

a wider variety of application domains. 
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CHAPTER 1 

INTRODUCTION 

Service oriented architecture (SOA) has become a popular framework for software development 

in many application domains. A lot of companies and organizations provide their services as 

SaaSs (software as a service) and Apps over the internet. However, these services usually have 

their focused core functions and cannot alone satisfy many user requests. To fulfill a user 

request, it is generally necessary to compose multiple services into a single composite service to 

achieve more sophisticated functionality. Due to the growing number of services and the 

complexity of the systems to be composed, it can be very ineffective and time consuming to 

perform service composition manually and automated service composition is, thus, highly 

desirable. Techniques for automated service composition have been investigated; however, there 

are still challenges for applying the automated service composition techniques in different 

application domains. In the following three sections, we discuss the major gaps in existing 

automated service composition models and techniques, and the research efforts in this 

dissertation for bridging these gaps. In Section 1.4, we discuss the layout of this dissertation. 

1.1 Efficiency Issues with Large Number of Services Composition 

To reduce the time and effort required in manual based composition, various automated 

service composition techniques have been proposed in the literature [1] [2]. Early works on 

automated service composition mainly apply logic-based reasoning to derive the composition 

solutions [3] [4]. Generally, logic-based reasoning techniques cannot be scaled well to large-

scale problems. SHOP2 [1] and OWLS-Xplan [2] are widely used systems for automated service 
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composition. They are based on Hierarchical task network (HTN) techniques, which are 

considered as domain dependent solutions due to their need for knowledge about how to 

decompose tasks. There are also automated service composition methods using search-based 

planning techniques [5] [6], similar to GraphPlan [7], Fast Forward (FF) Planner [8], Local 

Search for Planning Graphs with Action Costs (LPG) [9], Fast Incremental planner (FIP) [10], 

etc.  

Due to the wide adoption of SOA, growing attention in open source, and the rapid 

development of services, SaaSs, and App libraries, the number of available services is growing 

very rapidly. Though systems can be quickly developed and deployed by composing these 

available services, service discovery and composition face challenges. Some research works 

attempt to reduce the service discovery and composition efforts by clustering services with 

similar functionalities together [11] [12] [13] or by constructing service hierarchies [14]. 

Services can be selected from the clusters with the desired functionalities and used for 

composition.  

However, existing service clustering techniques cannot help automated service 

composition because the derived service clusters do not provide information that can be used by 

the composition reasoners. With a large number of services, the state space of the corresponding 

planning problem grows rapidly, making the planners difficult to scale. 

We use planning techniques as the basis for composition reasoning and make use of the 

service clusters for coping with the scalability problem in conventional planning techniques due 

to the increasing number of services. We develop a two-level planning approach based on 

service clustering and identify the requirements for service clusters to facilitate two-level 
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planning. Services are clustered into a hierarchy, which includes multiple clusters of service with 

one leading abstract service for each cluster. The specification of the leading abstract service of a 

cluster is a summarization of the common properties of the services in the cluster. Composition 

planning is first performed on the set of leading abstract services. The initial plan is then 

expanded to a complete plan by considering an expanded service set, which is constructed by 

replacing the leading abstract services by all the services in their clusters. To enable this two-

level planning, some requirements for the service hierarchy should be satisfied. We develop the 

theoretical foundation of service hierarchy requirements and the methods for achieving two-level 

planning. 

1.2 Issues toward Composing Services into Holistic System 

Besides the performance problem, existing automated service composition research have 

also omitted some important issues toward composing services into a holistic system. Standard 

service specification, orchestration, and choreography models, such as OWL-S [15] and WSMO 

[16] have been widely used. Various models for automated service composition have also been 

considered [5] [6] [17]. But these models have omitted some important issues toward composing 

services into a holistic system. First, all these techniques consider a single system goal, like a 

plan does. However, modern systems are complex and the system may have to be specified by 

different functionalities. For example, consider a floor cleaning system. The system may offer 

carpeted floor cleaning, hardwood floor cleaning, tile floor cleaning, etc. All these floor cleaning 

services start by ordering service, transporting service which transports the people and 

equipment to the location where the service is to be performed, furniture moving service, and 

vacuuming service. After vacuuming, depending on the service ordered, different services are 
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performed. It is possible to perform service composition for each function and obtain multiple 

workflows for the system. However, from the cleaning service example, we can see that there are 

quite a lot of overlapping services in the workflows for multiple functionalities. Thus, it is better 

to specify multiple functionalities for the overall system and compose one workflow with 

branches for achieving all the desired functionalities. This solution can reduce the composition 

effort and generate a well integrated workflow.  

The second issue in automated service composition is the consideration for services with 

multiple effects. The output of a service may be used as a control parameter to determine what 

the subsequent processes should be. Consider developing a retail store management workflow 

that is activated upon store closing. First, a patrol service goes across the store to ensure that 

there is no customer remaining in the store. Then, a store closing service closes all the doors and 

counters. Next, an inspection service provided by a robotic or manned cart is activated to 

navigate through the aisles to make inspections. This inspection service may give different 

outcomes, such as finding misplaced items, finding some products with low shelf stocks, or 

finding spoiled or broken items. Depending on the outcome of this inspection service, different 

subsequent sub-workflows with different goals will be invoked to handle the problems. Similar 

to having multiple effects, a service may raise exceptions during execution. Exceptions can also 

result in different effects to the system. Generally, when a service is defined, the potential 

exceptions that may be raised by the service are also defined. When a service is selected and 

composed into a workflow for a system, its exceptions should be taken care of to ensure that the 

system is holistic. 
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Automated service composition techniques have been developed for handling multi-

effect services and exceptions [18] [19], but some gaps still remain. One gap is that formal 

service definition models, such as OWL-S and WSMO, do not have a specific mechanism for 

specifying the multiple effects or exceptions of a service [15]. Without a proper specification 

model, the techniques for handling them becomes ad hoc. Another important gap in the literature 

is that when handling exceptions, all works require the system to achieve the same original goal. 

However, in many cases, after an exception is raised, the original goal can no longer be satisfied 

and a new goal should be specified. Thus, we need to have a service composition model that 

supports the specifications of goals for the exceptions. 

The third gap in automated service composition is the consideration of alternative paths 

toward a goal. Most existing planning techniques, especially those used for automated service 

composition, only derive one path from the initial condition to the goal state. But in a holistic 

system, there may be multiple ways for achieving the system goals for a certain functionality. 

Sometimes these multiple ways should be presented to the users to provide flexible choices. For 

example, an online shopping system may be composed of browsing, add to cart, checkout, 

payment, and delivery services. It is desirable to offer different payment and delivery methods 

and leave the choices to the users. The service composition model and automated composition 

techniques should be able to construct a workflow with choices and identify the user interaction 

points for making the choices. 

In this dissertation, we consider the problem of automated holistic service composition. 

Here, “holistic” refers to the composition of a complete system. It is necessary to consider 

multiple functionalities of the system, multiple effects and exceptions of services, different goals 
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for exceptions, and multiple methods as user choices for achieving the goals. We build a 

comprehensive model and integrated techniques to facilitate automatic service composition to 

obtain a holistic workflow for the desired system. To facilitate a formal treatment of the holistic 

composition problem, we extend the classical OWL-S service model [15] with multi-effect 

specifications and exception definitions. Also, we define a separate “system” model to facilitate 

the more precise specifications of the multi-functionality composition problems.  

Different from a composite service, a system can have a goal structure, including the 

goals for multiple functionalities, special goals for exceptions when the regular functionalities 

cannot be achieved, and the goals for choices of methods for achieving some of the 

functionalities. Also, we develop the automated service composition procedure for composing 

workflows for holistic systems. The procedure is designed to generate a workflow that can 

achieve multiple functionalities, provide choices of multiple methods for achieving some system 

functions, take care of multiple effects of the services, and handle exceptions to achieve the 

original or new goals as desired.  

Also, based on the multi-functionality model, we extend existing planning techniques and 

develop new planning algorithms to achieve efficient multi-functionality planning, including the 

Multi-Round Planning for Multi-Functionality (MRPMF) algorithm and the Single Graph 

Expansion for Multi-Functionality (SGEMF) algorithm. In both algorithms, all the goals 

specified for multiple functionalities are composed by the disjunctive relation and the integrated 

goals are called the Disjunctive Multi-Functionality (DMF) goals. MRPMF includes multiple 

planning rounds. In the first round, the classical planner is modified to plan for the DMF goals, 

but the termination condition is as long as the goals for one of the functionalities are reached. 
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Then, the corresponding “first plan” is retrieved. In the second round, the DMF is updated by 

removing the goals for the already-achieved functionality. The set of initial conditions is updated 

to include not only the original initial conditions, but also all the states in the “first plan”. Thus, 

the second round planning will obtain a “second plan” that starts from one of the states of the 

“first plan” and reaches the goals of another functionality. The planning rounds continue till all 

the functionalities are achieved. In SGEMF, plan graph expansion only takes place once, but 

breaks multiple times. It expands normally for the DMF goals, but takes a break when the goals 

for one of the functionalities are achieved. After the break, the backward search is performed 

from the goal state till it reaches any state in the existing plan or the initial state. Of course, when 

the first functionality is achieved, there has been no plan, so the backward search goes back to 

the initial state. After each break, the plan graph expansion continues till the next break condition 

is met. We compare MRPMF and SGEMF algorithms with the conventional approach, in which 

automated service composition method is applied for each functionality of the system to obtained 

multiple workflows for a single system. We also analyze the tradeoffs between MRPMF and 

SGEMF. Also, experimental studies are conducted to compare the performance of various 

automated service composition methods, including MRPMF, SGEMF, and the conventional 

approach. The results show that SGEMF has the best performance for multi-functionality 

planning and MRPMF can generate multi-functionality workflows with more overlapping 

services (i.e., the total number of services in the workflow is the least) because the branches are 

planned from the existing plan. 
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1.3 Service Computing for Physical Services 

In recent years, internet-of-things (IoT) and cyber-physical system (CPS) have gained a 

lot of attention. Both IoT and CPS consider a vast number of static and/or mobile physical 

devices networked together into a system. Service computing technologies have been applied in 

CPS/IoT systems to achieve rapid discovery and composition of physical things for new or 

dynamically arising tasks [20] [21] [22] [23] [24]. However, existing service models are mainly 

designed for software services and are not suitable for physical services provided by CPS/IoT.  

Some research works [25] [26] [27] use the event-based model from software systems to 

capture the event-driven characteristics of physical services. The event based model may be very 

useful in CPS/IoT application domains, but it does not offer additional features compared to the 

event model for software services. Also, because CPS/IoT entities may involve low-level control 

commands with different communication mechanisms and control sequences, [26] [28] and [29] 

extend the wrapping and encapsulation techniques in software world to unify the access 

interfaces for the physical services and hide the details for interacting with CPS/IoT devices. 

Though the encapsulation techniques are critical for CPS/IoT services, there is no differential 

treatment for CPS/IoT in applying these techniques relative to software services. 

In fact, software services and physical services have some differences, but none of the 

existing works consider them. One major difference is the role that the physical thing (PT) plays 

in service provision. In software services, the PT is the computing and storage hardware. 

However, due to the sufficient uniformity in the computing facilities for software services and 

the high speed communication among them, though there are still issues like communication 

costs and workloads, the PTs for software services do not have a significant role. However, in 
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physical services, the characteristics of a PT can impact the service it provides. For example, 

different types of vehicles can be used to transport people from a disaster site to a safe 

evacuation area. But each type of vehicle has its own characteristics, such as load capacities and 

number of seats. Also, even for the vehicles that are exactly the same, when grounding the 

service for transporting people, it is necessary to specifically determine the number of vehicles 

required and the number of trips each vehicle may have to make. Thus, the PT that provides a 

physical service should have a significant role in the specification of the physical service. 

Unfortunately, current service models, such as OWL-S and WSMO, do not support 

specifications of the physical things. 

Another issue to be considered is the context of the PT. For example, in a rescue mission, 

some robots may be used for survivor detection. But the physical location of the robots must be 

at the rescue site. If not, additional services are required to bring them to the rescue site. Also, 

the side effect of a software service can be specified independently of other software services. 

This may not be true in physical things. For example, a car may transport a robot to a disaster 

site for a rescue search. In this case, the states of the service provider and the PTs the recipient of 

the service is may change together. Such impact need to be specified explicitly and existing 

software service models do not have such a feature.  

Granularity is also an issue in CPS/IoT systems. (a) For example, a swarm of robots may 

provide some services as one unit. But each robot may also be used to provide different services. 

(b) Many PTs may have components. Generally, they provide services as single units, but require 

separate maintenance services or control software. 
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In this dissertation, we develop an ontology model for the specification of services in 

CPS/IoT systems. We define PTs and services separately and associate them in the upper 

ontology. We consider “context” for physical services and specify the “context precondition” 

and “context effect” for physical things. Same as precondition, the “context precondition” should 

be satisfied before activating a physical service. To specify the side effect of a service, we define 

recipient PTs (not services) and support the effect specifications not only for the service itself, 

but also for the recipient PTs. The ontology model for CPS/IOT can facilitate automated service 

composition and we illustrate this capability via a case study system. 

1.4 Dissertation Organization 

This dissertation is organized as follows. In Chapter 2, we survey service composition 

models and techniques and automated service composition algorithms. Chapter 3 discusses the 

multiple level planning algorithm for achieving more efficient automated service composition 

considering a large number of services. Chapter 4 discusses extended service model, exception 

model and system model for a holistic service composition problem. It also discusses the 

automated composition solutions for composing services into a holistic system. In Chapter 5, we 

propose a novel PT-SOA (PT stands for physical things) model, which extends OWL-S to model 

CPS/IoT services and systems. Also, a multi-stage automated service composition reasoning 

technique is developed to support efficient and automated composition of CPS/IoT services 

while considering the physical properties and constraints of the physical things that provide the 

CPS/IoT services.  

 



 
 
 

 11 

CHAPTER 2 

RELATED WORKS 

SOA has become the major architecture model in modern software development process. Among 

various research issues, how to discover and compose services into an integrated system is one of 

the most important and challenging problem. The first step toward service composition is the 

specification of individual services. Without proper service specifications, designers will have no 

basis to know what each service can do, not to mention whether or how to use it in the target 

system. Thus, many research works have investigated the models and languages for specifying 

the services. In Section 2.1, some important service specification models are discussed. After 

services are selected and composed into a system, it is necessary to specify how the services are 

composed and how they interact. Some important service composition specification models and 

tools have been developed. In Section 2.2, we survey some important models for service 

composition.  

With the advances in various hardware and networking technologies, computing devices 

becomes more and more pervasive in human society and in our daily lives. Thus, cyber physical 

systems (CPS) and Internet of things (IoT) have gained increasing importance. SOA 

technologies, especially the service discovery and composition techniques, have been used in 

these systems. Since CPS and IoT services have different properties and focuses compared to 

conventional software services, new service specification and composition paradigms for CPS 

and IoT systems have been proposed. In Section 2.3, we discuss some important issues and 

corresponding models for CPS and IoT services and compositions. We also outline the 

deficiencies in existing models and discuss the idea in a new model we propose. 
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Given the models for service and service composition specifications, the next issue is 

how to select services from the vast pool of available services provided by different venders and 

how to compose them such that the system requirement can be satisfied. Various service 

composition techniques have also been investigated to help users systematically develop the 

workflow for a desired system. These service composition techniques can be categorized into 

functional service composition, QoS-driven service composition, and context-aware service 

composition. Functional service composition can further be categorized into manual and 

automated composition methods. In Section 2.4, we discuss some service composition 

techniques that help users to manually but systematically compose services into a system. In 

Section 2.5, we first discuss the differences of automated service composition from the general 

reasoning process. Then for each issue, we survey existing planning techniques and 

corresponding usage of the planning techniques in existing automated service composition 

systems. We also address the gaps in existing automated service composition techniques and 

discuss our efforts in bridging the gaps. In Section 2.6, we briefly discuss existing works in QoS-

driven and context-aware service composition research. Finally, in Section 2.7, we discuss the 

gaps in existing service composition research and how our research bridges these gaps. 

1.5 Service Specification Models 

The first specification language for Web services is WSDL (Web Service Definition 

Language) [30]. WSDL is an XML based definition language and it focuses on Web service 

functionality description. It provides an informal description of what the service functions are 

and formally specifies the IO ports of a service. For each port, the communication message 

structures, the actual communication protocol such as SOAP, HTTP, etc., can be specified. 
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WSDL also supports the definition of the operation modes of a port, including notifications, one-

way, solicit-response, and request-response modes. The partner-link in WSDL can specify the 

connection of a port of one service to the port of another service, which is the only hint of 

composition in WSDL. Due to its well defined specification model for the service invocation 

process, many other semantic Web service models embed WSDL in their models. 

 

Figure 1. OWL-S Service Top Level Ontology 
 

WSDL focuses on concrete service invocation specifications, but lacks semantic 

definitions of the functionality of the services. The Ontology Web Language for Services (OWL-

S) is, hence, proposed to achieve semantic service specifications. OWL-S defines the service 

specification ontology, which includes three classes, profile, process, and grounding (as 

illustrated in Figure 1). The profile class support some informal descriptions of the properties of 

a service for human reading, including the service name, service category, description, publisher, 

limitations on applicability of the service, quality of service, etc. It also provides formal 

specifications of the inputs, the outputs, the preconditions and the effects (IOPE) of the service. 

IOPE specifications are essential for automated service composition. The process class is used to 

describe the composition logic for a composite service. The grounding class provides detailed 
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invocation information, including the physical binding information and the link to the WSDL of 

the service.  

Web Service Modeling Ontology (WSMO) is another semantic service specification 

model [31] [32]. In WSMO, a Web service ݏ is specified by five classes, including interface, 

capability, non-functional properties, ontology, and mediators. The interface class includes two 

specifications, choreography and orchestration. Choreography specifies the communication 

patterns during the invocation and execution of ݏ. It is a more comprehensive IO specifications 

for ݏ , including transactional specifications. Orchestration specifies how other services are 

composed into ݏ , which is actually internal to ݏ , not exactly an interface specification. The 

capability class provides an axiom-based formal specification of the preconditions and effects of 

a service. WSMO separates the precondition and effect into two parts. The precondition and 

assumption specify the conditions to be met by the input space and by the world, respectively. 

The post-condition and effect specify the effect in the view of the invoker and the effect to the 

environment (the world), respectively. Non-functional properties class is self-explanatory. The 

ontology and mediator classes specify the ontologies imported and the mediators used, 

respectively, for the service.  

To facilitate automated composition, we need a formal model for service specifications 

and we choose to use the OWL-S model as the basis. 

1.6 Service Composition Specification Models 

In the literature, there are two major paradigms for service composition, orchestration and 

choreography [33]. The major difference between orchestration and choreography is in service 

execution and control. In orchestration, service execution is managed by a central orchestrator 
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(conductor). The conductor is responsible for the invocation of and interaction with each atomic 

service in a composite service following a predefined sequencing. These atomic services do not 

interact between themselves in the orchestration paradigm. In choreography, the services in a 

system are executed in a peer-to-peer manner. Each service operates according to a set of rules, 

which define how the service should be consumed and its interaction patterns with other 

services. Many earlier service composition models are based on the orchestration paradigm, 

including WS-BPEL, OWL-S, etc. The WSMO model combines both orchestration and 

choreography. 

BPEL [34] is the most widely used workflow description model in industry. It is not 

specifically designed for SOA, but has been adapted to WS-BPEL for service composition 

specifications. For workflow execution, WS-BPEL links services in the workflow to their WSDL 

specifications which guide the invocations of individual services. It also supports common 

orchestration sequencing control constructs, such as sequence, if, while/for-each/repeat-unit 

loops, etc. Some additional constructs provided in WS-BPEL facilitate more convenient 

workflow specifications. The pick construct allows the specification of alternative branches in a 

workflow and the first ready branch is executed. The assign construct allows the state of service 

execution to be preserved in a variable and used in later stages of the workflow execution. In the 

orchestration paradigm, service composition can be concrete or at an abstract level. The concrete 

model provides the specification of a composition, and the abstract model enables the 

specification of a composition problem. WS-BPEL supports both concrete and abstract 

compositions. 
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In OWL-S [15], services and compositions (processes) are treated uniformly. The process 

class for a service ݏ  specifies how other services are composed together to fulfill the 

functionalities specified by the profile (such as IOPE) of ݏ. Subsequently, ݏ can be treated as a 

concrete service and used in the compositions for other services. OWL-S also offers common 

execution sequencing constructs, including the sequence, if-then-else, and iterate/repeat. OWL-S 

sequencing also focuses on execution ordering and offers constructs: split (parallel execution of 

all branches), split-join (all split branches should finish execution before join), any-order 

(execute branches sequentially in any order), and choice (execute one of any branch). Also, same 

as WS-BPEL, OWL-S supports both concrete and abstract composition models, allowing the 

specifications of a concrete composition as well as a composition problem. 

WSMO [16] integrates choreography and orchestration (only for composition 

specification, not for centralized execution control) to support the detailed specification of the 

external interface and internal composition of a concrete Web service. Its upper ontology model 

includes the specifications of four classes: goals, mediators, ontologies and Web services. The 

Web services provide the set of available concrete services (both atomic and composite) that can 

be used for composition. Ontologies and mediators are generally imported from the predefined 

corresponding sets. The terminologies used in the specifications for the set of Web services and 

the goals are defined in the ontologies. Mediators are used to overcome interoperability problems 

between interacting Web services with mismatching IOs. Different from OWL-S and WS-BPEL, 

WSMO considers a composition problem (an abstract service to be composed) different from a 

concrete service (a Web service). The goals specify what are to be achieved for a service 

composition request.  
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To facilitate automated service composition specification, we need formal specifications 

of the composition problem as well as the concrete services. Also, we need a clear and simple 

model for composition and composition problem specification. Thus, we construct a model that 

is a combination of BPEL, OWL-S and WSMO. We leverage the formal specification model in 

OWL-S, the concept of separation of composition and concrete services in WSMO, and the 

separate composition specification (the workflow) in BPEL to form our automated service 

composition model. 

1.7 Service Models for CPS and IoT Systems 

Due to the advances of computer and networking technologies, many physical systems 

are computerized and networked. In recent years, cyber physical systems (CPS) and Internet of 

things (IoT) have become very popular. Some research works attempt to adapt the service 

computing models to CPS and IoT systems. But existing service models are mainly designed for 

software services and are not suitable for services provided by CPS/IoT. In the following 

subsections, we survey existing works related to the modeling of CPS/IoT services. 

1.7.1 Event Driven CPS/IoT Service Models 

Similar to some software services, physical services may be invoked by requests and/or 

by events. For example, air conditioner may be turned on (invoked) due to a high temperature 

reading from the temperature sensor or by the user. Also, a transport service provided by a car 

may be invoked by a user to transport the user from one location to another. If the gas tank of the 

car is low, the gas filling service should be invoked before providing the car service. Before the 

car can fill gas, it has to drive to the gas station, namely, invoking the move service of the car. 
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Some research works use the event-based model from software systems to capture these event 

driven characteristics in physical services.  

In [25], an event-driven service oriented architecture (ED-SOA) for IoT systems has been 

proposed. In this model, events are treated at the same level as services. A service can subscribe 

to a set of events and it takes corresponding actions when some of these events are delivered to 

it. Also, events may be generated during service executions and they will be delivered to their 

subscribers. In DPWS by OASIS [27], a similar event-based model is proposed for IoT devices. 

DPWS also consider device access protocol specification and service specification and discovery 

for the IoT devices. 

The SenaaS (sensor as a service) system [26] is a virtualized IoT framework realizing the 

event-driven SOA in the IoT domain. Its virtualization layer receives events and manages and 

sends them to subscribers to take appropriate actions.  

SOCRADES [22] also uses the same event model for modeling production processes in 

manufacturing systems. In SOCRADES, the status information of the physical entities and 

sensors can be treated as events and can be subscribed by other services through the 

SOCRADES event system. Also this model uses a virtual composition language to specify the 

bindings of events, event handling services, and the corresponding physical entities together.  

In [28], an event based model is also used as the underlying system model. But unlike 

SenaaS and SOCRADES in which the event handling logic is manually determined in advance, 

this paper emphasizes to dynamically compose services to handle events. After an event is 

raised, the control layer determines a control decision for the event. Then the services are 

composed together to realize the control decision. Also, since some physical devices are 
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configurable, the services incorporate configurability to support flexible provisioning. Though 

the dynamic control decision making and on-the-fly service composition are important for 

unexpected situations, there are no effective methods in this framework to support such goals. 

1.7.2 Service Middleware for Consistent CPS/IoT Service Invocation 

Due to the complexity in the invocation of physical services, some CPS/IoT works 

develop middleware to encapsulate the devices and provide a uniform interface to access devices 

that offer similar functionalities. For software services, the differences in interfaces of similar 

software services are less significant. But CPS/IoT entities usually have very different interfaces 

because CPS/IoT entities may involve low-level control commands with different 

communication mechanisms and control sequences. Thus, it is very important to extend the 

wrapping and encapsulation techniques in software world to unify the access interfaces for the 

physical services. 

The SenaaS [26] middleware consists of three layers: the service virtualization layer 

(discussed earlier), the semantic layer and the real-world access layer. The functionality of the 

virtualization layer has been discussed in Section 2.3.1. The real-world access layer provides 

unified interfaces for accessing similar services provided by functionally similar IoT devices 

with different communication mechanisms. The semantic layer provides the needed ontologies in 

the middleware to support the service specifications in different layers, including the sensor 

ontology, an event ontology, and the service access policies. These ontologies can facilitate cross 

layer mappings and enhance the effectiveness of device encapsulation. 

In [28], the proposed system consists of 3-tiers. The environmental tier encapsulates the 

physical devices. The control tier consists of controllers. Each controller subscribes to specific 
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monitored data gathered by sensors, analyzes the sensor data to make control decisions, and 

composes services to realize the control decision. The service tier analyzes common services 

needed by the control tier and composes the functionalities provided by the IoT devices to realize 

these identified common services. Thus, the specific accesses to the devices are not exposed to 

the control tier or the users to avoid complex access procedures. In [35], a similar 3-tier 

architecture is considered and the goal is also to encapsulate the interaction protocols with the 

devices and conduct service composition to react to situations. 

In ScriptIoT [29], a common script interface is provided to access IoT sensors with 

different data formats and communication mechanisms and to activate different IoT devices. For 

example, a common “fetch(݀)” command can be used to fetch data from a sensor ݀ of any type 

and the underlying access protocol for ݀ and conversions of ݀’s data format are encapsulated. 

Such sensor data accesses can also be registered as an event and only when the data satisfies a 

certain condition will the data be delivered to the request issuer.  

1.7.3 Modeling Physical Things  

The physical things (PT) in CPS and IoT systems have a significant role in the 

composition reasoning of physical services, which is very different from composition reasoning 

for software services. In software services, the PT is the computing and storage hardware. 

However, due to the sufficient uniformity in the computing facilities for software services and 

the high speed communication among them, though there are still issues like communication 

costs and workloads, the PTs for software services do not have a significant role. In CPS/IoT, the 

physical thing that provides a service and its properties are very important. For example, 

different types of vehicles can be used to transport people from a disaster site to a safe 
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evacuation area. But each type of vehicle has its own characteristics, such as load capacities and 

number of seats. Also, even for the vehicles that are exactly the same, when grounding the 

service for transporting people, it is necessary to specifically determine the number of vehicles 

required and the number of trips each vehicle may have to make. The second issue for physical 

service composition is that a PT may be able to provide several different types of services. 

However, it is frequently not possible for one PT to fulfill multiple services it provides at the 

same time. The schedule of individual PT will impact the service composition result. The PT 

context is also an issue when doing the physical services composition. The context is defined as 

the dynamic changing states of a PT. For example, in a rescue mission, some robots may be used 

for survivor detection. The physical location of the robots must be at the rescue site. If not, 

additional services are required to bring them to the rescue site. Last issue that needs to be 

considered is that the side effect of a software service generally can be specified independently 

of other software services. This may not be true in physical things. For example, a car may 

transport a robot to a disaster site for a rescue search. In this case, the states of the service 

provider and the PTs the recipient of the service is may change together. Such impact need to be 

specified explicitly and existing software service models do not have such a feature.  

Existing service specification and composition models do not address the above issues. 

The event based model discussed in Section 2.3.1 may be useful in CPS/IoT application 

domains, but it does not offer additional features compared to the event model for software 

services. The frameworks discussed in Section 2.3.2 borrow the wrapping and encapsulation 

solutions in software systems and apply them to CPS/IoT systems to hide the details for 

interacting with CPS/IoT devices. None of these models can handle the issues discussed above. 
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The interaction protocols in UPnP (universal plug and play), the lower level 

specifications in DPWS (Devices Profile for Web Services), and the DDL (device description 

language) provide device specific specifications, but they focus on the interactions with the 

devices, not about the properties of the devices themselves. In [22], the availability of a device 

for service provisions is considered as an event and the broker will deliver this type of events to 

the subscribers. It offers some help with issue (1), but only on the availability of the devices, not 

the quantitative capacity of the devices. To facilitate CPS/IoT service modeling and composition, 

a new model is really essential. 

1.8 Manual Based Service Composition Techniques 

1.8.1 Basic Composition Tools 

The basic tools to help with manual based service composition are the GUI provided by 

the composition specification models discussed in Section 2.2. These tools allow users to select 

individual services and the control flow constructs for composing a workflow (composite 

service). For example, the BPEL engine, Oracle BPEL Process Manager, provides the GUI and 

the translator for building and deploying workflows in BPEL language. The OWL-S editor [36] 

provides a GUI and the translator to help create OWL-S specifications of a concrete 

atomic/composite service. Web Service Modelling eXecution environment (WSMX) [37] is a 

reference implementation of WSMO. It is an execution environment for specifying the business 

process integration.  

1.8.2 Pattern Based Service Composition  

Pattern based service composition has been proposed in the literature to help achieve 

easier service composition. A service pattern reuses previous composition results or provides 
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incomplete composition template to support various groundings. Workflow templates is a type of 

pattern based service composition, in which each template is a service pattern. Generally, 

workflow templates are in a form of abstract workflows, where services in the workflow can be 

concrete or abstract. An abstract service has well defined IOPE and is ready to be grounded to a 

concrete atomic service or a concrete composite service. Generally, workflow templates are 

manually constructed and it can help with the composition of many different concrete workflows 

by having different instantiations. However, workflow templates do not consider flexible IOPE 

specifications and configurable control flows. To make the service patterns more flexible and 

extensible, [38] proposes a new service pattern model which allows the specification of IOPEs of 

the service pattern and the services in the workflow to have variables. Thus, grounding the 

pattern not only requires grounding the abstract services in the pattern, but also instantiations of 

variables in those flexible IOPEs, making the functionality of the pattern changeable. The service 

pattern model in [38] also supports adaptive control flow structure, allowing a service and/or a 

sub-workflow to be skipped completely, offering additional dimension of flexibility in service 

patterns. 

Some research works consider automated pattern discovery by mining composite services 

and extract useful, common service patterns [39] [40]. This approach can eliminate the manual 

efforts required for service pattern development. In [41], a service pattern model based on OWL-

S is proposed. It develops AI planning-techniques to achieve automated pattern-based service 

composition. In addition, functional operators are provided to compose service patterns, 

including concatenate, splice (for splicing loops in two patterns to improve the performance), 

and invert (for ensuring the proper usage of service pairs such as encoding and decoding).  
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1.8.3 Model-driven Service Composition 

Model-driven architecture (MDA) has been widely used in software engineering to 

facilitate systematic development of software systems and automated generation of program 

skeletons. It has also been applied to service composition in various degrees.  

In [42], a model-driven service composition approach is proposed. It extends UML to 

model service composition and specify services. An abstract meta-model called Information 

Model (IM) is defined in UML to simulate current standard service models such as BPEL. IM 

defines the composition rules, including structure rules, data rules, behavioral rules, resource 

rules and exception rules. These rules are defined in the formal language OCL [43] to facilitate 

automated composition synthesis. When a user request arrives, the system performs composition 

in four phases to satisfy the request. In the Definition phase, it selects a set of activities that can 

be used to satisfy the request. For each activity, its input/output messages and their behaviors as 

well as its exceptions are specified in the behavior and exception rules. For each exception, 

additional activities are identified for handling it. The composition constraints for each activity, 

similar to the pre/post conditions, are also specified. In the Schedule phase, the order for 

executing the activities are determined and specified in the structure rules. Also, based on the 

execution structure, input/output messages are associated and constraints are added. For 

example, in a travel plan, a hotel reservation should be done after the flight reservation and the 

input message for the hotel reservation activity, namely, the check-in date, should be confined by 

the output message of the flight reservation activity, namely, the arrival date. In the Construction 

phase, a concrete workflow is built by selecting the concrete service and the execution role for 

each abstract activity. The final Execution phase is the only phase involving automation. It 
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translates all the composition rules defined in OCL into an executable composition language 

such as BPEL, making the workflow ready for execution. Though the paper proposes a 

systematic service composition procedure, it is mostly manual and does not take much advantage 

of MDA. 

In [44], a similar model-driven approach is presented. It uses the native UML language 

for composition specifications. The UML activity models are used to capture the control and data 

flow of the composition at an abstract level. The UML class models are used to model the 

concepts defined in semantic and QoS ontologies. Also, it is believed that the semantic 

descriptions in OWL-S and WSML are at too low a level and are thus being reverse engineered 

into UML models. Based on the abstract model, concrete services are selected to fulfill the 

activities and satisfy various constraints. Finally, the concretized model is ready to be translated 

into any executable language, such as BPEL. 

Another similar work is proposed in [45], which also uses native UML to specify the 

compositions. Transformation rules are specified in ATL and used to transform UML 

specifications into BPEL workflows.  

All the works based on MDA seem to be “yet another model” for service composition. 

Besides potentially being at a higher level, it does not seem to have significant benefit in easing 

the composition tasks. 

1.8.4 Service Clustering 

Due to the wide adoption of SOA, growing attention in open source, and the rapid 

development of SaaS, the number of available services is growing very rapidly. Systems can be 

quickly developed and deployed by composing these available services. But on the other hand, 
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with the very large number of services, it is very difficult to effectively discover them and select 

them for composition. Some research works attempt to reduce the service discovery efforts by 

clustering similar services together [11] [12] [13]. or by constructing service hierarchies [14]. 

One fundamental issue in service clustering is to measure the similarities between 

services, i.e., how to construct the feature vector for each service such that similarity between 

two services can be computed from their feature vectors. Generally, similarity considerations 

include the similarities between the input/output parameters and the similarities in service 

descriptions, such as their functionality descriptions and the IOPE descriptions. There is a large 

body of research in word-based semantic analysis that can be used for measuring the similarities 

between services based on their word-based specifications. Thus, most of the service clustering 

research focuses on (1) From where the information about the services should be obtained. (2) 

Since the service related descriptions are short texts, there are insufficient words to be analyzed. 

How to extract more keywords out of a service, such as from its IO parameter names that 

potentially consist of compound words, etc. (3) Service specifications have specific structure. 

For example, if an input parameter of service 1ݏ and an output parameter of 2ݏ are similar, or if a 

keyword from 1ݏ ’s functionality description and a keyword from 2ݏ ’s input data type 

specification are similar, should these contribute to the similarity of 1ݏ and 2ݏ?  

In [46], the WSDL definitions and service descriptions of each service are converted into 

a feature vector, including the keywords with their corresponding counts. The source for service 

description is from SALCentral.org. The port types, operations and messages defined in WSDL, 

including the names as well as comments, are also processed for keywords extraction. The 

keywords from different sources are placed in different bags, named as A, B, C and D. Bag A 
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includes keywords from the general functionality description. Bag B includes keywords from the 

port types and operations defined in WSDL. Bags C and D include keywords from the input and 

output related contents, respectively. The service clustering technique is an ensemble of several 

classifiers, one for each feature bag or each feature bag group. Multiple outcomes are voted to 

determine the final clustering of the services. A problem with this work is the pure keyword 

based approach, which has the limitation of not recognizing the similarities between the 

keywords themselves. Later works use the help of WordNet or normalized Google distance 

(NGD) to enhanced similarity computation.  

In [47], an improved similarity metric is used. After extracting keywords from various 

sources, keyword expansion is applied using the WordNet ontology. The similarity between two 

services is computed by the ratio of common terms between the two services. It uses the 

hierarchical agglomerative clustering method which merges the clusters together from bottom up 

until the stopping criterion is satisfied. In [12], the keywords from the descriptions and IOPE 

definitions of each service are extracted to form a service description vector (SDV). Then the set 

of keywords in SDV are expanded by their anonyms defined in a concept ontology such as 

WordNet [11]. Services are then clustered based on the expanded keyword set and each cluster is 

labeled by the common concepts in the cluster. [48] further improves the similarity computation 

by using Natural Language Processing (NLP). After keyword extraction and expansion, NLP is 

used to help with disambiguation of word senses based on the context of the word. Instead of 

calculating the term similarity, sense similarity is computed and it is the distance of two senses 

via their Least Common Subsumer (LCS). The hierarchical agglomerative clustering method is 

then used to cluster the services. Though better similarity metrics are used in these works, a 
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major problem with them is that the keywords extracted from different sources are treated 

uniformly, i.e., the service specification structure is ignored and some similarity contributions 

may be counted in incorrectly (Point 3). 

Besides [46], several other works also divide keywords into different sets based on the 

sources (input, output, etc.) and compute similarities for each set and then integrate them 

together. In [49], similarity of input, output, and service functionality are computed separately 

based on keywords extracted from WSDL. Similarity between each pair of keywords are 

computed based on their distance in WordNet ontology. These pairwise keyword similarities are 

averaged to obtain the similarity for each keyword set. The overall similarity between two 

services is the sum of the similarities of all the sets. Then, the K-medoids algorithm is used to 

cluster the services into different clusters. [14] uses a similar method as in [49], but the overall 

similarity between two services is the weighted sum of the similarities of individual sets. 

Agglomerative hierarchy clustering is used to build the service hierarchy from bottom up.  

In [50] keywords are extracted from the WSDL specifications, including the WSDL 

content, WSDL types, WSDL messages, WSDL ports and the Web service name. The high 

frequency keywords which do not contribute much to the clustering are eliminated. Then, 

normalized google distance (NGD) is used to quantify the similarity between two terms. Overall 

similarity considers the count of matching terms in WSDL type, WSDL port and WSDL 

message, average NGD between service names, etc. K-means algorithm is then used for 

clustering services.  

In [51], keywords are extracted from the service name, operation name, input and output 

parameters. For each set of keywords, most similar keywords from two services are paired 
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together. Similarity within a set is measured by the ratio of the number of paired parameters to 

the number of all parameters. Similarities of the input and output are combined by a weighted 

sum and similarities of multiple operations are combined by simple average. Then the clustering 

is designed based on a bottom-up method. 

1.9 Automatic Service Composition Methods 

To reduce the time and effort required in manual based composition, various automated 

service composition techniques have been proposed in the literature. These works take the 

specifications of a pool of services into the reasoning process to determine the sequence of 

services that can be composed together to achieve the overall system goal. In most of these 

works, composition reasoning is achieved by a planner. Originally, planners are supposed to only 

generate a sequential plan for a given problem, including a sequence of actions to be taken to 

achieve the goal. Subsequently, planning research considers actions that may have 

nondeterministic effects, and a planner should take care of every effect to assure that the goal 

will be reached no matter which effect takes place. Such consideration is generalized to consider 

uncertain initial conditions. These considerations are essential in automated service composition. 

Here, we survey the important literature in planning techniques and in automated service 

composition. In Section 2.5.1, we discuss classical planning techniques. The planning techniques 

for handling conditions, loops are discussed in Section 2.5.2. Section 2.5.3 discusses automated 

service composition techniques that make use of planning and other reasoning techniques.  

1.9.1 Basic Planning Techniques 

GraphPlan [7] is a classical planner. It includes two phases, the graph expansion 

(forward) and the plan extraction (backward) phases. In the expansion phase, it takes the current 
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state ݏ௜  (starting from the initial state ݏ଴ ), applies the set of all fireable actions ܽݏ௜  (the 

preconditions of an action in ܽݏ௜  are satisfied by ݏ௜  and its effects do not conflict with other 

actions in ܽݏ௜) and derives the set of new state ݏ௜ାଵ from the effects of actions in ܽݏ௜. This is 

performed stage by stage till the goal state is satisfied. After graph expansion, a plan with the 

shortest path (or lowest cost) is extracted by backward search through the graph.  

Instead of a full expansion for all fireable actions at each stage, a planning problem can 

also be treated as a search problem and only the best action is chosen to be fired next. Various 

planning algorithms based on different search schemes have been developed. HSP [52] and FF 

[8] are forward chaining based planners. HSP uses the best first search and considers restart after 

reaching a dead-end to avoid local optimal. FF uses a combination of breadth first and best first 

search. In both algorithms, the best action is the one with the shortest estimated distance from the 

resulting states of the action to the goal states. The LPG (Local Search for Planning Graphs with 

Action Costs) planner [9] is also based on local search, but it is a partial-order planner. A total-

order planner fires an action only when its preconditions are fully satisfied. A partial-order 

planner selects an action for expansion as long as one precondition literal of the action can be 

satisfied. The best action is evaluated based on the distance of its resulting state to the goal and 

the number of preconditions of the action that have not yet been satisfied. 

In all search based algorithms, it is necessary to estimate the distance from a certain state 

to the goal state. To enable efficient and relatively accurate evaluation, the relaxed plan graph is 

used. In the planning domain, a state is represented by conjunctive literals. The effect of an 

action could cause the addition of new literals or deletion of existing literals. A relaxed plan 

graph is derived by a graph planner, but ignoring the literal deletions of each action. Relaxed 
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plan graph can be built efficiently because each relevant action only needs to be fired once. Also, 

it gives the minimal distance from a state to the goal and, hence, provides a good heuristic 

estimation. It is also used to quickly determine whether there exists a solution for the planning 

problem.  

Hierarchical task network (HTN) planning is quite different from the planning algorithms 

discussed above. Similar to other planning algorithms, HTN supports the definitions of operators 

(also called primitive tasks, similar to actions in other planners), which have preconditions and 

effects. In addition to operators, HTN also supports the definition of methods, which are rules 

specifying how to decompose a task into a set of subtasks. For a given goal task, a primitive 

HTN finds the proper methods to recursively decompose it into the composition of a set of 

primitive tasks. Some HTN planners not only perform decompositions by method matching, but 

also use other planning techniques to compose operators to satisfy the goal of a task or subtask. 

Due to the use of decomposition methods, HTN can handle large-scale planning problems. Also, 

since the definition of methods requires domain knowledge, HTN is considered as a domain-

specific planner.  

1.9.2 Planning Techniques for Handling Nondeterminism and Uncertainty 

A complete workflow should consider conditional branches and loops and these 

conditions are due to uncertain initial states and nondeterministic services (services producing 

different effects). Planning research has developed a rich set of techniques for nondeterministic 

and uncertain planning problem domain. Here we introduce these planning techniques. 

WarPlan-C [53] is the first planner that considers conditions. It uses Prolog to reason for 

the plan with conditional branches. In [54], a conditional non-linear planning is introduced. [55] 
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suggests that linear planning is more suitable for conditional planning. All these works consider 

actions with multiple effects and split each into multiple pseudo-actions, one for each effect of 

the original action. In [54], the effects are prioritized and the pseudo-action with the effect of the 

highest priority is used first in a nonlinear planner to derive a “weak” plan. The planner is 

reinvoked to plan for each pseudo-action according to its priority. In [55], effects are not 

prioritized and all pseudo-actions are considered in the action set to construct a “weak” plan 

using a GraphPlan like planning algorithm. If a pseudo -action of a nondeterministic action is in 

the weak plan, then the planner is reinvoked to derive a subplan branch for each pseudo-action. 

The difference between linear and nonlinear plans is that a linear plan consists of actions that are 

executed sequentially, while in a nonlinear plan, actions with no causal relations can be executed 

in parallel. Generally, the partial-order planning techniques such as LGP are used for plan 

generation, which is the case in [54].  

Similar to conditional planning, conformant planning focuses on uncertain initial states, 

i.e., the initial state consists of disjunctive clauses or may even be unknown. For example, on a 

cold day, some mountain roads may have heavy snow and require to drive with snow chains. 

Since the snow condition is uncertain, planning needs to consider both “snow” and “no snow” 

conditions. In [56], Graphplan is extended to be conformant. The disjunctive initial conditions 

are handled in a similar way as nondeterministic actions, where each condition is planned as a 

branch. The paper also discusses adding a sensory node into the plan. The sensor can be treated 

as a multi-effect action, where the effects are the initial conditions. 

Contingent planning is also very similar to conditional planning, but it generally 

considers partially observable effects or effects that cannot be fully enumerated. Conditional 
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planning discussed in [54] also considers partial observability and is also considered as 

contingent planning. Cassandra [57] considers contingent planning, but it mostly deals with 

observable nondeterministic actions, except that it considers interference between 

nondeterministic effects and attempts to prune the interfering and less important effects. In [58], 

all nondeterministic actions are translated to observable effects, so contingent planning is solved 

in the same way as conditional planning. [59] considers partial observability and uses a 

propositional formula to represent the belief states derived from a sequence of actions. Though 

every belief state (predicted nondeterministic effect) can have a plan, it is infeasible to do so due 

to the large number of belief states. This work chooses a lazy approach for belief state planning. 

It adds a heuristic to predict when a belief state will be reached, and derive the plan for the belief 

state when it becomes known that it is going to be reached or having a high probability of being 

reached. [59] builds contingent planning based on Conformant-FF [60]. 

In [61], the planning solutions are categorized into weak, strong, and strong cyclic plans. 

A weak plan is a chain of actions without branches. It does not take care of the nondeterminism 

of multi-effect actions and, hence, may not reach the goal if an unplanned effect has taken place. 

A strong plan takes care of all possible effects of all nondeterministic actions used in the plan 

and, hence, can guarantee that the goal can always be achieved no matter which effect of a 

nondeterministic action has taken place. Conditional planners tackle the strong planning 

problems and produce conditional, non-iterative plans. However, in some cases, while planning 

for a dangling effect (the effect of an action in the plan, but has not yet been taken care of), 

nondeterministic actions may be used and more dangling effects are created. If it happens 

indefinitely, then no strong plan can be derived. In case during planning for a dangling effect ݁′ 
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of an action ܽ (and ܽ already has a “success” effect ݁), the planner may use ܽ again to reach the 

goal state via ݁ , which means ݁′  becomes a dangling effect again and this may happen 

indefinitely. But it also means that the execution of the plan will eventually terminate when the 

effect ݁ of action ܽ eventually takes place. Due to the existence of the loop, such a plan only 

guarantees eventual success, and it is called the strong cyclic plan. Though a strong cyclic plan is 

a weaker plan than the strong plan, strong cyclic planning offers a solution when the strong 

planning cannot. Also, it is more complex to derive a strong cyclic plan because it is necessary to 

compare the resulting state of each action with the existing states in the plan when planning for 

dangling effects. Several strong cyclic planning algorithms have been proposed, including the 

Model Based Planner (MBP) [61], NDP (Nondeterministic Planning) [62] and Fast Incremental 

planner [10]. 

MBP [61] uses NUSMV (a new symbolic model verifier), to explore the states of a 

system and, hence, can provide reachability checking. NUSMV performs state expansion based 

on the Ordered Binary Decision Diagram (OBDD). To provide the strong cyclic planning, MBP 

removes the actions which do not have any progress toward the goal according to the BDD. And 

in its strong cyclic planning algorithm, MBP will iteratively prune the unconnected states to goal 

and remove all the outgoing states to these unconnected states until there are no changes. 

NDP [62] is a strong cyclic planning algorithm that makes use of classic planning 

techniques, and it can be used with any existing classical planners. It converts a multi-effect 

action to multiple virtual actions and uses nondeterministic planning algorithms to build a strong 

plan. To build the strong cyclic plan, NDP iteratively picks one state (effect of state-action pair) 
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from the solution set and performs planning for it until there is no state to pick. The states that 

cannot achieve the goal are pruned.  

FIP [10] uses the same idea in NDP. After obtaining a weak plan, all the effects of the 

multi-effect actions in the weak plan are considered as intended effects. When planning for a 

failure effect, a simple heuristic of reaching its corresponding intended effect is considered to 

achieve the cyclic plan efficiently.  

1.9.3 Automated Service Composition Reasoning 

Early works on automated service composition mainly apply logic-based reasoning to 

derive the composition solutions. Sword [3] focuses on adding semantics into WSDL and uses 

RETE, a many-pattern-many-object-matching logic reasoner, to derive the composition. [4] 

adapts Golog into a sophisticated service composition model and uses Golog reasoner to perform 

composition reasoning. Some modeling concepts in this work inspire later models for 

composition reasoning. First, it incorporates the concept of service patterns and constructs 

composition constraints based on the service patterns to guide the composition reasoning, which 

can help reduce the complexity of the reasoning process. Also, it adopts the partial observability 

concept and introduces a sensing action to produce probabilistic effects based on beliefs for 

partially observable actions.  

Several widely used automated service composition tools, such as SHOP2 [1] and 

OWLS-Xplan [2], are based on HTN. SHOP [63], an earlier version of SHOP2, uses a simple 

hierarchical ordered planner, which is a primitive version of HTN. It only considers method 

definitions and the planner recursively applies the matching methods to decompose the goal task 

till a plan with only concrete services is obtained. SHOP2 extends SHOP to handle 
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nondeterministic services (creating conditional branches) and nonfunctional properties. OWLS-

XPlan uses the planner XPlan, which integrates FF planning and HTN techniques. Whenever 

possible, XPlan decomposes a goal task using method definitions into subtasks. When no 

decomposition methods are found for a task or subtask, FF planning is used to compose services 

into the task/subtask. XPlan is more powerful than SHOP due to the addition of FF planning. But 

unlike SHOP2, XPlan does not handle nondeterminism. Another contribution of SHOP and 

OWLS-XPlan is the techniques for systematically translating the formal service specifications 

into the planning domain. In [64], SHOP2 converts DAML-S and OWL-S service specifications 

to PDDL. OWLS-Xplan integrates OWL2PDDL converter to translate OWL-S to PDDLXML 

(PDDL in XML format).  

There are also service composition methods using search based planning, similar to the 

techniques in GraphPlan, FF, LPG, etc. Almost all of them also consider nondeterminism and/or 

uncertainty. In [5], DAML-S based semantic specification is used to specify services and 

composition goals. A search algorithm that is similar to LPG is discussed to automatically 

generate the desired composition. [6] simply considers services with nondeterministic effects and 

describes how to handle them, which is the same way as the conditional planners discussed in 

Section 2.5.2. In [17], a semantic markup language is defined based on PDDL. Thus, any PDDL 

planner can be used for composition reasoning. For nondeterministic actions, it first performs 

planning with “pseudo-actions” (as defined in Section 2.5.2) to construct the basic composition 

and identifies the success effect for each nondeterministic action. The additional effects other 

than the success effect for each nondeterministic action become exceptions and are handled 

accordingly. In [65], an AND-OR tree structure is used for the composition search process. A 



 
 
 

37 

node (state) in the search tree is expanded with AND edges after applying a multi-effect service 

and with OR edges if multiple actions can be applied from the state, indicating potentially 

multiple paths to achieve the goal. Its search algorithm is similar to FF, but a different cost 

function is considered. It assigns a cost for each literal in a state expression, which is the distance 

from the state literal to the goal. The total cost of a state is the sum of the costs of all the literals.  

Some automated service composition works consider non-sequential executions. In [66], 

simple multi-effect services are considered and handled the same way as conditional planning. It 

also considers asynchronous service execution and introduces new constructs to support it. But it 

did not consider how to automatically generate a composite service which uses these 

asynchronous constructs. In [67], sequential and parallel service execution constructs are 

considered in automated service composition. It uses an AND-OR tree structure similar to that in 

[65] for composition reasoning, except that each node in the tree represents a composition 

composed using sequential and parallel constructs. Expansion of the search tree is similar to [65], 

but results in an expanded composition. The commutative, associative, and distributive rules are 

defined to eliminate equivalent compositions (nodes) in the tree. Its composition search is based 

on the A* algorithm and uses distance to goal as the heuristic. In fact, the paper considers a 

hybrid bidirectional search, including the forward search discussed above together with a 

decomposition based backward search (similar to the concept in HTN) to hopefully reduce the 

search and improve search efficiency. 

Several automated service composition works discussed earlier also consider using 

contingency planning techniques to handle unexpected situations [17] [5] [65]. In [17], besides 

handling nondeterminism as discussed earlier, it further considers services with effects that may 
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not be known a priori (the paper calls this partial observability, which is not correct). The paper 

suggests to perform dynamic planning, in which planning and execution are interleaved, to 

resolve the problem. An incomplete composition may be derived and executed and new planning 

starts after execution since additional information about the effects of the services is known at 

this point. Similar to [17], [65] also considers that the effects of some services may not have 

been defined properly, either due to the user omission or due to the involvement of an uncertain 

domain. The paper suggests to specify the initial and goal states as belief states (probabilistic 

logic expressions) and use the AND-OR search algorithm introduced earlier to search for a valid 

composition. The resulting composition may contain states that cannot reach the goals. If such 

states are reached during execution, the user may provide modified specifications and 

contingency planning is activated to derive the new plan to resolve the problem. In [5], a new 

construct, try/catch, is introduced. During planning, multiple paths to achieve the goals are 

captured, and one of them is the primary composition and the rest are considered as contingency 

plans.  

1.9.4 Remaining Issues in Automated Service Composition 

Modern systems are complex and the system may have to be specified by different goals. 

Current planning techniques do not consider multi-goal planning. Thus, it is necessary to 

consider the goals separately and apply planning techniques to generate one workflow for each 

goal. These separate workflows can then be merged together into one integrated workflow to 

realize the overall system. This one-goal-at-a-time approach may be inefficient for service 

composition of complex systems. To reduce the composition effort and generate a well-

integrated workflow, it is desirable to specify multiple goals for the overall system and compose 
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one workflow with branches for satisfying multiple goals. In this dissertation, we consider the 

problem of holistic service composition by considering multiple goals at the same time. We also 

develop multi-goal planning techniques to achieve efficient holistic service compositions.  

As discussed in Section 2.4.3, service clustering techniques have been developed to 

reduce the complexity of composition reasoning caused by the large number of services. It would 

be of great help if automated service composition can make use of these service clustering 

results. However, all the existing service clustering algorithms focus on service discovery. They 

cannot be used for reducing the planning complexity in automated service composition. In this 

dissertation, we explore the fundamental requirements for service clustering in order to integrate 

the clustering with planning techniques. 

1.10 QoS-driven and Context-aware Service Composition 

Sections 2.5 mainly focus on service composition based on the functional aspects. The 

QoS-driven service composition research considers composing services to satisfy QoS 

requirements. Generally, the composition problem assumes that the functional composition is 

already done at the abstract level (abstract services are composed together) and each abstract 

service can be grounded into a set of concrete services. The goal of the research is to efficiently 

find the best selection of services such that their composition satisfies the end-to-end system QoS 

requirements. Various search algorithms, such as linear programming, genetic algorithms, 

particle swarm optimization (PSO) algorithms, etc., have been used to obtain composition 

solutions. For example, [68] [69] [70] use linear programming techniques to search for the 

optimal service composition. [71], [72] and [73] use genetic algorithms to efficiently make the 
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optimal QoS-based service composition decisions. The particle swarm optimization algorithm 

has also been used for QoS-based service composition, like the works in [74] and [75]. 

Similar to QoS-driven service composition, context-aware service composition selects the 

optimal composition solution based on best context matches [76] [77] [78] [79], while QoS-

driven service composition selects the optimal composition solution based on QoS tradeoffs. 

Various context attributes for guiding the composition process include available resources, time 

constraints, user location, user profile, etc. Many context-aware service composition systems 

select services based on their locations. For example, when a user wants to have lunch, the 

composition process will select a restaurant and order a taxi service to bring the user to the 

selected restaurant. Both services should be selected based on user location and may also be 

based on user preferences in the user profile. In terms of how these applications are developed, 

they mostly employ a traditional, monolithic application model. It embeds contextual 

dependencies as if-then rules, which describe how context aware systems should react to context 

changes. These rules are encoded by the software engineer. Using this approach whenever the 

new context types and values are introduced in the system, new rules describing context behavior 

need to be created by the software engineer. This makes the applications static and inflexible. 

Furthermore, this may often limit applications to run on a specific device, while offering only 

predetermined functions to the user. As a result, this model is not suited to accommodate 

pervasive computing environments, which are characterized by richness of context, by the 

mobility of users and devices, and by the appearance and disappearance of resources over time. 

Also, similar to QoS-driven service composition, the complexity of context-aware service 

composition comes from the large search space due to the large number of context attributes and 
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their values. Since context is mostly dynamic, the context-aware service composition task needs 

to be done on the fly and needs to be adaptive to context changes. Most of the context-aware 

composition works extend existing composition techniques by considering rule-based context 

constraints. In [77], a six-phase context aware composition process has been discussed, which 

considers current context data collection, context change detection, select services with context 

constraint, then perform the context-aware composition task. In [78], context matching is 

considered under the situation when context information is incomplete and a graph based 

similarity measurement mechanism is proposed to effectively match context data. In [79], 

context constraints are specified as rules and services are ranked based on how well they satisfy 

the constraints. The composition is done dynamically through reasoning. In this dissertation, we 

only consider functional composition, without considering QoS metrics and contexts. But same 

as other functional composition based approaches, our solution can be integrated with QoS-

driven and context-aware service composition techniques to make the best composition decisions 

in all aspects. 

1.11 Major Gaps in Automated Service Composition 

In this dissertation, we consider the major gaps in automated service composition 

research, including the modeling issues and composition reasoning techniques.  

First, in service composition, the derived workflow is to be activated by many users and, 

hence, should provide multiple functionalities and multiple options to its users. In automated 

service composition, each functionality or each option corresponds to a set of goal states, which 

has not been modeled in the literature. Current planning techniques do not consider such multiple 

options either. Based on current automated service composition techniques, it is necessary to 
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consider each functionality separately and apply planning techniques to generate one workflow 

for each functionality. These separate workflows can then be merged together into one integrated 

workflow to realize all the functionalities of the overall system. This one-functionality-at-a-time 

approach may be inefficient for service composition of complex systems. To reduce the 

composition effort and generate a well-integrated workflow, it is desirable to specify multiple 

functionalities for the overall system and compose one workflow with the necessary branches for 

satisfying these multiple functionalities. Since there is no existing work that covers the multi-

functionality aspect in service composition, we consider the problem of holistic service 

composition in this dissertation. We also develop the corresponding multi-functionality planning 

techniques to achieve efficient holistic automated service compositions.  

Second, the performance of composition reasoning may be an issue if the composition 

problem size is large. Research in planning algorithms intensively investigates how to improve 

planning performance. However, in service composition, the number of available services is very 

large and is still growing, which may have a significant impact on the performance of 

composition reasoning. Thus, it is desirable to reduce the reasoning complexity due to the 

number of services. However, no existing research addresses this issue. As discussed in Section 

2.4.4, service clustering techniques have been developed to reduce the complexity of 

composition reasoning caused by the large number of services. It would be of great help if 

automated service composition can make use of these service clustering results. However, all the 

existing service clustering algorithms focus on service discovery. They cannot be used for 

reducing the complexity of the reasoning process. In this dissertation, we explore the 
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fundamental requirements for service clustering in order to integrate clustering results with 

planning techniques.  

With the growing pervasiveness of computing and networking technologies, cyber 

physical systems and Internet of things have growing importance. Service computing techniques 

have been used in CPS and IoT system. However, there are some missing links in the service 

models that are mainly designed for software systems. As discussed in Section 2.3, research in 

service modeling and composition techniques for CPS and IoT systems still follows the same 

thoughts for software systems. Thus, in this dissertation, we investigate the required information 

in automated service composition for CPS and IoT systems and enhance the current service 

models to incorporate this information.  
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1.12 Introduction 

Due to the capability of dynamic composition and easy reuse, service oriented 

architecture (SOA) has become a popular framework for rapid software development and 

deployment in many application domains. However, composing services into an application 

system still requires significant time and efforts. To cope with this problem, various automated 

service composition (ASC) techniques have been proposed in the literature.  

Early works for ASC tend to use logic-based reasoning, such as Sword [3] and Golog [4], 

to derive the composition solution. Generally logic-based reasoning techniques cannot scale well 

to large-scale problems. SHOP2 [1] and OWLS-Xplan [2] are widely used ASC tools. They are 

based on Hierarchical task network (HTN), which are considered as domain dependent solutions 

due to the need for knowledge about how to decompose tasks in the specific application 

domains. There are also ASC methods using search-based planning techniques, similar to those 

used in GraphPlan [7], Fast Forward (FF) Planner [8], Local Search for Planning Graphs (LPG) 

[9], etc. All of these works consider nondeterminism and/or uncertainty [5] [6] [17] [65] [66] 

[67]. [17] and [65] further consider that the effects of some services may not have been well 

defined, either due to user omission or the involvement of an uncertain domain. [65] uses 

probabilistic propositional logic to specify the belief states and uses a heuristic search algorithm 

to search for a valid composition. When state information become clearer during execution or 

when the user provides modified specifications, a contingency composition can be derived. [5] 

considers ASC techniques for handling exceptions and introduces a try/catch construct to 

incorporate exception handling in composition languages. Over the past decades, ASC 

techniques have achieved significant success. 
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Recently, with the wide adoption of SOA and SaaS and growing attention in open source, 

the number of available services is growing very rapidly. With the large number of services, 

service discovery and composition face challenges. Some research works attempt to reduce the 

service discovery and composition efforts by clustering services with similar functionalities 

together [14] [49] [50] [51]. These works extract keywords from WSDL specifications about 

input, output, and service descriptions and cluster services based on similarities computed from 

these keyword sets. Common concepts of each cluster are obtained to label each cluster. During 

service discovery, the search will be selected from the cluster that best matches the discovery 

query. 

The large number of services can significantly impact the feasibility of ASC also, 

because it results in explosion in the state space of the corresponding planning domain. It would 

be ideal if service clustering can be used in automated service composition reasoning. Consider a 

cluster-based two-level planning approach. A virtual parent service can be constructed for each 

cluster to represent all the services in the cluster. Planning can be performed on the parent 

services to obtain the Level-1 plan. Since the number of service clusters is relatively small, 

Level-1 planning can be done efficiently. The Level-1 plan can then be used to eliminate a large 

number of services. Only the services in the clusters whose parent services are in the Level-1 

plan will be considered in Level-2 planning. The plan obtained from Level-2 planning will be the 

solution for service composition.  

Unfortunately, existing service clustering techniques cannot help ASC because the 

derived service clusters do not provide information that can be used by the composition 

reasoners. In this paper, we investigate how to make the two-level planning (TLP) approach 
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work and formally derive the TLP solution. As discussed earlier, TLP is realized on a service 

hierarchy. We first use a semi-supervised co-training algorithm to cluster the services in a similar 

way as conventional clustering algorithms do. After identifying service clusters, we build the 

service hierarchy, which includes a virtual root linking to a set of virtual parent services, each 

links to all the services in its corresponding cluster. We also define the precondition and effect of 

each virtual parent service according to the preconditions and effects of the services in its cluster.  

We explore the fundamental requirements for the service hierarchy in order to facilitate 

the realization of TLP. We illustrate why an intuitive clustering and virtual service construction 

would not work. Then we define four criteria that are necessary to support correct two-level 

planning. The TLP algorithm is sound, but not complete, and we analyze and discuss these 

properties for TLP. 

We build a case study composition problem domain with a large service set to illustrate 

and validate the TLP approach. We also implement the TLP algorithm by modifying the FF 

planner for performance evaluation. We compare the TLP solution with the base FF planner. The 

experimental result show that TLP outperforms its base FF planner significantly. 

The rest of this paper is organized as follows. In Section 3.2, we introduce existing 

definitions for the planning domain and the planning problem and then define the two-level 

planning problem and the TLP algorithm. The service hierarchy construction mechanism is 

introduced in Section 3.3, including the service clustering algorithm, the formal requirements for 

virtual service construction for each service cluster, and the service hierarchy construction 

algorithm. In Section 3.4, the case study setup and performance evaluation for TLP are 

discussed. Section 3.5 concludes the paper and discusses future research directions. 
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1.13 Two Level Planning 

In semantic web service models, such as OWL-S [15] and WSMO [31] [32], a web 

service can be defined by a tuple (ܫ, ܱ, ܲ,  is the input of the service, ܱ is the output ܫ where ,(ܧ

of the service, ܲ is the precondition, when satisfied, the service can be executed, and ܧ is the 

effect, which specifies the condition that will be satisfied after the execution of the service. The 

OWL-S specifications for a service can be converted to PDDL specifications (for an action) [1] 

in order to apply AI planning for automated service composition.  

The service composition problem can be defined as a planning problem in the planning 

domain as ߑ = (ܵ, ,ܣ  is the finite set of ܣ ,where ܵ is the finite set of all possible states ,(ߛ

services (actions in classical planning domain) that can be activated to change the system state, 

and ߛ: ܣ×ܵ → ܵ specifies the set of transitions caused by a service in ܣ. 

For more specific definitions, consider the set ݌}=ܮଵ, ,ଶ݌ … ,  ݊ ௡} which is the set of݌

propositions used to define the states in ܵ  and ܵ ⊆ 2௅ . Let ܲ݁ݎ(ܽ)  and ݂ܧ(ܽ)  denote the 

precondition and effect of service ܽ , respectively, and ܲ݁ݎ(ܽ), (ܽ)݂ܧ  are defined by the 

propositions in ܮ . The effect of ܽ  can include positive and negative effect propositions. Let 

 denote the positive and negative effect sets of ܽ, respectively. A service (ܽ)ି݂ܧ ା(ܽ) and݂ܧ

ܽ ∈ ܣ  is applicable to ݏ ∈ ܵ  if ∀݌ ∈ (ܽ)݁ݎܲ ⇒ ݌ ∈ ݏ . In this case, ݏ)ߛ, ܽ) = ′ݏ = ൫ݏ −

൯(ܽ)ି݂ܧ ∪ ,ݏ)ߛ ,ା(ܽ); otherwise݂ܧ ܽ) is undefined. In other words, a proposition in ܲ݁ݎ(ܽ) 

will be carried over to ݏ′ if it is not in the negative effect set. The positive effect of action ܽ also 

exists in ݏᇱ, which means that ∀݌ ∈ (ܽ)ା݂ܧ ⇒ ݌  ∈  ᇱ. All the propositions in the negative effectݏ

set of action ܽ will be removed from ݏᇱ, which means ∀݌ ∈ (ܽ)ି݂ܧ ⇒ ݌  ∉   .ᇱݏ
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Note that the input and output of service ݏ can also be interpreted by preconditions and 

effects [2]. So, we only consider the precondition and effects of a service in the planning system. 

The composition problem in a planning domain ߑ = (ܵ, A, (ߛ  can be defined as ܳ =

,ߑ) ,଴ݏ ݃), where: 

ߑ = (ܵ, ,ܣ  ,as discussed above (ߛ

଴ݏ ∈ ܵ denotes the initial state, 

݃ ∈ ܵ denotes the goal states.  

Both ݏ଴ and ݃ are specified by the propositions in ܮ.  

Suppose that the planning problem ܳ has a solution ܴ = <ܽ଴, ܽଵ, … … , ܽ௞>, which is a 

sequence of services bringing the system from the initial state ݏ଴  to the goal state ݃ , via 

intermediate states ݏଵ, ,ଶݏ … … ,  ௄, we haveݏ

݌∀ ∈ (଴ܽ)݁ݎܲ ⟹ ݌ ∈   ,଴ݏ

݅, 0 ≤ ݅ < ௜ାଵݏ ,ܭ = ௜ݏ) − ((௜ܽ)ି݂ܧ ∪  ,ା(ܽ௜)݂ܧ

݌∀ ∈ ݃ ⟹ ݌ ∈  .௄ݏ

With a large number of services in ܣ, the corresponding state space ܵ can be very large 

and the composition problem ܳ may have a high complexity. We use the two-level planning 

(TLP) approach to reduce planning complexity. The first step toward TLP is to build a service 

hierarchy for all services in ܣ and the hierarchy is defined in Figure 2. ܣ is clustered into ܯ 

clusters, ܣଵ, ,ଶܣ … , ௜ܣ ெ, whereܣ = {ܽ௜,ଵ, ܽ௜,ଶ, … , ܽ௜,௠೔
}, for all ݅. In the service hierarchy, under 

root ܣ , there are ܯ  virtual parent services ܽݒ௜ , 1 ≤ ݅ ≤ ܯ . All the services in cluster ܣ௜  are 

children of ܽݒ௜, and ܽݒ௜ represents all the services in cluster ܣ௜.  
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Figure 2. Service Hierarchy 
 

Two-Level Planning (TLP) Algorithm: 

Given a composition problem ܳ = ,ߑ) ,଴ݏ ݃), with the service set ܣ (from ߑ) and ܣ’s 

hierarchy is as shown in Figure 2, the TLP algorithm can solve ܳ and obtain the composition ܴ 

by going through two levels of planning, Level-1 and Level-2. 

The Level-1 planning problem is ܳ௟భ=൫ߑ௟భ , ଴ݏ
௟భ , ݃௟భ൯, where ݏ଴

௟భ  and ݃௟భ  are refined initial 

condition and effect, respectively (to be discussed later). The set of services from ߑ௟భ  is ܣ௟భ =

,ଵܽݒ} ,ଶܽݒ … ,  = ெ}. An existing planner can be used to derive the composition for ܳ௟భ. Let ܴ௟భܽݒ

௜భܽݒ>
, ௜భܽݒ

, … , ௜಼ܽݒ
> be the result composition, which is a sequence of ܭ services. Note that for 

simplicity, we consider a service chain here. A complete workflow is integrated from multiple 

service chains derived for nondeterministic effects [80] and the same TLP can be used for 

separate derivation of all the chains. 

The Level-2 planning problem is ܳ௟మ=(ߑ௟మ , ,଴ݏ ݃). The set of services from ߑ௟మ  is ܣ௟మ = 

⋃ ௝௝ܣ , for all ݆, ܽݒ௜ೕ
∈ ܴ௟భ. A strong cyclic planner can be used to solve ܳ௟మ and derive the final 

composition result ܴ. 

To support the applicability of TLP, we need to guarantee its soundness and 

completeness. As usual, the planning solution should be correct. Also, if there exists a solution 

 ܣ

…

 1ܽݒ :ଵܣ

ܽ1,2 … ܽ1,1 ܽ1,݉1

 ௜ܽݒ :ெܣ

2,ܯܽ 1,ܯܽ … 1݉,ܯܽ
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for a composition problem ܳ, TLP should guarantee that Level-1 planning can obtain a solution 

for ܳ௟భ and Level-2 planning can obtain a solution for ܳ.  

The TLP algorithm is not a divide-and-conquer approach, but is a divide-and-elimination 

approach. Let ݉ = ݃ݒܽ
௜

(݉௜) . The original composition problem ܳ  involves ܯ×݉  services, 

while ܳ௟భ  involves ܯ  services and ܳ௟మ  approximately involves ܭ×݉  services. If we have a 

reasonable ܯ/K from clustering, then the performance gain by TLP is significant. 

TLP can be easily extended to multi-level planning, but it may not be useful in practice. 

Thus, we only consider two levels in this paper. 

1.14 Service Hierarchy  

In order to make TLP work, how should we construct the service hierarchy? Specifically, 

what property each cluster ܣ௜ and its virtual parent service ܽݒ௜ should satisfy?  

First, consider an intuitive condition. If ∀݅ (௜ܽݒ)݁ݎܲ ,݆∀ , ⇒ (௜,௝ܽ)݂ܧ ൫ܽ௜,௝൯ and݁ݎܲ ⇒

௜భܽݒ> = is satisfied, then as long as Level-1 plan ܴ௟భ (௜ܽݒ)݂ܧ
, ௜మܽݒ

, … , ௜಼ܽݒ
> is derived, any 

service from ܣ௜ೕ
 can be selected to instantiate ܽݒ௜ೕ

, for all j, to obtain the final composition. To 

precisely derive ܲ݁ݎ(ܽݒ௜) and ݂ܧ(ܽݒ௜), the condition can be rewritten as 

݌∀ ∈ ൫ܽ௜,௝൯݁ݎܲ ⇒ ݌ ∈ ݌∀ and (௜ܽݒ)݁ݎܲ ∈ (௜ܽݒ)݂ܧ ⇒ ݌ ∈  .൫ܽ௜,௝൯݂ܧ

However, there are several problems with this condition. First, to ensure that the service 

hierarchy does exist, service clustering should ensure that ܲ݁ݎ(ܽݒ௜), for all ݅, should not have 

conflicting (mutex) propositions. And, it is likely that such service hierarchy cannot be obtained. 

Even if the hierarchy does exist for a composition problem ܳ, it is likely that we cannot obtain a 

Level-1 composition solution ܴ௟భ when a composition solution ܴ does exist.  
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To assure that a Level-1 composition ܴ௟భ  can be obtained by TLP as long as a 

composition solution ܴ exists, we consider another intuitive condition  

݌∀ ∈ (௜ܽݒ)݁ݎܲ ⇒ ݌ ∈ ݌∀ ൫ܽ௜,௝൯, and݁ݎܲ ∈ ൫ܽ௜,௝൯݂ܧ ⇒ ݌ ∈  .(௜ܽݒ)݂ܧ

Now we can assure that a Level-1 composition ܴ௟భ can always be obtained by TLP as 

long as a composition solution ܴ exists. But we still have the problem that it may not be possible 

to find a service hierarchy satisfying the condition. Also, even if the hierarchy does exist for a 

composition problem ܳ, without further constraint on the clusters, the Level-2 planning of the 

TLP algorithm cannot guarantee to find a solution when a solution for ܳ does exist. 

As can be seen, how to build the service hierarchy is an important issue. In Section 3.3.1, 

we discuss the requirements for the service hierarchy to assure the applicability of TLP. In 

Section 3.3.2, we discuss an algorithm to build the service hierarchy that satisfies the 

requirements. 

1.14.1 Virtual Service Requirement 

By using subsume and encompass logic, we cannot obtain the proper requirement for the 

service hierarchy to assure TLP’s completeness. Now we consider the issue from a practical 

point of view. When we try to simplify a complex composition problem, we can ignore some less 

important issues and focus on the major planning tasks first. For example, consider planning for 

a swarm of robots to perform survivor search in a rescue mission. We may focus first on the high 

level plan, such as assigning the search tasks robustly to the swarm, transporting the robots to 

near their search regions, planning the search path for each robot, etc., without considering some 

low level details. After the first level planning, we can then consider issues such as ensuring that 

the robots are working, are fully charged, are loaded with life detectors and luminance devices, 
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etc. This means that we should prioritize the propositions, delaying some of them till the Level-2 

planning.  

We formally define the requirements for building the service hierarchy for the idea of 

proposition prioritization. 

Service hierarchy requirement SHR-1: 

∀݅, ݆, ,݌∀ ݌ ∈ (௜ܽݒ)݁ݎܲ ⇒ ݌ ∈ ,݌∀ ,൫ܽ௜,௝൯݁ݎܲ ݌ ∈ (௜ܽݒ)݂ܧ ⇒ ݌ ∈  ,൫ܽ௜,௝൯݂ܧ

∀݅, ,݌∀ ݌ ∈ ݌ ⋁ (௜ܽݒ)݁ݎܲ ∈ (௜ܽݒ)݂ܧ ⇒ ݌ ∈ ௟భܮ . 

Though it may be most effective to use human knowledge to make the priority decisions 

for propositions in ܮ, we automatically prioritize propositions. We build the service hierarchy 

first. Then, the common propositions in each cluster are considered as Level-1 propositions ܮ௟భ . 

SHR-1 intentionally omits the mutual exclusive (mutex) criteria for ܲ݁ݎ(ܽݒ௜)  and 

 .for all ݅, and we give it separately in SHR-2 ,(௜ܽݒ)݂ܧ

Service hierarchy requirement SHR-2: 

∀݅, ,ݔ∀ ,ݕ ௫݌ ∈ ௬݌⋀(௜ܽݒ)݁ݎܲ ∈ (௜ܽݒ)݁ݎܲ ⇒ ௬݌ ⋀ ௫݌ ≠ ∅ ,  

௫݌                 ∈ ௬݌ ⋀ (௜ܽݒ)݂ܧ ∈ (௜ܽݒ)݂ܧ ⇒ ௬݌ ⋀ ௫݌ ≠ ∅ . 

However, with SHR-1 and SHR-2, TLP still may not work. If a proposition appears in 

൫݁ݎܲ as well as in the (௜ܽݒ)݁ݎܲ ௝ܽ,௞൯ of ܣ௝, but got omitted in ݒ)݂ܧ ௝ܽ), then TLP may fail.  

For example, in the Level-1 plan, we have effects {݌ଵ,  ଵܽݒ ଶ} from the virtual service݌

and in Level-2 plan, effect of service ܽଵ,ଵ is {݌ଵ, ,ଶ݌  ଷ}. In the Level-2 plan, a virtual action݌

,ଵ݌) ଶ will not be satisfied with preconditionܽݒ ,ଶ݌  ଷ). And service ܽଶ,ଵ will not be selected for݌

the Level-2 planning. Then it may cause the service composition to fail. 
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Here, we define a new requirement to ensure that if a proposition ݌ exists as precondition 

or effect in ܮ௟భ , then it has to be considered in ݒ)݂ܧ ௝ܽ)or ܲݒ)݁ݎ ௝ܽ), for all ݆, as long as ݌ 

appears in the precondition or effect of at least one service in ܣ௝. 

Service hierarchy requirement SHR-3: 

∀݅, ݆, ݌ ,݌∀ ∈ ௟భܮ  and ݌ ∈ ൫ܽ௜,௝൯݂ܧ ⇒ ݌ ∈  ,(௜ܽݒ)݂ܧ

݌                ∈ ௟భܮ  and ݌ ∈ ൫ܽ௜,௝൯݁ݎܲ ⇒ ݌ ∈  . (௜ܽݒ)݁ݎܲ

Here ܮ௟భ . ݁ݎܲ  means that is precondition proposition set in Level-1 and ܮ௟భ . ݂ܧ  is the 

effect proposition set in Level-1. 

However, with SHR-3, TLP still may not work properly because of involving too many 

common prepositions. If a proposition appears in ܲ݁ݎ(ܽݒ௜) as well as in the ܲ݁ݎ൫ ௝ܽ,௞൯ of ܣ௝ and 

also appears in ܲ݁ݎ൫ݒ ௝ܽ൯, then TLP may fail because of multiple choice. For example, in the 

Level-1 plan, we have the effect ݌ after a step. In the Level-2 plan, it supposed to have an action 

ܽ௜,௝ to be satisfied under the cluster virtual parent service ܽݒ௜. However there may be another 

v ௝ܽ  and ܲݒ)݁ݎ ௝ܽ) also includes ݌ and can be satisfied. Then, in the Level-1 planning, ܽݒ௜ will 

not be guaranteed to be selected after the step ݅ and the planning may fail. 

Earlier SHRs focus on proper function of TLR. Now we consider an additional factor to 

improve the quality of service hierarchy. If a proposition appears in the precondition (or effect) 

of multiple virtual services, then it is not a dominating characteristic for the cluster. Thus, we 

also require that the proposition sets of different virtual services to be disjoint, which is stated in 

SHR-4.  
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Service hierarchy requirement SHR-4: 

∀݅, ݆, ݅ ≠ ݆, ,݌∀ ݌ ∈ (௜ܽݒ)݁ݎܲ ⇒ ݌ ∉ ݒ൫݁ݎܲ ௝ܽ൯  

݌ ⋀                         ∈ (௜ܽݒ)݂ܧ ⇒ ݌ ∉ ݒ൫݂ܧ ௝ܽ൯. 

1.14.2 Service Hierarchy Construction 

Now we discuss an algorithm for constructing a service hierarchy for a service set ܣ, and 

it should satisfy SHR-1/2/3/4. 

Similar to [46], we extract keywords from preconditions, effects, and service descriptions 

and put keywords from different sources into the corresponding bags. The bags of keyword 

vectors are fed to two learning algorithms for classification, including naïve Bayes and logistic 

regression implemented by Weka. We train an IOPE-based classifier and a description-based 

classifier separately. The classifiers are trained initially by a small size of labeled samples. After 

services are clustered, we decide the virtual parent service ܽݒ௜ for each cluster ܣ௜. Specifically, 

we decide the best set of propositions for ܲ݁ݎ(ܽݒ௜)  and ݂ܧ(ܽݒ௜) . Subsequently, from all 

clusters, we can decide ܮ௟భ . The algorithm for deciding the precondition of ܽݒ௜, for all ݅, is given 

as follows.  

for each service cluster set ܣ௜  
   for each proposition ݌ in ܣ୧ 
      calculate ݂(݌) 
      // which is the frequency of ݌ as precondition in ܣ୧ 

      if ݂(݌) > Δ and ¬݌ ∉ ௜ܮ
௟భ  

         Add ݌ to ܲ݁ݎ(ܽݒ௜) 

      else if ݂(݌) > Δ and ¬݌ ∈ ௜ܮ
௟భ  

௠௔௫݌          = max൫݂(݌),  ൯(݌¬)݂
         Add ݌௠௔௫  (௜ܽݒ)݁ݎܲ 
         and remove ¬݌௠௔௫ 
      endif 
   endfor 
endfor 
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In the algorithm, we use a threshold ߂, to decide whether a proposition has occurred 

sufficiently often in the preconditions/effects of the services in ܣ௜  so as to be included in 

 or (௜ܽݒ)݁ݎܲ respectively. If two mutually exclusive propositions appear in ,(௜ܽݒ)݂ܧ/(௜ܽݒ)݁ݎܲ

(௜ܽݒ)݂ܧ  at the same time, then we should choose one of them to include in ܲ݁ݎ(ܽݒ௜)  or 

  .(௜ܽݒ)݂ܧ

After ܲ݁ݎ(ܽݒ௜) and ݂ܧ(ܽݒ௜) are determined, we move services out of ܣ௜ into ܣ௢௧௛௘௥௦ in 

case it causes ܣ௜ to violate SHR-1/2/3. The algorithm for service cluster adjustment is given as 

follows. 

for each service ܽ௜,௝ in ܣ௜  

   if ∃݌, ݌) ∈ ݌ and (௜ܽݒ)݁ݎܲ ∉  (൫ܽ௜,௝൯݁ݎܲ
              or (݌ ∈ ݌ and (௜ܽݒ)݂ܧ ∉  ((௜,௝ܽ)݂ܧ
      if ∀݌, ݌ ∈ (௢ܽݒ)݁ݎܲ ⇒ ݌ ∈   ൫ܽ௜,௝൯݁ݎܲ
          and ∀݌, ݌ ∈ (௢ܽݒ)݂ܧ ⇒ ݌ ∈  (௜,௝ܽ)݂ܧ
         move ܽ୧,௝ to another cluster ܣ௢ 
      else move ܽ௜,௝ to cluster ܣ௢௧௛௘௥௦ 
      endif 
   endif 
endfor 
 
for each proposition ݌ in ܮ௟భ  
   if  ݌ ∈ ൫ܽ௜,௝൯݁ݎܲ ∪ ݌ ⋀ ൫ܽ௜,௝൯݂ܧ ∉ (௜ܽݒ)݁ݎܲ ∪  (௜ܽݒ)݂ܧ
      add ݌ to ܽݒ௜  
   endif 
endfor 
 
Next, we remove the common propositions in preconditions and merge the same clusters 

in case it causes ܣ௜ to violate SHR-4. The same operation should apply to remove the common 

propositions in effects also. 

for each proposition p in ܮ௟భ  
   if  ݌ appears in preconditions of multiple virtual services 
        or ݌ appears in effects of multiple virtual services 
      remove ݌ from ܮ௟భ  and all the virtual services 
  endif 
endfor 
for each pair of clusters ܣ௜ and ܣ௝ 
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   if ܲ݁ݎ(ܽݒ௜) = ݒ)݁ݎܲ ௝ܽ) and ݂ܧ(ܽݒ௜) = ݒ)݂ܧ ௝ܽ) 
      merge clusters ܣ௜ and ܣ௝ 
   endfif 
endfor 
 
Note that with SHR-3, a service will only appear in one and only one cluster. Consider a 

service ܽ appearing in two clusters, ܽ ∈ ௜ܣ  ⋀ ܽ ∈ ௝ܣ ௜ܣ , ≠ ௝ܣ . From SHR-1, we have ∀݌, ݌ ∈

(௜ܽݒ)݁ݎܲ ∨ ݌ ∈ ݒ൫݁ݎܲ ௝ܽ൯ ⇒ ݌ ∈ ݌ ⋀ (ܽ)݁ݎܲ ∈ ௟భܮ . Because ܽ′s  precondition includes 

propositions from ܽݒ௜  and ݒ ௝ܽ  and all these propositions are in ܮ௟భ , from SHR-3, these 

propositions have to appear in both ܽݒ௜ and ݒ ௝ܽ because ܽ is in both ܣ௜ and ܣ௝ , we can derive 

(௜ܽݒ)݁ݎܲ = ݒ൫݁ݎܲ ௝ܽ൯. In the same way we can derive ݂ܧ(ܽݒ௜) =  ௝ haveܣ ௜ andܣ ,୨൯. Soܽݒ൫݂ܧ

to be the same cluster and ܽ only belongs to one cluster. Since the basic clustering algorithm will 

not place a service in multiple clusters, they are anyway disjoint.  

Also, note that if ݌௫ ∈ ௬݌ and ,(௜ܽݒ)݁ݎܲ ∈ ௜ೕܽ)݁ݎܲ
), for some ܽ௜ೕ

 in ܣ௜ , and ݌௫ and ݌௬ 

are mutually exclusive, then definitely ݌௫ ∉ ௜ೕܽ)݁ݎܲ
), so ܽ௜ೕ

 will not be in ܣ௜. Thus, once SHR-2 

is satisfied, the mutual exclusion problem will not occur between any service with its virtual 

parent, and will not occur among services within the same cluster. 

1.14.3 Level-1 Planning Problem 

The Level-1 planning problem ܳ௟భ=൫ߑ௟భ , ଴ݏ
௟భ , ݃௟భ൯ has been discussed earlier, but ݏ଴

௟భ  and 

݃௟భ  have to be derived after the proposition prioritization. Essentially, we remove the 

propositions that are not in ܮ௟భ  from ݏ଴ and ݃ to derive ݏ଴
௟భ  and ݃௟భ . Formally, we have 

଴ݏ
௟భ = ,݌∀ | ݌} ݌ ∈ ݌ ⋀ ଴ݏ ∈ ௟భ} and ݃௟భܮ  = ݌∀|݌} ∈ ݌⋀݃ ∈  .{௟భܮ
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1.15 Case Study and Evaluation 

We use a travel planning case study to illustrate the TLP planning algorithm and evaluate 

its performance. 

We construct a set of services based on the public flight information and city 

transportation information as well as some service definitions available online. We first selected 

7 categories. For each category, we build 10 to 5,000 services, depending on the characteristic of 

the category. The name of the category and the number of services in the category are given in 

Table 1. The overall testing service set consists of around 10k services with 125 propositions and 

12 object types in their preconditions and effects. The numbers of possible values for the 12 

object types are 2552. 

 
 

Service Category  amount Service Clustering amount 
Booking 2299 Booking 2299 
Payment 10 Payment 10 
Pricing 2293 Pricing 2293 
Touring 10 Touring 10 

Education 10 Education 10 
Consulting 10 Consulting 10 

Transportation 5251 Bus 102 
  Flight-by-AA 1903 
  Flight-by-UA 1629 
  Flight-by-DL 1617 

 
We use our service hierarchy construction algorithm to build the service hierarchy, 

including service clustering and derivation of preconditions and effects for the virtual parent 

services. The resulting service clustering is shown in Table 1. In Level-1 of the hierarchy, there 

are 10 virtual services, including the 7 categories we had originally and 3 additional clusters. 

Table 1. Service Clustering 
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Since the transportation service cluster is very large, the algorithm further divided it into three 

clusters as show in the table. 

We modified FF planner [8] into our TLP planner and compared the performance of TLP 

and the original planner for the service composition problem of the case study system. The 

experimental result is shown in Table 2. As can be seen from the table, our approach can 

significantly reduce the composition reasoning time for composition problems with a large set of 

services. 

 
 

Planning Algorithm Level-1 Planning Level-2 Planning TLP 
Service Count 10 ~3000 ~3000+10 

Time (s) 0.004 0.083 0.087 
 

1.16 Conclusion 

In this paper, we have proposed the multi-level service composition approach 

(specifically, we consider two-level planning) to achieve performance improvement for large-

scale composition problems. We have developed a service hierarchy construction algorithm and 

modified the FF planner and converted into TLP planning. Experimental study show that the 

TLP approach can significantly improve the planning performance for composition problems 

with a large set of services. 

Some potential future research directions include improving the service hierarchy 

construction method to get a better cluster size distribution with minimized dangling services 

(services that do not belong to any cluster). Also, we will modify the TLP algorithm to achieve 

the completeness property. In the current Level-1 planning process, the shortest path is selected 

as many planners do. Since the Level-2 planning domain is selected based on the virtual parent 

Table 2. Experimental Result 
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services along the shortest path, if the services in the corresponding clusters of these virtual 

services cannot offer a solution, then planning will fail. 

There may be other issues in using TLP for service composition. The services in the real 

world are defined with different standards and follow different conventions. Thus, service 

hierarchy and virtual parent service construction may have practical issues. We plan to 

investigate these issues and build a comprehensive composition system for real world services. 

In [80] [81], we have developed a model for multiple functionality service composition in 

which multiple goals composed by if-then-else construct is considered to offer flexible choices to 

users. We have also developed the planning algorithms to efficiently achieve multi-functionality 

service composition. We plan to integrate TLP into multi-functionality planning to address the 

potential performance issues in multi-functionality composition. 
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1.17 Introduction 

Service oriented architecture (SOA) has been widely adopted by many industrial 

companies as well as government agencies because it enables easy and extensive reuse. On the 

other hand, with the rise of cloud computing, many companies and organizations nowadays 

provide their software as SaaSs (software as a service) and Apps over the internet. With these 

technologies and provisioning, new system development can be completed much more rapidly 

by composing different services into a system.  

A lot of research works have investigated the issues on how to compose services into an 

application system. SHOP2 [1] and OWLS-Xplan [2] are widely used systems for automated 

service composition. They are based on Hierarchical task network (HTN) techniques which are 

considered as domain dependent solutions due to their need for knowledge about how to 

decompose tasks.  

There are also automated service composition methods using search-based planning 

techniques [5] [6], similar to GraphPlan [7], Fast Forward (FF) Planner [8], Local Search for 

Planning Graphs with Action Costs (LPG) [9], Fast Incremental Planner (FIP) [10], etc.  

There are planning techniques which can handle the non-deterministic effect and 

exceptions, and can be used for automated service composition. WarPlan-C [53] is the first 

planner that considers conditions. It use Prolog to reason for the plan with conditional branches. 

Similar to conditional planning, conformant planning focuses on uncertain initial states, i.e., the 

initial state consists of disjunctive clauses or may even be unknown. In [56], Graphplan is 

extended to be conformant. The disjunctive initial conditions are handled in a similar way as 

nondeterministic actions, where each condition is planned as a branch. The Planning solutions 
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can be categorized into weak, strong, and strong cyclic plans in [61]. The planner in [53] [56] are 

all strong planners. Though a strong cyclic plan is a weaker plan than the strong plan, strong 

cyclic planning offers a solution when the strong planning cannot. Several strong cyclic planning 

algorithms have been proposed, including the Fast Incremental planner [10], Model Based 

Planner (MBP) [61], and NDP (Nondeterministic Planning) [62].  

However, existing automated service composition techniques have omitted some 

important issues toward composing services into a holistic system. First, all these techniques 

consider a single system goal, like a plan does. However, modern systems are complex and the 

system may have to be specified by different functionalities. For example, consider a floor 

cleaning system. The system may offer carpeted floor cleaning, hardwood floor cleaning, tile 

floor cleaning, etc. All these floor cleaning services start by ordering service, transporting service 

which transports the people and equipment to the location where the service is to be performed, 

furniture moving service, and vacuuming service. After vacuuming, depending on the service 

ordered, different services are performed. It is possible to perform service composition for each 

function and obtain multiple workflows for the system. However, from the cleaning service 

example, we can see that there are quite a lot of overlapping services in the workflows for 

multiple functionalities. Thus, it is better to specify multiple functionalities for the overall system 

and compose one workflow with branches for achieving all the desired functionalities. This 

solution can reduce the composition effort and generate a well integrated workflow.  

The second issue in automated service composition is the consideration for services with 

multiple effects. The output of a service may be used as a control parameter to determine what 

subsequent processes should be. Consider developing a retail store management workflow that is 
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activated upon store closing. First, a patrol service goes across the store to ensure that there is no 

customer remaining in the store. Then, a store closing service closes all the doors and counters. 

Next, an inspection service provided by a robotic or manned cart is activated to navigate through 

the aisles to make inspections. This inspection service may give different outcomes, such as 

found misplaced items, found some products with low shelf stocks, or found spoiled or broken 

items. Depending on the outcome of this inspection service, different subsequent sub-workflows 

with different goals will be invoked to handle the problems.  

Similar to having multiple effects, a service may raise exceptions during execution. 

Exceptions can also result in different effects to the system. Generally, when a service is defined, 

the potential exceptions that may be raised by the service are also defined. When a service is 

selected and composed into a workflow of a system, its exceptions should be taken care of to 

ensure that the system is holistic. 

Automated service composition techniques have been developed for handling multi-

effect services and exceptions [18] [19], but some gaps still remain. One gap is that formal 

service definition models, such as OWL-S and WSMO, do not have a specific mechanism for 

specifying the multiple effects or exceptions of a service [15] [82]. Without a proper 

specification model, the techniques for handling them becomes ad hoc. Another important gap in 

the literature is that when handling exceptions, all works require the system to achieve the same 

original goal. However, in many cases, after an exception is raised, the original goal can no 

longer be satisfied and a new goal should be specified. Thus, we need to have a service 

composition model that supports the specifications of goals for the exceptions. 
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The third gap in automated service composition is the consideration of alternative paths 

toward a goal. Most existing planning techniques, especially those used for automated service 

composition, only derive one path from the initial condition to the goal state. But in a holistic 

system, there may be multiple ways for achieving the system goals for a certain functionality. 

Sometimes these multiple ways should be presented to the users to provide flexible choices. For 

example, an online shopping system may be composed of browsing, add to cart, checkout, 

payment, and delivery services. It is desirable to offer different payment and delivery methods 

and leave the choices to the users. The service composition model and automated composition 

techniques should be able to construct a workflow with choices and identify the user interaction 

points for making the choices. 

In this paper, we consider the problem of automated holistic service composition. Here, 

“holistic” refers to the composition of a complete system. It is necessary to consider multiple 

functionalities of the system, multiple effects and exceptions of services, different goals for 

exceptions, and multiple methods as user choices for achieving the goals. We build a 

comprehensive model and integrated techniques to facilitate automatic service composition to 

obtain a holistic workflow for the desired system. To facilitate a formal treatment of the holistic 

composition problem, we extend the classical OWL-S service model [15] with multi-effect 

specifications and exception definitions. Also, we define a separate “system” model to facilitate 

the more precise specifications of the multi-functionality composition problems. Different from a 

composite service, a system can have a goal structure, including the goals for multiple 

functionalities, special goals for exceptions when the regular functionalities cannot be achieved, 

and the goals for choices of methods for achieving some of the functionalities. 
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We also develop an automated service composition procedure for composing workflows 

for holistic systems. The procedure is designed to generate a workflow that can achieve multiple 

functionalities, provide choices of multiple methods for achieving some system functions, take 

care of multiple effects of the services, and handle exceptions to achieve the original or new 

goals as desired. 

The organization of this paper is as follows: In Section 4.2, our extended model for 

automated holistic service composition is introduced. The composition reasoning algorithms for 

achieving holistic service composition are presented in Section 4.3. In Section 4.4, we discuss a 

case study system to illustrate how to use our model for holistic service composition problem 

specification and to demonstrate how our composition reasoning algorithms can be used to 

obtain a holistic workflow for the composition problem. Section 4.5 concludes the paper and 

outlines some future research directions.  

1.18 A Holistic Model for Service Composition 

In the OWL-S model, a service can be defined by its (ܫ, ܱ, ܲ,  is the input of ܫ where ,(ܧ

the service, ܱ is the output of the service, ܲ is the precondition, when satisfied, the service can 

be executed, and ܧ is the effect, which specifies the condition that will be satisfied after the 

execution of the service. This model is generally used to specify a concrete service, which can be 

an atomic or a composite service. In a service composition problem, the OWL-S service model 

can be extended to specify an abstract service that has not been grounded. The IOPE of the 

designated composite service can be specified to derive the automated service composition.  
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However, there are some shortcomings in the OWL-S model as well as some other 

existing service composition models. In this section, we develop a holistic service and 

composition model which extends OWL-S to facilitate automated composition of holistic 

workflows. Our extension include three directions: 

(1) Extend the OWL-S service model to consider multiple effects and exceptions that 

may be raised in a service. The extended service model is discussed in Section 4.2.1. 

(2) Introduce an “exception” model to support the specification of exceptions that may be 

raised in the system, i.e., may be raised by the services in a workflow. The model is discussed in 

Section 4.2.2. 

(3) Introduce a “system” model to support clearer service composition problem 

specification. The model considers multiple system functionalities and other issues. Section 4.2.3 

discusses this system model. In Section 4.2.4, we further discuss how to incorporate alternative 

methods for achieving the same functionality in a holistic workflow. 

In each subsection, we discuss the reason why existing models are not sufficient and why 

the extension is needed. We also introduce the extended model formally and justify why the new 

model can better support the service and the service composition problem specifications.  

1.18.1 Holistic Service Specifications 

In a comprehensive service specification, it is necessary to consider that the service may 

cause different effects that should be specified separately to facilitate composition reasoning. 

Also, it is necessary to consider the specification of exceptions that the service may raise. 

First consider multiple effects that a service may cause. In fact, multiple effects can be 

specified in the OWL-S model by a predicate in “disjunctive normal form”. Consider the 
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inspection service (InspectS) in the workflow given in the introduction for store management 

upon closing. The output to the service may be a “situation” that needs to be taken care of and 

the effects can further define the situation output by literals “item-misplaced”, “item-low-shelf-

stock”, “item-spoiled”, “item-broken”, and “no-situation”. An OWL-S specification for the 

effects of InspectS will be 

   “item-misplaced” ∨ “item-low-shelf-stock” 

      ∨ “item-spoiled” ∨ “item-broken” 

As can be seen from the example, the effect specified by the disjunctive predicate can be 

used for constructing conditional branches in the workflow. For “item-misplaced”, services for 

determining the locations of the items and for moving items back to their locations should be 

composed to achieve the function of “no-misplaced-items”. For “item-low-shelf-stock”, 

subsequent sub-workflow will check whether the items have sufficient inventory in the store, and 

if so, restock the shelves from the inventory; otherwise, order the items to replenish the inventory 

and the shelves. The situations “item-spoiled” and “item-broken” can be handled by the same 

sub-workflow which checks the properties and sizes of the items and determines how to dispose 

them. 

Handling multiple effects of a service have been widely considered in automated service 

composition literature [6] [66] [67]. The technique is to create multiple “virtual services” to 

represent one concrete service during the composition reasoning, one for each disjunctive clause 

in the effect predicate. For the example above, we need to create four virtual services for 

InspectS. InspectS-1 has effect predicate “item-misplaced”, InspectS-2 has effect predicate 
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“item-low-shelf-stock”, and so on. All 4 virtual services have the same input, pre-condition, and 

output specifications as the original service, but with different effect specifications. 

To facilitate virtual service creation when converting a service composition problem into 

a planning problem, it is better to specify the disjunctive effects separately so that there is no 

need to perform low level effect predicate analysis every time the service is considered as a 

candidate service for composing a system. Thus, we modify the OWL-S service model to support 

the specification of multiple effects.  

Next, we consider the exceptions of a service. Exceptions are different from effects. 

When a service raises an exception, the functionality of the service is not fulfilled since the 

execution is disrupted. For example, the InspectS service may raise exceptions “cart-noGas” due 

to shortage of gasoline in the inspection cart, “cart-malfunction” due to some malfunction in the 

inspection cart, or “camera-low-battery” or “camera-malfunction” due to the problems in the 

inspection camera. In these cases, inspection cannot be completed and some actions should be 

taken to take care of the exception condition. We will discuss the specific exception 

specifications at the system level. Here we only consider that each service can be associated with 

a set of exceptions and extend the OWL-S service model to support such specifications. 

A partial view of the extended service model for holistic service specification is given in 

Figure 3. Note that since the extensions are all under the service profile, the figure only shows 

the Profile class for the service.  

The service profile defined in OWL-S is extended. It still has Input, Output, and Pre-

condition classes. The extended model has a class “Effect Set”, which specifies the set of effect 

clauses for the service. Effects can be instantiated by one or more “Effect” classes, where each 
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Effect is the same as the original Effect specification in OWL-S. Note that even though a service 

may have multiple effects, there is only a single output specification (output has to be a unified 

one in order to allow proper use of the service). Multiple effects specify the properties of the 

output parameters or the system state in different situations. 

 

Figure 3. The Extended Service Model 
 

The extended model also has an “Exception Set” class under the service profile, which 

can be instantiated by one or more “Exception” classes. 

To facilitate the discussion of the reasoning algorithm for service composition, we also 

define the notations to represent the holistic service model. 

Definition 1 A web service ݏ  is defined by a tuple <(ݏ)ܫ, ,(ݏ)ܱ ,(ݏ)ܲ ,(ݏ)ܵܧ  <(ݏ)ܵܺ

where 

  ;ݏ is the set of input parameters for (ݏ)ܫ

  ;ݏ is the set of output parameters for (ݏ)ܱ

 ;ݏ is the preconditions of (ݏ)ܲ
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 is the ݅-th effect clause in (ݏ)௜ܧ and ݏ is the set of effects after the execution of (ݏ)ܵܧ

 Negative .(ݏ)ିܵܧ and negative effects.(ݏ)ାܵܧ can be defined by positive effects (ݏ)ܵܧ .(ݏ)ܵܧ

effects state facts that are no longer true after executing ݏ . If ݐݏ  is the system state before 

executing service ݏ, then the resulting state after executing ݏ will be (ݐݏ − ((ݏ)ିܵܧ ∪   .(ݏ)ାܵܧ

 is the ݅-th exception defined (ݏ)may raise and ܺ௜ ݏ specifies the set of exceptions (ݏ)ܵܺ

in ܺܵ(ݏ). □ 

1.18.2 Exception Specifications 

Exception is a very important concept in software and systems. Some widely used service 

models, such as OWL-S and WSMO, do not support the specifications of exceptions. Some web 

service models consider exceptions, but they do not offer the formal specification mechanism for 

them. Here we try to provide a mechanism for exception specification which can be integrated 

with the service and system specification models to facilitate holistic service composition.  

Similar to the formalism of IOPE in OWL-S, we need to have the “effect” specification 

for exceptions in order to enable composition reasoning. Such effect specification needs to be 

considered carefully. Some segments of a service may have been executed when an exception is 

raised and, hence, it looks as though the effect of an exception depends on the point of execution 

at which it is raised. However, such concerns are internal to the service. We assume that each 

service can handle their internal exceptions and the only visible exceptions are the external ones. 

The execution effects that need to be cleaned up are taken care of by the internal exception 

handlers. The external exceptions are those that require external workflows to handle and their 

effects can be defined by externally known literals. 
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Another consideration about an exception is the goal for exception handling. For most 

exceptions, it is desirable to still achieve one of the original system functionalities. But in some 

cases, the original system goals (of one of the functionalities) can no longer be satisfied after an 

exception. Thus, a different goal should be specified for the exception. For example, consider a 

tour booking site which helps users book tickets for various types of tourism trips. One cruise 

workflow has one goal predicate “cruise trip booked”. It helps users book airline tickets, cruise 

tickets, hotels, rental cars, etc., to obtain complete trip bookings. At the checkout, the payment 

service may raise an external exception “payment failure” after multiple internal attempts to get 

different credit cards and different payment methods. This exception has to be external because it 

cannot be handled by the payment service. Also, the original system functionality of trip booking 

can no longer be satisfied, and a new functionality “cleanup” should be associated with this 

exception and causes the system to cancel all the reservations. Thus, for some exceptions, the 

composition model should support the specification of new functionalities that the system should 

reach after the exceptions. 

Based on the exception specification requirements discussed above, we define the 

exception ontology in Figure 4. 

 

Figure 4. The Exception Model 
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An exception has a Name, a Description, and a Profile. The Profile includes the “Effect 

Set” class which can have one or more “Effect” specifications and the “Functionality Set” class, 

which links to one or more functionalities specified in the system. 

Based on the model given in Figure 4, we also define the notations for relevant exception 

specifications. 

Definition 2 An exception ݁ can be defined by a tuple <ܵܧ(݁, ,(ݏ   where <(݁)ܵܩܧ

(݁)ܵܩܧ  is the set of functionalities in which one of them should be achieved after 

exception ݁ is raised. ܩܧ௜(݁) is the ݅-th functionality in ܵܩܧ(݁). 

,݁)ܵܧ (ݏ  is the set of effects that hold when exception ݁  is raised by service ݏ , and 

,݁)௜ܧ ,݁)ܵܧ is the ݅-th effect clause in (ݏ ,݁)ܵܧ Note that even though we assume that .(ݏ  does (ݏ

not depend on internal states of ݏ, but it is still service dependent. On the other hand, ܵܩܧ(݁) 

includes the system level goals (goals for regular functionalities and special goals for exceptions) 

that should be achieved after ݁ is raised, no matter which service raises it. □ 

The exception name and description are omitted in the tuple since they will not be used 

directly in the composition reasoning process, though they may be useful in other composition 

processes, such as service clustering to facilitate faster and easier service discovery. 

1.18.3 Holistic System Specifications 

In the OWL-S model, a composite service to be composed can have its IOPE 

specifications, which are used as the rules to govern the composition. Such model has the benefit 

of facilitating the specification of value-added services and facilitates hierarchical composition. 

WSMO treats service and composition separately. The composite service to be composed is 

referred to as a service, while the available concrete services are referred to as Web services and 
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their specifications are defined separately [82]. In many applications, service composition is for 

rapidly developing and deploying a comprehensive system, not just a value-added service. 

Though a composite service and a comprehensive system have some similarities, there are some 

differences in their specifications. Thus, we define a separate “System” model (like the service 

model in WSMO) to support a clear definition of a holistic composition problem. The ontology 

for the “System” model is given in Figure 5. 

 

 

Figure 5. The System Model 
 

We consider the “System” model in two views, namely, the composition domain view 

and the composition problem view. The composition domain view of the system provides 

information that are common to all composition problems in the domain. It has the “Service set” 

(similar to the Web service class in WSMO) and the “State Ontology” (similar to the ontology 

class in WSMO) which defines the terms used for system state definitions. The “Service set” is 
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the set of all services that can be considered for composition. All the terms in the IOPE 

specifications for the services in the “Service set” are defined in the “State Ontology”. Mediators 

in WSMO are also an important class in service composition, but they are beyond the scope of 

this paper and are omitted in our model. 

The composition problem view of the system specifies the system to be composed, 

including a “Description” class, the “Initial Condition set” class, the “System Exception set” 

class, the “Regular Functionality set” class, and the “Exception Goal set” class. The “Initial 

Condition set” class has one or more “Initial Condition” subclasses. The “Initial Condition” is 

specified by a predicate that represents one of the initial conditions of the system. The “Regular 

Functionality set” includes one or more “Functionality” of the system and each “Functionality” 

consists of one or more “Goal” subclasses. The “Exception Goal set” also consists of one or 

more “Goal” subclasses. Each “Goal” is specified by a predicate that represents one goal of the 

system. The “Workflow” class specifies the workflow that, staring from the initial conditions, 

can achieve the functionalities of the system. Before composition, the Workflow is null. After 

composition, the workflow is grounded to a concrete one. Instead of using the complex OWL-S 

process specification, we consider using BPMN workflow specification for the “Workflow” 

class.  

In Definition 3, we define the composition domain in the System model. 

Definition 3 The composition domain can be defined as a tuple <ܵܵ, ܵܶܵ>, where 

ܵܵ is the set of all the services available for compositions in the domain and ݏ௜ is the ݅-th 

service in ܵܵ. 
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ܵܶܵ is the set of terms (literals, etc.) used by the services and the composition problems 

to define the relevant states, such as those used in preconditions, effects, exceptions, input and 

output data types, etc., of services. □ 

In Definition 4, we define the tuple that specifies the relevant attributes for a specific 

composition problem in the System model under a composition domain.  

Definition 4 A target system to be composed under the composition domain <ܵܵ, ܵܶܵ> 

can be defined by a tuple <ܵܫ, ,ܵܨ ܵܺ , ,ܵܩܺ  is the initial condition set for the ܵܫ where ,<ܨܹ

target system. 

ܵܨ is the set of regular functionalities for the target system and ܵܨ = ,ଵܨ} ,ଶܨ . . .  ,{ேܨ

where ܰ is the number of functionalities to be achieved and ܨ௜ is the ݅-th functionality in ܨ .ܵܨ௜ 

can be considered as a goal state, it could have conjunctive and/or disjunctive goal clauses. Since 

modern planners can plan for any form of the goal state, we consider ܨ௜ as one integrated goal. 

ܵܺܵ is the set of exceptions that may be raised in the system and ܺ௜ is the ݅-th exception 

in ܵܺܵ. Note that ܵܺܵ is defined after the regular composition (without exception) is defined. 

 ௜ is the ݅-th goal inܩܺ and ܵܨ is the set of goals for the exceptions that are not in ܵܩܺ

 is supposed to be composition independent, but may be defined or validated after ܵܩܺ .ܵܩܺ

regular composition definition to ensure that there are no missing goals under exceptions. 

ܵܨܹ  is the set of workflows defined during the composition process for the target 

system. ܹܨ௜  is the ݅ -th version of the workflow during the composition process and ܹܨி 

denotes the final workflow obtained after the overall composition process is completed. □ 

Note that the literals used in the definition of ܵܫ, ܺܵ, ,ܵܨ ܵܩܺ  are defined in ܵܶܵ . 

Services selected to compose ܹܨ௜, for all ݅, are in ܵܵ.  
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In this paper, our discussion only involves a single composition problem under one 

composition domain and, hence, we do not specify which composition domain and which target 

system the tuples are for. 

There are a few semantics in the “System” model that need to be clarified and also 

compared with the “Service” model. First, consider the initial conditions ܵܫ of the system, which 

has a quite different semantics from the pre-conditions of a service in the holistic composition 

model. Note that the workflow being constructed should be able to handle all possible initial 

conditions. Essentially, the initial conditions of the system can be viewed as the effects of a 

special service, which takes “True” as the precondition and generates effects equivalent to the 

initial conditions of the system. Thus, similar to the effects of a service, the initial conditions 

should be represented in a disjunctive normal form. Each conjunctive clause in the predicate 

becomes an “Initial Condition” in the “Initial Condition Set” ܵܫ.  

Now consider the regular system functionalities. The “Functionality set” includes one or 

more functionalities to be achieved by the system. These functionalities can be achieved 

separately by separate branches in the system workflow, but each of them has to be achieved. 

This is different from the “Effect set” specification in the service model. Consider the set of 

system functionalities ܵܨ = ,ଵܨ} ,ଶܨ . . . (ݏ)ܵܧ ,ݏ ே}. Also, consider the effect set of a serviceܨ =

,(ݏ)ଵܧ} ,(ݏ)ଶܧ … ,  :is expressed as (ݏ)ܵܧ .has ݏ where ݊ is the number of effects ,{(ݏ)௡ܧ

(ݏ)ଵܧ ∨ (ݏ)ଶܧ ∨ … ∨  (ݏ)௡ܧ

But the goals for the functionalities of the system do not have the same semantics as 

service effects. If we consider the multiple functionalities of the system as ܨଵ ∨ ଶܨ ∨ … ∨  ே, thenܨ

it will lead to the derivation of a workflow that only satisfies one of the system functionalities. 
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Also, the system functionalities cannot be specified as ܨଵ ∧ ଶܨ ∧ … ∧ ேܨ  because it is not the 

intention that the multiple system goals are satisfied at the same time (and it may not be possible 

to satisfy these multiple functionalities at the same time). A closer semantics for the system 

functionalities may be described as 

  If <ܿ݀݊݋> then ܨଵ  
  elseif <ܿ݀݊݋> then ܨଶ 
  … 
  else ܨே 
 

where each <ܿ݀݊݋> is independent and can be any condition to be derived in the holistic 

workflow.  

Also, each individual effect in the effect set of a service has to be a conjunctive clause 

while an integrated goal for a regular functionality or a special goal for some exceptions can be 

any logic predicates. 

We also need to clarify the exception concept in the system model. Exceptions may have 

different scopes. Some exceptions are specific to individual services, some exceptions are 

common to many services, and yet some exceptions may be raised by the system itself. For 

example, a “timeout” exception may be raised by all services with interactions to users. An 

“interrupted” exception may be raised by the system to stop the current workflow that is in 

execution. This can happen, for example, when the system offers a cancel button which can be 

clicked by the user at any time, resulting in the termination of the current service in execution. 

An exception that is common to multiple services should have a single specification and should 

be associated with the individual services that have this exception. This is to avoid duplicated 

derivations of the exception handling workflows. System exceptions should of course be 

associated with the system, not with the individual services. 



 
 
 

79 

As discussed in the exception model, each exception should be associated with some 

goals. The goals of an exception, namely, ܩܧ}=(݁)ܵܩܧଵ(݁), ,(݁)ଶܩܧ …}, should satisfy the 

following constraints: 

For all ݅, ܩܧ௜(݁) ∈ ܵܨ) ∪  should be (݁)ܵܩܧ and the semantics for ,(ܵܩܺ

(݁)ଵܩܧ ∨ (݁)ଶܩܧ ∨ … 

Specifically, each goal in the goal set of exception ݁ can be from the goals for regular 

functionalities of the system or the special goals for exceptions. The exception handling 

workflow for handling exception ݁ just needs to achieve one goal predicate in ݁’s goal set. 

1.18.4 Multiple Methods via Multiple Functionality Specification 

The goal for automated service composition is to derive a “system”, not just a “plan”. 

Thus, it should consider not only multiple functionalities of the system, but also alternative ways 

for achieving some of the functionalities. These alternative ways are supposed to be incorporated 

in the final system workflow to offer users desirable choices.  

One way to derive a system workflow which covers alternative methods for achieving a 

functionality is to let the composition reasoning algorithm find all possible paths and incorporate 

them in the workflow. However, not all alternative paths for achieving a functionality are 

desirable choices to be included in the system workflow and it is difficult to automatically 

determine which choices should be incorporated. Thus, we consider to incorporate multiple 

method choices as multiple functionalities at the system design time and use multi-functionality 

composition reasoning as discussed in Section 4.3 to derive the alternative paths in the workflow.  

Generally, one goal predicate is specified for a system functionality. For the choices of 

different methods for achieving a system functionality, we add additional method-related 
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predicates in its goal predicate. For the purchasing process example, the functionality goal 

predicate is  

“items delivered” ⋀ “payment succeed”  

The alternative delivery methods can be specified by method-related predicates such as 

“home delivery”, “store pickup”, etc. Thus, the new functionality set ܵܨ  of the purchasing 

process can include the following goals: 

 ”ଵ = “home delivery” ⋀ “items delivered” ⋀ “payment succeedܨ

 ”ଶ = “store pickup” ⋀ “items delivered” ⋀ “payment succeedܨ

…  

Generally, the IOPE definitions of many services have already incorporated the method-

related predicates to support flexible workflow derivations. Thus, the above method can derive a 

workflow with multiple branches for using multiple methods to achieve the same functionality. 

When we just want to achieve a functionality via any method, then we only need to specify the 

goal predicate for the functionality. For the purchase process example, if we specify the goal as 

“items delivered”, then one of the methods to achieve the functionality will be selected by the 

reasoning process. If we need to achieve a functionality with a specific method, then the goal 

specification for the functionality can include both the method-related predicate and the 

functionality-related goal predicate.  

1.19 The Reasoning Process for Holistic Service Composition 

Based on the service and service composition models defined in Section 4.2, we can 

reason and derive a holistic workflow systematically and automatically. We leverage existing 
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service composition reasoning techniques as well as develop new techniques to achieve the 

automated holistic service composition. The service composition problem we discuss in this 

section is <ܵܫ, ,ܵܨ ܵܺܵ, ,ܵܩܺ ,ܵܵ> under the domain <ܨܹ ܵܶܵ>. In Section 4.3.1, we focus on 

building the basic workflow for the system with multiple goals. Then in Section 4.3.2, we 

provide a systematic approach to handle the exceptions (external exceptions). In Section 4.3.3, 

we discuss the remaining steps to finalize the workflow generated for the composition problem. 

1.19.1 Basic Multi-Functionality Reasoning 

First, we discuss the algorithm for constructing a workflow ܹܨଵ  for the basic multi-

functionality problem. In ܹܨଵ, multiple functionalities will be reached with branching paths, but 

it does not consider exceptions. The steps of the algorithm are sketched as follows. 

1. The first step is to identify the functionality set ܵܨ for the system to be composed. The 

goal predicate for each desired functionality is added to ܵܨ. For each functionality ܨ௜ in ܵܨ, if it 

is desirable to consider alternative methods to achieve ܨ௜ , then combine the method-related 

predicates with ܨ௜  as new goal predicates, i.e., add ݉݌௝ ⋀ ܨ௜ , for all ݆, to ܵܨ, and remove the 

original ܨ௜  from ܵܨ, where ݉݌௝  is the predicate for the ݆-th alternative method for achieving 

functionality ܨ௜.  

2. Determine the initial condition ܵܫ of the target system. If ܵܫ has a single clause, then it 

will be used as the initial state. If ܵܫ has multiple disjunctive clauses, then construct an “initial 

service” ݏ଴ and add ݏ଴ into the service set ܵS. Service ݏ଴ should have its precondition ܲ(ݏ଴) set 

to predicate “Initial” and its effects ܵܧ(ݏ଴) is set to ܵܫ ܵܫ .  is then set to “Initial”. Predicate 

“Initial” should be unique so that it does not duplicate with the pre-conditions or effects of any 

service ݏ௜  in ܵܵ . The purpose of doing so is to let the multi-conditional initial state to be 
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processed uniformly as a multi-effect service, instead of having to have a separate special 

processing method for it. 

3. For each service ݏ௜ in ܵܵ, if ݏ௜ has multiple effects, decompose it into virtual services 

 .… ,௜,ଶݏݒ ,௜,ଵݏݒ ௜ in ܵܵ by its virtual servicesݏ ௜,ଶ, … and replaceݏݒ ,௜,ଵݏݒ

4. Formulate the planning problem as ܲ = (ܵܵ, ,ܵܫ  Here ܵܵ is the updated set of .(ܵܨ

services (updated in Steps 2 and 3). ܵܫ is the initial state, which could be the original ܵܫ or the 

predicate “Initial”. ܵܨ is a set of multiple goals of the system constructed in Step 1.  

5. Use a multi-functionality planner, ܨܯܴܲܯ  or ܵܨܯܧܩ , to reason for the multi-

functionality planning problem ܲ and obtain the multiple-functionality plan, which is a weak 

plan in the sense that some conditional branches have not been considered yet. Convert the plan 

into the first workflow draft ܹܨଵ. During plan to workflow conversion, we need to consider the 

branches due to the multiple functionalities ܨଵ, ,ଶܨ … ,  ே. Note that the multiple functionalitiesܨ

are multiple choices offered to the users and a user interface should be constructed to allow users 

to make the choices. Let ଵܹ = ,ଵݓ) ,ଶݓ … , ௠భݓ
) denote the list of ݉ଵ services used in ܹܨଵ. Let 

௕௥భݓ
, ௕௥మݓ

, … ∈ ଵܹ be the services after which there are multiple branches for reaching some of 

the functionalities in ܵܨ and assume that ݓ௕௥భ
 is closest to the beginning of the workflow among 

௕௥೔ݓ
, for all ݅ . We create a user interface service ܿܨℎ݁ܿ݅݋  with output ܿℎ݁ܿ݅݋  for choosing 

among Fଵ, ,ଶܨ … , ௕௥భݓ right after ݁ܿ݅݋ℎܿܨ ே and insertܨ
, i.e., the first branching point. Also, after 

each ݓ௕௥೔
, we insert a conditional node in ܹܨଵ to test ܿℎ݁ܿ݅݋ to see whether it is equal to the 

corresponding functionality of the branch. 



 
 
 

83 

6. This step handles the conditional branches needed due to multiple effects of some 

services in ௥ܹ, where ݎ is initialized to 1 and increased in each round.  

6a. Let ௥ܹ = ,ଵݓ} ,ଶݓ … , ௠ೝݓ
} denote the bag of ݉௥ services used in ܹܨ௥ (not ordered). 

For each ݓ௜ ∈ ௥ܹ, if ݓ௜ is a virtual service, and ݓ௜ is constructed from a concrete service ݏ௝, and 

௝ݏ  has virtual services ݏݒ௝,ଵ ௝,ଶݏݒ , , …, then add ݏݒ௝,ଵ ௝,ଶݏݒ , , … into ܸ , where ܸ  is the bag of 

virtual services that have not been processed. Since each ݓ௜ ∈ ௥ܹ has already been processed 

(i.e., a subworkflow has been constructed for ݓ௜ to reach the goal or to reach a state in ܹܨ௥), 

remove ݓ௜ from ܸ.  

6b. For each virtual service ݏݒ௝,௟ in ܸ (where ݏݒ௝,௟ is a virtual service of ݏ௝), formulate the 

planning problem  

௝ܲ,௟ = (ܵܵ, ܫ ௝ܵ,௟,  (ܵܨ

to obtain the sub-workflow ܹܨ௥,௝,௟ for ݏݒ௝,௟’s conditional branch to reach the goal. ܵܵ and 

ܫ are defined earlier. Here we derive ܵܨ ௝ܵ,௟, for all ݏݒ௝,௟. 

Let ݐݏ௪೔
 denote the state before ݓ௜ in ܹܨ௥ is executed. From the initial state, there may 

be one or more paths in ܹܨ௥  that reach ݐݏ௪೔
 and let ܾݎ௪೔,ଵ, ,௪೔,ଶݎܾ …, denote these paths. Let 

,௜,௫,ଵݓ) ,௜,௫,ଶݓ … , ೣ,௜,௫,௡௕೔ݓ
) be the sequence of ܾ݊௜,௫ services forming path ܾݎ௪೔,௫, ݓ௜,௫,௟ ∈ ௥ܹ, for 

all ݔ, ݈. Also, let ݐݏ௜,௫,௟ denote the state before ݓ௜,௫,௟ is executed. For each ܾݎ௪೔,௫, we have ݐݏ௜,௫,ଵ =

௜,௫,௟ାଵݐݏ and ܵܫ = ௜,௫,௟ݐݏ) − (௜,௫,௟൯ݓ൫ିܵܧ ∪ ௜,௫,௟൯, 1ݓା൫ܵܧ ≤ ݈ < ܾ݊௜,௫. Then, ݐݏ௜,௫,௡௕೔,ೣ
, for all ݔ, 

can be derived. Subsequently, we can obtain the state before ݓ௜  is executed, i.e., ݐݏ௪೔
=

⋃ ௜,௫,௡௕೔,ೣ௫ݐݏ .  



 
 
 

84 

Let ݐݏ௝,௟′  denote the effect state after executing ݏݒ௝,୪  in ܹܨ௥  and ݐݏ௝,௟′ = ௪೔ݐݏ)
−

(௝,௟൯ݏݒ൫ିܵܧ ∪ ܫ Finally, we have .(௝,௟ݏݒ)ାܵܧ ௝ܵ,௟ =  can be used ܨܯܧܩܵ or ܨܯܴܲܯ ,௝,௟′. Nextݐݏ

to reason for ௝ܲ,௟ to obtain the sub-workflow ܹܨ௥,௝,௟.  

6.c. After 6b, all virtual services in ௥ܹ = ,ଵݓ} ,ଶݓ … , ௠ೝݓ
} have been processed, i.e., if 

 ௝,௟, forݏݒ ௝’s virtual servicesݏ ௥,௝,௟ for allܨܹ ௝, then the sub-workflowsݏ ௜ is a virtual service ofݓ

all ݈, to reach the goals have been constructed. Now merge ܹܨ௥,௝,௟ into ܹܨ௥ by:  

For each ݓ௜ in ௥ܹ and ݓ௜ is a virtual service of ݏ௝:  

(i) Replace ݓ௜ by ݏ௝, and  

(ii) Add the following conditional branch 

            if ܧf(ݏ௝) = ݂ܧ(ݏݒ௝,௟) then ܹܨ௥,௝,௟. 

      after ݏ௝ for each virtual service ݏݒ௝,௟ of ݏ௝. 

Let the new workflow constructed from this step be ܹܨ௥ାଵ.  

7. Note that all virtual services in ௥ܹ have now been processed. But there may still be 

unprocessed virtual services in ܹܨ௥ାଵ if there are virtual services in ܹܨ௥,௝,௟. Thus, we have to 

continue the virtual service processing. Now set ݎ to 1+ݎ and go back to Step 6a till the new ܸ 

from ܹܨ௥ is empty.  

8. Let ܹܨ஻ denote the basic multi-functionality plan constructed after exiting the loop 

above. Also, ஻ܹ is the set of all the services used in ܹܨ஻. It is possible that a service in ܵܵ is 

used more than once in ܹܨ஻. In this case, we consider them as different services in ஻ܹ because 

they will be treated differently when handling their exceptions. 
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1.19.2 Process Exceptions 

From the workflow ܹܨ஻  constructed up to now, services that have the potential of 

raising external exceptions can be identified based on their exception set definitions (ܺܵ). Also, 

at design time, the set of system exceptions ܵܺܵ and the set of exception goals ܺܵܩ should have 

been defined (as discussed in Section 4.2.4). At this stage, manual intervention can be introduced 

if desirable to ensure that the system exceptions in ܺܵ have been properly identified. Also, with 

the identified exceptions, now the designer can check whether the corresponding exception goal 

set ܺܵܩ is complete and if not, complete it. Moreover, manual decisions on exception goals can 

be made for some exceptions as desired because some exceptions may have their known goal 

sets. For each exception ௝݁ , if its goals are known, then define the goal set ܵܩܧ( ௝݁) to them, 

where ܩܧ ( ௝݁) ⊆ ܵܨ ∪ ܵܨ Otherwise, by default, the goal set for ௝݁ is .ܵܩܺ ∪   .ܵܩܺ

We now perform composition reasoning for each exception ௝݁ raised by service ݓ௜ with 

effect ܵܧ൫ݓ௜ , ௝݁൯. We construct the sub-workflow Wܨ௘ೕ
 and merge it into ܹܨ஻ as follow. 

1. Formulate the planning problem  

ܲ = (ܵܵ, ௘ೕܵܫ
, )ܵܩܧ ௝݁)) 

to obtain the workflow ܹܨ௘ೕ
 to handle exception ௝݁ , where ܵܩܧ( ௝݁)  is given in the 

specification of ௝݁ and ܵܫ௘ೕ
 can be determined in a similar way as the initial state derivation for 

conditional branches discussed in Section 4.3.1. First, we derive ݐݏ௪೔
, the state before ݓ௜ in ܹܨ஻ 

is executed, the same way as stated in 6b of Section 4.3.1. Then ܵܫ௘ೕ
= ௜ݐݏ) − ௜ݓ൫ିܵܧ , ௝݁൯) ∪

௜ݓା൫ܵܧ , ௝݁൯. 

2. Use a conventional planner to reason for ܲ and obtain the sub-workflow ܹܨ௘ೕ,ଵ.  
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3. Apply Step 6 in Section 4.3.1 repeatedly to handle all the conditional branches for 

multi-effect services in ܹܨ௘ೕ,ଵ and obtain the final sub-workflow ܹܨ௘ೕ
. 

4. Merge ܹܨ௘ೕ
, for all ௝݁, into ܹܨ஻ for handling exception ௝݁.  

The above procedure should be performed for all exceptions of all services in the 

workflow ܹܨ஻ . Let ܹܨ௑ௌ  denote the final workflow constructed that can handle all the 

exceptions defined in ܺܵ(ݓ௜) for all services ݓ௜ ∈ ஻ܹ. 

Next we perform composition reasoning for each system exception defined in ܵܺܵ. Note 

that system exceptions are defined globally and may be raised at any time during the workflow 

execution. Thus, we need to consider the state when it is raised in order to support proper 

exception handling. Also, generally each system exception ௝݁ would have a clearly defined goal 

set ܵܩܧ( ௝݁) ⊆ ܵܨ ∪ -Similar to the exceptions for the services, we can construct the sub .ܵܩܺ

workflow ܹܨ௘ೕ
 for each exception ௝݁ ∈ ܵܺܵ and merge it into ܹܨ௑ௌ. Since the construction of 

௘ೕܨܹ
, ௝݁ ∈ ܵܺܵ, is similar to the steps defined above, we do not repeat all the steps, but only 

discuss the step that is different, namely, Step 1, below.  

1. Formulate the planning problem  

ܲ = ൬ܵܵ, ௘ೕܵܫ
, Eܵܩ൫ ௝݁൯൰ 

Assume that ݓ௜  is in execution or to be invoked when exception ௝݁  is raised. Let ݐݏ௪೔
 

denote the state before ݓ௜  is executed and ݐݏ௪೔
, for all ݓ௜ , can be derived the same way as 

discussed in 6b of Section 4.3.1. We need to ensure that ܵܩܧ൫ ௝݁൯ is reached no matter when ௝݁ is 

raised so we have ܵܫ௘ೕ
= ⋁ ௪೔௪೔ݐݏ

 (here we assume that if ݓ௜ is in execution and gets interrupted 

by ௝݁, ݓ௜ will clean itself up). 
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Let ܹܨଡ଼  denote the workflow derived based on ܹܨ௑ௌ  and after processing all the 

exceptions in ܵܺܵ. In other words, ܹܨ௑ is the workflow that can handle all the exceptions, both 

from services and at the system level. 

1.20  Case Study 

 

Figure 6. Multiple Functionalities of the System 
 

Consider the online cleaning system discussed earlier. Different choices of functionalities 

are considered, including “carpet floor cleaning”, “tile floor cleaning” and “hardwood floor 

cleaning”. For each cleaning target, there are also choices of ordering a full cleaning services or 

renting the cleaning equipment for do-it-yourself cleaning. Also, if the user chooses to rent the 

equipment, there are choices of how to pick up the equipment, self-pickup or company delivery. 

These functionalities for the system (functionality set ܵܨ) are specified in Figure 6. The goal 

definitions for some functionalities in ܵܨ are formally specified as follows. 

 ”ଵ = “self cleaning” ⋀ “equipment delivery” ⋀“deposit refund”⋀“carpet cleanedܩ

 ”ଶ = “professional cleaning” ⋀ “carpet cleaningܩ

 ”ଷ = “self cleaning” ⋀ “equipment return” ⋀“deposit refund”⋀ “tile cleanedܩ

…… 

 ”଺=“ professional cleaning” ⋀ “hardwood cleaningܩ
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Next, we apply the service composition reasoning algorithm discussed in Section 4.3.1 to 

obtain the basic workflow ܹܨ஻ , which is shown in Figure 7. As can be seen, multiple 

functionalities are modeled as user choices in conditional branches. 

 

 

Figure 7. Cleaning Workflow 
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Now we can follow the algorithm discussed in Section 4.3.2 to derive the exception 

handling sub-workflows for the exceptions raised by “Make Payment”, “Schedule FCP 

cleaning”, “Schedule CP cleaning equipment” and “Pay Deposit” services. Two example 

exception handling workflows are shown in Figure 8 and they can be integrated into the main 

workflow in Figure 7. 

 

Figure 8. Exception Handling 
 
 

1.21 Conclusion 

In this paper we have proposed the concept of multi-functionality service composition in 

the attempt of automatically composing services into a complex system with multiple 

functionalities. Many real world systems have interdependent multiple functionalities and can 

make use of our solutions. We have developed a model to facilitate the specification of the multi-

functionality composition problem and developed algorithms for composition reasoning. 

There are several potential future research directions. First, this includes improving the 

planning techniques for multi-functionality composition reasoning. The improvement should 

focus on efficiency of the multi-functionality planning as well as optimized output workflow, 
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such as maximal degree of overlapping for multiple functionalities, minimal number of services, 

etc.  

Also, the service composition framework for multi-purpose systems discussed in this 

paper lays a foundation for the composition of complex systems. However, there may be other 

issues in service composition of complex systems. For example, the system may have multiple 

threads of execution and the automatically derived workflow should support user switching 

among different threads. We plan to investigate a set of real-world applications that are suited for 

SOA design and investigate additional issues in the automated service composition models and 

techniques. 
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1.22 Introduction 

In recent years, internet-of-things (IoT) and cyber-physical system (CPS) have gained a 

lot of attention. Both IoT and CPS consider a vast number of static and/or mobile physical 

devices networked together into a system. It is difficult to draw a clear line between CPS and 

IoT. In general, both deal with the same system configuration, but CPS research focuses more on 

the control of the huge-scale system, while IoT focuses more on the identification, control, and 

communication of individual devices. 

Due to the increasing varieties and number of physical things (PTs) being integrated into 

the cyber world, it is important to consider dynamic discovery and composition of them to 

greatly enhance the capability of IoT and CPS. Most existing CPS/IoT research do not consider 

these capabilities. Service computing researchers have applied service computing technologies in 

CPS/IoT to achieve rapid discovery and composition of physical things for new or dynamically 

arising tasks [20] [24]. 

The fundamental entity for service discovery, selection, and composition is the service 

model. Existing service models are mainly designed for software services and are not suitable for 

services provided by CPS/IoT. One of the major differences is the role of the physical thing (PT) 

that provides the service. In software services, the PT is the computing and storage hardware. 

However, due to the sufficient uniformity in the computing facilities for software services and 

the high speed communication among them, though there are still issues like communication 

costs and workloads, the PTs for software services do not have a significant role. In CPS/IoT, the 

PT that provides a service and its properties are very important. In the following, we discuss the 

major issues in CPS/IoT services: 
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(1) The physical characteristics of a PT can impact the service it provides. For example, 

different types of vehicles can be used to transport people from a disaster site to a safe 

evacuation area. But each type of vehicle has its own characteristics, such as load capacities and 

number of seats. Also, even for the vehicles that are exactly the same, when grounding the 

service for transporting people, it is necessary to specifically determine the number of vehicles 

required and the number of trips each vehicle may have to make.  

(2) A PT may be able to provide several different types of services. However, it is 

frequently not possible for one PT to fulfill multiple services it provides at the same time.  

(3) In a rescue mission, some robots may be used for survivor detection. The physical 

location of the robots must be at the rescue site. If not, additional services are required to bring 

them to the rescue site.  

(4) The side effect of a software service generally can be specified independent of other 

software services. This may not be true in physical things. For example, a car may transport a 

robot to a disaster site for a rescue search. In this case, the states of the service provider and the 

PTs the recipient of the service is may change together. Such impact need to be specified 

explicitly and existing software service models do not have such a feature.  

(5) Granularity is also an issue in CPS/IoT systems. (a) For example, a swarm of robots 

may provide some services as one unit. But each robot may also be used to provide different 

services. (b) Many PTs may have components. Generally, they provide services as single units, 

but require separate maintenance services or control software. 

Some device specific specification models have been proposed, e.g., DPWS by OASIS 

[27]. These models support general description of a device and the services it hosts. But these 
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models do not provide a solution to the issues discussed above. For (1) and (2), it is better to 

define PTs and services separately and associate them in the upper ontology. In DPWS, etc., 

services become a secondary entity. Thus, the same (or similar) services by different devices 

have no association, making service discovery more complex. Defining both PTs and services in 

the upper ontology also facilitates high level reasoning of services while handling the PT specific 

issues at a lower level. Another problem with these existing device specific models is that their 

device specification models are over simplistic. PT specific characteristics that are required for 

proper service selection and reasoning are not considered in these models. For example, for (3), 

“context requirements” should be specified in the PT specification. It may be argued that the 

“context requirements” for the PTs can be specified as a pre-condition for their services. 

However, these requirements are dynamic (depending on the invocation task), while 

precondition and effects of software services are generally static. It is better to define the 

“context related” requirements separately from regular pre-conditions and effects. For (4), for 

some services, it is necessary to define their recipient PTs (not services) and the effects on them 

specifically. For (5), (5b) has a static set of components while the constituent PTs in (5a) can be 

composed dynamically. For both cases, a two-level service definition, including the services by 

the group (swarm) and by/for the individual constituent components, is necessary. For (5a), the 

two-level specification also facilitates encapsulation and dynamic PT selection. When a swarm 

service is selected, the detailed control can be embedded within the service, instead of requiring 

the specification of complex collaboration between services. The swarm specification should 

include the selection criteria for the constituent PTs, instead of the static set of constituent PTs, 

such that PTs can be selected dynamically when the swarm service is selected. Also, separation 
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of service and PT is important such that when a PT is used in a swarm, it will be clear that it 

should not be selected to provide other individual services.  

There have been some service modeling for CPS/IoT systems. SENSEI [20] proposes a 

resource model to publish the PTs as services. Resource specification is based on OWL-S with 

keywords. SOCRADES [22] proposes a two-level discovery model. It supports the high level 

service discovery based on conventional service specifications. From the selected service, the 

low level devices that satisfy the service description can be selected. The selection can be based 

on location or QoS attributes. Hydra [23] categorizes common PTs into a class hierarchy and 

defines semantics based on the hierarchy to facilitate IoT service discovery. In [24], imprecise 

service specifications and potentially inaccurate sensing are considered. It proposes a 

probabilistic model to capture the fuzziness due to these problems and supports probabilistic 

discovery. Though some of the issues and solutions considered in these works are interesting, but 

none of them directly deal with the issues we identified above. Some other works, such as 

SATware [83], focus on semantic representation of sensor data, not services provided by PTs. In 

[84], the concept of contexts is used for service discovery. Also, context-based preconditions and 

effects are used to assist the composition process. However, these models only address one or 

two issues above and a more sophisticated model is needed. 

Our goal is to build a PT-SOA model to properly model services and PTs in CPS/IoT 

systems and to facilitate service discovery and composition. We leverage existing models and 

extend them for CPS/IoT. In Sections 5.2, 5.3, and 5.4, our new PT-SOA model is defined. In 

Section 5.5, we use a case study to show how our PT-SOA model is useful and essential in 

CPS/IoT service selection and composition.  
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1.23 Upper Ontology in the PT-SOA Model 

As discussed in the introduction, in CPS/IoT, it is necessary to consider PTs explicitly. 

Also, the recipient PTs should be explicitly specified in the model. In Figure 7, an upper level 

ontology for CPS/IoT services is presented. In this model, PTs are considered at the same level 

as the services. They can be specified independently, but are linked together with several 

relations. Each PT can “Provide” a set of services and each service can be “ProvidedBy” one or 

more PTs. A service provided by a PT may be “AppliedTo” some PTs and the state of these PTs 

may be impacted upon execution of the service.  

 

Figure 9. CPS /IoT Upper Ontology Model 
 

“AppliedTo” is an important relation in the composition reasoning process. Consider a 

transportation service. After its execution, the states of the service provider and the service 

recipients may change. If the service recipients are local to the service, then their state changes 

can be captured within the service without any problems. If the service recipient is a PT that is 

independent of the provider, then it will be harder to define the state change of the PT. Consider 

another example. A gas station may provide an “AddFuel” service. After its execution, the state 

of the recipient PT may change from “InsufficientFuel” to “SufficientFuel”. In many existing 

service models, Transport or AddFuel is specified as a local service to the recipient. Such models 

can be confusing and can make the composition reasoning difficult. One possible solution for the 

problem is to treat the recipient PT as an input parameter to the service and specify the state 
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changes of the recipient accordingly. This solution may not be possible if the PTs are not 

modeled as an independent entity in the SOA model. Even if the PT is modeled as a separate 

entity, the service composition process will have to consider composition through input 

parameters, making composition more complex. In our PT-SOA model, we introduce a class 

“AppliedTo” to link a service to one or more recipient PTs. Due to the use of this relation in the 

upper ontology, the reasoning process can be done clearly by following the “AppliedTo” link. 

Separation of services and PTs allows clean specification of the PTs and services and 

supports encapsulation in the composition process, especially in automated composition. To 

achieve a desired goal, the services can be composed independently of the PTs first. Then, the 

specific PTs and their properties and states can be considered afterwards.  

Following the upper PT-SOA ontology, we need to define the PT model and the service 

model. Section 5.3 focuses on the definition of the PT model, i.e., the PT-ontology. The 

extension for the service model in the PT-SOA model is presented in Section 5.4. 

1.24 PT-Ontology in the PT-SOA Model  

Figure 8 defines the overall PT-ontology. The properties of a PT are specified by four 

classes (besides the services), namely “Physical Profile”, “Operation Profile”, “Operation 

Schedule” and “Context”. In the following subsections, the four classes are discussed in details. 

1.24.1 Physical Profile 

For each PT, it may be necessary to specify its physical characteristics that impact its 

operations, PT selection, and service invocation. Also, as discussed in the Introduction, the 
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components and/or constituent PTs of a PT may play some roles in its operation and need to be 

properly specified. These information are maintained in “Physical Profile”. 

  

Figure 10. PT Model in PT-SOA Model 
 

Physical Properties: For each PT, it is necessary to specify its “Physical Properties” that 

may impact its operations or services. For example, a sedan may have 2, 4, or 5 seats, which 

should be specified to allow proper PT selection and invocation of its service. Other properties 

that may be helpful in identifying the PT or of potential interest to the service receivers can also 

be included in this class. 

Constituent PT: Sometimes, a group of PTs may work together as a unified entity, and 

can be viewed as a higher level PT. If the group always works together and individual entities are 

not of significance, then specifying the single high level PT would be sufficient. If the grouping 

of PTs may change or the individual entities may provide their own services, then it is necessary 

to define the individual PTs as well as the grouped entity. Thus, PT ontology should support a 

hierarchical specification. The “Constituent PT” class supports the specification of the 



 
 
 

99 

constituent PTs of a PT. For example, in a swarm of robots, each robot may collaborate and 

provide services on its own. Also, the swarm grouping may change while performing a task. At 

the same time, the entire swarm can have its own services and the internal operational details can 

be encapsulated. So the swarm and the constituent robots will form two levels of PTs. 

Component: Generally, a PT may have many components, and they can be specified by 

the “Component” class in the physical profile. Also, components of a PT may provide services 

which contribute to the realization of an external service of the PT. We use the “Internal Service” 

class to support the specification of the services provided by the components of a PT. Whether 

such components and services should be specified with the PT is scenario dependent. If only the 

external service the PT provides is of interest, then there is no need to expose the internal 

services. When the focus is on the internal control in order to achieve different variations of the 

external service, then specifying the internal micro services may be beneficial. Consider the 

brake and the accelerator of a car which can help achieve “Transportation” service. Generally, 

the car offers services at macro scale and the “Transportation” service is sufficient without 

needing to specifically micro-control the acceleration and deceleration of the car. However, 

when a potential collision is detected, it may be beneficial to expose the brake component and its 

deceleration service to achieve proper control that is specifically tuned to the capability of the 

brake component. Note that the brake is a component, not a constituent PT of the car, because its 

service is only realized through the car. On the other hand, the seats of the car are unlikely to be 

of external interests and there is no need to expose them. There are yet other components of the 

car, such as cameras (many modern cars are equipped with them), which can offer their services 

independently, not interfering with the external services of the car, can simply be treated as 
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separate PTs, even if they are physically inseparable from the car (can just consider the situation 

as though the camera is not attached to the car but is in the car). 

The choice of what to include in the “Physical Profile” is usage dependent and can be 

designed by the specifier for the PT. The principle is to keep the ontology simple, yet provide 

detailed specification when they are useful. 

1.24.2 Operation Profile  

Each PT may need specific control mechanisms, may need some resources during its 

operation, may need regular maintenances, and may have some physical constraints or 

limitations when providing services. We define all these operation related properties of the PT 

under the “Operation Profile” class in the following subsections. 

Usage Constraints: Operation profile specifies the properties that may impact the 

operation of the PT and its services. During service provision, there may be constraints on how 

these services can be provided. For example, most of the services provided by one PT will have 

to be provided exclusively, i.e., if the PT is providing one service, then it cannot be used to 

provide another. Such constraints have to be specified for each PT locally and we use “Usage 

Constraints” class in PT profile to describe these types of constraints. Also, for each service a PT 

provides, there may be specific constraints which are not common for the service. For example, 

both helicopter and ambulance can provide the rescue service for a person injured in a disastrous 

event, but a helicopter can provide the service in floods while an ambulance cannot. A sedan 

may provide passenger transportation service for at most 4 passengers and a commercial van 

may provide the same service for 10 passengers. Such constraints can be specified using the 

“Usage Constraints” class.  
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Control Model: As discussed in Section 5.3.1, a PT-Ontology model may include its 

constituent PTs or components and their services. Thus, it may be necessary to define the control 

model to specify how the constituent PTs should collaborate or how the components should be 

controlled to achieve the high level services. In PT-Ontology model, the “Control Model” class 

describes the internal control for the Constituent PTs and/or components. The “Control Model” 

can be defined as a control workflow composed of internal services or as a control program that 

invokes the internal services or simply as a high level description of the control mechanism. As 

with the components and internal services, the control model only needs to be specified when it 

is useful in the application scenario. 

Interference Policy: When selecting PTs for their services, it is necessary to consider 

their usage constraints. When a PT is actually in action for service provision, there may be 

interferences with other PTs and policies can be defined using the “Interference Policy” class to 

resolve the potential interference problem. Consider a simple example of two buses offering the 

transport service on the same route. If these two buses meet at some station along the route, the 

interference policy may require that the second bus waits for some time before continuing its 

service to increase the time span of service provision by the two buses.  

Consumable Resources: Generally, the operation of a PT may consume some resources. 

For example, a car needs to consume gas to offer its “Transportation” service. A life detector 

needs to consume battery to provides “life detecting” service. A printer needs to consume 

electricity as well as ink and paper to provide its “printing” service. These resources are provided 

externally by other services and, hence, need to be exposed specifically. We include 
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“Consumable Resources” class in the operational profile to specify the resources required for 

proper operation of the PT. 

 Maintenance: Similar to consumable resources, external maintenance services are 

required to ensure the proper operation of a PT. The “Maintenance” class is included in the PT 

ontology for specifying required maintenance services and maintenance schedules.  

Both “Consumable Resources” and “Maintenance” classes, if specified, should include 

state variables to describe the status of the consumable resources (such as the level of the gas 

tank of a car) and the status of each maintenance service (such as the date the maintenance 

service has been most recently performed and the time period during which it has to be 

performed next) and the services that can be used to maintain the sufficiency of the consumable 

resources and the services that perform the maintenance. The state variables may be used in 

preconditions of some of the services of the PT. It may also be updated after the associated 

external services are performed. Due to their importance in reasoning, we include the “State” 

variable and “External Service” classes in the PT-Ontology model. 

Consumable resource and Maintenance classes can also be skipped in a PT-Ontology 

model if they are not of interest in the application scenarios. For example, when selecting a car to 

perform a service, it is essential to confirm that it has enough gas or can easily access a gas 

station service to keep it running. But maintenance of the car is generally of less concern since it 

is not time-critical. Also, when selecting a printer for its printing service, it may not be 

interesting to confirm whether it has its power source since most likely it is statically connected 

to its power source. 
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1.24.3 Context  

Generally, a PT has some “constant” properties and some dynamic properties that may 

change all the time. The “Physical Properties” class specifies the constant properties of the PT, 

while the “Context” class defines the specific state of the PT in terms of those dynamic 

properties. 

In the physical world, the context of the PT is very critical in service provision. For 

example, it is not realistic to expect to use a PT in Florida to fulfill a service that is needed in 

California within an hour. Consider that a service consumer requests for a CPS/IoT service s at 

location A. A PT y that can provide service s is at location B, and y is not mobile. Then, a 

transportation service which can bring y from B to A should be composed with y.s (service ݏ 

provided by PT ݕ) in order to fulfill the request. This scenario generally does not need to be 

considered in software services, but is required in a PT-SOA model. Here, we have defined the 

“Context” class to specify the current context of a PT. Later, we define “Offered Context” to 

define future contexts that the PT should satisfy for its service provisions. 

1.24.4 Scheduled Service 

Unlike software services, in which a service can be provided simultaneously to multiple 

requesters who may invoke the service from any geographical locations, services provided by a 

PT may have to be provided exclusively and have time, location, and other potential context 

requirements (context preconditions, will be defined later). Thus, scheduling has a significant 

role in a PT-Ontology model. A PT, if required to offer its service(s) to multiple requesters and 
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the service(s) should be offered mutual exclusively, then the PT has to be scheduled properly to 

serve those requests.  

We define the “Scheduled Service” class in our PT-Ontology model. It has subclasses 

“Service Instance”, “Sequence ID”, “Offered Context”, “Subsequent Context”, and “Context 

Service”. “Service Instance” is the reference to the specific service of the PT that the PT is 

scheduled to satisfy. Sequence ID is used to clearly order the service offerings, and can be 

realized, from the implementation point of view, by linked list or other data structures for 

convenient retrieval. “Offered Context” is the context that the PT can offer to satisfy the 

requested context and “Subsequent Context” is the context after the scheduled service completes. 

The “Context Service” class specifies the service that can transfer the PT from the “Subsequent 

Context” of the previous “Scheduled Service” (by Sequence ID) to the “Offered Context” of this 

scheduled service. 

For example, a technician (PT) provides a concrete elevator-repair service. An office may 

request for the service on a specific day at a specific address. The technician, after scheduling, 

may offer to provide the service at a certain time range, say 2-4pm, of the day. The location of 

the service will, of course, be at the given address. The technician may have many such 

“Scheduled Services”. The “Context Service” can transfer the technician from one location to 

another. Consider a PT “Hotel”, which has several meeting rooms and offers a concrete meeting 

service. A person requesting for the meeting services has a room size and time-period 

requirement. In this case, the hotel can schedule a specific room for the specified time-range to 

satisfy this meeting service request. As can be seen, the “Offered Context” should always imply 
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the requested context. The “Offered Context” may be a specialization in location or in time or in 

both of the requested context. 

1.25 Extended Service Model for CPS/IoT 

In our PT-SOA model, we keep the “Process”, “Profile” and “IOPE” from the 

conventional OWL-S model, and extend them with new CPS/IoT specific information. We 

extend service ontology with “Context Precondition” and “Context Effect” classes (shown in 

Figure 9) to facilitate the specification of dynamic requirements and subsequent effects for each 

service of the PT (discussed in Sections 5.4.1 and 5.4.2). To specify the effects of a service on its 

recipients, we define the “AppliedTo” class under the service ontology, which is discussed in 

Section 4.4.3. 

 

Figure 11. Service Extension for Context and Effect 
  

1.25.1 Context Precondition  

As discussed in Section 5.3, when a service is invoked, some context requirement may 

have to be satisfied in order to proceed with the service provision. We define the “Context 

Precondition” class to specify such requirements. Note that context preconditions cannot be 

specified as conventional preconditions. Generally, preconditions of a service are fixed 
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conditions that stay the same for all service invocations. But context preconditions are dynamic, 

probably different in each invocation.  

In the service paradigm, a request for a service can be specified as an abstract service 

with IOPE being the requirements for match making. Similarly, in service composition, an 

abstract service may be decomposed into multiple abstract services with a process model 

specifying their control flow relations. Each abstract service can go through the same match 

making process as above. The extension in the PT-SOA model is that the invocation-specific 

context preconditions should also be specified in the abstract service model. Consider the match 

making process where a concrete service or a “more specialized” abstract service, say ܿݏ, is to 

instantiate the abstract service, say ܽݏ. 

 In conventional service paradigm, ܿݏ  can instantiate ܽݏ  if ܿݏ ’s precondition 

subsumes ܽݏ’s precondition and ܿݏ’s effect implies ܽݏ’s effect. 

 In PT-SOA model, ܿݏ  can instantiate ܽݏ  if ܿݏ ’s precondition subsumes ܽݏ ’s 

precondition and ܿݏ’s effect implies ܽݏ’s effect and let pt be the provider of ܽݏ, 

either of the following conditions should hold: 

 If ݐ݌  and ܿݏ  are abstract, then ܽݏ ’s context precondition should subsume ܿݏ ’s 

context precondition; or 

 The current context of a concrete ݐ݌ satisfies ܽݏ’s context precondition; or 

 There exists a “Scheduled Service” in a concrete ݐ݌ whose “Offered Context” 

satisfies ܽݏ’s context precondition, or 

 A “Scheduled Service” ݕ with an “Offered Context” that can satisfy ܽݏ’s context 

precondition can be added to a concrete ݐ݌, where ݕ’s prior “Scheduled Service” 
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is ݔ, and there exists another service ܾݏ, such that ܾݏ can transfer ݐ݌ from ݔ’s 

“Subsequent Context” to ݕ’s “Offered Context”. 

Though context preconditions need to be satisfied by the PT’s context, they are the 

requirements for the individual service instances to be provided by the PT. Hence, they should be 

specified under service definitions, not directly associated with the PT. 

1.25.2 Context Effect 

Effect is the condition that will hold after the execution of a service, if the precondition is 

satisfied. Effect specification has been widely investigated for software services (post-

conditions). Formal effect specification needs to be rigorous and can be highly complex for real 

systems. Semantic based effect specification has been used for services. Descriptive logical 

terms that are not directly related to the program itself can be defined to capture the concept of 

the effect of a service. Such specification can be used in PT-SOA as well. However, there are 

issues for effect specification in the model that need to be specially addressed. 

As analyzed earlier, precondition alone is not sufficient for specifying all requirements 

that have to be satisfied before service execution. We have defined context precondition to 

capture the dynamic context requirements that are only known upon service invocation. 

Correspondingly, we define the Context Effect to capture the corresponding effect on context. 

However, once context precondition is known, the context effect can be defined correspondingly. 

We can express context precondition as an unknown variable, and define the context effect 

correspondingly. For example, consider a service s provided by pt. We can define: 

  Context Precondition: At (s.pt, $x)  ServeAt (s, $t)  Within ($x, $area)  Within ($t, $T) 
  Context Effect: At (s.pt, $x)  EndTime (s, $t + e)  Within ($e, [2..3]seconds) 
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Here At specifies the location the pt should be at and ServeAt specifies the time at which 

s should be activated. Within specifies a range for any variable (of polymorphic type). Note that 

context effects can be specified just like regular effects. We still keep them separate from regular 

effects to facilitate potential separation in reasoning. 

1.25.3 “AppliedTo” Concept 

A software service has effect on the state of the system, such as database updates and 

parameter passing among services. One service may change the state of another service, but only 

through passing input parameters. In the physical world, a service may change the state of the 

provider, the external environment, as well as other physical things. In a simple model, a service 

may only be associated with its provider. In our PT-SOA model, the recipient PTs of a service 

are also specified through the “AppliedTo” class.  

With the “AppliedTo” list, the “Precondition”, “Context Precondition”, “Effect”, and 

“Context Effect” can be defined for the system state as well as for the PTs in the “AppliedTo” 

class. For example, a transportation service provided by a vehicle not only changes the context of 

this vehicle but also other PTs that are loaded on this vehicle. All the PTs loaded on the vehicle 

as well as the vehicle itself are all considered as the receivers of the service. Thus, the effect on 

all the PTs can be clearly specified based on the “AppliedTo” class. Consider a bus providing a 

transport service from Washington DC to New York City. The service is applied to all the riders, 

who are specified in the “AppliedTo” class. The “Context Precondition” is that all the riders 

should be in the Washington DC bus station and the “Context Effect” is that all the riders will be 

in the New York City bus station. The precondition and effect can be specified to include 

individual PTs or all PTs in the “AppliedTo” class.  
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1.26 Case Study and Model Validation 

We use emergency rescue as a case study system. The first 24 hours after an earthquake 

is the most critical time for a rescue mission. Planning on using the physical resources for timely 

discovery of the survivors is highly critical. We illustrate how our PT-SOA model can be used 

for such planning and demonstrate its necessity and effectiveness in CPS/IoT service 

composition. 

Figure 10 shows the map of the earthquake site (disaster region DR) and the neighboring 

facilities related to the rescue mission, including the hospital (H), robot storage facility (R), and 

truck station (T). The distances between the sites are marked in the map. We consider a highly 

simplified scenario. The rescue mission starts at 10:00am and is expected to be completed by 

midnight of the same day. There are 20 robots in R equipped with life detectors, 1 ambulance 

from H which has no other scheduled service, and 1 truck in T that has 2 other already scheduled 

services. The goal is to find all the injured survivors in DR and take them by ambulance to the 

hospital. 

 

Figure 12. Earthquake Scenario 
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1.26.1 Specification of the PTs and CPS/IoT Services 

We follow the PT-Ontology to define the robots, the truck, and the ambulances. The 

robots can provide individual services and can also be grouped into a swarm and provide 

services. The specification of “swarm” and “robot” PTs are given as follows. Some details are 

omitted due to space limitation. We use the notations discussed in Sections 5.3 and 5.4 and 

borrow PDDL [85] [86] like notation to express the predicates. The first identifier of a predicate 

is the predicate name and it is followed by its parameters. An identifier preceded with a question 

mark represents a variable; otherwise, a value or an instance. 

swarm swarm.Provide: search-survivor 
swarm.Physical Profile. 
   Constitute PT: robot and number(robot) = 20 and 
        robot in swarm, robot.schedule = null 
swarm.Context: At(R) 

  
robot.Provide: 
   remove_debri, detect_survivor, report_injured, move 
robot.Physical Profile. 
   Operation Schedule.Scheduled Service: null 
robot.Context: At(R) 
robot.Operation Profile 
 UsageConstraints: move.distance < 1 mile 

  
truck.Provide: transport, load 
truck.Physical Profile: 
 Operation Schedule.ScheduledService:  
  9:30am, transport(S1,D1);  
  1:00pm, transport(S2,D2); 
fuel-adding 
truck.Context: At(T) 

  
ambulance.Provide: move-patient, load-patient 
ambulance.Operation Profile: 
 Usage Contraints: move-patient.number(patient) ≤ 2 
ambulance.Physical Profile: 
 Patient Capability: 2 
 Operation Schedule.Scheduled Service: null 
ambulance.Context: At(H) 
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The specifications of some services given above are defined as follow. We only give the 

detailed specification for some services and the rest are just mentioned.  

swarm.search-for-life:  
 Input: region, num-robot, start-time 
 Precondition: need-search-for-life 
 Context Precondition: 
  start-time < 2pm  
  At ?swarm ?region 
  Effect: when (At ?human ?region)  
               (human-discovered ?region ?human) 
 
robot.scan: 
   Precondition: human-discovered ?region ?human 
   Effect: human-visibility-determined ?human 
     human-visible ?human  /human-invisible ?human 
   Context Precondition: At ?robot ?region 
   Context Effect: At ?human ?region 
 
robot.remove-debri: 
 Precondition: human-discovered ?region ?human 
         human-visibility-determined ?human 
         human-invisible ?human   
  Effect: human-visible ?human 
 Context Precondition: At ?robot ?region 
  
robot.report: 
   Output: human-status  
 Precondition: human-discovered ?region ?human 
         human-visibility-determined ?human 
         human-visible ?human   
  Effect: human-status-determined ?human 
       human-injured ?human 
    /human-not-injured ?human 
Context Precondition: At ?robot ?region 
 
truck.transport:  
  Input: from_location, to_location 
  Context Precondition: at ?from_location 
  AppliedTo: on-vehilce ?load ?vehicle 
  Context Effect: At ?vehicle ?to_location 
    At ?load ?to_location   
 
 truck.load:  
  Context Precondition: At ?vehicle ?location 
   At ?load ?location 
  Context Effect: on-vehicle ?load ?vehicle 
 
ambulance.load-patient:  
  Context Precondition: At ?ambulance ?location 
   At ?human ?location 
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  Context Effect: on-ambulance ?human ?vehicle  
 
ambulance.move-patient 
  Input: human-status 
 Precondition: human-status-determined ?human 
      human-injured ?human   
  AppliedTo:  on-ambulance ?human ?ambulance 
 Effect: at-hospital ?human 
 Context Precondition: At ?human ?loc 
   At ?ambulance ?loc 
   on-ambulance ?human ? ambulance 
  Context Effect: At ?human  ?loc_hospital 
     At ?ambulance ?loc_hospital 

1.26.2 Regular Workflow Composition 

The initial state of the system can be defined as: 

Initial State: need-search-for-life 
 
The goal discussed earlier can be formally defined as: 

Goal: forall (?human - human) 
    ( when  ( and (human-discovered ?region ?human)        
                         (human-injured ?human)) 
              ( and   (at-hospital ?human)  )         
 
Based on the initial condition and the goal, we first use the regular pre-conditions and 

effects of the services defined in 5.5.1 (note that the context preconditions and effects are not 

considered yet) to construct the basic workflow. The resulting workflow is shown in Figure 11.  

 

Figure 13. Basic Rescue Workflow 
 

The initial state “need-search-for-life” can be matched with the precondition of 

“swarm.search-for-life”. After search, the predicate “human-discovered” will match the 
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precondition of service “robot.scan”. Then, the effect of robot.scan is “human-visibility-

determined” and it will trigger the service “robot.visible”. Its result “human-visibility-

determined” is the precondition of “robot.report”. After robot.report, the state will be changed to 

“human-injured”. Then the precondition of “ambulance.move-patient” is satisfied and the patient 

will be “at-hospital”. 

1.26.3 Composition Using the PT-SOA Model 

In this section, we illustrate the use of our extended PT-SOA service model for complete 

workflow construction and why the PT-SOA features are useful. Note that in the workflow in 

Figure 12, the service “swarm.search-for-life” links to PT swarm, which are required to be 

grounded. Since there are 20 robots, they will be selected and grounded to the “Constitute PT” of 

the swarm. Also, the Context Precondition of the service “swarm.search-for-life”, (At swarm 

DR), is not satisfied. Since the robots of the swarm have physical constraints (move.distance < 1 

mile) and the distance from DR to Hospital H is 15 miles, the robot.move service cannot be used, 

and truck.transport service should be used to satisfy this context precondition. However, the 

truck has been scheduled for 2 other services (given in 5.5.1).  

The goal is to schedule the swarm.search-for-life service between 10am to 2pm. From 

truck.Schedule, this service can be added in between, and the resulting schedule is as follows. 

truck.Physical Profile: 
 Operation Schedule.ScheduledService:  
  9:30am, transport(S1,D1); 
     10:20am, transport(R,DR); 
  1:00pm, transport(S2,D2); 
 
Based on the schedule, the workflow for the truck that are relevant to the rescue mission 

can be constructed as follows: 
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Figure 14. Truck Transportation Workflow 
 

Note that the ContextPrecondition for truck.load requires that truck.Context: (At truck R). 

To satisfy it, truck.transport(D1,R) needs to be used to bring the truck to location R. At R, 

truck.load service loads robots to truck. Next, the truck.transport(R,DR) service will have its 

AppliedTo link linked to all the robots in the swarm. Finally, truck.transport(R,DR) delivers the 

robots from R to DR to satisfy the precondition of “swarm.search-for-life”. Thus, after executing 

the workflow, the context of the truck and the robot will both be (At robot DR) and (At truck 

DR).  

The composition using ambulances is similar to that for the truck. However, the 

Operation Constraint of the ambulances need to be considered in the composition. Assume that 

there are 6 survivors detected. Then, the ambulance.move-patient in the workflow in Figure 13 

needs to be modified to include 3 rounds of the ambulance.move-patient service. The modified 

workflow from the single ambulance.move-patient will be as follows: 

 

Figure 15. Update Rescue Workflow 
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1.26.4 Remarks 

Due to space limit, we omitted some detailed composition reasoning steps using our PT-

SOA model. Here, we discuss some of the omitted steps at a high level: (1) In the truck PT-

ontology, there is a “Consumable Resource” = fuel. In case the truck does not have enough fuel, 

some external services will be used to add fuel to the truck to make its “Consumable Resource” 

condition be satisfied. This will trigger the requirement for composing additional external 

services to make the PT usable. (2) The “Maintenance” for ambulance will be linked to two 

maintenance services provided by two different providers, one maintenance service for the 

engine provided by a car technician and the other for checking the medical facilities on the 

ambulance, which is provided by the hospital. These services will be specified in the “ 

Maintenance” classes. (3) When using the swarm.search-for-life service, we did not consider 

how the constituent PTs are selected, which should be done in a complete composition process.  

1.27 Conclusion 

We have identified the issues in the modeling technology for discovery and composition 

of services and physical things to achieve new and dynamically arising tasks. Then, we extended 

OWL-S and other service models to build the PT-SOA model for CPS/IoT systems to address 

these issues. Finally, we presented a simple case study system to illustrate the necessity and 

effectiveness of the PT-SOA model in CPS/IoT service composition. 
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